]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
Remove some uses of deprecated irange API.
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.cc
3 and generic-match.cc from it.
4
5 Copyright (C) 2014-2023 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p
41 expand_vec_cmp_expr_p
42 bitmask_inv_cst_vector_p)
43
44 /* Operator lists. */
45 (define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47 (define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
51 (define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
53 (define_operator_list simple_comparison lt le eq ne ge gt)
54 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
55
56 #include "cfn-operators.pd"
57
58 /* Define operand lists for math rounding functions {,i,l,ll}FN,
59 where the versions prefixed with "i" return an int, those prefixed with
60 "l" return a long and those prefixed with "ll" return a long long.
61
62 Also define operand lists:
63
64 X<FN>F for all float functions, in the order i, l, ll
65 X<FN> for all double functions, in the same order
66 X<FN>L for all long double functions, in the same order. */
67 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
68 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
69 BUILT_IN_L##FN##F \
70 BUILT_IN_LL##FN##F) \
71 (define_operator_list X##FN BUILT_IN_I##FN \
72 BUILT_IN_L##FN \
73 BUILT_IN_LL##FN) \
74 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
75 BUILT_IN_L##FN##L \
76 BUILT_IN_LL##FN##L)
77
78 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
82
83 /* Unary operations and their associated IFN_COND_* function. */
84 (define_operator_list UNCOND_UNARY
85 negate)
86 (define_operator_list COND_UNARY
87 IFN_COND_NEG)
88
89 /* Binary operations and their associated IFN_COND_* function. */
90 (define_operator_list UNCOND_BINARY
91 plus minus
92 mult trunc_div trunc_mod rdiv
93 min max
94 IFN_FMIN IFN_FMAX
95 bit_and bit_ior bit_xor
96 lshift rshift)
97 (define_operator_list COND_BINARY
98 IFN_COND_ADD IFN_COND_SUB
99 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
100 IFN_COND_MIN IFN_COND_MAX
101 IFN_COND_FMIN IFN_COND_FMAX
102 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103 IFN_COND_SHL IFN_COND_SHR)
104
105 /* Same for ternary operations. */
106 (define_operator_list UNCOND_TERNARY
107 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108 (define_operator_list COND_TERNARY
109 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
110
111 /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
112 (define_operator_list ATOMIC_FETCH_OR_XOR_N
113 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115 BUILT_IN_ATOMIC_FETCH_OR_16
116 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118 BUILT_IN_ATOMIC_FETCH_XOR_16
119 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121 BUILT_IN_ATOMIC_XOR_FETCH_16)
122 /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
123 (define_operator_list SYNC_FETCH_OR_XOR_N
124 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126 BUILT_IN_SYNC_FETCH_AND_OR_16
127 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129 BUILT_IN_SYNC_FETCH_AND_XOR_16
130 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132 BUILT_IN_SYNC_XOR_AND_FETCH_16)
133 /* __atomic_fetch_and_*. */
134 (define_operator_list ATOMIC_FETCH_AND_N
135 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137 BUILT_IN_ATOMIC_FETCH_AND_16)
138 /* __sync_fetch_and_and_*. */
139 (define_operator_list SYNC_FETCH_AND_AND_N
140 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142 BUILT_IN_SYNC_FETCH_AND_AND_16)
143
144 /* With nop_convert? combine convert? and view_convert? in one pattern
145 plus conditionalize on tree_nop_conversion_p conversions. */
146 (match (nop_convert @0)
147 (convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149 (match (nop_convert @0)
150 (view_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
152 && known_eq (TYPE_VECTOR_SUBPARTS (type),
153 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
154 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
155
156 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157 ABSU_EXPR returns unsigned absolute value of the operand and the operand
158 of the ABSU_EXPR will have the corresponding signed type. */
159 (simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161 && !TYPE_UNSIGNED (TREE_TYPE (@0))
162 && element_precision (type) > element_precision (TREE_TYPE (@0)))
163 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164 (convert (absu:utype @0)))))
165
166 #if GIMPLE
167 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
168 (simplify
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171 && !TYPE_UNSIGNED (TREE_TYPE (@0))
172 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
173 (abs @0)))
174 #endif
175
176 /* Simplifications of operations with one constant operand and
177 simplifications to constants or single values. */
178
179 (for op (plus pointer_plus minus bit_ior bit_xor)
180 (simplify
181 (op @0 integer_zerop)
182 (non_lvalue @0)))
183
184 /* 0 +p index -> (type)index */
185 (simplify
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
188
189 /* ptr - 0 -> (type)ptr */
190 (simplify
191 (pointer_diff @0 integer_zerop)
192 (convert @0))
193
194 /* See if ARG1 is zero and X + ARG1 reduces to X.
195 Likewise if the operands are reversed. */
196 (simplify
197 (plus:c @0 real_zerop@1)
198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
199 (non_lvalue @0)))
200
201 /* See if ARG1 is zero and X - ARG1 reduces to X. */
202 (simplify
203 (minus @0 real_zerop@1)
204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
205 (non_lvalue @0)))
206
207 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210 if not -frounding-math. For sNaNs the first operation would raise
211 exceptions but turn the result into qNan, so the second operation
212 would not raise it. */
213 (for inner_op (plus minus)
214 (for outer_op (plus minus)
215 (simplify
216 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
217 (if (real_zerop (@1)
218 && real_zerop (@2)
219 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
222 bool outer_plus
223 = ((outer_op == PLUS_EXPR)
224 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225 (if (outer_plus && !inner_plus)
226 (outer_op @0 @2)
227 @3))))))
228
229 /* Simplify x - x.
230 This is unsafe for certain floats even in non-IEEE formats.
231 In IEEE, it is unsafe because it does wrong for NaNs.
232 PR middle-end/98420: x - x may be -0.0 with FE_DOWNWARD.
233 Also note that operand_equal_p is always false if an operand
234 is volatile. */
235 (simplify
236 (minus @0 @0)
237 (if (!FLOAT_TYPE_P (type)
238 || (!tree_expr_maybe_nan_p (@0)
239 && !tree_expr_maybe_infinite_p (@0)
240 && (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
241 || !HONOR_SIGNED_ZEROS (type))))
242 { build_zero_cst (type); }))
243 (simplify
244 (pointer_diff @@0 @0)
245 { build_zero_cst (type); })
246
247 (simplify
248 (mult @0 integer_zerop@1)
249 @1)
250
251 /* -x == x -> x == 0 */
252 (for cmp (eq ne)
253 (simplify
254 (cmp:c @0 (negate @0))
255 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
256 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
257 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
258
259 /* Maybe fold x * 0 to 0. The expressions aren't the same
260 when x is NaN, since x * 0 is also NaN. Nor are they the
261 same in modes with signed zeros, since multiplying a
262 negative value by 0 gives -0, not +0. Nor when x is +-Inf,
263 since x * 0 is NaN. */
264 (simplify
265 (mult @0 real_zerop@1)
266 (if (!tree_expr_maybe_nan_p (@0)
267 && (!HONOR_NANS (type) || !tree_expr_maybe_infinite_p (@0))
268 && (!HONOR_SIGNED_ZEROS (type) || tree_expr_nonnegative_p (@0)))
269 @1))
270
271 /* In IEEE floating point, x*1 is not equivalent to x for snans.
272 Likewise for complex arithmetic with signed zeros. */
273 (simplify
274 (mult @0 real_onep)
275 (if (!tree_expr_maybe_signaling_nan_p (@0)
276 && (!HONOR_SIGNED_ZEROS (type)
277 || !COMPLEX_FLOAT_TYPE_P (type)))
278 (non_lvalue @0)))
279
280 /* Transform x * -1.0 into -x. */
281 (simplify
282 (mult @0 real_minus_onep)
283 (if (!tree_expr_maybe_signaling_nan_p (@0)
284 && (!HONOR_SIGNED_ZEROS (type)
285 || !COMPLEX_FLOAT_TYPE_P (type)))
286 (negate @0)))
287
288 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
289 unless the target has native support for the former but not the latter. */
290 (simplify
291 (mult @0 VECTOR_CST@1)
292 (if (initializer_each_zero_or_onep (@1)
293 && !HONOR_SNANS (type)
294 && !HONOR_SIGNED_ZEROS (type))
295 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
296 (if (itype
297 && (!VECTOR_MODE_P (TYPE_MODE (type))
298 || (VECTOR_MODE_P (TYPE_MODE (itype))
299 && optab_handler (and_optab,
300 TYPE_MODE (itype)) != CODE_FOR_nothing)))
301 (view_convert (bit_and:itype (view_convert @0)
302 (ne @1 { build_zero_cst (type); })))))))
303
304 (for cmp (gt ge lt le)
305 outp (convert convert negate negate)
306 outn (negate negate convert convert)
307 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
308 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
309 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
310 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
311 (simplify
312 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
313 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
314 (outp (abs @0))))
315 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
316 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
317 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
318 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
319 (simplify
320 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
321 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
322 (outn (abs @0)))))
323
324 /* Transform X * copysign (1.0, X) into abs(X). */
325 (simplify
326 (mult:c @0 (COPYSIGN_ALL real_onep @0))
327 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
328 (abs @0)))
329
330 /* Transform X * copysign (1.0, -X) into -abs(X). */
331 (simplify
332 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
333 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
334 (negate (abs @0))))
335
336 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
337 (simplify
338 (COPYSIGN_ALL REAL_CST@0 @1)
339 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
340 (COPYSIGN_ALL (negate @0) @1)))
341
342 /* Transform c ? x * copysign (1, y) : z to c ? x ^ signs(y) : z.
343 tree-ssa-math-opts.cc does the corresponding optimization for
344 unconditional multiplications (via xorsign). */
345 (simplify
346 (IFN_COND_MUL:c @0 @1 (IFN_COPYSIGN real_onep @2) @3)
347 (with { tree signs = sign_mask_for (type); }
348 (if (signs)
349 (with { tree inttype = TREE_TYPE (signs); }
350 (view_convert:type
351 (IFN_COND_XOR:inttype @0
352 (view_convert:inttype @1)
353 (bit_and (view_convert:inttype @2) { signs; })
354 (view_convert:inttype @3)))))))
355
356 /* (x >= 0 ? x : 0) + (x <= 0 ? -x : 0) -> abs x. */
357 (simplify
358 (plus:c (max @0 integer_zerop) (max (negate @0) integer_zerop))
359 (abs @0))
360
361 /* X * 1, X / 1 -> X. */
362 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
363 (simplify
364 (op @0 integer_onep)
365 (non_lvalue @0)))
366
367 /* (A / (1 << B)) -> (A >> B).
368 Only for unsigned A. For signed A, this would not preserve rounding
369 toward zero.
370 For example: (-1 / ( 1 << B)) != -1 >> B.
371 Also handle widening conversions, like:
372 (A / (unsigned long long) (1U << B)) -> (A >> B)
373 or
374 (A / (unsigned long long) (1 << B)) -> (A >> B).
375 If the left shift is signed, it can be done only if the upper bits
376 of A starting from shift's type sign bit are zero, as
377 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
378 so it is valid only if A >> 31 is zero. */
379 (simplify
380 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
381 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
382 && (!VECTOR_TYPE_P (type)
383 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
384 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
385 && (useless_type_conversion_p (type, TREE_TYPE (@1))
386 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
387 && (TYPE_UNSIGNED (TREE_TYPE (@1))
388 || (element_precision (type)
389 == element_precision (TREE_TYPE (@1)))
390 || (INTEGRAL_TYPE_P (type)
391 && (tree_nonzero_bits (@0)
392 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
393 true,
394 element_precision (type))) == 0)))))
395 (if (!VECTOR_TYPE_P (type)
396 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
397 && element_precision (TREE_TYPE (@3)) < element_precision (type))
398 (convert (rshift @3 @2))
399 (rshift @0 @2))))
400
401 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
402 undefined behavior in constexpr evaluation, and assuming that the division
403 traps enables better optimizations than these anyway. */
404 (for div (trunc_div ceil_div floor_div round_div exact_div)
405 /* 0 / X is always zero. */
406 (simplify
407 (div integer_zerop@0 @1)
408 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
409 (if (!integer_zerop (@1))
410 @0))
411 /* X / -1 is -X. */
412 (simplify
413 (div @0 integer_minus_onep@1)
414 (if (!TYPE_UNSIGNED (type))
415 (negate @0)))
416 /* X / bool_range_Y is X. */
417 (simplify
418 (div @0 SSA_NAME@1)
419 (if (INTEGRAL_TYPE_P (type)
420 && ssa_name_has_boolean_range (@1)
421 && !flag_non_call_exceptions)
422 @0))
423 /* X / X is one. */
424 (simplify
425 (div @0 @0)
426 /* But not for 0 / 0 so that we can get the proper warnings and errors.
427 And not for _Fract types where we can't build 1. */
428 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type))
429 && !integer_zerop (@0)
430 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
431 { build_one_cst (type); }))
432 /* X / abs (X) is X < 0 ? -1 : 1. */
433 (simplify
434 (div:C @0 (abs @0))
435 (if (INTEGRAL_TYPE_P (type)
436 && TYPE_OVERFLOW_UNDEFINED (type)
437 && !integer_zerop (@0)
438 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
439 (cond (lt @0 { build_zero_cst (type); })
440 { build_minus_one_cst (type); } { build_one_cst (type); })))
441 /* X / -X is -1. */
442 (simplify
443 (div:C @0 (negate @0))
444 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
445 && TYPE_OVERFLOW_UNDEFINED (type)
446 && !integer_zerop (@0)
447 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
448 { build_minus_one_cst (type); })))
449
450 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
451 TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly
452 for MOD instead of DIV. */
453 (for floor_divmod (floor_div floor_mod)
454 trunc_divmod (trunc_div trunc_mod)
455 (simplify
456 (floor_divmod @0 @1)
457 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
458 && TYPE_UNSIGNED (type))
459 (trunc_divmod @0 @1))))
460
461 /* 1 / X -> X == 1 for unsigned integer X.
462 1 / X -> X >= -1 && X <= 1 ? X : 0 for signed integer X.
463 But not for 1 / 0 so that we can get proper warnings and errors,
464 and not for 1-bit integers as they are edge cases better handled
465 elsewhere. */
466 (simplify
467 (trunc_div integer_onep@0 @1)
468 (if (INTEGRAL_TYPE_P (type)
469 && TYPE_PRECISION (type) > 1
470 && !integer_zerop (@1)
471 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@1)))
472 (if (TYPE_UNSIGNED (type))
473 (convert (eq:boolean_type_node @1 { build_one_cst (type); }))
474 (with { tree utype = unsigned_type_for (type); }
475 (cond (le (plus (convert:utype @1) { build_one_cst (utype); })
476 { build_int_cst (utype, 2); })
477 @1 { build_zero_cst (type); })))))
478
479 /* Combine two successive divisions. Note that combining ceil_div
480 and floor_div is trickier and combining round_div even more so. */
481 (for div (trunc_div exact_div)
482 (simplify
483 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
484 (with {
485 wi::overflow_type overflow;
486 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
487 TYPE_SIGN (type), &overflow);
488 }
489 (if (div == EXACT_DIV_EXPR
490 || optimize_successive_divisions_p (@2, @3))
491 (if (!overflow)
492 (div @0 { wide_int_to_tree (type, mul); })
493 (if (TYPE_UNSIGNED (type)
494 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
495 { build_zero_cst (type); }))))))
496
497 /* Combine successive multiplications. Similar to above, but handling
498 overflow is different. */
499 (simplify
500 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
501 (with {
502 wi::overflow_type overflow;
503 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
504 TYPE_SIGN (type), &overflow);
505 }
506 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
507 otherwise undefined overflow implies that @0 must be zero. */
508 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
509 (mult @0 { wide_int_to_tree (type, mul); }))))
510
511 /* Similar to above, but there could be an extra add/sub between
512 successive multuiplications. */
513 (simplify
514 (mult (plus:s (mult:s@4 @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
515 (with {
516 bool overflowed = true;
517 wi::overflow_type ovf1, ovf2;
518 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@3),
519 TYPE_SIGN (type), &ovf1);
520 wide_int add = wi::mul (wi::to_wide (@2), wi::to_wide (@3),
521 TYPE_SIGN (type), &ovf2);
522 if (TYPE_OVERFLOW_UNDEFINED (type))
523 {
524 #if GIMPLE
525 value_range vr0;
526 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
527 && get_global_range_query ()->range_of_expr (vr0, @4)
528 && !vr0.varying_p () && !vr0.undefined_p ())
529 {
530 wide_int wmin0 = vr0.lower_bound ();
531 wide_int wmax0 = vr0.upper_bound ();
532 wmin0 = wi::mul (wmin0, wi::to_wide (@3), TYPE_SIGN (type), &ovf1);
533 wmax0 = wi::mul (wmax0, wi::to_wide (@3), TYPE_SIGN (type), &ovf2);
534 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
535 {
536 wi::add (wmin0, add, TYPE_SIGN (type), &ovf1);
537 wi::add (wmax0, add, TYPE_SIGN (type), &ovf2);
538 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
539 overflowed = false;
540 }
541 }
542 #endif
543 }
544 else
545 overflowed = false;
546 }
547 /* Skip folding on overflow. */
548 (if (!overflowed)
549 (plus (mult @0 { wide_int_to_tree (type, mul); })
550 { wide_int_to_tree (type, add); }))))
551
552 /* Similar to above, but a multiplication between successive additions. */
553 (simplify
554 (plus (mult:s (plus:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
555 (with {
556 bool overflowed = true;
557 wi::overflow_type ovf1;
558 wi::overflow_type ovf2;
559 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
560 TYPE_SIGN (type), &ovf1);
561 wide_int add = wi::add (mul, wi::to_wide (@3),
562 TYPE_SIGN (type), &ovf2);
563 if (TYPE_OVERFLOW_UNDEFINED (type))
564 {
565 #if GIMPLE
566 value_range vr0;
567 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
568 && get_global_range_query ()->range_of_expr (vr0, @0)
569 && !vr0.varying_p () && !vr0.undefined_p ())
570 {
571 wide_int wmin0 = vr0.lower_bound ();
572 wide_int wmax0 = vr0.upper_bound ();
573 wmin0 = wi::mul (wmin0, wi::to_wide (@2), TYPE_SIGN (type), &ovf1);
574 wmax0 = wi::mul (wmax0, wi::to_wide (@2), TYPE_SIGN (type), &ovf2);
575 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
576 {
577 wi::add (wmin0, mul, TYPE_SIGN (type), &ovf1);
578 wi::add (wmax0, mul, TYPE_SIGN (type), &ovf2);
579 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
580 overflowed = false;
581 }
582 }
583 #endif
584 }
585 else
586 overflowed = false;
587 }
588 /* Skip folding on overflow. */
589 (if (!overflowed)
590 (plus (mult @0 @2) { wide_int_to_tree (type, add); }))))
591
592 /* Optimize A / A to 1.0 if we don't care about
593 NaNs or Infinities. */
594 (simplify
595 (rdiv @0 @0)
596 (if (FLOAT_TYPE_P (type)
597 && ! HONOR_NANS (type)
598 && ! HONOR_INFINITIES (type))
599 { build_one_cst (type); }))
600
601 /* Optimize -A / A to -1.0 if we don't care about
602 NaNs or Infinities. */
603 (simplify
604 (rdiv:C @0 (negate @0))
605 (if (FLOAT_TYPE_P (type)
606 && ! HONOR_NANS (type)
607 && ! HONOR_INFINITIES (type))
608 { build_minus_one_cst (type); }))
609
610 /* PR71078: x / abs(x) -> copysign (1.0, x) */
611 (simplify
612 (rdiv:C (convert? @0) (convert? (abs @0)))
613 (if (SCALAR_FLOAT_TYPE_P (type)
614 && ! HONOR_NANS (type)
615 && ! HONOR_INFINITIES (type))
616 (switch
617 (if (types_match (type, float_type_node))
618 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
619 (if (types_match (type, double_type_node))
620 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
621 (if (types_match (type, long_double_type_node))
622 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
623
624 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
625 (simplify
626 (rdiv @0 real_onep)
627 (if (!tree_expr_maybe_signaling_nan_p (@0))
628 (non_lvalue @0)))
629
630 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
631 (simplify
632 (rdiv @0 real_minus_onep)
633 (if (!tree_expr_maybe_signaling_nan_p (@0))
634 (negate @0)))
635
636 (if (flag_reciprocal_math)
637 /* Convert (A/B)/C to A/(B*C). */
638 (simplify
639 (rdiv (rdiv:s @0 @1) @2)
640 (rdiv @0 (mult @1 @2)))
641
642 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
643 (simplify
644 (rdiv @0 (mult:s @1 REAL_CST@2))
645 (with
646 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
647 (if (tem)
648 (rdiv (mult @0 { tem; } ) @1))))
649
650 /* Convert A/(B/C) to (A/B)*C */
651 (simplify
652 (rdiv @0 (rdiv:s @1 @2))
653 (mult (rdiv @0 @1) @2)))
654
655 /* Simplify x / (- y) to -x / y. */
656 (simplify
657 (rdiv @0 (negate @1))
658 (rdiv (negate @0) @1))
659
660 (if (flag_unsafe_math_optimizations)
661 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
662 Since C / x may underflow to zero, do this only for unsafe math. */
663 (for op (lt le gt ge)
664 neg_op (gt ge lt le)
665 (simplify
666 (op (rdiv REAL_CST@0 @1) real_zerop@2)
667 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
668 (switch
669 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
670 (op @1 @2))
671 /* For C < 0, use the inverted operator. */
672 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
673 (neg_op @1 @2)))))))
674
675 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
676 (for div (trunc_div ceil_div floor_div round_div exact_div)
677 (simplify
678 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
679 (if (integer_pow2p (@2)
680 && tree_int_cst_sgn (@2) > 0
681 && tree_nop_conversion_p (type, TREE_TYPE (@0))
682 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
683 (rshift (convert @0)
684 { build_int_cst (integer_type_node,
685 wi::exact_log2 (wi::to_wide (@2))); }))))
686
687 /* If ARG1 is a constant, we can convert this to a multiply by the
688 reciprocal. This does not have the same rounding properties,
689 so only do this if -freciprocal-math. We can actually
690 always safely do it if ARG1 is a power of two, but it's hard to
691 tell if it is or not in a portable manner. */
692 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
693 (simplify
694 (rdiv @0 cst@1)
695 (if (optimize)
696 (if (flag_reciprocal_math
697 && !real_zerop (@1))
698 (with
699 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
700 (if (tem)
701 (mult @0 { tem; } )))
702 (if (cst != COMPLEX_CST)
703 (with { tree inverse = exact_inverse (type, @1); }
704 (if (inverse)
705 (mult @0 { inverse; } ))))))))
706
707 (for mod (ceil_mod floor_mod round_mod trunc_mod)
708 /* 0 % X is always zero. */
709 (simplify
710 (mod integer_zerop@0 @1)
711 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
712 (if (!integer_zerop (@1))
713 @0))
714 /* X % 1 is always zero. */
715 (simplify
716 (mod @0 integer_onep)
717 { build_zero_cst (type); })
718 /* X % -1 is zero. */
719 (simplify
720 (mod @0 integer_minus_onep@1)
721 (if (!TYPE_UNSIGNED (type))
722 { build_zero_cst (type); }))
723 /* X % X is zero. */
724 (simplify
725 (mod @0 @0)
726 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
727 (if (!integer_zerop (@0))
728 { build_zero_cst (type); }))
729 /* (X % Y) % Y is just X % Y. */
730 (simplify
731 (mod (mod@2 @0 @1) @1)
732 @2)
733 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
734 (simplify
735 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
736 (if (ANY_INTEGRAL_TYPE_P (type)
737 && TYPE_OVERFLOW_UNDEFINED (type)
738 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
739 TYPE_SIGN (type)))
740 { build_zero_cst (type); }))
741 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
742 modulo and comparison, since it is simpler and equivalent. */
743 (for cmp (eq ne)
744 (simplify
745 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
746 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
747 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
748 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
749
750 /* X % -C is the same as X % C. */
751 (simplify
752 (trunc_mod @0 INTEGER_CST@1)
753 (if (TYPE_SIGN (type) == SIGNED
754 && !TREE_OVERFLOW (@1)
755 && wi::neg_p (wi::to_wide (@1))
756 && !TYPE_OVERFLOW_TRAPS (type)
757 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
758 && !sign_bit_p (@1, @1))
759 (trunc_mod @0 (negate @1))))
760
761 /* X % -Y is the same as X % Y. */
762 (simplify
763 (trunc_mod @0 (convert? (negate @1)))
764 (if (INTEGRAL_TYPE_P (type)
765 && !TYPE_UNSIGNED (type)
766 && !TYPE_OVERFLOW_TRAPS (type)
767 && tree_nop_conversion_p (type, TREE_TYPE (@1))
768 /* Avoid this transformation if X might be INT_MIN or
769 Y might be -1, because we would then change valid
770 INT_MIN % -(-1) into invalid INT_MIN % -1. */
771 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
772 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
773 (TREE_TYPE (@1))))))
774 (trunc_mod @0 (convert @1))))
775
776 /* X - (X / Y) * Y is the same as X % Y. */
777 (simplify
778 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
779 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
780 (convert (trunc_mod @0 @1))))
781
782 /* x * (1 + y / x) - y -> x - y % x */
783 (simplify
784 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
785 (if (INTEGRAL_TYPE_P (type))
786 (minus @0 (trunc_mod @1 @0))))
787
788 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
789 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
790 Also optimize A % (C << N) where C is a power of 2,
791 to A & ((C << N) - 1).
792 Also optimize "A shift (B % C)", if C is a power of 2, to
793 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
794 and assume (B % C) is nonnegative as shifts negative values would
795 be UB. */
796 (match (power_of_two_cand @1)
797 INTEGER_CST@1)
798 (match (power_of_two_cand @1)
799 (lshift INTEGER_CST@1 @2))
800 (for mod (trunc_mod floor_mod)
801 (for shift (lshift rshift)
802 (simplify
803 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
804 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
805 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
806 1); }))))))
807 (simplify
808 (mod @0 (convert? (power_of_two_cand@1 @2)))
809 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
810 /* Allow any integral conversions of the divisor, except
811 conversion from narrower signed to wider unsigned type
812 where if @1 would be negative power of two, the divisor
813 would not be a power of two. */
814 && INTEGRAL_TYPE_P (type)
815 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
816 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
817 || TYPE_UNSIGNED (TREE_TYPE (@1))
818 || !TYPE_UNSIGNED (type))
819 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
820 (with { tree utype = TREE_TYPE (@1);
821 if (!TYPE_OVERFLOW_WRAPS (utype))
822 utype = unsigned_type_for (utype); }
823 (bit_and @0 (convert (minus (convert:utype @1)
824 { build_one_cst (utype); })))))))
825
826 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
827 (simplify
828 (trunc_div (mult @0 integer_pow2p@1) @1)
829 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
830 (bit_and @0 { wide_int_to_tree
831 (type, wi::mask (TYPE_PRECISION (type)
832 - wi::exact_log2 (wi::to_wide (@1)),
833 false, TYPE_PRECISION (type))); })))
834
835 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
836 (simplify
837 (mult (trunc_div @0 integer_pow2p@1) @1)
838 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
839 (bit_and @0 (negate @1))))
840
841 /* Simplify (t * 2) / 2) -> t. */
842 (for div (trunc_div ceil_div floor_div round_div exact_div)
843 (simplify
844 (div (mult:c @0 @1) @1)
845 (if (ANY_INTEGRAL_TYPE_P (type))
846 (if (TYPE_OVERFLOW_UNDEFINED (type))
847 @0
848 #if GIMPLE
849 (with
850 {
851 bool overflowed = true;
852 value_range vr0, vr1;
853 if (INTEGRAL_TYPE_P (type)
854 && get_global_range_query ()->range_of_expr (vr0, @0)
855 && get_global_range_query ()->range_of_expr (vr1, @1)
856 && !vr0.varying_p () && !vr0.undefined_p ()
857 && !vr1.varying_p () && !vr1.undefined_p ())
858 {
859 wide_int wmin0 = vr0.lower_bound ();
860 wide_int wmax0 = vr0.upper_bound ();
861 wide_int wmin1 = vr1.lower_bound ();
862 wide_int wmax1 = vr1.upper_bound ();
863 /* If the multiplication can't overflow/wrap around, then
864 it can be optimized too. */
865 wi::overflow_type min_ovf, max_ovf;
866 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
867 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
868 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
869 {
870 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
871 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
872 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
873 overflowed = false;
874 }
875 }
876 }
877 (if (!overflowed)
878 @0))
879 #endif
880 ))))
881
882 (for op (negate abs)
883 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
884 (for coss (COS COSH)
885 (simplify
886 (coss (op @0))
887 (coss @0)))
888 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
889 (for pows (POW)
890 (simplify
891 (pows (op @0) REAL_CST@1)
892 (with { HOST_WIDE_INT n; }
893 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
894 (pows @0 @1)))))
895 /* Likewise for powi. */
896 (for pows (POWI)
897 (simplify
898 (pows (op @0) INTEGER_CST@1)
899 (if ((wi::to_wide (@1) & 1) == 0)
900 (pows @0 @1))))
901 /* Strip negate and abs from both operands of hypot. */
902 (for hypots (HYPOT)
903 (simplify
904 (hypots (op @0) @1)
905 (hypots @0 @1))
906 (simplify
907 (hypots @0 (op @1))
908 (hypots @0 @1)))
909 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
910 (for copysigns (COPYSIGN_ALL)
911 (simplify
912 (copysigns (op @0) @1)
913 (copysigns @0 @1))))
914
915 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
916 (simplify
917 (mult (abs@1 @0) @1)
918 (mult @0 @0))
919
920 /* Convert absu(x)*absu(x) -> x*x. */
921 (simplify
922 (mult (absu@1 @0) @1)
923 (mult (convert@2 @0) @2))
924
925 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
926 (for coss (COS COSH)
927 copysigns (COPYSIGN)
928 (simplify
929 (coss (copysigns @0 @1))
930 (coss @0)))
931
932 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
933 (for pows (POW)
934 copysigns (COPYSIGN)
935 (simplify
936 (pows (copysigns @0 @2) REAL_CST@1)
937 (with { HOST_WIDE_INT n; }
938 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
939 (pows @0 @1)))))
940 /* Likewise for powi. */
941 (for pows (POWI)
942 copysigns (COPYSIGN)
943 (simplify
944 (pows (copysigns @0 @2) INTEGER_CST@1)
945 (if ((wi::to_wide (@1) & 1) == 0)
946 (pows @0 @1))))
947
948 (for hypots (HYPOT)
949 copysigns (COPYSIGN)
950 /* hypot(copysign(x, y), z) -> hypot(x, z). */
951 (simplify
952 (hypots (copysigns @0 @1) @2)
953 (hypots @0 @2))
954 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
955 (simplify
956 (hypots @0 (copysigns @1 @2))
957 (hypots @0 @1)))
958
959 /* copysign(x, CST) -> [-]abs (x). */
960 (for copysigns (COPYSIGN_ALL)
961 (simplify
962 (copysigns @0 REAL_CST@1)
963 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
964 (negate (abs @0))
965 (abs @0))))
966
967 /* copysign(copysign(x, y), z) -> copysign(x, z). */
968 (for copysigns (COPYSIGN_ALL)
969 (simplify
970 (copysigns (copysigns @0 @1) @2)
971 (copysigns @0 @2)))
972
973 /* copysign(x,y)*copysign(x,y) -> x*x. */
974 (for copysigns (COPYSIGN_ALL)
975 (simplify
976 (mult (copysigns@2 @0 @1) @2)
977 (mult @0 @0)))
978
979 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
980 (for ccoss (CCOS CCOSH)
981 (simplify
982 (ccoss (negate @0))
983 (ccoss @0)))
984
985 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
986 (for ops (conj negate)
987 (for cabss (CABS)
988 (simplify
989 (cabss (ops @0))
990 (cabss @0))))
991
992 /* Fold (a * (1 << b)) into (a << b) */
993 (simplify
994 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
995 (if (! FLOAT_TYPE_P (type)
996 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
997 (lshift @0 @2)))
998
999 /* Shifts by constants distribute over several binary operations,
1000 hence (X << C) + (Y << C) can be simplified to (X + Y) << C. */
1001 (for op (plus minus)
1002 (simplify
1003 (op (lshift:s @0 @1) (lshift:s @2 @1))
1004 (if (INTEGRAL_TYPE_P (type)
1005 && TYPE_OVERFLOW_WRAPS (type)
1006 && !TYPE_SATURATING (type))
1007 (lshift (op @0 @2) @1))))
1008
1009 (for op (bit_and bit_ior bit_xor)
1010 (simplify
1011 (op (lshift:s @0 @1) (lshift:s @2 @1))
1012 (if (INTEGRAL_TYPE_P (type))
1013 (lshift (op @0 @2) @1)))
1014 (simplify
1015 (op (rshift:s @0 @1) (rshift:s @2 @1))
1016 (if (INTEGRAL_TYPE_P (type))
1017 (rshift (op @0 @2) @1))))
1018
1019 /* Fold (1 << (C - x)) where C = precision(type) - 1
1020 into ((1 << C) >> x). */
1021 (simplify
1022 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
1023 (if (INTEGRAL_TYPE_P (type)
1024 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
1025 && single_use (@1))
1026 (if (TYPE_UNSIGNED (type))
1027 (rshift (lshift @0 @2) @3)
1028 (with
1029 { tree utype = unsigned_type_for (type); }
1030 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
1031
1032 /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
1033 (simplify
1034 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
1035 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
1036 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
1037 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
1038 (bit_and (convert @0)
1039 { wide_int_to_tree (type,
1040 wi::lshift (wone, wi::to_wide (@2))); }))))
1041
1042 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
1043 (for cst (INTEGER_CST VECTOR_CST)
1044 (simplify
1045 (rshift (negate:s @0) cst@1)
1046 (if (!TYPE_UNSIGNED (type)
1047 && TYPE_OVERFLOW_UNDEFINED (type))
1048 (with { tree stype = TREE_TYPE (@1);
1049 tree bt = truth_type_for (type);
1050 tree zeros = build_zero_cst (type);
1051 tree cst = NULL_TREE; }
1052 (switch
1053 /* Handle scalar case. */
1054 (if (INTEGRAL_TYPE_P (type)
1055 /* If we apply the rule to the scalar type before vectorization
1056 we will enforce the result of the comparison being a bool
1057 which will require an extra AND on the result that will be
1058 indistinguishable from when the user did actually want 0
1059 or 1 as the result so it can't be removed. */
1060 && canonicalize_math_after_vectorization_p ()
1061 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
1062 (negate (convert (gt @0 { zeros; }))))
1063 /* Handle vector case. */
1064 (if (VECTOR_INTEGER_TYPE_P (type)
1065 /* First check whether the target has the same mode for vector
1066 comparison results as it's operands do. */
1067 && TYPE_MODE (bt) == TYPE_MODE (type)
1068 /* Then check to see if the target is able to expand the comparison
1069 with the given type later on, otherwise we may ICE. */
1070 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
1071 && (cst = uniform_integer_cst_p (@1)) != NULL
1072 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
1073 (view_convert (gt:bt @0 { zeros; }))))))))
1074
1075 /* Fold (C1/X)*C2 into (C1*C2)/X. */
1076 (simplify
1077 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
1078 (if (flag_associative_math
1079 && single_use (@3))
1080 (with
1081 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
1082 (if (tem)
1083 (rdiv { tem; } @1)))))
1084
1085 /* Simplify ~X & X as zero. */
1086 (simplify
1087 (bit_and:c (convert? @0) (convert? (bit_not @0)))
1088 { build_zero_cst (type); })
1089
1090 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
1091 (simplify
1092 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
1093 (if (TYPE_UNSIGNED (type))
1094 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
1095
1096 (for bitop (bit_and bit_ior)
1097 cmp (eq ne)
1098 /* PR35691: Transform
1099 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
1100 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
1101 (simplify
1102 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
1103 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1104 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1105 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1106 (cmp (bit_ior @0 (convert @1)) @2)))
1107 /* Transform:
1108 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
1109 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
1110 (simplify
1111 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
1112 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1113 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1114 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1115 (cmp (bit_and @0 (convert @1)) @2))))
1116
1117 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
1118 (simplify
1119 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
1120 (minus (bit_xor @0 @1) @1))
1121 (simplify
1122 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
1123 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1124 (minus (bit_xor @0 @1) @1)))
1125
1126 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
1127 (simplify
1128 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
1129 (minus @1 (bit_xor @0 @1)))
1130
1131 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
1132 (for op (bit_ior bit_xor plus)
1133 (simplify
1134 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
1135 (bit_xor @0 @1))
1136 (simplify
1137 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
1138 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1139 (bit_xor @0 @1))))
1140
1141 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
1142 (simplify
1143 (bit_ior:c (bit_xor:c @0 @1) @0)
1144 (bit_ior @0 @1))
1145
1146 /* (a & ~b) | (a ^ b) --> a ^ b */
1147 (simplify
1148 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1149 @2)
1150
1151 /* (a & ~b) ^ ~a --> ~(a & b) */
1152 (simplify
1153 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1154 (bit_not (bit_and @0 @1)))
1155
1156 /* (~a & b) ^ a --> (a | b) */
1157 (simplify
1158 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1159 (bit_ior @0 @1))
1160
1161 /* (a | b) & ~(a ^ b) --> a & b */
1162 (simplify
1163 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1164 (bit_and @0 @1))
1165
1166 /* a | ~(a ^ b) --> a | ~b */
1167 (simplify
1168 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1169 (bit_ior @0 (bit_not @1)))
1170
1171 /* (a | b) | (a &^ b) --> a | b */
1172 (for op (bit_and bit_xor)
1173 (simplify
1174 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1175 @2))
1176
1177 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1178 (simplify
1179 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1180 @2)
1181
1182 /* ~(~a & b) --> a | ~b */
1183 (simplify
1184 (bit_not (bit_and:cs (bit_not @0) @1))
1185 (bit_ior @0 (bit_not @1)))
1186
1187 /* ~(~a | b) --> a & ~b */
1188 (simplify
1189 (bit_not (bit_ior:cs (bit_not @0) @1))
1190 (bit_and @0 (bit_not @1)))
1191
1192 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1193 (simplify
1194 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1195 (bit_and @3 (bit_not @2)))
1196
1197 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1198 (simplify
1199 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1200 (bit_ior @3 @2))
1201
1202 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1203 (simplify
1204 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1205 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1206
1207 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1208 (simplify
1209 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1210 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1211
1212 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1213 (simplify
1214 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1215 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1216 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1217 (bit_xor @0 @1)))
1218
1219 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1220 ((A & N) + B) & M -> (A + B) & M
1221 Similarly if (N & M) == 0,
1222 ((A | N) + B) & M -> (A + B) & M
1223 and for - instead of + (or unary - instead of +)
1224 and/or ^ instead of |.
