]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/lra-eliminations.c
alias.c: Reorder #include statements and remove duplicates.
[thirdparty/gcc.git] / gcc / lra-eliminations.c
1 /* Code for RTL register eliminations.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Eliminable registers (like a soft argument or frame pointer) are
22 widely used in RTL. These eliminable registers should be replaced
23 by real hard registers (like the stack pointer or hard frame
24 pointer) plus some offset. The offsets usually change whenever the
25 stack is expanded. We know the final offsets only at the very end
26 of LRA.
27
28 Within LRA, we usually keep the RTL in such a state that the
29 eliminable registers can be replaced by just the corresponding hard
30 register (without any offset). To achieve this we should add the
31 initial elimination offset at the beginning of LRA and update the
32 offsets whenever the stack is expanded. We need to do this before
33 every constraint pass because the choice of offset often affects
34 whether a particular address or memory constraint is satisfied.
35
36 We keep RTL code at most time in such state that the virtual
37 registers can be changed by just the corresponding hard registers
38 (with zero offsets) and we have the right RTL code. To achieve this
39 we should add initial offset at the beginning of LRA work and update
40 offsets after each stack expanding. But actually we update virtual
41 registers to the same virtual registers + corresponding offsets
42 before every constraint pass because it affects constraint
43 satisfaction (e.g. an address displacement became too big for some
44 target).
45
46 The final change of eliminable registers to the corresponding hard
47 registers are done at the very end of LRA when there were no change
48 in offsets anymore:
49
50 fp + 42 => sp + 42
51
52 */
53
54 #include "config.h"
55 #include "system.h"
56 #include "coretypes.h"
57 #include "backend.h"
58 #include "target.h"
59 #include "rtl.h"
60 #include "tree.h"
61 #include "df.h"
62 #include "tm_p.h"
63 #include "expmed.h"
64 #include "optabs.h"
65 #include "regs.h"
66 #include "ira.h"
67 #include "recog.h"
68 #include "output.h"
69 #include "addresses.h"
70 #include "flags.h"
71 #include "alias.h"
72 #include "dojump.h"
73 #include "explow.h"
74 #include "calls.h"
75 #include "varasm.h"
76 #include "stmt.h"
77 #include "expr.h"
78 #include "except.h"
79 #include "rtl-error.h"
80 #include "lra.h"
81 #include "insn-attr.h"
82 #include "lra-int.h"
83
84 /* This structure is used to record information about hard register
85 eliminations. */
86 struct lra_elim_table
87 {
88 /* Hard register number to be eliminated. */
89 int from;
90 /* Hard register number used as replacement. */
91 int to;
92 /* Difference between values of the two hard registers above on
93 previous iteration. */
94 HOST_WIDE_INT previous_offset;
95 /* Difference between the values on the current iteration. */
96 HOST_WIDE_INT offset;
97 /* Nonzero if this elimination can be done. */
98 bool can_eliminate;
99 /* CAN_ELIMINATE since the last check. */
100 bool prev_can_eliminate;
101 /* REG rtx for the register to be eliminated. We cannot simply
102 compare the number since we might then spuriously replace a hard
103 register corresponding to a pseudo assigned to the reg to be
104 eliminated. */
105 rtx from_rtx;
106 /* REG rtx for the replacement. */
107 rtx to_rtx;
108 };
109
110 /* The elimination table. Each array entry describes one possible way
111 of eliminating a register in favor of another. If there is more
112 than one way of eliminating a particular register, the most
113 preferred should be specified first. */
114 static struct lra_elim_table *reg_eliminate = 0;
115
116 /* This is an intermediate structure to initialize the table. It has
117 exactly the members provided by ELIMINABLE_REGS. */
118 static const struct elim_table_1
119 {
120 const int from;
121 const int to;
122 } reg_eliminate_1[] =
123
124 /* If a set of eliminable hard registers was specified, define the
125 table from it. Otherwise, default to the normal case of the frame
126 pointer being replaced by the stack pointer. */
127
128 #ifdef ELIMINABLE_REGS
129 ELIMINABLE_REGS;
130 #else
131 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
132 #endif
133
134 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
135
136 /* Print info about elimination table to file F. */
137 static void
138 print_elim_table (FILE *f)
139 {
140 struct lra_elim_table *ep;
141
142 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
143 fprintf (f, "%s eliminate %d to %d (offset=" HOST_WIDE_INT_PRINT_DEC
144 ", prev_offset=" HOST_WIDE_INT_PRINT_DEC ")\n",
145 ep->can_eliminate ? "Can" : "Can't",
146 ep->from, ep->to, ep->offset, ep->previous_offset);
147 }
148
149 /* Print info about elimination table to stderr. */
150 void
151 lra_debug_elim_table (void)
152 {
153 print_elim_table (stderr);
154 }
155
156 /* Setup possibility of elimination in elimination table element EP to
157 VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame
158 pointer to stack pointer is not possible anymore. */
159 static void
160 setup_can_eliminate (struct lra_elim_table *ep, bool value)
161 {
162 ep->can_eliminate = ep->prev_can_eliminate = value;
163 if (! value
164 && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM)
165 frame_pointer_needed = 1;
166 if (!frame_pointer_needed)
167 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = 0;
168 }
169
170 /* Map: eliminable "from" register -> its current elimination,
171 or NULL if none. The elimination table may contain more than
172 one elimination for the same hard register, but this map specifies
173 the one that we are currently using. */
174 static struct lra_elim_table *elimination_map[FIRST_PSEUDO_REGISTER];
175
176 /* When an eliminable hard register becomes not eliminable, we use the
177 following special structure to restore original offsets for the
178 register. */
179 static struct lra_elim_table self_elim_table;
180
181 /* Offsets should be used to restore original offsets for eliminable
182 hard register which just became not eliminable. Zero,
183 otherwise. */
184 static HOST_WIDE_INT self_elim_offsets[FIRST_PSEUDO_REGISTER];
185
186 /* Map: hard regno -> RTL presentation. RTL presentations of all
187 potentially eliminable hard registers are stored in the map. */
188 static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER];
189
190 /* Set up ELIMINATION_MAP of the currently used eliminations. */
191 static void
192 setup_elimination_map (void)
193 {
194 int i;
195 struct lra_elim_table *ep;
196
197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
198 elimination_map[i] = NULL;
199 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
200 if (ep->can_eliminate && elimination_map[ep->from] == NULL)
201 elimination_map[ep->from] = ep;
202 }
203
204 \f
205
206 /* Compute the sum of X and Y, making canonicalizations assumed in an
207 address, namely: sum constant integers, surround the sum of two
208 constants with a CONST, put the constant as the second operand, and
209 group the constant on the outermost sum.
