]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
[Ada] Avoid "others => <>" association in resolved record aggregates
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2020 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p)
41
42 /* Operator lists. */
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53
54 #include "cfn-operators.pd"
55
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
59
60 Also define operand lists:
61
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67 BUILT_IN_L##FN##F \
68 BUILT_IN_LL##FN##F) \
69 (define_operator_list X##FN BUILT_IN_I##FN \
70 BUILT_IN_L##FN \
71 BUILT_IN_LL##FN) \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 BUILT_IN_L##FN##L \
74 BUILT_IN_LL##FN##L)
75
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
83 plus minus
84 mult trunc_div trunc_mod rdiv
85 min max
86 bit_and bit_ior bit_xor
87 lshift rshift)
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
94
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101 /* With nop_convert? combine convert? and view_convert? in one pattern
102 plus conditionalize on tree_nop_conversion_p conversions. */
103 (match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123 #if GIMPLE
124 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
125 (simplify
126 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
127 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
128 && !TYPE_UNSIGNED (TREE_TYPE (@0))
129 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
130 (abs @0)))
131 #endif
132
133 /* Simplifications of operations with one constant operand and
134 simplifications to constants or single values. */
135
136 (for op (plus pointer_plus minus bit_ior bit_xor)
137 (simplify
138 (op @0 integer_zerop)
139 (non_lvalue @0)))
140
141 /* 0 +p index -> (type)index */
142 (simplify
143 (pointer_plus integer_zerop @1)
144 (non_lvalue (convert @1)))
145
146 /* ptr - 0 -> (type)ptr */
147 (simplify
148 (pointer_diff @0 integer_zerop)
149 (convert @0))
150
151 /* See if ARG1 is zero and X + ARG1 reduces to X.
152 Likewise if the operands are reversed. */
153 (simplify
154 (plus:c @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 0))
156 (non_lvalue @0)))
157
158 /* See if ARG1 is zero and X - ARG1 reduces to X. */
159 (simplify
160 (minus @0 real_zerop@1)
161 (if (fold_real_zero_addition_p (type, @1, 1))
162 (non_lvalue @0)))
163
164 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
165 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
166 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
167 if not -frounding-math. For sNaNs the first operation would raise
168 exceptions but turn the result into qNan, so the second operation
169 would not raise it. */
170 (for inner_op (plus minus)
171 (for outer_op (plus minus)
172 (simplify
173 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
174 (if (real_zerop (@1)
175 && real_zerop (@2)
176 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
177 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
178 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
179 bool outer_plus
180 = ((outer_op == PLUS_EXPR)
181 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
182 (if (outer_plus && !inner_plus)
183 (outer_op @0 @2)
184 @3))))))
185
186 /* Simplify x - x.
187 This is unsafe for certain floats even in non-IEEE formats.
188 In IEEE, it is unsafe because it does wrong for NaNs.
189 Also note that operand_equal_p is always false if an operand
190 is volatile. */
191 (simplify
192 (minus @0 @0)
193 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
194 { build_zero_cst (type); }))
195 (simplify
196 (pointer_diff @@0 @0)
197 { build_zero_cst (type); })
198
199 (simplify
200 (mult @0 integer_zerop@1)
201 @1)
202
203 /* Maybe fold x * 0 to 0. The expressions aren't the same
204 when x is NaN, since x * 0 is also NaN. Nor are they the
205 same in modes with signed zeros, since multiplying a
206 negative value by 0 gives -0, not +0. */
207 (simplify
208 (mult @0 real_zerop@1)
209 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
210 @1))
211
212 /* In IEEE floating point, x*1 is not equivalent to x for snans.
213 Likewise for complex arithmetic with signed zeros. */
214 (simplify
215 (mult @0 real_onep)
216 (if (!HONOR_SNANS (type)
217 && (!HONOR_SIGNED_ZEROS (type)
218 || !COMPLEX_FLOAT_TYPE_P (type)))
219 (non_lvalue @0)))
220
221 /* Transform x * -1.0 into -x. */
222 (simplify
223 (mult @0 real_minus_onep)
224 (if (!HONOR_SNANS (type)
225 && (!HONOR_SIGNED_ZEROS (type)
226 || !COMPLEX_FLOAT_TYPE_P (type)))
227 (negate @0)))
228
229 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
230 (simplify
231 (mult SSA_NAME@1 SSA_NAME@2)
232 (if (INTEGRAL_TYPE_P (type)
233 && get_nonzero_bits (@1) == 1
234 && get_nonzero_bits (@2) == 1)
235 (bit_and @1 @2)))
236
237 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
238 unless the target has native support for the former but not the latter. */
239 (simplify
240 (mult @0 VECTOR_CST@1)
241 (if (initializer_each_zero_or_onep (@1)
242 && !HONOR_SNANS (type)
243 && !HONOR_SIGNED_ZEROS (type))
244 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
245 (if (itype
246 && (!VECTOR_MODE_P (TYPE_MODE (type))
247 || (VECTOR_MODE_P (TYPE_MODE (itype))
248 && optab_handler (and_optab,
249 TYPE_MODE (itype)) != CODE_FOR_nothing)))
250 (view_convert (bit_and:itype (view_convert @0)
251 (ne @1 { build_zero_cst (type); })))))))
252
253 (for cmp (gt ge lt le)
254 outp (convert convert negate negate)
255 outn (negate negate convert convert)
256 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
257 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
258 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
259 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
260 (simplify
261 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
262 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
263 && types_match (type, TREE_TYPE (@0)))
264 (switch
265 (if (types_match (type, float_type_node))
266 (BUILT_IN_COPYSIGNF @1 (outp @0)))
267 (if (types_match (type, double_type_node))
268 (BUILT_IN_COPYSIGN @1 (outp @0)))
269 (if (types_match (type, long_double_type_node))
270 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
271 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
272 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
273 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
274 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
275 (simplify
276 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
277 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
278 && types_match (type, TREE_TYPE (@0)))
279 (switch
280 (if (types_match (type, float_type_node))
281 (BUILT_IN_COPYSIGNF @1 (outn @0)))
282 (if (types_match (type, double_type_node))
283 (BUILT_IN_COPYSIGN @1 (outn @0)))
284 (if (types_match (type, long_double_type_node))
285 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
286
287 /* Transform X * copysign (1.0, X) into abs(X). */
288 (simplify
289 (mult:c @0 (COPYSIGN_ALL real_onep @0))
290 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
291 (abs @0)))
292
293 /* Transform X * copysign (1.0, -X) into -abs(X). */
294 (simplify
295 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
296 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
297 (negate (abs @0))))
298
299 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
300 (simplify
301 (COPYSIGN_ALL REAL_CST@0 @1)
302 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
303 (COPYSIGN_ALL (negate @0) @1)))
304
305 /* X * 1, X / 1 -> X. */
306 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
307 (simplify
308 (op @0 integer_onep)
309 (non_lvalue @0)))
310
311 /* (A / (1 << B)) -> (A >> B).
312 Only for unsigned A. For signed A, this would not preserve rounding
313 toward zero.
314 For example: (-1 / ( 1 << B)) != -1 >> B.
315 Also also widening conversions, like:
316 (A / (unsigned long long) (1U << B)) -> (A >> B)
317 or
318 (A / (unsigned long long) (1 << B)) -> (A >> B).
319 If the left shift is signed, it can be done only if the upper bits
320 of A starting from shift's type sign bit are zero, as
321 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
322 so it is valid only if A >> 31 is zero. */
323 (simplify
324 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
325 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
326 && (!VECTOR_TYPE_P (type)
327 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
328 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
329 && (useless_type_conversion_p (type, TREE_TYPE (@1))
330 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
331 && (TYPE_UNSIGNED (TREE_TYPE (@1))
332 || (element_precision (type)
333 == element_precision (TREE_TYPE (@1)))
334 || (INTEGRAL_TYPE_P (type)
335 && (tree_nonzero_bits (@0)
336 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
337 true,
338 element_precision (type))) == 0)))))
339 (rshift @0 @2)))
340
341 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
342 undefined behavior in constexpr evaluation, and assuming that the division
343 traps enables better optimizations than these anyway. */
344 (for div (trunc_div ceil_div floor_div round_div exact_div)
345 /* 0 / X is always zero. */
346 (simplify
347 (div integer_zerop@0 @1)
348 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
349 (if (!integer_zerop (@1))
350 @0))
351 /* X / -1 is -X. */
352 (simplify
353 (div @0 integer_minus_onep@1)
354 (if (!TYPE_UNSIGNED (type))
355 (negate @0)))
356 /* X / X is one. */
357 (simplify
358 (div @0 @0)
359 /* But not for 0 / 0 so that we can get the proper warnings and errors.
360 And not for _Fract types where we can't build 1. */
361 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
362 { build_one_cst (type); }))
363 /* X / abs (X) is X < 0 ? -1 : 1. */
364 (simplify
365 (div:C @0 (abs @0))
366 (if (INTEGRAL_TYPE_P (type)
367 && TYPE_OVERFLOW_UNDEFINED (type))
368 (cond (lt @0 { build_zero_cst (type); })
369 { build_minus_one_cst (type); } { build_one_cst (type); })))
370 /* X / -X is -1. */
371 (simplify
372 (div:C @0 (negate @0))
373 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
374 && TYPE_OVERFLOW_UNDEFINED (type))
375 { build_minus_one_cst (type); })))
376
377 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
378 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
379 (simplify
380 (floor_div @0 @1)
381 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
382 && TYPE_UNSIGNED (type))
383 (trunc_div @0 @1)))
384
385 /* Combine two successive divisions. Note that combining ceil_div
386 and floor_div is trickier and combining round_div even more so. */
387 (for div (trunc_div exact_div)
388 (simplify
389 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
390 (with {
391 wi::overflow_type overflow;
392 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
393 TYPE_SIGN (type), &overflow);
394 }
395 (if (div == EXACT_DIV_EXPR
396 || optimize_successive_divisions_p (@2, @3))
397 (if (!overflow)
398 (div @0 { wide_int_to_tree (type, mul); })
399 (if (TYPE_UNSIGNED (type)
400 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
401 { build_zero_cst (type); }))))))
402
403 /* Combine successive multiplications. Similar to above, but handling
404 overflow is different. */
405 (simplify
406 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
407 (with {
408 wi::overflow_type overflow;
409 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
410 TYPE_SIGN (type), &overflow);
411 }
412 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
413 otherwise undefined overflow implies that @0 must be zero. */
414 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
415 (mult @0 { wide_int_to_tree (type, mul); }))))
416
417 /* Optimize A / A to 1.0 if we don't care about
418 NaNs or Infinities. */
419 (simplify
420 (rdiv @0 @0)
421 (if (FLOAT_TYPE_P (type)
422 && ! HONOR_NANS (type)
423 && ! HONOR_INFINITIES (type))
424 { build_one_cst (type); }))
425
426 /* Optimize -A / A to -1.0 if we don't care about
427 NaNs or Infinities. */
428 (simplify
429 (rdiv:C @0 (negate @0))
430 (if (FLOAT_TYPE_P (type)
431 && ! HONOR_NANS (type)
432 && ! HONOR_INFINITIES (type))
433 { build_minus_one_cst (type); }))
434
435 /* PR71078: x / abs(x) -> copysign (1.0, x) */
436 (simplify
437 (rdiv:C (convert? @0) (convert? (abs @0)))
438 (if (SCALAR_FLOAT_TYPE_P (type)
439 && ! HONOR_NANS (type)
440 && ! HONOR_INFINITIES (type))
441 (switch
442 (if (types_match (type, float_type_node))
443 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
444 (if (types_match (type, double_type_node))
445 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
446 (if (types_match (type, long_double_type_node))
447 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
448
449 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
450 (simplify
451 (rdiv @0 real_onep)
452 (if (!HONOR_SNANS (type))
453 (non_lvalue @0)))
454
455 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
456 (simplify
457 (rdiv @0 real_minus_onep)
458 (if (!HONOR_SNANS (type))
459 (negate @0)))
460
461 (if (flag_reciprocal_math)
462 /* Convert (A/B)/C to A/(B*C). */
463 (simplify
464 (rdiv (rdiv:s @0 @1) @2)
465 (rdiv @0 (mult @1 @2)))
466
467 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
468 (simplify
469 (rdiv @0 (mult:s @1 REAL_CST@2))
470 (with
471 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
472 (if (tem)
473 (rdiv (mult @0 { tem; } ) @1))))
474
475 /* Convert A/(B/C) to (A/B)*C */
476 (simplify
477 (rdiv @0 (rdiv:s @1 @2))
478 (mult (rdiv @0 @1) @2)))
479
480 /* Simplify x / (- y) to -x / y. */
481 (simplify
482 (rdiv @0 (negate @1))
483 (rdiv (negate @0) @1))
484
485 (if (flag_unsafe_math_optimizations)
486 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
487 Since C / x may underflow to zero, do this only for unsafe math. */
488 (for op (lt le gt ge)
489 neg_op (gt ge lt le)
490 (simplify
491 (op (rdiv REAL_CST@0 @1) real_zerop@2)
492 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
493 (switch
494 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
495 (op @1 @2))
496 /* For C < 0, use the inverted operator. */
497 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
498 (neg_op @1 @2)))))))
499
500 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
501 (for div (trunc_div ceil_div floor_div round_div exact_div)
502 (simplify
503 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
504 (if (integer_pow2p (@2)
505 && tree_int_cst_sgn (@2) > 0
506 && tree_nop_conversion_p (type, TREE_TYPE (@0))
507 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
508 (rshift (convert @0)
509 { build_int_cst (integer_type_node,
510 wi::exact_log2 (wi::to_wide (@2))); }))))
511
512 /* If ARG1 is a constant, we can convert this to a multiply by the
513 reciprocal. This does not have the same rounding properties,
514 so only do this if -freciprocal-math. We can actually
515 always safely do it if ARG1 is a power of two, but it's hard to
516 tell if it is or not in a portable manner. */
517 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
518 (simplify
519 (rdiv @0 cst@1)
520 (if (optimize)
521 (if (flag_reciprocal_math
522 && !real_zerop (@1))
523 (with
524 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
525 (if (tem)
526 (mult @0 { tem; } )))
527 (if (cst != COMPLEX_CST)
528 (with { tree inverse = exact_inverse (type, @1); }
529 (if (inverse)
530 (mult @0 { inverse; } ))))))))
531
532 (for mod (ceil_mod floor_mod round_mod trunc_mod)
533 /* 0 % X is always zero. */
534 (simplify
535 (mod integer_zerop@0 @1)
536 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
537 (if (!integer_zerop (@1))
538 @0))
539 /* X % 1 is always zero. */
540 (simplify
541 (mod @0 integer_onep)
542 { build_zero_cst (type); })
543 /* X % -1 is zero. */
544 (simplify
545 (mod @0 integer_minus_onep@1)
546 (if (!TYPE_UNSIGNED (type))
547 { build_zero_cst (type); }))
548 /* X % X is zero. */
549 (simplify
550 (mod @0 @0)
551 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
552 (if (!integer_zerop (@0))
553 { build_zero_cst (type); }))
554 /* (X % Y) % Y is just X % Y. */
555 (simplify
556 (mod (mod@2 @0 @1) @1)
557 @2)
558 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
559 (simplify
560 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
561 (if (ANY_INTEGRAL_TYPE_P (type)
562 && TYPE_OVERFLOW_UNDEFINED (type)
563 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
564 TYPE_SIGN (type)))
565 { build_zero_cst (type); }))
566 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
567 modulo and comparison, since it is simpler and equivalent. */
568 (for cmp (eq ne)
569 (simplify
570 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
571 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
572 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
573 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
574
575 /* X % -C is the same as X % C. */
576 (simplify
577 (trunc_mod @0 INTEGER_CST@1)
578 (if (TYPE_SIGN (type) == SIGNED
579 && !TREE_OVERFLOW (@1)
580 && wi::neg_p (wi::to_wide (@1))
581 && !TYPE_OVERFLOW_TRAPS (type)
582 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
583 && !sign_bit_p (@1, @1))
584 (trunc_mod @0 (negate @1))))
585
586 /* X % -Y is the same as X % Y. */
587 (simplify
588 (trunc_mod @0 (convert? (negate @1)))
589 (if (INTEGRAL_TYPE_P (type)
590 && !TYPE_UNSIGNED (type)
591 && !TYPE_OVERFLOW_TRAPS (type)
592 && tree_nop_conversion_p (type, TREE_TYPE (@1))
593 /* Avoid this transformation if X might be INT_MIN or
594 Y might be -1, because we would then change valid
595 INT_MIN % -(-1) into invalid INT_MIN % -1. */
596 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
597 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
598 (TREE_TYPE (@1))))))
599 (trunc_mod @0 (convert @1))))
600
601 /* X - (X / Y) * Y is the same as X % Y. */
602 (simplify
603 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
604 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
605 (convert (trunc_mod @0 @1))))
606
607 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
608 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
609 Also optimize A % (C << N) where C is a power of 2,
610 to A & ((C << N) - 1). */
611 (match (power_of_two_cand @1)
612 INTEGER_CST@1)
613 (match (power_of_two_cand @1)
614 (lshift INTEGER_CST@1 @2))
615 (for mod (trunc_mod floor_mod)
616 (simplify
617 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
618 (if ((TYPE_UNSIGNED (type)
619 || tree_expr_nonnegative_p (@0))
620 && tree_nop_conversion_p (type, TREE_TYPE (@3))
621 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
622 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
623
624 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
625 (simplify
626 (trunc_div (mult @0 integer_pow2p@1) @1)
627 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
628 (bit_and @0 { wide_int_to_tree
629 (type, wi::mask (TYPE_PRECISION (type)
630 - wi::exact_log2 (wi::to_wide (@1)),
631 false, TYPE_PRECISION (type))); })))
632
633 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
634 (simplify
635 (mult (trunc_div @0 integer_pow2p@1) @1)
636 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
637 (bit_and @0 (negate @1))))
638
639 /* Simplify (t * 2) / 2) -> t. */
640 (for div (trunc_div ceil_div floor_div round_div exact_div)
641 (simplify
642 (div (mult:c @0 @1) @1)
643 (if (ANY_INTEGRAL_TYPE_P (type)
644 && TYPE_OVERFLOW_UNDEFINED (type))
645 @0)))
646
647 (for op (negate abs)
648 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
649 (for coss (COS COSH)
650 (simplify
651 (coss (op @0))
652 (coss @0)))
653 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
654 (for pows (POW)
655 (simplify
656 (pows (op @0) REAL_CST@1)
657 (with { HOST_WIDE_INT n; }
658 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
659 (pows @0 @1)))))
660 /* Likewise for powi. */
661 (for pows (POWI)
662 (simplify
663 (pows (op @0) INTEGER_CST@1)
664 (if ((wi::to_wide (@1) & 1) == 0)
665 (pows @0 @1))))
666 /* Strip negate and abs from both operands of hypot. */
667 (for hypots (HYPOT)
668 (simplify
669 (hypots (op @0) @1)
670 (hypots @0 @1))
671 (simplify
672 (hypots @0 (op @1))
673 (hypots @0 @1)))
674 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
675 (for copysigns (COPYSIGN_ALL)
676 (simplify
677 (copysigns (op @0) @1)
678 (copysigns @0 @1))))
679
680 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
681 (simplify
682 (mult (abs@1 @0) @1)
683 (mult @0 @0))
684
685 /* Convert absu(x)*absu(x) -> x*x. */
686 (simplify
687 (mult (absu@1 @0) @1)
688 (mult (convert@2 @0) @2))
689
690 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
691 (for coss (COS COSH)
692 copysigns (COPYSIGN)
693 (simplify
694 (coss (copysigns @0 @1))
695 (coss @0)))
696
697 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
698 (for pows (POW)
699 copysigns (COPYSIGN)
700 (simplify
701 (pows (copysigns @0 @2) REAL_CST@1)
702 (with { HOST_WIDE_INT n; }
703 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
704 (pows @0 @1)))))
705 /* Likewise for powi. */
706 (for pows (POWI)
707 copysigns (COPYSIGN)
708 (simplify
709 (pows (copysigns @0 @2) INTEGER_CST@1)
710 (if ((wi::to_wide (@1) & 1) == 0)
711 (pows @0 @1))))
712
713 (for hypots (HYPOT)
714 copysigns (COPYSIGN)
715 /* hypot(copysign(x, y), z) -> hypot(x, z). */
716 (simplify
717 (hypots (copysigns @0 @1) @2)
718 (hypots @0 @2))
719 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
720 (simplify
721 (hypots @0 (copysigns @1 @2))
722 (hypots @0 @1)))
723
724 /* copysign(x, CST) -> [-]abs (x). */
725 (for copysigns (COPYSIGN_ALL)
726 (simplify
727 (copysigns @0 REAL_CST@1)
728 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
729 (negate (abs @0))
730 (abs @0))))
731
732 /* copysign(copysign(x, y), z) -> copysign(x, z). */
733 (for copysigns (COPYSIGN_ALL)
734 (simplify
735 (copysigns (copysigns @0 @1) @2)
736 (copysigns @0 @2)))
737
738 /* copysign(x,y)*copysign(x,y) -> x*x. */
739 (for copysigns (COPYSIGN_ALL)
740 (simplify
741 (mult (copysigns@2 @0 @1) @2)
742 (mult @0 @0)))
743
744 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
745 (for ccoss (CCOS CCOSH)
746 (simplify
747 (ccoss (negate @0))
748 (ccoss @0)))
749
750 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
751 (for ops (conj negate)
752 (for cabss (CABS)
753 (simplify
754 (cabss (ops @0))
755 (cabss @0))))
756
757 /* Fold (a * (1 << b)) into (a << b) */
758 (simplify
759 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
760 (if (! FLOAT_TYPE_P (type)
761 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
762 (lshift @0 @2)))
763
764 /* Fold (1 << (C - x)) where C = precision(type) - 1
765 into ((1 << C) >> x). */
766 (simplify
767 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
768 (if (INTEGRAL_TYPE_P (type)
769 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
770 && single_use (@1))
771 (if (TYPE_UNSIGNED (type))
772 (rshift (lshift @0 @2) @3)
773 (with
774 { tree utype = unsigned_type_for (type); }
775 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
776
777 /* Fold (C1/X)*C2 into (C1*C2)/X. */
778 (simplify
779 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
780 (if (flag_associative_math
781 && single_use (@3))
782 (with
783 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
784 (if (tem)
785 (rdiv { tem; } @1)))))
786
787 /* Simplify ~X & X as zero. */
788 (simplify
789 (bit_and:c (convert? @0) (convert? (bit_not @0)))
790 { build_zero_cst (type); })
791
792 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
793 (simplify
794 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
795 (if (TYPE_UNSIGNED (type))
796 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
797
798 (for bitop (bit_and bit_ior)
799 cmp (eq ne)
800 /* PR35691: Transform
801 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
802 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
803 (simplify
804 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
805 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
806 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
807 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
808 (cmp (bit_ior @0 (convert @1)) @2)))
809 /* Transform:
810 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
811 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
812 (simplify
813 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
814 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
815 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
816 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
817 (cmp (bit_and @0 (convert @1)) @2))))
818
819 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
820 (simplify
821 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
822 (minus (bit_xor @0 @1) @1))
823 (simplify
824 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
825 (if (~wi::to_wide (@2) == wi::to_wide (@1))
826 (minus (bit_xor @0 @1) @1)))
827
828 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
829 (simplify
830 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
831 (minus @1 (bit_xor @0 @1)))
832
833 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
834 (for op (bit_ior bit_xor plus)
835 (simplify
836 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
837 (bit_xor @0 @1))
838 (simplify
839 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
840 (if (~wi::to_wide (@2) == wi::to_wide (@1))
841 (bit_xor @0 @1))))
842
843 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
844 (simplify
845 (bit_ior:c (bit_xor:c @0 @1) @0)
846 (bit_ior @0 @1))
847
848 /* (a & ~b) | (a ^ b) --> a ^ b */
849 (simplify
850 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
851 @2)
852
853 /* (a & ~b) ^ ~a --> ~(a & b) */
854 (simplify
855 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
856 (bit_not (bit_and @0 @1)))
857
858 /* (~a & b) ^ a --> (a | b) */
859 (simplify
860 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
861 (bit_ior @0 @1))
862
863 /* (a | b) & ~(a ^ b) --> a & b */
864 (simplify
865 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
866 (bit_and @0 @1))
867
868 /* a | ~(a ^ b) --> a | ~b */
869 (simplify
870 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
871 (bit_ior @0 (bit_not @1)))
872
873 /* (a | b) | (a &^ b) --> a | b */
874 (for op (bit_and bit_xor)
875 (simplify
876 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
877 @2))
878
879 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
880 (simplify
881 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
882 @2)
883
884 /* ~(~a & b) --> a | ~b */
885 (simplify
886 (bit_not (bit_and:cs (bit_not @0) @1))
887 (bit_ior @0 (bit_not @1)))
888
889 /* ~(~a | b) --> a & ~b */
890 (simplify
891 (bit_not (bit_ior:cs (bit_not @0) @1))
892 (bit_and @0 (bit_not @1)))
893
894 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
895 #if GIMPLE
896 (simplify
897 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
898 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
899 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
900 (bit_xor @0 @1)))
901 #endif
902
903 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
904 ((A & N) + B) & M -> (A + B) & M
905 Similarly if (N & M) == 0,
906 ((A | N) + B) & M -> (A + B) & M
907 and for - instead of + (or unary - instead of +)
908 and/or ^ instead of |.