1225 If B is constant and (B & M) == 0, fold into A & M. */
1226 (for op (plus minus)
1227 (for bitop (bit_and bit_ior bit_xor)
1228 (simplify
1229 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1230 (with
1231 { tree pmop[2];
1232 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1233 @3, @4, @1, ERROR_MARK, NULL_TREE,
1234 NULL_TREE, pmop); }
1235 (if (utype)
1236 (convert (bit_and (op (convert:utype { pmop[0]; })
1237 (convert:utype { pmop[1]; }))
1238 (convert:utype @2))))))
1239 (simplify
1240 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1241 (with
1242 { tree pmop[2];
1243 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1244 NULL_TREE, NULL_TREE, @1, bitop, @3,
1245 @4, pmop); }
1246 (if (utype)
1247 (convert (bit_and (op (convert:utype { pmop[0]; })
1248 (convert:utype { pmop[1]; }))
1249 (convert:utype @2)))))))
1250 (simplify
1251 (bit_and (op:s @0 @1) INTEGER_CST@2)
1252 (with
1253 { tree pmop[2];
1254 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1255 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1256 NULL_TREE, NULL_TREE, pmop); }
1257 (if (utype)
1258 (convert (bit_and (op (convert:utype { pmop[0]; })
1259 (convert:utype { pmop[1]; }))
1260 (convert:utype @2)))))))
1261 (for bitop (bit_and bit_ior bit_xor)
1262 (simplify
1263 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1264 (with
1265 { tree pmop[2];
1266 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1267 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1268 NULL_TREE, NULL_TREE, pmop); }
1269 (if (utype)
1270 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1271 (convert:utype @1)))))))
1272
1273 /* X % Y is smaller than Y. */
1274 (for cmp (lt ge)
1275 (simplify
1276 (cmp (trunc_mod @0 @1) @1)
1277 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1278 { constant_boolean_node (cmp == LT_EXPR, type); })))
1279 (for cmp (gt le)
1280 (simplify
1281 (cmp @1 (trunc_mod @0 @1))
1282 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1283 { constant_boolean_node (cmp == GT_EXPR, type); })))
1284
1285 /* x | ~0 -> ~0 */
1286 (simplify
1287 (bit_ior @0 integer_all_onesp@1)
1288 @1)
1289
1290 /* x | 0 -> x */
1291 (simplify
1292 (bit_ior @0 integer_zerop)
1293 @0)
1294
1295 /* x & 0 -> 0 */
1296 (simplify
1297 (bit_and @0 integer_zerop@1)
1298 @1)
1299
1300 /* ~x | x -> -1 */
1301 /* ~x ^ x -> -1 */
1302 (for op (bit_ior bit_xor)
1303 (simplify
1304 (op:c (convert? @0) (convert? (bit_not @0)))
1305 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1306
1307 /* x ^ x -> 0 */
1308 (simplify
1309 (bit_xor @0 @0)
1310 { build_zero_cst (type); })
1311
1312 /* Canonicalize X ^ ~0 to ~X. */
1313 (simplify
1314 (bit_xor @0 integer_all_onesp@1)
1315 (bit_not @0))
1316
1317 /* x & ~0 -> x */
1318 (simplify
1319 (bit_and @0 integer_all_onesp)
1320 (non_lvalue @0))
1321
1322 /* x & x -> x, x | x -> x */
1323 (for bitop (bit_and bit_ior)
1324 (simplify
1325 (bitop @0 @0)
1326 (non_lvalue @0)))
1327
1328 /* x & C -> x if we know that x & ~C == 0. */
1329 #if GIMPLE
1330 (simplify
1331 (bit_and SSA_NAME@0 INTEGER_CST@1)
1332 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1333 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1334 @0))
1335 #endif
1336
1337 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1338 (simplify
1339 (bit_not (minus (bit_not @0) @1))
1340 (plus @0 @1))
1341 (simplify
1342 (bit_not (plus:c (bit_not @0) @1))
1343 (minus @0 @1))
1344 /* (~X - ~Y) -> Y - X. */
1345 (simplify
1346 (minus (bit_not @0) (bit_not @1))
1347 (if (!TYPE_OVERFLOW_SANITIZED (type))
1348 (with { tree utype = unsigned_type_for (type); }
1349 (convert (minus (convert:utype @1) (convert:utype @0))))))
1350
1351 /* ~(X - Y) -> ~X + Y. */
1352 (simplify
1353 (bit_not (minus:s @0 @1))
1354 (plus (bit_not @0) @1))
1355 (simplify
1356 (bit_not (plus:s @0 INTEGER_CST@1))
1357 (if ((INTEGRAL_TYPE_P (type)
1358 && TYPE_UNSIGNED (type))
1359 || (!TYPE_OVERFLOW_SANITIZED (type)
1360 && may_negate_without_overflow_p (@1)))
1361 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1362
1363 #if GIMPLE
1364 /* ~X + Y -> (Y - X) - 1. */
1365 (simplify
1366 (plus:c (bit_not @0) @1)
1367 (if (ANY_INTEGRAL_TYPE_P (type)
1368 && TYPE_OVERFLOW_WRAPS (type)
1369 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1370 && !integer_all_onesp (@1))
1371 (plus (minus @1 @0) { build_minus_one_cst (type); })
1372 (if (INTEGRAL_TYPE_P (type)
1373 && TREE_CODE (@1) == INTEGER_CST
1374 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1375 SIGNED))
1376 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1377 #endif
1378
1379 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1380 (simplify
1381 (bit_not (rshift:s @0 @1))
1382 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1383 (rshift (bit_not! @0) @1)
1384 /* For logical right shifts, this is possible only if @0 doesn't
1385 have MSB set and the logical right shift is changed into
1386 arithmetic shift. */
1387 (if (INTEGRAL_TYPE_P (type)
1388 && !wi::neg_p (tree_nonzero_bits (@0)))
1389 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1390 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1391
1392 /* x + (x & 1) -> (x + 1) & ~1 */
1393 (simplify
1394 (plus:c @0 (bit_and:s @0 integer_onep@1))
1395 (bit_and (plus @0 @1) (bit_not @1)))
1396
1397 /* x & ~(x & y) -> x & ~y */
1398 /* x | ~(x | y) -> x | ~y */
1399 (for bitop (bit_and bit_ior)
1400 (simplify
1401 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1402 (bitop @0 (bit_not @1))))
1403
1404 /* (~x & y) | ~(x | y) -> ~x */
1405 (simplify
1406 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1407 @2)
1408
1409 /* (x | y) ^ (x | ~y) -> ~x */
1410 (simplify
1411 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1412 (bit_not @0))
1413
1414 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1415 (simplify
1416 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1417 (bit_not (bit_xor @0 @1)))
1418
1419 /* (~x | y) ^ (x ^ y) -> x | ~y */
1420 (simplify
1421 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1422 (bit_ior @0 (bit_not @1)))
1423
1424 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1425 (simplify
1426 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1427 (bit_not (bit_and @0 @1)))
1428
1429 /* (x | y) & ~x -> y & ~x */
1430 /* (x & y) | ~x -> y | ~x */
1431 (for bitop (bit_and bit_ior)
1432 rbitop (bit_ior bit_and)
1433 (simplify
1434 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1435 (bitop @1 @2)))
1436
1437 /* (x & y) ^ (x | y) -> x ^ y */
1438 (simplify
1439 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1440 (bit_xor @0 @1))
1441
1442 /* (x ^ y) ^ (x | y) -> x & y */
1443 (simplify
1444 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1445 (bit_and @0 @1))
1446
1447 /* (x & y) + (x ^ y) -> x | y */
1448 /* (x & y) | (x ^ y) -> x | y */
1449 /* (x & y) ^ (x ^ y) -> x | y */
1450 (for op (plus bit_ior bit_xor)
1451 (simplify
1452 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1453 (bit_ior @0 @1)))
1454
1455 /* (x & y) + (x | y) -> x + y */
1456 (simplify
1457 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1458 (plus @0 @1))
1459
1460 /* (x + y) - (x | y) -> x & y */
1461 (simplify
1462 (minus (plus @0 @1) (bit_ior @0 @1))
1463 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1464 && !TYPE_SATURATING (type))
1465 (bit_and @0 @1)))
1466
1467 /* (x + y) - (x & y) -> x | y */
1468 (simplify
1469 (minus (plus @0 @1) (bit_and @0 @1))
1470 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1471 && !TYPE_SATURATING (type))
1472 (bit_ior @0 @1)))
1473
1474 /* (x | y) - y -> (x & ~y) */
1475 (simplify
1476 (minus (bit_ior:cs @0 @1) @1)
1477 (bit_and @0 (bit_not @1)))
1478
1479 /* (x | y) - (x ^ y) -> x & y */
1480 (simplify
1481 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1482 (bit_and @0 @1))
1483
1484 /* (x | y) - (x & y) -> x ^ y */
1485 (simplify
1486 (minus (bit_ior @0 @1) (bit_and @0 @1))
1487 (bit_xor @0 @1))
1488
1489 /* (x | y) & ~(x & y) -> x ^ y */
1490 (simplify
1491 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1492 (bit_xor @0 @1))
1493
1494 /* (x | y) & (~x ^ y) -> x & y */
1495 (simplify
1496 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1497 (bit_and @0 @1))
1498
1499 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1500 (simplify
1501 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1502 (bit_not (bit_xor @0 @1)))
1503
1504 /* (~x | y) ^ (x | ~y) -> x ^ y */
1505 (simplify
1506 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1507 (bit_xor @0 @1))
1508
1509 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1510 (simplify
1511 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1512 (nop_convert2? (bit_ior @0 @1))))
1513 integer_all_onesp)
1514 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1515 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1516 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1517 && !TYPE_SATURATING (TREE_TYPE (@2)))
1518 (bit_not (convert (bit_xor @0 @1)))))
1519 (simplify
1520 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1521 integer_all_onesp))
1522 (nop_convert3? (bit_ior @0 @1)))
1523 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1524 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1525 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1526 && !TYPE_SATURATING (TREE_TYPE (@2)))
1527 (bit_not (convert (bit_xor @0 @1)))))
1528 (simplify
1529 (minus (nop_convert1? (bit_and @0 @1))
1530 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1531 integer_onep)))
1532 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1533 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1534 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1535 && !TYPE_SATURATING (TREE_TYPE (@2)))
1536 (bit_not (convert (bit_xor @0 @1)))))
1537
1538 /* ~x & ~y -> ~(x | y)
1539 ~x | ~y -> ~(x & y) */
1540 (for op (bit_and bit_ior)
1541 rop (bit_ior bit_and)
1542 (simplify
1543 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1544 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1545 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1546 (bit_not (rop (convert @0) (convert @1))))))
1547
1548 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1549 with a constant, and the two constants have no bits in common,
1550 we should treat this as a BIT_IOR_EXPR since this may produce more
1551 simplifications. */
1552 (for op (bit_xor plus)
1553 (simplify
1554 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1555 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1556 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1557 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1558 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1559 (bit_ior (convert @4) (convert @5)))))
1560
1561 /* (X | Y) ^ X -> Y & ~ X*/
1562 (simplify
1563 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1564 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1565 (convert (bit_and @1 (bit_not @0)))))
1566
1567 /* Convert ~X ^ ~Y to X ^ Y. */
1568 (simplify
1569 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1570 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1571 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1572 (bit_xor (convert @0) (convert @1))))
1573
1574 /* Convert ~X ^ C to X ^ ~C. */
1575 (simplify
1576 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1577 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1578 (bit_xor (convert @0) (bit_not @1))))
1579
1580 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1581 (for opo (bit_and bit_xor)
1582 opi (bit_xor bit_and)
1583 (simplify
1584 (opo:c (opi:cs @0 @1) @1)
1585 (bit_and (bit_not @0) @1)))
1586
1587 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1588 operands are another bit-wise operation with a common input. If so,
1589 distribute the bit operations to save an operation and possibly two if
1590 constants are involved. For example, convert
1591 (A | B) & (A | C) into A | (B & C)
1592 Further simplification will occur if B and C are constants. */
1593 (for op (bit_and bit_ior bit_xor)
1594 rop (bit_ior bit_and bit_and)
1595 (simplify
1596 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1597 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1598 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1599 (rop (convert @0) (op (convert @1) (convert @2))))))
1600
1601 /* Some simple reassociation for bit operations, also handled in reassoc. */
1602 /* (X & Y) & Y -> X & Y
1603 (X | Y) | Y -> X | Y */
1604 (for op (bit_and bit_ior)
1605 (simplify
1606 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1607 @2))
1608 /* (X ^ Y) ^ Y -> X */
1609 (simplify
1610 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1611 (convert @0))
1612 /* (X & Y) & (X & Z) -> (X & Y) & Z
1613 (X | Y) | (X | Z) -> (X | Y) | Z */
1614 (for op (bit_and bit_ior)
1615 (simplify
1616 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1617 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1618 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1619 (if (single_use (@5) && single_use (@6))
1620 (op @3 (convert @2))
1621 (if (single_use (@3) && single_use (@4))
1622 (op (convert @1) @5))))))
1623 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1624 (simplify
1625 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1626 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1627 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1628 (bit_xor (convert @1) (convert @2))))
1629
1630 /* Convert abs (abs (X)) into abs (X).
1631 also absu (absu (X)) into absu (X). */
1632 (simplify
1633 (abs (abs@1 @0))
1634 @1)
1635
1636 (simplify
1637 (absu (convert@2 (absu@1 @0)))
1638 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1639 @1))
1640
1641 /* Convert abs[u] (-X) -> abs[u] (X). */
1642 (simplify
1643 (abs (negate @0))
1644 (abs @0))
1645
1646 (simplify
1647 (absu (negate @0))
1648 (absu @0))
1649
1650 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1651 (simplify
1652 (abs tree_expr_nonnegative_p@0)
1653 @0)
1654
1655 (simplify
1656 (absu tree_expr_nonnegative_p@0)
1657 (convert @0))
1658
1659 /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
1660 (simplify
1661 (mult:c (nop_convert1?
1662 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1663 integer_onep))
1664 (nop_convert3? @0))
1665 (if (INTEGRAL_TYPE_P (type)
1666 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1667 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1668 (if (TYPE_UNSIGNED (type))
1669 (absu @0)
1670 (abs @0)
1671 )
1672 )
1673 )
1674
1675 /* A few cases of fold-const.cc negate_expr_p predicate. */
1676 (match negate_expr_p
1677 INTEGER_CST
1678 (if ((INTEGRAL_TYPE_P (type)
1679 && TYPE_UNSIGNED (type))
1680 || (!TYPE_OVERFLOW_SANITIZED (type)
1681 && may_negate_without_overflow_p (t)))))
1682 (match negate_expr_p
1683 FIXED_CST)
1684 (match negate_expr_p
1685 (negate @0)
1686 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1687 (match negate_expr_p
1688 REAL_CST
1689 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1690 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1691 ways. */
1692 (match negate_expr_p
1693 VECTOR_CST
1694 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1695 (match negate_expr_p
1696 (minus @0 @1)
1697 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1698 || (FLOAT_TYPE_P (type)
1699 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1700 && !HONOR_SIGNED_ZEROS (type)))))
1701
1702 /* (-A) * (-B) -> A * B */
1703 (simplify
1704 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1705 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1706 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1707 (mult (convert @0) (convert (negate @1)))))
1708
1709 /* -(A + B) -> (-B) - A. */
1710 (simplify
1711 (negate (plus:c @0 negate_expr_p@1))
1712 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1713 && !HONOR_SIGNED_ZEROS (type))
1714 (minus (negate @1) @0)))
1715
1716 /* -(A - B) -> B - A. */
1717 (simplify
1718 (negate (minus @0 @1))
1719 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1720 || (FLOAT_TYPE_P (type)
1721 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1722 && !HONOR_SIGNED_ZEROS (type)))
1723 (minus @1 @0)))
1724 (simplify
1725 (negate (pointer_diff @0 @1))
1726 (if (TYPE_OVERFLOW_UNDEFINED (type))
1727 (pointer_diff @1 @0)))
1728
1729 /* A - B -> A + (-B) if B is easily negatable. */
1730 (simplify
1731 (minus @0 negate_expr_p@1)
1732 (if (!FIXED_POINT_TYPE_P (type))
1733 (plus @0 (negate @1))))
1734
1735 /* 1 - a is a ^ 1 if a had a bool range. */
1736 /* This is only enabled for gimple as sometimes
1737 cfun is not set for the function which contains
1738 the SSA_NAME (e.g. while IPA passes are happening,
1739 fold might be called). */
1740 (simplify
1741 (minus integer_onep@0 SSA_NAME@1)
1742 (if (INTEGRAL_TYPE_P (type)
1743 && ssa_name_has_boolean_range (@1))
1744 (bit_xor @1 @0)))
1745
1746 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
1747 (simplify
1748 (negate (mult:c@0 @1 negate_expr_p@2))
1749 (if (! TYPE_UNSIGNED (type)
1750 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1751 && single_use (@0))
1752 (mult @1 (negate @2))))
1753
1754 (simplify
1755 (negate (rdiv@0 @1 negate_expr_p@2))
1756 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1757 && single_use (@0))
1758 (rdiv @1 (negate @2))))
1759
1760 (simplify
1761 (negate (rdiv@0 negate_expr_p@1 @2))
1762 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1763 && single_use (@0))
1764 (rdiv (negate @1) @2)))
1765
1766 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1767 (simplify
1768 (negate (convert? (rshift @0 INTEGER_CST@1)))
1769 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1770 && wi::to_wide (@1) == element_precision (type) - 1)
1771 (with { tree stype = TREE_TYPE (@0);
1772 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1773 : unsigned_type_for (stype); }
1774 (if (VECTOR_TYPE_P (type))
1775 (view_convert (rshift (view_convert:ntype @0) @1))
1776 (convert (rshift (convert:ntype @0) @1))))))
1777
1778 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1779 when profitable.
1780 For bitwise binary operations apply operand conversions to the
1781 binary operation result instead of to the operands. This allows
1782 to combine successive conversions and bitwise binary operations.
1783 We combine the above two cases by using a conditional convert. */
1784 (for bitop (bit_and bit_ior bit_xor)
1785 (simplify
1786 (bitop (convert@2 @0) (convert?@3 @1))
1787 (if (((TREE_CODE (@1) == INTEGER_CST
1788 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1789 && (int_fits_type_p (@1, TREE_TYPE (@0))
1790 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
1791 || types_match (@0, @1))
1792 && !POINTER_TYPE_P (TREE_TYPE (@0))
1793 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE
1794 /* ??? This transform conflicts with fold-const.cc doing
1795 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1796 constants (if x has signed type, the sign bit cannot be set
1797 in c). This folds extension into the BIT_AND_EXPR.
1798 Restrict it to GIMPLE to avoid endless recursions. */
1799 && (bitop != BIT_AND_EXPR || GIMPLE)
1800 && (/* That's a good idea if the conversion widens the operand, thus
1801 after hoisting the conversion the operation will be narrower.
1802 It is also a good if the conversion is a nop as moves the
1803 conversion to one side; allowing for combining of the conversions. */
1804 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1805 /* The conversion check for being a nop can only be done at the gimple
1806 level as fold_binary has some re-association code which can conflict
1807 with this if there is a "constant" which is not a full INTEGER_CST. */
1808 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
1809 /* It's also a good idea if the conversion is to a non-integer
1810 mode. */
1811 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1812 /* Or if the precision of TO is not the same as the precision
1813 of its mode. */
1814 || !type_has_mode_precision_p (type)
1815 /* In GIMPLE, getting rid of 2 conversions for one new results
1816 in smaller IL. */
1817 || (GIMPLE
1818 && TREE_CODE (@1) != INTEGER_CST
1819 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1820 && single_use (@2)
1821 && single_use (@3))))
1822 (convert (bitop @0 (convert @1)))))
1823 /* In GIMPLE, getting rid of 2 conversions for one new results
1824 in smaller IL. */
1825 (simplify
1826 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1827 (if (GIMPLE
1828 && TREE_CODE (@1) != INTEGER_CST
1829 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1830 && types_match (type, @0)
1831 && !POINTER_TYPE_P (TREE_TYPE (@0))
1832 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE)
1833 (bitop @0 (convert @1)))))
1834
1835 (for bitop (bit_and bit_ior)
1836 rbitop (bit_ior bit_and)
1837 /* (x | y) & x -> x */
1838 /* (x & y) | x -> x */
1839 (simplify
1840 (bitop:c (rbitop:c @0 @1) @0)
1841 @0)
1842 /* (~x | y) & x -> x & y */
1843 /* (~x & y) | x -> x | y */
1844 (simplify
1845 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1846 (bitop @0 @1)))
1847
1848 /* ((x | y) & z) | x -> (z & y) | x */
1849 (simplify
1850 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1851 (bit_ior (bit_and @2 @1) @0))
1852
1853 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1854 (simplify
1855 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1856 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1857
1858 /* Combine successive equal operations with constants. */
1859 (for bitop (bit_and bit_ior bit_xor)
1860 (simplify
1861 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1862 (if (!CONSTANT_CLASS_P (@0))
1863 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1864 folded to a constant. */
1865 (bitop @0 (bitop @1 @2))
1866 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1867 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1868 the values involved are such that the operation can't be decided at
1869 compile time. Try folding one of @0 or @1 with @2 to see whether
1870 that combination can be decided at compile time.
1871
1872 Keep the existing form if both folds fail, to avoid endless
1873 oscillation. */
1874 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1875 (if (cst1)
1876 (bitop @1 { cst1; })
1877 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1878 (if (cst2)
1879 (bitop @0 { cst2; }))))))))
1880
1881 /* Try simple folding for X op !X, and X op X with the help
1882 of the truth_valued_p and logical_inverted_value predicates. */
1883 (match truth_valued_p
1884 @0
1885 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1886 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1887 (match truth_valued_p
1888 (op @0 @1)))
1889 (match truth_valued_p
1890 (truth_not @0))
1891
1892 (match (logical_inverted_value @0)
1893 (truth_not @0))
1894 (match (logical_inverted_value @0)
1895 (bit_not truth_valued_p@0))
1896 (match (logical_inverted_value @0)
1897 (eq @0 integer_zerop))
1898 (match (logical_inverted_value @0)
1899 (ne truth_valued_p@0 integer_truep))
1900 (match (logical_inverted_value @0)
1901 (bit_xor truth_valued_p@0 integer_truep))
1902
1903 /* X & !X -> 0. */
1904 (simplify
1905 (bit_and:c @0 (logical_inverted_value @0))
1906 { build_zero_cst (type); })
1907 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1908 (for op (bit_ior bit_xor)
1909 (simplify
1910 (op:c truth_valued_p@0 (logical_inverted_value @0))
1911 { constant_boolean_node (true, type); }))
1912 /* X ==/!= !X is false/true. */
1913 (for op (eq ne)
1914 (simplify
1915 (op:c truth_valued_p@0 (logical_inverted_value @0))
1916 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1917
1918 /* ~~x -> x */
1919 (simplify
1920 (bit_not (bit_not @0))
1921 @0)
1922
1923 (match zero_one_valued_p
1924 @0
1925 (if (INTEGRAL_TYPE_P (type) && tree_nonzero_bits (@0) == 1)))
1926 (match zero_one_valued_p
1927 truth_valued_p@0)
1928
1929 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 }. */
1930 (simplify
1931 (mult zero_one_valued_p@0 zero_one_valued_p@1)
1932 (if (INTEGRAL_TYPE_P (type))
1933 (bit_and @0 @1)))
1934
1935 (for cmp (tcc_comparison)
1936 icmp (inverted_tcc_comparison)
1937 /* Fold (((a < b) & c) | ((a >= b) & d)) into (a < b ? c : d) & 1. */
1938 (simplify
1939 (bit_ior
1940 (bit_and:c (convert? (cmp@0 @01 @02)) @3)
1941 (bit_and:c (convert? (icmp@4 @01 @02)) @5))
1942 (if (INTEGRAL_TYPE_P (type)
1943 /* The scalar version has to be canonicalized after vectorization
1944 because it makes unconditional loads conditional ones, which
1945 means we lose vectorization because the loads may trap. */
1946 && canonicalize_math_after_vectorization_p ())
1947 (bit_and (cond @0 @3 @5) { build_one_cst (type); })))
1948
1949 /* Fold ((-(a < b) & c) | (-(a >= b) & d)) into a < b ? c : d. This is
1950 canonicalized further and we recognize the conditional form:
1951 (a < b ? c : 0) | (a >= b ? d : 0) into a < b ? c : d. */
1952 (simplify
1953 (bit_ior
1954 (cond (cmp@0 @01 @02) @3 zerop)
1955 (cond (icmp@4 @01 @02) @5 zerop))
1956 (if (INTEGRAL_TYPE_P (type)
1957 /* The scalar version has to be canonicalized after vectorization
1958 because it makes unconditional loads conditional ones, which
1959 means we lose vectorization because the loads may trap. */
1960 && canonicalize_math_after_vectorization_p ())
1961 (cond @0 @3 @5)))
1962
1963 /* Vector Fold (((a < b) & c) | ((a >= b) & d)) into a < b ? c : d.
1964 and ((~(a < b) & c) | (~(a >= b) & d)) into a < b ? c : d. */
1965 (simplify
1966 (bit_ior
1967 (bit_and:c (vec_cond:s (cmp@0 @6 @7) @4 @5) @2)
1968 (bit_and:c (vec_cond:s (icmp@1 @6 @7) @4 @5) @3))
1969 (if (integer_zerop (@5))
1970 (switch
1971 (if (integer_onep (@4))
1972 (bit_and (vec_cond @0 @2 @3) @4))
1973 (if (integer_minus_onep (@4))
1974 (vec_cond @0 @2 @3)))
1975 (if (integer_zerop (@4))
1976 (switch
1977 (if (integer_onep (@5))
1978 (bit_and (vec_cond @0 @3 @2) @5))
1979 (if (integer_minus_onep (@5))
1980 (vec_cond @0 @3 @2))))))
1981
1982 /* Scalar Vectorized Fold ((-(a < b) & c) | (-(a >= b) & d))
1983 into a < b ? d : c. */
1984 (simplify
1985 (bit_ior
1986 (vec_cond:s (cmp@0 @4 @5) @2 integer_zerop)
1987 (vec_cond:s (icmp@1 @4 @5) @3 integer_zerop))
1988 (vec_cond @0 @2 @3)))
1989
1990 /* Transform X & -Y into X * Y when Y is { 0 or 1 }. */
1991 (simplify
1992 (bit_and:c (convert? (negate zero_one_valued_p@0)) @1)
1993 (if (INTEGRAL_TYPE_P (type)
1994 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1995 && TREE_CODE (TREE_TYPE (@0)) != BOOLEAN_TYPE
1996 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1997 (mult (convert @0) @1)))
1998
1999 /* Narrow integer multiplication by a zero_one_valued_p operand.
2000 Multiplication by [0,1] is guaranteed not to overflow. */
2001 (simplify
2002 (convert (mult@0 zero_one_valued_p@1 INTEGER_CST@2))
2003 (if (INTEGRAL_TYPE_P (type)
2004 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2005 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@0)))
2006 (mult (convert @1) (convert @2))))
2007
2008 /* (X << C) != 0 can be simplified to X, when C is zero_one_valued_p.
2009 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2010 as some targets (such as x86's SSE) may return zero for larger C. */
2011 (simplify
2012 (ne (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2013 (if (tree_fits_shwi_p (@1)
2014 && tree_to_shwi (@1) > 0
2015 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2016 (convert @0)))
2017
2018 /* (X << C) == 0 can be simplified to X == 0, when C is zero_one_valued_p.
2019 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2020 as some targets (such as x86's SSE) may return zero for larger C. */
2021 (simplify
2022 (eq (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2023 (if (tree_fits_shwi_p (@1)
2024 && tree_to_shwi (@1) > 0
2025 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2026 (eq @0 @2)))
2027
2028 /* Convert ~ (-A) to A - 1. */
2029 (simplify
2030 (bit_not (convert? (negate @0)))
2031 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2032 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2033 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
2034
2035 /* Convert - (~A) to A + 1. */
2036 (simplify
2037 (negate (nop_convert? (bit_not @0)))
2038 (plus (view_convert @0) { build_each_one_cst (type); }))
2039
2040 /* (a & b) ^ (a == b) -> !(a | b) */
2041 /* (a & b) == (a ^ b) -> !(a | b) */
2042 (for first_op (bit_xor eq)
2043 second_op (eq bit_xor)
2044 (simplify
2045 (first_op:c (bit_and:c truth_valued_p@0 truth_valued_p@1) (second_op:c @0 @1))
2046 (bit_not (bit_ior @0 @1))))
2047
2048 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
2049 (simplify
2050 (bit_not (convert? (minus @0 integer_each_onep)))
2051 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2052 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2053 (convert (negate @0))))
2054 (simplify
2055 (bit_not (convert? (plus @0 integer_all_onesp)))
2056 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2057 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2058 (convert (negate @0))))
2059
2060 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
2061 (simplify
2062 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
2063 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2064 (convert (bit_xor @0 (bit_not @1)))))
2065 (simplify
2066 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
2067 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2068 (convert (bit_xor @0 @1))))
2069
2070 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
2071 (simplify
2072 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
2073 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2074 (bit_not (bit_xor (view_convert @0) @1))))
2075
2076 /* ~(a ^ b) is a == b for truth valued a and b. */
2077 (simplify
2078 (bit_not (bit_xor:s truth_valued_p@0 truth_valued_p@1))
2079 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2080 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2081 (convert (eq @0 @1))))
2082
2083 /* (~a) == b is a ^ b for truth valued a and b. */
2084 (simplify
2085 (eq:c (bit_not:s truth_valued_p@0) truth_valued_p@1)
2086 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2087 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2088 (convert (bit_xor @0 @1))))
2089
2090 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
2091 (simplify
2092 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
2093 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
2094
2095 /* Fold A - (A & B) into ~B & A. */
2096 (simplify
2097 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
2098 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2099 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
2100 (convert (bit_and (bit_not @1) @0))))
2101
2102 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
2103 (if (!canonicalize_math_p ())
2104 (for cmp (tcc_comparison)
2105 (simplify
2106 (mult:c (convert (cmp@0 @1 @2)) @3)
2107 (if (INTEGRAL_TYPE_P (type)
2108 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2109 (cond @0 @3 { build_zero_cst (type); })))
2110 /* (-(m1 CMP m2)) & d -> (m1 CMP m2) ? d : 0 */
2111 (simplify
2112 (bit_and:c (negate (convert (cmp@0 @1 @2))) @3)
2113 (if (INTEGRAL_TYPE_P (type)
2114 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2115 (cond @0 @3 { build_zero_cst (type); })))
2116 )
2117 )
2118
2119 /* For integral types with undefined overflow and C != 0 fold
2120 x * C EQ/NE y * C into x EQ/NE y. */
2121 (for cmp (eq ne)
2122 (simplify
2123 (cmp (mult:c @0 @1) (mult:c @2 @1))
2124 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2125 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2126 && tree_expr_nonzero_p (@1))
2127 (cmp @0 @2))))
2128
2129 /* For integral types with wrapping overflow and C odd fold
2130 x * C EQ/NE y * C into x EQ/NE y. */
2131 (for cmp (eq ne)
2132 (simplify
2133 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
2134 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2135 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2136 && (TREE_INT_CST_LOW (@1) & 1) != 0)
2137 (cmp @0 @2))))
2138
2139 /* For integral types with undefined overflow and C != 0 fold
2140 x * C RELOP y * C into:
2141
2142 x RELOP y for nonnegative C
2143 y RELOP x for negative C */
2144 (for cmp (lt gt le ge)
2145 (simplify
2146 (cmp (mult:c @0 @1) (mult:c @2 @1))
2147 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2148 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2149 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
2150 (cmp @0 @2)
2151 (if (TREE_CODE (@1) == INTEGER_CST
2152 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
2153 (cmp @2 @0))))))
2154
2155 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
2156 (for cmp (le gt)
2157 icmp (gt le)
2158 (simplify
2159 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
2160 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2161 && TYPE_UNSIGNED (TREE_TYPE (@0))
2162 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
2163 && (wi::to_wide (@2)
2164 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
2165 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2166 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
2167
2168 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
2169 (for cmp (simple_comparison)
2170 (simplify
2171 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
2172 (if (element_precision (@3) >= element_precision (@0)
2173 && types_match (@0, @1))
2174 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
2175 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
2176 (cmp @1 @0)
2177 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
2178 (with
2179 {
2180 tree utype = unsigned_type_for (TREE_TYPE (@0));
2181 }
2182 (cmp (convert:utype @1) (convert:utype @0)))))
2183 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
2184 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
2185 (cmp @0 @1)
2186 (with
2187 {
2188 tree utype = unsigned_type_for (TREE_TYPE (@0));
2189 }
2190 (cmp (convert:utype @0) (convert:utype @1)))))))))
2191
2192 /* X / C1 op C2 into a simple range test. */
2193 (for cmp (simple_comparison)
2194 (simplify
2195 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
2196 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2197 && integer_nonzerop (@1)
2198 && !TREE_OVERFLOW (@1)
2199 && !TREE_OVERFLOW (@2))
2200 (with { tree lo, hi; bool neg_overflow;
2201 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
2202 &neg_overflow); }
2203 (switch
2204 (if (code == LT_EXPR || code == GE_EXPR)
2205 (if (TREE_OVERFLOW (lo))
2206 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
2207 (if (code == LT_EXPR)
2208 (lt @0 { lo; })
2209 (ge @0 { lo; }))))
2210 (if (code == LE_EXPR || code == GT_EXPR)
2211 (if (TREE_OVERFLOW (hi))
2212 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
2213 (if (code == LE_EXPR)
2214 (le @0 { hi; })
2215 (gt @0 { hi; }))))
2216 (if (!lo && !hi)
2217 { build_int_cst (type, code == NE_EXPR); })
2218 (if (code == EQ_EXPR && !hi)
2219 (ge @0 { lo; }))
2220 (if (code == EQ_EXPR && !lo)
2221 (le @0 { hi; }))
2222 (if (code == NE_EXPR && !hi)
2223 (lt @0 { lo; }))
2224 (if (code == NE_EXPR && !lo)
2225 (gt @0 { hi; }))
2226 (if (GENERIC)
2227 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
2228 lo, hi); })
2229 (with
2230 {
2231 tree etype = range_check_type (TREE_TYPE (@0));
2232 if (etype)
2233 {
2234 hi = fold_convert (etype, hi);
2235 lo = fold_convert (etype, lo);
2236 hi = const_binop (MINUS_EXPR, etype, hi, lo);
2237 }
2238 }
2239 (if (etype && hi && !TREE_OVERFLOW (hi))
2240 (if (code == EQ_EXPR)
2241 (le (minus (convert:etype @0) { lo; }) { hi; })
2242 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
2243
2244 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
2245 (for op (lt le ge gt)
2246 (simplify
2247 (op (plus:c @0 @2) (plus:c @1 @2))
2248 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2249 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2250 (op @0 @1))))
2251
2252 /* As a special case, X + C < Y + C is the same as (signed) X < (signed) Y
2253 when C is an unsigned integer constant with only the MSB set, and X and
2254 Y have types of equal or lower integer conversion rank than C's. */
2255 (for op (lt le ge gt)
2256 (simplify
2257 (op (plus @1 INTEGER_CST@0) (plus @2 @0))
2258 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2259 && TYPE_UNSIGNED (TREE_TYPE (@0))
2260 && wi::only_sign_bit_p (wi::to_wide (@0)))
2261 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2262 (op (convert:stype @1) (convert:stype @2))))))
2263
2264 /* For equality and subtraction, this is also true with wrapping overflow. */
2265 (for op (eq ne minus)
2266 (simplify
2267 (op (plus:c @0 @2) (plus:c @1 @2))
2268 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2269 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2270 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2271 (op @0 @1))))
2272
2273 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
2274 (for op (lt le ge gt)
2275 (simplify
2276 (op (minus @0 @2) (minus @1 @2))
2277 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2278 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2279 (op @0 @1))))
2280 /* For equality and subtraction, this is also true with wrapping overflow. */
2281 (for op (eq ne minus)
2282 (simplify
2283 (op (minus @0 @2) (minus @1 @2))
2284 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2285 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2286 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2287 (op @0 @1))))
2288 /* And for pointers... */
2289 (for op (simple_comparison)
2290 (simplify
2291 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2292 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2293 (op @0 @1))))
2294 (simplify
2295 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2296 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2297 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2298 (pointer_diff @0 @1)))
2299
2300 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
2301 (for op (lt le ge gt)
2302 (simplify
2303 (op (minus @2 @0) (minus @2 @1))
2304 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2305 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2306 (op @1 @0))))
2307 /* For equality and subtraction, this is also true with wrapping overflow. */
2308 (for op (eq ne minus)
2309 (simplify
2310 (op (minus @2 @0) (minus @2 @1))
2311 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2312 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2313 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2314 (op @1 @0))))
2315 /* And for pointers... */
2316 (for op (simple_comparison)
2317 (simplify
2318 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2319 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2320 (op @1 @0))))
2321 (simplify
2322 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2323 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2324 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2325 (pointer_diff @1 @0)))
2326
2327 /* X + Y < Y is the same as X < 0 when there is no overflow. */
2328 (for op (lt le gt ge)
2329 (simplify
2330 (op:c (plus:c@2 @0 @1) @1)
2331 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2332 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2333 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2334 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2335 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2336 /* For equality, this is also true with wrapping overflow. */
2337 (for op (eq ne)
2338 (simplify
2339 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2340 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2341 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2342 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2343 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2344 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2345 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2346 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2347 (simplify
2348 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2349 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2350 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2351 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2352 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2353
2354 /* (&a + b) !=/== (&a[1] + c) -> (&a[0] - &a[1]) + b !=/== c */
2355 (for neeq (ne eq)
2356 (simplify
2357 (neeq:c ADDR_EXPR@0 (pointer_plus @2 @3))
2358 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@3);}
2359 (if (ptr_difference_const (@0, @2, &diff))
2360 (neeq { build_int_cst_type (inner_type, diff); } @3))))
2361 (simplify
2362 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2363 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2364 (if (ptr_difference_const (@0, @2, &diff))
2365 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2366
2367 /* X - Y < X is the same as Y > 0 when there is no overflow.