210
211 This routine assumes both inputs are already in canonical form. */
212 static rtx
213 form_sum (rtx x, rtx y)
214 {
215 machine_mode mode = GET_MODE (x);
216
217 if (mode == VOIDmode)
218 mode = GET_MODE (y);
219
220 if (mode == VOIDmode)
221 mode = Pmode;
222
223 if (CONST_INT_P (x))
224 return plus_constant (mode, y, INTVAL (x));
225 else if (CONST_INT_P (y))
226 return plus_constant (mode, x, INTVAL (y));
227 else if (CONSTANT_P (x))
228 std::swap (x, y);
229
230 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
231 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
232
233 /* Note that if the operands of Y are specified in the opposite
234 order in the recursive calls below, infinite recursion will
235 occur. */
236 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
237 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
238
239 /* If both constant, encapsulate sum. Otherwise, just form sum. A
240 constant will have been placed second. */
241 if (CONSTANT_P (x) && CONSTANT_P (y))
242 {
243 if (GET_CODE (x) == CONST)
244 x = XEXP (x, 0);
245 if (GET_CODE (y) == CONST)
246 y = XEXP (y, 0);
247
248 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
249 }
250
251 return gen_rtx_PLUS (mode, x, y);
252 }
253
254 /* Return the current substitution hard register of the elimination of
255 HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */
256 int
257 lra_get_elimination_hard_regno (int hard_regno)
258 {
259 struct lra_elim_table *ep;
260
261 if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
262 return hard_regno;
263 if ((ep = elimination_map[hard_regno]) == NULL)
264 return hard_regno;
265 return ep->to;
266 }
267
268 /* Return elimination which will be used for hard reg REG, NULL
269 otherwise. */
270 static struct lra_elim_table *
271 get_elimination (rtx reg)
272 {
273 int hard_regno;
274 struct lra_elim_table *ep;
275 HOST_WIDE_INT offset;
276
277 lra_assert (REG_P (reg));
278 if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
279 return NULL;
280 if ((ep = elimination_map[hard_regno]) != NULL)
281 return ep->from_rtx != reg ? NULL : ep;
282 if ((offset = self_elim_offsets[hard_regno]) == 0)
283 return NULL;
284 /* This is an iteration to restore offsets just after HARD_REGNO
285 stopped to be eliminable. */
286 self_elim_table.from = self_elim_table.to = hard_regno;
287 self_elim_table.from_rtx
288 = self_elim_table.to_rtx
289 = eliminable_reg_rtx[hard_regno];
290 lra_assert (self_elim_table.from_rtx != NULL);
291 self_elim_table.offset = offset;
292 return &self_elim_table;
293 }
294
295 /* Scan X and replace any eliminable registers (such as fp) with a
296 replacement (such as sp) if SUBST_P, plus an offset. The offset is
297 a change in the offset between the eliminable register and its
298 substitution if UPDATE_P, or the full offset if FULL_P, or
299 otherwise zero. If FULL_P, we also use the SP offsets for
300 elimination to SP. If UPDATE_P, use UPDATE_SP_OFFSET for updating
301 offsets of register elimnable to SP. If UPDATE_SP_OFFSET is
302 non-zero, don't use difference of the offset and the previous
303 offset.
304
305 MEM_MODE is the mode of an enclosing MEM. We need this to know how
306 much to adjust a register for, e.g., PRE_DEC. Also, if we are
307 inside a MEM, we are allowed to replace a sum of a hard register
308 and the constant zero with the hard register, which we cannot do
309 outside a MEM. In addition, we need to record the fact that a
310 hard register is referenced outside a MEM.
311
312 If we make full substitution to SP for non-null INSN, add the insn
313 sp offset. */
314 rtx
315 lra_eliminate_regs_1 (rtx_insn *insn, rtx x, machine_mode mem_mode,
316 bool subst_p, bool update_p,
317 HOST_WIDE_INT update_sp_offset, bool full_p)
318 {
319 enum rtx_code code = GET_CODE (x);
320 struct lra_elim_table *ep;
321 rtx new_rtx;
322 int i, j;
323 const char *fmt;
324 int copied = 0;
325
326 lra_assert (!update_p || !full_p);
327 lra_assert (update_sp_offset == 0 || (!subst_p && update_p && !full_p));
328 if (! current_function_decl)
329 return x;
330
331 switch (code)
332 {
333 CASE_CONST_ANY:
334 case CONST:
335 case SYMBOL_REF:
336 case CODE_LABEL:
337 case PC:
338 case CC0:
339 case ASM_INPUT:
340 case ADDR_VEC:
341 case ADDR_DIFF_VEC:
342 case RETURN:
343 return x;
344
345 case REG:
346 /* First handle the case where we encounter a bare hard register
347 that is eliminable. Replace it with a PLUS. */
348 if ((ep = get_elimination (x)) != NULL)
349 {
350 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
351
352 if (update_sp_offset != 0)
353 {
354 if (ep->to_rtx == stack_pointer_rtx)
355 return plus_constant (Pmode, to, update_sp_offset);
356 return to;
357 }
358 else if (update_p)
359 return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
360 else if (full_p)
361 return plus_constant (Pmode, to,
362 ep->offset
363 - (insn != NULL_RTX
364 && ep->to_rtx == stack_pointer_rtx
365 ? lra_get_insn_recog_data (insn)->sp_offset
366 : 0));
367 else
368 return to;
369 }
370 return x;
371
372 case PLUS:
373 /* If this is the sum of an eliminable register and a constant, rework
374 the sum. */
375 if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
376 {
377 if ((ep = get_elimination (XEXP (x, 0))) != NULL)
378 {
379 HOST_WIDE_INT offset;
380 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
381
382 if (! update_p && ! full_p)
383 return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
384
385 if (update_sp_offset != 0)
386 offset = ep->to_rtx == stack_pointer_rtx ? update_sp_offset : 0;
387 else
388 offset = (update_p
389 ? ep->offset - ep->previous_offset : ep->offset);
390 if (full_p && insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
391 offset -= lra_get_insn_recog_data (insn)->sp_offset;
392 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) == -offset)
393 return to;
394 else
395 return gen_rtx_PLUS (Pmode, to,
396 plus_constant (Pmode,
397 XEXP (x, 1), offset));
398 }
399
400 /* If the hard register is not eliminable, we are done since
401 the other operand is a constant. */
402 return x;
403 }
404
405 /* If this is part of an address, we want to bring any constant
406 to the outermost PLUS. We will do this by doing hard
407 register replacement in our operands and seeing if a constant
408 shows up in one of them.