909 If B is constant and (B & M) == 0, fold into A & M. */
910 (for op (plus minus)
911 (for bitop (bit_and bit_ior bit_xor)
912 (simplify
913 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
914 (with
915 { tree pmop[2];
916 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
917 @3, @4, @1, ERROR_MARK, NULL_TREE,
918 NULL_TREE, pmop); }
919 (if (utype)
920 (convert (bit_and (op (convert:utype { pmop[0]; })
921 (convert:utype { pmop[1]; }))
922 (convert:utype @2))))))
923 (simplify
924 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
925 (with
926 { tree pmop[2];
927 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
928 NULL_TREE, NULL_TREE, @1, bitop, @3,
929 @4, pmop); }
930 (if (utype)
931 (convert (bit_and (op (convert:utype { pmop[0]; })
932 (convert:utype { pmop[1]; }))
933 (convert:utype @2)))))))
934 (simplify
935 (bit_and (op:s @0 @1) INTEGER_CST@2)
936 (with
937 { tree pmop[2];
938 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
939 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
940 NULL_TREE, NULL_TREE, pmop); }
941 (if (utype)
942 (convert (bit_and (op (convert:utype { pmop[0]; })
943 (convert:utype { pmop[1]; }))
944 (convert:utype @2)))))))
945 (for bitop (bit_and bit_ior bit_xor)
946 (simplify
947 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
948 (with
949 { tree pmop[2];
950 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
951 bitop, @2, @3, NULL_TREE, ERROR_MARK,
952 NULL_TREE, NULL_TREE, pmop); }
953 (if (utype)
954 (convert (bit_and (negate (convert:utype { pmop[0]; }))
955 (convert:utype @1)))))))
956
957 /* X % Y is smaller than Y. */
958 (for cmp (lt ge)
959 (simplify
960 (cmp (trunc_mod @0 @1) @1)
961 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
962 { constant_boolean_node (cmp == LT_EXPR, type); })))
963 (for cmp (gt le)
964 (simplify
965 (cmp @1 (trunc_mod @0 @1))
966 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
967 { constant_boolean_node (cmp == GT_EXPR, type); })))
968
969 /* x | ~0 -> ~0 */
970 (simplify
971 (bit_ior @0 integer_all_onesp@1)
972 @1)
973
974 /* x | 0 -> x */
975 (simplify
976 (bit_ior @0 integer_zerop)
977 @0)
978
979 /* x & 0 -> 0 */
980 (simplify
981 (bit_and @0 integer_zerop@1)
982 @1)
983
984 /* ~x | x -> -1 */
985 /* ~x ^ x -> -1 */
986 /* ~x + x -> -1 */
987 (for op (bit_ior bit_xor plus)
988 (simplify
989 (op:c (convert? @0) (convert? (bit_not @0)))
990 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
991
992 /* x ^ x -> 0 */
993 (simplify
994 (bit_xor @0 @0)
995 { build_zero_cst (type); })
996
997 /* Canonicalize X ^ ~0 to ~X. */
998 (simplify
999 (bit_xor @0 integer_all_onesp@1)
1000 (bit_not @0))
1001
1002 /* x & ~0 -> x */
1003 (simplify
1004 (bit_and @0 integer_all_onesp)
1005 (non_lvalue @0))
1006
1007 /* x & x -> x, x | x -> x */
1008 (for bitop (bit_and bit_ior)
1009 (simplify
1010 (bitop @0 @0)
1011 (non_lvalue @0)))
1012
1013 /* x & C -> x if we know that x & ~C == 0. */
1014 #if GIMPLE
1015 (simplify
1016 (bit_and SSA_NAME@0 INTEGER_CST@1)
1017 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1018 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1019 @0))
1020 #endif
1021
1022 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1023 (simplify
1024 (bit_not (minus (bit_not @0) @1))
1025 (plus @0 @1))
1026 (simplify
1027 (bit_not (plus:c (bit_not @0) @1))
1028 (minus @0 @1))
1029
1030 /* x + (x & 1) -> (x + 1) & ~1 */
1031 (simplify
1032 (plus:c @0 (bit_and:s @0 integer_onep@1))
1033 (bit_and (plus @0 @1) (bit_not @1)))
1034
1035 /* x & ~(x & y) -> x & ~y */
1036 /* x | ~(x | y) -> x | ~y */
1037 (for bitop (bit_and bit_ior)
1038 (simplify
1039 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1040 (bitop @0 (bit_not @1))))
1041
1042 /* (~x & y) | ~(x | y) -> ~x */
1043 (simplify
1044 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1045 @2)
1046
1047 /* (x | y) ^ (x | ~y) -> ~x */
1048 (simplify
1049 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1050 (bit_not @0))
1051
1052 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1053 (simplify
1054 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1055 (bit_not (bit_xor @0 @1)))
1056
1057 /* (~x | y) ^ (x ^ y) -> x | ~y */
1058 (simplify
1059 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1060 (bit_ior @0 (bit_not @1)))
1061
1062 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1063 (simplify
1064 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1065 (bit_not (bit_and @0 @1)))
1066
1067 /* (x | y) & ~x -> y & ~x */
1068 /* (x & y) | ~x -> y | ~x */
1069 (for bitop (bit_and bit_ior)
1070 rbitop (bit_ior bit_and)
1071 (simplify
1072 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1073 (bitop @1 @2)))
1074
1075 /* (x & y) ^ (x | y) -> x ^ y */
1076 (simplify
1077 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1078 (bit_xor @0 @1))
1079
1080 /* (x ^ y) ^ (x | y) -> x & y */
1081 (simplify
1082 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1083 (bit_and @0 @1))
1084
1085 /* (x & y) + (x ^ y) -> x | y */
1086 /* (x & y) | (x ^ y) -> x | y */
1087 /* (x & y) ^ (x ^ y) -> x | y */
1088 (for op (plus bit_ior bit_xor)
1089 (simplify
1090 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1091 (bit_ior @0 @1)))
1092
1093 /* (x & y) + (x | y) -> x + y */
1094 (simplify
1095 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1096 (plus @0 @1))
1097
1098 /* (x + y) - (x | y) -> x & y */
1099 (simplify
1100 (minus (plus @0 @1) (bit_ior @0 @1))
1101 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1102 && !TYPE_SATURATING (type))
1103 (bit_and @0 @1)))
1104
1105 /* (x + y) - (x & y) -> x | y */
1106 (simplify
1107 (minus (plus @0 @1) (bit_and @0 @1))
1108 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1109 && !TYPE_SATURATING (type))
1110 (bit_ior @0 @1)))
1111
1112 /* (x | y) - (x ^ y) -> x & y */
1113 (simplify
1114 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1115 (bit_and @0 @1))
1116
1117 /* (x | y) - (x & y) -> x ^ y */
1118 (simplify
1119 (minus (bit_ior @0 @1) (bit_and @0 @1))
1120 (bit_xor @0 @1))
1121
1122 /* (x | y) & ~(x & y) -> x ^ y */
1123 (simplify
1124 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1125 (bit_xor @0 @1))
1126
1127 /* (x | y) & (~x ^ y) -> x & y */
1128 (simplify
1129 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1130 (bit_and @0 @1))
1131
1132 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1133 (simplify
1134 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1135 (bit_not (bit_xor @0 @1)))
1136
1137 /* (~x | y) ^ (x | ~y) -> x ^ y */
1138 (simplify
1139 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1140 (bit_xor @0 @1))
1141
1142 /* ~x & ~y -> ~(x | y)
1143 ~x | ~y -> ~(x & y) */
1144 (for op (bit_and bit_ior)
1145 rop (bit_ior bit_and)
1146 (simplify
1147 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1148 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1149 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1150 (bit_not (rop (convert @0) (convert @1))))))
1151
1152 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1153 with a constant, and the two constants have no bits in common,
1154 we should treat this as a BIT_IOR_EXPR since this may produce more
1155 simplifications. */
1156 (for op (bit_xor plus)
1157 (simplify
1158 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1159 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1160 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1161 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1162 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1163 (bit_ior (convert @4) (convert @5)))))
1164
1165 /* (X | Y) ^ X -> Y & ~ X*/
1166 (simplify
1167 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1168 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1169 (convert (bit_and @1 (bit_not @0)))))
1170
1171 /* Convert ~X ^ ~Y to X ^ Y. */
1172 (simplify
1173 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1174 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1175 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1176 (bit_xor (convert @0) (convert @1))))
1177
1178 /* Convert ~X ^ C to X ^ ~C. */
1179 (simplify
1180 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1181 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1182 (bit_xor (convert @0) (bit_not @1))))
1183
1184 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1185 (for opo (bit_and bit_xor)
1186 opi (bit_xor bit_and)
1187 (simplify
1188 (opo:c (opi:cs @0 @1) @1)
1189 (bit_and (bit_not @0) @1)))
1190
1191 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1192 operands are another bit-wise operation with a common input. If so,
1193 distribute the bit operations to save an operation and possibly two if
1194 constants are involved. For example, convert
1195 (A | B) & (A | C) into A | (B & C)
1196 Further simplification will occur if B and C are constants. */
1197 (for op (bit_and bit_ior bit_xor)
1198 rop (bit_ior bit_and bit_and)
1199 (simplify
1200 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1201 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1202 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1203 (rop (convert @0) (op (convert @1) (convert @2))))))
1204
1205 /* Some simple reassociation for bit operations, also handled in reassoc. */
1206 /* (X & Y) & Y -> X & Y
1207 (X | Y) | Y -> X | Y */
1208 (for op (bit_and bit_ior)
1209 (simplify
1210 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1211 @2))
1212 /* (X ^ Y) ^ Y -> X */
1213 (simplify
1214 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1215 (convert @0))
1216 /* (X & Y) & (X & Z) -> (X & Y) & Z
1217 (X | Y) | (X | Z) -> (X | Y) | Z */
1218 (for op (bit_and bit_ior)
1219 (simplify
1220 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1221 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1222 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1223 (if (single_use (@5) && single_use (@6))
1224 (op @3 (convert @2))
1225 (if (single_use (@3) && single_use (@4))
1226 (op (convert @1) @5))))))
1227 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1228 (simplify
1229 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1230 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1231 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1232 (bit_xor (convert @1) (convert @2))))
1233
1234 /* Convert abs (abs (X)) into abs (X).
1235 also absu (absu (X)) into absu (X). */
1236 (simplify
1237 (abs (abs@1 @0))
1238 @1)
1239
1240 (simplify
1241 (absu (convert@2 (absu@1 @0)))
1242 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1243 @1))
1244
1245 /* Convert abs[u] (-X) -> abs[u] (X). */
1246 (simplify
1247 (abs (negate @0))
1248 (abs @0))
1249
1250 (simplify
1251 (absu (negate @0))
1252 (absu @0))
1253
1254 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1255 (simplify
1256 (abs tree_expr_nonnegative_p@0)
1257 @0)
1258
1259 (simplify
1260 (absu tree_expr_nonnegative_p@0)
1261 (convert @0))
1262
1263 /* A few cases of fold-const.c negate_expr_p predicate. */
1264 (match negate_expr_p
1265 INTEGER_CST
1266 (if ((INTEGRAL_TYPE_P (type)
1267 && TYPE_UNSIGNED (type))
1268 || (!TYPE_OVERFLOW_SANITIZED (type)
1269 && may_negate_without_overflow_p (t)))))
1270 (match negate_expr_p
1271 FIXED_CST)
1272 (match negate_expr_p
1273 (negate @0)
1274 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1275 (match negate_expr_p
1276 REAL_CST
1277 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1278 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1279 ways. */
1280 (match negate_expr_p
1281 VECTOR_CST
1282 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1283 (match negate_expr_p
1284 (minus @0 @1)
1285 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1286 || (FLOAT_TYPE_P (type)
1287 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1288 && !HONOR_SIGNED_ZEROS (type)))))
1289
1290 /* (-A) * (-B) -> A * B */
1291 (simplify
1292 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1293 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1294 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1295 (mult (convert @0) (convert (negate @1)))))
1296
1297 /* -(A + B) -> (-B) - A. */
1298 (simplify
1299 (negate (plus:c @0 negate_expr_p@1))
1300 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1301 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1302 (minus (negate @1) @0)))
1303
1304 /* -(A - B) -> B - A. */
1305 (simplify
1306 (negate (minus @0 @1))
1307 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1308 || (FLOAT_TYPE_P (type)
1309 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1310 && !HONOR_SIGNED_ZEROS (type)))
1311 (minus @1 @0)))
1312 (simplify
1313 (negate (pointer_diff @0 @1))
1314 (if (TYPE_OVERFLOW_UNDEFINED (type))
1315 (pointer_diff @1 @0)))
1316
1317 /* A - B -> A + (-B) if B is easily negatable. */
1318 (simplify
1319 (minus @0 negate_expr_p@1)
1320 (if (!FIXED_POINT_TYPE_P (type))
1321 (plus @0 (negate @1))))
1322
1323 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1324 when profitable.
1325 For bitwise binary operations apply operand conversions to the
1326 binary operation result instead of to the operands. This allows
1327 to combine successive conversions and bitwise binary operations.
1328 We combine the above two cases by using a conditional convert. */
1329 (for bitop (bit_and bit_ior bit_xor)
1330 (simplify
1331 (bitop (convert@2 @0) (convert?@3 @1))
1332 (if (((TREE_CODE (@1) == INTEGER_CST
1333 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1334 && int_fits_type_p (@1, TREE_TYPE (@0)))
1335 || types_match (@0, @1))
1336 /* ??? This transform conflicts with fold-const.c doing
1337 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1338 constants (if x has signed type, the sign bit cannot be set
1339 in c). This folds extension into the BIT_AND_EXPR.
1340 Restrict it to GIMPLE to avoid endless recursions. */
1341 && (bitop != BIT_AND_EXPR || GIMPLE)
1342 && (/* That's a good idea if the conversion widens the operand, thus
1343 after hoisting the conversion the operation will be narrower. */
1344 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1345 /* It's also a good idea if the conversion is to a non-integer
1346 mode. */
1347 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1348 /* Or if the precision of TO is not the same as the precision
1349 of its mode. */
1350 || !type_has_mode_precision_p (type)
1351 /* In GIMPLE, getting rid of 2 conversions for one new results
1352 in smaller IL. */
1353 || (GIMPLE
1354 && TREE_CODE (@1) != INTEGER_CST
1355 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1356 && single_use (@2)
1357 && single_use (@3))))
1358 (convert (bitop @0 (convert @1)))))
1359 /* In GIMPLE, getting rid of 2 conversions for one new results
1360 in smaller IL. */
1361 (simplify
1362 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1363 (if (GIMPLE
1364 && TREE_CODE (@1) != INTEGER_CST
1365 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1366 && types_match (type, @0))
1367 (bitop @0 (convert @1)))))
1368
1369 (for bitop (bit_and bit_ior)
1370 rbitop (bit_ior bit_and)
1371 /* (x | y) & x -> x */
1372 /* (x & y) | x -> x */
1373 (simplify
1374 (bitop:c (rbitop:c @0 @1) @0)
1375 @0)
1376 /* (~x | y) & x -> x & y */
1377 /* (~x & y) | x -> x | y */
1378 (simplify
1379 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1380 (bitop @0 @1)))
1381
1382 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1383 (simplify
1384 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1385 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1386
1387 /* Combine successive equal operations with constants. */
1388 (for bitop (bit_and bit_ior bit_xor)
1389 (simplify
1390 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1391 (if (!CONSTANT_CLASS_P (@0))
1392 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1393 folded to a constant. */
1394 (bitop @0 (bitop @1 @2))
1395 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1396 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1397 the values involved are such that the operation can't be decided at
1398 compile time. Try folding one of @0 or @1 with @2 to see whether
1399 that combination can be decided at compile time.
1400
1401 Keep the existing form if both folds fail, to avoid endless
1402 oscillation. */
1403 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1404 (if (cst1)
1405 (bitop @1 { cst1; })
1406 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1407 (if (cst2)
1408 (bitop @0 { cst2; }))))))))
1409
1410 /* Try simple folding for X op !X, and X op X with the help
1411 of the truth_valued_p and logical_inverted_value predicates. */
1412 (match truth_valued_p
1413 @0
1414 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1415 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1416 (match truth_valued_p
1417 (op @0 @1)))
1418 (match truth_valued_p
1419 (truth_not @0))
1420
1421 (match (logical_inverted_value @0)
1422 (truth_not @0))
1423 (match (logical_inverted_value @0)
1424 (bit_not truth_valued_p@0))
1425 (match (logical_inverted_value @0)
1426 (eq @0 integer_zerop))
1427 (match (logical_inverted_value @0)
1428 (ne truth_valued_p@0 integer_truep))
1429 (match (logical_inverted_value @0)
1430 (bit_xor truth_valued_p@0 integer_truep))
1431
1432 /* X & !X -> 0. */
1433 (simplify
1434 (bit_and:c @0 (logical_inverted_value @0))
1435 { build_zero_cst (type); })
1436 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1437 (for op (bit_ior bit_xor)
1438 (simplify
1439 (op:c truth_valued_p@0 (logical_inverted_value @0))
1440 { constant_boolean_node (true, type); }))
1441 /* X ==/!= !X is false/true. */
1442 (for op (eq ne)
1443 (simplify
1444 (op:c truth_valued_p@0 (logical_inverted_value @0))
1445 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1446
1447 /* ~~x -> x */
1448 (simplify
1449 (bit_not (bit_not @0))
1450 @0)
1451
1452 /* Convert ~ (-A) to A - 1. */
1453 (simplify
1454 (bit_not (convert? (negate @0)))
1455 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1456 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1457 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1458
1459 /* Convert - (~A) to A + 1. */
1460 (simplify
1461 (negate (nop_convert? (bit_not @0)))
1462 (plus (view_convert @0) { build_each_one_cst (type); }))
1463
1464 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1465 (simplify
1466 (bit_not (convert? (minus @0 integer_each_onep)))
1467 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1468 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1469 (convert (negate @0))))
1470 (simplify
1471 (bit_not (convert? (plus @0 integer_all_onesp)))
1472 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1473 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1474 (convert (negate @0))))
1475
1476 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1477 (simplify
1478 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1479 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1480 (convert (bit_xor @0 (bit_not @1)))))
1481 (simplify
1482 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1483 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1484 (convert (bit_xor @0 @1))))
1485
1486 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1487 (simplify
1488 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1489 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1490 (bit_not (bit_xor (view_convert @0) @1))))
1491
1492 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1493 (simplify
1494 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1495 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1496
1497 /* Fold A - (A & B) into ~B & A. */
1498 (simplify
1499 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1500 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1501 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1502 (convert (bit_and (bit_not @1) @0))))
1503
1504 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1505 (for cmp (gt lt ge le)
1506 (simplify
1507 (mult (convert (cmp @0 @1)) @2)
1508 (if (GIMPLE || !TREE_SIDE_EFFECTS (@2))
1509 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1510
1511 /* For integral types with undefined overflow and C != 0 fold
1512 x * C EQ/NE y * C into x EQ/NE y. */
1513 (for cmp (eq ne)
1514 (simplify
1515 (cmp (mult:c @0 @1) (mult:c @2 @1))
1516 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1517 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1518 && tree_expr_nonzero_p (@1))
1519 (cmp @0 @2))))
1520
1521 /* For integral types with wrapping overflow and C odd fold
1522 x * C EQ/NE y * C into x EQ/NE y. */
1523 (for cmp (eq ne)
1524 (simplify
1525 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1526 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1527 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1528 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1529 (cmp @0 @2))))
1530
1531 /* For integral types with undefined overflow and C != 0 fold
1532 x * C RELOP y * C into:
1533
1534 x RELOP y for nonnegative C
1535 y RELOP x for negative C */
1536 (for cmp (lt gt le ge)
1537 (simplify
1538 (cmp (mult:c @0 @1) (mult:c @2 @1))
1539 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1540 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1541 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1542 (cmp @0 @2)
1543 (if (TREE_CODE (@1) == INTEGER_CST
1544 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1545 (cmp @2 @0))))))
1546
1547 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1548 (for cmp (le gt)
1549 icmp (gt le)
1550 (simplify
1551 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1552 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1553 && TYPE_UNSIGNED (TREE_TYPE (@0))
1554 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1555 && (wi::to_wide (@2)
1556 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1557 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1558 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1559
1560 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1561 (for cmp (simple_comparison)
1562 (simplify
1563 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1564 (if (element_precision (@3) >= element_precision (@0)
1565 && types_match (@0, @1))
1566 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1567 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1568 (cmp @1 @0)
1569 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1570 (with
1571 {
1572 tree utype = unsigned_type_for (TREE_TYPE (@0));
1573 }
1574 (cmp (convert:utype @1) (convert:utype @0)))))
1575 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1576 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1577 (cmp @0 @1)
1578 (with
1579 {
1580 tree utype = unsigned_type_for (TREE_TYPE (@0));
1581 }
1582 (cmp (convert:utype @0) (convert:utype @1)))))))))
1583
1584 /* X / C1 op C2 into a simple range test. */
1585 (for cmp (simple_comparison)
1586 (simplify
1587 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1588 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1589 && integer_nonzerop (@1)
1590 && !TREE_OVERFLOW (@1)
1591 && !TREE_OVERFLOW (@2))
1592 (with { tree lo, hi; bool neg_overflow;
1593 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1594 &neg_overflow); }
1595 (switch
1596 (if (code == LT_EXPR || code == GE_EXPR)
1597 (if (TREE_OVERFLOW (lo))
1598 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1599 (if (code == LT_EXPR)
1600 (lt @0 { lo; })
1601 (ge @0 { lo; }))))
1602 (if (code == LE_EXPR || code == GT_EXPR)
1603 (if (TREE_OVERFLOW (hi))
1604 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1605 (if (code == LE_EXPR)
1606 (le @0 { hi; })
1607 (gt @0 { hi; }))))
1608 (if (!lo && !hi)
1609 { build_int_cst (type, code == NE_EXPR); })
1610 (if (code == EQ_EXPR && !hi)
1611 (ge @0 { lo; }))
1612 (if (code == EQ_EXPR && !lo)
1613 (le @0 { hi; }))
1614 (if (code == NE_EXPR && !hi)
1615 (lt @0 { lo; }))
1616 (if (code == NE_EXPR && !lo)
1617 (gt @0 { hi; }))
1618 (if (GENERIC)
1619 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1620 lo, hi); })
1621 (with
1622 {
1623 tree etype = range_check_type (TREE_TYPE (@0));
1624 if (etype)
1625 {
1626 hi = fold_convert (etype, hi);
1627 lo = fold_convert (etype, lo);
1628 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1629 }
1630 }
1631 (if (etype && hi && !TREE_OVERFLOW (hi))
1632 (if (code == EQ_EXPR)
1633 (le (minus (convert:etype @0) { lo; }) { hi; })
1634 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1635
1636 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1637 (for op (lt le ge gt)
1638 (simplify
1639 (op (plus:c @0 @2) (plus:c @1 @2))
1640 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1641 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1642 (op @0 @1))))
1643 /* For equality and subtraction, this is also true with wrapping overflow. */
1644 (for op (eq ne minus)
1645 (simplify
1646 (op (plus:c @0 @2) (plus:c @1 @2))
1647 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1648 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1649 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1650 (op @0 @1))))
1651
1652 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1653 (for op (lt le ge gt)
1654 (simplify
1655 (op (minus @0 @2) (minus @1 @2))
1656 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1657 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1658 (op @0 @1))))
1659 /* For equality and subtraction, this is also true with wrapping overflow. */
1660 (for op (eq ne minus)
1661 (simplify
1662 (op (minus @0 @2) (minus @1 @2))
1663 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1664 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1665 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1666 (op @0 @1))))
1667 /* And for pointers... */
1668 (for op (simple_comparison)
1669 (simplify
1670 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1671 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1672 (op @0 @1))))
1673 (simplify
1674 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1675 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1676 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1677 (pointer_diff @0 @1)))
1678
1679 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1680 (for op (lt le ge gt)
1681 (simplify
1682 (op (minus @2 @0) (minus @2 @1))
1683 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1684 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1685 (op @1 @0))))
1686 /* For equality and subtraction, this is also true with wrapping overflow. */
1687 (for op (eq ne minus)
1688 (simplify
1689 (op (minus @2 @0) (minus @2 @1))
1690 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1691 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1692 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1693 (op @1 @0))))
1694 /* And for pointers... */
1695 (for op (simple_comparison)
1696 (simplify
1697 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1698 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1699 (op @1 @0))))
1700 (simplify
1701 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1702 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1703 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1704 (pointer_diff @1 @0)))
1705
1706 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1707 (for op (lt le gt ge)
1708 (simplify
1709 (op:c (plus:c@2 @0 @1) @1)
1710 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1711 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1712 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1713 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1714 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1715 /* For equality, this is also true with wrapping overflow. */
1716 (for op (eq ne)
1717 (simplify
1718 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1719 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1720 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1721 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1722 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1723 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1724 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1725 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1726 (simplify
1727 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1728 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1729 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1730 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1731 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1732
1733 /* X - Y < X is the same as Y > 0 when there is no overflow.