2368 For equality, this is also true with wrapping overflow. */
2369 (for op (simple_comparison)
2370 (simplify
2371 (op:c @0 (minus@2 @0 @1))
2372 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2373 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2374 || ((op == EQ_EXPR || op == NE_EXPR)
2375 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2376 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2377 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2378
2379 /* Transform:
2380 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2381 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
2382 (for cmp (eq ne)
2383 ocmp (lt ge)
2384 (simplify
2385 (cmp (trunc_div @0 @1) integer_zerop)
2386 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2387 /* Complex ==/!= is allowed, but not </>=. */
2388 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2389 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2390 (ocmp @0 @1))))
2391
2392 /* X == C - X can never be true if C is odd. */
2393 (for cmp (eq ne)
2394 (simplify
2395 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2396 (if (TREE_INT_CST_LOW (@1) & 1)
2397 { constant_boolean_node (cmp == NE_EXPR, type); })))
2398
2399 /* Arguments on which one can call get_nonzero_bits to get the bits
2400 possibly set. */
2401 (match with_possible_nonzero_bits
2402 INTEGER_CST@0)
2403 (match with_possible_nonzero_bits
2404 SSA_NAME@0
2405 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2406 /* Slightly extended version, do not make it recursive to keep it cheap. */
2407 (match (with_possible_nonzero_bits2 @0)
2408 with_possible_nonzero_bits@0)
2409 (match (with_possible_nonzero_bits2 @0)
2410 (bit_and:c with_possible_nonzero_bits@0 @2))
2411
2412 /* Same for bits that are known to be set, but we do not have
2413 an equivalent to get_nonzero_bits yet. */
2414 (match (with_certain_nonzero_bits2 @0)
2415 INTEGER_CST@0)
2416 (match (with_certain_nonzero_bits2 @0)
2417 (bit_ior @1 INTEGER_CST@0))
2418
2419 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2420 (for cmp (eq ne)
2421 (simplify
2422 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2423 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2424 { constant_boolean_node (cmp == NE_EXPR, type); })))
2425
2426 /* ((X inner_op C0) outer_op C1)
2427 With X being a tree where value_range has reasoned certain bits to always be
2428 zero throughout its computed value range,
2429 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2430 where zero_mask has 1's for all bits that are sure to be 0 in
2431 and 0's otherwise.
2432 if (inner_op == '^') C0 &= ~C1;
2433 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2434 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2435 */
2436 (for inner_op (bit_ior bit_xor)
2437 outer_op (bit_xor bit_ior)
2438 (simplify
2439 (outer_op
2440 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2441 (with
2442 {
2443 bool fail = false;
2444 wide_int zero_mask_not;
2445 wide_int C0;
2446 wide_int cst_emit;
2447
2448 if (TREE_CODE (@2) == SSA_NAME)
2449 zero_mask_not = get_nonzero_bits (@2);
2450 else
2451 fail = true;
2452
2453 if (inner_op == BIT_XOR_EXPR)
2454 {
2455 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2456 cst_emit = C0 | wi::to_wide (@1);
2457 }
2458 else
2459 {
2460 C0 = wi::to_wide (@0);
2461 cst_emit = C0 ^ wi::to_wide (@1);
2462 }
2463 }
2464 (if (!fail && (C0 & zero_mask_not) == 0)
2465 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2466 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2467 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2468
2469 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2470 (simplify
2471 (pointer_plus (pointer_plus:s @0 @1) @3)
2472 (pointer_plus @0 (plus @1 @3)))
2473 #if GENERIC
2474 (simplify
2475 (pointer_plus (convert:s (pointer_plus:s @0 @1)) @3)
2476 (convert:type (pointer_plus @0 (plus @1 @3))))
2477 #endif
2478
2479 /* Pattern match
2480 tem1 = (long) ptr1;
2481 tem2 = (long) ptr2;
2482 tem3 = tem2 - tem1;
2483 tem4 = (unsigned long) tem3;
2484 tem5 = ptr1 + tem4;
2485 and produce
2486 tem5 = ptr2; */
2487 (simplify
2488 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2489 /* Conditionally look through a sign-changing conversion. */
2490 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2491 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2492 || (GENERIC && type == TREE_TYPE (@1))))
2493 @1))
2494 (simplify
2495 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2496 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2497 (convert @1)))
2498
2499 /* Pattern match
2500 tem = (sizetype) ptr;
2501 tem = tem & algn;
2502 tem = -tem;
2503 ... = ptr p+ tem;
2504 and produce the simpler and easier to analyze with respect to alignment
2505 ... = ptr & ~algn; */
2506 (simplify
2507 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2508 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2509 (bit_and @0 { algn; })))
2510
2511 /* Try folding difference of addresses. */
2512 (simplify
2513 (minus (convert ADDR_EXPR@0) (convert @1))
2514 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2515 (with { poly_int64 diff; }
2516 (if (ptr_difference_const (@0, @1, &diff))
2517 { build_int_cst_type (type, diff); }))))
2518 (simplify
2519 (minus (convert @0) (convert ADDR_EXPR@1))
2520 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2521 (with { poly_int64 diff; }
2522 (if (ptr_difference_const (@0, @1, &diff))
2523 { build_int_cst_type (type, diff); }))))
2524 (simplify
2525 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2526 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2527 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2528 (with { poly_int64 diff; }
2529 (if (ptr_difference_const (@0, @1, &diff))
2530 { build_int_cst_type (type, diff); }))))
2531 (simplify
2532 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2533 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2534 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2535 (with { poly_int64 diff; }
2536 (if (ptr_difference_const (@0, @1, &diff))
2537 { build_int_cst_type (type, diff); }))))
2538
2539 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2540 (simplify
2541 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2542 (with { poly_int64 diff; }
2543 (if (ptr_difference_const (@0, @2, &diff))
2544 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2545 /* (p + b) - &p->d -> offsetof (*p, d) + b */
2546 (simplify
2547 (pointer_diff (pointer_plus @0 @1) ADDR_EXPR@2)
2548 (with { poly_int64 diff; }
2549 (if (ptr_difference_const (@0, @2, &diff))
2550 (plus { build_int_cst_type (type, diff); } (convert @1)))))
2551 (simplify
2552 (pointer_diff ADDR_EXPR@0 (pointer_plus @1 @2))
2553 (with { poly_int64 diff; }
2554 (if (ptr_difference_const (@0, @1, &diff))
2555 (minus { build_int_cst_type (type, diff); } (convert @2)))))
2556
2557 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2558 (simplify
2559 (convert (pointer_diff @0 INTEGER_CST@1))
2560 (if (POINTER_TYPE_P (type))
2561 { build_fold_addr_expr_with_type
2562 (build2 (MEM_REF, char_type_node, @0,
2563 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2564 type); }))
2565
2566 /* If arg0 is derived from the address of an object or function, we may
2567 be able to fold this expression using the object or function's
2568 alignment. */
2569 (simplify
2570 (bit_and (convert? @0) INTEGER_CST@1)
2571 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2572 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2573 (with
2574 {
2575 unsigned int align;
2576 unsigned HOST_WIDE_INT bitpos;
2577 get_pointer_alignment_1 (@0, &align, &bitpos);
2578 }
2579 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2580 { wide_int_to_tree (type, (wi::to_wide (@1)
2581 & (bitpos / BITS_PER_UNIT))); }))))
2582
2583 (match min_value
2584 INTEGER_CST
2585 (if (INTEGRAL_TYPE_P (type)
2586 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2587
2588 (match max_value
2589 INTEGER_CST
2590 (if (INTEGRAL_TYPE_P (type)
2591 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2592
2593 /* x > y && x != XXX_MIN --> x > y
2594 x > y && x == XXX_MIN --> false . */
2595 (for eqne (eq ne)
2596 (simplify
2597 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2598 (switch
2599 (if (eqne == EQ_EXPR)
2600 { constant_boolean_node (false, type); })
2601 (if (eqne == NE_EXPR)
2602 @2)
2603 )))
2604
2605 /* x < y && x != XXX_MAX --> x < y
2606 x < y && x == XXX_MAX --> false. */
2607 (for eqne (eq ne)
2608 (simplify
2609 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2610 (switch
2611 (if (eqne == EQ_EXPR)
2612 { constant_boolean_node (false, type); })
2613 (if (eqne == NE_EXPR)
2614 @2)
2615 )))
2616
2617 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2618 (simplify
2619 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2620 @2)
2621
2622 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2623 (simplify
2624 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2625 @2)
2626
2627 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2628 (simplify
2629 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2630 @2)
2631
2632 /* x <= y || x != XXX_MIN --> true. */
2633 (simplify
2634 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2635 { constant_boolean_node (true, type); })
2636
2637 /* x <= y || x == XXX_MIN --> x <= y. */
2638 (simplify
2639 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2640 @2)
2641
2642 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2643 (simplify
2644 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2645 @2)
2646
2647 /* x >= y || x != XXX_MAX --> true
2648 x >= y || x == XXX_MAX --> x >= y. */
2649 (for eqne (eq ne)
2650 (simplify
2651 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2652 (switch
2653 (if (eqne == EQ_EXPR)
2654 @2)
2655 (if (eqne == NE_EXPR)
2656 { constant_boolean_node (true, type); }))))
2657
2658 /* y == XXX_MIN || x < y --> x <= y - 1 */
2659 (simplify
2660 (bit_ior:c (eq:s @1 min_value) (lt:cs @0 @1))
2661 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2662 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2663 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2664
2665 /* y != XXX_MIN && x >= y --> x > y - 1 */
2666 (simplify
2667 (bit_and:c (ne:s @1 min_value) (ge:cs @0 @1))
2668 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2669 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2670 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2671
2672 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2673 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2674
2675 (for code1 (eq ne)
2676 (for code2 (eq ne lt gt le ge)
2677 (simplify
2678 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2679 (with
2680 {
2681 int cmp = tree_int_cst_compare (@1, @2);
2682 bool val;
2683 switch (code2)
2684 {
2685 case EQ_EXPR: val = (cmp == 0); break;
2686 case NE_EXPR: val = (cmp != 0); break;
2687 case LT_EXPR: val = (cmp < 0); break;
2688 case GT_EXPR: val = (cmp > 0); break;
2689 case LE_EXPR: val = (cmp <= 0); break;
2690 case GE_EXPR: val = (cmp >= 0); break;
2691 default: gcc_unreachable ();
2692 }
2693 }
2694 (switch
2695 (if (code1 == EQ_EXPR && val) @3)
2696 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2697 (if (code1 == NE_EXPR && !val) @4))))))
2698
2699 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2700
2701 (for code1 (lt le gt ge)
2702 (for code2 (lt le gt ge)
2703 (simplify
2704 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2705 (with
2706 {
2707 int cmp = tree_int_cst_compare (@1, @2);
2708 }
2709 (switch
2710 /* Choose the more restrictive of two < or <= comparisons. */
2711 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2712 && (code2 == LT_EXPR || code2 == LE_EXPR))
2713 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2714 @3
2715 @4))
2716 /* Likewise chose the more restrictive of two > or >= comparisons. */
2717 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2718 && (code2 == GT_EXPR || code2 == GE_EXPR))
2719 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2720 @3
2721 @4))
2722 /* Check for singleton ranges. */
2723 (if (cmp == 0
2724 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2725 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2726 (eq @0 @1))
2727 /* Check for disjoint ranges. */
2728 (if (cmp <= 0
2729 && (code1 == LT_EXPR || code1 == LE_EXPR)
2730 && (code2 == GT_EXPR || code2 == GE_EXPR))
2731 { constant_boolean_node (false, type); })
2732 (if (cmp >= 0
2733 && (code1 == GT_EXPR || code1 == GE_EXPR)
2734 && (code2 == LT_EXPR || code2 == LE_EXPR))
2735 { constant_boolean_node (false, type); })
2736 )))))
2737
2738 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2739 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2740
2741 (for code1 (eq ne)
2742 (for code2 (eq ne lt gt le ge)
2743 (simplify
2744 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2745 (with
2746 {
2747 int cmp = tree_int_cst_compare (@1, @2);
2748 bool val;
2749 switch (code2)
2750 {
2751 case EQ_EXPR: val = (cmp == 0); break;
2752 case NE_EXPR: val = (cmp != 0); break;
2753 case LT_EXPR: val = (cmp < 0); break;
2754 case GT_EXPR: val = (cmp > 0); break;
2755 case LE_EXPR: val = (cmp <= 0); break;
2756 case GE_EXPR: val = (cmp >= 0); break;
2757 default: gcc_unreachable ();
2758 }
2759 }
2760 (switch
2761 (if (code1 == EQ_EXPR && val) @4)
2762 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2763 (if (code1 == NE_EXPR && !val) @3))))))
2764
2765 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2766
2767 (for code1 (lt le gt ge)
2768 (for code2 (lt le gt ge)
2769 (simplify
2770 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2771 (with
2772 {
2773 int cmp = tree_int_cst_compare (@1, @2);
2774 }
2775 (switch
2776 /* Choose the more restrictive of two < or <= comparisons. */
2777 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2778 && (code2 == LT_EXPR || code2 == LE_EXPR))
2779 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2780 @4
2781 @3))
2782 /* Likewise chose the more restrictive of two > or >= comparisons. */
2783 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2784 && (code2 == GT_EXPR || code2 == GE_EXPR))
2785 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2786 @4
2787 @3))
2788 /* Check for singleton ranges. */
2789 (if (cmp == 0
2790 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2791 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2792 (ne @0 @2))
2793 /* Check for disjoint ranges. */
2794 (if (cmp >= 0
2795 && (code1 == LT_EXPR || code1 == LE_EXPR)
2796 && (code2 == GT_EXPR || code2 == GE_EXPR))
2797 { constant_boolean_node (true, type); })
2798 (if (cmp <= 0
2799 && (code1 == GT_EXPR || code1 == GE_EXPR)
2800 && (code2 == LT_EXPR || code2 == LE_EXPR))
2801 { constant_boolean_node (true, type); })
2802 )))))
2803
2804 /* We can't reassociate at all for saturating types. */
2805 (if (!TYPE_SATURATING (type))
2806
2807 /* Contract negates. */
2808 /* A + (-B) -> A - B */
2809 (simplify
2810 (plus:c @0 (convert? (negate @1)))
2811 /* Apply STRIP_NOPS on the negate. */
2812 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2813 && !TYPE_OVERFLOW_SANITIZED (type))
2814 (with
2815 {
2816 tree t1 = type;
2817 if (INTEGRAL_TYPE_P (type)
2818 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2819 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2820 }
2821 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2822 /* A - (-B) -> A + B */
2823 (simplify
2824 (minus @0 (convert? (negate @1)))
2825 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2826 && !TYPE_OVERFLOW_SANITIZED (type))
2827 (with
2828 {
2829 tree t1 = type;
2830 if (INTEGRAL_TYPE_P (type)
2831 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2832 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2833 }
2834 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2835 /* -(T)(-A) -> (T)A
2836 Sign-extension is ok except for INT_MIN, which thankfully cannot
2837 happen without overflow. */
2838 (simplify
2839 (negate (convert (negate @1)))
2840 (if (INTEGRAL_TYPE_P (type)
2841 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2842 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2843 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2844 && !TYPE_OVERFLOW_SANITIZED (type)
2845 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2846 (convert @1)))
2847 (simplify
2848 (negate (convert negate_expr_p@1))
2849 (if (SCALAR_FLOAT_TYPE_P (type)
2850 && ((DECIMAL_FLOAT_TYPE_P (type)
2851 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2852 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2853 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2854 (convert (negate @1))))
2855 (simplify
2856 (negate (nop_convert? (negate @1)))
2857 (if (!TYPE_OVERFLOW_SANITIZED (type)
2858 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2859 (view_convert @1)))
2860
2861 /* We can't reassociate floating-point unless -fassociative-math
2862 or fixed-point plus or minus because of saturation to +-Inf. */
2863 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2864 && !FIXED_POINT_TYPE_P (type))
2865
2866 /* Match patterns that allow contracting a plus-minus pair
2867 irrespective of overflow issues. */
2868 /* (A +- B) - A -> +- B */
2869 /* (A +- B) -+ B -> A */
2870 /* A - (A +- B) -> -+ B */
2871 /* A +- (B -+ A) -> +- B */
2872 (simplify
2873 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2874 (view_convert @1))
2875 (simplify
2876 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2877 (if (!ANY_INTEGRAL_TYPE_P (type)
2878 || TYPE_OVERFLOW_WRAPS (type))
2879 (negate (view_convert @1))
2880 (view_convert (negate @1))))
2881 (simplify
2882 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2883 (view_convert @0))
2884 (simplify
2885 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2886 (if (!ANY_INTEGRAL_TYPE_P (type)
2887 || TYPE_OVERFLOW_WRAPS (type))
2888 (negate (view_convert @1))
2889 (view_convert (negate @1))))
2890 (simplify
2891 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2892 (view_convert @1))
2893 /* (A +- B) + (C - A) -> C +- B */
2894 /* (A + B) - (A - C) -> B + C */
2895 /* More cases are handled with comparisons. */
2896 (simplify
2897 (plus:c (plus:c @0 @1) (minus @2 @0))
2898 (plus @2 @1))
2899 (simplify
2900 (plus:c (minus @0 @1) (minus @2 @0))
2901 (minus @2 @1))
2902 (simplify
2903 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2904 (if (TYPE_OVERFLOW_UNDEFINED (type)
2905 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2906 (pointer_diff @2 @1)))
2907 (simplify
2908 (minus (plus:c @0 @1) (minus @0 @2))
2909 (plus @1 @2))
2910
2911 /* (A +- CST1) +- CST2 -> A + CST3
2912 Use view_convert because it is safe for vectors and equivalent for
2913 scalars. */
2914 (for outer_op (plus minus)
2915 (for inner_op (plus minus)
2916 neg_inner_op (minus plus)
2917 (simplify
2918 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2919 CONSTANT_CLASS_P@2)
2920 /* If one of the types wraps, use that one. */
2921 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2922 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2923 forever if something doesn't simplify into a constant. */
2924 (if (!CONSTANT_CLASS_P (@0))
2925 (if (outer_op == PLUS_EXPR)
2926 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2927 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2928 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2929 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2930 (if (outer_op == PLUS_EXPR)
2931 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2932 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2933 /* If the constant operation overflows we cannot do the transform
2934 directly as we would introduce undefined overflow, for example
2935 with (a - 1) + INT_MIN. */
2936 (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type))
2937 (with { tree cst = const_binop (outer_op == inner_op
2938 ? PLUS_EXPR : MINUS_EXPR,
2939 type, @1, @2); }
2940 (if (cst && !TREE_OVERFLOW (cst))
2941 (inner_op @0 { cst; } )
2942 /* X+INT_MAX+1 is X-INT_MIN. */
2943 (if (INTEGRAL_TYPE_P (type) && cst
2944 && wi::to_wide (cst) == wi::min_value (type))
2945 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2946 /* Last resort, use some unsigned type. */
2947 (with { tree utype = unsigned_type_for (type); }
2948 (if (utype)
2949 (view_convert (inner_op
2950 (view_convert:utype @0)
2951 (view_convert:utype
2952 { drop_tree_overflow (cst); }))))))))))))))
2953
2954 /* (CST1 - A) +- CST2 -> CST3 - A */
2955 (for outer_op (plus minus)
2956 (simplify
2957 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2958 /* If one of the types wraps, use that one. */
2959 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2960 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2961 forever if something doesn't simplify into a constant. */
2962 (if (!CONSTANT_CLASS_P (@0))
2963 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2964 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2965 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2966 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2967 (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type))
2968 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2969 (if (cst && !TREE_OVERFLOW (cst))
2970 (minus { cst; } @0))))))))
2971
2972 /* CST1 - (CST2 - A) -> CST3 + A
2973 Use view_convert because it is safe for vectors and equivalent for
2974 scalars. */
2975 (simplify
2976 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2977 /* If one of the types wraps, use that one. */
2978 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2979 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2980 forever if something doesn't simplify into a constant. */
2981 (if (!CONSTANT_CLASS_P (@0))
2982 (plus (view_convert @0) (minus @1 (view_convert @2))))
2983 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2984 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2985 (view_convert (plus @0 (minus (view_convert @1) @2)))
2986 (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type))
2987 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2988 (if (cst && !TREE_OVERFLOW (cst))
2989 (plus { cst; } @0)))))))
2990
2991 /* ((T)(A)) + CST -> (T)(A + CST) */
2992 #if GIMPLE
2993 (simplify
2994 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2995 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2996 && TREE_CODE (type) == INTEGER_TYPE
2997 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2998 && int_fits_type_p (@1, TREE_TYPE (@0)))
2999 /* Perform binary operation inside the cast if the constant fits
3000 and (A + CST)'s range does not overflow. */
3001 (with
3002 {
3003 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
3004 max_ovf = wi::OVF_OVERFLOW;
3005 tree inner_type = TREE_TYPE (@0);
3006
3007 wide_int w1
3008 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
3009 TYPE_SIGN (inner_type));
3010
3011 value_range vr;
3012 if (get_global_range_query ()->range_of_expr (vr, @0)
3013 && !vr.varying_p () && !vr.undefined_p ())
3014 {
3015 wide_int wmin0 = vr.lower_bound ();
3016 wide_int wmax0 = vr.upper_bound ();
3017 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
3018 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
3019 }
3020 }
3021 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
3022 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
3023 )))
3024 #endif
3025
3026 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
3027 #if GIMPLE
3028 (for op (plus minus)
3029 (simplify
3030 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
3031 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
3032 && TREE_CODE (type) == INTEGER_TYPE
3033 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
3034 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3035 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3036 && TYPE_OVERFLOW_WRAPS (type))
3037 (plus (convert @0) (op @2 (convert @1))))))
3038 #endif
3039
3040 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
3041 to a simple value. */
3042 (for op (plus minus)
3043 (simplify
3044 (op (convert @0) (convert @1))
3045 (if (INTEGRAL_TYPE_P (type)
3046 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3047 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3048 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
3049 && !TYPE_OVERFLOW_TRAPS (type)
3050 && !TYPE_OVERFLOW_SANITIZED (type))
3051 (convert (op! @0 @1)))))
3052
3053 /* ~A + A -> -1 */
3054 (simplify
3055 (plus:c (convert? (bit_not @0)) (convert? @0))
3056 (if (!TYPE_OVERFLOW_TRAPS (type))
3057 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
3058
3059 /* ~A + 1 -> -A */
3060 (simplify
3061 (plus (convert? (bit_not @0)) integer_each_onep)
3062 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3063 (negate (convert @0))))
3064
3065 /* -A - 1 -> ~A */
3066 (simplify
3067 (minus (convert? (negate @0)) integer_each_onep)
3068 (if (!TYPE_OVERFLOW_TRAPS (type)
3069 && TREE_CODE (type) != COMPLEX_TYPE
3070 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
3071 (bit_not (convert @0))))
3072
3073 /* -1 - A -> ~A */
3074 (simplify
3075 (minus integer_all_onesp @0)
3076 (if (TREE_CODE (type) != COMPLEX_TYPE)
3077 (bit_not @0)))
3078
3079 /* (T)(P + A) - (T)P -> (T) A */
3080 (simplify
3081 (minus (convert (plus:c @@0 @1))
3082 (convert? @0))
3083 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3084 /* For integer types, if A has a smaller type
3085 than T the result depends on the possible
3086 overflow in P + A.
3087 E.g. T=size_t, A=(unsigned)429497295, P>0.
3088 However, if an overflow in P + A would cause
3089 undefined behavior, we can assume that there
3090 is no overflow. */
3091 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3092 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3093 (convert @1)))
3094 (simplify
3095 (minus (convert (pointer_plus @@0 @1))
3096 (convert @0))
3097 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3098 /* For pointer types, if the conversion of A to the
3099 final type requires a sign- or zero-extension,
3100 then we have to punt - it is not defined which
3101 one is correct. */
3102 || (POINTER_TYPE_P (TREE_TYPE (@0))
3103 && TREE_CODE (@1) == INTEGER_CST
3104 && tree_int_cst_sign_bit (@1) == 0))
3105 (convert @1)))
3106 (simplify
3107 (pointer_diff (pointer_plus @@0 @1) @0)
3108 /* The second argument of pointer_plus must be interpreted as signed, and
3109 thus sign-extended if necessary. */
3110 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3111 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3112 second arg is unsigned even when we need to consider it as signed,
3113 we don't want to diagnose overflow here. */
3114 (convert (view_convert:stype @1))))
3115
3116 /* (T)P - (T)(P + A) -> -(T) A */
3117 (simplify
3118 (minus (convert? @0)
3119 (convert (plus:c @@0 @1)))
3120 (if (INTEGRAL_TYPE_P (type)
3121 && TYPE_OVERFLOW_UNDEFINED (type)
3122 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3123 (with { tree utype = unsigned_type_for (type); }
3124 (convert (negate (convert:utype @1))))
3125 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3126 /* For integer types, if A has a smaller type
3127 than T the result depends on the possible
3128 overflow in P + A.
3129 E.g. T=size_t, A=(unsigned)429497295, P>0.
3130 However, if an overflow in P + A would cause
3131 undefined behavior, we can assume that there
3132 is no overflow. */
3133 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3134 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3135 (negate (convert @1)))))
3136 (simplify
3137 (minus (convert @0)
3138 (convert (pointer_plus @@0 @1)))
3139 (if (INTEGRAL_TYPE_P (type)
3140 && TYPE_OVERFLOW_UNDEFINED (type)
3141 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3142 (with { tree utype = unsigned_type_for (type); }
3143 (convert (negate (convert:utype @1))))
3144 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3145 /* For pointer types, if the conversion of A to the
3146 final type requires a sign- or zero-extension,
3147 then we have to punt - it is not defined which
3148 one is correct. */
3149 || (POINTER_TYPE_P (TREE_TYPE (@0))
3150 && TREE_CODE (@1) == INTEGER_CST
3151 && tree_int_cst_sign_bit (@1) == 0))
3152 (negate (convert @1)))))
3153 (simplify
3154 (pointer_diff @0 (pointer_plus @@0 @1))
3155 /* The second argument of pointer_plus must be interpreted as signed, and
3156 thus sign-extended if necessary. */
3157 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3158 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3159 second arg is unsigned even when we need to consider it as signed,
3160 we don't want to diagnose overflow here. */
3161 (negate (convert (view_convert:stype @1)))))
3162
3163 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
3164 (simplify
3165 (minus (convert (plus:c @@0 @1))
3166 (convert (plus:c @0 @2)))
3167 (if (INTEGRAL_TYPE_P (type)
3168 && TYPE_OVERFLOW_UNDEFINED (type)
3169 && element_precision (type) <= element_precision (TREE_TYPE (@1))
3170 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
3171 (with { tree utype = unsigned_type_for (type); }
3172 (convert (minus (convert:utype @1) (convert:utype @2))))
3173 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
3174 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
3175 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
3176 /* For integer types, if A has a smaller type
3177 than T the result depends on the possible
3178 overflow in P + A.
3179 E.g. T=size_t, A=(unsigned)429497295, P>0.
3180 However, if an overflow in P + A would cause
3181 undefined behavior, we can assume that there
3182 is no overflow. */
3183 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3184 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3185 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
3186 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
3187 (minus (convert @1) (convert @2)))))
3188 (simplify
3189 (minus (convert (pointer_plus @@0 @1))
3190 (convert (pointer_plus @0 @2)))
3191 (if (INTEGRAL_TYPE_P (type)
3192 && TYPE_OVERFLOW_UNDEFINED (type)
3193 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3194 (with { tree utype = unsigned_type_for (type); }
3195 (convert (minus (convert:utype @1) (convert:utype @2))))
3196 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3197 /* For pointer types, if the conversion of A to the
3198 final type requires a sign- or zero-extension,
3199 then we have to punt - it is not defined which
3200 one is correct. */
3201 || (POINTER_TYPE_P (TREE_TYPE (@0))
3202 && TREE_CODE (@1) == INTEGER_CST
3203 && tree_int_cst_sign_bit (@1) == 0
3204 && TREE_CODE (@2) == INTEGER_CST
3205 && tree_int_cst_sign_bit (@2) == 0))
3206 (minus (convert @1) (convert @2)))))
3207 (simplify
3208 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
3209 (pointer_diff @0 @1))
3210 (simplify
3211 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
3212 /* The second argument of pointer_plus must be interpreted as signed, and
3213 thus sign-extended if necessary. */
3214 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3215 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3216 second arg is unsigned even when we need to consider it as signed,
3217 we don't want to diagnose overflow here. */
3218 (minus (convert (view_convert:stype @1))
3219 (convert (view_convert:stype @2)))))))
3220
3221 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
3222 Modeled after fold_plusminus_mult_expr. */
3223 (if (!TYPE_SATURATING (type)
3224 && (!FLOAT_TYPE_P (type) || flag_associative_math))
3225 (for plusminus (plus minus)
3226 (simplify
3227 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
3228 (if (!ANY_INTEGRAL_TYPE_P (type)
3229 || TYPE_OVERFLOW_WRAPS (type)
3230 || (INTEGRAL_TYPE_P (type)
3231 && tree_expr_nonzero_p (@0)
3232 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
3233 (if (single_use (@3) || single_use (@4))
3234 /* If @1 +- @2 is constant require a hard single-use on either
3235 original operand (but not on both). */
3236 (mult (plusminus @1 @2) @0)
3237 (mult! (plusminus @1 @2) @0)
3238 )))
3239 /* We cannot generate constant 1 for fract. */
3240 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
3241 (simplify
3242 (plusminus @0 (mult:c@3 @0 @2))
3243 (if ((!ANY_INTEGRAL_TYPE_P (type)
3244 || TYPE_OVERFLOW_WRAPS (type)
3245 /* For @0 + @0*@2 this transformation would introduce UB
3246 (where there was none before) for @0 in [-1,0] and @2 max.
3247 For @0 - @0*@2 this transformation would introduce UB
3248 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
3249 || (INTEGRAL_TYPE_P (type)
3250 && ((tree_expr_nonzero_p (@0)
3251 && expr_not_equal_to (@0,
3252 wi::minus_one (TYPE_PRECISION (type))))
3253 || (plusminus == PLUS_EXPR
3254 ? expr_not_equal_to (@2,
3255 wi::max_value (TYPE_PRECISION (type), SIGNED))
3256 /* Let's ignore the @0 -1 and @2 min case. */
3257 : (expr_not_equal_to (@2,
3258 wi::min_value (TYPE_PRECISION (type), SIGNED))
3259 && expr_not_equal_to (@2,
3260 wi::min_value (TYPE_PRECISION (type), SIGNED)
3261 + 1))))))
3262 && single_use (@3))
3263 (mult (plusminus { build_one_cst (type); } @2) @0)))
3264 (simplify
3265 (plusminus (mult:c@3 @0 @2) @0)
3266 (if ((!ANY_INTEGRAL_TYPE_P (type)
3267 || TYPE_OVERFLOW_WRAPS (type)
3268 /* For @0*@2 + @0 this transformation would introduce UB
3269 (where there was none before) for @0 in [-1,0] and @2 max.