409
410 Note that there is no risk of modifying the structure of the
411 insn, since we only get called for its operands, thus we are
412 either modifying the address inside a MEM, or something like
413 an address operand of a load-address insn. */
414
415 {
416 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
417 subst_p, update_p,
418 update_sp_offset, full_p);
419 rtx new1 = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
420 subst_p, update_p,
421 update_sp_offset, full_p);
422
423 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
424 return form_sum (new0, new1);
425 }
426 return x;
427
428 case MULT:
429 /* If this is the product of an eliminable hard register and a
430 constant, apply the distribute law and move the constant out
431 so that we have (plus (mult ..) ..). This is needed in order
432 to keep load-address insns valid. This case is pathological.
433 We ignore the possibility of overflow here. */
434 if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
435 && (ep = get_elimination (XEXP (x, 0))) != NULL)
436 {
437 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
438
439 if (update_sp_offset != 0)
440 {
441 if (ep->to_rtx == stack_pointer_rtx)
442 return plus_constant (Pmode,
443 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
444 update_sp_offset * INTVAL (XEXP (x, 1)));
445 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
446 }
447 else if (update_p)
448 return plus_constant (Pmode,
449 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
450 (ep->offset - ep->previous_offset)
451 * INTVAL (XEXP (x, 1)));
452 else if (full_p)
453 {
454 HOST_WIDE_INT offset = ep->offset;
455
456 if (insn != NULL_RTX && ep->to_rtx == stack_pointer_rtx)
457 offset -= lra_get_insn_recog_data (insn)->sp_offset;
458 return
459 plus_constant (Pmode,
460 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
461 offset * INTVAL (XEXP (x, 1)));
462 }
463 else
464 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
465 }
466
467 /* ... fall through ... */
468
469 case CALL:
470 case COMPARE:
471 /* See comments before PLUS about handling MINUS. */
472 case MINUS:
473 case DIV: case UDIV:
474 case MOD: case UMOD:
475 case AND: case IOR: case XOR:
476 case ROTATERT: case ROTATE:
477 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
478 case NE: case EQ:
479 case GE: case GT: case GEU: case GTU:
480 case LE: case LT: case LEU: case LTU:
481 {
482 rtx new0 = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
483 subst_p, update_p,
484 update_sp_offset, full_p);
485 rtx new1 = XEXP (x, 1)
486 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
487 subst_p, update_p,
488 update_sp_offset, full_p) : 0;
489
490 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
491 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
492 }
493 return x;
494
495 case EXPR_LIST:
496 /* If we have something in XEXP (x, 0), the usual case,
497 eliminate it. */
498 if (XEXP (x, 0))
499 {
500 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
501 subst_p, update_p,
502 update_sp_offset, full_p);
503 if (new_rtx != XEXP (x, 0))
504 {
505 /* If this is a REG_DEAD note, it is not valid anymore.
506 Using the eliminated version could result in creating a
507 REG_DEAD note for the stack or frame pointer. */
508 if (REG_NOTE_KIND (x) == REG_DEAD)
509 return (XEXP (x, 1)
510 ? lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
511 subst_p, update_p,
512 update_sp_offset, full_p)
513 : NULL_RTX);
514
515 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
516 }
517 }
518
519 /* ... fall through ... */
520
521 case INSN_LIST:
522 case INT_LIST:
523 /* Now do eliminations in the rest of the chain. If this was
524 an EXPR_LIST, this might result in allocating more memory than is
525 strictly needed, but it simplifies the code. */
526 if (XEXP (x, 1))
527 {
528 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 1), mem_mode,
529 subst_p, update_p,
530 update_sp_offset, full_p);
531 if (new_rtx != XEXP (x, 1))
532 return
533 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
534 XEXP (x, 0), new_rtx);
535 }
536 return x;
537
538 case PRE_INC:
539 case POST_INC:
540 case PRE_DEC:
541 case POST_DEC:
542 /* We do not support elimination of a register that is modified.