1734 For equality, this is also true with wrapping overflow. */
1735 (for op (simple_comparison)
1736 (simplify
1737 (op:c @0 (minus@2 @0 @1))
1738 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1739 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1740 || ((op == EQ_EXPR || op == NE_EXPR)
1741 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1742 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1743 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1744
1745 /* Transform:
1746 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1747 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1748 (for cmp (eq ne)
1749 ocmp (lt ge)
1750 (simplify
1751 (cmp (trunc_div @0 @1) integer_zerop)
1752 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1753 /* Complex ==/!= is allowed, but not </>=. */
1754 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1755 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1756 (ocmp @0 @1))))
1757
1758 /* X == C - X can never be true if C is odd. */
1759 (for cmp (eq ne)
1760 (simplify
1761 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1762 (if (TREE_INT_CST_LOW (@1) & 1)
1763 { constant_boolean_node (cmp == NE_EXPR, type); })))
1764
1765 /* Arguments on which one can call get_nonzero_bits to get the bits
1766 possibly set. */
1767 (match with_possible_nonzero_bits
1768 INTEGER_CST@0)
1769 (match with_possible_nonzero_bits
1770 SSA_NAME@0
1771 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1772 /* Slightly extended version, do not make it recursive to keep it cheap. */
1773 (match (with_possible_nonzero_bits2 @0)
1774 with_possible_nonzero_bits@0)
1775 (match (with_possible_nonzero_bits2 @0)
1776 (bit_and:c with_possible_nonzero_bits@0 @2))
1777
1778 /* Same for bits that are known to be set, but we do not have
1779 an equivalent to get_nonzero_bits yet. */
1780 (match (with_certain_nonzero_bits2 @0)
1781 INTEGER_CST@0)
1782 (match (with_certain_nonzero_bits2 @0)
1783 (bit_ior @1 INTEGER_CST@0))
1784
1785 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1786 (for cmp (eq ne)
1787 (simplify
1788 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1789 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1790 { constant_boolean_node (cmp == NE_EXPR, type); })))
1791
1792 /* ((X inner_op C0) outer_op C1)
1793 With X being a tree where value_range has reasoned certain bits to always be
1794 zero throughout its computed value range,
1795 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1796 where zero_mask has 1's for all bits that are sure to be 0 in
1797 and 0's otherwise.
1798 if (inner_op == '^') C0 &= ~C1;
1799 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1800 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1801 */
1802 (for inner_op (bit_ior bit_xor)
1803 outer_op (bit_xor bit_ior)
1804 (simplify
1805 (outer_op
1806 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1807 (with
1808 {
1809 bool fail = false;
1810 wide_int zero_mask_not;
1811 wide_int C0;
1812 wide_int cst_emit;
1813
1814 if (TREE_CODE (@2) == SSA_NAME)
1815 zero_mask_not = get_nonzero_bits (@2);
1816 else
1817 fail = true;
1818
1819 if (inner_op == BIT_XOR_EXPR)
1820 {
1821 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1822 cst_emit = C0 | wi::to_wide (@1);
1823 }
1824 else
1825 {
1826 C0 = wi::to_wide (@0);
1827 cst_emit = C0 ^ wi::to_wide (@1);
1828 }
1829 }
1830 (if (!fail && (C0 & zero_mask_not) == 0)
1831 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1832 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1833 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1834
1835 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1836 (simplify
1837 (pointer_plus (pointer_plus:s @0 @1) @3)
1838 (pointer_plus @0 (plus @1 @3)))
1839
1840 /* Pattern match
1841 tem1 = (long) ptr1;
1842 tem2 = (long) ptr2;
1843 tem3 = tem2 - tem1;
1844 tem4 = (unsigned long) tem3;
1845 tem5 = ptr1 + tem4;
1846 and produce
1847 tem5 = ptr2; */
1848 (simplify
1849 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1850 /* Conditionally look through a sign-changing conversion. */
1851 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1852 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1853 || (GENERIC && type == TREE_TYPE (@1))))
1854 @1))
1855 (simplify
1856 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1857 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1858 (convert @1)))
1859
1860 /* Pattern match
1861 tem = (sizetype) ptr;
1862 tem = tem & algn;
1863 tem = -tem;
1864 ... = ptr p+ tem;
1865 and produce the simpler and easier to analyze with respect to alignment
1866 ... = ptr & ~algn; */
1867 (simplify
1868 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1869 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1870 (bit_and @0 { algn; })))
1871
1872 /* Try folding difference of addresses. */
1873 (simplify
1874 (minus (convert ADDR_EXPR@0) (convert @1))
1875 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1876 (with { poly_int64 diff; }
1877 (if (ptr_difference_const (@0, @1, &diff))
1878 { build_int_cst_type (type, diff); }))))
1879 (simplify
1880 (minus (convert @0) (convert ADDR_EXPR@1))
1881 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1882 (with { poly_int64 diff; }
1883 (if (ptr_difference_const (@0, @1, &diff))
1884 { build_int_cst_type (type, diff); }))))
1885 (simplify
1886 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1887 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1888 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1889 (with { poly_int64 diff; }
1890 (if (ptr_difference_const (@0, @1, &diff))
1891 { build_int_cst_type (type, diff); }))))
1892 (simplify
1893 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1894 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1895 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1896 (with { poly_int64 diff; }
1897 (if (ptr_difference_const (@0, @1, &diff))
1898 { build_int_cst_type (type, diff); }))))
1899
1900 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
1901 (simplify
1902 (convert (pointer_diff @0 INTEGER_CST@1))
1903 (if (POINTER_TYPE_P (type))
1904 { build_fold_addr_expr_with_type
1905 (build2 (MEM_REF, char_type_node, @0,
1906 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
1907 type); }))
1908
1909 /* If arg0 is derived from the address of an object or function, we may
1910 be able to fold this expression using the object or function's
1911 alignment. */
1912 (simplify
1913 (bit_and (convert? @0) INTEGER_CST@1)
1914 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1915 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1916 (with
1917 {
1918 unsigned int align;
1919 unsigned HOST_WIDE_INT bitpos;
1920 get_pointer_alignment_1 (@0, &align, &bitpos);
1921 }
1922 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1923 { wide_int_to_tree (type, (wi::to_wide (@1)
1924 & (bitpos / BITS_PER_UNIT))); }))))
1925
1926 (match min_value
1927 INTEGER_CST
1928 (if (INTEGRAL_TYPE_P (type)
1929 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1930
1931 (match max_value
1932 INTEGER_CST
1933 (if (INTEGRAL_TYPE_P (type)
1934 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1935
1936 /* x > y && x != XXX_MIN --> x > y
1937 x > y && x == XXX_MIN --> false . */
1938 (for eqne (eq ne)
1939 (simplify
1940 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1941 (switch
1942 (if (eqne == EQ_EXPR)
1943 { constant_boolean_node (false, type); })
1944 (if (eqne == NE_EXPR)
1945 @2)
1946 )))
1947
1948 /* x < y && x != XXX_MAX --> x < y
1949 x < y && x == XXX_MAX --> false. */
1950 (for eqne (eq ne)
1951 (simplify
1952 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1953 (switch
1954 (if (eqne == EQ_EXPR)
1955 { constant_boolean_node (false, type); })
1956 (if (eqne == NE_EXPR)
1957 @2)
1958 )))
1959
1960 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1961 (simplify
1962 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1963 @2)
1964
1965 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
1966 (simplify
1967 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1968 @2)
1969
1970 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
1971 (simplify
1972 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1973 @2)
1974
1975 /* x <= y || x != XXX_MIN --> true. */
1976 (simplify
1977 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1978 { constant_boolean_node (true, type); })
1979
1980 /* x <= y || x == XXX_MIN --> x <= y. */
1981 (simplify
1982 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1983 @2)
1984
1985 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
1986 (simplify
1987 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1988 @2)
1989
1990 /* x >= y || x != XXX_MAX --> true
1991 x >= y || x == XXX_MAX --> x >= y. */
1992 (for eqne (eq ne)
1993 (simplify
1994 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1995 (switch
1996 (if (eqne == EQ_EXPR)
1997 @2)
1998 (if (eqne == NE_EXPR)
1999 { constant_boolean_node (true, type); }))))
2000
2001 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2002 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2003
2004 (for code1 (eq ne)
2005 (for code2 (eq ne lt gt le ge)
2006 (simplify
2007 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2008 (with
2009 {
2010 int cmp = tree_int_cst_compare (@1, @2);
2011 bool val;
2012 switch (code2)
2013 {
2014 case EQ_EXPR: val = (cmp == 0); break;
2015 case NE_EXPR: val = (cmp != 0); break;
2016 case LT_EXPR: val = (cmp < 0); break;
2017 case GT_EXPR: val = (cmp > 0); break;
2018 case LE_EXPR: val = (cmp <= 0); break;
2019 case GE_EXPR: val = (cmp >= 0); break;
2020 default: gcc_unreachable ();
2021 }
2022 }
2023 (switch
2024 (if (code1 == EQ_EXPR && val) @3)
2025 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2026 (if (code1 == NE_EXPR && !val) @4))))))
2027
2028 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2029
2030 (for code1 (lt le gt ge)
2031 (for code2 (lt le gt ge)
2032 (simplify
2033 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2034 (with
2035 {
2036 int cmp = tree_int_cst_compare (@1, @2);
2037 }
2038 (switch
2039 /* Choose the more restrictive of two < or <= comparisons. */
2040 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2041 && (code2 == LT_EXPR || code2 == LE_EXPR))
2042 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2043 @3
2044 @4))
2045 /* Likewise chose the more restrictive of two > or >= comparisons. */
2046 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2047 && (code2 == GT_EXPR || code2 == GE_EXPR))
2048 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2049 @3
2050 @4))
2051 /* Check for singleton ranges. */
2052 (if (cmp == 0
2053 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2054 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2055 (eq @0 @1))
2056 /* Check for disjoint ranges. */
2057 (if (cmp <= 0
2058 && (code1 == LT_EXPR || code1 == LE_EXPR)
2059 && (code2 == GT_EXPR || code2 == GE_EXPR))
2060 { constant_boolean_node (false, type); })
2061 (if (cmp >= 0
2062 && (code1 == GT_EXPR || code1 == GE_EXPR)
2063 && (code2 == LT_EXPR || code2 == LE_EXPR))
2064 { constant_boolean_node (false, type); })
2065 )))))
2066
2067 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2068 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2069
2070 (for code1 (eq ne)
2071 (for code2 (eq ne lt gt le ge)
2072 (simplify
2073 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2074 (with
2075 {
2076 int cmp = tree_int_cst_compare (@1, @2);
2077 bool val;
2078 switch (code2)
2079 {
2080 case EQ_EXPR: val = (cmp == 0); break;
2081 case NE_EXPR: val = (cmp != 0); break;
2082 case LT_EXPR: val = (cmp < 0); break;
2083 case GT_EXPR: val = (cmp > 0); break;
2084 case LE_EXPR: val = (cmp <= 0); break;
2085 case GE_EXPR: val = (cmp >= 0); break;
2086 default: gcc_unreachable ();
2087 }
2088 }
2089 (switch
2090 (if (code1 == EQ_EXPR && val) @4)
2091 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2092 (if (code1 == NE_EXPR && !val) @3))))))
2093
2094 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2095
2096 (for code1 (lt le gt ge)
2097 (for code2 (lt le gt ge)
2098 (simplify
2099 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2100 (with
2101 {
2102 int cmp = tree_int_cst_compare (@1, @2);
2103 }
2104 (switch
2105 /* Choose the more restrictive of two < or <= comparisons. */
2106 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2107 && (code2 == LT_EXPR || code2 == LE_EXPR))
2108 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2109 @4
2110 @3))
2111 /* Likewise chose the more restrictive of two > or >= comparisons. */
2112 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2113 && (code2 == GT_EXPR || code2 == GE_EXPR))
2114 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2115 @4
2116 @3))
2117 /* Check for singleton ranges. */
2118 (if (cmp == 0
2119 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2120 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2121 (ne @0 @2))
2122 /* Check for disjoint ranges. */
2123 (if (cmp >= 0
2124 && (code1 == LT_EXPR || code1 == LE_EXPR)
2125 && (code2 == GT_EXPR || code2 == GE_EXPR))
2126 { constant_boolean_node (true, type); })
2127 (if (cmp <= 0
2128 && (code1 == GT_EXPR || code1 == GE_EXPR)
2129 && (code2 == LT_EXPR || code2 == LE_EXPR))
2130 { constant_boolean_node (true, type); })
2131 )))))
2132
2133 /* We can't reassociate at all for saturating types. */
2134 (if (!TYPE_SATURATING (type))
2135
2136 /* Contract negates. */
2137 /* A + (-B) -> A - B */
2138 (simplify
2139 (plus:c @0 (convert? (negate @1)))
2140 /* Apply STRIP_NOPS on the negate. */
2141 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2142 && !TYPE_OVERFLOW_SANITIZED (type))
2143 (with
2144 {
2145 tree t1 = type;
2146 if (INTEGRAL_TYPE_P (type)
2147 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2148 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2149 }
2150 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2151 /* A - (-B) -> A + B */
2152 (simplify
2153 (minus @0 (convert? (negate @1)))
2154 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2155 && !TYPE_OVERFLOW_SANITIZED (type))
2156 (with
2157 {
2158 tree t1 = type;
2159 if (INTEGRAL_TYPE_P (type)
2160 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2161 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2162 }
2163 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2164 /* -(T)(-A) -> (T)A
2165 Sign-extension is ok except for INT_MIN, which thankfully cannot
2166 happen without overflow. */
2167 (simplify
2168 (negate (convert (negate @1)))
2169 (if (INTEGRAL_TYPE_P (type)
2170 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2171 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2172 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2173 && !TYPE_OVERFLOW_SANITIZED (type)
2174 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2175 (convert @1)))
2176 (simplify
2177 (negate (convert negate_expr_p@1))
2178 (if (SCALAR_FLOAT_TYPE_P (type)
2179 && ((DECIMAL_FLOAT_TYPE_P (type)
2180 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2181 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2182 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2183 (convert (negate @1))))
2184 (simplify
2185 (negate (nop_convert? (negate @1)))
2186 (if (!TYPE_OVERFLOW_SANITIZED (type)
2187 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2188 (view_convert @1)))
2189
2190 /* We can't reassociate floating-point unless -fassociative-math
2191 or fixed-point plus or minus because of saturation to +-Inf. */
2192 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2193 && !FIXED_POINT_TYPE_P (type))
2194
2195 /* Match patterns that allow contracting a plus-minus pair
2196 irrespective of overflow issues. */
2197 /* (A +- B) - A -> +- B */
2198 /* (A +- B) -+ B -> A */
2199 /* A - (A +- B) -> -+ B */
2200 /* A +- (B -+ A) -> +- B */
2201 (simplify
2202 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2203 (view_convert @1))
2204 (simplify
2205 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2206 (if (!ANY_INTEGRAL_TYPE_P (type)
2207 || TYPE_OVERFLOW_WRAPS (type))
2208 (negate (view_convert @1))
2209 (view_convert (negate @1))))
2210 (simplify
2211 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2212 (view_convert @0))
2213 (simplify
2214 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2215 (if (!ANY_INTEGRAL_TYPE_P (type)
2216 || TYPE_OVERFLOW_WRAPS (type))
2217 (negate (view_convert @1))
2218 (view_convert (negate @1))))
2219 (simplify
2220 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2221 (view_convert @1))
2222 /* (A +- B) + (C - A) -> C +- B */
2223 /* (A + B) - (A - C) -> B + C */
2224 /* More cases are handled with comparisons. */
2225 (simplify
2226 (plus:c (plus:c @0 @1) (minus @2 @0))
2227 (plus @2 @1))
2228 (simplify
2229 (plus:c (minus @0 @1) (minus @2 @0))
2230 (minus @2 @1))
2231 (simplify
2232 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2233 (if (TYPE_OVERFLOW_UNDEFINED (type)
2234 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2235 (pointer_diff @2 @1)))
2236 (simplify
2237 (minus (plus:c @0 @1) (minus @0 @2))
2238 (plus @1 @2))
2239
2240 /* (A +- CST1) +- CST2 -> A + CST3
2241 Use view_convert because it is safe for vectors and equivalent for
2242 scalars. */
2243 (for outer_op (plus minus)
2244 (for inner_op (plus minus)
2245 neg_inner_op (minus plus)
2246 (simplify
2247 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2248 CONSTANT_CLASS_P@2)
2249 /* If one of the types wraps, use that one. */
2250 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2251 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2252 forever if something doesn't simplify into a constant. */
2253 (if (!CONSTANT_CLASS_P (@0))
2254 (if (outer_op == PLUS_EXPR)
2255 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2256 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2257 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2258 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2259 (if (outer_op == PLUS_EXPR)
2260 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2261 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2262 /* If the constant operation overflows we cannot do the transform
2263 directly as we would introduce undefined overflow, for example
2264 with (a - 1) + INT_MIN. */
2265 (if (types_match (type, @0))
2266 (with { tree cst = const_binop (outer_op == inner_op
2267 ? PLUS_EXPR : MINUS_EXPR,
2268 type, @1, @2); }
2269 (if (cst && !TREE_OVERFLOW (cst))
2270 (inner_op @0 { cst; } )
2271 /* X+INT_MAX+1 is X-INT_MIN. */
2272 (if (INTEGRAL_TYPE_P (type) && cst
2273 && wi::to_wide (cst) == wi::min_value (type))
2274 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2275 /* Last resort, use some unsigned type. */
2276 (with { tree utype = unsigned_type_for (type); }
2277 (if (utype)
2278 (view_convert (inner_op
2279 (view_convert:utype @0)
2280 (view_convert:utype
2281 { drop_tree_overflow (cst); }))))))))))))))
2282
2283 /* (CST1 - A) +- CST2 -> CST3 - A */
2284 (for outer_op (plus minus)
2285 (simplify
2286 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2287 /* If one of the types wraps, use that one. */
2288 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2289 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2290 forever if something doesn't simplify into a constant. */
2291 (if (!CONSTANT_CLASS_P (@0))
2292 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2293 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2294 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2295 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2296 (if (types_match (type, @0))
2297 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2298 (if (cst && !TREE_OVERFLOW (cst))
2299 (minus { cst; } @0))))))))
2300
2301 /* CST1 - (CST2 - A) -> CST3 + A
2302 Use view_convert because it is safe for vectors and equivalent for
2303 scalars. */
2304 (simplify
2305 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2306 /* If one of the types wraps, use that one. */
2307 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2308 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2309 forever if something doesn't simplify into a constant. */
2310 (if (!CONSTANT_CLASS_P (@0))
2311 (plus (view_convert @0) (minus @1 (view_convert @2))))
2312 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2313 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2314 (view_convert (plus @0 (minus (view_convert @1) @2)))
2315 (if (types_match (type, @0))
2316 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2317 (if (cst && !TREE_OVERFLOW (cst))
2318 (plus { cst; } @0)))))))
2319
2320 /* ((T)(A)) + CST -> (T)(A + CST) */
2321 #if GIMPLE
2322 (simplify
2323 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2324 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2325 && TREE_CODE (type) == INTEGER_TYPE
2326 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2327 && int_fits_type_p (@1, TREE_TYPE (@0)))
2328 /* Perform binary operation inside the cast if the constant fits
2329 and (A + CST)'s range does not overflow. */
2330 (with
2331 {
2332 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2333 max_ovf = wi::OVF_OVERFLOW;
2334 tree inner_type = TREE_TYPE (@0);
2335
2336 wide_int w1
2337 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2338 TYPE_SIGN (inner_type));
2339
2340 wide_int wmin0, wmax0;
2341 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2342 {
2343 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2344 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2345 }
2346 }
2347 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2348 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2349 )))
2350 #endif
2351
2352 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2353 #if GIMPLE
2354 (for op (plus minus)
2355 (simplify
2356 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2357 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2358 && TREE_CODE (type) == INTEGER_TYPE
2359 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2360 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2361 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2362 && TYPE_OVERFLOW_WRAPS (type))
2363 (plus (convert @0) (op @2 (convert @1))))))
2364 #endif
2365
2366 /* ~A + A -> -1 */
2367 (simplify
2368 (plus:c (bit_not @0) @0)
2369 (if (!TYPE_OVERFLOW_TRAPS (type))
2370 { build_all_ones_cst (type); }))
2371
2372 /* ~A + 1 -> -A */
2373 (simplify
2374 (plus (convert? (bit_not @0)) integer_each_onep)
2375 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2376 (negate (convert @0))))
2377
2378 /* -A - 1 -> ~A */
2379 (simplify
2380 (minus (convert? (negate @0)) integer_each_onep)
2381 (if (!TYPE_OVERFLOW_TRAPS (type)
2382 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2383 (bit_not (convert @0))))
2384
2385 /* -1 - A -> ~A */
2386 (simplify
2387 (minus integer_all_onesp @0)
2388 (bit_not @0))
2389
2390 /* (T)(P + A) - (T)P -> (T) A */
2391 (simplify
2392 (minus (convert (plus:c @@0 @1))
2393 (convert? @0))
2394 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2395 /* For integer types, if A has a smaller type
2396 than T the result depends on the possible
2397 overflow in P + A.
2398 E.g. T=size_t, A=(unsigned)429497295, P>0.
2399 However, if an overflow in P + A would cause
2400 undefined behavior, we can assume that there
2401 is no overflow. */
2402 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2403 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2404 (convert @1)))
2405 (simplify
2406 (minus (convert (pointer_plus @@0 @1))
2407 (convert @0))
2408 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2409 /* For pointer types, if the conversion of A to the
2410 final type requires a sign- or zero-extension,
2411 then we have to punt - it is not defined which
2412 one is correct. */
2413 || (POINTER_TYPE_P (TREE_TYPE (@0))
2414 && TREE_CODE (@1) == INTEGER_CST
2415 && tree_int_cst_sign_bit (@1) == 0))
2416 (convert @1)))
2417 (simplify
2418 (pointer_diff (pointer_plus @@0 @1) @0)
2419 /* The second argument of pointer_plus must be interpreted as signed, and
2420 thus sign-extended if necessary. */
2421 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2422 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2423 second arg is unsigned even when we need to consider it as signed,
2424 we don't want to diagnose overflow here. */
2425 (convert (view_convert:stype @1))))
2426
2427 /* (T)P - (T)(P + A) -> -(T) A */
2428 (simplify
2429 (minus (convert? @0)
2430 (convert (plus:c @@0 @1)))
2431 (if (INTEGRAL_TYPE_P (type)
2432 && TYPE_OVERFLOW_UNDEFINED (type)
2433 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2434 (with { tree utype = unsigned_type_for (type); }
2435 (convert (negate (convert:utype @1))))
2436 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2437 /* For integer types, if A has a smaller type
2438 than T the result depends on the possible
2439 overflow in P + A.
2440 E.g. T=size_t, A=(unsigned)429497295, P>0.
2441 However, if an overflow in P + A would cause
2442 undefined behavior, we can assume that there
2443 is no overflow. */
2444 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2445 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2446 (negate (convert @1)))))
2447 (simplify
2448 (minus (convert @0)
2449 (convert (pointer_plus @@0 @1)))
2450 (if (INTEGRAL_TYPE_P (type)
2451 && TYPE_OVERFLOW_UNDEFINED (type)
2452 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2453 (with { tree utype = unsigned_type_for (type); }
2454 (convert (negate (convert:utype @1))))
2455 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2456 /* For pointer types, if the conversion of A to the
2457 final type requires a sign- or zero-extension,
2458 then we have to punt - it is not defined which
2459 one is correct. */
2460 || (POINTER_TYPE_P (TREE_TYPE (@0))
2461 && TREE_CODE (@1) == INTEGER_CST
2462 && tree_int_cst_sign_bit (@1) == 0))
2463 (negate (convert @1)))))
2464 (simplify
2465 (pointer_diff @0 (pointer_plus @@0 @1))
2466 /* The second argument of pointer_plus must be interpreted as signed, and
2467 thus sign-extended if necessary. */
2468 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2469 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2470 second arg is unsigned even when we need to consider it as signed,
2471 we don't want to diagnose overflow here. */
2472 (negate (convert (view_convert:stype @1)))))
2473
2474 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2475 (simplify
2476 (minus (convert (plus:c @@0 @1))
2477 (convert (plus:c @0 @2)))
2478 (if (INTEGRAL_TYPE_P (type)
2479 && TYPE_OVERFLOW_UNDEFINED (type)
2480 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2481 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2482 (with { tree utype = unsigned_type_for (type); }
2483 (convert (minus (convert:utype @1) (convert:utype @2))))
2484 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2485 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2486 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2487 /* For integer types, if A has a smaller type
2488 than T the result depends on the possible
2489 overflow in P + A.
2490 E.g. T=size_t, A=(unsigned)429497295, P>0.
2491 However, if an overflow in P + A would cause
2492 undefined behavior, we can assume that there
2493 is no overflow. */
2494 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2495 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2496 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2497 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2498 (minus (convert @1) (convert @2)))))
2499 (simplify
2500 (minus (convert (pointer_plus @@0 @1))
2501 (convert (pointer_plus @0 @2)))
2502 (if (INTEGRAL_TYPE_P (type)
2503 && TYPE_OVERFLOW_UNDEFINED (type)
2504 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2505 (with { tree utype = unsigned_type_for (type); }
2506 (convert (minus (convert:utype @1) (convert:utype @2))))
2507 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2508 /* For pointer types, if the conversion of A to the
2509 final type requires a sign- or zero-extension,
2510 then we have to punt - it is not defined which
2511 one is correct. */
2512 || (POINTER_TYPE_P (TREE_TYPE (@0))
2513 && TREE_CODE (@1) == INTEGER_CST
2514 && tree_int_cst_sign_bit (@1) == 0
2515 && TREE_CODE (@2) == INTEGER_CST
2516 && tree_int_cst_sign_bit (@2) == 0))
2517 (minus (convert @1) (convert @2)))))
2518 (simplify
2519 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2520 /* The second argument of pointer_plus must be interpreted as signed, and
2521 thus sign-extended if necessary. */
2522 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2523 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2524 second arg is unsigned even when we need to consider it as signed,
2525 we don't want to diagnose overflow here. */
2526 (minus (convert (view_convert:stype @1))
2527 (convert (view_convert:stype @2)))))))
2528
2529 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2530 Modeled after fold_plusminus_mult_expr. */
2531 (if (!TYPE_SATURATING (type)
2532 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2533 (for plusminus (plus minus)
2534 (simplify
2535 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2536 (if ((!ANY_INTEGRAL_TYPE_P (type)
2537 || TYPE_OVERFLOW_WRAPS (type)
2538 || (INTEGRAL_TYPE_P (type)
2539 && tree_expr_nonzero_p (@0)
2540 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2541 /* If @1 +- @2 is constant require a hard single-use on either
2542 original operand (but not on both). */
2543 && (single_use (@3) || single_use (@4)))
2544 (mult (plusminus @1 @2) @0)))
2545 /* We cannot generate constant 1 for fract. */
2546 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2547 (simplify
2548 (plusminus @0 (mult:c@3 @0 @2))
2549 (if ((!ANY_INTEGRAL_TYPE_P (type)
2550 || TYPE_OVERFLOW_WRAPS (type)
2551 /* For @0 + @0*@2 this transformation would introduce UB
2552 (where there was none before) for @0 in [-1,0] and @2 max.