3270 For @0*@2 - @0 this transformation would introduce UB
3271 for @0 0 and @2 min. */
3272 || (INTEGRAL_TYPE_P (type)
3273 && ((tree_expr_nonzero_p (@0)
3274 && (plusminus == MINUS_EXPR
3275 || expr_not_equal_to (@0,
3276 wi::minus_one (TYPE_PRECISION (type)))))
3277 || expr_not_equal_to (@2,
3278 (plusminus == PLUS_EXPR
3279 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
3280 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
3281 && single_use (@3))
3282 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
3283
3284 #if GIMPLE
3285 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
3286 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
3287 (simplify
3288 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
3289 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3290 && tree_fits_uhwi_p (@1)
3291 && tree_to_uhwi (@1) < element_precision (type)
3292 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3293 || optab_handler (smul_optab,
3294 TYPE_MODE (type)) != CODE_FOR_nothing))
3295 (with { tree t = type;
3296 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3297 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
3298 element_precision (type));
3299 w += 1;
3300 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3301 : t, w);
3302 cst = build_uniform_cst (t, cst); }
3303 (convert (mult (convert:t @0) { cst; })))))
3304 (simplify
3305 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
3306 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3307 && tree_fits_uhwi_p (@1)
3308 && tree_to_uhwi (@1) < element_precision (type)
3309 && tree_fits_uhwi_p (@2)
3310 && tree_to_uhwi (@2) < element_precision (type)
3311 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3312 || optab_handler (smul_optab,
3313 TYPE_MODE (type)) != CODE_FOR_nothing))
3314 (with { tree t = type;
3315 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3316 unsigned int prec = element_precision (type);
3317 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
3318 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
3319 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3320 : t, w);
3321 cst = build_uniform_cst (t, cst); }
3322 (convert (mult (convert:t @0) { cst; })))))
3323 #endif
3324
3325 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
3326 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
3327 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
3328 (for op (bit_ior bit_xor)
3329 (simplify
3330 (op (mult:s@0 @1 INTEGER_CST@2)
3331 (mult:s@3 @1 INTEGER_CST@4))
3332 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3333 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3334 (mult @1
3335 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3336 (simplify
3337 (op:c (mult:s@0 @1 INTEGER_CST@2)
3338 (lshift:s@3 @1 INTEGER_CST@4))
3339 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3340 && tree_int_cst_sgn (@4) > 0
3341 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3342 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3343 wide_int c = wi::add (wi::to_wide (@2),
3344 wi::lshift (wone, wi::to_wide (@4))); }
3345 (mult @1 { wide_int_to_tree (type, c); }))))
3346 (simplify
3347 (op:c (mult:s@0 @1 INTEGER_CST@2)
3348 @1)
3349 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3350 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3351 (mult @1
3352 { wide_int_to_tree (type,
3353 wi::add (wi::to_wide (@2), 1)); })))
3354 (simplify
3355 (op (lshift:s@0 @1 INTEGER_CST@2)
3356 (lshift:s@3 @1 INTEGER_CST@4))
3357 (if (INTEGRAL_TYPE_P (type)
3358 && tree_int_cst_sgn (@2) > 0
3359 && tree_int_cst_sgn (@4) > 0
3360 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3361 (with { tree t = type;
3362 if (!TYPE_OVERFLOW_WRAPS (t))
3363 t = unsigned_type_for (t);
3364 wide_int wone = wi::one (TYPE_PRECISION (t));
3365 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3366 wi::lshift (wone, wi::to_wide (@4))); }
3367 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3368 (simplify
3369 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3370 @1)
3371 (if (INTEGRAL_TYPE_P (type)
3372 && tree_int_cst_sgn (@2) > 0
3373 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3374 (with { tree t = type;
3375 if (!TYPE_OVERFLOW_WRAPS (t))
3376 t = unsigned_type_for (t);
3377 wide_int wone = wi::one (TYPE_PRECISION (t));
3378 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3379 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3380
3381 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
3382
3383 (for minmax (min max)
3384 (simplify
3385 (minmax @0 @0)
3386 @0))
3387 /* For fmin() and fmax(), skip folding when both are sNaN. */
3388 (for minmax (FMIN_ALL FMAX_ALL)
3389 (simplify
3390 (minmax @0 @0)
3391 (if (!tree_expr_maybe_signaling_nan_p (@0))
3392 @0)))
3393 /* min(max(x,y),y) -> y. */
3394 (simplify
3395 (min:c (max:c @0 @1) @1)
3396 @1)
3397 /* max(min(x,y),y) -> y. */
3398 (simplify
3399 (max:c (min:c @0 @1) @1)
3400 @1)
3401 /* max(a,-a) -> abs(a). */
3402 (simplify
3403 (max:c @0 (negate @0))
3404 (if (TREE_CODE (type) != COMPLEX_TYPE
3405 && (! ANY_INTEGRAL_TYPE_P (type)
3406 || TYPE_OVERFLOW_UNDEFINED (type)))
3407 (abs @0)))
3408 /* min(a,-a) -> -abs(a). */
3409 (simplify
3410 (min:c @0 (negate @0))
3411 (if (TREE_CODE (type) != COMPLEX_TYPE
3412 && (! ANY_INTEGRAL_TYPE_P (type)
3413 || TYPE_OVERFLOW_UNDEFINED (type)))
3414 (negate (abs @0))))
3415 (simplify
3416 (min @0 @1)
3417 (switch
3418 (if (INTEGRAL_TYPE_P (type)
3419 && TYPE_MIN_VALUE (type)
3420 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3421 @1)
3422 (if (INTEGRAL_TYPE_P (type)
3423 && TYPE_MAX_VALUE (type)
3424 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3425 @0)))
3426 (simplify
3427 (max @0 @1)
3428 (switch
3429 (if (INTEGRAL_TYPE_P (type)
3430 && TYPE_MAX_VALUE (type)
3431 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3432 @1)
3433 (if (INTEGRAL_TYPE_P (type)
3434 && TYPE_MIN_VALUE (type)
3435 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3436 @0)))
3437
3438 /* max (a, a + CST) -> a + CST where CST is positive. */
3439 /* max (a, a + CST) -> a where CST is negative. */
3440 (simplify
3441 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3442 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3443 (if (tree_int_cst_sgn (@1) > 0)
3444 @2
3445 @0)))
3446
3447 /* min (a, a + CST) -> a where CST is positive. */
3448 /* min (a, a + CST) -> a + CST where CST is negative. */
3449 (simplify
3450 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3451 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3452 (if (tree_int_cst_sgn (@1) > 0)
3453 @0
3454 @2)))
3455
3456 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3457 the addresses are known to be less, equal or greater. */
3458 (for minmax (min max)
3459 cmp (lt gt)
3460 (simplify
3461 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3462 (with
3463 {
3464 poly_int64 off0, off1;
3465 tree base0, base1;
3466 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3467 off0, off1, GENERIC);
3468 }
3469 (if (equal == 1)
3470 (if (minmax == MIN_EXPR)
3471 (if (known_le (off0, off1))
3472 @2
3473 (if (known_gt (off0, off1))
3474 @3))
3475 (if (known_ge (off0, off1))
3476 @2
3477 (if (known_lt (off0, off1))
3478 @3)))))))
3479
3480 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3481 and the outer convert demotes the expression back to x's type. */
3482 (for minmax (min max)
3483 (simplify
3484 (convert (minmax@0 (convert @1) INTEGER_CST@2))
3485 (if (INTEGRAL_TYPE_P (type)
3486 && types_match (@1, type) && int_fits_type_p (@2, type)
3487 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3488 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3489 (minmax @1 (convert @2)))))
3490
3491 (for minmax (FMIN_ALL FMAX_ALL)
3492 /* If either argument is NaN and other one is not sNaN, return the other
3493 one. Avoid the transformation if we get (and honor) a signalling NaN. */
3494 (simplify
3495 (minmax:c @0 REAL_CST@1)
3496 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3497 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling)
3498 && !tree_expr_maybe_signaling_nan_p (@0))
3499 @0)))
3500 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3501 functions to return the numeric arg if the other one is NaN.
3502 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3503 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3504 worry about it either. */
3505 (if (flag_finite_math_only)
3506 (simplify
3507 (FMIN_ALL @0 @1)
3508 (min @0 @1))
3509 (simplify
3510 (FMAX_ALL @0 @1)
3511 (max @0 @1)))
3512 /* min (-A, -B) -> -max (A, B) */
3513 (for minmax (min max FMIN_ALL FMAX_ALL)
3514 maxmin (max min FMAX_ALL FMIN_ALL)
3515 (simplify
3516 (minmax (negate:s@2 @0) (negate:s@3 @1))
3517 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3518 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3519 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3520 (negate (maxmin @0 @1)))))
3521 /* MIN (~X, ~Y) -> ~MAX (X, Y)
3522 MAX (~X, ~Y) -> ~MIN (X, Y) */
3523 (for minmax (min max)
3524 maxmin (max min)
3525 (simplify
3526 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3527 (bit_not (maxmin @0 @1))))
3528
3529 /* MIN (X, Y) == X -> X <= Y */
3530 (for minmax (min min max max)
3531 cmp (eq ne eq ne )
3532 out (le gt ge lt )
3533 (simplify
3534 (cmp:c (minmax:c @0 @1) @0)
3535 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3536 (out @0 @1))))
3537 /* MIN (X, 5) == 0 -> X == 0
3538 MIN (X, 5) == 7 -> false */
3539 (for cmp (eq ne)
3540 (simplify
3541 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3542 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3543 TYPE_SIGN (TREE_TYPE (@0))))
3544 { constant_boolean_node (cmp == NE_EXPR, type); }
3545 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3546 TYPE_SIGN (TREE_TYPE (@0))))
3547 (cmp @0 @2)))))
3548 (for cmp (eq ne)
3549 (simplify
3550 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3551 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3552 TYPE_SIGN (TREE_TYPE (@0))))
3553 { constant_boolean_node (cmp == NE_EXPR, type); }
3554 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3555 TYPE_SIGN (TREE_TYPE (@0))))
3556 (cmp @0 @2)))))
3557 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3558 (for minmax (min min max max min min max max )
3559 cmp (lt le gt ge gt ge lt le )
3560 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3561 (simplify
3562 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3563 (comb (cmp @0 @2) (cmp @1 @2))))
3564
3565 /* X <= MAX(X, Y) -> true
3566 X > MAX(X, Y) -> false
3567 X >= MIN(X, Y) -> true
3568 X < MIN(X, Y) -> false */
3569 (for minmax (min min max max )
3570 cmp (ge lt le gt )
3571 (simplify
3572 (cmp @0 (minmax:c @0 @1))
3573 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3574
3575 /* Undo fancy ways of writing max/min or other ?: expressions, like
3576 a - ((a - b) & -(a < b)) and a - (a - b) * (a < b) into (a < b) ? b : a.
3577 People normally use ?: and that is what we actually try to optimize. */
3578 /* Transform A + (B-A)*cmp into cmp ? B : A. */
3579 (simplify
3580 (plus:c @0 (mult:c (minus @1 @0) zero_one_valued_p@2))
3581 (if (INTEGRAL_TYPE_P (type)
3582 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3583 (cond (convert:boolean_type_node @2) @1 @0)))
3584 /* Transform A - (A-B)*cmp into cmp ? B : A. */
3585 (simplify
3586 (minus @0 (mult:c (minus @0 @1) zero_one_valued_p@2))
3587 (if (INTEGRAL_TYPE_P (type)
3588 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3589 (cond (convert:boolean_type_node @2) @1 @0)))
3590 /* Transform A ^ (A^B)*cmp into cmp ? B : A. */
3591 (simplify
3592 (bit_xor:c @0 (mult:c (bit_xor:c @0 @1) zero_one_valued_p@2))
3593 (if (INTEGRAL_TYPE_P (type)
3594 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3595 (cond (convert:boolean_type_node @2) @1 @0)))
3596
3597 /* (x <= 0 ? -x : 0) -> max(-x, 0). */
3598 (simplify
3599 (cond (le @0 integer_zerop@1) (negate@2 @0) integer_zerop@1)
3600 (max @2 @1))
3601
3602 /* ((x & 0x1) == 0) ? y : z <op> y -> (-(typeof(y))(x & 0x1) & z) <op> y */
3603 (for op (bit_xor bit_ior)
3604 (simplify
3605 (cond (eq zero_one_valued_p@0
3606 integer_zerop)
3607 @1
3608 (op:c @2 @1))
3609 (if (INTEGRAL_TYPE_P (type)
3610 && TYPE_PRECISION (type) > 1
3611 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
3612 (op (bit_and (negate (convert:type @0)) @2) @1))))
3613
3614 /* ((x & 0x1) == 0) ? z <op> y : y -> (-(typeof(y))(x & 0x1) & z) <op> y */
3615 (for op (bit_xor bit_ior)
3616 (simplify
3617 (cond (ne zero_one_valued_p@0
3618 integer_zerop)
3619 (op:c @2 @1)
3620 @1)
3621 (if (INTEGRAL_TYPE_P (type)
3622 && TYPE_PRECISION (type) > 1
3623 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
3624 (op (bit_and (negate (convert:type @0)) @2) @1))))
3625
3626 /* Simplifications of shift and rotates. */
3627
3628 (for rotate (lrotate rrotate)
3629 (simplify
3630 (rotate integer_all_onesp@0 @1)
3631 @0))
3632
3633 /* Optimize -1 >> x for arithmetic right shifts. */
3634 (simplify
3635 (rshift integer_all_onesp@0 @1)
3636 (if (!TYPE_UNSIGNED (type))
3637 @0))
3638
3639 /* Optimize (x >> c) << c into x & (-1<<c). */
3640 (simplify
3641 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3642 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3643 /* It doesn't matter if the right shift is arithmetic or logical. */
3644 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3645
3646 (simplify
3647 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3648 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3649 /* Allow intermediate conversion to integral type with whatever sign, as
3650 long as the low TYPE_PRECISION (type)
3651 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3652 && INTEGRAL_TYPE_P (type)
3653 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3654 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3655 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3656 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3657 || wi::geu_p (wi::to_wide (@1),
3658 TYPE_PRECISION (type)
3659 - TYPE_PRECISION (TREE_TYPE (@2)))))
3660 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3661
3662 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3663 types. */
3664 (simplify
3665 (rshift (lshift @0 INTEGER_CST@1) @1)
3666 (if (TYPE_UNSIGNED (type)
3667 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3668 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3669
3670 /* Optimize x >> x into 0 */
3671 (simplify
3672 (rshift @0 @0)
3673 { build_zero_cst (type); })
3674
3675 (for shiftrotate (lrotate rrotate lshift rshift)
3676 (simplify
3677 (shiftrotate @0 integer_zerop)
3678 (non_lvalue @0))
3679 (simplify
3680 (shiftrotate integer_zerop@0 @1)
3681 @0)
3682 /* Prefer vector1 << scalar to vector1 << vector2
3683 if vector2 is uniform. */
3684 (for vec (VECTOR_CST CONSTRUCTOR)
3685 (simplify
3686 (shiftrotate @0 vec@1)
3687 (with { tree tem = uniform_vector_p (@1); }
3688 (if (tem)
3689 (shiftrotate @0 { tem; }))))))
3690
3691 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3692 Y is 0. Similarly for X >> Y. */
3693 #if GIMPLE
3694 (for shift (lshift rshift)
3695 (simplify
3696 (shift @0 SSA_NAME@1)
3697 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3698 (with {
3699 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3700 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3701 }
3702 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3703 @0)))))
3704 #endif
3705
3706 /* Rewrite an LROTATE_EXPR by a constant into an
3707 RROTATE_EXPR by a new constant. */
3708 (simplify
3709 (lrotate @0 INTEGER_CST@1)
3710 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3711 build_int_cst (TREE_TYPE (@1),
3712 element_precision (type)), @1); }))
3713
3714 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3715 (for op (lrotate rrotate rshift lshift)
3716 (simplify
3717 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3718 (with { unsigned int prec = element_precision (type); }
3719 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3720 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3721 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3722 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3723 (with { unsigned int low = (tree_to_uhwi (@1)
3724 + tree_to_uhwi (@2)); }
3725 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3726 being well defined. */
3727 (if (low >= prec)
3728 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3729 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3730 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3731 { build_zero_cst (type); }
3732 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3733 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3734
3735
3736 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3737 (simplify
3738 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3739 (if ((wi::to_wide (@1) & 1) != 0)
3740 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3741 { build_zero_cst (type); }))
3742
3743 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3744 either to false if D is smaller (unsigned comparison) than C, or to
3745 x == log2 (D) - log2 (C). Similarly for right shifts. */
3746 (for cmp (ne eq)
3747 icmp (eq ne)
3748 (simplify
3749 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3750 (with { int c1 = wi::clz (wi::to_wide (@1));
3751 int c2 = wi::clz (wi::to_wide (@2)); }
3752 (if (c1 < c2)
3753 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3754 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3755 (simplify
3756 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3757 (if (tree_int_cst_sgn (@1) > 0)
3758 (with { int c1 = wi::clz (wi::to_wide (@1));
3759 int c2 = wi::clz (wi::to_wide (@2)); }
3760 (if (c1 > c2)
3761 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3762 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3763
3764 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3765 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3766 if CST2 != 0. */
3767 (for cmp (ne eq)
3768 (simplify
3769 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3770 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3771 (if (cand < 0
3772 || (!integer_zerop (@2)
3773 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3774 { constant_boolean_node (cmp == NE_EXPR, type); }
3775 (if (!integer_zerop (@2)
3776 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3777 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3778
3779 /* Fold ((X << C1) & C2) cmp C3 into (X & (C2 >> C1)) cmp (C3 >> C1)
3780 ((X >> C1) & C2) cmp C3 into (X & (C2 << C1)) cmp (C3 << C1). */
3781 (for cmp (ne eq)
3782 (simplify
3783 (cmp (bit_and:s (lshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3784 (if (tree_fits_shwi_p (@1)
3785 && tree_to_shwi (@1) > 0
3786 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3787 (if (tree_to_shwi (@1) > wi::ctz (wi::to_wide (@3)))
3788 { constant_boolean_node (cmp == NE_EXPR, type); }
3789 (with { wide_int c1 = wi::to_wide (@1);
3790 wide_int c2 = wi::lrshift (wi::to_wide (@2), c1);
3791 wide_int c3 = wi::lrshift (wi::to_wide (@3), c1); }
3792 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), c2); })
3793 { wide_int_to_tree (TREE_TYPE (@0), c3); })))))
3794 (simplify
3795 (cmp (bit_and:s (rshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
3796 (if (tree_fits_shwi_p (@1)
3797 && tree_to_shwi (@1) > 0
3798 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
3799 (with { tree t0 = TREE_TYPE (@0);
3800 unsigned int prec = TYPE_PRECISION (t0);
3801 wide_int c1 = wi::to_wide (@1);
3802 wide_int c2 = wi::to_wide (@2);
3803 wide_int c3 = wi::to_wide (@3);
3804 wide_int sb = wi::set_bit_in_zero (prec - 1, prec); }
3805 (if ((c2 & c3) != c3)
3806 { constant_boolean_node (cmp == NE_EXPR, type); }
3807 (if (TYPE_UNSIGNED (t0))
3808 (if ((c3 & wi::arshift (sb, c1 - 1)) != 0)
3809 { constant_boolean_node (cmp == NE_EXPR, type); }
3810 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3811 { wide_int_to_tree (t0, c3 << c1); }))
3812 (with { wide_int smask = wi::arshift (sb, c1); }
3813 (switch
3814 (if ((c2 & smask) == 0)
3815 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
3816 { wide_int_to_tree (t0, c3 << c1); }))
3817 (if ((c3 & smask) == 0)
3818 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3819 { wide_int_to_tree (t0, c3 << c1); }))
3820 (if ((c2 & smask) != (c3 & smask))
3821 { constant_boolean_node (cmp == NE_EXPR, type); })
3822 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
3823 { wide_int_to_tree (t0, (c3 << c1) | sb); })))))))))
3824
3825 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3826 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3827 if the new mask might be further optimized. */
3828 (for shift (lshift rshift)
3829 (simplify
3830 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3831 INTEGER_CST@2)
3832 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3833 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3834 && tree_fits_uhwi_p (@1)
3835 && tree_to_uhwi (@1) > 0
3836 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3837 (with
3838 {
3839 unsigned int shiftc = tree_to_uhwi (@1);
3840 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3841 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3842 tree shift_type = TREE_TYPE (@3);
3843 unsigned int prec;
3844
3845 if (shift == LSHIFT_EXPR)
3846 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3847 else if (shift == RSHIFT_EXPR
3848 && type_has_mode_precision_p (shift_type))
3849 {
3850 prec = TYPE_PRECISION (TREE_TYPE (@3));
3851 tree arg00 = @0;
3852 /* See if more bits can be proven as zero because of
3853 zero extension. */
3854 if (@3 != @0
3855 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3856 {
3857 tree inner_type = TREE_TYPE (@0);
3858 if (type_has_mode_precision_p (inner_type)
3859 && TYPE_PRECISION (inner_type) < prec)
3860 {
3861 prec = TYPE_PRECISION (inner_type);
3862 /* See if we can shorten the right shift. */
3863 if (shiftc < prec)
3864 shift_type = inner_type;
3865 /* Otherwise X >> C1 is all zeros, so we'll optimize
3866 it into (X, 0) later on by making sure zerobits
3867 is all ones. */
3868 }
3869 }
3870 zerobits = HOST_WIDE_INT_M1U;
3871 if (shiftc < prec)
3872 {
3873 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3874 zerobits <<= prec - shiftc;
3875 }
3876 /* For arithmetic shift if sign bit could be set, zerobits
3877 can contain actually sign bits, so no transformation is
3878 possible, unless MASK masks them all away. In that
3879 case the shift needs to be converted into logical shift. */
3880 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3881 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3882 {
3883 if ((mask & zerobits) == 0)
3884 shift_type = unsigned_type_for (TREE_TYPE (@3));
3885 else
3886 zerobits = 0;
3887 }
3888 }
3889 }
3890 /* ((X << 16) & 0xff00) is (X, 0). */
3891 (if ((mask & zerobits) == mask)
3892 { build_int_cst (type, 0); }
3893 (with { newmask = mask | zerobits; }
3894 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3895 (with
3896 {
3897 /* Only do the transformation if NEWMASK is some integer
3898 mode's mask. */
3899 for (prec = BITS_PER_UNIT;
3900 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3901 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3902 break;
3903 }
3904 (if (prec < HOST_BITS_PER_WIDE_INT
3905 || newmask == HOST_WIDE_INT_M1U)
3906 (with
3907 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3908 (if (!tree_int_cst_equal (newmaskt, @2))
3909 (if (shift_type != TREE_TYPE (@3))
3910 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3911 (bit_and @4 { newmaskt; })))))))))))))
3912
3913 /* ((1 << n) & M) != 0 -> n == log2 (M) */
3914 (for cmp (ne eq)
3915 icmp (eq ne)
3916 (simplify
3917 (cmp
3918 (bit_and
3919 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3920 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3921 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3922 wi::exact_log2 (wi::to_wide (@1))); }))))
3923
3924 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3925 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3926 (for shift (lshift rshift)
3927 (for bit_op (bit_and bit_xor bit_ior)
3928 (simplify
3929 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3930 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3931 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3932 (if (mask)
3933 (bit_op (shift (convert @0) @1) { mask; })))))))
3934
3935 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3936 (simplify
3937 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3938 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3939 && (element_precision (TREE_TYPE (@0))
3940 <= element_precision (TREE_TYPE (@1))
3941 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3942 (with
3943 { tree shift_type = TREE_TYPE (@0); }
3944 (convert (rshift (convert:shift_type @1) @2)))))
3945
3946 /* ~(~X >>r Y) -> X >>r Y
3947 ~(~X <<r Y) -> X <<r Y */
3948 (for rotate (lrotate rrotate)
3949 (simplify
3950 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3951 (if ((element_precision (TREE_TYPE (@0))
3952 <= element_precision (TREE_TYPE (@1))
3953 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3954 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3955 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3956 (with
3957 { tree rotate_type = TREE_TYPE (@0); }
3958 (convert (rotate (convert:rotate_type @1) @2))))))
3959
3960 (for cmp (eq ne)
3961 (for rotate (lrotate rrotate)
3962 invrot (rrotate lrotate)
3963 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3964 (simplify
3965 (cmp (rotate @1 @0) (rotate @2 @0))
3966 (cmp @1 @2))
3967 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3968 (simplify
3969 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3970 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3971 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3972 (simplify
3973 (cmp (rotate @0 @1) INTEGER_CST@2)
3974 (if (integer_zerop (@2) || integer_all_onesp (@2))
3975 (cmp @0 @2)))))
3976
3977 /* Narrow a lshift by constant. */
3978 (simplify
3979 (convert (lshift:s@0 @1 INTEGER_CST@2))
3980 (if (INTEGRAL_TYPE_P (type)
3981 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3982 && !integer_zerop (@2)
3983 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))
3984 (if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3985 || wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (type)))
3986 (lshift (convert @1) @2)
3987 (if (wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0))))
3988 { build_zero_cst (type); }))))
3989
3990 /* Simplifications of conversions. */
3991
3992 /* Basic strip-useless-type-conversions / strip_nops. */
3993 (for cvt (convert view_convert float fix_trunc)
3994 (simplify
3995 (cvt @0)
3996 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3997 || (GENERIC && type == TREE_TYPE (@0)))
3998 @0)))
3999
4000 /* Contract view-conversions. */
4001 (simplify
4002 (view_convert (view_convert @0))
4003 (view_convert @0))
4004
4005 /* For integral conversions with the same precision or pointer
4006 conversions use a NOP_EXPR instead. */
4007 (simplify
4008 (view_convert @0)
4009 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
4010 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4011 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
4012 (convert @0)))
4013
4014 /* Strip inner integral conversions that do not change precision or size, or
4015 zero-extend while keeping the same size (for bool-to-char). */
4016 (simplify
4017 (view_convert (convert@0 @1))
4018 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4019 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
4020 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
4021 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
4022 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
4023 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
4024 (view_convert @1)))
4025
4026 /* Simplify a view-converted empty or single-element constructor. */
4027 (simplify
4028 (view_convert CONSTRUCTOR@0)
4029 (with
4030 { tree ctor = (TREE_CODE (@0) == SSA_NAME
4031 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); }
4032 (switch
4033 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4034 { build_zero_cst (type); })
4035 (if (CONSTRUCTOR_NELTS (ctor) == 1
4036 && VECTOR_TYPE_P (TREE_TYPE (ctor))
4037 && operand_equal_p (TYPE_SIZE (type),
4038 TYPE_SIZE (TREE_TYPE
4039 (CONSTRUCTOR_ELT (ctor, 0)->value))))
4040 (view_convert { CONSTRUCTOR_ELT (ctor, 0)->value; })))))
4041
4042 /* Re-association barriers around constants and other re-association
4043 barriers can be removed. */
4044 (simplify
4045 (paren CONSTANT_CLASS_P@0)
4046 @0)
4047 (simplify
4048 (paren (paren@1 @0))
4049 @1)
4050
4051 /* Handle cases of two conversions in a row. */
4052 (for ocvt (convert float fix_trunc)
4053 (for icvt (convert float)
4054 (simplify
4055 (ocvt (icvt@1 @0))
4056 (with
4057 {
4058 tree inside_type = TREE_TYPE (@0);
4059 tree inter_type = TREE_TYPE (@1);
4060 int inside_int = INTEGRAL_TYPE_P (inside_type);
4061 int inside_ptr = POINTER_TYPE_P (inside_type);
4062 int inside_float = FLOAT_TYPE_P (inside_type);
4063 int inside_vec = VECTOR_TYPE_P (inside_type);
4064 unsigned int inside_prec = TYPE_PRECISION (inside_type);
4065 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
4066 int inter_int = INTEGRAL_TYPE_P (inter_type);
4067 int inter_ptr = POINTER_TYPE_P (inter_type);
4068 int inter_float = FLOAT_TYPE_P (inter_type);
4069 int inter_vec = VECTOR_TYPE_P (inter_type);
4070 unsigned int inter_prec = TYPE_PRECISION (inter_type);
4071 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
4072 int final_int = INTEGRAL_TYPE_P (type);
4073 int final_ptr = POINTER_TYPE_P (type);
4074 int final_float = FLOAT_TYPE_P (type);
4075 int final_vec = VECTOR_TYPE_P (type);
4076 unsigned int final_prec = TYPE_PRECISION (type);
4077 int final_unsignedp = TYPE_UNSIGNED (type);
4078 }
4079 (switch
4080 /* In addition to the cases of two conversions in a row
4081 handled below, if we are converting something to its own
4082 type via an object of identical or wider precision, neither
4083 conversion is needed. */
4084 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
4085 || (GENERIC
4086 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
4087 && (((inter_int || inter_ptr) && final_int)
4088 || (inter_float && final_float))
4089 && inter_prec >= final_prec)
4090 (ocvt @0))
4091
4092 /* Likewise, if the intermediate and initial types are either both
4093 float or both integer, we don't need the middle conversion if the
4094 former is wider than the latter and doesn't change the signedness
4095 (for integers). Avoid this if the final type is a pointer since
4096 then we sometimes need the middle conversion. */
4097 (if (((inter_int && inside_int) || (inter_float && inside_float))
4098 && (final_int || final_float)
4099 && inter_prec >= inside_prec
4100 && (inter_float || inter_unsignedp == inside_unsignedp))
4101 (ocvt @0))
4102
4103 /* If we have a sign-extension of a zero-extended value, we can
4104 replace that by a single zero-extension. Likewise if the
4105 final conversion does not change precision we can drop the
4106 intermediate conversion. */
4107 (if (inside_int && inter_int && final_int
4108 && ((inside_prec < inter_prec && inter_prec < final_prec
4109 && inside_unsignedp && !inter_unsignedp)
4110 || final_prec == inter_prec))
4111 (ocvt @0))
4112
4113 /* Two conversions in a row are not needed unless:
4114 - some conversion is floating-point (overstrict for now), or
4115 - some conversion is a vector (overstrict for now), or
4116 - the intermediate type is narrower than both initial and
4117 final, or
4118 - the intermediate type and innermost type differ in signedness,
4119 and the outermost type is wider than the intermediate, or
4120 - the initial type is a pointer type and the precisions of the
4121 intermediate and final types differ, or
4122 - the final type is a pointer type and the precisions of the
4123 initial and intermediate types differ. */
4124 (if (! inside_float && ! inter_float && ! final_float
4125 && ! inside_vec && ! inter_vec && ! final_vec
4126 && (inter_prec >= inside_prec || inter_prec >= final_prec)
4127 && ! (inside_int && inter_int
4128 && inter_unsignedp != inside_unsignedp
4129 && inter_prec < final_prec)
4130 && ((inter_unsignedp && inter_prec > inside_prec)
4131 == (final_unsignedp && final_prec > inter_prec))
4132 && ! (inside_ptr && inter_prec != final_prec)
4133 && ! (final_ptr && inside_prec != inter_prec))
4134 (ocvt @0))
4135
4136 /* A truncation to an unsigned type (a zero-extension) should be
4137 canonicalized as bitwise and of a mask. */
4138 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
4139 && final_int && inter_int && inside_int
4140 && final_prec == inside_prec
4141 && final_prec > inter_prec
4142 && inter_unsignedp)
4143 (convert (bit_and @0 { wide_int_to_tree
4144 (inside_type,
4145 wi::mask (inter_prec, false,
4146 TYPE_PRECISION (inside_type))); })))
4147
4148 /* If we are converting an integer to a floating-point that can
4149 represent it exactly and back to an integer, we can skip the
4150 floating-point conversion. */
4151 (if (GIMPLE /* PR66211 */
4152 && inside_int && inter_float && final_int &&
4153 (unsigned) significand_size (TYPE_MODE (inter_type))
4154 >= inside_prec - !inside_unsignedp)
4155 (convert @0)))))))
4156
4157 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
4158 float_type. Only do the transformation if we do not need to preserve
4159 trapping behaviour, so require !flag_trapping_math. */
4160 #if GIMPLE
4161 (simplify
4162 (float (fix_trunc @0))
4163 (if (!flag_trapping_math
4164 && types_match (type, TREE_TYPE (@0))
4165 && direct_internal_fn_supported_p (IFN_TRUNC, type,
4166 OPTIMIZE_FOR_BOTH))
4167 (IFN_TRUNC @0)))
4168 #endif
4169
4170 /* If we have a narrowing conversion to an integral type that is fed by a
4171 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
4172 masks off bits outside the final type (and nothing else). */
4173 (simplify
4174 (convert (bit_and @0 INTEGER_CST@1))
4175 (if (INTEGRAL_TYPE_P (type)
4176 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4177 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
4178 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
4179 TYPE_PRECISION (type)), 0))
4180 (convert @0)))
4181
4182
4183 /* (X /[ex] A) * A -> X. */
4184 (simplify
4185 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
4186 (convert @0))
4187
4188 /* Simplify (A / B) * B + (A % B) -> A. */
4189 (for div (trunc_div ceil_div floor_div round_div)
4190 mod (trunc_mod ceil_mod floor_mod round_mod)
4191 (simplify
4192 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
4193 @0))
4194
4195 /* x / y * y == x -> x % y == 0. */
4196 (simplify
4197 (eq:c (mult:c (trunc_div:s @0 @1) @1) @0)
4198 (if (TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE)
4199 (eq (trunc_mod @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4200
4201 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
4202 (for op (plus minus)
4203 (simplify
4204 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
4205 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
4206 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
4207 (with
4208 {
4209 wi::overflow_type overflow;
4210 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4211 TYPE_SIGN (type), &overflow);
4212 }
4213 (if (types_match (type, TREE_TYPE (@2))
4214 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
4215 (op @0 { wide_int_to_tree (type, mul); })
4216 (with { tree utype = unsigned_type_for (type); }
4217 (convert (op (convert:utype @0)
4218 (mult (convert:utype @1) (convert:utype @2))))))))))
4219
4220 /* Canonicalization of binary operations. */
4221
4222 /* Convert X + -C into X - C. */
4223 (simplify
4224 (plus @0 REAL_CST@1)
4225 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4226 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
4227 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
4228 (minus @0 { tem; })))))
4229
4230 /* Convert x+x into x*2. */
4231 (simplify
4232 (plus @0 @0)
4233 (if (SCALAR_FLOAT_TYPE_P (type))
4234 (mult @0 { build_real (type, dconst2); })
4235 (if (INTEGRAL_TYPE_P (type))
4236 (mult @0 { build_int_cst (type, 2); }))))
4237
4238 /* 0 - X -> -X. */
4239 (simplify
4240 (minus integer_zerop @1)
4241 (negate @1))
4242 (simplify
4243 (pointer_diff integer_zerop @1)
4244 (negate (convert @1)))
4245
4246 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
4247 ARG0 is zero and X + ARG0 reduces to X, since that would mean
4248 (-ARG1 + ARG0) reduces to -ARG1. */
4249 (simplify
4250 (minus real_zerop@0 @1)
4251 (if (fold_real_zero_addition_p (type, @1, @0, 0))
4252 (negate @1)))
4253
4254 /* Transform x * -1 into -x. */
4255 (simplify
4256 (mult @0 integer_minus_onep)
4257 (negate @0))
4258
4259 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
4260 signed overflow for CST != 0 && CST != -1. */
4261 (simplify
4262 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
4263 (if (TREE_CODE (@2) != INTEGER_CST
4264 && single_use (@3)
4265 && !integer_zerop (@1) && !integer_minus_onep (@1))
4266 (mult (mult @0 @2) @1)))
4267
4268 /* True if we can easily extract the real and imaginary parts of a complex
4269 number. */
4270 (match compositional_complex
4271 (convert? (complex @0 @1)))
4272
4273 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
4274 (simplify
4275 (complex (realpart @0) (imagpart @0))
4276 @0)
4277 (simplify
4278 (realpart (complex @0 @1))
4279 @0)
4280 (simplify
4281 (imagpart (complex @0 @1))
4282 @1)
4283
4284 /* Sometimes we only care about half of a complex expression. */
4285 (simplify
4286 (realpart (convert?:s (conj:s @0)))
4287 (convert (realpart @0)))
4288 (simplify
4289 (imagpart (convert?:s (conj:s @0)))
4290 (convert (negate (imagpart @0))))
4291 (for part (realpart imagpart)
4292 (for op (plus minus)
4293 (simplify
4294 (part (convert?:s@2 (op:s @0 @1)))
4295 (convert (op (part @0) (part @1))))))
4296 (simplify
4297 (realpart (convert?:s (CEXPI:s @0)))
4298 (convert (COS @0)))
4299 (simplify
4300 (imagpart (convert?:s (CEXPI:s @0)))
4301 (convert (SIN @0)))
4302
4303 /* conj(conj(x)) -> x */
4304 (simplify
4305 (conj (convert? (conj @0)))
4306 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
4307 (convert @0)))
4308
4309 /* conj({x,y}) -> {x,-y} */
4310 (simplify
4311 (conj (convert?:s (complex:s @0 @1)))
4312 (with { tree itype = TREE_TYPE (type); }
4313 (complex (convert:itype @0) (negate (convert:itype @1)))))
4314
4315 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
4316 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
4317 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
4318 (simplify
4319 (bswap (bswap @0))
4320 @0)
4321 (simplify
4322 (bswap (bit_not (bswap @0)))
4323 (bit_not @0))
4324 (for bitop (bit_xor bit_ior bit_and)
4325 (simplify
4326 (bswap (bitop:c (bswap @0) @1))
4327 (bitop @0 (bswap @1))))
4328 (for cmp (eq ne)
4329 (simplify
4330 (cmp (bswap@2 @0) (bswap @1))
4331 (with { tree ctype = TREE_TYPE (@2); }
4332 (cmp (convert:ctype @0) (convert:ctype @1))))
4333 (simplify
4334 (cmp (bswap @0) INTEGER_CST@1)
4335 (with { tree ctype = TREE_TYPE (@1); }
4336 (cmp (convert:ctype @0) (bswap! @1)))))
4337 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
4338 (simplify
4339 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
4340 INTEGER_CST@3)
4341 (if (BITS_PER_UNIT == 8
4342 && tree_fits_uhwi_p (@2)
4343 && tree_fits_uhwi_p (@3))
4344 (with
4345 {
4346 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
4347 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
4348 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
4349 unsigned HOST_WIDE_INT lo = bits & 7;
4350 unsigned HOST_WIDE_INT hi = bits - lo;
4351 }
4352 (if (bits < prec
4353 && mask < (256u>>lo)
4354 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
4355 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
4356 (if (ns == 0)
4357 (bit_and (convert @1) @3)
4358 (with
4359 {
4360 tree utype = unsigned_type_for (TREE_TYPE (@1));
4361 tree nst = build_int_cst (integer_type_node, ns);
4362 }
4363 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
4364 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
4365 (simplify
4366 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
4367 (if (BITS_PER_UNIT == 8
4368 && CHAR_TYPE_SIZE == 8
4369 && tree_fits_uhwi_p (@1))
4370 (with
4371 {
4372 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4373 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
4374 /* If the bswap was extended before the original shift, this
4375 byte (shift) has the sign of the extension, not the sign of
4376 the original shift. */
4377 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
4378 }
4379 /* Special case: logical right shift of sign-extended bswap.