543 elimination_effects has already make sure that this does not
544 happen. */
545 return x;
546
547 case PRE_MODIFY:
548 case POST_MODIFY:
549 /* We do not support elimination of a hard register that is
550 modified. LRA has already make sure that this does not
551 happen. The only remaining case we need to consider here is
552 that the increment value may be an eliminable register. */
553 if (GET_CODE (XEXP (x, 1)) == PLUS
554 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
555 {
556 rtx new_rtx = lra_eliminate_regs_1 (insn, XEXP (XEXP (x, 1), 1),
557 mem_mode, subst_p, update_p,
558 update_sp_offset, full_p);
559
560 if (new_rtx != XEXP (XEXP (x, 1), 1))
561 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
562 gen_rtx_PLUS (GET_MODE (x),
563 XEXP (x, 0), new_rtx));
564 }
565 return x;
566
567 case STRICT_LOW_PART:
568 case NEG: case NOT:
569 case SIGN_EXTEND: case ZERO_EXTEND:
570 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
571 case FLOAT: case FIX:
572 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
573 case ABS:
574 case SQRT:
575 case FFS:
576 case CLZ:
577 case CTZ:
578 case POPCOUNT:
579 case PARITY:
580 case BSWAP:
581 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), mem_mode,
582 subst_p, update_p,
583 update_sp_offset, full_p);
584 if (new_rtx != XEXP (x, 0))
585 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
586 return x;
587
588 case SUBREG:
589 new_rtx = lra_eliminate_regs_1 (insn, SUBREG_REG (x), mem_mode,
590 subst_p, update_p,
591 update_sp_offset, full_p);
592
593 if (new_rtx != SUBREG_REG (x))
594 {
595 int x_size = GET_MODE_SIZE (GET_MODE (x));
596 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
597
598 if (MEM_P (new_rtx) && x_size <= new_size)
599 {
600 SUBREG_REG (x) = new_rtx;
601 alter_subreg (&x, false);
602 return x;
603 }
604 else if (! subst_p)
605 {
606 /* LRA can transform subregs itself. So don't call
607 simplify_gen_subreg until LRA transformations are
608 finished. Function simplify_gen_subreg can do
609 non-trivial transformations (like truncation) which
610 might make LRA work to fail. */
611 SUBREG_REG (x) = new_rtx;
612 return x;
613 }
614 else
615 return simplify_gen_subreg (GET_MODE (x), new_rtx,
616 GET_MODE (new_rtx), SUBREG_BYTE (x));
617 }
618
619 return x;
620
621 case MEM:
622 /* Our only special processing is to pass the mode of the MEM to our
623 recursive call and copy the flags. While we are here, handle this
624 case more efficiently. */
625 return
626 replace_equiv_address_nv
627 (x,
628 lra_eliminate_regs_1 (insn, XEXP (x, 0), GET_MODE (x),
629 subst_p, update_p, update_sp_offset, full_p));
630
631 case USE:
632 /* Handle insn_list USE that a call to a pure function may generate. */
633 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, 0), VOIDmode,
634 subst_p, update_p, update_sp_offset, full_p);
635 if (new_rtx != XEXP (x, 0))
636 return gen_rtx_USE (GET_MODE (x), new_rtx);
637 return x;
638
639 case CLOBBER:
640 case SET:
641 gcc_unreachable ();
642
643 default:
644 break;
645 }
646
647 /* Process each of our operands recursively. If any have changed, make a
648 copy of the rtx. */
649 fmt = GET_RTX_FORMAT (code);
650 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
651 {
652 if (*fmt == 'e')
653 {
654 new_rtx = lra_eliminate_regs_1 (insn, XEXP (x, i), mem_mode,
655 subst_p, update_p,
656 update_sp_offset, full_p);
657 if (new_rtx != XEXP (x, i) && ! copied)
658 {
659 x = shallow_copy_rtx (x);
660 copied = 1;
661 }
662 XEXP (x, i) = new_rtx;
663 }
664 else if (*fmt == 'E')
665 {
666 int copied_vec = 0;
667 for (j = 0; j < XVECLEN (x, i); j++)
668 {
669 new_rtx = lra_eliminate_regs_1 (insn, XVECEXP (x, i, j), mem_mode,
670 subst_p, update_p,
671 update_sp_offset, full_p);
672 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
673 {
674 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
675 XVEC (x, i)->elem);
676 if (! copied)
677 {
678 x = shallow_copy_rtx (x);
679 copied = 1;
680 }
681 XVEC (x, i) = new_v;
682 copied_vec = 1;
683 }
684 XVECEXP (x, i, j) = new_rtx;
685 }
686 }
687 }
688
689 return x;
690 }
691
692 /* This function is used externally in subsequent passes of GCC. It
693 always does a full elimination of X. */
694 rtx
695 lra_eliminate_regs (rtx x, machine_mode mem_mode,
696 rtx insn ATTRIBUTE_UNUSED)
697 {
698 return lra_eliminate_regs_1 (NULL, x, mem_mode, true, false, 0, true);
699 }
700
701 /* Stack pointer offset before the current insn relative to one at the
702 func start. RTL insns can change SP explicitly. We keep the
703 changes from one insn to another through this variable. */
704 static HOST_WIDE_INT curr_sp_change;
705
706 /* Scan rtx X for references to elimination source or target registers
707 in contexts that would prevent the elimination from happening.
708 Update the table of eliminables to reflect the changed state.
709 MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
710 within a MEM. */
711 static void
712 mark_not_eliminable (rtx x, machine_mode mem_mode)
713 {
714 enum rtx_code code = GET_CODE (x);
715 struct lra_elim_table *ep;
716 int i, j;
717 const char *fmt;
718
719 switch (code)
720 {
721 case PRE_INC:
722 case POST_INC:
723 case PRE_DEC:
724 case POST_DEC:
725 case POST_MODIFY:
726 case PRE_MODIFY:
727 if (XEXP (x, 0) == stack_pointer_rtx
728 && ((code != PRE_MODIFY && code != POST_MODIFY)
729 || (GET_CODE (XEXP (x, 1)) == PLUS
730 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
731 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))))
732 {
733 int size = GET_MODE_SIZE (mem_mode);
734
735 #ifdef PUSH_ROUNDING
736 /* If more bytes than MEM_MODE are pushed, account for
737 them. */
738 size = PUSH_ROUNDING (size);
739 #endif
740 if (code == PRE_DEC || code == POST_DEC)
741 curr_sp_change -= size;
742 else if (code == PRE_INC || code == POST_INC)
743 curr_sp_change += size;
744 else if (code == PRE_MODIFY || code == POST_MODIFY)
745 curr_sp_change += INTVAL (XEXP (XEXP (x, 1), 1));
746 }
747 else if (REG_P (XEXP (x, 0))
748 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
749 {
750 /* If we modify the source of an elimination rule, disable
751 it. Do the same if it is the destination and not the
752 hard frame register. */
753 for (ep = reg_eliminate;
754 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
755 ep++)
756 if (ep->from_rtx == XEXP (x, 0)
757 || (ep->to_rtx == XEXP (x, 0)
758 && ep->to_rtx != hard_frame_pointer_rtx))
759 setup_can_eliminate (ep, false);
760 }
761 return;
762
763 case USE:
764 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
765 /* If using a hard register that is the source of an eliminate
766 we still think can be performed, note it cannot be
767 performed since we don't know how this hard register is
768 used. */
769 for (ep = reg_eliminate;
770 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
771 ep++)
772 if (ep->from_rtx == XEXP (x, 0)
773 && ep->to_rtx != hard_frame_pointer_rtx)
774 setup_can_eliminate (ep, false);
775 return;
776
777 case CLOBBER:
778 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
779 /* If clobbering a hard register that is the replacement
780 register for an elimination we still think can be
781 performed, note that it cannot be performed. Otherwise, we
782 need not be concerned about it. */
783 for (ep = reg_eliminate;
784 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
785 ep++)
786 if (ep->to_rtx == XEXP (x, 0)
787 && ep->to_rtx != hard_frame_pointer_rtx)
788 setup_can_eliminate (ep, false);
789 return;
790
791 case SET:
792 if (SET_DEST (x) == stack_pointer_rtx
793 && GET_CODE (SET_SRC (x)) == PLUS
794 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
795 && CONST_INT_P (XEXP (SET_SRC (x), 1)))
796 {
797 curr_sp_change += INTVAL (XEXP (SET_SRC (x), 1));
798 return;
799 }
800 if (! REG_P (SET_DEST (x))
801 || REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
802 mark_not_eliminable (SET_DEST (x), mem_mode);
803 else
804 {
805 /* See if this is setting the replacement hard register for
806 an elimination.