2553 For @0 - @0*@2 this transformation would introduce UB
2554 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2555 || (INTEGRAL_TYPE_P (type)
2556 && ((tree_expr_nonzero_p (@0)
2557 && expr_not_equal_to (@0,
2558 wi::minus_one (TYPE_PRECISION (type))))
2559 || (plusminus == PLUS_EXPR
2560 ? expr_not_equal_to (@2,
2561 wi::max_value (TYPE_PRECISION (type), SIGNED))
2562 /* Let's ignore the @0 -1 and @2 min case. */
2563 : (expr_not_equal_to (@2,
2564 wi::min_value (TYPE_PRECISION (type), SIGNED))
2565 && expr_not_equal_to (@2,
2566 wi::min_value (TYPE_PRECISION (type), SIGNED)
2567 + 1))))))
2568 && single_use (@3))
2569 (mult (plusminus { build_one_cst (type); } @2) @0)))
2570 (simplify
2571 (plusminus (mult:c@3 @0 @2) @0)
2572 (if ((!ANY_INTEGRAL_TYPE_P (type)
2573 || TYPE_OVERFLOW_WRAPS (type)
2574 /* For @0*@2 + @0 this transformation would introduce UB
2575 (where there was none before) for @0 in [-1,0] and @2 max.
2576 For @0*@2 - @0 this transformation would introduce UB
2577 for @0 0 and @2 min. */
2578 || (INTEGRAL_TYPE_P (type)
2579 && ((tree_expr_nonzero_p (@0)
2580 && (plusminus == MINUS_EXPR
2581 || expr_not_equal_to (@0,
2582 wi::minus_one (TYPE_PRECISION (type)))))
2583 || expr_not_equal_to (@2,
2584 (plusminus == PLUS_EXPR
2585 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2586 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2587 && single_use (@3))
2588 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2589
2590 #if GIMPLE
2591 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2592 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
2593 (simplify
2594 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2595 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2596 && tree_fits_uhwi_p (@1)
2597 && tree_to_uhwi (@1) < element_precision (type))
2598 (with { tree t = type;
2599 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2600 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2601 element_precision (type));
2602 w += 1;
2603 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2604 : t, w);
2605 cst = build_uniform_cst (t, cst); }
2606 (convert (mult (convert:t @0) { cst; })))))
2607 (simplify
2608 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2609 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2610 && tree_fits_uhwi_p (@1)
2611 && tree_to_uhwi (@1) < element_precision (type)
2612 && tree_fits_uhwi_p (@2)
2613 && tree_to_uhwi (@2) < element_precision (type))
2614 (with { tree t = type;
2615 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2616 unsigned int prec = element_precision (type);
2617 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2618 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2619 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2620 : t, w);
2621 cst = build_uniform_cst (t, cst); }
2622 (convert (mult (convert:t @0) { cst; })))))
2623 #endif
2624
2625 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2626
2627 (for minmax (min max FMIN_ALL FMAX_ALL)
2628 (simplify
2629 (minmax @0 @0)
2630 @0))
2631 /* min(max(x,y),y) -> y. */
2632 (simplify
2633 (min:c (max:c @0 @1) @1)
2634 @1)
2635 /* max(min(x,y),y) -> y. */
2636 (simplify
2637 (max:c (min:c @0 @1) @1)
2638 @1)
2639 /* max(a,-a) -> abs(a). */
2640 (simplify
2641 (max:c @0 (negate @0))
2642 (if (TREE_CODE (type) != COMPLEX_TYPE
2643 && (! ANY_INTEGRAL_TYPE_P (type)
2644 || TYPE_OVERFLOW_UNDEFINED (type)))
2645 (abs @0)))
2646 /* min(a,-a) -> -abs(a). */
2647 (simplify
2648 (min:c @0 (negate @0))
2649 (if (TREE_CODE (type) != COMPLEX_TYPE
2650 && (! ANY_INTEGRAL_TYPE_P (type)
2651 || TYPE_OVERFLOW_UNDEFINED (type)))
2652 (negate (abs @0))))
2653 (simplify
2654 (min @0 @1)
2655 (switch
2656 (if (INTEGRAL_TYPE_P (type)
2657 && TYPE_MIN_VALUE (type)
2658 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2659 @1)
2660 (if (INTEGRAL_TYPE_P (type)
2661 && TYPE_MAX_VALUE (type)
2662 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2663 @0)))
2664 (simplify
2665 (max @0 @1)
2666 (switch
2667 (if (INTEGRAL_TYPE_P (type)
2668 && TYPE_MAX_VALUE (type)
2669 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2670 @1)
2671 (if (INTEGRAL_TYPE_P (type)
2672 && TYPE_MIN_VALUE (type)
2673 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2674 @0)))
2675
2676 /* max (a, a + CST) -> a + CST where CST is positive. */
2677 /* max (a, a + CST) -> a where CST is negative. */
2678 (simplify
2679 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2680 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2681 (if (tree_int_cst_sgn (@1) > 0)
2682 @2
2683 @0)))
2684
2685 /* min (a, a + CST) -> a where CST is positive. */
2686 /* min (a, a + CST) -> a + CST where CST is negative. */
2687 (simplify
2688 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2689 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2690 (if (tree_int_cst_sgn (@1) > 0)
2691 @0
2692 @2)))
2693
2694 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2695 and the outer convert demotes the expression back to x's type. */
2696 (for minmax (min max)
2697 (simplify
2698 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2699 (if (INTEGRAL_TYPE_P (type)
2700 && types_match (@1, type) && int_fits_type_p (@2, type)
2701 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2702 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2703 (minmax @1 (convert @2)))))
2704
2705 (for minmax (FMIN_ALL FMAX_ALL)
2706 /* If either argument is NaN, return the other one. Avoid the
2707 transformation if we get (and honor) a signalling NaN. */
2708 (simplify
2709 (minmax:c @0 REAL_CST@1)
2710 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2711 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2712 @0)))
2713 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2714 functions to return the numeric arg if the other one is NaN.
2715 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2716 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2717 worry about it either. */
2718 (if (flag_finite_math_only)
2719 (simplify
2720 (FMIN_ALL @0 @1)
2721 (min @0 @1))
2722 (simplify
2723 (FMAX_ALL @0 @1)
2724 (max @0 @1)))
2725 /* min (-A, -B) -> -max (A, B) */
2726 (for minmax (min max FMIN_ALL FMAX_ALL)
2727 maxmin (max min FMAX_ALL FMIN_ALL)
2728 (simplify
2729 (minmax (negate:s@2 @0) (negate:s@3 @1))
2730 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2731 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2732 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2733 (negate (maxmin @0 @1)))))
2734 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2735 MAX (~X, ~Y) -> ~MIN (X, Y) */
2736 (for minmax (min max)
2737 maxmin (max min)
2738 (simplify
2739 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2740 (bit_not (maxmin @0 @1))))
2741
2742 /* MIN (X, Y) == X -> X <= Y */
2743 (for minmax (min min max max)
2744 cmp (eq ne eq ne )
2745 out (le gt ge lt )
2746 (simplify
2747 (cmp:c (minmax:c @0 @1) @0)
2748 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2749 (out @0 @1))))
2750 /* MIN (X, 5) == 0 -> X == 0
2751 MIN (X, 5) == 7 -> false */
2752 (for cmp (eq ne)
2753 (simplify
2754 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2755 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2756 TYPE_SIGN (TREE_TYPE (@0))))
2757 { constant_boolean_node (cmp == NE_EXPR, type); }
2758 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2759 TYPE_SIGN (TREE_TYPE (@0))))
2760 (cmp @0 @2)))))
2761 (for cmp (eq ne)
2762 (simplify
2763 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2764 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2765 TYPE_SIGN (TREE_TYPE (@0))))
2766 { constant_boolean_node (cmp == NE_EXPR, type); }
2767 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2768 TYPE_SIGN (TREE_TYPE (@0))))
2769 (cmp @0 @2)))))
2770 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2771 (for minmax (min min max max min min max max )
2772 cmp (lt le gt ge gt ge lt le )
2773 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2774 (simplify
2775 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2776 (comb (cmp @0 @2) (cmp @1 @2))))
2777
2778 /* Undo fancy way of writing max/min or other ?: expressions,
2779 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
2780 People normally use ?: and that is what we actually try to optimize. */
2781 (for cmp (simple_comparison)
2782 (simplify
2783 (minus @0 (bit_and:c (minus @0 @1)
2784 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2785 (if (INTEGRAL_TYPE_P (type)
2786 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2787 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2788 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2789 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2790 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2791 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2792 (cond (cmp @2 @3) @1 @0)))
2793 (simplify
2794 (plus:c @0 (bit_and:c (minus @1 @0)
2795 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2796 (if (INTEGRAL_TYPE_P (type)
2797 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2798 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2799 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2800 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2801 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2802 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2803 (cond (cmp @2 @3) @1 @0)))
2804 /* Similarly with ^ instead of - though in that case with :c. */
2805 (simplify
2806 (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
2807 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
2808 (if (INTEGRAL_TYPE_P (type)
2809 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
2810 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
2811 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
2812 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
2813 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
2814 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
2815 (cond (cmp @2 @3) @1 @0))))
2816
2817 /* Simplifications of shift and rotates. */
2818
2819 (for rotate (lrotate rrotate)
2820 (simplify
2821 (rotate integer_all_onesp@0 @1)
2822 @0))
2823
2824 /* Optimize -1 >> x for arithmetic right shifts. */
2825 (simplify
2826 (rshift integer_all_onesp@0 @1)
2827 (if (!TYPE_UNSIGNED (type)
2828 && tree_expr_nonnegative_p (@1))
2829 @0))
2830
2831 /* Optimize (x >> c) << c into x & (-1<<c). */
2832 (simplify
2833 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
2834 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2835 /* It doesn't matter if the right shift is arithmetic or logical. */
2836 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
2837
2838 (simplify
2839 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
2840 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
2841 /* Allow intermediate conversion to integral type with whatever sign, as
2842 long as the low TYPE_PRECISION (type)
2843 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
2844 && INTEGRAL_TYPE_P (type)
2845 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2846 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2847 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
2848 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
2849 || wi::geu_p (wi::to_wide (@1),
2850 TYPE_PRECISION (type)
2851 - TYPE_PRECISION (TREE_TYPE (@2)))))
2852 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
2853
2854 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2855 types. */
2856 (simplify
2857 (rshift (lshift @0 INTEGER_CST@1) @1)
2858 (if (TYPE_UNSIGNED (type)
2859 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2860 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2861
2862 (for shiftrotate (lrotate rrotate lshift rshift)
2863 (simplify
2864 (shiftrotate @0 integer_zerop)
2865 (non_lvalue @0))
2866 (simplify
2867 (shiftrotate integer_zerop@0 @1)
2868 @0)
2869 /* Prefer vector1 << scalar to vector1 << vector2
2870 if vector2 is uniform. */
2871 (for vec (VECTOR_CST CONSTRUCTOR)
2872 (simplify
2873 (shiftrotate @0 vec@1)
2874 (with { tree tem = uniform_vector_p (@1); }
2875 (if (tem)
2876 (shiftrotate @0 { tem; }))))))
2877
2878 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2879 Y is 0. Similarly for X >> Y. */
2880 #if GIMPLE
2881 (for shift (lshift rshift)
2882 (simplify
2883 (shift @0 SSA_NAME@1)
2884 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2885 (with {
2886 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2887 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2888 }
2889 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2890 @0)))))
2891 #endif
2892
2893 /* Rewrite an LROTATE_EXPR by a constant into an
2894 RROTATE_EXPR by a new constant. */
2895 (simplify
2896 (lrotate @0 INTEGER_CST@1)
2897 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2898 build_int_cst (TREE_TYPE (@1),
2899 element_precision (type)), @1); }))
2900
2901 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2902 (for op (lrotate rrotate rshift lshift)
2903 (simplify
2904 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2905 (with { unsigned int prec = element_precision (type); }
2906 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2907 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2908 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2909 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2910 (with { unsigned int low = (tree_to_uhwi (@1)
2911 + tree_to_uhwi (@2)); }
2912 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2913 being well defined. */
2914 (if (low >= prec)
2915 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2916 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2917 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2918 { build_zero_cst (type); }
2919 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2920 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2921
2922
2923 /* ((1 << A) & 1) != 0 -> A == 0
2924 ((1 << A) & 1) == 0 -> A != 0 */
2925 (for cmp (ne eq)
2926 icmp (eq ne)
2927 (simplify
2928 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2929 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2930
2931 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2932 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2933 if CST2 != 0. */
2934 (for cmp (ne eq)
2935 (simplify
2936 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2937 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2938 (if (cand < 0
2939 || (!integer_zerop (@2)
2940 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2941 { constant_boolean_node (cmp == NE_EXPR, type); }
2942 (if (!integer_zerop (@2)
2943 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2944 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2945
2946 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2947 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2948 if the new mask might be further optimized. */
2949 (for shift (lshift rshift)
2950 (simplify
2951 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2952 INTEGER_CST@2)
2953 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2954 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2955 && tree_fits_uhwi_p (@1)
2956 && tree_to_uhwi (@1) > 0
2957 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2958 (with
2959 {
2960 unsigned int shiftc = tree_to_uhwi (@1);
2961 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2962 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2963 tree shift_type = TREE_TYPE (@3);
2964 unsigned int prec;
2965
2966 if (shift == LSHIFT_EXPR)
2967 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2968 else if (shift == RSHIFT_EXPR
2969 && type_has_mode_precision_p (shift_type))
2970 {
2971 prec = TYPE_PRECISION (TREE_TYPE (@3));
2972 tree arg00 = @0;
2973 /* See if more bits can be proven as zero because of
2974 zero extension. */
2975 if (@3 != @0
2976 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2977 {
2978 tree inner_type = TREE_TYPE (@0);
2979 if (type_has_mode_precision_p (inner_type)
2980 && TYPE_PRECISION (inner_type) < prec)
2981 {
2982 prec = TYPE_PRECISION (inner_type);
2983 /* See if we can shorten the right shift. */
2984 if (shiftc < prec)
2985 shift_type = inner_type;
2986 /* Otherwise X >> C1 is all zeros, so we'll optimize
2987 it into (X, 0) later on by making sure zerobits
2988 is all ones. */
2989 }
2990 }
2991 zerobits = HOST_WIDE_INT_M1U;
2992 if (shiftc < prec)
2993 {
2994 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2995 zerobits <<= prec - shiftc;
2996 }
2997 /* For arithmetic shift if sign bit could be set, zerobits
2998 can contain actually sign bits, so no transformation is
2999 possible, unless MASK masks them all away. In that
3000 case the shift needs to be converted into logical shift. */
3001 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3002 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3003 {
3004 if ((mask & zerobits) == 0)
3005 shift_type = unsigned_type_for (TREE_TYPE (@3));
3006 else
3007 zerobits = 0;
3008 }
3009 }
3010 }
3011 /* ((X << 16) & 0xff00) is (X, 0). */
3012 (if ((mask & zerobits) == mask)
3013 { build_int_cst (type, 0); }
3014 (with { newmask = mask | zerobits; }
3015 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3016 (with
3017 {
3018 /* Only do the transformation if NEWMASK is some integer
3019 mode's mask. */
3020 for (prec = BITS_PER_UNIT;
3021 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3022 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3023 break;
3024 }
3025 (if (prec < HOST_BITS_PER_WIDE_INT
3026 || newmask == HOST_WIDE_INT_M1U)
3027 (with
3028 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3029 (if (!tree_int_cst_equal (newmaskt, @2))
3030 (if (shift_type != TREE_TYPE (@3))
3031 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3032 (bit_and @4 { newmaskt; })))))))))))))
3033
3034 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3035 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3036 (for shift (lshift rshift)
3037 (for bit_op (bit_and bit_xor bit_ior)
3038 (simplify
3039 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3040 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3041 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3042 (bit_op (shift (convert @0) @1) { mask; }))))))
3043
3044 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3045 (simplify
3046 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3047 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3048 && (element_precision (TREE_TYPE (@0))
3049 <= element_precision (TREE_TYPE (@1))
3050 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3051 (with
3052 { tree shift_type = TREE_TYPE (@0); }
3053 (convert (rshift (convert:shift_type @1) @2)))))
3054
3055 /* ~(~X >>r Y) -> X >>r Y
3056 ~(~X <<r Y) -> X <<r Y */
3057 (for rotate (lrotate rrotate)
3058 (simplify
3059 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3060 (if ((element_precision (TREE_TYPE (@0))
3061 <= element_precision (TREE_TYPE (@1))
3062 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3063 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3064 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3065 (with
3066 { tree rotate_type = TREE_TYPE (@0); }
3067 (convert (rotate (convert:rotate_type @1) @2))))))
3068
3069 /* Simplifications of conversions. */
3070
3071 /* Basic strip-useless-type-conversions / strip_nops. */
3072 (for cvt (convert view_convert float fix_trunc)
3073 (simplify
3074 (cvt @0)
3075 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3076 || (GENERIC && type == TREE_TYPE (@0)))
3077 @0)))
3078
3079 /* Contract view-conversions. */
3080 (simplify
3081 (view_convert (view_convert @0))
3082 (view_convert @0))
3083
3084 /* For integral conversions with the same precision or pointer
3085 conversions use a NOP_EXPR instead. */
3086 (simplify
3087 (view_convert @0)
3088 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3089 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3090 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3091 (convert @0)))
3092
3093 /* Strip inner integral conversions that do not change precision or size, or
3094 zero-extend while keeping the same size (for bool-to-char). */
3095 (simplify
3096 (view_convert (convert@0 @1))
3097 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3098 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3099 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3100 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3101 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3102 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3103 (view_convert @1)))
3104
3105 /* Simplify a view-converted empty constructor. */
3106 (simplify
3107 (view_convert CONSTRUCTOR@0)
3108 (if (TREE_CODE (@0) != SSA_NAME
3109 && CONSTRUCTOR_NELTS (@0) == 0)
3110 { build_zero_cst (type); }))
3111
3112 /* Re-association barriers around constants and other re-association
3113 barriers can be removed. */
3114 (simplify
3115 (paren CONSTANT_CLASS_P@0)
3116 @0)
3117 (simplify
3118 (paren (paren@1 @0))
3119 @1)
3120
3121 /* Handle cases of two conversions in a row. */
3122 (for ocvt (convert float fix_trunc)
3123 (for icvt (convert float)
3124 (simplify
3125 (ocvt (icvt@1 @0))
3126 (with
3127 {
3128 tree inside_type = TREE_TYPE (@0);
3129 tree inter_type = TREE_TYPE (@1);
3130 int inside_int = INTEGRAL_TYPE_P (inside_type);
3131 int inside_ptr = POINTER_TYPE_P (inside_type);
3132 int inside_float = FLOAT_TYPE_P (inside_type);
3133 int inside_vec = VECTOR_TYPE_P (inside_type);
3134 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3135 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3136 int inter_int = INTEGRAL_TYPE_P (inter_type);
3137 int inter_ptr = POINTER_TYPE_P (inter_type);
3138 int inter_float = FLOAT_TYPE_P (inter_type);
3139 int inter_vec = VECTOR_TYPE_P (inter_type);
3140 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3141 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3142 int final_int = INTEGRAL_TYPE_P (type);
3143 int final_ptr = POINTER_TYPE_P (type);
3144 int final_float = FLOAT_TYPE_P (type);
3145 int final_vec = VECTOR_TYPE_P (type);
3146 unsigned int final_prec = TYPE_PRECISION (type);
3147 int final_unsignedp = TYPE_UNSIGNED (type);
3148 }
3149 (switch
3150 /* In addition to the cases of two conversions in a row
3151 handled below, if we are converting something to its own
3152 type via an object of identical or wider precision, neither
3153 conversion is needed. */
3154 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3155 || (GENERIC
3156 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3157 && (((inter_int || inter_ptr) && final_int)
3158 || (inter_float && final_float))
3159 && inter_prec >= final_prec)
3160 (ocvt @0))
3161
3162 /* Likewise, if the intermediate and initial types are either both
3163 float or both integer, we don't need the middle conversion if the
3164 former is wider than the latter and doesn't change the signedness
3165 (for integers). Avoid this if the final type is a pointer since
3166 then we sometimes need the middle conversion. */
3167 (if (((inter_int && inside_int) || (inter_float && inside_float))
3168 && (final_int || final_float)
3169 && inter_prec >= inside_prec
3170 && (inter_float || inter_unsignedp == inside_unsignedp))
3171 (ocvt @0))
3172
3173 /* If we have a sign-extension of a zero-extended value, we can
3174 replace that by a single zero-extension. Likewise if the
3175 final conversion does not change precision we can drop the
3176 intermediate conversion. */
3177 (if (inside_int && inter_int && final_int
3178 && ((inside_prec < inter_prec && inter_prec < final_prec
3179 && inside_unsignedp && !inter_unsignedp)
3180 || final_prec == inter_prec))
3181 (ocvt @0))
3182
3183 /* Two conversions in a row are not needed unless:
3184 - some conversion is floating-point (overstrict for now), or
3185 - some conversion is a vector (overstrict for now), or
3186 - the intermediate type is narrower than both initial and
3187 final, or
3188 - the intermediate type and innermost type differ in signedness,
3189 and the outermost type is wider than the intermediate, or
3190 - the initial type is a pointer type and the precisions of the
3191 intermediate and final types differ, or
3192 - the final type is a pointer type and the precisions of the
3193 initial and intermediate types differ. */
3194 (if (! inside_float && ! inter_float && ! final_float
3195 && ! inside_vec && ! inter_vec && ! final_vec
3196 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3197 && ! (inside_int && inter_int
3198 && inter_unsignedp != inside_unsignedp
3199 && inter_prec < final_prec)
3200 && ((inter_unsignedp && inter_prec > inside_prec)
3201 == (final_unsignedp && final_prec > inter_prec))
3202 && ! (inside_ptr && inter_prec != final_prec)
3203 && ! (final_ptr && inside_prec != inter_prec))
3204 (ocvt @0))
3205
3206 /* A truncation to an unsigned type (a zero-extension) should be
3207 canonicalized as bitwise and of a mask. */
3208 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3209 && final_int && inter_int && inside_int
3210 && final_prec == inside_prec
3211 && final_prec > inter_prec
3212 && inter_unsignedp)
3213 (convert (bit_and @0 { wide_int_to_tree
3214 (inside_type,
3215 wi::mask (inter_prec, false,
3216 TYPE_PRECISION (inside_type))); })))
3217
3218 /* If we are converting an integer to a floating-point that can
3219 represent it exactly and back to an integer, we can skip the
3220 floating-point conversion. */
3221 (if (GIMPLE /* PR66211 */
3222 && inside_int && inter_float && final_int &&
3223 (unsigned) significand_size (TYPE_MODE (inter_type))
3224 >= inside_prec - !inside_unsignedp)
3225 (convert @0)))))))
3226
3227 /* If we have a narrowing conversion to an integral type that is fed by a
3228 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3229 masks off bits outside the final type (and nothing else). */
3230 (simplify
3231 (convert (bit_and @0 INTEGER_CST@1))
3232 (if (INTEGRAL_TYPE_P (type)
3233 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3234 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3235 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3236 TYPE_PRECISION (type)), 0))
3237 (convert @0)))
3238
3239
3240 /* (X /[ex] A) * A -> X. */
3241 (simplify
3242 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3243 (convert @0))
3244
3245 /* Simplify (A / B) * B + (A % B) -> A. */
3246 (for div (trunc_div ceil_div floor_div round_div)
3247 mod (trunc_mod ceil_mod floor_mod round_mod)
3248 (simplify
3249 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3250 @0))
3251
3252 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3253 (for op (plus minus)
3254 (simplify
3255 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3256 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3257 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3258 (with
3259 {
3260 wi::overflow_type overflow;
3261 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3262 TYPE_SIGN (type), &overflow);
3263 }
3264 (if (types_match (type, TREE_TYPE (@2))
3265 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3266 (op @0 { wide_int_to_tree (type, mul); })
3267 (with { tree utype = unsigned_type_for (type); }
3268 (convert (op (convert:utype @0)
3269 (mult (convert:utype @1) (convert:utype @2))))))))))
3270
3271 /* Canonicalization of binary operations. */
3272
3273 /* Convert X + -C into X - C. */
3274 (simplify
3275 (plus @0 REAL_CST@1)
3276 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3277 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3278 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3279 (minus @0 { tem; })))))
3280
3281 /* Convert x+x into x*2. */
3282 (simplify
3283 (plus @0 @0)
3284 (if (SCALAR_FLOAT_TYPE_P (type))
3285 (mult @0 { build_real (type, dconst2); })
3286 (if (INTEGRAL_TYPE_P (type))
3287 (mult @0 { build_int_cst (type, 2); }))))
3288
3289 /* 0 - X -> -X. */
3290 (simplify
3291 (minus integer_zerop @1)
3292 (negate @1))
3293 (simplify
3294 (pointer_diff integer_zerop @1)
3295 (negate (convert @1)))
3296
3297 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3298 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3299 (-ARG1 + ARG0) reduces to -ARG1. */
3300 (simplify
3301 (minus real_zerop@0 @1)
3302 (if (fold_real_zero_addition_p (type, @0, 0))
3303 (negate @1)))
3304
3305 /* Transform x * -1 into -x. */
3306 (simplify
3307 (mult @0 integer_minus_onep)
3308 (negate @0))
3309
3310 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3311 signed overflow for CST != 0 && CST != -1. */
3312 (simplify
3313 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3314 (if (TREE_CODE (@2) != INTEGER_CST
3315 && single_use (@3)
3316 && !integer_zerop (@1) && !integer_minus_onep (@1))
3317 (mult (mult @0 @2) @1)))
3318
3319 /* True if we can easily extract the real and imaginary parts of a complex
3320 number. */
3321 (match compositional_complex
3322 (convert? (complex @0 @1)))
3323
3324 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3325 (simplify
3326 (complex (realpart @0) (imagpart @0))
3327 @0)
3328 (simplify
3329 (realpart (complex @0 @1))
3330 @0)
3331 (simplify
3332 (imagpart (complex @0 @1))
3333 @1)
3334
3335 /* Sometimes we only care about half of a complex expression. */
3336 (simplify
3337 (realpart (convert?:s (conj:s @0)))
3338 (convert (realpart @0)))
3339 (simplify
3340 (imagpart (convert?:s (conj:s @0)))
3341 (convert (negate (imagpart @0))))
3342 (for part (realpart imagpart)
3343 (for op (plus minus)
3344 (simplify
3345 (part (convert?:s@2 (op:s @0 @1)))
3346 (convert (op (part @0) (part @1))))))
3347 (simplify
3348 (realpart (convert?:s (CEXPI:s @0)))
3349 (convert (COS @0)))
3350 (simplify
3351 (imagpart (convert?:s (CEXPI:s @0)))
3352 (convert (SIN @0)))
3353
3354 /* conj(conj(x)) -> x */
3355 (simplify
3356 (conj (convert? (conj @0)))
3357 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3358 (convert @0)))
3359
3360 /* conj({x,y}) -> {x,-y} */
3361 (simplify
3362 (conj (convert?:s (complex:s @0 @1)))
3363 (with { tree itype = TREE_TYPE (type); }
3364 (complex (convert:itype @0) (negate (convert:itype @1)))))
3365
3366 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3367 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3368 (simplify
3369 (bswap (bswap @0))
3370 @0)
3371 (simplify
3372 (bswap (bit_not (bswap @0)))
3373 (bit_not @0))
3374 (for bitop (bit_xor bit_ior bit_and)
3375 (simplify
3376 (bswap (bitop:c (bswap @0) @1))
3377 (bitop @0 (bswap @1)))))
3378
3379
3380 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3381
3382 /* Simplify constant conditions.