4380 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
4381 (if (TYPE_PRECISION (type) > prec
4382 && !TYPE_UNSIGNED (TREE_TYPE (@2))
4383 && TYPE_UNSIGNED (type)
4384 && bits < prec && bits + 8 >= prec)
4385 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
4386 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
4387 (if (bits + 8 == prec)
4388 (if (TYPE_UNSIGNED (st))
4389 (convert (convert:unsigned_char_type_node @0))
4390 (convert (convert:signed_char_type_node @0)))
4391 (if (bits < prec && bits + 8 > prec)
4392 (with
4393 {
4394 tree nst = build_int_cst (integer_type_node, bits & 7);
4395 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
4396 : signed_char_type_node;
4397 }
4398 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
4399 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
4400 (simplify
4401 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
4402 (if (BITS_PER_UNIT == 8
4403 && tree_fits_uhwi_p (@1)
4404 && tree_to_uhwi (@1) < 256)
4405 (with
4406 {
4407 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4408 tree utype = unsigned_type_for (TREE_TYPE (@0));
4409 tree nst = build_int_cst (integer_type_node, prec - 8);
4410 }
4411 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
4412
4413
4414 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
4415
4416 /* Simplify constant conditions.
4417 Only optimize constant conditions when the selected branch
4418 has the same type as the COND_EXPR. This avoids optimizing
4419 away "c ? x : throw", where the throw has a void type.
4420 Note that we cannot throw away the fold-const.cc variant nor
4421 this one as we depend on doing this transform before possibly
4422 A ? B : B -> B triggers and the fold-const.cc one can optimize
4423 0 ? A : B to B even if A has side-effects. Something
4424 genmatch cannot handle. */
4425 (simplify
4426 (cond INTEGER_CST@0 @1 @2)
4427 (if (integer_zerop (@0))
4428 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4429 @2)
4430 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4431 @1)))
4432 (simplify
4433 (vec_cond VECTOR_CST@0 @1 @2)
4434 (if (integer_all_onesp (@0))
4435 @1
4436 (if (integer_zerop (@0))
4437 @2)))
4438
4439 /* Sink unary operations to branches, but only if we do fold both. */
4440 (for op (negate bit_not abs absu)
4441 (simplify
4442 (op (vec_cond:s @0 @1 @2))
4443 (vec_cond @0 (op! @1) (op! @2))))
4444
4445 /* Sink binary operation to branches, but only if we can fold it. */
4446 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
4447 lshift rshift rdiv trunc_div ceil_div floor_div round_div
4448 trunc_mod ceil_mod floor_mod round_mod min max)
4449 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
4450 (simplify
4451 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4452 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4453
4454 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
4455 (simplify
4456 (op (vec_cond:s @0 @1 @2) @3)
4457 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4458 (simplify
4459 (op @3 (vec_cond:s @0 @1 @2))
4460 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
4461
4462 #if GIMPLE
4463 (match (nop_atomic_bit_test_and_p @0 @1 @4)
4464 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
4465 INTEGER_CST@1)
4466 (with {
4467 int ibit = tree_log2 (@0);
4468 int ibit2 = tree_log2 (@1);
4469 }
4470 (if (ibit == ibit2
4471 && ibit >= 0
4472 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4473
4474 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4475 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
4476 INTEGER_CST@1)
4477 (with {
4478 int ibit = tree_log2 (@0);
4479 int ibit2 = tree_log2 (@1);
4480 }
4481 (if (ibit == ibit2
4482 && ibit >= 0
4483 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4484
4485 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4486 (bit_and:c
4487 (convert1?@4
4488 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
4489 (convert2? @0))
4490 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4491
4492 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4493 (bit_and:c
4494 (convert1?@4
4495 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
4496 (convert2? @0))
4497 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4498
4499 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4500 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
4501 INTEGER_CST@1)
4502 (with {
4503 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4504 TYPE_PRECISION(type)));
4505 int ibit2 = tree_log2 (@1);
4506 }
4507 (if (ibit == ibit2
4508 && ibit >= 0
4509 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4510
4511 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4512 (bit_and@4
4513 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
4514 INTEGER_CST@1)
4515 (with {
4516 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4517 TYPE_PRECISION(type)));
4518 int ibit2 = tree_log2 (@1);
4519 }
4520 (if (ibit == ibit2
4521 && ibit >= 0
4522 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4523
4524 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4525 (bit_and:c
4526 (convert1?@3
4527 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4528 (convert2? @0))
4529 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4530
4531 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4532 (bit_and:c
4533 (convert1?@3
4534 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4535 (convert2? @0))
4536 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4537
4538 #endif
4539
4540 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
4541 Currently disabled after pass lvec because ARM understands
4542 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
4543 (simplify
4544 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
4545 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4546 (vec_cond (bit_and @0 @3) @1 @2)))
4547 (simplify
4548 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
4549 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4550 (vec_cond (bit_ior @0 @3) @1 @2)))
4551 (simplify
4552 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
4553 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4554 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4555 (simplify
4556 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
4557 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4558 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4559
4560 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4561 (simplify
4562 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4563 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4564 (vec_cond (bit_and @0 @1) @2 @3)))
4565 (simplify
4566 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4567 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4568 (vec_cond (bit_ior @0 @1) @2 @3)))
4569 (simplify
4570 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4571 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4572 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4573 (simplify
4574 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4575 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4576 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4577
4578 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4579 types are compatible. */
4580 (simplify
4581 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4582 (if (VECTOR_BOOLEAN_TYPE_P (type)
4583 && types_match (type, TREE_TYPE (@0)))
4584 (if (integer_zerop (@1) && integer_all_onesp (@2))
4585 (bit_not @0)
4586 (if (integer_all_onesp (@1) && integer_zerop (@2))
4587 @0))))
4588
4589 /* A few simplifications of "a ? CST1 : CST2". */
4590 /* NOTE: Only do this on gimple as the if-chain-to-switch
4591 optimization depends on the gimple to have if statements in it. */
4592 #if GIMPLE
4593 (simplify
4594 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4595 (switch
4596 (if (integer_zerop (@2))
4597 (switch
4598 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4599 (if (integer_onep (@1))
4600 (convert (convert:boolean_type_node @0)))
4601 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4602 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4603 (with {
4604 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4605 }
4606 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4607 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4608 here as the powerof2cst case above will handle that case correctly. */
4609 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4610 (negate (convert (convert:boolean_type_node @0))))))
4611 (if (integer_zerop (@1))
4612 (with {
4613 tree booltrue = constant_boolean_node (true, boolean_type_node);
4614 }
4615 (switch
4616 /* a ? 0 : 1 -> !a. */
4617 (if (integer_onep (@2))
4618 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4619 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4620 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
4621 (with {
4622 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4623 }
4624 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4625 { shift; })))
4626 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4627 here as the powerof2cst case above will handle that case correctly. */
4628 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4629 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4630 )
4631 )
4632 )
4633 )
4634 )
4635 #endif
4636
4637 (simplify
4638 (convert (cond@0 @1 INTEGER_CST@2 INTEGER_CST@3))
4639 (if (INTEGRAL_TYPE_P (type)
4640 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4641 (cond @1 (convert @2) (convert @3))))
4642
4643 /* Simplification moved from fold_cond_expr_with_comparison. It may also
4644 be extended. */
4645 /* This pattern implements two kinds simplification:
4646
4647 Case 1)
4648 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4649 1) Conversions are type widening from smaller type.
4650 2) Const c1 equals to c2 after canonicalizing comparison.
4651 3) Comparison has tree code LT, LE, GT or GE.
4652 This specific pattern is needed when (cmp (convert x) c) may not
4653 be simplified by comparison patterns because of multiple uses of
4654 x. It also makes sense here because simplifying across multiple
4655 referred var is always benefitial for complicated cases.
4656
4657 Case 2)
4658 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4659 (for cmp (lt le gt ge eq)
4660 (simplify
4661 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4662 (with
4663 {
4664 tree from_type = TREE_TYPE (@1);
4665 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4666 enum tree_code code = ERROR_MARK;
4667
4668 if (INTEGRAL_TYPE_P (from_type)
4669 && int_fits_type_p (@2, from_type)
4670 && (types_match (c1_type, from_type)
4671 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4672 && (TYPE_UNSIGNED (from_type)
4673 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4674 && (types_match (c2_type, from_type)
4675 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4676 && (TYPE_UNSIGNED (from_type)
4677 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4678 {
4679 if (cmp != EQ_EXPR)
4680 {
4681 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4682 {
4683 /* X <= Y - 1 equals to X < Y. */
4684 if (cmp == LE_EXPR)
4685 code = LT_EXPR;
4686 /* X > Y - 1 equals to X >= Y. */
4687 if (cmp == GT_EXPR)
4688 code = GE_EXPR;
4689 }
4690 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4691 {
4692 /* X < Y + 1 equals to X <= Y. */
4693 if (cmp == LT_EXPR)
4694 code = LE_EXPR;
4695 /* X >= Y + 1 equals to X > Y. */
4696 if (cmp == GE_EXPR)
4697 code = GT_EXPR;
4698 }
4699 if (code != ERROR_MARK
4700 || wi::to_widest (@2) == wi::to_widest (@3))
4701 {
4702 if (cmp == LT_EXPR || cmp == LE_EXPR)
4703 code = MIN_EXPR;
4704 if (cmp == GT_EXPR || cmp == GE_EXPR)
4705 code = MAX_EXPR;
4706 }
4707 }
4708 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
4709 else if (int_fits_type_p (@3, from_type))
4710 code = EQ_EXPR;
4711 }
4712 }
4713 (if (code == MAX_EXPR)
4714 (convert (max @1 (convert @2)))
4715 (if (code == MIN_EXPR)
4716 (convert (min @1 (convert @2)))
4717 (if (code == EQ_EXPR)
4718 (convert (cond (eq @1 (convert @3))
4719 (convert:from_type @3) (convert:from_type @2)))))))))
4720
4721 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4722
4723 1) OP is PLUS or MINUS.
4724 2) CMP is LT, LE, GT or GE.
4725 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4726
4727 This pattern also handles special cases like:
4728
4729 A) Operand x is a unsigned to signed type conversion and c1 is
4730 integer zero. In this case,
4731 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4732 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4733 B) Const c1 may not equal to (C3 op' C2). In this case we also
4734 check equality for (c1+1) and (c1-1) by adjusting comparison
4735 code.
4736
4737 TODO: Though signed type is handled by this pattern, it cannot be
4738 simplified at the moment because C standard requires additional
4739 type promotion. In order to match&simplify it here, the IR needs
4740 to be cleaned up by other optimizers, i.e, VRP. */
4741 (for op (plus minus)
4742 (for cmp (lt le gt ge)
4743 (simplify
4744 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4745 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4746 (if (types_match (from_type, to_type)
4747 /* Check if it is special case A). */
4748 || (TYPE_UNSIGNED (from_type)
4749 && !TYPE_UNSIGNED (to_type)
4750 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4751 && integer_zerop (@1)
4752 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4753 (with
4754 {
4755 wi::overflow_type overflow = wi::OVF_NONE;
4756 enum tree_code code, cmp_code = cmp;
4757 wide_int real_c1;
4758 wide_int c1 = wi::to_wide (@1);
4759 wide_int c2 = wi::to_wide (@2);
4760 wide_int c3 = wi::to_wide (@3);
4761 signop sgn = TYPE_SIGN (from_type);
4762
4763 /* Handle special case A), given x of unsigned type:
4764 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4765 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4766 if (!types_match (from_type, to_type))
4767 {
4768 if (cmp_code == LT_EXPR)
4769 cmp_code = GT_EXPR;
4770 if (cmp_code == GE_EXPR)
4771 cmp_code = LE_EXPR;
4772 c1 = wi::max_value (to_type);
4773 }
4774 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4775 compute (c3 op' c2) and check if it equals to c1 with op' being
4776 the inverted operator of op. Make sure overflow doesn't happen
4777 if it is undefined. */
4778 if (op == PLUS_EXPR)
4779 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4780 else
4781 real_c1 = wi::add (c3, c2, sgn, &overflow);
4782
4783 code = cmp_code;
4784 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4785 {
4786 /* Check if c1 equals to real_c1. Boundary condition is handled
4787 by adjusting comparison operation if necessary. */
4788 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4789 && !overflow)
4790 {
4791 /* X <= Y - 1 equals to X < Y. */
4792 if (cmp_code == LE_EXPR)
4793 code = LT_EXPR;
4794 /* X > Y - 1 equals to X >= Y. */
4795 if (cmp_code == GT_EXPR)
4796 code = GE_EXPR;
4797 }
4798 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4799 && !overflow)
4800 {
4801 /* X < Y + 1 equals to X <= Y. */
4802 if (cmp_code == LT_EXPR)
4803 code = LE_EXPR;
4804 /* X >= Y + 1 equals to X > Y. */
4805 if (cmp_code == GE_EXPR)
4806 code = GT_EXPR;
4807 }
4808 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4809 {
4810 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4811 code = MIN_EXPR;
4812 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4813 code = MAX_EXPR;
4814 }
4815 }
4816 }
4817 (if (code == MAX_EXPR)
4818 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4819 { wide_int_to_tree (from_type, c2); })
4820 (if (code == MIN_EXPR)
4821 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4822 { wide_int_to_tree (from_type, c2); })))))))))
4823
4824 #if GIMPLE
4825 /* A >= B ? A : B -> max (A, B) and friends. The code is still
4826 in fold_cond_expr_with_comparison for GENERIC folding with
4827 some extra constraints. */
4828 (for cmp (eq ne le lt unle unlt ge gt unge ungt uneq ltgt)
4829 (simplify
4830 (cond (cmp:c (nop_convert1?@c0 @0) (nop_convert2?@c1 @1))
4831 (convert3? @0) (convert4? @1))
4832 (if (!HONOR_SIGNED_ZEROS (type)
4833 && (/* Allow widening conversions of the compare operands as data. */
4834 (INTEGRAL_TYPE_P (type)
4835 && types_match (TREE_TYPE (@c0), TREE_TYPE (@0))
4836 && types_match (TREE_TYPE (@c1), TREE_TYPE (@1))
4837 && TYPE_PRECISION (TREE_TYPE (@0)) <= TYPE_PRECISION (type)
4838 && TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (type))
4839 /* Or sign conversions for the comparison. */
4840 || (types_match (type, TREE_TYPE (@0))
4841 && types_match (type, TREE_TYPE (@1)))))
4842 (switch
4843 (if (cmp == EQ_EXPR)
4844 (if (VECTOR_TYPE_P (type))
4845 (view_convert @c1)
4846 (convert @c1)))
4847 (if (cmp == NE_EXPR)
4848 (if (VECTOR_TYPE_P (type))
4849 (view_convert @c0)
4850 (convert @c0)))
4851 (if (cmp == LE_EXPR || cmp == UNLE_EXPR || cmp == LT_EXPR || cmp == UNLT_EXPR)
4852 (if (!HONOR_NANS (type))
4853 (if (VECTOR_TYPE_P (type))
4854 (view_convert (min @c0 @c1))
4855 (convert (min @c0 @c1)))))
4856 (if (cmp == GE_EXPR || cmp == UNGE_EXPR || cmp == GT_EXPR || cmp == UNGT_EXPR)
4857 (if (!HONOR_NANS (type))
4858 (if (VECTOR_TYPE_P (type))
4859 (view_convert (max @c0 @c1))
4860 (convert (max @c0 @c1)))))
4861 (if (cmp == UNEQ_EXPR)
4862 (if (!HONOR_NANS (type))
4863 (if (VECTOR_TYPE_P (type))
4864 (view_convert @c1)
4865 (convert @c1))))
4866 (if (cmp == LTGT_EXPR)
4867 (if (!HONOR_NANS (type))
4868 (if (VECTOR_TYPE_P (type))
4869 (view_convert @c0)
4870 (convert @c0))))))))
4871 #endif
4872
4873 /* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */
4874 (simplify
4875 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
4876 (if (!TYPE_SATURATING (type)
4877 && (TYPE_OVERFLOW_WRAPS (type)
4878 || !wi::only_sign_bit_p (wi::to_wide (@1)))
4879 && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
4880 @3))
4881
4882 /* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */
4883 (simplify
4884 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
4885 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
4886 @3))
4887
4888 /* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
4889 X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */
4890 (simplify
4891 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
4892 (if (TYPE_UNSIGNED (type))
4893 (cond (ge @0 @1) (negate @0) @2)))
4894
4895 (for cnd (cond vec_cond)
4896 /* A ? B : (A ? X : C) -> A ? B : C. */
4897 (simplify
4898 (cnd @0 (cnd @0 @1 @2) @3)
4899 (cnd @0 @1 @3))
4900 (simplify
4901 (cnd @0 @1 (cnd @0 @2 @3))
4902 (cnd @0 @1 @3))
4903 /* A ? B : (!A ? C : X) -> A ? B : C. */
4904 /* ??? This matches embedded conditions open-coded because genmatch
4905 would generate matching code for conditions in separate stmts only.
4906 The following is still important to merge then and else arm cases
4907 from if-conversion. */
4908 (simplify
4909 (cnd @0 @1 (cnd @2 @3 @4))
4910 (if (inverse_conditions_p (@0, @2))
4911 (cnd @0 @1 @3)))
4912 (simplify
4913 (cnd @0 (cnd @1 @2 @3) @4)
4914 (if (inverse_conditions_p (@0, @1))
4915 (cnd @0 @3 @4)))
4916
4917 /* A ? B : B -> B. */
4918 (simplify
4919 (cnd @0 @1 @1)
4920 @1)
4921
4922 /* !A ? B : C -> A ? C : B. */
4923 (simplify
4924 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4925 (cnd @0 @2 @1)))
4926
4927 /* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4928 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4929 Need to handle UN* comparisons.
4930
4931 None of these transformations work for modes with signed
4932 zeros. If A is +/-0, the first two transformations will
4933 change the sign of the result (from +0 to -0, or vice
4934 versa). The last four will fix the sign of the result,
4935 even though the original expressions could be positive or
4936 negative, depending on the sign of A.
4937
4938 Note that all these transformations are correct if A is
4939 NaN, since the two alternatives (A and -A) are also NaNs. */
4940
4941 (for cnd (cond vec_cond)
4942 /* A == 0 ? A : -A same as -A */
4943 (for cmp (eq uneq)
4944 (simplify
4945 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4946 (if (!HONOR_SIGNED_ZEROS (type))
4947 @1))
4948 (simplify
4949 (cnd (cmp @0 zerop) zerop (negate@1 @0))
4950 (if (!HONOR_SIGNED_ZEROS (type))
4951 @1))
4952 )
4953 /* A != 0 ? A : -A same as A */
4954 (for cmp (ne ltgt)
4955 (simplify
4956 (cnd (cmp @0 zerop) @0 (negate @0))
4957 (if (!HONOR_SIGNED_ZEROS (type))
4958 @0))
4959 (simplify
4960 (cnd (cmp @0 zerop) @0 integer_zerop)
4961 (if (!HONOR_SIGNED_ZEROS (type))
4962 @0))
4963 )
4964 /* A >=/> 0 ? A : -A same as abs (A) */
4965 (for cmp (ge gt)
4966 (simplify
4967 (cnd (cmp @0 zerop) @0 (negate @0))
4968 (if (!HONOR_SIGNED_ZEROS (type)
4969 && !TYPE_UNSIGNED (type))
4970 (abs @0))))
4971 /* A <=/< 0 ? A : -A same as -abs (A) */
4972 (for cmp (le lt)
4973 (simplify
4974 (cnd (cmp @0 zerop) @0 (negate @0))
4975 (if (!HONOR_SIGNED_ZEROS (type)
4976 && !TYPE_UNSIGNED (type))
4977 (if (ANY_INTEGRAL_TYPE_P (type)
4978 && !TYPE_OVERFLOW_WRAPS (type))
4979 (with {
4980 tree utype = unsigned_type_for (type);
4981 }
4982 (convert (negate (absu:utype @0))))
4983 (negate (abs @0)))))
4984 )
4985 )
4986
4987 /* -(type)!A -> (type)A - 1. */
4988 (simplify
4989 (negate (convert?:s (logical_inverted_value:s @0)))
4990 (if (INTEGRAL_TYPE_P (type)
4991 && TREE_CODE (type) != BOOLEAN_TYPE
4992 && TYPE_PRECISION (type) > 1
4993 && TREE_CODE (@0) == SSA_NAME
4994 && ssa_name_has_boolean_range (@0))
4995 (plus (convert:type @0) { build_all_ones_cst (type); })))
4996
4997 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4998 return all -1 or all 0 results. */
4999 /* ??? We could instead convert all instances of the vec_cond to negate,
5000 but that isn't necessarily a win on its own. */
5001 (simplify
5002 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
5003 (if (VECTOR_TYPE_P (type)
5004 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5005 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
5006 && (TYPE_MODE (TREE_TYPE (type))
5007 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
5008 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
5009
5010 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
5011 (simplify
5012 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
5013 (if (VECTOR_TYPE_P (type)
5014 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5015 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
5016 && (TYPE_MODE (TREE_TYPE (type))
5017 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
5018 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
5019
5020
5021 /* Simplifications of comparisons. */
5022
5023 /* See if we can reduce the magnitude of a constant involved in a
5024 comparison by changing the comparison code. This is a canonicalization
5025 formerly done by maybe_canonicalize_comparison_1. */
5026 (for cmp (le gt)
5027 acmp (lt ge)
5028 (simplify
5029 (cmp @0 uniform_integer_cst_p@1)
5030 (with { tree cst = uniform_integer_cst_p (@1); }
5031 (if (tree_int_cst_sgn (cst) == -1)
5032 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5033 wide_int_to_tree (TREE_TYPE (cst),
5034 wi::to_wide (cst)
5035 + 1)); })))))
5036 (for cmp (ge lt)
5037 acmp (gt le)
5038 (simplify
5039 (cmp @0 uniform_integer_cst_p@1)
5040 (with { tree cst = uniform_integer_cst_p (@1); }
5041 (if (tree_int_cst_sgn (cst) == 1)
5042 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5043 wide_int_to_tree (TREE_TYPE (cst),
5044 wi::to_wide (cst) - 1)); })))))
5045
5046 /* We can simplify a logical negation of a comparison to the
5047 inverted comparison. As we cannot compute an expression
5048 operator using invert_tree_comparison we have to simulate
5049 that with expression code iteration. */
5050 (for cmp (tcc_comparison)
5051 icmp (inverted_tcc_comparison)
5052 ncmp (inverted_tcc_comparison_with_nans)
5053 /* Ideally we'd like to combine the following two patterns
5054 and handle some more cases by using
5055 (logical_inverted_value (cmp @0 @1))
5056 here but for that genmatch would need to "inline" that.
5057 For now implement what forward_propagate_comparison did. */
5058 (simplify
5059 (bit_not (cmp @0 @1))
5060 (if (VECTOR_TYPE_P (type)
5061 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
5062 /* Comparison inversion may be impossible for trapping math,
5063 invert_tree_comparison will tell us. But we can't use
5064 a computed operator in the replacement tree thus we have
5065 to play the trick below. */
5066 (with { enum tree_code ic = invert_tree_comparison
5067 (cmp, HONOR_NANS (@0)); }
5068 (if (ic == icmp)
5069 (icmp @0 @1)
5070 (if (ic == ncmp)
5071 (ncmp @0 @1))))))
5072 (simplify
5073 (bit_xor (cmp @0 @1) integer_truep)
5074 (with { enum tree_code ic = invert_tree_comparison
5075 (cmp, HONOR_NANS (@0)); }
5076 (if (ic == icmp)
5077 (icmp @0 @1)
5078 (if (ic == ncmp)
5079 (ncmp @0 @1)))))
5080 /* The following bits are handled by fold_binary_op_with_conditional_arg. */
5081 (simplify
5082 (ne (cmp@2 @0 @1) integer_zerop)
5083 (if (types_match (type, TREE_TYPE (@2)))
5084 (cmp @0 @1)))
5085 (simplify
5086 (eq (cmp@2 @0 @1) integer_truep)
5087 (if (types_match (type, TREE_TYPE (@2)))
5088 (cmp @0 @1)))
5089 (simplify
5090 (ne (cmp@2 @0 @1) integer_truep)
5091 (if (types_match (type, TREE_TYPE (@2)))
5092 (with { enum tree_code ic = invert_tree_comparison
5093 (cmp, HONOR_NANS (@0)); }
5094 (if (ic == icmp)
5095 (icmp @0 @1)
5096 (if (ic == ncmp)
5097 (ncmp @0 @1))))))
5098 (simplify
5099 (eq (cmp@2 @0 @1) integer_zerop)
5100 (if (types_match (type, TREE_TYPE (@2)))
5101 (with { enum tree_code ic = invert_tree_comparison
5102 (cmp, HONOR_NANS (@0)); }
5103 (if (ic == icmp)
5104 (icmp @0 @1)
5105 (if (ic == ncmp)
5106 (ncmp @0 @1)))))))
5107
5108 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
5109 ??? The transformation is valid for the other operators if overflow
5110 is undefined for the type, but performing it here badly interacts
5111 with the transformation in fold_cond_expr_with_comparison which
5112 attempts to synthetize ABS_EXPR. */
5113 (for cmp (eq ne)
5114 (for sub (minus pointer_diff)
5115 (simplify
5116 (cmp (sub@2 @0 @1) integer_zerop)
5117 (if (single_use (@2))
5118 (cmp @0 @1)))))
5119
5120 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
5121 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
5122 (for cmp (lt ge)
5123 (simplify
5124 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
5125 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5126 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5127 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5128 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
5129 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
5130 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
5131 (simplify
5132 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
5133 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5134 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5135 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5136 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
5137
5138 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
5139 signed arithmetic case. That form is created by the compiler
5140 often enough for folding it to be of value. One example is in
5141 computing loop trip counts after Operator Strength Reduction. */
5142 (for cmp (simple_comparison)
5143 scmp (swapped_simple_comparison)
5144 (simplify
5145 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
5146 /* Handle unfolded multiplication by zero. */
5147 (if (integer_zerop (@1))
5148 (cmp @1 @2)
5149 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5150 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5151 && single_use (@3))
5152 /* If @1 is negative we swap the sense of the comparison. */
5153 (if (tree_int_cst_sgn (@1) < 0)
5154 (scmp @0 @2)
5155 (cmp @0 @2))))))
5156
5157 /* For integral types with undefined overflow fold
5158 x * C1 == C2 into x == C2 / C1 or false.
5159 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
5160 Z / 2^n Z. */
5161 (for cmp (eq ne)
5162 (simplify
5163 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
5164 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5165 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5166 && wi::to_wide (@1) != 0)
5167 (with { widest_int quot; }
5168 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
5169 TYPE_SIGN (TREE_TYPE (@0)), &quot))
5170 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
5171 { constant_boolean_node (cmp == NE_EXPR, type); }))
5172 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5173 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
5174 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
5175 (cmp @0
5176 {
5177 tree itype = TREE_TYPE (@0);
5178 int p = TYPE_PRECISION (itype);
5179 wide_int m = wi::one (p + 1) << p;
5180 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
5181 wide_int i = wide_int::from (wi::mod_inv (a, m),
5182 p, TYPE_SIGN (itype));
5183 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
5184 })))))
5185
5186 /* Simplify comparison of something with itself. For IEEE
5187 floating-point, we can only do some of these simplifications. */
5188 (for cmp (eq ge le)
5189 (simplify
5190 (cmp @0 @0)
5191 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
5192 || ! tree_expr_maybe_nan_p (@0))
5193 { constant_boolean_node (true, type); }
5194 (if (cmp != EQ_EXPR
5195 /* With -ftrapping-math conversion to EQ loses an exception. */
5196 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
5197 || ! flag_trapping_math))
5198 (eq @0 @0)))))
5199 (for cmp (ne gt lt)
5200 (simplify
5201 (cmp @0 @0)
5202 (if (cmp != NE_EXPR
5203 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
5204 || ! tree_expr_maybe_nan_p (@0))
5205 { constant_boolean_node (false, type); })))
5206 (for cmp (unle unge uneq)
5207 (simplify
5208 (cmp @0 @0)
5209 { constant_boolean_node (true, type); }))
5210 (for cmp (unlt ungt)
5211 (simplify
5212 (cmp @0 @0)
5213 (unordered @0 @0)))
5214 (simplify
5215 (ltgt @0 @0)
5216 (if (!flag_trapping_math || !tree_expr_maybe_nan_p (@0))
5217 { constant_boolean_node (false, type); }))
5218
5219 /* x == ~x -> false */
5220 /* x != ~x -> true */
5221 (for cmp (eq ne)
5222 (simplify
5223 (cmp:c @0 (bit_not @0))
5224 { constant_boolean_node (cmp == NE_EXPR, type); }))
5225
5226 /* Fold ~X op ~Y as Y op X. */
5227 (for cmp (simple_comparison)
5228 (simplify
5229 (cmp (bit_not@2 @0) (bit_not@3 @1))
5230 (if (single_use (@2) && single_use (@3))
5231 (cmp @1 @0))))
5232
5233 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
5234 (for cmp (simple_comparison)
5235 scmp (swapped_simple_comparison)
5236 (simplify
5237 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
5238 (if (single_use (@2)
5239 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
5240 (scmp @0 (bit_not @1)))))
5241
5242 (for cmp (simple_comparison)
5243 (simplify
5244 (cmp @0 REAL_CST@1)
5245 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
5246 (switch
5247 /* a CMP (-0) -> a CMP 0 */
5248 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
5249 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
5250 /* (-0) CMP b -> 0 CMP b. */
5251 (if (TREE_CODE (@0) == REAL_CST
5252 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
5253 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
5254 /* x != NaN is always true, other ops are always false. */
5255 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5256 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
5257 && !tree_expr_signaling_nan_p (@1)
5258 && !tree_expr_maybe_signaling_nan_p (@0))
5259 { constant_boolean_node (cmp == NE_EXPR, type); })
5260 /* NaN != y is always true, other ops are always false. */
5261 (if (TREE_CODE (@0) == REAL_CST
5262 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
5263 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
5264 && !tree_expr_signaling_nan_p (@0)
5265 && !tree_expr_signaling_nan_p (@1))
5266 { constant_boolean_node (cmp == NE_EXPR, type); })
5267 /* Fold comparisons against infinity. */
5268 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
5269 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
5270 (with
5271 {
5272 REAL_VALUE_TYPE max;
5273 enum tree_code code = cmp;
5274 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
5275 if (neg)
5276 code = swap_tree_comparison (code);
5277 }
5278 (switch
5279 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
5280 (if (code == GT_EXPR
5281 && !(HONOR_NANS (@0) && flag_trapping_math))
5282 { constant_boolean_node (false, type); })
5283 (if (code == LE_EXPR)
5284 /* x <= +Inf is always true, if we don't care about NaNs. */
5285 (if (! HONOR_NANS (@0))
5286 { constant_boolean_node (true, type); }
5287 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
5288 an "invalid" exception. */
5289 (if (!flag_trapping_math)
5290 (eq @0 @0))))
5291 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
5292 for == this introduces an exception for x a NaN. */
5293 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
5294 || code == GE_EXPR)
5295 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5296 (if (neg)
5297 (lt @0 { build_real (TREE_TYPE (@0), max); })
5298 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
5299 /* x < +Inf is always equal to x <= DBL_MAX. */
5300 (if (code == LT_EXPR)
5301 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5302 (if (neg)
5303 (ge @0 { build_real (TREE_TYPE (@0), max); })
5304 (le @0 { build_real (TREE_TYPE (@0), max); }))))
5305 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
5306 an exception for x a NaN so use an unordered comparison. */
5307 (if (code == NE_EXPR)
5308 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
5309 (if (! HONOR_NANS (@0))
5310 (if (neg)
5311 (ge @0 { build_real (TREE_TYPE (@0), max); })
5312 (le @0 { build_real (TREE_TYPE (@0), max); }))
5313 (if (neg)
5314 (unge @0 { build_real (TREE_TYPE (@0), max); })
5315 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
5316
5317 /* If this is a comparison of a real constant with a PLUS_EXPR
5318 or a MINUS_EXPR of a real constant, we can convert it into a
5319 comparison with a revised real constant as long as no overflow
5320 occurs when unsafe_math_optimizations are enabled. */
5321 (if (flag_unsafe_math_optimizations)
5322 (for op (plus minus)
5323 (simplify
5324 (cmp (op @0 REAL_CST@1) REAL_CST@2)
5325 (with
5326 {
5327 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
5328 TREE_TYPE (@1), @2, @1);
5329 }
5330 (if (tem && !TREE_OVERFLOW (tem))
5331 (cmp @0 { tem; }))))))
5332
5333 /* Likewise, we can simplify a comparison of a real constant with
5334 a MINUS_EXPR whose first operand is also a real constant, i.e.