807
808 If DEST is the hard frame pointer, we do nothing because
809 we assume that all assignments to the frame pointer are
810 for non-local gotos and are being done at a time when
811 they are valid and do not disturb anything else. Some
812 machines want to eliminate a fake argument pointer (or
813 even a fake frame pointer) with either the real frame
814 pointer or the stack pointer. Assignments to the hard
815 frame pointer must not prevent this elimination. */
816 for (ep = reg_eliminate;
817 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
818 ep++)
819 if (ep->to_rtx == SET_DEST (x)
820 && SET_DEST (x) != hard_frame_pointer_rtx)
821 setup_can_eliminate (ep, false);
822 }
823
824 mark_not_eliminable (SET_SRC (x), mem_mode);
825 return;
826
827 case MEM:
828 /* Our only special processing is to pass the mode of the MEM to
829 our recursive call. */
830 mark_not_eliminable (XEXP (x, 0), GET_MODE (x));
831 return;
832
833 default:
834 break;
835 }
836
837 fmt = GET_RTX_FORMAT (code);
838 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
839 {
840 if (*fmt == 'e')
841 mark_not_eliminable (XEXP (x, i), mem_mode);
842 else if (*fmt == 'E')
843 for (j = 0; j < XVECLEN (x, i); j++)
844 mark_not_eliminable (XVECEXP (x, i, j), mem_mode);
845 }
846 }
847
848 \f
849
850 #ifdef HARD_FRAME_POINTER_REGNUM
851
852 /* Find offset equivalence note for reg WHAT in INSN and return the
853 found elmination offset. If the note is not found, return NULL.
854 Remove the found note. */
855 static rtx
856 remove_reg_equal_offset_note (rtx_insn *insn, rtx what)
857 {
858 rtx link, *link_loc;
859
860 for (link_loc = &REG_NOTES (insn);
861 (link = *link_loc) != NULL_RTX;
862 link_loc = &XEXP (link, 1))
863 if (REG_NOTE_KIND (link) == REG_EQUAL
864 && GET_CODE (XEXP (link, 0)) == PLUS
865 && XEXP (XEXP (link, 0), 0) == what
866 && CONST_INT_P (XEXP (XEXP (link, 0), 1)))
867 {
868 *link_loc = XEXP (link, 1);
869 return XEXP (XEXP (link, 0), 1);
870 }
871 return NULL_RTX;
872 }
873
874 #endif
875
876 /* Scan INSN and eliminate all eliminable hard registers in it.
877
878 If REPLACE_P is true, do the replacement destructively. Also
879 delete the insn as dead it if it is setting an eliminable register.
880
881 If REPLACE_P is false, just update the offsets while keeping the
882 base register the same. If FIRST_P, use the sp offset for
883 elimination to sp. Otherwise, use UPDATE_SP_OFFSET for this. If
884 UPDATE_SP_OFFSET is non-zero, don't use difference of the offset
885 and the previous offset. Attach the note about used elimination
886 for insns setting frame pointer to update elimination easy (without
887 parsing already generated elimination insns to find offset
888 previously used) in future. */
889
890 void
891 eliminate_regs_in_insn (rtx_insn *insn, bool replace_p, bool first_p,
892 HOST_WIDE_INT update_sp_offset)
893 {
894 int icode = recog_memoized (insn);
895 rtx old_set = single_set (insn);
896 bool validate_p;
897 int i;
898 rtx substed_operand[MAX_RECOG_OPERANDS];
899 rtx orig_operand[MAX_RECOG_OPERANDS];
900 struct lra_elim_table *ep;
901 rtx plus_src, plus_cst_src;
902 lra_insn_recog_data_t id;
903 struct lra_static_insn_data *static_id;
904
905 if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
906 {
907 lra_assert (GET_CODE (PATTERN (insn)) == USE
908 || GET_CODE (PATTERN (insn)) == CLOBBER
909 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
910 return;
911 }
912
913 /* Check for setting an eliminable register. */
914 if (old_set != 0 && REG_P (SET_DEST (old_set))
915 && (ep = get_elimination (SET_DEST (old_set))) != NULL)
916 {
917 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
918 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
919 {
920 bool delete_p = replace_p;
921
922 #ifdef HARD_FRAME_POINTER_REGNUM
923 if (ep->from == FRAME_POINTER_REGNUM
924 && ep->to == HARD_FRAME_POINTER_REGNUM)
925 /* If this is setting the frame pointer register to the
926 hardware frame pointer register and this is an
927 elimination that will be done (tested above), this
928 insn is really adjusting the frame pointer downward
929 to compensate for the adjustment done before a
930 nonlocal goto. */
931 {
932 rtx src = SET_SRC (old_set);
933 rtx off = remove_reg_equal_offset_note (insn, ep->to_rtx);
934
935 /* We should never process such insn with non-zero
936 UPDATE_SP_OFFSET. */
937 lra_assert (update_sp_offset == 0);
938
939 if (off != NULL_RTX
940 || src == ep->to_rtx
941 || (GET_CODE (src) == PLUS
942 && XEXP (src, 0) == ep->to_rtx
943 && CONST_INT_P (XEXP (src, 1))))
944 {
945 HOST_WIDE_INT offset;
946
947 if (replace_p)
948 {
949 SET_DEST (old_set) = ep->to_rtx;
950 lra_update_insn_recog_data (insn);
951 return;
952 }
953 offset = (off != NULL_RTX ? INTVAL (off)
954 : src == ep->to_rtx ? 0 : INTVAL (XEXP (src, 1)));
955 offset -= (ep->offset - ep->previous_offset);
956 src = plus_constant (Pmode, ep->to_rtx, offset);
957
958 /* First see if this insn remains valid when we
959 make the change. If not, keep the INSN_CODE
960 the same and let the constraint pass fit it
961 up. */
962 validate_change (insn, &SET_SRC (old_set), src, 1);
963 validate_change (insn, &SET_DEST (old_set),
964 ep->from_rtx, 1);