3383 Only optimize constant conditions when the selected branch
3384 has the same type as the COND_EXPR. This avoids optimizing
3385 away "c ? x : throw", where the throw has a void type.
3386 Note that we cannot throw away the fold-const.c variant nor
3387 this one as we depend on doing this transform before possibly
3388 A ? B : B -> B triggers and the fold-const.c one can optimize
3389 0 ? A : B to B even if A has side-effects. Something
3390 genmatch cannot handle. */
3391 (simplify
3392 (cond INTEGER_CST@0 @1 @2)
3393 (if (integer_zerop (@0))
3394 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3395 @2)
3396 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3397 @1)))
3398 (simplify
3399 (vec_cond VECTOR_CST@0 @1 @2)
3400 (if (integer_all_onesp (@0))
3401 @1
3402 (if (integer_zerop (@0))
3403 @2)))
3404
3405 /* Sink unary operations to constant branches, but only if we do fold it to
3406 constants. */
3407 (for op (negate bit_not abs absu)
3408 (simplify
3409 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3410 (with
3411 {
3412 tree cst1, cst2;
3413 cst1 = const_unop (op, type, @1);
3414 if (cst1)
3415 cst2 = const_unop (op, type, @2);
3416 }
3417 (if (cst1 && cst2)
3418 (vec_cond @0 { cst1; } { cst2; })))))
3419
3420 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3421 be extended. */
3422 /* This pattern implements two kinds simplification:
3423
3424 Case 1)
3425 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3426 1) Conversions are type widening from smaller type.
3427 2) Const c1 equals to c2 after canonicalizing comparison.
3428 3) Comparison has tree code LT, LE, GT or GE.
3429 This specific pattern is needed when (cmp (convert x) c) may not
3430 be simplified by comparison patterns because of multiple uses of
3431 x. It also makes sense here because simplifying across multiple
3432 referred var is always benefitial for complicated cases.
3433
3434 Case 2)
3435 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3436 (for cmp (lt le gt ge eq)
3437 (simplify
3438 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3439 (with
3440 {
3441 tree from_type = TREE_TYPE (@1);
3442 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3443 enum tree_code code = ERROR_MARK;
3444
3445 if (INTEGRAL_TYPE_P (from_type)
3446 && int_fits_type_p (@2, from_type)
3447 && (types_match (c1_type, from_type)
3448 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3449 && (TYPE_UNSIGNED (from_type)
3450 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3451 && (types_match (c2_type, from_type)
3452 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3453 && (TYPE_UNSIGNED (from_type)
3454 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3455 {
3456 if (cmp != EQ_EXPR)
3457 {
3458 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3459 {
3460 /* X <= Y - 1 equals to X < Y. */
3461 if (cmp == LE_EXPR)
3462 code = LT_EXPR;
3463 /* X > Y - 1 equals to X >= Y. */
3464 if (cmp == GT_EXPR)
3465 code = GE_EXPR;
3466 }
3467 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3468 {
3469 /* X < Y + 1 equals to X <= Y. */
3470 if (cmp == LT_EXPR)
3471 code = LE_EXPR;
3472 /* X >= Y + 1 equals to X > Y. */
3473 if (cmp == GE_EXPR)
3474 code = GT_EXPR;
3475 }
3476 if (code != ERROR_MARK
3477 || wi::to_widest (@2) == wi::to_widest (@3))
3478 {
3479 if (cmp == LT_EXPR || cmp == LE_EXPR)
3480 code = MIN_EXPR;
3481 if (cmp == GT_EXPR || cmp == GE_EXPR)
3482 code = MAX_EXPR;
3483 }
3484 }
3485 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3486 else if (int_fits_type_p (@3, from_type))
3487 code = EQ_EXPR;
3488 }
3489 }
3490 (if (code == MAX_EXPR)
3491 (convert (max @1 (convert @2)))
3492 (if (code == MIN_EXPR)
3493 (convert (min @1 (convert @2)))
3494 (if (code == EQ_EXPR)
3495 (convert (cond (eq @1 (convert @3))
3496 (convert:from_type @3) (convert:from_type @2)))))))))
3497
3498 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3499
3500 1) OP is PLUS or MINUS.
3501 2) CMP is LT, LE, GT or GE.
3502 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3503
3504 This pattern also handles special cases like:
3505
3506 A) Operand x is a unsigned to signed type conversion and c1 is
3507 integer zero. In this case,
3508 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3509 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3510 B) Const c1 may not equal to (C3 op' C2). In this case we also
3511 check equality for (c1+1) and (c1-1) by adjusting comparison
3512 code.
3513
3514 TODO: Though signed type is handled by this pattern, it cannot be
3515 simplified at the moment because C standard requires additional
3516 type promotion. In order to match&simplify it here, the IR needs
3517 to be cleaned up by other optimizers, i.e, VRP. */
3518 (for op (plus minus)
3519 (for cmp (lt le gt ge)
3520 (simplify
3521 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3522 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3523 (if (types_match (from_type, to_type)
3524 /* Check if it is special case A). */
3525 || (TYPE_UNSIGNED (from_type)
3526 && !TYPE_UNSIGNED (to_type)
3527 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3528 && integer_zerop (@1)
3529 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3530 (with
3531 {
3532 wi::overflow_type overflow = wi::OVF_NONE;
3533 enum tree_code code, cmp_code = cmp;
3534 wide_int real_c1;
3535 wide_int c1 = wi::to_wide (@1);
3536 wide_int c2 = wi::to_wide (@2);
3537 wide_int c3 = wi::to_wide (@3);
3538 signop sgn = TYPE_SIGN (from_type);
3539
3540 /* Handle special case A), given x of unsigned type:
3541 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3542 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3543 if (!types_match (from_type, to_type))
3544 {
3545 if (cmp_code == LT_EXPR)
3546 cmp_code = GT_EXPR;
3547 if (cmp_code == GE_EXPR)
3548 cmp_code = LE_EXPR;
3549 c1 = wi::max_value (to_type);
3550 }
3551 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3552 compute (c3 op' c2) and check if it equals to c1 with op' being
3553 the inverted operator of op. Make sure overflow doesn't happen
3554 if it is undefined. */
3555 if (op == PLUS_EXPR)
3556 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3557 else
3558 real_c1 = wi::add (c3, c2, sgn, &overflow);
3559
3560 code = cmp_code;
3561 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3562 {
3563 /* Check if c1 equals to real_c1. Boundary condition is handled
3564 by adjusting comparison operation if necessary. */
3565 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3566 && !overflow)
3567 {
3568 /* X <= Y - 1 equals to X < Y. */
3569 if (cmp_code == LE_EXPR)
3570 code = LT_EXPR;
3571 /* X > Y - 1 equals to X >= Y. */
3572 if (cmp_code == GT_EXPR)
3573 code = GE_EXPR;
3574 }
3575 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3576 && !overflow)
3577 {
3578 /* X < Y + 1 equals to X <= Y. */
3579 if (cmp_code == LT_EXPR)
3580 code = LE_EXPR;
3581 /* X >= Y + 1 equals to X > Y. */
3582 if (cmp_code == GE_EXPR)
3583 code = GT_EXPR;
3584 }
3585 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3586 {
3587 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3588 code = MIN_EXPR;
3589 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3590 code = MAX_EXPR;
3591 }
3592 }
3593 }
3594 (if (code == MAX_EXPR)
3595 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3596 { wide_int_to_tree (from_type, c2); })
3597 (if (code == MIN_EXPR)
3598 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3599 { wide_int_to_tree (from_type, c2); })))))))))
3600
3601 (for cnd (cond vec_cond)
3602 /* A ? B : (A ? X : C) -> A ? B : C. */
3603 (simplify
3604 (cnd @0 (cnd @0 @1 @2) @3)
3605 (cnd @0 @1 @3))
3606 (simplify
3607 (cnd @0 @1 (cnd @0 @2 @3))
3608 (cnd @0 @1 @3))
3609 /* A ? B : (!A ? C : X) -> A ? B : C. */
3610 /* ??? This matches embedded conditions open-coded because genmatch
3611 would generate matching code for conditions in separate stmts only.
3612 The following is still important to merge then and else arm cases
3613 from if-conversion. */
3614 (simplify
3615 (cnd @0 @1 (cnd @2 @3 @4))
3616 (if (inverse_conditions_p (@0, @2))
3617 (cnd @0 @1 @3)))
3618 (simplify
3619 (cnd @0 (cnd @1 @2 @3) @4)
3620 (if (inverse_conditions_p (@0, @1))
3621 (cnd @0 @3 @4)))
3622
3623 /* A ? B : B -> B. */
3624 (simplify
3625 (cnd @0 @1 @1)
3626 @1)
3627
3628 /* !A ? B : C -> A ? C : B. */
3629 (simplify
3630 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3631 (cnd @0 @2 @1)))
3632
3633 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3634 return all -1 or all 0 results. */
3635 /* ??? We could instead convert all instances of the vec_cond to negate,
3636 but that isn't necessarily a win on its own. */
3637 (simplify
3638 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3639 (if (VECTOR_TYPE_P (type)
3640 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3641 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3642 && (TYPE_MODE (TREE_TYPE (type))
3643 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3644 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3645
3646 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3647 (simplify
3648 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3649 (if (VECTOR_TYPE_P (type)
3650 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3651 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3652 && (TYPE_MODE (TREE_TYPE (type))
3653 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3654 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3655
3656
3657 /* Simplifications of comparisons. */
3658
3659 /* See if we can reduce the magnitude of a constant involved in a
3660 comparison by changing the comparison code. This is a canonicalization
3661 formerly done by maybe_canonicalize_comparison_1. */
3662 (for cmp (le gt)
3663 acmp (lt ge)
3664 (simplify
3665 (cmp @0 uniform_integer_cst_p@1)
3666 (with { tree cst = uniform_integer_cst_p (@1); }
3667 (if (tree_int_cst_sgn (cst) == -1)
3668 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3669 wide_int_to_tree (TREE_TYPE (cst),
3670 wi::to_wide (cst)
3671 + 1)); })))))
3672 (for cmp (ge lt)
3673 acmp (gt le)
3674 (simplify
3675 (cmp @0 uniform_integer_cst_p@1)
3676 (with { tree cst = uniform_integer_cst_p (@1); }
3677 (if (tree_int_cst_sgn (cst) == 1)
3678 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3679 wide_int_to_tree (TREE_TYPE (cst),
3680 wi::to_wide (cst) - 1)); })))))
3681
3682 /* We can simplify a logical negation of a comparison to the
3683 inverted comparison. As we cannot compute an expression
3684 operator using invert_tree_comparison we have to simulate
3685 that with expression code iteration. */
3686 (for cmp (tcc_comparison)
3687 icmp (inverted_tcc_comparison)
3688 ncmp (inverted_tcc_comparison_with_nans)
3689 /* Ideally we'd like to combine the following two patterns
3690 and handle some more cases by using
3691 (logical_inverted_value (cmp @0 @1))
3692 here but for that genmatch would need to "inline" that.
3693 For now implement what forward_propagate_comparison did. */
3694 (simplify
3695 (bit_not (cmp @0 @1))
3696 (if (VECTOR_TYPE_P (type)
3697 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3698 /* Comparison inversion may be impossible for trapping math,
3699 invert_tree_comparison will tell us. But we can't use
3700 a computed operator in the replacement tree thus we have
3701 to play the trick below. */
3702 (with { enum tree_code ic = invert_tree_comparison
3703 (cmp, HONOR_NANS (@0)); }
3704 (if (ic == icmp)
3705 (icmp @0 @1)
3706 (if (ic == ncmp)
3707 (ncmp @0 @1))))))
3708 (simplify
3709 (bit_xor (cmp @0 @1) integer_truep)
3710 (with { enum tree_code ic = invert_tree_comparison
3711 (cmp, HONOR_NANS (@0)); }
3712 (if (ic == icmp)
3713 (icmp @0 @1)
3714 (if (ic == ncmp)
3715 (ncmp @0 @1))))))
3716
3717 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3718 ??? The transformation is valid for the other operators if overflow
3719 is undefined for the type, but performing it here badly interacts
3720 with the transformation in fold_cond_expr_with_comparison which
3721 attempts to synthetize ABS_EXPR. */
3722 (for cmp (eq ne)
3723 (for sub (minus pointer_diff)
3724 (simplify
3725 (cmp (sub@2 @0 @1) integer_zerop)
3726 (if (single_use (@2))
3727 (cmp @0 @1)))))
3728
3729 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3730 signed arithmetic case. That form is created by the compiler
3731 often enough for folding it to be of value. One example is in
3732 computing loop trip counts after Operator Strength Reduction. */
3733 (for cmp (simple_comparison)
3734 scmp (swapped_simple_comparison)
3735 (simplify
3736 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3737 /* Handle unfolded multiplication by zero. */
3738 (if (integer_zerop (@1))
3739 (cmp @1 @2)
3740 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3741 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3742 && single_use (@3))
3743 /* If @1 is negative we swap the sense of the comparison. */
3744 (if (tree_int_cst_sgn (@1) < 0)
3745 (scmp @0 @2)
3746 (cmp @0 @2))))))
3747
3748 /* Simplify comparison of something with itself. For IEEE
3749 floating-point, we can only do some of these simplifications. */
3750 (for cmp (eq ge le)
3751 (simplify
3752 (cmp @0 @0)
3753 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3754 || ! HONOR_NANS (@0))
3755 { constant_boolean_node (true, type); }
3756 (if (cmp != EQ_EXPR)
3757 (eq @0 @0)))))
3758 (for cmp (ne gt lt)
3759 (simplify
3760 (cmp @0 @0)
3761 (if (cmp != NE_EXPR
3762 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3763 || ! HONOR_NANS (@0))
3764 { constant_boolean_node (false, type); })))
3765 (for cmp (unle unge uneq)
3766 (simplify
3767 (cmp @0 @0)
3768 { constant_boolean_node (true, type); }))
3769 (for cmp (unlt ungt)
3770 (simplify
3771 (cmp @0 @0)
3772 (unordered @0 @0)))
3773 (simplify
3774 (ltgt @0 @0)
3775 (if (!flag_trapping_math)
3776 { constant_boolean_node (false, type); }))
3777
3778 /* Fold ~X op ~Y as Y op X. */
3779 (for cmp (simple_comparison)
3780 (simplify
3781 (cmp (bit_not@2 @0) (bit_not@3 @1))
3782 (if (single_use (@2) && single_use (@3))
3783 (cmp @1 @0))))
3784
3785 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3786 (for cmp (simple_comparison)
3787 scmp (swapped_simple_comparison)
3788 (simplify
3789 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3790 (if (single_use (@2)
3791 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3792 (scmp @0 (bit_not @1)))))
3793
3794 (for cmp (simple_comparison)
3795 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3796 (simplify
3797 (cmp (convert@2 @0) (convert? @1))
3798 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3799 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3800 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3801 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3802 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3803 (with
3804 {
3805 tree type1 = TREE_TYPE (@1);
3806 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3807 {
3808 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3809 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3810 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3811 type1 = float_type_node;
3812 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3813 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3814 type1 = double_type_node;
3815 }
3816 tree newtype
3817 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3818 ? TREE_TYPE (@0) : type1);
3819 }
3820 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3821 (cmp (convert:newtype @0) (convert:newtype @1))))))
3822
3823 (simplify
3824 (cmp @0 REAL_CST@1)
3825 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3826 (switch
3827 /* a CMP (-0) -> a CMP 0 */
3828 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3829 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3830 /* x != NaN is always true, other ops are always false. */
3831 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3832 && ! HONOR_SNANS (@1))
3833 { constant_boolean_node (cmp == NE_EXPR, type); })
3834 /* Fold comparisons against infinity. */
3835 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3836 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3837 (with
3838 {
3839 REAL_VALUE_TYPE max;
3840 enum tree_code code = cmp;
3841 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3842 if (neg)
3843 code = swap_tree_comparison (code);
3844 }
3845 (switch
3846 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3847 (if (code == GT_EXPR
3848 && !(HONOR_NANS (@0) && flag_trapping_math))
3849 { constant_boolean_node (false, type); })
3850 (if (code == LE_EXPR)
3851 /* x <= +Inf is always true, if we don't care about NaNs. */
3852 (if (! HONOR_NANS (@0))
3853 { constant_boolean_node (true, type); }
3854 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3855 an "invalid" exception. */
3856 (if (!flag_trapping_math)
3857 (eq @0 @0))))
3858 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3859 for == this introduces an exception for x a NaN. */
3860 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3861 || code == GE_EXPR)
3862 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3863 (if (neg)
3864 (lt @0 { build_real (TREE_TYPE (@0), max); })
3865 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3866 /* x < +Inf is always equal to x <= DBL_MAX. */
3867 (if (code == LT_EXPR)
3868 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3869 (if (neg)
3870 (ge @0 { build_real (TREE_TYPE (@0), max); })
3871 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3872 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3873 an exception for x a NaN so use an unordered comparison. */
3874 (if (code == NE_EXPR)
3875 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3876 (if (! HONOR_NANS (@0))
3877 (if (neg)
3878 (ge @0 { build_real (TREE_TYPE (@0), max); })
3879 (le @0 { build_real (TREE_TYPE (@0), max); }))
3880 (if (neg)
3881 (unge @0 { build_real (TREE_TYPE (@0), max); })
3882 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3883
3884 /* If this is a comparison of a real constant with a PLUS_EXPR
3885 or a MINUS_EXPR of a real constant, we can convert it into a
3886 comparison with a revised real constant as long as no overflow
3887 occurs when unsafe_math_optimizations are enabled. */
3888 (if (flag_unsafe_math_optimizations)
3889 (for op (plus minus)
3890 (simplify
3891 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3892 (with
3893 {
3894 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3895 TREE_TYPE (@1), @2, @1);
3896 }
3897 (if (tem && !TREE_OVERFLOW (tem))
3898 (cmp @0 { tem; }))))))
3899
3900 /* Likewise, we can simplify a comparison of a real constant with
3901 a MINUS_EXPR whose first operand is also a real constant, i.e.
3902 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3903 floating-point types only if -fassociative-math is set. */
3904 (if (flag_associative_math)
3905 (simplify
3906 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3907 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3908 (if (tem && !TREE_OVERFLOW (tem))
3909 (cmp { tem; } @1)))))
3910
3911 /* Fold comparisons against built-in math functions. */
3912 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3913 (for sq (SQRT)
3914 (simplify
3915 (cmp (sq @0) REAL_CST@1)
3916 (switch
3917 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3918 (switch
3919 /* sqrt(x) < y is always false, if y is negative. */
3920 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3921 { constant_boolean_node (false, type); })
3922 /* sqrt(x) > y is always true, if y is negative and we
3923 don't care about NaNs, i.e. negative values of x. */
3924 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3925 { constant_boolean_node (true, type); })
3926 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3927 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3928 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3929 (switch
3930 /* sqrt(x) < 0 is always false. */
3931 (if (cmp == LT_EXPR)
3932 { constant_boolean_node (false, type); })
3933 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3934 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3935 { constant_boolean_node (true, type); })
3936 /* sqrt(x) <= 0 -> x == 0. */
3937 (if (cmp == LE_EXPR)
3938 (eq @0 @1))
3939 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3940 == or !=. In the last case:
3941
3942 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3943
3944 if x is negative or NaN. Due to -funsafe-math-optimizations,
3945 the results for other x follow from natural arithmetic. */
3946 (cmp @0 @1)))
3947 (if ((cmp == LT_EXPR
3948 || cmp == LE_EXPR
3949 || cmp == GT_EXPR
3950 || cmp == GE_EXPR)
3951 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3952 /* Give up for -frounding-math. */
3953 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3954 (with
3955 {
3956 REAL_VALUE_TYPE c2;
3957 enum tree_code ncmp = cmp;
3958 const real_format *fmt
3959 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3960 real_arithmetic (&c2, MULT_EXPR,
3961 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3962 real_convert (&c2, fmt, &c2);
3963 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3964 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
3965 if (!REAL_VALUE_ISINF (c2))
3966 {
3967 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3968 build_real (TREE_TYPE (@0), c2));
3969 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3970 ncmp = ERROR_MARK;
3971 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3972 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3973 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3974 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3975 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3976 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3977 else
3978 {
3979 /* With rounding to even, sqrt of up to 3 different values
3980 gives the same normal result, so in some cases c2 needs
3981 to be adjusted. */
3982 REAL_VALUE_TYPE c2alt, tow;
3983 if (cmp == LT_EXPR || cmp == GE_EXPR)
3984 tow = dconst0;
3985 else
3986 real_inf (&tow);
3987 real_nextafter (&c2alt, fmt, &c2, &tow);
3988 real_convert (&c2alt, fmt, &c2alt);
3989 if (REAL_VALUE_ISINF (c2alt))
3990 ncmp = ERROR_MARK;
3991 else
3992 {
3993 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3994 build_real (TREE_TYPE (@0), c2alt));
3995 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3996 ncmp = ERROR_MARK;
3997 else if (real_equal (&TREE_REAL_CST (c3),
3998 &TREE_REAL_CST (@1)))
3999 c2 = c2alt;
4000 }
4001 }
4002 }
4003 }
4004 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4005 (if (REAL_VALUE_ISINF (c2))
4006 /* sqrt(x) > y is x == +Inf, when y is very large. */
4007 (if (HONOR_INFINITIES (@0))
4008 (eq @0 { build_real (TREE_TYPE (@0), c2); })
4009 { constant_boolean_node (false, type); })
4010 /* sqrt(x) > c is the same as x > c*c. */
4011 (if (ncmp != ERROR_MARK)
4012 (if (ncmp == GE_EXPR)
4013 (ge @0 { build_real (TREE_TYPE (@0), c2); })
4014 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4015 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
4016 (if (REAL_VALUE_ISINF (c2))
4017 (switch
4018 /* sqrt(x) < y is always true, when y is a very large
4019 value and we don't care about NaNs or Infinities. */
4020 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4021 { constant_boolean_node (true, type); })
4022 /* sqrt(x) < y is x != +Inf when y is very large and we
4023 don't care about NaNs. */
4024 (if (! HONOR_NANS (@0))
4025 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4026 /* sqrt(x) < y is x >= 0 when y is very large and we
4027 don't care about Infinities. */
4028 (if (! HONOR_INFINITIES (@0))
4029 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4030 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4031 (if (GENERIC)
4032 (truth_andif
4033 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4034 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
4035 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4036 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
4037 (if (ncmp == LT_EXPR)
4038 (lt @0 { build_real (TREE_TYPE (@0), c2); })
4039 (le @0 { build_real (TREE_TYPE (@0), c2); }))
4040 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4041 (if (ncmp != ERROR_MARK && GENERIC)
4042 (if (ncmp == LT_EXPR)
4043 (truth_andif
4044 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4045 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
4046 (truth_andif
4047 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4048 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
4049 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
4050 (simplify
4051 (cmp (sq @0) (sq @1))
4052 (if (! HONOR_NANS (@0))
4053 (cmp @0 @1))))))
4054
4055 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
4056 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
4057 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
4058 (simplify
4059 (cmp (float@0 @1) (float @2))
4060 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
4061 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4062 (with
4063 {
4064 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
4065 tree type1 = TREE_TYPE (@1);
4066 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
4067 tree type2 = TREE_TYPE (@2);
4068 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
4069 }
4070 (if (fmt.can_represent_integral_type_p (type1)
4071 && fmt.can_represent_integral_type_p (type2))
4072 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
4073 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
4074 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
4075 && type1_signed_p >= type2_signed_p)
4076 (icmp @1 (convert @2))
4077 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
4078 && type1_signed_p <= type2_signed_p)
4079 (icmp (convert:type2 @1) @2)
4080 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
4081 && type1_signed_p == type2_signed_p)
4082 (icmp @1 @2))))))))))
4083
4084 /* Optimize various special cases of (FTYPE) N CMP CST. */
4085 (for cmp (lt le eq ne ge gt)
4086 icmp (le le eq ne ge ge)
4087 (simplify
4088 (cmp (float @0) REAL_CST@1)
4089 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
4090 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
4091 (with
4092 {
4093 tree itype = TREE_TYPE (@0);