5335 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
5336 floating-point types only if -fassociative-math is set. */
5337 (if (flag_associative_math)
5338 (simplify
5339 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
5340 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
5341 (if (tem && !TREE_OVERFLOW (tem))
5342 (cmp { tem; } @1)))))
5343
5344 /* Fold comparisons against built-in math functions. */
5345 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
5346 (for sq (SQRT)
5347 (simplify
5348 (cmp (sq @0) REAL_CST@1)
5349 (switch
5350 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
5351 (switch
5352 /* sqrt(x) < y is always false, if y is negative. */
5353 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
5354 { constant_boolean_node (false, type); })
5355 /* sqrt(x) > y is always true, if y is negative and we
5356 don't care about NaNs, i.e. negative values of x. */
5357 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
5358 { constant_boolean_node (true, type); })
5359 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5360 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
5361 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
5362 (switch
5363 /* sqrt(x) < 0 is always false. */
5364 (if (cmp == LT_EXPR)
5365 { constant_boolean_node (false, type); })
5366 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
5367 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
5368 { constant_boolean_node (true, type); })
5369 /* sqrt(x) <= 0 -> x == 0. */
5370 (if (cmp == LE_EXPR)
5371 (eq @0 @1))
5372 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
5373 == or !=. In the last case:
5374
5375 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
5376
5377 if x is negative or NaN. Due to -funsafe-math-optimizations,
5378 the results for other x follow from natural arithmetic. */
5379 (cmp @0 @1)))
5380 (if ((cmp == LT_EXPR
5381 || cmp == LE_EXPR
5382 || cmp == GT_EXPR
5383 || cmp == GE_EXPR)
5384 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5385 /* Give up for -frounding-math. */
5386 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
5387 (with
5388 {
5389 REAL_VALUE_TYPE c2;
5390 enum tree_code ncmp = cmp;
5391 const real_format *fmt
5392 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
5393 real_arithmetic (&c2, MULT_EXPR,
5394 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
5395 real_convert (&c2, fmt, &c2);
5396 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
5397 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
5398 if (!REAL_VALUE_ISINF (c2))
5399 {
5400 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5401 build_real (TREE_TYPE (@0), c2));
5402 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5403 ncmp = ERROR_MARK;
5404 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
5405 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
5406 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
5407 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
5408 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
5409 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
5410 else
5411 {
5412 /* With rounding to even, sqrt of up to 3 different values
5413 gives the same normal result, so in some cases c2 needs
5414 to be adjusted. */
5415 REAL_VALUE_TYPE c2alt, tow;
5416 if (cmp == LT_EXPR || cmp == GE_EXPR)
5417 tow = dconst0;
5418 else
5419 tow = dconstinf;
5420 real_nextafter (&c2alt, fmt, &c2, &tow);
5421 real_convert (&c2alt, fmt, &c2alt);
5422 if (REAL_VALUE_ISINF (c2alt))
5423 ncmp = ERROR_MARK;
5424 else
5425 {
5426 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
5427 build_real (TREE_TYPE (@0), c2alt));
5428 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
5429 ncmp = ERROR_MARK;
5430 else if (real_equal (&TREE_REAL_CST (c3),
5431 &TREE_REAL_CST (@1)))
5432 c2 = c2alt;
5433 }
5434 }
5435 }
5436 }
5437 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5438 (if (REAL_VALUE_ISINF (c2))
5439 /* sqrt(x) > y is x == +Inf, when y is very large. */
5440 (if (HONOR_INFINITIES (@0))
5441 (eq @0 { build_real (TREE_TYPE (@0), c2); })
5442 { constant_boolean_node (false, type); })
5443 /* sqrt(x) > c is the same as x > c*c. */
5444 (if (ncmp != ERROR_MARK)
5445 (if (ncmp == GE_EXPR)
5446 (ge @0 { build_real (TREE_TYPE (@0), c2); })
5447 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
5448 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
5449 (if (REAL_VALUE_ISINF (c2))
5450 (switch
5451 /* sqrt(x) < y is always true, when y is a very large
5452 value and we don't care about NaNs or Infinities. */
5453 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
5454 { constant_boolean_node (true, type); })
5455 /* sqrt(x) < y is x != +Inf when y is very large and we
5456 don't care about NaNs. */
5457 (if (! HONOR_NANS (@0))
5458 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
5459 /* sqrt(x) < y is x >= 0 when y is very large and we
5460 don't care about Infinities. */
5461 (if (! HONOR_INFINITIES (@0))
5462 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
5463 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5464 (if (GENERIC)
5465 (truth_andif
5466 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5467 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
5468 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5469 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
5470 (if (ncmp == LT_EXPR)
5471 (lt @0 { build_real (TREE_TYPE (@0), c2); })
5472 (le @0 { build_real (TREE_TYPE (@0), c2); }))
5473 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5474 (if (ncmp != ERROR_MARK && GENERIC)
5475 (if (ncmp == LT_EXPR)
5476 (truth_andif
5477 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5478 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
5479 (truth_andif
5480 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
5481 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
5482 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
5483 (simplify
5484 (cmp (sq @0) (sq @1))
5485 (if (! HONOR_NANS (@0))
5486 (cmp @0 @1))))))
5487
5488 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
5489 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5490 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
5491 (simplify
5492 (cmp (float@0 @1) (float @2))
5493 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5494 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5495 (with
5496 {
5497 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5498 tree type1 = TREE_TYPE (@1);
5499 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5500 tree type2 = TREE_TYPE (@2);
5501 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5502 }
5503 (if (fmt.can_represent_integral_type_p (type1)
5504 && fmt.can_represent_integral_type_p (type2))
5505 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5506 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5507 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5508 && type1_signed_p >= type2_signed_p)
5509 (icmp @1 (convert @2))
5510 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5511 && type1_signed_p <= type2_signed_p)
5512 (icmp (convert:type2 @1) @2)
5513 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5514 && type1_signed_p == type2_signed_p)
5515 (icmp @1 @2))))))))))
5516
5517 /* Optimize various special cases of (FTYPE) N CMP CST. */
5518 (for cmp (lt le eq ne ge gt)
5519 icmp (le le eq ne ge ge)
5520 (simplify
5521 (cmp (float @0) REAL_CST@1)
5522 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5523 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5524 (with
5525 {
5526 tree itype = TREE_TYPE (@0);
5527 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5528 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5529 /* Be careful to preserve any potential exceptions due to
5530 NaNs. qNaNs are ok in == or != context.
5531 TODO: relax under -fno-trapping-math or
5532 -fno-signaling-nans. */
5533 bool exception_p
5534 = real_isnan (cst) && (cst->signalling
5535 || (cmp != EQ_EXPR && cmp != NE_EXPR));
5536 }
5537 /* TODO: allow non-fitting itype and SNaNs when
5538 -fno-trapping-math. */
5539 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
5540 (with
5541 {
5542 signop isign = TYPE_SIGN (itype);
5543 REAL_VALUE_TYPE imin, imax;
5544 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5545 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5546
5547 REAL_VALUE_TYPE icst;
5548 if (cmp == GT_EXPR || cmp == GE_EXPR)
5549 real_ceil (&icst, fmt, cst);
5550 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5551 real_floor (&icst, fmt, cst);
5552 else
5553 real_trunc (&icst, fmt, cst);
5554
5555 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
5556
5557 bool overflow_p = false;
5558 wide_int icst_val
5559 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5560 }
5561 (switch
5562 /* Optimize cases when CST is outside of ITYPE's range. */
5563 (if (real_compare (LT_EXPR, cst, &imin))
5564 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5565 type); })
5566 (if (real_compare (GT_EXPR, cst, &imax))
5567 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5568 type); })
5569 /* Remove cast if CST is an integer representable by ITYPE. */
5570 (if (cst_int_p)
5571 (cmp @0 { gcc_assert (!overflow_p);
5572 wide_int_to_tree (itype, icst_val); })
5573 )
5574 /* When CST is fractional, optimize
5575 (FTYPE) N == CST -> 0
5576 (FTYPE) N != CST -> 1. */
5577 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5578 { constant_boolean_node (cmp == NE_EXPR, type); })
5579 /* Otherwise replace with sensible integer constant. */
5580 (with
5581 {
5582 gcc_checking_assert (!overflow_p);
5583 }
5584 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5585
5586 /* Fold A /[ex] B CMP C to A CMP B * C. */
5587 (for cmp (eq ne)
5588 (simplify
5589 (cmp (exact_div @0 @1) INTEGER_CST@2)
5590 (if (!integer_zerop (@1))
5591 (if (wi::to_wide (@2) == 0)
5592 (cmp @0 @2)
5593 (if (TREE_CODE (@1) == INTEGER_CST)
5594 (with
5595 {
5596 wi::overflow_type ovf;
5597 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5598 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5599 }
5600 (if (ovf)
5601 { constant_boolean_node (cmp == NE_EXPR, type); }
5602 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5603 (for cmp (lt le gt ge)
5604 (simplify
5605 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
5606 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5607 (with
5608 {
5609 wi::overflow_type ovf;
5610 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5611 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5612 }
5613 (if (ovf)
5614 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5615 TYPE_SIGN (TREE_TYPE (@2)))
5616 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5617 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5618
5619 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5620
5621 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5622 For large C (more than min/B+2^size), this is also true, with the
5623 multiplication computed modulo 2^size.
5624 For intermediate C, this just tests the sign of A. */
5625 (for cmp (lt le gt ge)
5626 cmp2 (ge ge lt lt)
5627 (simplify
5628 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5629 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5630 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5631 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5632 (with
5633 {
5634 tree utype = TREE_TYPE (@2);
5635 wide_int denom = wi::to_wide (@1);
5636 wide_int right = wi::to_wide (@2);
5637 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5638 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5639 bool small = wi::leu_p (right, smax);
5640 bool large = wi::geu_p (right, smin);
5641 }
5642 (if (small || large)
5643 (cmp (convert:utype @0) (mult @2 (convert @1)))
5644 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5645
5646 /* Unordered tests if either argument is a NaN. */
5647 (simplify
5648 (bit_ior (unordered @0 @0) (unordered @1 @1))
5649 (if (types_match (@0, @1))
5650 (unordered @0 @1)))
5651 (simplify
5652 (bit_and (ordered @0 @0) (ordered @1 @1))
5653 (if (types_match (@0, @1))
5654 (ordered @0 @1)))
5655 (simplify
5656 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5657 @2)
5658 (simplify
5659 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5660 @2)
5661
5662 /* Simple range test simplifications. */
5663 /* A < B || A >= B -> true. */
5664 (for test1 (lt le le le ne ge)
5665 test2 (ge gt ge ne eq ne)
5666 (simplify
5667 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5668 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5669 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5670 { constant_boolean_node (true, type); })))
5671 /* A < B && A >= B -> false. */
5672 (for test1 (lt lt lt le ne eq)
5673 test2 (ge gt eq gt eq gt)
5674 (simplify
5675 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5676 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5677 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5678 { constant_boolean_node (false, type); })))
5679
5680 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5681 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5682
5683 Note that comparisons
5684 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5685 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5686 will be canonicalized to above so there's no need to
5687 consider them here.
5688 */
5689
5690 (for cmp (le gt)
5691 eqcmp (eq ne)
5692 (simplify
5693 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5694 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5695 (with
5696 {
5697 tree ty = TREE_TYPE (@0);
5698 unsigned prec = TYPE_PRECISION (ty);
5699 wide_int mask = wi::to_wide (@2, prec);
5700 wide_int rhs = wi::to_wide (@3, prec);
5701 signop sgn = TYPE_SIGN (ty);
5702 }
5703 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5704 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5705 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5706 { build_zero_cst (ty); }))))))
5707
5708 /* -A CMP -B -> B CMP A. */
5709 (for cmp (tcc_comparison)
5710 scmp (swapped_tcc_comparison)
5711 (simplify
5712 (cmp (negate @0) (negate @1))
5713 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5714 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5715 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5716 (scmp @0 @1)))
5717 (simplify
5718 (cmp (negate @0) CONSTANT_CLASS_P@1)
5719 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5720 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5721 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5722 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5723 (if (tem && !TREE_OVERFLOW (tem))
5724 (scmp @0 { tem; }))))))
5725
5726 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5727 (for op (eq ne)
5728 (simplify
5729 (op (abs @0) zerop@1)
5730 (op @0 @1)))
5731
5732 /* From fold_sign_changed_comparison and fold_widened_comparison.
5733 FIXME: the lack of symmetry is disturbing. */
5734 (for cmp (simple_comparison)
5735 (simplify
5736 (cmp (convert@0 @00) (convert?@1 @10))
5737 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5738 /* Disable this optimization if we're casting a function pointer
5739 type on targets that require function pointer canonicalization. */
5740 && !(targetm.have_canonicalize_funcptr_for_compare ()
5741 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5742 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5743 || (POINTER_TYPE_P (TREE_TYPE (@10))
5744 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5745 && single_use (@0))
5746 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5747 && (TREE_CODE (@10) == INTEGER_CST
5748 || @1 != @10)
5749 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5750 || cmp == NE_EXPR
5751 || cmp == EQ_EXPR)
5752 && !POINTER_TYPE_P (TREE_TYPE (@00))
5753 /* (int)bool:32 != (int)uint is not the same as
5754 bool:32 != (bool:32)uint since boolean types only have two valid
5755 values independent of their precision. */
5756 && (TREE_CODE (TREE_TYPE (@00)) != BOOLEAN_TYPE
5757 || TREE_CODE (TREE_TYPE (@10)) == BOOLEAN_TYPE))
5758 /* ??? The special-casing of INTEGER_CST conversion was in the original
5759 code and here to avoid a spurious overflow flag on the resulting
5760 constant which fold_convert produces. */
5761 (if (TREE_CODE (@1) == INTEGER_CST)
5762 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5763 TREE_OVERFLOW (@1)); })
5764 (cmp @00 (convert @1)))
5765
5766 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5767 /* If possible, express the comparison in the shorter mode. */
5768 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5769 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5770 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5771 && TYPE_UNSIGNED (TREE_TYPE (@00))))
5772 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5773 || ((TYPE_PRECISION (TREE_TYPE (@00))
5774 >= TYPE_PRECISION (TREE_TYPE (@10)))
5775 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5776 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5777 || (TREE_CODE (@10) == INTEGER_CST
5778 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5779 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5780 (cmp @00 (convert @10))
5781 (if (TREE_CODE (@10) == INTEGER_CST
5782 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5783 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5784 (with
5785 {
5786 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5787 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5788 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5789 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5790 }
5791 (if (above || below)
5792 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5793 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5794 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5795 { constant_boolean_node (above ? true : false, type); }
5796 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5797 { constant_boolean_node (above ? false : true, type); })))))))))
5798 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
5799 (if (FLOAT_TYPE_P (TREE_TYPE (@00))
5800 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5801 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@00)))
5802 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5803 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@10))))
5804 (with
5805 {
5806 tree type1 = TREE_TYPE (@10);
5807 if (TREE_CODE (@10) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
5808 {
5809 REAL_VALUE_TYPE orig = TREE_REAL_CST (@10);
5810 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
5811 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
5812 type1 = float_type_node;
5813 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
5814 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
5815 type1 = double_type_node;
5816 }
5817 tree newtype
5818 = (TYPE_PRECISION (TREE_TYPE (@00)) > TYPE_PRECISION (type1)
5819 ? TREE_TYPE (@00) : type1);
5820 }
5821 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (newtype))
5822 (cmp (convert:newtype @00) (convert:newtype @10))))))))
5823
5824
5825 (for cmp (eq ne)
5826 (simplify
5827 /* SSA names are canonicalized to 2nd place. */
5828 (cmp addr@0 SSA_NAME@1)
5829 (with
5830 {
5831 poly_int64 off; tree base;
5832 tree addr = (TREE_CODE (@0) == SSA_NAME
5833 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5834 }
5835 /* A local variable can never be pointed to by
5836 the default SSA name of an incoming parameter. */
5837 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5838 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5839 && (base = get_base_address (TREE_OPERAND (addr, 0)))
5840 && TREE_CODE (base) == VAR_DECL
5841 && auto_var_in_fn_p (base, current_function_decl))
5842 (if (cmp == NE_EXPR)
5843 { constant_boolean_node (true, type); }
5844 { constant_boolean_node (false, type); })
5845 /* If the address is based on @1 decide using the offset. */
5846 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0), &off))
5847 && TREE_CODE (base) == MEM_REF
5848 && TREE_OPERAND (base, 0) == @1)
5849 (with { off += mem_ref_offset (base).force_shwi (); }
5850 (if (known_ne (off, 0))
5851 { constant_boolean_node (cmp == NE_EXPR, type); }
5852 (if (known_eq (off, 0))
5853 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5854
5855 /* Equality compare simplifications from fold_binary */
5856 (for cmp (eq ne)
5857
5858 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5859 Similarly for NE_EXPR. */
5860 (simplify
5861 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5862 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5863 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5864 { constant_boolean_node (cmp == NE_EXPR, type); }))
5865
5866 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5867 (simplify
5868 (cmp (bit_xor @0 @1) integer_zerop)
5869 (cmp @0 @1))
5870
5871 /* (X ^ Y) == Y becomes X == 0.
5872 Likewise (X ^ Y) == X becomes Y == 0. */
5873 (simplify
5874 (cmp:c (bit_xor:c @0 @1) @0)
5875 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5876
5877 /* (X & Y) == X becomes (X & ~Y) == 0. */
5878 (simplify
5879 (cmp:c (bit_and:c @0 @1) @0)
5880 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5881 (simplify
5882 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5883 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5884 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5885 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5886 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5887 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5888 && !wi::neg_p (wi::to_wide (@1)))
5889 (cmp (bit_and @0 (convert (bit_not @1)))
5890 { build_zero_cst (TREE_TYPE (@0)); })))
5891
5892 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5893 (simplify
5894 (cmp:c (bit_ior:c @0 @1) @1)
5895 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5896
5897 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5898 (simplify
5899 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5900 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5901 (cmp @0 (bit_xor @1 (convert @2)))))
5902
5903 (simplify
5904 (cmp (convert? addr@0) integer_zerop)
5905 (if (tree_single_nonzero_warnv_p (@0, NULL))
5906 { constant_boolean_node (cmp == NE_EXPR, type); }))
5907
5908 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5909 (simplify
5910 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5911 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5912
5913 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5914 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5915 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5916 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5917 (for cmp (eq ne)
5918 ncmp (ge lt)
5919 (for sgncmp (ge lt)
5920 (simplify
5921 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5922 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5923 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5924 && types_match (@0, @1))
5925 (ncmp (bit_xor @0 @1) @2)))))
5926 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5927 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5928 (for cmp (eq ne)
5929 ncmp (lt ge)
5930 (simplify
5931 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5932 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5933 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5934 && types_match (@0, @1))
5935 (ncmp (bit_xor @0 @1) @2))))
5936
5937 /* If we have (A & C) == C where C is a power of 2, convert this into
5938 (A & C) != 0. Similarly for NE_EXPR. */
5939 (for cmp (eq ne)
5940 icmp (ne eq)
5941 (simplify
5942 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5943 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5944
5945 #if GIMPLE
5946 /* From fold_binary_op_with_conditional_arg handle the case of
5947 rewriting (a ? b : c) > d to a ? (b > d) : (c > d) when the
5948 compares simplify. */
5949 (for cmp (simple_comparison)
5950 (simplify
5951 (cmp:c (cond @0 @1 @2) @3)
5952 /* Do not move possibly trapping operations into the conditional as this
5953 pessimizes code and causes gimplification issues when applied late. */
5954 (if (!FLOAT_TYPE_P (TREE_TYPE (@3))
5955 || !operation_could_trap_p (cmp, true, false, @3))
5956 (cond @0 (cmp! @1 @3) (cmp! @2 @3)))))
5957 #endif
5958
5959 (for cmp (ge lt)
5960 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5961 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5962 (simplify
5963 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5964 (if (INTEGRAL_TYPE_P (type)
5965 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5966 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5967 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5968 (with
5969 {
5970 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5971 }
5972 (if (cmp == LT_EXPR)
5973 (bit_xor (convert (rshift @0 {shifter;})) @1)
5974 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5975 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5976 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5977 (simplify
5978 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5979 (if (INTEGRAL_TYPE_P (type)
5980 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5981 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5982 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5983 (with
5984 {
5985 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5986 }
5987 (if (cmp == GE_EXPR)
5988 (bit_xor (convert (rshift @0 {shifter;})) @1)
5989 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5990
5991 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5992 convert this into a shift followed by ANDing with D. */
5993 (simplify
5994 (cond
5995 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5996 INTEGER_CST@2 integer_zerop)
5997 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5998 (with {
5999 int shift = (wi::exact_log2 (wi::to_wide (@2))
6000 - wi::exact_log2 (wi::to_wide (@1)));
6001 }
6002 (if (shift > 0)
6003 (bit_and
6004 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
6005 (bit_and
6006 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
6007 @2)))))
6008
6009 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6010 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6011 (for cmp (eq ne)
6012 ncmp (ge lt)
6013 (simplify
6014 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
6015 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6016 && type_has_mode_precision_p (TREE_TYPE (@0))
6017 && element_precision (@2) >= element_precision (@0)
6018 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
6019 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
6020 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
6021
6022 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
6023 this into a right shift or sign extension followed by ANDing with C. */
6024 (simplify
6025 (cond
6026 (lt @0 integer_zerop)
6027 INTEGER_CST@1 integer_zerop)
6028 (if (integer_pow2p (@1)
6029 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
6030 (with {
6031 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
6032 }
6033 (if (shift >= 0)
6034 (bit_and
6035 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
6036 @1)
6037 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
6038 sign extension followed by AND with C will achieve the effect. */
6039 (bit_and (convert @0) @1)))))
6040
6041 /* When the addresses are not directly of decls compare base and offset.
6042 This implements some remaining parts of fold_comparison address
6043 comparisons but still no complete part of it. Still it is good
6044 enough to make fold_stmt not regress when not dispatching to fold_binary. */
6045 (for cmp (simple_comparison)
6046 (simplify
6047 (cmp (convert1?@2 addr@0) (convert2? addr@1))
6048 (with
6049 {
6050 poly_int64 off0, off1;
6051 tree base0, base1;
6052 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
6053 off0, off1, GENERIC);
6054 }
6055 (if (equal == 1)
6056 (switch
6057 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6058 { constant_boolean_node (known_eq (off0, off1), type); })
6059 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6060 { constant_boolean_node (known_ne (off0, off1), type); })
6061 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
6062 { constant_boolean_node (known_lt (off0, off1), type); })
6063 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
6064 { constant_boolean_node (known_le (off0, off1), type); })
6065 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
6066 { constant_boolean_node (known_ge (off0, off1), type); })
6067 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
6068 { constant_boolean_node (known_gt (off0, off1), type); }))
6069 (if (equal == 0)
6070 (switch
6071 (if (cmp == EQ_EXPR)
6072 { constant_boolean_node (false, type); })
6073 (if (cmp == NE_EXPR)
6074 { constant_boolean_node (true, type); })))))))
6075
6076 /* Simplify pointer equality compares using PTA. */
6077 (for neeq (ne eq)
6078 (simplify
6079 (neeq @0 @1)
6080 (if (POINTER_TYPE_P (TREE_TYPE (@0))
6081 && ptrs_compare_unequal (@0, @1))
6082 { constant_boolean_node (neeq != EQ_EXPR, type); })))
6083
6084 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
6085 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
6086 Disable the transform if either operand is pointer to function.
6087 This broke pr22051-2.c for arm where function pointer
6088 canonicalizaion is not wanted. */
6089
6090 (for cmp (ne eq)
6091 (simplify
6092 (cmp (convert @0) INTEGER_CST@1)
6093 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
6094 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
6095 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6096 /* Don't perform this optimization in GENERIC if @0 has reference
6097 type when sanitizing. See PR101210. */
6098 && !(GENERIC
6099 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
6100 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
6101 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6102 && POINTER_TYPE_P (TREE_TYPE (@1))
6103 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
6104 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
6105 (cmp @0 (convert @1)))))
6106
6107 /* Non-equality compare simplifications from fold_binary */
6108 (for cmp (lt gt le ge)
6109 /* Comparisons with the highest or lowest possible integer of
6110 the specified precision will have known values. */
6111 (simplify
6112 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
6113 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
6114 || POINTER_TYPE_P (TREE_TYPE (@1))
6115 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
6116 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
6117 (with
6118 {
6119 tree cst = uniform_integer_cst_p (@1);
6120 tree arg1_type = TREE_TYPE (cst);
6121 unsigned int prec = TYPE_PRECISION (arg1_type);
6122 wide_int max = wi::max_value (arg1_type);
6123 wide_int signed_max = wi::max_value (prec, SIGNED);
6124 wide_int min = wi::min_value (arg1_type);
6125 }
6126 (switch
6127 (if (wi::to_wide (cst) == max)
6128 (switch
6129 (if (cmp == GT_EXPR)
6130 { constant_boolean_node (false, type); })
6131 (if (cmp == GE_EXPR)
6132 (eq @2 @1))
6133 (if (cmp == LE_EXPR)
6134 { constant_boolean_node (true, type); })
6135 (if (cmp == LT_EXPR)
6136 (ne @2 @1))))
6137 (if (wi::to_wide (cst) == min)
6138 (switch
6139 (if (cmp == LT_EXPR)
6140 { constant_boolean_node (false, type); })
6141 (if (cmp == LE_EXPR)
6142 (eq @2 @1))
6143 (if (cmp == GE_EXPR)
6144 { constant_boolean_node (true, type); })
6145 (if (cmp == GT_EXPR)
6146 (ne @2 @1))))
6147 (if (wi::to_wide (cst) == max - 1)
6148 (switch
6149 (if (cmp == GT_EXPR)
6150 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6151 wide_int_to_tree (TREE_TYPE (cst),
6152 wi::to_wide (cst)
6153 + 1)); }))
6154 (if (cmp == LE_EXPR)
6155 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6156 wide_int_to_tree (TREE_TYPE (cst),
6157 wi::to_wide (cst)
6158 + 1)); }))))
6159 (if (wi::to_wide (cst) == min + 1)
6160 (switch
6161 (if (cmp == GE_EXPR)
6162 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
6163 wide_int_to_tree (TREE_TYPE (cst),
6164 wi::to_wide (cst)
6165 - 1)); }))
6166 (if (cmp == LT_EXPR)
6167 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
6168 wide_int_to_tree (TREE_TYPE (cst),
6169 wi::to_wide (cst)
6170 - 1)); }))))
6171 (if (wi::to_wide (cst) == signed_max
6172 && TYPE_UNSIGNED (arg1_type)
6173 /* We will flip the signedness of the comparison operator
6174 associated with the mode of @1, so the sign bit is
6175 specified by this mode. Check that @1 is the signed
6176 max associated with this sign bit. */
6177 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
6178 /* signed_type does not work on pointer types. */
6179 && INTEGRAL_TYPE_P (arg1_type))
6180 /* The following case also applies to X < signed_max+1
6181 and X >= signed_max+1 because previous transformations. */
6182 (if (cmp == LE_EXPR || cmp == GT_EXPR)
6183 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
6184 (switch
6185 (if (cst == @1 && cmp == LE_EXPR)
6186 (ge (convert:st @0) { build_zero_cst (st); }))
6187 (if (cst == @1 && cmp == GT_EXPR)
6188 (lt (convert:st @0) { build_zero_cst (st); }))
6189 (if (cmp == LE_EXPR)
6190 (ge (view_convert:st @0) { build_zero_cst (st); }))
6191 (if (cmp == GT_EXPR)
6192 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
6193
6194 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
6195 /* If the second operand is NaN, the result is constant. */
6196 (simplify
6197 (cmp @0 REAL_CST@1)
6198 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
6199 && (cmp != LTGT_EXPR || ! flag_trapping_math))
6200 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
6201 ? false : true, type); })))
6202
6203 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
6204 (simplify
6205 (unordered @0 @1)
6206 (switch
6207 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6208 { constant_boolean_node (true, type); })
6209 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6210 { constant_boolean_node (false, type); })))
6211
6212 /* Fold ORDERED if either operand must be NaN, or neither can be. */
6213 (simplify
6214 (ordered @0 @1)
6215 (switch
6216 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
6217 { constant_boolean_node (false, type); })
6218 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
6219 { constant_boolean_node (true, type); })))
6220
6221 /* bool_var != 0 becomes bool_var. */
6222 (simplify
6223 (ne @0 integer_zerop)
6224 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6225 && types_match (type, TREE_TYPE (@0)))
6226 (non_lvalue @0)))
6227 /* bool_var == 1 becomes bool_var. */
6228 (simplify
6229 (eq @0 integer_onep)
6230 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
6231 && types_match (type, TREE_TYPE (@0)))
6232 (non_lvalue @0)))
6233 /* Do not handle
6234 bool_var == 0 becomes !bool_var or
6235 bool_var != 1 becomes !bool_var
6236 here because that only is good in assignment context as long
6237 as we require a tcc_comparison in GIMPLE_CONDs where we'd
6238 replace if (x == 0) with tem = ~x; if (tem != 0) which is
6239 clearly less optimal and which we'll transform again in forwprop. */
6240
6241 /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
6242 where ~Y + 1 == pow2 and Z = ~Y. */
6243 (for cst (VECTOR_CST INTEGER_CST)
6244 (for cmp (eq ne)
6245 icmp (le gt)
6246 (simplify
6247 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
6248 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
6249 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
6250 (with { auto optab = VECTOR_TYPE_P (TREE_TYPE (@1))
6251 ? optab_vector : optab_default;
6252 tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6253 (if (target_supports_op_p (utype, icmp, optab)
6254 || (optimize_vectors_before_lowering_p ()
6255 && (!target_supports_op_p (type, cmp, optab)
6256 || !target_supports_op_p (type, BIT_AND_EXPR, optab))))
6257 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
6258 (icmp @0 { csts; })
6259 (icmp (view_convert:utype @0) { csts; })))))))))
6260
6261 /* When one argument is a constant, overflow detection can be simplified.
6262 Currently restricted to single use so as not to interfere too much with
6263 ADD_OVERFLOW detection in tree-ssa-math-opts.cc.
6264 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
6265 (for cmp (lt le ge gt)
6266 out (gt gt le le)
6267 (simplify
6268 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
6269 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
6270 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
6271 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
6272 && wi::to_wide (@1) != 0
6273 && single_use (@2))
6274 (with {
6275 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
6276 signop sign = TYPE_SIGN (TREE_TYPE (@0));
6277 }
6278 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
6279 wi::max_value (prec, sign)
6280 - wi::to_wide (@1)); })))))
6281
6282 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
6283 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.cc
6284 expects the long form, so we restrict the transformation for now. */
6285 (for cmp (gt le)
6286 (simplify
6287 (cmp:c (minus@2 @0 @1) @0)
6288 (if (single_use (@2)
6289 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6290 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6291 (cmp @1 @0))))
6292
6293 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
6294 (for cmp (ge lt)
6295 (simplify
6296 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
6297 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6298 && TYPE_UNSIGNED (TREE_TYPE (@0)))
6299 (cmp @1 @0))))
6300
6301 /* Testing for overflow is unnecessary if we already know the result. */
6302 /* A - B > A */
6303 (for cmp (gt le)
6304 out (ne eq)
6305 (simplify
6306 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
6307 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6308 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6309 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6310 /* A + B < A */
6311 (for cmp (lt ge)
6312 out (ne eq)
6313 (simplify
6314 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
6315 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
6316 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6317 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
6318
6319 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
6320 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
6321 (for cmp (lt ge)
6322 out (ne eq)
6323 (simplify
6324 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
6325 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
6326 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6327 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6328
6329 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
6330 is at least twice as wide as type of A and B, simplify to
6331 __builtin_mul_overflow (A, B, <unused>). */
6332 (for cmp (eq ne)
6333 (simplify
6334 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
6335 integer_zerop)
6336 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6337 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6338 && TYPE_UNSIGNED (TREE_TYPE (@0))
6339 && (TYPE_PRECISION (TREE_TYPE (@3))
6340 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
6341 && tree_fits_uhwi_p (@2)
6342 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
6343 && types_match (@0, @1)
6344 && type_has_mode_precision_p (TREE_TYPE (@0))
6345 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
6346 != CODE_FOR_nothing))
6347 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
6348 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
6349
6350 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
6351 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
6352 (simplify
6353 (ovf (convert@2 @0) @1)
6354 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6355 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6356 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6357 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6358 (ovf @0 @1)))
6359 (simplify
6360 (ovf @1 (convert@2 @0))
6361 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6362 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6363 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6364 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
6365 (ovf @1 @0))))
6366
6367 /* Optimize __builtin_mul_overflow_p (x, cst, (utype) 0) if all 3 types
6368 are unsigned to x > (umax / cst). Similarly for signed type, but
6369 in that case it needs to be outside of a range. */
6370 (simplify
6371 (imagpart (IFN_MUL_OVERFLOW:cs@2 @0 integer_nonzerop@1))
6372 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6373 && TYPE_MAX_VALUE (TREE_TYPE (@0))
6374 && types_match (TREE_TYPE (@0), TREE_TYPE (TREE_TYPE (@2)))
6375 && int_fits_type_p (@1, TREE_TYPE (@0)))
6376 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
6377 (convert (gt @0 (trunc_div! { TYPE_MAX_VALUE (TREE_TYPE (@0)); } @1)))
6378 (if (TYPE_MIN_VALUE (TREE_TYPE (@0)))
6379 (if (integer_minus_onep (@1))
6380 (convert (eq @0 { TYPE_MIN_VALUE (TREE_TYPE (@0)); }))
6381 (with
6382 {
6383 tree div = fold_convert (TREE_TYPE (@0), @1);
6384 tree lo = int_const_binop (TRUNC_DIV_EXPR,
6385 TYPE_MIN_VALUE (TREE_TYPE (@0)), div);
6386 tree hi = int_const_binop (TRUNC_DIV_EXPR,
6387 TYPE_MAX_VALUE (TREE_TYPE (@0)), div);
6388 tree etype = range_check_type (TREE_TYPE (@0));
6389 if (etype)
6390 {
6391 if (wi::neg_p (wi::to_wide (div)))
6392 std::swap (lo, hi);
6393 lo = fold_convert (etype, lo);
6394 hi = fold_convert (etype, hi);
6395 hi = int_const_binop (MINUS_EXPR, hi, lo);
6396 }
6397 }
6398 (if (etype)
6399 (convert (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
6400
6401 /* Simplification of math builtins. These rules must all be optimizations
6402 as well as IL simplifications. If there is a possibility that the new
6403 form could be a pessimization, the rule should go in the canonicalization
6404 section that follows this one.