965 if (! apply_change_group ())
966 {
967 SET_SRC (old_set) = src;
968 SET_DEST (old_set) = ep->from_rtx;
969 }
970 lra_update_insn_recog_data (insn);
971 /* Add offset note for future updates. */
972 add_reg_note (insn, REG_EQUAL, src);
973 return;
974 }
975 }
976 #endif
977
978 /* This insn isn't serving a useful purpose. We delete it
979 when REPLACE is set. */
980 if (delete_p)
981 lra_delete_dead_insn (insn);
982 return;
983 }
984 }
985
986 /* We allow one special case which happens to work on all machines we
987 currently support: a single set with the source or a REG_EQUAL
988 note being a PLUS of an eliminable register and a constant. */
989 plus_src = plus_cst_src = 0;
990 if (old_set && REG_P (SET_DEST (old_set)))
991 {
992 if (GET_CODE (SET_SRC (old_set)) == PLUS)
993 plus_src = SET_SRC (old_set);
994 /* First see if the source is of the form (plus (...) CST). */
995 if (plus_src
996 && CONST_INT_P (XEXP (plus_src, 1)))
997 plus_cst_src = plus_src;
998 /* Check that the first operand of the PLUS is a hard reg or
999 the lowpart subreg of one. */
1000 if (plus_cst_src)
1001 {
1002 rtx reg = XEXP (plus_cst_src, 0);
1003
1004 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
1005 reg = SUBREG_REG (reg);
1006
1007 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
1008 plus_cst_src = 0;
1009 }
1010 }
1011 if (plus_cst_src)
1012 {
1013 rtx reg = XEXP (plus_cst_src, 0);
1014 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
1015
1016 if (GET_CODE (reg) == SUBREG)
1017 reg = SUBREG_REG (reg);
1018
1019 if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
1020 {
1021 rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;
1022
1023 if (! replace_p)
1024 {
1025 if (update_sp_offset == 0)
1026 offset += (ep->offset - ep->previous_offset);
1027 if (ep->to_rtx == stack_pointer_rtx)
1028 {
1029 if (first_p)
1030 offset -= lra_get_insn_recog_data (insn)->sp_offset;
1031 else
1032 offset += update_sp_offset;
1033 }
1034 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
1035 }
1036
1037 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
1038 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
1039 /* If we have a nonzero offset, and the source is already a
1040 simple REG, the following transformation would increase
1041 the cost of the insn by replacing a simple REG with (plus
1042 (reg sp) CST). So try only when we already had a PLUS
1043 before. */
1044 if (offset == 0 || plus_src)
1045 {
1046 rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);
1047
1048 old_set = single_set (insn);
1049
1050 /* First see if this insn remains valid when we make the
1051 change. If not, try to replace the whole pattern
1052 with a simple set (this may help if the original insn
1053 was a PARALLEL that was only recognized as single_set
1054 due to REG_UNUSED notes). If this isn't valid
1055 either, keep the INSN_CODE the same and let the
1056 constraint pass fix it up. */
1057 if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
1058 {
1059 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
1060
1061 if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
1062 SET_SRC (old_set) = new_src;
1063 }
1064 lra_update_insn_recog_data (insn);
1065 /* This can't have an effect on elimination offsets, so skip
1066 right to the end. */
1067 return;
1068 }
1069 }
1070 }
1071
1072 /* Eliminate all eliminable registers occurring in operands that
1073 can be handled by the constraint pass. */
1074 id = lra_get_insn_recog_data (insn);
1075 static_id = id->insn_static_data;
1076 validate_p = false;
1077 for (i = 0; i < static_id->n_operands; i++)
1078 {
1079 orig_operand[i] = *id->operand_loc[i];
1080 substed_operand[i] = *id->operand_loc[i];
1081
1082 /* For an asm statement, every operand is eliminable. */
1083 if (icode < 0 || insn_data[icode].operand[i].eliminable)
1084 {
1085 /* Check for setting a hard register that we know about. */
1086 if (static_id->operand[i].type != OP_IN
1087 && REG_P (orig_operand[i]))
1088 {
1089 /* If we are assigning to a hard register that can be
1090 eliminated, it must be as part of a PARALLEL, since
1091 the code above handles single SETs. This reg can not
1092 be longer eliminated -- it is forced by
1093 mark_not_eliminable. */
1094 for (ep = reg_eliminate;
1095 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
1096 ep++)
1097 lra_assert (ep->from_rtx != orig_operand[i]
1098 || ! ep->can_eliminate);
1099 }
1100
1101 /* Companion to the above plus substitution, we can allow
1102 invariants as the source of a plain move. */
1103 substed_operand[i]
1104 = lra_eliminate_regs_1 (insn, *id->operand_loc[i], VOIDmode,
1105 replace_p, ! replace_p && ! first_p,
1106 update_sp_offset, first_p);
1107 if (substed_operand[i] != orig_operand[i])
1108 validate_p = true;
1109 }
1110 }
1111
1112 if (! validate_p)
1113 return;
1114
1115 /* Substitute the operands; the new values are in the substed_operand
1116 array. */
1117 for (i = 0; i < static_id->n_operands; i++)
1118 *id->operand_loc[i] = substed_operand[i];
1119 for (i = 0; i < static_id->n_dups; i++)
1120 *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];
1121
1122 /* If we had a move insn but now we don't, re-recognize it.