4094 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
4095 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
4096 /* Be careful to preserve any potential exceptions due to
4097 NaNs. qNaNs are ok in == or != context.
4098 TODO: relax under -fno-trapping-math or
4099 -fno-signaling-nans. */
4100 bool exception_p
4101 = real_isnan (cst) && (cst->signalling
4102 || (cmp != EQ_EXPR && cmp != NE_EXPR));
4103 }
4104 /* TODO: allow non-fitting itype and SNaNs when
4105 -fno-trapping-math. */
4106 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
4107 (with
4108 {
4109 signop isign = TYPE_SIGN (itype);
4110 REAL_VALUE_TYPE imin, imax;
4111 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
4112 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
4113
4114 REAL_VALUE_TYPE icst;
4115 if (cmp == GT_EXPR || cmp == GE_EXPR)
4116 real_ceil (&icst, fmt, cst);
4117 else if (cmp == LT_EXPR || cmp == LE_EXPR)
4118 real_floor (&icst, fmt, cst);
4119 else
4120 real_trunc (&icst, fmt, cst);
4121
4122 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
4123
4124 bool overflow_p = false;
4125 wide_int icst_val
4126 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
4127 }
4128 (switch
4129 /* Optimize cases when CST is outside of ITYPE's range. */
4130 (if (real_compare (LT_EXPR, cst, &imin))
4131 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4132 type); })
4133 (if (real_compare (GT_EXPR, cst, &imax))
4134 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4135 type); })
4136 /* Remove cast if CST is an integer representable by ITYPE. */
4137 (if (cst_int_p)
4138 (cmp @0 { gcc_assert (!overflow_p);
4139 wide_int_to_tree (itype, icst_val); })
4140 )
4141 /* When CST is fractional, optimize
4142 (FTYPE) N == CST -> 0
4143 (FTYPE) N != CST -> 1. */
4144 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4145 { constant_boolean_node (cmp == NE_EXPR, type); })
4146 /* Otherwise replace with sensible integer constant. */
4147 (with
4148 {
4149 gcc_checking_assert (!overflow_p);
4150 }
4151 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4152
4153 /* Fold A /[ex] B CMP C to A CMP B * C. */
4154 (for cmp (eq ne)
4155 (simplify
4156 (cmp (exact_div @0 @1) INTEGER_CST@2)
4157 (if (!integer_zerop (@1))
4158 (if (wi::to_wide (@2) == 0)
4159 (cmp @0 @2)
4160 (if (TREE_CODE (@1) == INTEGER_CST)
4161 (with
4162 {
4163 wi::overflow_type ovf;
4164 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4165 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4166 }
4167 (if (ovf)
4168 { constant_boolean_node (cmp == NE_EXPR, type); }
4169 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4170 (for cmp (lt le gt ge)
4171 (simplify
4172 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4173 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4174 (with
4175 {
4176 wi::overflow_type ovf;
4177 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4178 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4179 }
4180 (if (ovf)
4181 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4182 TYPE_SIGN (TREE_TYPE (@2)))
4183 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4184 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4185
4186 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4187
4188 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4189 For large C (more than min/B+2^size), this is also true, with the
4190 multiplication computed modulo 2^size.
4191 For intermediate C, this just tests the sign of A. */
4192 (for cmp (lt le gt ge)
4193 cmp2 (ge ge lt lt)
4194 (simplify
4195 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4196 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4197 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4198 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4199 (with
4200 {
4201 tree utype = TREE_TYPE (@2);
4202 wide_int denom = wi::to_wide (@1);
4203 wide_int right = wi::to_wide (@2);
4204 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4205 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4206 bool small = wi::leu_p (right, smax);
4207 bool large = wi::geu_p (right, smin);
4208 }
4209 (if (small || large)
4210 (cmp (convert:utype @0) (mult @2 (convert @1)))
4211 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4212
4213 /* Unordered tests if either argument is a NaN. */
4214 (simplify
4215 (bit_ior (unordered @0 @0) (unordered @1 @1))
4216 (if (types_match (@0, @1))
4217 (unordered @0 @1)))
4218 (simplify
4219 (bit_and (ordered @0 @0) (ordered @1 @1))
4220 (if (types_match (@0, @1))
4221 (ordered @0 @1)))
4222 (simplify
4223 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4224 @2)
4225 (simplify
4226 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4227 @2)
4228
4229 /* Simple range test simplifications. */
4230 /* A < B || A >= B -> true. */
4231 (for test1 (lt le le le ne ge)
4232 test2 (ge gt ge ne eq ne)
4233 (simplify
4234 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4235 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4236 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4237 { constant_boolean_node (true, type); })))
4238 /* A < B && A >= B -> false. */
4239 (for test1 (lt lt lt le ne eq)
4240 test2 (ge gt eq gt eq gt)
4241 (simplify
4242 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4243 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4244 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4245 { constant_boolean_node (false, type); })))
4246
4247 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4248 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4249
4250 Note that comparisons
4251 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4252 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4253 will be canonicalized to above so there's no need to
4254 consider them here.
4255 */
4256
4257 (for cmp (le gt)
4258 eqcmp (eq ne)
4259 (simplify
4260 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4262 (with
4263 {
4264 tree ty = TREE_TYPE (@0);
4265 unsigned prec = TYPE_PRECISION (ty);
4266 wide_int mask = wi::to_wide (@2, prec);
4267 wide_int rhs = wi::to_wide (@3, prec);
4268 signop sgn = TYPE_SIGN (ty);
4269 }
4270 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4271 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4272 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4273 { build_zero_cst (ty); }))))))
4274
4275 /* -A CMP -B -> B CMP A. */
4276 (for cmp (tcc_comparison)
4277 scmp (swapped_tcc_comparison)
4278 (simplify
4279 (cmp (negate @0) (negate @1))
4280 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4281 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4282 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4283 (scmp @0 @1)))
4284 (simplify
4285 (cmp (negate @0) CONSTANT_CLASS_P@1)
4286 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4287 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4288 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4289 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4290 (if (tem && !TREE_OVERFLOW (tem))
4291 (scmp @0 { tem; }))))))
4292
4293 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4294 (for op (eq ne)
4295 (simplify
4296 (op (abs @0) zerop@1)
4297 (op @0 @1)))
4298
4299 /* From fold_sign_changed_comparison and fold_widened_comparison.
4300 FIXME: the lack of symmetry is disturbing. */
4301 (for cmp (simple_comparison)
4302 (simplify
4303 (cmp (convert@0 @00) (convert?@1 @10))
4304 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4305 /* Disable this optimization if we're casting a function pointer
4306 type on targets that require function pointer canonicalization. */
4307 && !(targetm.have_canonicalize_funcptr_for_compare ()
4308 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4309 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4310 || (POINTER_TYPE_P (TREE_TYPE (@10))
4311 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4312 && single_use (@0))
4313 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4314 && (TREE_CODE (@10) == INTEGER_CST
4315 || @1 != @10)
4316 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4317 || cmp == NE_EXPR
4318 || cmp == EQ_EXPR)
4319 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4320 /* ??? The special-casing of INTEGER_CST conversion was in the original
4321 code and here to avoid a spurious overflow flag on the resulting
4322 constant which fold_convert produces. */
4323 (if (TREE_CODE (@1) == INTEGER_CST)
4324 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4325 TREE_OVERFLOW (@1)); })
4326 (cmp @00 (convert @1)))
4327
4328 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4329 /* If possible, express the comparison in the shorter mode. */
4330 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4331 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4332 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4333 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4334 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4335 || ((TYPE_PRECISION (TREE_TYPE (@00))
4336 >= TYPE_PRECISION (TREE_TYPE (@10)))
4337 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4338 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4339 || (TREE_CODE (@10) == INTEGER_CST
4340 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4341 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4342 (cmp @00 (convert @10))
4343 (if (TREE_CODE (@10) == INTEGER_CST
4344 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4345 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4346 (with
4347 {
4348 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4349 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4350 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4351 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4352 }
4353 (if (above || below)
4354 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4355 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4356 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4357 { constant_boolean_node (above ? true : false, type); }
4358 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4359 { constant_boolean_node (above ? false : true, type); }))))))))))))
4360
4361 (for cmp (eq ne)
4362 (simplify
4363 /* SSA names are canonicalized to 2nd place. */
4364 (cmp addr@0 SSA_NAME@1)
4365 (with
4366 { poly_int64 off; tree base; }
4367 /* A local variable can never be pointed to by
4368 the default SSA name of an incoming parameter. */
4369 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4370 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
4371 && (base = get_base_address (TREE_OPERAND (@0, 0)))
4372 && TREE_CODE (base) == VAR_DECL
4373 && auto_var_in_fn_p (base, current_function_decl))
4374 (if (cmp == NE_EXPR)
4375 { constant_boolean_node (true, type); }
4376 { constant_boolean_node (false, type); })
4377 /* If the address is based on @1 decide using the offset. */
4378 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
4379 && TREE_CODE (base) == MEM_REF
4380 && TREE_OPERAND (base, 0) == @1)
4381 (with { off += mem_ref_offset (base).force_shwi (); }
4382 (if (known_ne (off, 0))
4383 { constant_boolean_node (cmp == NE_EXPR, type); }
4384 (if (known_eq (off, 0))
4385 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
4386
4387 /* Equality compare simplifications from fold_binary */
4388 (for cmp (eq ne)
4389
4390 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4391 Similarly for NE_EXPR. */
4392 (simplify
4393 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4394 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4395 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4396 { constant_boolean_node (cmp == NE_EXPR, type); }))
4397
4398 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4399 (simplify
4400 (cmp (bit_xor @0 @1) integer_zerop)
4401 (cmp @0 @1))
4402
4403 /* (X ^ Y) == Y becomes X == 0.
4404 Likewise (X ^ Y) == X becomes Y == 0. */
4405 (simplify
4406 (cmp:c (bit_xor:c @0 @1) @0)
4407 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4408
4409 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4410 (simplify
4411 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4412 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4413 (cmp @0 (bit_xor @1 (convert @2)))))
4414
4415 (simplify
4416 (cmp (convert? addr@0) integer_zerop)
4417 (if (tree_single_nonzero_warnv_p (@0, NULL))
4418 { constant_boolean_node (cmp == NE_EXPR, type); }))
4419
4420 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
4421 (simplify
4422 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
4423 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
4424
4425 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
4426 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
4427 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
4428 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
4429 (for cmp (eq ne)
4430 ncmp (ge lt)
4431 (for sgncmp (ge lt)
4432 (simplify
4433 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
4434 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4435 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4436 && types_match (@0, @1))
4437 (ncmp (bit_xor @0 @1) @2)))))
4438 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
4439 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
4440 (for cmp (eq ne)
4441 ncmp (lt ge)
4442 (simplify
4443 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
4444 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4445 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4446 && types_match (@0, @1))
4447 (ncmp (bit_xor @0 @1) @2))))
4448
4449 /* If we have (A & C) == C where C is a power of 2, convert this into
4450 (A & C) != 0. Similarly for NE_EXPR. */
4451 (for cmp (eq ne)
4452 icmp (ne eq)
4453 (simplify
4454 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4455 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4456
4457 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4458 convert this into a shift followed by ANDing with D. */
4459 (simplify
4460 (cond
4461 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4462 INTEGER_CST@2 integer_zerop)
4463 (if (integer_pow2p (@2))
4464 (with {
4465 int shift = (wi::exact_log2 (wi::to_wide (@2))
4466 - wi::exact_log2 (wi::to_wide (@1)));
4467 }
4468 (if (shift > 0)
4469 (bit_and
4470 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4471 (bit_and
4472 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4473 @2)))))
4474
4475 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4476 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4477 (for cmp (eq ne)
4478 ncmp (ge lt)
4479 (simplify
4480 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4481 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4482 && type_has_mode_precision_p (TREE_TYPE (@0))
4483 && element_precision (@2) >= element_precision (@0)
4484 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4485 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4486 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4487
4488 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4489 this into a right shift or sign extension followed by ANDing with C. */
4490 (simplify
4491 (cond
4492 (lt @0 integer_zerop)
4493 INTEGER_CST@1 integer_zerop)
4494 (if (integer_pow2p (@1)
4495 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4496 (with {
4497 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4498 }
4499 (if (shift >= 0)
4500 (bit_and
4501 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4502 @1)
4503 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4504 sign extension followed by AND with C will achieve the effect. */
4505 (bit_and (convert @0) @1)))))
4506
4507 /* When the addresses are not directly of decls compare base and offset.
4508 This implements some remaining parts of fold_comparison address
4509 comparisons but still no complete part of it. Still it is good
4510 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4511 (for cmp (simple_comparison)
4512 (simplify
4513 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4514 (with
4515 {
4516 poly_int64 off0, off1;
4517 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4518 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4519 if (base0 && TREE_CODE (base0) == MEM_REF)
4520 {
4521 off0 += mem_ref_offset (base0).force_shwi ();
4522 base0 = TREE_OPERAND (base0, 0);
4523 }
4524 if (base1 && TREE_CODE (base1) == MEM_REF)
4525 {
4526 off1 += mem_ref_offset (base1).force_shwi ();
4527 base1 = TREE_OPERAND (base1, 0);
4528 }
4529 }
4530 (if (base0 && base1)
4531 (with
4532 {
4533 int equal = 2;
4534 /* Punt in GENERIC on variables with value expressions;
4535 the value expressions might point to fields/elements
4536 of other vars etc. */
4537 if (GENERIC
4538 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4539 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4540 ;
4541 else if (decl_in_symtab_p (base0)
4542 && decl_in_symtab_p (base1))
4543 equal = symtab_node::get_create (base0)
4544 ->equal_address_to (symtab_node::get_create (base1));
4545 else if ((DECL_P (base0)
4546 || TREE_CODE (base0) == SSA_NAME
4547 || TREE_CODE (base0) == STRING_CST)
4548 && (DECL_P (base1)
4549 || TREE_CODE (base1) == SSA_NAME
4550 || TREE_CODE (base1) == STRING_CST))
4551 equal = (base0 == base1);
4552 if (equal == 0)
4553 {
4554 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4555 off0.is_constant (&ioff0);
4556 off1.is_constant (&ioff1);
4557 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4558 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4559 || (TREE_CODE (base0) == STRING_CST
4560 && TREE_CODE (base1) == STRING_CST
4561 && ioff0 >= 0 && ioff1 >= 0
4562 && ioff0 < TREE_STRING_LENGTH (base0)
4563 && ioff1 < TREE_STRING_LENGTH (base1)
4564 /* This is a too conservative test that the STRING_CSTs
4565 will not end up being string-merged. */
4566 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4567 TREE_STRING_POINTER (base1) + ioff1,
4568 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4569 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4570 ;
4571 else if (!DECL_P (base0) || !DECL_P (base1))
4572 equal = 2;
4573 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4574 equal = 2;
4575 /* If this is a pointer comparison, ignore for now even
4576 valid equalities where one pointer is the offset zero
4577 of one object and the other to one past end of another one. */
4578 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4579 ;
4580 /* Assume that automatic variables can't be adjacent to global
4581 variables. */
4582 else if (is_global_var (base0) != is_global_var (base1))
4583 ;
4584 else
4585 {
4586 tree sz0 = DECL_SIZE_UNIT (base0);
4587 tree sz1 = DECL_SIZE_UNIT (base1);
4588 /* If sizes are unknown, e.g. VLA or not representable,
4589 punt. */
4590 if (!tree_fits_poly_int64_p (sz0)
4591 || !tree_fits_poly_int64_p (sz1))
4592 equal = 2;
4593 else
4594 {
4595 poly_int64 size0 = tree_to_poly_int64 (sz0);
4596 poly_int64 size1 = tree_to_poly_int64 (sz1);
4597 /* If one offset is pointing (or could be) to the beginning
4598 of one object and the other is pointing to one past the
4599 last byte of the other object, punt. */
4600 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4601 equal = 2;
4602 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4603 equal = 2;
4604 /* If both offsets are the same, there are some cases
4605 we know that are ok. Either if we know they aren't
4606 zero, or if we know both sizes are no zero. */
4607 if (equal == 2
4608 && known_eq (off0, off1)
4609 && (known_ne (off0, 0)
4610 || (known_ne (size0, 0) && known_ne (size1, 0))))
4611 equal = 0;
4612 }
4613 }
4614 }
4615 }
4616 (if (equal == 1
4617 && (cmp == EQ_EXPR || cmp == NE_EXPR
4618 /* If the offsets are equal we can ignore overflow. */
4619 || known_eq (off0, off1)
4620 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4621 /* Or if we compare using pointers to decls or strings. */
4622 || (POINTER_TYPE_P (TREE_TYPE (@2))
4623 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4624 (switch
4625 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4626 { constant_boolean_node (known_eq (off0, off1), type); })
4627 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4628 { constant_boolean_node (known_ne (off0, off1), type); })
4629 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4630 { constant_boolean_node (known_lt (off0, off1), type); })
4631 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4632 { constant_boolean_node (known_le (off0, off1), type); })
4633 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4634 { constant_boolean_node (known_ge (off0, off1), type); })
4635 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4636 { constant_boolean_node (known_gt (off0, off1), type); }))
4637 (if (equal == 0)
4638 (switch
4639 (if (cmp == EQ_EXPR)
4640 { constant_boolean_node (false, type); })
4641 (if (cmp == NE_EXPR)
4642 { constant_boolean_node (true, type); })))))))))
4643
4644 /* Simplify pointer equality compares using PTA. */
4645 (for neeq (ne eq)
4646 (simplify
4647 (neeq @0 @1)
4648 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4649 && ptrs_compare_unequal (@0, @1))
4650 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4651
4652 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4653 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4654 Disable the transform if either operand is pointer to function.
4655 This broke pr22051-2.c for arm where function pointer
4656 canonicalizaion is not wanted. */
4657
4658 (for cmp (ne eq)
4659 (simplify
4660 (cmp (convert @0) INTEGER_CST@1)
4661 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4662 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4663 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4664 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4665 && POINTER_TYPE_P (TREE_TYPE (@1))
4666 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4667 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4668 (cmp @0 (convert @1)))))
4669
4670 /* Non-equality compare simplifications from fold_binary */
4671 (for cmp (lt gt le ge)
4672 /* Comparisons with the highest or lowest possible integer of
4673 the specified precision will have known values. */
4674 (simplify
4675 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4676 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4677 || POINTER_TYPE_P (TREE_TYPE (@1))
4678 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4679 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4680 (with
4681 {
4682 tree cst = uniform_integer_cst_p (@1);
4683 tree arg1_type = TREE_TYPE (cst);
4684 unsigned int prec = TYPE_PRECISION (arg1_type);
4685 wide_int max = wi::max_value (arg1_type);
4686 wide_int signed_max = wi::max_value (prec, SIGNED);
4687 wide_int min = wi::min_value (arg1_type);
4688 }
4689 (switch
4690 (if (wi::to_wide (cst) == max)
4691 (switch
4692 (if (cmp == GT_EXPR)
4693 { constant_boolean_node (false, type); })
4694 (if (cmp == GE_EXPR)
4695 (eq @2 @1))
4696 (if (cmp == LE_EXPR)
4697 { constant_boolean_node (true, type); })
4698 (if (cmp == LT_EXPR)
4699 (ne @2 @1))))
4700 (if (wi::to_wide (cst) == min)
4701 (switch
4702 (if (cmp == LT_EXPR)
4703 { constant_boolean_node (false, type); })
4704 (if (cmp == LE_EXPR)
4705 (eq @2 @1))
4706 (if (cmp == GE_EXPR)
4707 { constant_boolean_node (true, type); })
4708 (if (cmp == GT_EXPR)
4709 (ne @2 @1))))
4710 (if (wi::to_wide (cst) == max - 1)
4711 (switch
4712 (if (cmp == GT_EXPR)
4713 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4714 wide_int_to_tree (TREE_TYPE (cst),
4715 wi::to_wide (cst)
4716 + 1)); }))
4717 (if (cmp == LE_EXPR)
4718 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4719 wide_int_to_tree (TREE_TYPE (cst),
4720 wi::to_wide (cst)
4721 + 1)); }))))
4722 (if (wi::to_wide (cst) == min + 1)
4723 (switch
4724 (if (cmp == GE_EXPR)
4725 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4726 wide_int_to_tree (TREE_TYPE (cst),
4727 wi::to_wide (cst)
4728 - 1)); }))
4729 (if (cmp == LT_EXPR)
4730 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4731 wide_int_to_tree (TREE_TYPE (cst),
4732 wi::to_wide (cst)
4733 - 1)); }))))
4734 (if (wi::to_wide (cst) == signed_max
4735 && TYPE_UNSIGNED (arg1_type)
4736 /* We will flip the signedness of the comparison operator
4737 associated with the mode of @1, so the sign bit is
4738 specified by this mode. Check that @1 is the signed
4739 max associated with this sign bit. */
4740 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4741 /* signed_type does not work on pointer types. */
4742 && INTEGRAL_TYPE_P (arg1_type))
4743 /* The following case also applies to X < signed_max+1
4744 and X >= signed_max+1 because previous transformations. */
4745 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4746 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4747 (switch
4748 (if (cst == @1 && cmp == LE_EXPR)
4749 (ge (convert:st @0) { build_zero_cst (st); }))
4750 (if (cst == @1 && cmp == GT_EXPR)
4751 (lt (convert:st @0) { build_zero_cst (st); }))
4752 (if (cmp == LE_EXPR)
4753 (ge (view_convert:st @0) { build_zero_cst (st); }))
4754 (if (cmp == GT_EXPR)
4755 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4756
4757 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4758 /* If the second operand is NaN, the result is constant. */
4759 (simplify
4760 (cmp @0 REAL_CST@1)
4761 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4762 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4763 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4764 ? false : true, type); })))
4765
4766 /* bool_var != 0 becomes bool_var. */
4767 (simplify
4768 (ne @0 integer_zerop)
4769 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4770 && types_match (type, TREE_TYPE (@0)))
4771 (non_lvalue @0)))
4772 /* bool_var == 1 becomes bool_var. */
4773 (simplify
4774 (eq @0 integer_onep)
4775 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4776 && types_match (type, TREE_TYPE (@0)))
4777 (non_lvalue @0)))
4778 /* Do not handle
4779 bool_var == 0 becomes !bool_var or
4780 bool_var != 1 becomes !bool_var
4781 here because that only is good in assignment context as long
4782 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4783 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4784 clearly less optimal and which we'll transform again in forwprop. */
4785
4786 /* When one argument is a constant, overflow detection can be simplified.
4787 Currently restricted to single use so as not to interfere too much with
4788 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4789 A + CST CMP A -> A CMP' CST' */
4790 (for cmp (lt le ge gt)
4791 out (gt gt le le)
4792 (simplify
4793 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4794 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4795 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4796 && wi::to_wide (@1) != 0
4797 && single_use (@2))
4798 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4799 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4800 wi::max_value (prec, UNSIGNED)
4801 - wi::to_wide (@1)); })))))
4802
4803 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4804 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4805 expects the long form, so we restrict the transformation for now. */
4806 (for cmp (gt le)
4807 (simplify
4808 (cmp:c (minus@2 @0 @1) @0)
4809 (if (single_use (@2)
4810 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4811 && TYPE_UNSIGNED (TREE_TYPE (@0)))
4812 (cmp @1 @0))))
4813
4814 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
4815 (for cmp (ge lt)
4816 (simplify
4817 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
4818 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4819 && TYPE_UNSIGNED (TREE_TYPE (@0)))
4820 (cmp @1 @0))))
4821
4822 /* Testing for overflow is unnecessary if we already know the result. */
4823 /* A - B > A */
4824 (for cmp (gt le)
4825 out (ne eq)
4826 (simplify
4827 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4828 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4829 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4830 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4831 /* A + B < A */
4832 (for cmp (lt ge)
4833 out (ne eq)
4834 (simplify
4835 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4836 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4837 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4838 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4839
4840 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4841 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4842 (for cmp (lt ge)
4843 out (ne eq)
4844 (simplify
4845 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4846 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4847 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4848 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4849
4850 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
4851 is at least twice as wide as type of A and B, simplify to
4852 __builtin_mul_overflow (A, B, <unused>). */
4853 (for cmp (eq ne)
4854 (simplify
4855 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
4856 integer_zerop)
4857 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4858 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
4859 && TYPE_UNSIGNED (TREE_TYPE (@0))
4860 && (TYPE_PRECISION (TREE_TYPE (@3))
4861 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
4862 && tree_fits_uhwi_p (@2)
4863 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
4864 && types_match (@0, @1)
4865 && type_has_mode_precision_p (TREE_TYPE (@0))
4866 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
4867 != CODE_FOR_nothing))
4868 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4869 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4870
4871 /* Simplification of math builtins. These rules must all be optimizations
4872 as well as IL simplifications. If there is a possibility that the new
4873 form could be a pessimization, the rule should go in the canonicalization
4874 section that follows this one.