6405
6406 Rules can generally go in this section if they satisfy one of
6407 the following:
6408
6409 - the rule describes an identity
6410
6411 - the rule replaces calls with something as simple as addition or
6412 multiplication
6413
6414 - the rule contains unary calls only and simplifies the surrounding
6415 arithmetic. (The idea here is to exclude non-unary calls in which
6416 one operand is constant and in which the call is known to be cheap
6417 when the operand has that value.) */
6418
6419 (if (flag_unsafe_math_optimizations)
6420 /* Simplify sqrt(x) * sqrt(x) -> x. */
6421 (simplify
6422 (mult (SQRT_ALL@1 @0) @1)
6423 (if (!tree_expr_maybe_signaling_nan_p (@0))
6424 @0))
6425
6426 (for op (plus minus)
6427 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
6428 (simplify
6429 (op (rdiv @0 @1)
6430 (rdiv @2 @1))
6431 (rdiv (op @0 @2) @1)))
6432
6433 (for cmp (lt le gt ge)
6434 neg_cmp (gt ge lt le)
6435 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
6436 (simplify
6437 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
6438 (with
6439 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
6440 (if (tem
6441 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
6442 || (real_zerop (tem) && !real_zerop (@1))))
6443 (switch
6444 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
6445 (cmp @0 { tem; }))
6446 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
6447 (neg_cmp @0 { tem; })))))))
6448
6449 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
6450 (for root (SQRT CBRT)
6451 (simplify
6452 (mult (root:s @0) (root:s @1))
6453 (root (mult @0 @1))))
6454
6455 /* Simplify expN(x) * expN(y) -> expN(x+y). */
6456 (for exps (EXP EXP2 EXP10 POW10)
6457 (simplify
6458 (mult (exps:s @0) (exps:s @1))
6459 (exps (plus @0 @1))))
6460
6461 /* Simplify a/root(b/c) into a*root(c/b). */
6462 (for root (SQRT CBRT)
6463 (simplify
6464 (rdiv @0 (root:s (rdiv:s @1 @2)))
6465 (mult @0 (root (rdiv @2 @1)))))
6466
6467 /* Simplify x/expN(y) into x*expN(-y). */
6468 (for exps (EXP EXP2 EXP10 POW10)
6469 (simplify
6470 (rdiv @0 (exps:s @1))
6471 (mult @0 (exps (negate @1)))))
6472
6473 (for logs (LOG LOG2 LOG10 LOG10)
6474 exps (EXP EXP2 EXP10 POW10)
6475 /* logN(expN(x)) -> x. */
6476 (simplify
6477 (logs (exps @0))
6478 @0)
6479 /* expN(logN(x)) -> x. */
6480 (simplify
6481 (exps (logs @0))
6482 @0))
6483
6484 /* Optimize logN(func()) for various exponential functions. We
6485 want to determine the value "x" and the power "exponent" in
6486 order to transform logN(x**exponent) into exponent*logN(x). */
6487 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
6488 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
6489 (simplify
6490 (logs (exps @0))
6491 (if (SCALAR_FLOAT_TYPE_P (type))
6492 (with {
6493 tree x;
6494 switch (exps)
6495 {
6496 CASE_CFN_EXP:
6497 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
6498 x = build_real_truncate (type, dconst_e ());
6499 break;
6500 CASE_CFN_EXP2:
6501 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
6502 x = build_real (type, dconst2);
6503 break;
6504 CASE_CFN_EXP10:
6505 CASE_CFN_POW10:
6506 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
6507 {
6508 REAL_VALUE_TYPE dconst10;
6509 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
6510 x = build_real (type, dconst10);
6511 }
6512 break;
6513 default:
6514 gcc_unreachable ();
6515 }
6516 }
6517 (mult (logs { x; }) @0)))))
6518
6519 (for logs (LOG LOG
6520 LOG2 LOG2
6521 LOG10 LOG10)
6522 exps (SQRT CBRT)
6523 (simplify
6524 (logs (exps @0))
6525 (if (SCALAR_FLOAT_TYPE_P (type))
6526 (with {
6527 tree x;
6528 switch (exps)
6529 {
6530 CASE_CFN_SQRT:
6531 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
6532 x = build_real (type, dconsthalf);
6533 break;
6534 CASE_CFN_CBRT:
6535 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
6536 x = build_real_truncate (type, dconst_third ());
6537 break;
6538 default:
6539 gcc_unreachable ();
6540 }
6541 }
6542 (mult { x; } (logs @0))))))
6543
6544 /* logN(pow(x,exponent)) -> exponent*logN(x). */
6545 (for logs (LOG LOG2 LOG10)
6546 pows (POW)
6547 (simplify
6548 (logs (pows @0 @1))
6549 (mult @1 (logs @0))))
6550
6551 /* pow(C,x) -> exp(log(C)*x) if C > 0,
6552 or if C is a positive power of 2,
6553 pow(C,x) -> exp2(log2(C)*x). */
6554 #if GIMPLE
6555 (for pows (POW)
6556 exps (EXP)
6557 logs (LOG)
6558 exp2s (EXP2)
6559 log2s (LOG2)
6560 (simplify
6561 (pows REAL_CST@0 @1)
6562 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6563 && real_isfinite (TREE_REAL_CST_PTR (@0))
6564 /* As libmvec doesn't have a vectorized exp2, defer optimizing
6565 the use_exp2 case until after vectorization. It seems actually
6566 beneficial for all constants to postpone this until later,
6567 because exp(log(C)*x), while faster, will have worse precision
6568 and if x folds into a constant too, that is unnecessary
6569 pessimization. */
6570 && canonicalize_math_after_vectorization_p ())
6571 (with {
6572 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
6573 bool use_exp2 = false;
6574 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
6575 && value->cl == rvc_normal)
6576 {
6577 REAL_VALUE_TYPE frac_rvt = *value;
6578 SET_REAL_EXP (&frac_rvt, 1);
6579 if (real_equal (&frac_rvt, &dconst1))
6580 use_exp2 = true;
6581 }
6582 }
6583 (if (!use_exp2)
6584 (if (optimize_pow_to_exp (@0, @1))
6585 (exps (mult (logs @0) @1)))
6586 (exp2s (mult (log2s @0) @1)))))))
6587 #endif
6588
6589 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
6590 (for pows (POW)
6591 exps (EXP EXP2 EXP10 POW10)
6592 logs (LOG LOG2 LOG10 LOG10)
6593 (simplify
6594 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6595 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6596 && real_isfinite (TREE_REAL_CST_PTR (@0)))
6597 (exps (plus (mult (logs @0) @1) @2)))))
6598
6599 (for sqrts (SQRT)
6600 cbrts (CBRT)
6601 pows (POW)
6602 exps (EXP EXP2 EXP10 POW10)
6603 /* sqrt(expN(x)) -> expN(x*0.5). */
6604 (simplify
6605 (sqrts (exps @0))
6606 (exps (mult @0 { build_real (type, dconsthalf); })))
6607 /* cbrt(expN(x)) -> expN(x/3). */
6608 (simplify
6609 (cbrts (exps @0))
6610 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6611 /* pow(expN(x), y) -> expN(x*y). */
6612 (simplify
6613 (pows (exps @0) @1)
6614 (exps (mult @0 @1))))
6615
6616 /* tan(atan(x)) -> x. */
6617 (for tans (TAN)
6618 atans (ATAN)
6619 (simplify
6620 (tans (atans @0))
6621 @0)))
6622
6623 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6624 (for sins (SIN)
6625 atans (ATAN)
6626 sqrts (SQRT)
6627 copysigns (COPYSIGN)
6628 (simplify
6629 (sins (atans:s @0))
6630 (with
6631 {
6632 REAL_VALUE_TYPE r_cst;
6633 build_sinatan_real (&r_cst, type);
6634 tree t_cst = build_real (type, r_cst);
6635 tree t_one = build_one_cst (type);
6636 }
6637 (if (SCALAR_FLOAT_TYPE_P (type))
6638 (cond (lt (abs @0) { t_cst; })
6639 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6640 (copysigns { t_one; } @0))))))
6641
6642 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6643 (for coss (COS)
6644 atans (ATAN)
6645 sqrts (SQRT)
6646 copysigns (COPYSIGN)
6647 (simplify
6648 (coss (atans:s @0))
6649 (with
6650 {
6651 REAL_VALUE_TYPE r_cst;
6652 build_sinatan_real (&r_cst, type);
6653 tree t_cst = build_real (type, r_cst);
6654 tree t_one = build_one_cst (type);
6655 tree t_zero = build_zero_cst (type);
6656 }
6657 (if (SCALAR_FLOAT_TYPE_P (type))
6658 (cond (lt (abs @0) { t_cst; })
6659 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6660 (copysigns { t_zero; } @0))))))
6661
6662 (if (!flag_errno_math)
6663 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6664 (for sinhs (SINH)
6665 atanhs (ATANH)
6666 sqrts (SQRT)
6667 (simplify
6668 (sinhs (atanhs:s @0))
6669 (with { tree t_one = build_one_cst (type); }
6670 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6671
6672 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6673 (for coshs (COSH)
6674 atanhs (ATANH)
6675 sqrts (SQRT)
6676 (simplify
6677 (coshs (atanhs:s @0))
6678 (with { tree t_one = build_one_cst (type); }
6679 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6680
6681 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
6682 (simplify
6683 (CABS (complex:C @0 real_zerop@1))
6684 (abs @0))
6685
6686 /* trunc(trunc(x)) -> trunc(x), etc. */
6687 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6688 (simplify
6689 (fns (fns @0))
6690 (fns @0)))
6691 /* f(x) -> x if x is integer valued and f does nothing for such values. */
6692 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6693 (simplify
6694 (fns integer_valued_real_p@0)
6695 @0))
6696
6697 /* hypot(x,0) and hypot(0,x) -> abs(x). */
6698 (simplify
6699 (HYPOT:c @0 real_zerop@1)
6700 (abs @0))
6701
6702 /* pow(1,x) -> 1. */
6703 (simplify
6704 (POW real_onep@0 @1)
6705 @0)
6706
6707 (simplify
6708 /* copysign(x,x) -> x. */
6709 (COPYSIGN_ALL @0 @0)
6710 @0)
6711
6712 (simplify
6713 /* copysign(x,-x) -> -x. */
6714 (COPYSIGN_ALL @0 (negate@1 @0))
6715 @1)
6716
6717 (simplify
6718 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
6719 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
6720 (abs @0))
6721
6722 (for scale (LDEXP SCALBN SCALBLN)
6723 /* ldexp(0, x) -> 0. */
6724 (simplify
6725 (scale real_zerop@0 @1)
6726 @0)
6727 /* ldexp(x, 0) -> x. */
6728 (simplify
6729 (scale @0 integer_zerop@1)
6730 @0)
6731 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
6732 (simplify
6733 (scale REAL_CST@0 @1)
6734 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6735 @0)))
6736
6737 /* Canonicalization of sequences of math builtins. These rules represent
6738 IL simplifications but are not necessarily optimizations.
6739
6740 The sincos pass is responsible for picking "optimal" implementations
6741 of math builtins, which may be more complicated and can sometimes go
6742 the other way, e.g. converting pow into a sequence of sqrts.
6743 We only want to do these canonicalizations before the pass has run. */
6744
6745 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6746 /* Simplify tan(x) * cos(x) -> sin(x). */
6747 (simplify
6748 (mult:c (TAN:s @0) (COS:s @0))
6749 (SIN @0))
6750
6751 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6752 (simplify
6753 (mult:c @0 (POW:s @0 REAL_CST@1))
6754 (if (!TREE_OVERFLOW (@1))
6755 (POW @0 (plus @1 { build_one_cst (type); }))))
6756
6757 /* Simplify sin(x) / cos(x) -> tan(x). */
6758 (simplify
6759 (rdiv (SIN:s @0) (COS:s @0))
6760 (TAN @0))
6761
6762 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6763 (simplify
6764 (rdiv (SINH:s @0) (COSH:s @0))
6765 (TANH @0))
6766
6767 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6768 (simplify
6769 (rdiv (TANH:s @0) (SINH:s @0))
6770 (rdiv {build_one_cst (type);} (COSH @0)))
6771
6772 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6773 (simplify
6774 (rdiv (COS:s @0) (SIN:s @0))
6775 (rdiv { build_one_cst (type); } (TAN @0)))
6776
6777 /* Simplify sin(x) / tan(x) -> cos(x). */
6778 (simplify
6779 (rdiv (SIN:s @0) (TAN:s @0))
6780 (if (! HONOR_NANS (@0)
6781 && ! HONOR_INFINITIES (@0))
6782 (COS @0)))
6783
6784 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6785 (simplify
6786 (rdiv (TAN:s @0) (SIN:s @0))
6787 (if (! HONOR_NANS (@0)
6788 && ! HONOR_INFINITIES (@0))
6789 (rdiv { build_one_cst (type); } (COS @0))))
6790
6791 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6792 (simplify
6793 (mult (POW:s @0 @1) (POW:s @0 @2))
6794 (POW @0 (plus @1 @2)))
6795
6796 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6797 (simplify
6798 (mult (POW:s @0 @1) (POW:s @2 @1))
6799 (POW (mult @0 @2) @1))
6800
6801 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6802 (simplify
6803 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6804 (POWI (mult @0 @2) @1))
6805
6806 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6807 (simplify
6808 (rdiv (POW:s @0 REAL_CST@1) @0)
6809 (if (!TREE_OVERFLOW (@1))
6810 (POW @0 (minus @1 { build_one_cst (type); }))))
6811
6812 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6813 (simplify
6814 (rdiv @0 (POW:s @1 @2))
6815 (mult @0 (POW @1 (negate @2))))
6816
6817 (for sqrts (SQRT)
6818 cbrts (CBRT)
6819 pows (POW)
6820 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6821 (simplify
6822 (sqrts (sqrts @0))
6823 (pows @0 { build_real (type, dconst_quarter ()); }))
6824 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6825 (simplify
6826 (sqrts (cbrts @0))
6827 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6828 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6829 (simplify
6830 (cbrts (sqrts @0))
6831 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6832 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6833 (simplify
6834 (cbrts (cbrts tree_expr_nonnegative_p@0))
6835 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6836 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6837 (simplify
6838 (sqrts (pows @0 @1))
6839 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6840 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6841 (simplify
6842 (cbrts (pows tree_expr_nonnegative_p@0 @1))
6843 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6844 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6845 (simplify
6846 (pows (sqrts @0) @1)
6847 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6848 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6849 (simplify
6850 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6851 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6852 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6853 (simplify
6854 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6855 (pows @0 (mult @1 @2))))
6856
6857 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6858 (simplify
6859 (CABS (complex @0 @0))
6860 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6861
6862 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6863 (simplify
6864 (HYPOT @0 @0)
6865 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6866
6867 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6868 (for cexps (CEXP)
6869 exps (EXP)
6870 cexpis (CEXPI)
6871 (simplify
6872 (cexps compositional_complex@0)
6873 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6874 (complex
6875 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6876 (mult @1 (imagpart @2)))))))
6877
6878 (if (canonicalize_math_p ())
6879 /* floor(x) -> trunc(x) if x is nonnegative. */
6880 (for floors (FLOOR_ALL)
6881 truncs (TRUNC_ALL)
6882 (simplify
6883 (floors tree_expr_nonnegative_p@0)
6884 (truncs @0))))
6885
6886 (match double_value_p
6887 @0
6888 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6889 (for froms (BUILT_IN_TRUNCL
6890 BUILT_IN_FLOORL
6891 BUILT_IN_CEILL
6892 BUILT_IN_ROUNDL
6893 BUILT_IN_NEARBYINTL
6894 BUILT_IN_RINTL)
6895 tos (BUILT_IN_TRUNC
6896 BUILT_IN_FLOOR
6897 BUILT_IN_CEIL
6898 BUILT_IN_ROUND
6899 BUILT_IN_NEARBYINT
6900 BUILT_IN_RINT)
6901 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6902 (if (optimize && canonicalize_math_p ())
6903 (simplify
6904 (froms (convert double_value_p@0))
6905 (convert (tos @0)))))
6906
6907 (match float_value_p
6908 @0
6909 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6910 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6911 BUILT_IN_FLOORL BUILT_IN_FLOOR
6912 BUILT_IN_CEILL BUILT_IN_CEIL
6913 BUILT_IN_ROUNDL BUILT_IN_ROUND
6914 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6915 BUILT_IN_RINTL BUILT_IN_RINT)
6916 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6917 BUILT_IN_FLOORF BUILT_IN_FLOORF
6918 BUILT_IN_CEILF BUILT_IN_CEILF
6919 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6920 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6921 BUILT_IN_RINTF BUILT_IN_RINTF)
6922 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6923 if x is a float. */
6924 (if (optimize && canonicalize_math_p ()
6925 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6926 (simplify
6927 (froms (convert float_value_p@0))
6928 (convert (tos @0)))))
6929
6930 #if GIMPLE
6931 (match float16_value_p
6932 @0
6933 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6934 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6935 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6936 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6937 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6938 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6939 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6940 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6941 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6942 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6943 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6944 IFN_CEIL IFN_CEIL IFN_CEIL
6945 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6946 IFN_ROUND IFN_ROUND IFN_ROUND
6947 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6948 IFN_RINT IFN_RINT IFN_RINT
6949 IFN_SQRT IFN_SQRT IFN_SQRT)
6950 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6951 if x is a _Float16. */
6952 (simplify
6953 (convert (froms (convert float16_value_p@0)))
6954 (if (optimize
6955 && types_match (type, TREE_TYPE (@0))
6956 && direct_internal_fn_supported_p (as_internal_fn (tos),
6957 type, OPTIMIZE_FOR_BOTH))
6958 (tos @0))))
6959
6960 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6961 x,y is float value, similar for _Float16/double. */
6962 (for copysigns (COPYSIGN_ALL)
6963 (simplify
6964 (convert (copysigns (convert@2 @0) (convert @1)))
6965 (if (optimize
6966 && !HONOR_SNANS (@2)
6967 && types_match (type, TREE_TYPE (@0))
6968 && types_match (type, TREE_TYPE (@1))
6969 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6970 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6971 type, OPTIMIZE_FOR_BOTH))
6972 (IFN_COPYSIGN @0 @1))))
6973
6974 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6975 tos (IFN_FMA IFN_FMA IFN_FMA)
6976 (simplify
6977 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6978 (if (flag_unsafe_math_optimizations
6979 && optimize
6980 && FLOAT_TYPE_P (type)
6981 && FLOAT_TYPE_P (TREE_TYPE (@3))
6982 && types_match (type, TREE_TYPE (@0))
6983 && types_match (type, TREE_TYPE (@1))
6984 && types_match (type, TREE_TYPE (@2))
6985 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6986 && direct_internal_fn_supported_p (as_internal_fn (tos),
6987 type, OPTIMIZE_FOR_BOTH))
6988 (tos @0 @1 @2))))
6989
6990 (for maxmin (max min)
6991 (simplify
6992 (convert (maxmin (convert@2 @0) (convert @1)))
6993 (if (optimize
6994 && FLOAT_TYPE_P (type)
6995 && FLOAT_TYPE_P (TREE_TYPE (@2))
6996 && types_match (type, TREE_TYPE (@0))
6997 && types_match (type, TREE_TYPE (@1))
6998 && element_precision (type) < element_precision (TREE_TYPE (@2)))
6999 (maxmin @0 @1))))
7000 #endif
7001
7002 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
7003 tos (XFLOOR XCEIL XROUND XRINT)
7004 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
7005 (if (optimize && canonicalize_math_p ())
7006 (simplify
7007 (froms (convert double_value_p@0))
7008 (tos @0))))
7009
7010 (for froms (XFLOORL XCEILL XROUNDL XRINTL
7011 XFLOOR XCEIL XROUND XRINT)
7012 tos (XFLOORF XCEILF XROUNDF XRINTF)
7013 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
7014 if x is a float. */
7015 (if (optimize && canonicalize_math_p ())
7016 (simplify
7017 (froms (convert float_value_p@0))
7018 (tos @0))))
7019
7020 (if (canonicalize_math_p ())
7021 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
7022 (for floors (IFLOOR LFLOOR LLFLOOR)
7023 (simplify
7024 (floors tree_expr_nonnegative_p@0)
7025 (fix_trunc @0))))
7026
7027 (if (canonicalize_math_p ())
7028 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
7029 (for fns (IFLOOR LFLOOR LLFLOOR
7030 ICEIL LCEIL LLCEIL
7031 IROUND LROUND LLROUND)
7032 (simplify
7033 (fns integer_valued_real_p@0)
7034 (fix_trunc @0)))
7035 (if (!flag_errno_math)
7036 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
7037 (for rints (IRINT LRINT LLRINT)
7038 (simplify
7039 (rints integer_valued_real_p@0)
7040 (fix_trunc @0)))))
7041
7042 (if (canonicalize_math_p ())
7043 (for ifn (IFLOOR ICEIL IROUND IRINT)
7044 lfn (LFLOOR LCEIL LROUND LRINT)
7045 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
7046 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
7047 sizeof (int) == sizeof (long). */
7048 (if (TYPE_PRECISION (integer_type_node)
7049 == TYPE_PRECISION (long_integer_type_node))
7050 (simplify
7051 (ifn @0)
7052 (lfn:long_integer_type_node @0)))
7053 /* Canonicalize llround (x) to lround (x) on LP64 targets where
7054 sizeof (long long) == sizeof (long). */
7055 (if (TYPE_PRECISION (long_long_integer_type_node)
7056 == TYPE_PRECISION (long_integer_type_node))
7057 (simplify
7058 (llfn @0)
7059 (lfn:long_integer_type_node @0)))))
7060
7061 /* cproj(x) -> x if we're ignoring infinities. */
7062 (simplify
7063 (CPROJ @0)
7064 (if (!HONOR_INFINITIES (type))
7065 @0))
7066
7067 /* If the real part is inf and the imag part is known to be
7068 nonnegative, return (inf + 0i). */
7069 (simplify
7070 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
7071 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
7072 { build_complex_inf (type, false); }))
7073
7074 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
7075 (simplify
7076 (CPROJ (complex @0 REAL_CST@1))
7077 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
7078 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
7079
7080 (for pows (POW)
7081 sqrts (SQRT)
7082 cbrts (CBRT)
7083 (simplify
7084 (pows @0 REAL_CST@1)
7085 (with {
7086 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
7087 REAL_VALUE_TYPE tmp;
7088 }
7089 (switch
7090 /* pow(x,0) -> 1. */
7091 (if (real_equal (value, &dconst0))
7092 { build_real (type, dconst1); })
7093 /* pow(x,1) -> x. */
7094 (if (real_equal (value, &dconst1))
7095 @0)
7096 /* pow(x,-1) -> 1/x. */
7097 (if (real_equal (value, &dconstm1))
7098 (rdiv { build_real (type, dconst1); } @0))
7099 /* pow(x,0.5) -> sqrt(x). */
7100 (if (flag_unsafe_math_optimizations
7101 && canonicalize_math_p ()
7102 && real_equal (value, &dconsthalf))
7103 (sqrts @0))
7104 /* pow(x,1/3) -> cbrt(x). */
7105 (if (flag_unsafe_math_optimizations
7106 && canonicalize_math_p ()
7107 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
7108 real_equal (value, &tmp)))
7109 (cbrts @0))))))
7110
7111 /* powi(1,x) -> 1. */
7112 (simplify
7113 (POWI real_onep@0 @1)
7114 @0)
7115
7116 (simplify
7117 (POWI @0 INTEGER_CST@1)
7118 (switch
7119 /* powi(x,0) -> 1. */
7120 (if (wi::to_wide (@1) == 0)
7121 { build_real (type, dconst1); })
7122 /* powi(x,1) -> x. */
7123 (if (wi::to_wide (@1) == 1)
7124 @0)
7125 /* powi(x,-1) -> 1/x. */
7126 (if (wi::to_wide (@1) == -1)
7127 (rdiv { build_real (type, dconst1); } @0))))
7128
7129 /* Narrowing of arithmetic and logical operations.
7130
7131 These are conceptually similar to the transformations performed for
7132 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
7133 term we want to move all that code out of the front-ends into here. */
7134
7135 /* Convert (outertype)((innertype0)a+(innertype1)b)
7136 into ((newtype)a+(newtype)b) where newtype
7137 is the widest mode from all of these. */
7138 (for op (plus minus mult rdiv)
7139 (simplify
7140 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
7141 /* If we have a narrowing conversion of an arithmetic operation where
7142 both operands are widening conversions from the same type as the outer
7143 narrowing conversion. Then convert the innermost operands to a
7144 suitable unsigned type (to avoid introducing undefined behavior),
7145 perform the operation and convert the result to the desired type. */
7146 (if (INTEGRAL_TYPE_P (type)
7147 && op != MULT_EXPR
7148 && op != RDIV_EXPR
7149 /* We check for type compatibility between @0 and @1 below,
7150 so there's no need to check that @2/@4 are integral types. */
7151 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
7152 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
7153 /* The precision of the type of each operand must match the
7154 precision of the mode of each operand, similarly for the
7155 result. */
7156 && type_has_mode_precision_p (TREE_TYPE (@1))
7157 && type_has_mode_precision_p (TREE_TYPE (@2))
7158 && type_has_mode_precision_p (type)
7159 /* The inner conversion must be a widening conversion. */
7160 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
7161 && types_match (@1, type)
7162 && (types_match (@1, @2)
7163 /* Or the second operand is const integer or converted const
7164 integer from valueize. */
7165 || poly_int_tree_p (@4)))
7166 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
7167 (op @1 (convert @2))
7168 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
7169 (convert (op (convert:utype @1)
7170 (convert:utype @2)))))
7171 (if (FLOAT_TYPE_P (type)
7172 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
7173 == DECIMAL_FLOAT_TYPE_P (type))
7174 (with { tree arg0 = strip_float_extensions (@1);
7175 tree arg1 = strip_float_extensions (@2);
7176 tree itype = TREE_TYPE (@0);
7177 tree ty1 = TREE_TYPE (arg0);
7178 tree ty2 = TREE_TYPE (arg1);
7179 enum tree_code code = TREE_CODE (itype); }
7180 (if (FLOAT_TYPE_P (ty1)
7181 && FLOAT_TYPE_P (ty2))
7182 (with { tree newtype = type;
7183 if (TYPE_MODE (ty1) == SDmode
7184 || TYPE_MODE (ty2) == SDmode
7185 || TYPE_MODE (type) == SDmode)
7186 newtype = dfloat32_type_node;
7187 if (TYPE_MODE (ty1) == DDmode
7188 || TYPE_MODE (ty2) == DDmode
7189 || TYPE_MODE (type) == DDmode)
7190 newtype = dfloat64_type_node;
7191 if (TYPE_MODE (ty1) == TDmode
7192 || TYPE_MODE (ty2) == TDmode
7193 || TYPE_MODE (type) == TDmode)
7194 newtype = dfloat128_type_node; }
7195 (if ((newtype == dfloat32_type_node
7196 || newtype == dfloat64_type_node
7197 || newtype == dfloat128_type_node)
7198 && newtype == type
7199 && types_match (newtype, type))
7200 (op (convert:newtype @1) (convert:newtype @2))
7201 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
7202 newtype = ty1;
7203 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
7204 newtype = ty2; }
7205 /* Sometimes this transformation is safe (cannot
7206 change results through affecting double rounding
7207 cases) and sometimes it is not. If NEWTYPE is
7208 wider than TYPE, e.g. (float)((long double)double
7209 + (long double)double) converted to
7210 (float)(double + double), the transformation is
7211 unsafe regardless of the details of the types
7212 involved; double rounding can arise if the result
7213 of NEWTYPE arithmetic is a NEWTYPE value half way
7214 between two representable TYPE values but the
7215 exact value is sufficiently different (in the
7216 right direction) for this difference to be
7217 visible in ITYPE arithmetic. If NEWTYPE is the
7218 same as TYPE, however, the transformation may be
7219 safe depending on the types involved: it is safe
7220 if the ITYPE has strictly more than twice as many
7221 mantissa bits as TYPE, can represent infinities
7222 and NaNs if the TYPE can, and has sufficient
7223 exponent range for the product or ratio of two
7224 values representable in the TYPE to be within the
7225 range of normal values of ITYPE. */
7226 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
7227 && (flag_unsafe_math_optimizations
7228 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
7229 && real_can_shorten_arithmetic (TYPE_MODE (itype),
7230 TYPE_MODE (type))
7231 && !excess_precision_type (newtype)))
7232 && !types_match (itype, newtype))
7233 (convert:type (op (convert:newtype @1)
7234 (convert:newtype @2)))
7235 )))) )
7236 ))
7237 )))
7238
7239 /* This is another case of narrowing, specifically when there's an outer
7240 BIT_AND_EXPR which masks off bits outside the type of the innermost
7241 operands. Like the previous case we have to convert the operands
7242 to unsigned types to avoid introducing undefined behavior for the
7243 arithmetic operation. */
7244 (for op (minus plus)
7245 (simplify
7246 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
7247 (if (INTEGRAL_TYPE_P (type)
7248 /* We check for type compatibility between @0 and @1 below,
7249 so there's no need to check that @1/@3 are integral types. */
7250 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
7251 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
7252 /* The precision of the type of each operand must match the
7253 precision of the mode of each operand, similarly for the
7254 result. */
7255 && type_has_mode_precision_p (TREE_TYPE (@0))
7256 && type_has_mode_precision_p (TREE_TYPE (@1))
7257 && type_has_mode_precision_p (type)
7258 /* The inner conversion must be a widening conversion. */
7259 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
7260 && types_match (@0, @1)
7261 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
7262 <= TYPE_PRECISION (TREE_TYPE (@0)))
7263 && (wi::to_wide (@4)
7264 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
7265 true, TYPE_PRECISION (type))) == 0)
7266 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
7267 (with { tree ntype = TREE_TYPE (@0); }
7268 (convert (bit_and (op @0 @1) (convert:ntype @4))))
7269 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7270 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
7271 (convert:utype @4))))))))
7272
7273 /* Transform (@0 < @1 and @0 < @2) to use min,
7274 (@0 > @1 and @0 > @2) to use max */
7275 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
7276 op (lt le gt ge lt le gt ge )
7277 ext (min min max max max max min min )
7278 (simplify
7279 (logic (op:cs @0 @1) (op:cs @0 @2))
7280 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7281 && TREE_CODE (@0) != INTEGER_CST)
7282 (op @0 (ext @1 @2)))))
7283
7284 (simplify
7285 /* signbit(x) -> 0 if x is nonnegative. */
7286 (SIGNBIT tree_expr_nonnegative_p@0)
7287 { integer_zero_node; })
7288
7289 (simplify
7290 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
7291 (SIGNBIT @0)
7292 (if (!HONOR_SIGNED_ZEROS (@0))
7293 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
7294
7295 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
7296 (for cmp (eq ne)
7297 (for op (plus minus)
7298 rop (minus plus)
7299 (simplify
7300 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7301 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7302 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
7303 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
7304 && !TYPE_SATURATING (TREE_TYPE (@0)))
7305 (with { tree res = int_const_binop (rop, @2, @1); }
7306 (if (TREE_OVERFLOW (res)
7307 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7308 { constant_boolean_node (cmp == NE_EXPR, type); }
7309 (if (single_use (@3))
7310 (cmp @0 { TREE_OVERFLOW (res)
7311 ? drop_tree_overflow (res) : res; }))))))))
7312 (for cmp (lt le gt ge)
7313 (for op (plus minus)
7314 rop (minus plus)
7315 (simplify
7316 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
7317 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
7318 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
7319 (with { tree res = int_const_binop (rop, @2, @1); }
7320 (if (TREE_OVERFLOW (res))
7321 {
7322 fold_overflow_warning (("assuming signed overflow does not occur "
7323 "when simplifying conditional to constant"),
7324 WARN_STRICT_OVERFLOW_CONDITIONAL);
7325 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
7326 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
7327 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
7328 TYPE_SIGN (TREE_TYPE (@1)))
7329 != (op == MINUS_EXPR);
7330 constant_boolean_node (less == ovf_high, type);
7331 }
7332 (if (single_use (@3))
7333 (with
7334 {
7335 fold_overflow_warning (("assuming signed overflow does not occur "
7336 "when changing X +- C1 cmp C2 to "
7337 "X cmp C2 -+ C1"),
7338 WARN_STRICT_OVERFLOW_COMPARISON);
7339 }
7340 (cmp @0 { res; })))))))))
7341
7342 /* Canonicalizations of BIT_FIELD_REFs. */
7343
7344 (simplify
7345 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
7346 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
7347
7348 (simplify
7349 (BIT_FIELD_REF (view_convert @0) @1 @2)
7350 (BIT_FIELD_REF @0 @1 @2))
7351
7352 (simplify
7353 (BIT_FIELD_REF @0 @1 integer_zerop)
7354 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
7355 (view_convert @0)))
7356
7357 (simplify
7358 (BIT_FIELD_REF @0 @1 @2)
7359 (switch
7360 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
7361 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7362 (switch
7363 (if (integer_zerop (@2))
7364 (view_convert (realpart @0)))
7365 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7366 (view_convert (imagpart @0)))))
7367 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7368 && INTEGRAL_TYPE_P (type)
7369 /* On GIMPLE this should only apply to register arguments. */
7370 && (! GIMPLE || is_gimple_reg (@0))
7371 /* A bit-field-ref that referenced the full argument can be stripped. */
7372 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
7373 && integer_zerop (@2))
7374 /* Low-parts can be reduced to integral conversions.
7375 ??? The following doesn't work for PDP endian. */
7376 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
7377 /* But only do this after vectorization. */
7378 && canonicalize_math_after_vectorization_p ()
7379 /* Don't even think about BITS_BIG_ENDIAN. */
7380 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
7381 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
7382 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
7383 ? (TYPE_PRECISION (TREE_TYPE (@0))
7384 - TYPE_PRECISION (type))
7385 : 0)) == 0)))
7386 (convert @0))))
7387
7388 /* Simplify vector extracts. */
7389
7390 (simplify
7391 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
7392 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
7393 && tree_fits_uhwi_p (TYPE_SIZE (type))
7394 && ((tree_to_uhwi (TYPE_SIZE (type))
7395 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
7396 || (VECTOR_TYPE_P (type)
7397 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
7398 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
7399 (with
7400 {
7401 tree ctor = (TREE_CODE (@0) == SSA_NAME
7402 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
7403 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
7404 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
7405 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
7406 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
7407 }
7408 (if (n != 0
7409 && (idx % width) == 0
7410 && (n % width) == 0
7411 && known_le ((idx + n) / width,
7412 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
7413 (with
7414 {
7415 idx = idx / width;
7416 n = n / width;
7417 /* Constructor elements can be subvectors. */
7418 poly_uint64 k = 1;
7419 if (CONSTRUCTOR_NELTS (ctor) != 0)
7420 {
7421 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
7422 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
7423 k = TYPE_VECTOR_SUBPARTS (cons_elem);
7424 }
7425 unsigned HOST_WIDE_INT elt, count, const_k;
7426 }
7427 (switch
7428 /* We keep an exact subset of the constructor elements. */
7429 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
7430 (if (CONSTRUCTOR_NELTS (ctor) == 0)
7431 { build_zero_cst (type); }
7432 (if (count == 1)
7433 (if (elt < CONSTRUCTOR_NELTS (ctor))
7434 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
7435 { build_zero_cst (type); })
7436 /* We don't want to emit new CTORs unless the old one goes away.