1123 This will cause spurious re-recognition if the old move had a
1124 PARALLEL since the new one still will, but we can't call
1125 single_set without having put new body into the insn and the
1126 re-recognition won't hurt in this rare case. */
1127 id = lra_update_insn_recog_data (insn);
1128 static_id = id->insn_static_data;
1129 }
1130
1131 /* Spill pseudos which are assigned to hard registers in SET. Add
1132 affected insns for processing in the subsequent constraint
1133 pass. */
1134 static void
1135 spill_pseudos (HARD_REG_SET set)
1136 {
1137 int i;
1138 bitmap_head to_process;
1139 rtx_insn *insn;
1140
1141 if (hard_reg_set_empty_p (set))
1142 return;
1143 if (lra_dump_file != NULL)
1144 {
1145 fprintf (lra_dump_file, " Spilling non-eliminable hard regs:");
1146 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1147 if (TEST_HARD_REG_BIT (set, i))
1148 fprintf (lra_dump_file, " %d", i);
1149 fprintf (lra_dump_file, "\n");
1150 }
1151 bitmap_initialize (&to_process, &reg_obstack);
1152 for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
1153 if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
1154 && overlaps_hard_reg_set_p (set,
1155 PSEUDO_REGNO_MODE (i), reg_renumber[i]))
1156 {
1157 if (lra_dump_file != NULL)
1158 fprintf (lra_dump_file, " Spilling r%d(%d)\n",
1159 i, reg_renumber[i]);
1160 reg_renumber[i] = -1;
1161 bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap);
1162 }
1163 IOR_HARD_REG_SET (lra_no_alloc_regs, set);
1164 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
1165 if (bitmap_bit_p (&to_process, INSN_UID (insn)))
1166 {
1167 lra_push_insn (insn);
1168 lra_set_used_insn_alternative (insn, -1);
1169 }
1170 bitmap_clear (&to_process);
1171 }
1172
1173 /* Update all offsets and possibility for elimination on eliminable
1174 registers. Spill pseudos assigned to registers which are
1175 uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add
1176 insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
1177 registers whose offsets should be changed. Return true if any
1178 elimination offset changed. */
1179 static bool
1180 update_reg_eliminate (bitmap insns_with_changed_offsets)
1181 {
1182 bool prev, result;
1183 struct lra_elim_table *ep, *ep1;
1184 HARD_REG_SET temp_hard_reg_set;
1185
1186 /* Clear self elimination offsets. */
1187 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1188 self_elim_offsets[ep->from] = 0;
1189 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1190 {
1191 /* If it is a currently used elimination: update the previous
1192 offset. */
1193 if (elimination_map[ep->from] == ep)
1194 ep->previous_offset = ep->offset;
1195
1196 prev = ep->prev_can_eliminate;
1197 setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to));
1198 if (ep->can_eliminate && ! prev)
1199 {
1200 /* It is possible that not eliminable register becomes
1201 eliminable because we took other reasons into account to
1202 set up eliminable regs in the initial set up. Just
1203 ignore new eliminable registers. */
1204 setup_can_eliminate (ep, false);
1205 continue;
1206 }
1207 if (ep->can_eliminate != prev && elimination_map[ep->from] == ep)
1208 {
1209 /* We cannot use this elimination anymore -- find another
1210 one. */
1211 if (lra_dump_file != NULL)
1212 fprintf (lra_dump_file,
1213 " Elimination %d to %d is not possible anymore\n",
1214 ep->from, ep->to);
1215 /* If after processing RTL we decides that SP can be used as
1216 a result of elimination, it can not be changed. */
1217 gcc_assert ((ep->to_rtx != stack_pointer_rtx)
1218 || (ep->from < FIRST_PSEUDO_REGISTER
1219 && fixed_regs [ep->from]));
1220 /* Mark that is not eliminable anymore. */
1221 elimination_map[ep->from] = NULL;
1222 for (ep1 = ep + 1; ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep1++)
1223 if (ep1->can_eliminate && ep1->from == ep->from)
1224 break;
1225 if (ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS])
1226 {
1227 if (lra_dump_file != NULL)
1228 fprintf (lra_dump_file, " Using elimination %d to %d now\n",
1229 ep1->from, ep1->to);
1230 lra_assert (ep1->previous_offset == 0);
1231 ep1->previous_offset = ep->offset;
1232 }
1233 else
1234 {
1235 /* There is no elimination anymore just use the hard
1236 register `from' itself. Setup self elimination
1237 offset to restore the original offset values. */
1238 if (lra_dump_file != NULL)
1239 fprintf (lra_dump_file, " %d is not eliminable at all\n",
1240 ep->from);
1241 self_elim_offsets[ep->from] = -ep->offset;
1242 if (ep->offset != 0)
1243 bitmap_ior_into (insns_with_changed_offsets,
1244 &lra_reg_info[ep->from].insn_bitmap);
1245 }
1246 }
1247
1248 #ifdef ELIMINABLE_REGS
1249 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset);
1250 #else
1251 INITIAL_FRAME_POINTER_OFFSET (ep->offset);
1252 #endif
1253 }
1254 setup_elimination_map ();
1255 result = false;
1256 CLEAR_HARD_REG_SET (temp_hard_reg_set);
1257 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1258 if (elimination_map[ep->from] == NULL)
1259 SET_HARD_REG_BIT (temp_hard_reg_set, ep->from);
1260 else if (elimination_map[ep->from] == ep)
1261 {
1262 /* Prevent the hard register into which we eliminate from
1263 the usage for pseudos. */
1264 if (ep->from != ep->to)
1265 SET_HARD_REG_BIT (temp_hard_reg_set, ep->to);
1266 if (ep->previous_offset != ep->offset)
1267 {
1268 bitmap_ior_into (insns_with_changed_offsets,
1269 &lra_reg_info[ep->from].insn_bitmap);
1270
1271 /* Update offset when the eliminate offset have been
1272 changed. */
1273 lra_update_reg_val_offset (lra_reg_info[ep->from].val,
1274 ep->offset - ep->previous_offset);
1275 result = true;
1276 }
1277 }
1278 IOR_HARD_REG_SET (lra_no_alloc_regs, temp_hard_reg_set);
1279 AND_COMPL_HARD_REG_SET (eliminable_regset, temp_hard_reg_set);
1280 spill_pseudos (temp_hard_reg_set);
1281 return result;
1282 }
1283
1284 /* Initialize the table of hard registers to eliminate.