4875
4876 Rules can generally go in this section if they satisfy one of
4877 the following:
4878
4879 - the rule describes an identity
4880
4881 - the rule replaces calls with something as simple as addition or
4882 multiplication
4883
4884 - the rule contains unary calls only and simplifies the surrounding
4885 arithmetic. (The idea here is to exclude non-unary calls in which
4886 one operand is constant and in which the call is known to be cheap
4887 when the operand has that value.) */
4888
4889 (if (flag_unsafe_math_optimizations)
4890 /* Simplify sqrt(x) * sqrt(x) -> x. */
4891 (simplify
4892 (mult (SQRT_ALL@1 @0) @1)
4893 (if (!HONOR_SNANS (type))
4894 @0))
4895
4896 (for op (plus minus)
4897 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4898 (simplify
4899 (op (rdiv @0 @1)
4900 (rdiv @2 @1))
4901 (rdiv (op @0 @2) @1)))
4902
4903 (for cmp (lt le gt ge)
4904 neg_cmp (gt ge lt le)
4905 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4906 (simplify
4907 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4908 (with
4909 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4910 (if (tem
4911 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4912 || (real_zerop (tem) && !real_zerop (@1))))
4913 (switch
4914 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4915 (cmp @0 { tem; }))
4916 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4917 (neg_cmp @0 { tem; })))))))
4918
4919 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4920 (for root (SQRT CBRT)
4921 (simplify
4922 (mult (root:s @0) (root:s @1))
4923 (root (mult @0 @1))))
4924
4925 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4926 (for exps (EXP EXP2 EXP10 POW10)
4927 (simplify
4928 (mult (exps:s @0) (exps:s @1))
4929 (exps (plus @0 @1))))
4930
4931 /* Simplify a/root(b/c) into a*root(c/b). */
4932 (for root (SQRT CBRT)
4933 (simplify
4934 (rdiv @0 (root:s (rdiv:s @1 @2)))
4935 (mult @0 (root (rdiv @2 @1)))))
4936
4937 /* Simplify x/expN(y) into x*expN(-y). */
4938 (for exps (EXP EXP2 EXP10 POW10)
4939 (simplify
4940 (rdiv @0 (exps:s @1))
4941 (mult @0 (exps (negate @1)))))
4942
4943 (for logs (LOG LOG2 LOG10 LOG10)
4944 exps (EXP EXP2 EXP10 POW10)
4945 /* logN(expN(x)) -> x. */
4946 (simplify
4947 (logs (exps @0))
4948 @0)
4949 /* expN(logN(x)) -> x. */
4950 (simplify
4951 (exps (logs @0))
4952 @0))
4953
4954 /* Optimize logN(func()) for various exponential functions. We
4955 want to determine the value "x" and the power "exponent" in
4956 order to transform logN(x**exponent) into exponent*logN(x). */
4957 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4958 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4959 (simplify
4960 (logs (exps @0))
4961 (if (SCALAR_FLOAT_TYPE_P (type))
4962 (with {
4963 tree x;
4964 switch (exps)
4965 {
4966 CASE_CFN_EXP:
4967 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4968 x = build_real_truncate (type, dconst_e ());
4969 break;
4970 CASE_CFN_EXP2:
4971 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4972 x = build_real (type, dconst2);
4973 break;
4974 CASE_CFN_EXP10:
4975 CASE_CFN_POW10:
4976 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4977 {
4978 REAL_VALUE_TYPE dconst10;
4979 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4980 x = build_real (type, dconst10);
4981 }
4982 break;
4983 default:
4984 gcc_unreachable ();
4985 }
4986 }
4987 (mult (logs { x; }) @0)))))
4988
4989 (for logs (LOG LOG
4990 LOG2 LOG2
4991 LOG10 LOG10)
4992 exps (SQRT CBRT)
4993 (simplify
4994 (logs (exps @0))
4995 (if (SCALAR_FLOAT_TYPE_P (type))
4996 (with {
4997 tree x;
4998 switch (exps)
4999 {
5000 CASE_CFN_SQRT:
5001 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
5002 x = build_real (type, dconsthalf);
5003 break;
5004 CASE_CFN_CBRT:
5005 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
5006 x = build_real_truncate (type, dconst_third ());
5007 break;
5008 default:
5009 gcc_unreachable ();
5010 }
5011 }
5012 (mult { x; } (logs @0))))))
5013
5014 /* logN(pow(x,exponent)) -> exponent*logN(x). */
5015 (for logs (LOG LOG2 LOG10)
5016 pows (POW)
5017 (simplify
5018 (logs (pows @0 @1))
5019 (mult @1 (logs @0))))
5020
5021 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5022 or if C is a positive power of 2,
5023 pow(C,x) -> exp2(log2(C)*x). */
5024 #if GIMPLE
5025 (for pows (POW)
5026 exps (EXP)
5027 logs (LOG)
5028 exp2s (EXP2)
5029 log2s (LOG2)
5030 (simplify
5031 (pows REAL_CST@0 @1)
5032 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5033 && real_isfinite (TREE_REAL_CST_PTR (@0))
5034 /* As libmvec doesn't have a vectorized exp2, defer optimizing
5035 the use_exp2 case until after vectorization. It seems actually
5036 beneficial for all constants to postpone this until later,
5037 because exp(log(C)*x), while faster, will have worse precision
5038 and if x folds into a constant too, that is unnecessary
5039 pessimization. */
5040 && canonicalize_math_after_vectorization_p ())
5041 (with {
5042 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
5043 bool use_exp2 = false;
5044 if (targetm.libc_has_function (function_c99_misc)
5045 && value->cl == rvc_normal)
5046 {
5047 REAL_VALUE_TYPE frac_rvt = *value;
5048 SET_REAL_EXP (&frac_rvt, 1);
5049 if (real_equal (&frac_rvt, &dconst1))
5050 use_exp2 = true;
5051 }
5052 }
5053 (if (!use_exp2)
5054 (if (optimize_pow_to_exp (@0, @1))
5055 (exps (mult (logs @0) @1)))
5056 (exp2s (mult (log2s @0) @1)))))))
5057 #endif
5058
5059 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
5060 (for pows (POW)
5061 exps (EXP EXP2 EXP10 POW10)
5062 logs (LOG LOG2 LOG10 LOG10)
5063 (simplify
5064 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
5065 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5066 && real_isfinite (TREE_REAL_CST_PTR (@0)))
5067 (exps (plus (mult (logs @0) @1) @2)))))
5068
5069 (for sqrts (SQRT)
5070 cbrts (CBRT)
5071 pows (POW)
5072 exps (EXP EXP2 EXP10 POW10)
5073 /* sqrt(expN(x)) -> expN(x*0.5). */
5074 (simplify
5075 (sqrts (exps @0))
5076 (exps (mult @0 { build_real (type, dconsthalf); })))
5077 /* cbrt(expN(x)) -> expN(x/3). */
5078 (simplify
5079 (cbrts (exps @0))
5080 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
5081 /* pow(expN(x), y) -> expN(x*y). */
5082 (simplify
5083 (pows (exps @0) @1)
5084 (exps (mult @0 @1))))
5085
5086 /* tan(atan(x)) -> x. */
5087 (for tans (TAN)
5088 atans (ATAN)
5089 (simplify
5090 (tans (atans @0))
5091 @0)))
5092
5093 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
5094 (for sins (SIN)
5095 atans (ATAN)
5096 sqrts (SQRT)
5097 copysigns (COPYSIGN)
5098 (simplify
5099 (sins (atans:s @0))
5100 (with
5101 {
5102 REAL_VALUE_TYPE r_cst;
5103 build_sinatan_real (&r_cst, type);
5104 tree t_cst = build_real (type, r_cst);
5105 tree t_one = build_one_cst (type);
5106 }
5107 (if (SCALAR_FLOAT_TYPE_P (type))
5108 (cond (lt (abs @0) { t_cst; })
5109 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
5110 (copysigns { t_one; } @0))))))
5111
5112 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
5113 (for coss (COS)
5114 atans (ATAN)
5115 sqrts (SQRT)
5116 copysigns (COPYSIGN)
5117 (simplify
5118 (coss (atans:s @0))
5119 (with
5120 {
5121 REAL_VALUE_TYPE r_cst;
5122 build_sinatan_real (&r_cst, type);
5123 tree t_cst = build_real (type, r_cst);
5124 tree t_one = build_one_cst (type);
5125 tree t_zero = build_zero_cst (type);
5126 }
5127 (if (SCALAR_FLOAT_TYPE_P (type))
5128 (cond (lt (abs @0) { t_cst; })
5129 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
5130 (copysigns { t_zero; } @0))))))
5131
5132 (if (!flag_errno_math)
5133 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
5134 (for sinhs (SINH)
5135 atanhs (ATANH)
5136 sqrts (SQRT)
5137 (simplify
5138 (sinhs (atanhs:s @0))
5139 (with { tree t_one = build_one_cst (type); }
5140 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
5141
5142 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
5143 (for coshs (COSH)
5144 atanhs (ATANH)
5145 sqrts (SQRT)
5146 (simplify
5147 (coshs (atanhs:s @0))
5148 (with { tree t_one = build_one_cst (type); }
5149 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
5150
5151 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
5152 (simplify
5153 (CABS (complex:C @0 real_zerop@1))
5154 (abs @0))
5155
5156 /* trunc(trunc(x)) -> trunc(x), etc. */
5157 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5158 (simplify
5159 (fns (fns @0))
5160 (fns @0)))
5161 /* f(x) -> x if x is integer valued and f does nothing for such values. */
5162 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
5163 (simplify
5164 (fns integer_valued_real_p@0)
5165 @0))
5166
5167 /* hypot(x,0) and hypot(0,x) -> abs(x). */
5168 (simplify
5169 (HYPOT:c @0 real_zerop@1)
5170 (abs @0))
5171
5172 /* pow(1,x) -> 1. */
5173 (simplify
5174 (POW real_onep@0 @1)
5175 @0)
5176
5177 (simplify
5178 /* copysign(x,x) -> x. */
5179 (COPYSIGN_ALL @0 @0)
5180 @0)
5181
5182 (simplify
5183 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
5184 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
5185 (abs @0))
5186
5187 (for scale (LDEXP SCALBN SCALBLN)
5188 /* ldexp(0, x) -> 0. */
5189 (simplify
5190 (scale real_zerop@0 @1)
5191 @0)
5192 /* ldexp(x, 0) -> x. */
5193 (simplify
5194 (scale @0 integer_zerop@1)
5195 @0)
5196 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
5197 (simplify
5198 (scale REAL_CST@0 @1)
5199 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5200 @0)))
5201
5202 /* Canonicalization of sequences of math builtins. These rules represent
5203 IL simplifications but are not necessarily optimizations.
5204
5205 The sincos pass is responsible for picking "optimal" implementations
5206 of math builtins, which may be more complicated and can sometimes go
5207 the other way, e.g. converting pow into a sequence of sqrts.
5208 We only want to do these canonicalizations before the pass has run. */
5209
5210 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5211 /* Simplify tan(x) * cos(x) -> sin(x). */
5212 (simplify
5213 (mult:c (TAN:s @0) (COS:s @0))
5214 (SIN @0))
5215
5216 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5217 (simplify
5218 (mult:c @0 (POW:s @0 REAL_CST@1))
5219 (if (!TREE_OVERFLOW (@1))
5220 (POW @0 (plus @1 { build_one_cst (type); }))))
5221
5222 /* Simplify sin(x) / cos(x) -> tan(x). */
5223 (simplify
5224 (rdiv (SIN:s @0) (COS:s @0))
5225 (TAN @0))
5226
5227 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5228 (simplify
5229 (rdiv (SINH:s @0) (COSH:s @0))
5230 (TANH @0))
5231
5232 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
5233 (simplify
5234 (rdiv (TANH:s @0) (SINH:s @0))
5235 (rdiv {build_one_cst (type);} (COSH @0)))
5236
5237 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5238 (simplify
5239 (rdiv (COS:s @0) (SIN:s @0))
5240 (rdiv { build_one_cst (type); } (TAN @0)))
5241
5242 /* Simplify sin(x) / tan(x) -> cos(x). */
5243 (simplify
5244 (rdiv (SIN:s @0) (TAN:s @0))
5245 (if (! HONOR_NANS (@0)
5246 && ! HONOR_INFINITIES (@0))
5247 (COS @0)))
5248
5249 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5250 (simplify
5251 (rdiv (TAN:s @0) (SIN:s @0))
5252 (if (! HONOR_NANS (@0)
5253 && ! HONOR_INFINITIES (@0))
5254 (rdiv { build_one_cst (type); } (COS @0))))
5255
5256 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5257 (simplify
5258 (mult (POW:s @0 @1) (POW:s @0 @2))
5259 (POW @0 (plus @1 @2)))
5260
5261 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5262 (simplify
5263 (mult (POW:s @0 @1) (POW:s @2 @1))
5264 (POW (mult @0 @2) @1))
5265
5266 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5267 (simplify
5268 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5269 (POWI (mult @0 @2) @1))
5270
5271 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5272 (simplify
5273 (rdiv (POW:s @0 REAL_CST@1) @0)
5274 (if (!TREE_OVERFLOW (@1))
5275 (POW @0 (minus @1 { build_one_cst (type); }))))
5276
5277 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5278 (simplify
5279 (rdiv @0 (POW:s @1 @2))
5280 (mult @0 (POW @1 (negate @2))))
5281
5282 (for sqrts (SQRT)
5283 cbrts (CBRT)
5284 pows (POW)
5285 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5286 (simplify
5287 (sqrts (sqrts @0))
5288 (pows @0 { build_real (type, dconst_quarter ()); }))
5289 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5290 (simplify
5291 (sqrts (cbrts @0))
5292 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5293 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5294 (simplify
5295 (cbrts (sqrts @0))
5296 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5297 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5298 (simplify
5299 (cbrts (cbrts tree_expr_nonnegative_p@0))
5300 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5301 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5302 (simplify
5303 (sqrts (pows @0 @1))
5304 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5305 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5306 (simplify
5307 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5308 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5309 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5310 (simplify
5311 (pows (sqrts @0) @1)
5312 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5313 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5314 (simplify
5315 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5316 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5317 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5318 (simplify
5319 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5320 (pows @0 (mult @1 @2))))
5321
5322 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5323 (simplify
5324 (CABS (complex @0 @0))
5325 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5326
5327 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5328 (simplify
5329 (HYPOT @0 @0)
5330 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5331
5332 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5333 (for cexps (CEXP)
5334 exps (EXP)
5335 cexpis (CEXPI)
5336 (simplify
5337 (cexps compositional_complex@0)
5338 (if (targetm.libc_has_function (function_c99_math_complex))
5339 (complex
5340 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5341 (mult @1 (imagpart @2)))))))
5342
5343 (if (canonicalize_math_p ())
5344 /* floor(x) -> trunc(x) if x is nonnegative. */
5345 (for floors (FLOOR_ALL)
5346 truncs (TRUNC_ALL)
5347 (simplify
5348 (floors tree_expr_nonnegative_p@0)
5349 (truncs @0))))
5350
5351 (match double_value_p
5352 @0
5353 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5354 (for froms (BUILT_IN_TRUNCL
5355 BUILT_IN_FLOORL
5356 BUILT_IN_CEILL
5357 BUILT_IN_ROUNDL
5358 BUILT_IN_NEARBYINTL
5359 BUILT_IN_RINTL)
5360 tos (BUILT_IN_TRUNC
5361 BUILT_IN_FLOOR
5362 BUILT_IN_CEIL
5363 BUILT_IN_ROUND
5364 BUILT_IN_NEARBYINT
5365 BUILT_IN_RINT)
5366 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5367 (if (optimize && canonicalize_math_p ())
5368 (simplify
5369 (froms (convert double_value_p@0))
5370 (convert (tos @0)))))
5371
5372 (match float_value_p
5373 @0
5374 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5375 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5376 BUILT_IN_FLOORL BUILT_IN_FLOOR
5377 BUILT_IN_CEILL BUILT_IN_CEIL
5378 BUILT_IN_ROUNDL BUILT_IN_ROUND
5379 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5380 BUILT_IN_RINTL BUILT_IN_RINT)
5381 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5382 BUILT_IN_FLOORF BUILT_IN_FLOORF
5383 BUILT_IN_CEILF BUILT_IN_CEILF
5384 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5385 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5386 BUILT_IN_RINTF BUILT_IN_RINTF)
5387 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5388 if x is a float. */
5389 (if (optimize && canonicalize_math_p ()
5390 && targetm.libc_has_function (function_c99_misc))
5391 (simplify
5392 (froms (convert float_value_p@0))
5393 (convert (tos @0)))))
5394
5395 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5396 tos (XFLOOR XCEIL XROUND XRINT)
5397 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5398 (if (optimize && canonicalize_math_p ())
5399 (simplify
5400 (froms (convert double_value_p@0))
5401 (tos @0))))
5402
5403 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5404 XFLOOR XCEIL XROUND XRINT)
5405 tos (XFLOORF XCEILF XROUNDF XRINTF)
5406 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5407 if x is a float. */
5408 (if (optimize && canonicalize_math_p ())
5409 (simplify
5410 (froms (convert float_value_p@0))
5411 (tos @0))))
5412
5413 (if (canonicalize_math_p ())
5414 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5415 (for floors (IFLOOR LFLOOR LLFLOOR)
5416 (simplify
5417 (floors tree_expr_nonnegative_p@0)
5418 (fix_trunc @0))))
5419
5420 (if (canonicalize_math_p ())
5421 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5422 (for fns (IFLOOR LFLOOR LLFLOOR
5423 ICEIL LCEIL LLCEIL
5424 IROUND LROUND LLROUND)
5425 (simplify
5426 (fns integer_valued_real_p@0)
5427 (fix_trunc @0)))
5428 (if (!flag_errno_math)
5429 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5430 (for rints (IRINT LRINT LLRINT)
5431 (simplify
5432 (rints integer_valued_real_p@0)
5433 (fix_trunc @0)))))
5434
5435 (if (canonicalize_math_p ())
5436 (for ifn (IFLOOR ICEIL IROUND IRINT)
5437 lfn (LFLOOR LCEIL LROUND LRINT)
5438 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5439 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5440 sizeof (int) == sizeof (long). */
5441 (if (TYPE_PRECISION (integer_type_node)
5442 == TYPE_PRECISION (long_integer_type_node))
5443 (simplify
5444 (ifn @0)
5445 (lfn:long_integer_type_node @0)))
5446 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5447 sizeof (long long) == sizeof (long). */
5448 (if (TYPE_PRECISION (long_long_integer_type_node)
5449 == TYPE_PRECISION (long_integer_type_node))
5450 (simplify
5451 (llfn @0)
5452 (lfn:long_integer_type_node @0)))))
5453
5454 /* cproj(x) -> x if we're ignoring infinities. */
5455 (simplify
5456 (CPROJ @0)
5457 (if (!HONOR_INFINITIES (type))
5458 @0))
5459
5460 /* If the real part is inf and the imag part is known to be
5461 nonnegative, return (inf + 0i). */
5462 (simplify
5463 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5464 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5465 { build_complex_inf (type, false); }))
5466
5467 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5468 (simplify
5469 (CPROJ (complex @0 REAL_CST@1))
5470 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5471 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5472
5473 (for pows (POW)
5474 sqrts (SQRT)
5475 cbrts (CBRT)
5476 (simplify
5477 (pows @0 REAL_CST@1)
5478 (with {
5479 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5480 REAL_VALUE_TYPE tmp;
5481 }
5482 (switch
5483 /* pow(x,0) -> 1. */
5484 (if (real_equal (value, &dconst0))
5485 { build_real (type, dconst1); })
5486 /* pow(x,1) -> x. */
5487 (if (real_equal (value, &dconst1))
5488 @0)
5489 /* pow(x,-1) -> 1/x. */
5490 (if (real_equal (value, &dconstm1))
5491 (rdiv { build_real (type, dconst1); } @0))
5492 /* pow(x,0.5) -> sqrt(x). */
5493 (if (flag_unsafe_math_optimizations
5494 && canonicalize_math_p ()
5495 && real_equal (value, &dconsthalf))
5496 (sqrts @0))
5497 /* pow(x,1/3) -> cbrt(x). */
5498 (if (flag_unsafe_math_optimizations
5499 && canonicalize_math_p ()
5500 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5501 real_equal (value, &tmp)))
5502 (cbrts @0))))))
5503
5504 /* powi(1,x) -> 1. */
5505 (simplify
5506 (POWI real_onep@0 @1)
5507 @0)
5508
5509 (simplify
5510 (POWI @0 INTEGER_CST@1)
5511 (switch
5512 /* powi(x,0) -> 1. */
5513 (if (wi::to_wide (@1) == 0)
5514 { build_real (type, dconst1); })
5515 /* powi(x,1) -> x. */
5516 (if (wi::to_wide (@1) == 1)
5517 @0)
5518 /* powi(x,-1) -> 1/x. */
5519 (if (wi::to_wide (@1) == -1)
5520 (rdiv { build_real (type, dconst1); } @0))))
5521
5522 /* Narrowing of arithmetic and logical operations.