7437 ??? Eventually allow this if the CTOR ends up constant or
7438 uniform. */
7439 (if (single_use (@0))
7440 (with
7441 {
7442 vec<constructor_elt, va_gc> *vals;
7443 vec_alloc (vals, count);
7444 bool constant_p = true;
7445 tree res;
7446 for (unsigned i = 0;
7447 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
7448 {
7449 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
7450 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
7451 if (!CONSTANT_CLASS_P (e))
7452 constant_p = false;
7453 }
7454 tree evtype = (types_match (TREE_TYPE (type),
7455 TREE_TYPE (TREE_TYPE (ctor)))
7456 ? type
7457 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
7458 count * k));
7459 res = (constant_p ? build_vector_from_ctor (evtype, vals)
7460 : build_constructor (evtype, vals));
7461 }
7462 (view_convert { res; }))))))
7463 /* The bitfield references a single constructor element. */
7464 (if (k.is_constant (&const_k)
7465 && idx + n <= (idx / const_k + 1) * const_k)
7466 (switch
7467 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
7468 { build_zero_cst (type); })
7469 (if (n == const_k)
7470 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
7471 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
7472 @1 { bitsize_int ((idx % const_k) * width); })))))))))
7473
7474 /* Simplify a bit extraction from a bit insertion for the cases with
7475 the inserted element fully covering the extraction or the insertion
7476 not touching the extraction. */
7477 (simplify
7478 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
7479 (with
7480 {
7481 unsigned HOST_WIDE_INT isize;
7482 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
7483 isize = TYPE_PRECISION (TREE_TYPE (@1));
7484 else
7485 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
7486 }
7487 (switch
7488 (if ((!INTEGRAL_TYPE_P (TREE_TYPE (@1))
7489 || type_has_mode_precision_p (TREE_TYPE (@1)))
7490 && wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
7491 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
7492 wi::to_wide (@ipos) + isize))
7493 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
7494 wi::to_wide (@rpos)
7495 - wi::to_wide (@ipos)); }))
7496 (if (wi::eq_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
7497 && compare_tree_int (@rsize, isize) == 0)
7498 (convert @1))
7499 (if (wi::geu_p (wi::to_wide (@ipos),
7500 wi::to_wide (@rpos) + wi::to_wide (@rsize))
7501 || wi::geu_p (wi::to_wide (@rpos),
7502 wi::to_wide (@ipos) + isize))
7503 (BIT_FIELD_REF @0 @rsize @rpos)))))
7504
7505 (if (canonicalize_math_after_vectorization_p ())
7506 (for fmas (FMA)
7507 (simplify
7508 (fmas:c (negate @0) @1 @2)
7509 (IFN_FNMA @0 @1 @2))
7510 (simplify
7511 (fmas @0 @1 (negate @2))
7512 (IFN_FMS @0 @1 @2))
7513 (simplify
7514 (fmas:c (negate @0) @1 (negate @2))
7515 (IFN_FNMS @0 @1 @2))
7516 (simplify
7517 (negate (fmas@3 @0 @1 @2))
7518 (if (single_use (@3))
7519 (IFN_FNMS @0 @1 @2))))
7520
7521 (simplify
7522 (IFN_FMS:c (negate @0) @1 @2)
7523 (IFN_FNMS @0 @1 @2))
7524 (simplify
7525 (IFN_FMS @0 @1 (negate @2))
7526 (IFN_FMA @0 @1 @2))
7527 (simplify
7528 (IFN_FMS:c (negate @0) @1 (negate @2))
7529 (IFN_FNMA @0 @1 @2))
7530 (simplify
7531 (negate (IFN_FMS@3 @0 @1 @2))
7532 (if (single_use (@3))
7533 (IFN_FNMA @0 @1 @2)))
7534
7535 (simplify
7536 (IFN_FNMA:c (negate @0) @1 @2)
7537 (IFN_FMA @0 @1 @2))
7538 (simplify
7539 (IFN_FNMA @0 @1 (negate @2))
7540 (IFN_FNMS @0 @1 @2))
7541 (simplify
7542 (IFN_FNMA:c (negate @0) @1 (negate @2))
7543 (IFN_FMS @0 @1 @2))
7544 (simplify
7545 (negate (IFN_FNMA@3 @0 @1 @2))
7546 (if (single_use (@3))
7547 (IFN_FMS @0 @1 @2)))
7548
7549 (simplify
7550 (IFN_FNMS:c (negate @0) @1 @2)
7551 (IFN_FMS @0 @1 @2))
7552 (simplify
7553 (IFN_FNMS @0 @1 (negate @2))
7554 (IFN_FNMA @0 @1 @2))
7555 (simplify
7556 (IFN_FNMS:c (negate @0) @1 (negate @2))
7557 (IFN_FMA @0 @1 @2))
7558 (simplify
7559 (negate (IFN_FNMS@3 @0 @1 @2))
7560 (if (single_use (@3))
7561 (IFN_FMA @0 @1 @2))))
7562
7563 /* CLZ simplifications. */
7564 (for clz (CLZ)
7565 (for op (eq ne)
7566 cmp (lt ge)
7567 (simplify
7568 (op (clz:s@2 @0) INTEGER_CST@1)
7569 (if (integer_zerop (@1) && single_use (@2))
7570 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
7571 (with { tree type0 = TREE_TYPE (@0);
7572 tree stype = signed_type_for (type0);
7573 HOST_WIDE_INT val = 0;
7574 /* Punt on hypothetical weird targets. */
7575 if (clz == CFN_CLZ
7576 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7577 val) == 2
7578 && val == 0)
7579 stype = NULL_TREE;
7580 }
7581 (if (stype)
7582 (cmp (convert:stype @0) { build_zero_cst (stype); })))
7583 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
7584 (with { bool ok = true;
7585 HOST_WIDE_INT val = 0;
7586 tree type0 = TREE_TYPE (@0);
7587 /* Punt on hypothetical weird targets. */
7588 if (clz == CFN_CLZ
7589 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7590 val) == 2
7591 && val == TYPE_PRECISION (type0) - 1)
7592 ok = false;
7593 }
7594 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7595 (op @0 { build_one_cst (type0); })))))))
7596
7597 /* CTZ simplifications. */
7598 (for ctz (CTZ)
7599 (for op (ge gt le lt)
7600 cmp (eq eq ne ne)
7601 (simplify
7602 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
7603 (op (ctz:s @0) INTEGER_CST@1)
7604 (with { bool ok = true;
7605 HOST_WIDE_INT val = 0;
7606 if (!tree_fits_shwi_p (@1))
7607 ok = false;
7608 else
7609 {
7610 val = tree_to_shwi (@1);
7611 /* Canonicalize to >= or <. */
7612 if (op == GT_EXPR || op == LE_EXPR)
7613 {
7614 if (val == HOST_WIDE_INT_MAX)
7615 ok = false;
7616 else
7617 val++;
7618 }
7619 }
7620 bool zero_res = false;
7621 HOST_WIDE_INT zero_val = 0;
7622 tree type0 = TREE_TYPE (@0);
7623 int prec = TYPE_PRECISION (type0);
7624 if (ctz == CFN_CTZ
7625 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7626 zero_val) == 2)
7627 zero_res = true;
7628 }
7629 (if (val <= 0)
7630 (if (ok && (!zero_res || zero_val >= val))
7631 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7632 (if (val >= prec)
7633 (if (ok && (!zero_res || zero_val < val))
7634 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7635 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7636 (cmp (bit_and @0 { wide_int_to_tree (type0,
7637 wi::mask (val, false, prec)); })
7638 { build_zero_cst (type0); })))))))
7639 (for op (eq ne)
7640 (simplify
7641 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
7642 (op (ctz:s @0) INTEGER_CST@1)
7643 (with { bool zero_res = false;
7644 HOST_WIDE_INT zero_val = 0;
7645 tree type0 = TREE_TYPE (@0);
7646 int prec = TYPE_PRECISION (type0);
7647 if (ctz == CFN_CTZ
7648 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7649 zero_val) == 2)
7650 zero_res = true;
7651 }
7652 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7653 (if (!zero_res || zero_val != wi::to_widest (@1))
7654 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7655 (if (!zero_res || zero_val < 0 || zero_val >= prec)
7656 (op (bit_and @0 { wide_int_to_tree (type0,
7657 wi::mask (tree_to_uhwi (@1) + 1,
7658 false, prec)); })
7659 { wide_int_to_tree (type0,
7660 wi::shifted_mask (tree_to_uhwi (@1), 1,
7661 false, prec)); })))))))
7662
7663 /* POPCOUNT simplifications. */
7664 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
7665 (simplify
7666 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
7667 (if (INTEGRAL_TYPE_P (type)
7668 && wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
7669 (POPCOUNT (bit_ior @0 @1))))
7670
7671 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
7672 (for popcount (POPCOUNT)
7673 (for cmp (le eq ne gt)
7674 rep (eq eq ne ne)
7675 (simplify
7676 (cmp (popcount @0) integer_zerop)
7677 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
7678
7679 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
7680 (simplify
7681 (bit_and (POPCOUNT @0) integer_onep)
7682 (PARITY @0))
7683
7684 /* PARITY simplifications. */
7685 /* parity(~X) is parity(X). */
7686 (simplify
7687 (PARITY (bit_not @0))
7688 (PARITY @0))
7689
7690 /* parity(X)^parity(Y) is parity(X^Y). */
7691 (simplify
7692 (bit_xor (PARITY:s @0) (PARITY:s @1))
7693 (PARITY (bit_xor @0 @1)))
7694
7695 /* Common POPCOUNT/PARITY simplifications. */
7696 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
7697 (for pfun (POPCOUNT PARITY)
7698 (simplify
7699 (pfun @0)
7700 (if (INTEGRAL_TYPE_P (type))
7701 (with { wide_int nz = tree_nonzero_bits (@0); }
7702 (switch
7703 (if (nz == 1)
7704 (convert @0))
7705 (if (wi::popcount (nz) == 1)
7706 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7707 (convert (rshift:utype (convert:utype @0)
7708 { build_int_cst (integer_type_node,
7709 wi::ctz (nz)); })))))))))
7710
7711 #if GIMPLE
7712 /* 64- and 32-bits branchless implementations of popcount are detected:
7713
7714 int popcount64c (uint64_t x)
7715 {
7716 x -= (x >> 1) & 0x5555555555555555ULL;
7717 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7718 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7719 return (x * 0x0101010101010101ULL) >> 56;
7720 }
7721
7722 int popcount32c (uint32_t x)
7723 {
7724 x -= (x >> 1) & 0x55555555;
7725 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7726 x = (x + (x >> 4)) & 0x0f0f0f0f;
7727 return (x * 0x01010101) >> 24;
7728 } */
7729 (simplify
7730 (rshift
7731 (mult
7732 (bit_and
7733 (plus:c
7734 (rshift @8 INTEGER_CST@5)
7735 (plus:c@8
7736 (bit_and @6 INTEGER_CST@7)
7737 (bit_and
7738 (rshift
7739 (minus@6 @0
7740 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7741 INTEGER_CST@10)
7742 INTEGER_CST@9)))
7743 INTEGER_CST@3)
7744 INTEGER_CST@2)
7745 INTEGER_CST@1)
7746 /* Check constants and optab. */
7747 (with { unsigned prec = TYPE_PRECISION (type);
7748 int shift = (64 - prec) & 63;
7749 unsigned HOST_WIDE_INT c1
7750 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7751 unsigned HOST_WIDE_INT c2
7752 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7753 unsigned HOST_WIDE_INT c3
7754 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7755 unsigned HOST_WIDE_INT c4
7756 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7757 }
7758 (if (prec >= 16
7759 && prec <= 64
7760 && pow2p_hwi (prec)
7761 && TYPE_UNSIGNED (type)
7762 && integer_onep (@4)
7763 && wi::to_widest (@10) == 2
7764 && wi::to_widest (@5) == 4
7765 && wi::to_widest (@1) == prec - 8
7766 && tree_to_uhwi (@2) == c1
7767 && tree_to_uhwi (@3) == c2
7768 && tree_to_uhwi (@9) == c3
7769 && tree_to_uhwi (@7) == c3
7770 && tree_to_uhwi (@11) == c4)
7771 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7772 OPTIMIZE_FOR_BOTH))
7773 (convert (IFN_POPCOUNT:type @0))
7774 /* Try to do popcount in two halves. PREC must be at least
7775 five bits for this to work without extension before adding. */
7776 (with {
7777 tree half_type = NULL_TREE;
7778 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7779 int half_prec = 8;
7780 if (m.exists ()
7781 && m.require () != TYPE_MODE (type))
7782 {
7783 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7784 half_type = build_nonstandard_integer_type (half_prec, 1);
7785 }
7786 gcc_assert (half_prec > 2);
7787 }
7788 (if (half_type != NULL_TREE
7789 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7790 OPTIMIZE_FOR_BOTH))
7791 (convert (plus
7792 (IFN_POPCOUNT:half_type (convert @0))
7793 (IFN_POPCOUNT:half_type (convert (rshift @0
7794 { build_int_cst (integer_type_node, half_prec); } )))))))))))
7795
7796 /* __builtin_ffs needs to deal on many targets with the possible zero
7797 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7798 should lead to better code. */
7799 (simplify
7800 (FFS tree_expr_nonzero_p@0)
7801 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7802 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7803 OPTIMIZE_FOR_SPEED))
7804 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7805 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7806 #endif
7807
7808 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7809 BUILT_IN_FFSIMAX)
7810 /* __builtin_ffs (X) == 0 -> X == 0.
7811 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7812 (for cmp (eq ne)
7813 (simplify
7814 (cmp (ffs@2 @0) INTEGER_CST@1)
7815 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7816 (switch
7817 (if (integer_zerop (@1))
7818 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7819 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7820 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7821 (if (single_use (@2))
7822 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7823 wi::mask (tree_to_uhwi (@1),
7824 false, prec)); })
7825 { wide_int_to_tree (TREE_TYPE (@0),
7826 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7827 false, prec)); }))))))
7828
7829 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7830 (for cmp (gt le)
7831 cmp2 (ne eq)
7832 cmp3 (eq ne)
7833 bit_op (bit_and bit_ior)
7834 (simplify
7835 (cmp (ffs@2 @0) INTEGER_CST@1)
7836 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7837 (switch
7838 (if (integer_zerop (@1))
7839 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7840 (if (tree_int_cst_sgn (@1) < 0)
7841 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7842 (if (wi::to_widest (@1) >= prec)
7843 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7844 (if (wi::to_widest (@1) == prec - 1)
7845 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7846 wi::shifted_mask (prec - 1, 1,
7847 false, prec)); }))
7848 (if (single_use (@2))
7849 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7850 (cmp3 (bit_and @0
7851 { wide_int_to_tree (TREE_TYPE (@0),
7852 wi::mask (tree_to_uhwi (@1),
7853 false, prec)); })
7854 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7855
7856 #if GIMPLE
7857
7858 /* Simplify:
7859 a = op a1
7860 r = cond ? a : b
7861 --> r = .COND_FN (cond, a, b)
7862 and,
7863 a = op a1
7864 r = cond ? b : a
7865 --> r = .COND_FN (~cond, b, a). */
7866
7867 (for uncond_op (UNCOND_UNARY)
7868 cond_op (COND_UNARY)
7869 (simplify
7870 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7871 (with { tree op_type = TREE_TYPE (@3); }
7872 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7873 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7874 (cond_op @0 @1 @2))))
7875 (simplify
7876 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7877 (with { tree op_type = TREE_TYPE (@3); }
7878 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7879 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7880 (cond_op (bit_not @0) @2 @1)))))
7881
7882 /* Simplify:
7883
7884 a = a1 op a2
7885 r = c ? a : b;
7886
7887 to:
7888
7889 r = c ? a1 op a2 : b;
7890
7891 if the target can do it in one go. This makes the operation conditional
7892 on c, so could drop potentially-trapping arithmetic, but that's a valid
7893 simplification if the result of the operation isn't needed.
7894
7895 Avoid speculatively generating a stand-alone vector comparison
7896 on targets that might not support them. Any target implementing
7897 conditional internal functions must support the same comparisons
7898 inside and outside a VEC_COND_EXPR. */
7899
7900 (for uncond_op (UNCOND_BINARY)
7901 cond_op (COND_BINARY)
7902 (simplify
7903 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7904 (with { tree op_type = TREE_TYPE (@4); }
7905 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7906 && is_truth_type_for (op_type, TREE_TYPE (@0))
7907 && single_use (@4))
7908 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7909 (simplify
7910 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7911 (with { tree op_type = TREE_TYPE (@4); }
7912 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7913 && is_truth_type_for (op_type, TREE_TYPE (@0))
7914 && single_use (@4))
7915 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7916
7917 /* Same for ternary operations. */
7918 (for uncond_op (UNCOND_TERNARY)
7919 cond_op (COND_TERNARY)
7920 (simplify
7921 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7922 (with { tree op_type = TREE_TYPE (@5); }
7923 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7924 && is_truth_type_for (op_type, TREE_TYPE (@0))
7925 && single_use (@5))
7926 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7927 (simplify
7928 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7929 (with { tree op_type = TREE_TYPE (@5); }
7930 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7931 && is_truth_type_for (op_type, TREE_TYPE (@0))
7932 && single_use (@5))
7933 (view_convert (cond_op (bit_not @0) @2 @3 @4
7934 (view_convert:op_type @1)))))))
7935 #endif
7936
7937 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
7938 "else" value of an IFN_COND_*. */
7939 (for cond_op (COND_BINARY)
7940 (simplify
7941 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7942 (with { tree op_type = TREE_TYPE (@3); }
7943 (if (element_precision (type) == element_precision (op_type))
7944 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7945 (simplify
7946 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7947 (with { tree op_type = TREE_TYPE (@5); }
7948 (if (inverse_conditions_p (@0, @2)
7949 && element_precision (type) == element_precision (op_type))
7950 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7951
7952 /* Same for ternary operations. */
7953 (for cond_op (COND_TERNARY)
7954 (simplify
7955 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7956 (with { tree op_type = TREE_TYPE (@4); }
7957 (if (element_precision (type) == element_precision (op_type))
7958 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7959 (simplify
7960 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7961 (with { tree op_type = TREE_TYPE (@6); }
7962 (if (inverse_conditions_p (@0, @2)
7963 && element_precision (type) == element_precision (op_type))
7964 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7965
7966 /* Detect simplication for a conditional reduction where
7967
7968 a = mask1 ? b : 0
7969 c = mask2 ? d + a : d
7970
7971 is turned into
7972
7973 c = mask1 && mask2 ? d + b : d. */
7974 (simplify
7975 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7976 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7977
7978 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
7979 expressions like:
7980
7981 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7982 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7983
7984 If pointers are known not to wrap, B checks whether @1 bytes starting
7985 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7986 bytes. A is more efficiently tested as:
7987
7988 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7989
7990 The equivalent expression for B is given by replacing @1 with @1 - 1:
7991
7992 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7993
7994 @0 and @2 can be swapped in both expressions without changing the result.
7995
7996 The folds rely on sizetype's being unsigned (which is always true)
7997 and on its being the same width as the pointer (which we have to check).
7998
7999 The fold replaces two pointer_plus expressions, two comparisons and
8000 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
8001 the best case it's a saving of two operations. The A fold retains one
8002 of the original pointer_pluses, so is a win even if both pointer_pluses
8003 are used elsewhere. The B fold is a wash if both pointer_pluses are
8004 used elsewhere, since all we end up doing is replacing a comparison with
8005 a pointer_plus. We do still apply the fold under those circumstances
8006 though, in case applying it to other conditions eventually makes one of the
8007 pointer_pluses dead. */
8008 (for ior (truth_orif truth_or bit_ior)
8009 (for cmp (le lt)
8010 (simplify
8011 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
8012 (cmp:cs (pointer_plus@4 @2 @1) @0))
8013 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
8014 && TYPE_OVERFLOW_WRAPS (sizetype)
8015 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
8016 /* Calculate the rhs constant. */
8017 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
8018 offset_int rhs = off * 2; }
8019 /* Always fails for negative values. */
8020 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
8021 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
8022 pick a canonical order. This increases the chances of using the
8023 same pointer_plus in multiple checks. */
8024 (with { bool swap_p = tree_swap_operands_p (@0, @2);
8025 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
8026 (if (cmp == LT_EXPR)
8027 (gt (convert:sizetype
8028 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
8029 { swap_p ? @0 : @2; }))
8030 { rhs_tree; })
8031 (gt (convert:sizetype
8032 (pointer_diff:ssizetype
8033 (pointer_plus { swap_p ? @2 : @0; }
8034 { wide_int_to_tree (sizetype, off); })
8035 { swap_p ? @0 : @2; }))
8036 { rhs_tree; })))))))))
8037
8038 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
8039 element of @1. */
8040 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
8041 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
8042 (with { int i = single_nonzero_element (@1); }
8043 (if (i >= 0)
8044 (with { tree elt = vector_cst_elt (@1, i);
8045 tree elt_type = TREE_TYPE (elt);
8046 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
8047 tree size = bitsize_int (elt_bits);
8048 tree pos = bitsize_int (elt_bits * i); }
8049 (view_convert
8050 (bit_and:elt_type
8051 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
8052 { elt; })))))))
8053
8054 /* Fold reduction of a single nonzero element constructor. */
8055 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
8056 (simplify (reduc (CONSTRUCTOR@0))
8057 (with { tree ctor = (TREE_CODE (@0) == SSA_NAME
8058 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
8059 tree elt = ctor_single_nonzero_element (ctor); }
8060 (if (elt
8061 && !HONOR_SNANS (type)
8062 && !HONOR_SIGNED_ZEROS (type))
8063 { elt; }))))
8064
8065 /* Fold REDUC (@0 op VECTOR_CST) as REDUC (@0) op REDUC (VECTOR_CST). */
8066 (for reduc (IFN_REDUC_PLUS IFN_REDUC_MAX IFN_REDUC_MIN IFN_REDUC_FMAX
8067 IFN_REDUC_FMIN IFN_REDUC_AND IFN_REDUC_IOR IFN_REDUC_XOR)
8068 op (plus max min IFN_FMAX IFN_FMIN bit_and bit_ior bit_xor)
8069 (simplify (reduc (op @0 VECTOR_CST@1))
8070 (op (reduc:type @0) (reduc:type @1))))
8071
8072 /* Simplify vector floating point operations of alternating sub/add pairs
8073 into using an fneg of a wider element type followed by a normal add.
8074 under IEEE 754 the fneg of the wider type will negate every even entry
8075 and when doing an add we get a sub of the even and add of every odd
8076 elements. */
8077 (for plusminus (plus minus)
8078 minusplus (minus plus)
8079 (simplify
8080 (vec_perm (plusminus @0 @1) (minusplus @2 @3) VECTOR_CST@4)
8081 (if (!VECTOR_INTEGER_TYPE_P (type)
8082 && !FLOAT_WORDS_BIG_ENDIAN
8083 /* plus is commutative, while minus is not, so :c can't be used.
8084 Do equality comparisons by hand and at the end pick the operands
8085 from the minus. */
8086 && (operand_equal_p (@0, @2, 0)
8087 ? operand_equal_p (@1, @3, 0)
8088 : operand_equal_p (@0, @3, 0) && operand_equal_p (@1, @2, 0)))
8089 (with
8090 {
8091 /* Build a vector of integers from the tree mask. */
8092 vec_perm_builder builder;
8093 }
8094 (if (tree_to_vec_perm_builder (&builder, @4))
8095 (with
8096 {
8097 /* Create a vec_perm_indices for the integer vector. */
8098 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
8099 vec_perm_indices sel (builder, 2, nelts);
8100 machine_mode vec_mode = TYPE_MODE (type);
8101 machine_mode wide_mode;
8102 scalar_mode wide_elt_mode;
8103 poly_uint64 wide_nunits;
8104 scalar_mode inner_mode = GET_MODE_INNER (vec_mode);
8105 }
8106 (if (VECTOR_MODE_P (vec_mode)
8107 && sel.series_p (0, 2, 0, 2)
8108 && sel.series_p (1, 2, nelts + 1, 2)
8109 && GET_MODE_2XWIDER_MODE (inner_mode).exists (&wide_elt_mode)
8110 && multiple_p (GET_MODE_NUNITS (vec_mode), 2, &wide_nunits)
8111 && related_vector_mode (vec_mode, wide_elt_mode,
8112 wide_nunits).exists (&wide_mode))
8113 (with
8114 {
8115 tree stype
8116 = lang_hooks.types.type_for_mode (GET_MODE_INNER (wide_mode),
8117 TYPE_UNSIGNED (type));
8118 tree ntype = build_vector_type_for_mode (stype, wide_mode);
8119
8120 /* The format has to be a non-extended ieee format. */
8121 const struct real_format *fmt_old = FLOAT_MODE_FORMAT (vec_mode);
8122 const struct real_format *fmt_new = FLOAT_MODE_FORMAT (wide_mode);
8123 }
8124 (if (TYPE_MODE (stype) != BLKmode
8125 && VECTOR_TYPE_P (ntype)
8126 && fmt_old != NULL
8127 && fmt_new != NULL)
8128 (with
8129 {
8130 /* If the target doesn't support v1xx vectors, try using
8131 scalar mode xx instead. */
8132 if (known_eq (GET_MODE_NUNITS (wide_mode), 1)
8133 && !target_supports_op_p (ntype, NEGATE_EXPR, optab_vector))
8134 ntype = stype;
8135 }
8136 (if (fmt_new->signbit_rw
8137 == fmt_old->signbit_rw + GET_MODE_UNIT_BITSIZE (vec_mode)
8138 && fmt_new->signbit_rw == fmt_new->signbit_ro
8139 && targetm.can_change_mode_class (TYPE_MODE (ntype),
8140 TYPE_MODE (type), ALL_REGS)
8141 && ((optimize_vectors_before_lowering_p ()
8142 && VECTOR_TYPE_P (ntype))
8143 || target_supports_op_p (ntype, NEGATE_EXPR, optab_vector)))
8144 (if (plusminus == PLUS_EXPR)
8145 (plus (view_convert:type (negate (view_convert:ntype @3))) @2)
8146 (minus @0 (view_convert:type
8147 (negate (view_convert:ntype @1))))))))))))))))
8148
8149 (simplify
8150 (vec_perm @0 @1 VECTOR_CST@2)
8151 (with
8152 {
8153 tree op0 = @0, op1 = @1, op2 = @2;
8154 machine_mode result_mode = TYPE_MODE (type);
8155 machine_mode op_mode = TYPE_MODE (TREE_TYPE (op0));
8156
8157 /* Build a vector of integers from the tree mask. */
8158 vec_perm_builder builder;
8159 }
8160 (if (tree_to_vec_perm_builder (&builder, op2))
8161 (with
8162 {
8163 /* Create a vec_perm_indices for the integer vector. */
8164 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
8165 bool single_arg = (op0 == op1);
8166 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
8167 }
8168 (if (sel.series_p (0, 1, 0, 1))
8169 { op0; }
8170 (if (sel.series_p (0, 1, nelts, 1))
8171 { op1; }
8172 (with
8173 {
8174 if (!single_arg)
8175 {
8176 if (sel.all_from_input_p (0))
8177 op1 = op0;
8178 else if (sel.all_from_input_p (1))
8179 {
8180 op0 = op1;
8181 sel.rotate_inputs (1);
8182 }
8183 else if (known_ge (poly_uint64 (sel[0]), nelts))
8184 {
8185 std::swap (op0, op1);
8186 sel.rotate_inputs (1);
8187 }
8188 }
8189 gassign *def;
8190 tree cop0 = op0, cop1 = op1;
8191 if (TREE_CODE (op0) == SSA_NAME
8192 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
8193 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
8194 cop0 = gimple_assign_rhs1 (def);
8195 if (TREE_CODE (op1) == SSA_NAME
8196 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
8197 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
8198 cop1 = gimple_assign_rhs1 (def);
8199 tree t;
8200 }
8201 (if ((TREE_CODE (cop0) == VECTOR_CST
8202 || TREE_CODE (cop0) == CONSTRUCTOR)
8203 && (TREE_CODE (cop1) == VECTOR_CST
8204 || TREE_CODE (cop1) == CONSTRUCTOR)
8205 && (t = fold_vec_perm (type, cop0, cop1, sel)))
8206 { t; }
8207 (with
8208 {
8209 bool changed = (op0 == op1 && !single_arg);
8210 tree ins = NULL_TREE;
8211 unsigned at = 0;
8212
8213 /* See if the permutation is performing a single element
8214 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
8215 in that case. But only if the vector mode is supported,
8216 otherwise this is invalid GIMPLE. */
8217 if (op_mode != BLKmode
8218 && (TREE_CODE (cop0) == VECTOR_CST
8219 || TREE_CODE (cop0) == CONSTRUCTOR
8220 || TREE_CODE (cop1) == VECTOR_CST
8221 || TREE_CODE (cop1) == CONSTRUCTOR))
8222 {
8223 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
8224 if (insert_first_p)
8225 {
8226 /* After canonicalizing the first elt to come from the
8227 first vector we only can insert the first elt from
8228 the first vector. */
8229 at = 0;
8230 if ((ins = fold_read_from_vector (cop0, sel[0])))
8231 op0 = op1;
8232 }
8233 /* The above can fail for two-element vectors which always
8234 appear to insert the first element, so try inserting
8235 into the second lane as well. For more than two
8236 elements that's wasted time. */
8237 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
8238 {
8239 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
8240 for (at = 0; at < encoded_nelts; ++at)
8241 if (maybe_ne (sel[at], at))
8242 break;
8243 if (at < encoded_nelts
8244 && (known_eq (at + 1, nelts)
8245 || sel.series_p (at + 1, 1, at + 1, 1)))
8246 {
8247 if (known_lt (poly_uint64 (sel[at]), nelts))
8248 ins = fold_read_from_vector (cop0, sel[at]);
8249 else
8250 ins = fold_read_from_vector (cop1, sel[at] - nelts);
8251 }
8252 }
8253 }
8254
8255 /* Generate a canonical form of the selector. */
8256 if (!ins && sel.encoding () != builder)
8257 {
8258 /* Some targets are deficient and fail to expand a single
8259 argument permutation while still allowing an equivalent
8260 2-argument version. */
8261 tree oldop2 = op2;
8262 if (sel.ninputs () == 2
8263 || can_vec_perm_const_p (result_mode, op_mode, sel, false))
8264 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8265 else
8266 {
8267 vec_perm_indices sel2 (builder, 2, nelts);
8268 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false))
8269 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
8270 else
8271 /* Not directly supported with either encoding,
8272 so use the preferred form. */
8273 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
8274 }
8275 if (!operand_equal_p (op2, oldop2, 0))
8276 changed = true;
8277 }
8278 }
8279 (if (ins)
8280 (bit_insert { op0; } { ins; }
8281 { bitsize_int (at * vector_element_bits (type)); })
8282 (if (changed)
8283 (vec_perm { op0; } { op1; } { op2; }))))))))))))
8284
8285 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
8286
8287 (match vec_same_elem_p
8288 (vec_duplicate @0))
8289
8290 (match vec_same_elem_p
8291 CONSTRUCTOR@0
8292 (if (TREE_CODE (@0) == SSA_NAME
8293 && uniform_vector_p (gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0))))))
8294
8295 (match vec_same_elem_p
8296 @0
8297 (if (uniform_vector_p (@0))))
8298
8299
8300 (simplify
8301 (vec_perm vec_same_elem_p@0 @0 @1)
8302 @0)
8303
8304 /* Push VEC_PERM earlier if that may help FMA perception (PR101895). */
8305 (simplify
8306 (plus:c (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8307 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8308 (plus (mult (vec_perm @1 @1 @3) @2) @4)))
8309 (simplify
8310 (minus (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
8311 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
8312 (minus (mult (vec_perm @1 @1 @3) @2) @4)))
8313
8314
8315 /* Merge
8316 c = VEC_PERM_EXPR <a, b, VCST0>;
8317 d = VEC_PERM_EXPR <c, c, VCST1>;
8318 to
8319 d = VEC_PERM_EXPR <a, b, NEW_VCST>; */
8320
8321 (simplify
8322 (vec_perm (vec_perm@0 @1 @2 VECTOR_CST@3) @0 VECTOR_CST@4)
8323 (if (TYPE_VECTOR_SUBPARTS (type).is_constant ())
8324 (with
8325 {
8326 machine_mode result_mode = TYPE_MODE (type);
8327 machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1));
8328 int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
8329 vec_perm_builder builder0;
8330 vec_perm_builder builder1;
8331 vec_perm_builder builder2 (nelts, nelts, 1);
8332 }
8333 (if (tree_to_vec_perm_builder (&builder0, @3)
8334 && tree_to_vec_perm_builder (&builder1, @4))
8335 (with
8336 {
8337 vec_perm_indices sel0 (builder0, 2, nelts);
8338 vec_perm_indices sel1 (builder1, 1, nelts);
8339
8340 for (int i = 0; i < nelts; i++)
8341 builder2.quick_push (sel0[sel1[i].to_constant ()]);
8342
8343 vec_perm_indices sel2 (builder2, 2, nelts);
8344
8345 tree op0 = NULL_TREE;
8346 /* If the new VEC_PERM_EXPR can't be handled but both
8347 original VEC_PERM_EXPRs can, punt.
8348 If one or both of the original VEC_PERM_EXPRs can't be
8349 handled and the new one can't be either, don't increase
8350 number of VEC_PERM_EXPRs that can't be handled. */
8351 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false)
8352 || (single_use (@0)
8353 ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false)
8354 || !can_vec_perm_const_p (result_mode, op_mode, sel1, false))
8355 : !can_vec_perm_const_p (result_mode, op_mode, sel1, false)))
8356 op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2);
8357 }
8358 (if (op0)
8359 (vec_perm @1 @2 { op0; })))))))
8360
8361
8362 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
8363 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
8364 constant which when multiplied by a power of 2 contains a unique value
8365 in the top 5 or 6 bits. This is then indexed into a table which maps it
8366 to the number of trailing zeroes. */
8367 (match (ctz_table_index @1 @2 @3)
8368 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
8369
8370 (match (cond_expr_convert_p @0 @2 @3 @6)
8371 (cond (simple_comparison@6 @0 @1) (convert@4 @2) (convert@5 @3))
8372 (if (INTEGRAL_TYPE_P (type)
8373 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
8374 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8375 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
8376 && TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (@0))
8377 && TYPE_PRECISION (TREE_TYPE (@0))
8378 == TYPE_PRECISION (TREE_TYPE (@2))
8379 && TYPE_PRECISION (TREE_TYPE (@0))
8380 == TYPE_PRECISION (TREE_TYPE (@3))
8381 /* For vect_recog_cond_expr_convert_pattern, @2 and @3 can differ in
8382 signess when convert is truncation, but not ok for extension since
8383 it's sign_extend vs zero_extend. */
8384 && (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)
8385 || (TYPE_UNSIGNED (TREE_TYPE (@2))
8386 == TYPE_UNSIGNED (TREE_TYPE (@3))))
8387 && single_use (@4)
8388 && single_use (@5))))
8389
8390 (for bit_op (bit_and bit_ior bit_xor)
8391 (match (bitwise_induction_p @0 @2 @3)
8392 (bit_op:c
8393 (nop_convert1? (bit_not2?@0 (convert3? (lshift integer_onep@1 @2))))
8394 @3)))
8395
8396 (match (bitwise_induction_p @0 @2 @3)
8397 (bit_not
8398 (nop_convert1? (bit_xor@0 (convert2? (lshift integer_onep@1 @2)) @3))))
8399
8400 /* n - (((n > C1) ? n : C1) & -C2) -> n & C1 for unsigned case.
8401 n - (((n > C1) ? n : C1) & -C2) -> (n <= C1) ? n : (n & C1) for signed case. */
8402 (simplify
8403 (minus @0 (bit_and (max @0 INTEGER_CST@1) INTEGER_CST@2))
8404 (with { auto i = wi::neg (wi::to_wide (@2)); }
8405 /* Check if -C2 is a power of 2 and C1 = -C2 - 1. */
8406 (if (wi::popcount (i) == 1
8407 && (wi::to_wide (@1)) == (i - 1))
8408 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
8409 (bit_and @0 @1)
8410 (cond (le @0 @1) @0 (bit_and @0 @1))))))
8411
8412 /* -x & 1 -> x & 1. */
8413 (simplify
8414 (bit_and (negate @0) integer_onep@1)
8415 (if (!TYPE_OVERFLOW_SANITIZED (type))
8416 (bit_and @0 @1)))
8417
8418 /* Optimize
8419 c1 = VEC_PERM_EXPR (a, a, mask)
8420 c2 = VEC_PERM_EXPR (b, b, mask)
8421 c3 = c1 op c2
8422 -->
8423 c = a op b
8424 c3 = VEC_PERM_EXPR (c, c, mask)
8425 For all integer non-div operations. */
8426 (for op (plus minus mult bit_and bit_ior bit_xor
8427 lshift rshift)
8428 (simplify
8429 (op (vec_perm @0 @0 @2) (vec_perm @1 @1 @2))
8430 (if (VECTOR_INTEGER_TYPE_P (type))
8431 (vec_perm (op@3 @0 @1) @3 @2))))
8432
8433 /* Similar for float arithmetic when permutation constant covers
8434 all vector elements. */
8435 (for op (plus minus mult)
8436 (simplify
8437 (op (vec_perm @0 @0 VECTOR_CST@2) (vec_perm @1 @1 VECTOR_CST@2))
8438 (if (VECTOR_FLOAT_TYPE_P (type)
8439 && TYPE_VECTOR_SUBPARTS (type).is_constant ())
8440 (with
8441 {
8442 tree perm_cst = @2;
8443 vec_perm_builder builder;
8444 bool full_perm_p = false;
8445 if (tree_to_vec_perm_builder (&builder, perm_cst))
8446 {
8447 unsigned HOST_WIDE_INT nelts;
8448
8449 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
8450 /* Create a vec_perm_indices for the VECTOR_CST. */
8451 vec_perm_indices sel (builder, 1, nelts);
8452
8453 /* Check if perm indices covers all vector elements. */
8454 if (sel.encoding ().encoded_full_vector_p ())
8455 {
8456 auto_sbitmap seen (nelts);
8457 bitmap_clear (seen);
8458
8459 unsigned HOST_WIDE_INT count = 0, i;
8460
8461 for (i = 0; i < nelts; i++)
8462 {
8463 if (!bitmap_set_bit (seen, sel[i].to_constant ()))
8464 break;
8465 count++;
8466 }
8467 full_perm_p = count == nelts;
8468 }
8469 }
8470 }
8471 (if (full_perm_p)
8472 (vec_perm (op@3 @0 @1) @3 @2))))))