1285 Pre-condition: global flag frame_pointer_needed has been set before
1286 calling this function. */
1287 static void
1288 init_elim_table (void)
1289 {
1290 struct lra_elim_table *ep;
1291 #ifdef ELIMINABLE_REGS
1292 bool value_p;
1293 const struct elim_table_1 *ep1;
1294 #endif
1295
1296 if (!reg_eliminate)
1297 reg_eliminate = XCNEWVEC (struct lra_elim_table, NUM_ELIMINABLE_REGS);
1298
1299 memset (self_elim_offsets, 0, sizeof (self_elim_offsets));
1300 /* Initiate member values which will be never changed. */
1301 self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true;
1302 self_elim_table.previous_offset = 0;
1303 #ifdef ELIMINABLE_REGS
1304 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
1305 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
1306 {
1307 ep->offset = ep->previous_offset = 0;
1308 ep->from = ep1->from;
1309 ep->to = ep1->to;
1310 value_p = (targetm.can_eliminate (ep->from, ep->to)
1311 && ! (ep->to == STACK_POINTER_REGNUM
1312 && frame_pointer_needed
1313 && (! SUPPORTS_STACK_ALIGNMENT
1314 || ! stack_realign_fp)));
1315 setup_can_eliminate (ep, value_p);
1316 }
1317 #else
1318 reg_eliminate[0].offset = reg_eliminate[0].previous_offset = 0;
1319 reg_eliminate[0].from = reg_eliminate_1[0].from;
1320 reg_eliminate[0].to = reg_eliminate_1[0].to;
1321 setup_can_eliminate (&reg_eliminate[0], ! frame_pointer_needed);
1322 #endif
1323
1324 /* Build the FROM and TO REG rtx's. Note that code in gen_rtx_REG
1325 will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to
1326 equal stack_pointer_rtx. We depend on this. Threfore we switch
1327 off that we are in LRA temporarily. */
1328 lra_in_progress = 0;
1329 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1330 {
1331 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
1332 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
1333 eliminable_reg_rtx[ep->from] = ep->from_rtx;
1334 }
1335 lra_in_progress = 1;
1336 }
1337
1338 /* Function for initialization of elimination once per function. It
1339 sets up sp offset for each insn. */
1340 static void
1341 init_elimination (void)
1342 {
1343 bool stop_to_sp_elimination_p;
1344 basic_block bb;
1345 rtx_insn *insn;
1346 struct lra_elim_table *ep;
1347
1348 init_elim_table ();
1349 FOR_EACH_BB_FN (bb, cfun)
1350 {
1351 curr_sp_change = 0;
1352 stop_to_sp_elimination_p = false;
1353 FOR_BB_INSNS (bb, insn)
1354 if (INSN_P (insn))
1355 {
1356 lra_get_insn_recog_data (insn)->sp_offset = curr_sp_change;
1357 if (NONDEBUG_INSN_P (insn))
1358 {
1359 mark_not_eliminable (PATTERN (insn), VOIDmode);
1360 if (curr_sp_change != 0
1361 && find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX))
1362 stop_to_sp_elimination_p = true;
1363 }
1364 }
1365 if (! frame_pointer_needed
1366 && (curr_sp_change != 0 || stop_to_sp_elimination_p)
1367 && bb->succs && bb->succs->length () != 0)
1368 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1369 if (ep->to == STACK_POINTER_REGNUM)
1370 setup_can_eliminate (ep, false);
1371 }
1372 setup_elimination_map ();
1373 }
1374
1375 /* Eliminate hard reg given by its location LOC. */
1376 void
1377 lra_eliminate_reg_if_possible (rtx *loc)
1378 {
1379 int regno;
1380 struct lra_elim_table *ep;
1381
1382 lra_assert (REG_P (*loc));
1383 if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
1384 || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno))
1385 return;
1386 if ((ep = get_elimination (*loc)) != NULL)
1387 *loc = ep->to_rtx;
1388 }
1389
1390 /* Do (final if FINAL_P or first if FIRST_P) elimination in INSN. Add
1391 the insn for subsequent processing in the constraint pass, update
1392 the insn info. */
1393 static void
1394 process_insn_for_elimination (rtx_insn *insn, bool final_p, bool first_p)
1395 {
1396 eliminate_regs_in_insn (insn, final_p, first_p, 0);
1397 if (! final_p)
1398 {
1399 /* Check that insn changed its code. This is a case when a move
1400 insn becomes an add insn and we do not want to process the
1401 insn as a move anymore. */
1402 int icode = recog (PATTERN (insn), insn, 0);
1403
1404 if (icode >= 0 && icode != INSN_CODE (insn))
1405 {
1406 INSN_CODE (insn) = icode;
1407 lra_update_insn_recog_data (insn);
1408 }
1409 lra_update_insn_regno_info (insn);
1410 lra_push_insn (insn);
1411 lra_set_used_insn_alternative (insn, -1);
1412 }
1413 }
1414
1415 /* Entry function to do final elimination if FINAL_P or to update
1416 elimination register offsets (FIRST_P if we are doing it the first
1417 time). */
1418 void
1419 lra_eliminate (bool final_p, bool first_p)
1420 {
1421 unsigned int uid;
1422 bitmap_head insns_with_changed_offsets;
1423 bitmap_iterator bi;
1424 struct lra_elim_table *ep;
1425
1426 gcc_assert (! final_p || ! first_p);
1427
1428 timevar_push (TV_LRA_ELIMINATE);
1429
1430 if (first_p)
1431 init_elimination ();
1432
1433 bitmap_initialize (&insns_with_changed_offsets, &reg_obstack);
1434 if (final_p)
1435 {
1436 if (flag_checking)
1437 {
1438 update_reg_eliminate (&insns_with_changed_offsets);
1439 gcc_assert (bitmap_empty_p (&insns_with_changed_offsets));
1440 }
1441 /* We change eliminable hard registers in insns so we should do
1442 this for all insns containing any eliminable hard
1443 register. */
1444 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1445 if (elimination_map[ep->from] != NULL)
1446 bitmap_ior_into (&insns_with_changed_offsets,
1447 &lra_reg_info[ep->from].insn_bitmap);
1448 }
1449 else if (! update_reg_eliminate (&insns_with_changed_offsets))
1450 goto lra_eliminate_done;
1451 if (lra_dump_file != NULL)
1452 {
1453 fprintf (lra_dump_file, "New elimination table:\n");
1454 print_elim_table (lra_dump_file);
1455 }
1456 EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi)
1457 /* A dead insn can be deleted in process_insn_for_elimination. */
1458 if (lra_insn_recog_data[uid] != NULL)
1459 process_insn_for_elimination (lra_insn_recog_data[uid]->insn,
1460 final_p, first_p);
1461 bitmap_clear (&insns_with_changed_offsets);
1462
1463 lra_eliminate_done:
1464 timevar_pop (TV_LRA_ELIMINATE);
1465 }