5523
5524 These are conceptually similar to the transformations performed for
5525 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5526 term we want to move all that code out of the front-ends into here. */
5527
5528 /* Convert (outertype)((innertype0)a+(innertype1)b)
5529 into ((newtype)a+(newtype)b) where newtype
5530 is the widest mode from all of these. */
5531 (for op (plus minus mult rdiv)
5532 (simplify
5533 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5534 /* If we have a narrowing conversion of an arithmetic operation where
5535 both operands are widening conversions from the same type as the outer
5536 narrowing conversion. Then convert the innermost operands to a
5537 suitable unsigned type (to avoid introducing undefined behavior),
5538 perform the operation and convert the result to the desired type. */
5539 (if (INTEGRAL_TYPE_P (type)
5540 && op != MULT_EXPR
5541 && op != RDIV_EXPR
5542 /* We check for type compatibility between @0 and @1 below,
5543 so there's no need to check that @2/@4 are integral types. */
5544 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5545 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5546 /* The precision of the type of each operand must match the
5547 precision of the mode of each operand, similarly for the
5548 result. */
5549 && type_has_mode_precision_p (TREE_TYPE (@1))
5550 && type_has_mode_precision_p (TREE_TYPE (@2))
5551 && type_has_mode_precision_p (type)
5552 /* The inner conversion must be a widening conversion. */
5553 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5554 && types_match (@1, type)
5555 && (types_match (@1, @2)
5556 /* Or the second operand is const integer or converted const
5557 integer from valueize. */
5558 || TREE_CODE (@2) == INTEGER_CST))
5559 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5560 (op @1 (convert @2))
5561 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5562 (convert (op (convert:utype @1)
5563 (convert:utype @2)))))
5564 (if (FLOAT_TYPE_P (type)
5565 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5566 == DECIMAL_FLOAT_TYPE_P (type))
5567 (with { tree arg0 = strip_float_extensions (@1);
5568 tree arg1 = strip_float_extensions (@2);
5569 tree itype = TREE_TYPE (@0);
5570 tree ty1 = TREE_TYPE (arg0);
5571 tree ty2 = TREE_TYPE (arg1);
5572 enum tree_code code = TREE_CODE (itype); }
5573 (if (FLOAT_TYPE_P (ty1)
5574 && FLOAT_TYPE_P (ty2))
5575 (with { tree newtype = type;
5576 if (TYPE_MODE (ty1) == SDmode
5577 || TYPE_MODE (ty2) == SDmode
5578 || TYPE_MODE (type) == SDmode)
5579 newtype = dfloat32_type_node;
5580 if (TYPE_MODE (ty1) == DDmode
5581 || TYPE_MODE (ty2) == DDmode
5582 || TYPE_MODE (type) == DDmode)
5583 newtype = dfloat64_type_node;
5584 if (TYPE_MODE (ty1) == TDmode
5585 || TYPE_MODE (ty2) == TDmode
5586 || TYPE_MODE (type) == TDmode)
5587 newtype = dfloat128_type_node; }
5588 (if ((newtype == dfloat32_type_node
5589 || newtype == dfloat64_type_node
5590 || newtype == dfloat128_type_node)
5591 && newtype == type
5592 && types_match (newtype, type))
5593 (op (convert:newtype @1) (convert:newtype @2))
5594 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5595 newtype = ty1;
5596 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5597 newtype = ty2; }
5598 /* Sometimes this transformation is safe (cannot
5599 change results through affecting double rounding
5600 cases) and sometimes it is not. If NEWTYPE is
5601 wider than TYPE, e.g. (float)((long double)double
5602 + (long double)double) converted to
5603 (float)(double + double), the transformation is
5604 unsafe regardless of the details of the types
5605 involved; double rounding can arise if the result
5606 of NEWTYPE arithmetic is a NEWTYPE value half way
5607 between two representable TYPE values but the
5608 exact value is sufficiently different (in the
5609 right direction) for this difference to be
5610 visible in ITYPE arithmetic. If NEWTYPE is the
5611 same as TYPE, however, the transformation may be
5612 safe depending on the types involved: it is safe
5613 if the ITYPE has strictly more than twice as many
5614 mantissa bits as TYPE, can represent infinities
5615 and NaNs if the TYPE can, and has sufficient
5616 exponent range for the product or ratio of two
5617 values representable in the TYPE to be within the
5618 range of normal values of ITYPE. */
5619 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5620 && (flag_unsafe_math_optimizations
5621 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5622 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5623 TYPE_MODE (type))
5624 && !excess_precision_type (newtype)))
5625 && !types_match (itype, newtype))
5626 (convert:type (op (convert:newtype @1)
5627 (convert:newtype @2)))
5628 )))) )
5629 ))
5630 )))
5631
5632 /* This is another case of narrowing, specifically when there's an outer
5633 BIT_AND_EXPR which masks off bits outside the type of the innermost
5634 operands. Like the previous case we have to convert the operands
5635 to unsigned types to avoid introducing undefined behavior for the
5636 arithmetic operation. */
5637 (for op (minus plus)
5638 (simplify
5639 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5640 (if (INTEGRAL_TYPE_P (type)
5641 /* We check for type compatibility between @0 and @1 below,
5642 so there's no need to check that @1/@3 are integral types. */
5643 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5644 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5645 /* The precision of the type of each operand must match the
5646 precision of the mode of each operand, similarly for the
5647 result. */
5648 && type_has_mode_precision_p (TREE_TYPE (@0))
5649 && type_has_mode_precision_p (TREE_TYPE (@1))
5650 && type_has_mode_precision_p (type)
5651 /* The inner conversion must be a widening conversion. */
5652 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5653 && types_match (@0, @1)
5654 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5655 <= TYPE_PRECISION (TREE_TYPE (@0)))
5656 && (wi::to_wide (@4)
5657 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5658 true, TYPE_PRECISION (type))) == 0)
5659 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5660 (with { tree ntype = TREE_TYPE (@0); }
5661 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5662 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5663 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5664 (convert:utype @4))))))))
5665
5666 /* Transform (@0 < @1 and @0 < @2) to use min,
5667 (@0 > @1 and @0 > @2) to use max */
5668 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5669 op (lt le gt ge lt le gt ge )
5670 ext (min min max max max max min min )
5671 (simplify
5672 (logic (op:cs @0 @1) (op:cs @0 @2))
5673 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5674 && TREE_CODE (@0) != INTEGER_CST)
5675 (op @0 (ext @1 @2)))))
5676
5677 (simplify
5678 /* signbit(x) -> 0 if x is nonnegative. */
5679 (SIGNBIT tree_expr_nonnegative_p@0)
5680 { integer_zero_node; })
5681
5682 (simplify
5683 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5684 (SIGNBIT @0)
5685 (if (!HONOR_SIGNED_ZEROS (@0))
5686 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5687
5688 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5689 (for cmp (eq ne)
5690 (for op (plus minus)
5691 rop (minus plus)
5692 (simplify
5693 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5694 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5695 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5696 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5697 && !TYPE_SATURATING (TREE_TYPE (@0)))
5698 (with { tree res = int_const_binop (rop, @2, @1); }
5699 (if (TREE_OVERFLOW (res)
5700 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5701 { constant_boolean_node (cmp == NE_EXPR, type); }
5702 (if (single_use (@3))
5703 (cmp @0 { TREE_OVERFLOW (res)
5704 ? drop_tree_overflow (res) : res; }))))))))
5705 (for cmp (lt le gt ge)
5706 (for op (plus minus)
5707 rop (minus plus)
5708 (simplify
5709 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5710 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5711 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5712 (with { tree res = int_const_binop (rop, @2, @1); }
5713 (if (TREE_OVERFLOW (res))
5714 {
5715 fold_overflow_warning (("assuming signed overflow does not occur "
5716 "when simplifying conditional to constant"),
5717 WARN_STRICT_OVERFLOW_CONDITIONAL);
5718 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5719 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5720 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5721 TYPE_SIGN (TREE_TYPE (@1)))
5722 != (op == MINUS_EXPR);
5723 constant_boolean_node (less == ovf_high, type);
5724 }
5725 (if (single_use (@3))
5726 (with
5727 {
5728 fold_overflow_warning (("assuming signed overflow does not occur "
5729 "when changing X +- C1 cmp C2 to "
5730 "X cmp C2 -+ C1"),
5731 WARN_STRICT_OVERFLOW_COMPARISON);
5732 }
5733 (cmp @0 { res; })))))))))
5734
5735 /* Canonicalizations of BIT_FIELD_REFs. */
5736
5737 (simplify
5738 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5739 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5740
5741 (simplify
5742 (BIT_FIELD_REF (view_convert @0) @1 @2)
5743 (BIT_FIELD_REF @0 @1 @2))
5744
5745 (simplify
5746 (BIT_FIELD_REF @0 @1 integer_zerop)
5747 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5748 (view_convert @0)))
5749
5750 (simplify
5751 (BIT_FIELD_REF @0 @1 @2)
5752 (switch
5753 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5754 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5755 (switch
5756 (if (integer_zerop (@2))
5757 (view_convert (realpart @0)))
5758 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5759 (view_convert (imagpart @0)))))
5760 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5761 && INTEGRAL_TYPE_P (type)
5762 /* On GIMPLE this should only apply to register arguments. */
5763 && (! GIMPLE || is_gimple_reg (@0))
5764 /* A bit-field-ref that referenced the full argument can be stripped. */
5765 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5766 && integer_zerop (@2))
5767 /* Low-parts can be reduced to integral conversions.
5768 ??? The following doesn't work for PDP endian. */
5769 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5770 /* Don't even think about BITS_BIG_ENDIAN. */
5771 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5772 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5773 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5774 ? (TYPE_PRECISION (TREE_TYPE (@0))
5775 - TYPE_PRECISION (type))
5776 : 0)) == 0)))
5777 (convert @0))))
5778
5779 /* Simplify vector extracts. */
5780
5781 (simplify
5782 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5783 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5784 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5785 || (VECTOR_TYPE_P (type)
5786 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5787 (with
5788 {
5789 tree ctor = (TREE_CODE (@0) == SSA_NAME
5790 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5791 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5792 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5793 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5794 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5795 }
5796 (if (n != 0
5797 && (idx % width) == 0
5798 && (n % width) == 0
5799 && known_le ((idx + n) / width,
5800 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5801 (with
5802 {
5803 idx = idx / width;
5804 n = n / width;
5805 /* Constructor elements can be subvectors. */
5806 poly_uint64 k = 1;
5807 if (CONSTRUCTOR_NELTS (ctor) != 0)
5808 {
5809 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5810 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5811 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5812 }
5813 unsigned HOST_WIDE_INT elt, count, const_k;
5814 }
5815 (switch
5816 /* We keep an exact subset of the constructor elements. */
5817 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5818 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5819 { build_constructor (type, NULL); }
5820 (if (count == 1)
5821 (if (elt < CONSTRUCTOR_NELTS (ctor))
5822 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5823 { build_zero_cst (type); })
5824 /* We don't want to emit new CTORs unless the old one goes away.
5825 ??? Eventually allow this if the CTOR ends up constant or
5826 uniform. */
5827 (if (single_use (@0))
5828 {
5829 vec<constructor_elt, va_gc> *vals;
5830 vec_alloc (vals, count);
5831 for (unsigned i = 0;
5832 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5833 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5834 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5835 build_constructor (type, vals);
5836 }))))
5837 /* The bitfield references a single constructor element. */
5838 (if (k.is_constant (&const_k)
5839 && idx + n <= (idx / const_k + 1) * const_k)
5840 (switch
5841 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5842 { build_zero_cst (type); })
5843 (if (n == const_k)
5844 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5845 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5846 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5847
5848 /* Simplify a bit extraction from a bit insertion for the cases with
5849 the inserted element fully covering the extraction or the insertion
5850 not touching the extraction. */
5851 (simplify
5852 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5853 (with
5854 {
5855 unsigned HOST_WIDE_INT isize;
5856 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5857 isize = TYPE_PRECISION (TREE_TYPE (@1));
5858 else
5859 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5860 }
5861 (switch
5862 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5863 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5864 wi::to_wide (@ipos) + isize))
5865 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5866 wi::to_wide (@rpos)
5867 - wi::to_wide (@ipos)); }))
5868 (if (wi::geu_p (wi::to_wide (@ipos),
5869 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5870 || wi::geu_p (wi::to_wide (@rpos),
5871 wi::to_wide (@ipos) + isize))
5872 (BIT_FIELD_REF @0 @rsize @rpos)))))
5873
5874 (if (canonicalize_math_after_vectorization_p ())
5875 (for fmas (FMA)
5876 (simplify
5877 (fmas:c (negate @0) @1 @2)
5878 (IFN_FNMA @0 @1 @2))
5879 (simplify
5880 (fmas @0 @1 (negate @2))
5881 (IFN_FMS @0 @1 @2))
5882 (simplify
5883 (fmas:c (negate @0) @1 (negate @2))
5884 (IFN_FNMS @0 @1 @2))
5885 (simplify
5886 (negate (fmas@3 @0 @1 @2))
5887 (if (single_use (@3))
5888 (IFN_FNMS @0 @1 @2))))
5889
5890 (simplify
5891 (IFN_FMS:c (negate @0) @1 @2)
5892 (IFN_FNMS @0 @1 @2))
5893 (simplify
5894 (IFN_FMS @0 @1 (negate @2))
5895 (IFN_FMA @0 @1 @2))
5896 (simplify
5897 (IFN_FMS:c (negate @0) @1 (negate @2))
5898 (IFN_FNMA @0 @1 @2))
5899 (simplify
5900 (negate (IFN_FMS@3 @0 @1 @2))
5901 (if (single_use (@3))
5902 (IFN_FNMA @0 @1 @2)))
5903
5904 (simplify
5905 (IFN_FNMA:c (negate @0) @1 @2)
5906 (IFN_FMA @0 @1 @2))
5907 (simplify
5908 (IFN_FNMA @0 @1 (negate @2))
5909 (IFN_FNMS @0 @1 @2))
5910 (simplify
5911 (IFN_FNMA:c (negate @0) @1 (negate @2))
5912 (IFN_FMS @0 @1 @2))
5913 (simplify
5914 (negate (IFN_FNMA@3 @0 @1 @2))
5915 (if (single_use (@3))
5916 (IFN_FMS @0 @1 @2)))
5917
5918 (simplify
5919 (IFN_FNMS:c (negate @0) @1 @2)
5920 (IFN_FMS @0 @1 @2))
5921 (simplify
5922 (IFN_FNMS @0 @1 (negate @2))
5923 (IFN_FNMA @0 @1 @2))
5924 (simplify
5925 (IFN_FNMS:c (negate @0) @1 (negate @2))
5926 (IFN_FMA @0 @1 @2))
5927 (simplify
5928 (negate (IFN_FNMS@3 @0 @1 @2))
5929 (if (single_use (@3))
5930 (IFN_FMA @0 @1 @2))))
5931
5932 /* POPCOUNT simplifications. */
5933 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5934 BUILT_IN_POPCOUNTIMAX)
5935 /* popcount(X&1) is nop_expr(X&1). */
5936 (simplify
5937 (popcount @0)
5938 (if (tree_nonzero_bits (@0) == 1)
5939 (convert @0)))
5940 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5941 (simplify
5942 (plus (popcount:s @0) (popcount:s @1))
5943 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5944 (popcount (bit_ior @0 @1))))
5945 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5946 (for cmp (le eq ne gt)
5947 rep (eq eq ne ne)
5948 (simplify
5949 (cmp (popcount @0) integer_zerop)
5950 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5951
5952 #if GIMPLE
5953 /* 64- and 32-bits branchless implementations of popcount are detected:
5954
5955 int popcount64c (uint64_t x)
5956 {
5957 x -= (x >> 1) & 0x5555555555555555ULL;
5958 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5959 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5960 return (x * 0x0101010101010101ULL) >> 56;
5961 }
5962
5963 int popcount32c (uint32_t x)
5964 {
5965 x -= (x >> 1) & 0x55555555;
5966 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5967 x = (x + (x >> 4)) & 0x0f0f0f0f;
5968 return (x * 0x01010101) >> 24;
5969 } */
5970 (simplify
5971 (rshift
5972 (mult
5973 (bit_and
5974 (plus:c
5975 (rshift @8 INTEGER_CST@5)
5976 (plus:c@8
5977 (bit_and @6 INTEGER_CST@7)
5978 (bit_and
5979 (rshift
5980 (minus@6 @0
5981 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
5982 INTEGER_CST@10)
5983 INTEGER_CST@9)))
5984 INTEGER_CST@3)
5985 INTEGER_CST@2)
5986 INTEGER_CST@1)
5987 /* Check constants and optab. */
5988 (with { unsigned prec = TYPE_PRECISION (type);
5989 int shift = (64 - prec) & 63;
5990 unsigned HOST_WIDE_INT c1
5991 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
5992 unsigned HOST_WIDE_INT c2
5993 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
5994 unsigned HOST_WIDE_INT c3
5995 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
5996 unsigned HOST_WIDE_INT c4
5997 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
5998 }
5999 (if (prec >= 16
6000 && prec <= 64
6001 && pow2p_hwi (prec)
6002 && TYPE_UNSIGNED (type)
6003 && integer_onep (@4)
6004 && wi::to_widest (@10) == 2
6005 && wi::to_widest (@5) == 4
6006 && wi::to_widest (@1) == prec - 8
6007 && tree_to_uhwi (@2) == c1
6008 && tree_to_uhwi (@3) == c2
6009 && tree_to_uhwi (@9) == c3
6010 && tree_to_uhwi (@7) == c3
6011 && tree_to_uhwi (@11) == c4
6012 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
6013 OPTIMIZE_FOR_BOTH))
6014 (convert (IFN_POPCOUNT:type @0)))))
6015
6016 /* __builtin_ffs needs to deal on many targets with the possible zero
6017 argument. If we know the argument is always non-zero, __builtin_ctz + 1
6018 should lead to better code. */
6019 (simplify
6020 (FFS tree_expr_nonzero_p@0)
6021 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6022 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
6023 OPTIMIZE_FOR_SPEED))
6024 (plus (CTZ:type @0) { build_one_cst (type); })))
6025 #endif
6026
6027 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
6028 BUILT_IN_FFSIMAX)
6029 /* __builtin_ffs (X) == 0 -> X == 0.
6030 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
6031 (for cmp (eq ne)
6032 (simplify
6033 (cmp (ffs@2 @0) INTEGER_CST@1)
6034 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6035 (switch
6036 (if (integer_zerop (@1))
6037 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
6038 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
6039 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
6040 (if (single_use (@2))
6041 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
6042 wi::mask (tree_to_uhwi (@1),
6043 false, prec)); })
6044 { wide_int_to_tree (TREE_TYPE (@0),
6045 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
6046 false, prec)); }))))))
6047
6048 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
6049 (for cmp (gt le)
6050 cmp2 (ne eq)
6051 cmp3 (eq ne)
6052 bit_op (bit_and bit_ior)
6053 (simplify
6054 (cmp (ffs@2 @0) INTEGER_CST@1)
6055 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
6056 (switch
6057 (if (integer_zerop (@1))
6058 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
6059 (if (tree_int_cst_sgn (@1) < 0)
6060 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
6061 (if (wi::to_widest (@1) >= prec)
6062 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
6063 (if (wi::to_widest (@1) == prec - 1)
6064 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
6065 wi::shifted_mask (prec - 1, 1,
6066 false, prec)); }))
6067 (if (single_use (@2))
6068 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
6069 (cmp3 (bit_and @0
6070 { wide_int_to_tree (TREE_TYPE (@0),
6071 wi::mask (tree_to_uhwi (@1),
6072 false, prec)); })
6073 { build_zero_cst (TREE_TYPE (@0)); }))))))))
6074
6075 /* Simplify:
6076
6077 a = a1 op a2
6078 r = c ? a : b;
6079
6080 to:
6081
6082 r = c ? a1 op a2 : b;
6083
6084 if the target can do it in one go. This makes the operation conditional
6085 on c, so could drop potentially-trapping arithmetic, but that's a valid
6086 simplification if the result of the operation isn't needed.
6087
6088 Avoid speculatively generating a stand-alone vector comparison
6089 on targets that might not support them. Any target implementing
6090 conditional internal functions must support the same comparisons
6091 inside and outside a VEC_COND_EXPR. */
6092
6093 #if GIMPLE
6094 (for uncond_op (UNCOND_BINARY)
6095 cond_op (COND_BINARY)
6096 (simplify
6097 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
6098 (with { tree op_type = TREE_TYPE (@4); }
6099 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6100 && element_precision (type) == element_precision (op_type))
6101 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
6102 (simplify
6103 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
6104 (with { tree op_type = TREE_TYPE (@4); }
6105 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6106 && element_precision (type) == element_precision (op_type))
6107 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
6108
6109 /* Same for ternary operations. */
6110 (for uncond_op (UNCOND_TERNARY)
6111 cond_op (COND_TERNARY)
6112 (simplify
6113 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
6114 (with { tree op_type = TREE_TYPE (@5); }
6115 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6116 && element_precision (type) == element_precision (op_type))
6117 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
6118 (simplify
6119 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
6120 (with { tree op_type = TREE_TYPE (@5); }
6121 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
6122 && element_precision (type) == element_precision (op_type))
6123 (view_convert (cond_op (bit_not @0) @2 @3 @4
6124 (view_convert:op_type @1)))))))
6125 #endif
6126
6127 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
6128 "else" value of an IFN_COND_*. */
6129 (for cond_op (COND_BINARY)
6130 (simplify
6131 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
6132 (with { tree op_type = TREE_TYPE (@3); }
6133 (if (element_precision (type) == element_precision (op_type))
6134 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
6135 (simplify
6136 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
6137 (with { tree op_type = TREE_TYPE (@5); }
6138 (if (inverse_conditions_p (@0, @2)
6139 && element_precision (type) == element_precision (op_type))
6140 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
6141
6142 /* Same for ternary operations. */
6143 (for cond_op (COND_TERNARY)
6144 (simplify
6145 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
6146 (with { tree op_type = TREE_TYPE (@4); }
6147 (if (element_precision (type) == element_precision (op_type))
6148 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
6149 (simplify
6150 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
6151 (with { tree op_type = TREE_TYPE (@6); }
6152 (if (inverse_conditions_p (@0, @2)
6153 && element_precision (type) == element_precision (op_type))
6154 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
6155
6156 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
6157 expressions like:
6158
6159 A: (@0 + @1 < @2) | (@2 + @1 < @0)
6160 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
6161
6162 If pointers are known not to wrap, B checks whether @1 bytes starting
6163 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
6164 bytes. A is more efficiently tested as:
6165
6166 A: (sizetype) (@0 + @1 - @2) > @1 * 2
6167
6168 The equivalent expression for B is given by replacing @1 with @1 - 1:
6169
6170 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
6171
6172 @0 and @2 can be swapped in both expressions without changing the result.
6173
6174 The folds rely on sizetype's being unsigned (which is always true)
6175 and on its being the same width as the pointer (which we have to check).
6176
6177 The fold replaces two pointer_plus expressions, two comparisons and
6178 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
6179 the best case it's a saving of two operations. The A fold retains one
6180 of the original pointer_pluses, so is a win even if both pointer_pluses
6181 are used elsewhere. The B fold is a wash if both pointer_pluses are
6182 used elsewhere, since all we end up doing is replacing a comparison with
6183 a pointer_plus. We do still apply the fold under those circumstances
6184 though, in case applying it to other conditions eventually makes one of the
6185 pointer_pluses dead. */
6186 (for ior (truth_orif truth_or bit_ior)
6187 (for cmp (le lt)
6188 (simplify
6189 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
6190 (cmp:cs (pointer_plus@4 @2 @1) @0))
6191 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6192 && TYPE_OVERFLOW_WRAPS (sizetype)
6193 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
6194 /* Calculate the rhs constant. */
6195 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
6196 offset_int rhs = off * 2; }
6197 /* Always fails for negative values. */
6198 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
6199 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
6200 pick a canonical order. This increases the chances of using the
6201 same pointer_plus in multiple checks. */
6202 (with { bool swap_p = tree_swap_operands_p (@0, @2);
6203 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
6204 (if (cmp == LT_EXPR)
6205 (gt (convert:sizetype
6206 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
6207 { swap_p ? @0 : @2; }))
6208 { rhs_tree; })
6209 (gt (convert:sizetype
6210 (pointer_diff:ssizetype
6211 (pointer_plus { swap_p ? @2 : @0; }
6212 { wide_int_to_tree (sizetype, off); })
6213 { swap_p ? @0 : @2; }))
6214 { rhs_tree; })))))))))
6215
6216 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
6217 element of @1. */
6218 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
6219 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
6220 (with { int i = single_nonzero_element (@1); }
6221 (if (i >= 0)
6222 (with { tree elt = vector_cst_elt (@1, i);
6223 tree elt_type = TREE_TYPE (elt);
6224 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
6225 tree size = bitsize_int (elt_bits);
6226 tree pos = bitsize_int (elt_bits * i); }
6227 (view_convert
6228 (bit_and:elt_type
6229 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
6230 { elt; })))))))
6231
6232 (simplify
6233 (vec_perm @0 @1 VECTOR_CST@2)
6234 (with
6235 {
6236 tree op0 = @0, op1 = @1, op2 = @2;
6237
6238 /* Build a vector of integers from the tree mask. */
6239 vec_perm_builder builder;
6240 if (!tree_to_vec_perm_builder (&builder, op2))
6241 return NULL_TREE;
6242
6243 /* Create a vec_perm_indices for the integer vector. */
6244 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
6245 bool single_arg = (op0 == op1);
6246 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
6247 }
6248 (if (sel.series_p (0, 1, 0, 1))
6249 { op0; }
6250 (if (sel.series_p (0, 1, nelts, 1))
6251 { op1; }
6252 (with
6253 {
6254 if (!single_arg)
6255 {
6256 if (sel.all_from_input_p (0))
6257 op1 = op0;
6258 else if (sel.all_from_input_p (1))
6259 {
6260 op0 = op1;
6261 sel.rotate_inputs (1);
6262 }
6263 else if (known_ge (poly_uint64 (sel[0]), nelts))
6264 {
6265 std::swap (op0, op1);
6266 sel.rotate_inputs (1);
6267 }
6268 }
6269 gassign *def;
6270 tree cop0 = op0, cop1 = op1;
6271 if (TREE_CODE (op0) == SSA_NAME
6272 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6273 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6274 cop0 = gimple_assign_rhs1 (def);
6275 if (TREE_CODE (op1) == SSA_NAME
6276 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6277 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6278 cop1 = gimple_assign_rhs1 (def);
6279
6280 tree t;
6281 }
6282 (if ((TREE_CODE (cop0) == VECTOR_CST
6283 || TREE_CODE (cop0) == CONSTRUCTOR)
6284 && (TREE_CODE (cop1) == VECTOR_CST
6285 || TREE_CODE (cop1) == CONSTRUCTOR)
6286 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6287 { t; }
6288 (with
6289 {
6290 bool changed = (op0 == op1 && !single_arg);
6291 tree ins = NULL_TREE;
6292 unsigned at = 0;
6293
6294 /* See if the permutation is performing a single element
6295 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6296 in that case. But only if the vector mode is supported,
6297 otherwise this is invalid GIMPLE. */
6298 if (TYPE_MODE (type) != BLKmode
6299 && (TREE_CODE (cop0) == VECTOR_CST
6300 || TREE_CODE (cop0) == CONSTRUCTOR
6301 || TREE_CODE (cop1) == VECTOR_CST
6302 || TREE_CODE (cop1) == CONSTRUCTOR))
6303 {
6304 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
6305 if (insert_first_p)
6306 {
6307 /* After canonicalizing the first elt to come from the
6308 first vector we only can insert the first elt from
6309 the first vector. */
6310 at = 0;
6311 if ((ins = fold_read_from_vector (cop0, sel[0])))
6312 op0 = op1;
6313 }
6314 /* The above can fail for two-element vectors which always
6315 appear to insert the first element, so try inserting
6316 into the second lane as well. For more than two
6317 elements that's wasted time. */
6318 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
6319 {
6320 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6321 for (at = 0; at < encoded_nelts; ++at)
6322 if (maybe_ne (sel[at], at))
6323 break;
6324 if (at < encoded_nelts
6325 && (known_eq (at + 1, nelts)
6326 || sel.series_p (at + 1, 1, at + 1, 1)))
6327 {
6328 if (known_lt (poly_uint64 (sel[at]), nelts))
6329 ins = fold_read_from_vector (cop0, sel[at]);
6330 else
6331 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6332 }
6333 }
6334 }
6335
6336 /* Generate a canonical form of the selector. */
6337 if (!ins && sel.encoding () != builder)
6338 {
6339 /* Some targets are deficient and fail to expand a single
6340 argument permutation while still allowing an equivalent
6341 2-argument version. */
6342 tree oldop2 = op2;
6343 if (sel.ninputs () == 2
6344 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6345 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6346 else
6347 {
6348 vec_perm_indices sel2 (builder, 2, nelts);
6349 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6350 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6351 else
6352 /* Not directly supported with either encoding,
6353 so use the preferred form. */
6354 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6355 }
6356 if (!operand_equal_p (op2, oldop2, 0))
6357 changed = true;
6358 }
6359 }
6360 (if (ins)
6361 (bit_insert { op0; } { ins; }
6362 { bitsize_int (at * vector_element_bits (type)); })
6363 (if (changed)
6364 (vec_perm { op0; } { op1; } { op2; }))))))))))
6365
6366 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6367
6368 (match vec_same_elem_p
6369 @0
6370 (if (uniform_vector_p (@0))))
6371
6372 (match vec_same_elem_p
6373 (vec_duplicate @0))
6374
6375 (simplify
6376 (vec_perm vec_same_elem_p@0 @0 @1)
6377 @0)
6378
6379 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
6380 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
6381 constant which when multiplied by a power of 2 contains a unique value
6382 in the top 5 or 6 bits. This is then indexed into a table which maps it
6383 to the number of trailing zeroes. */
6384 (match (ctz_table_index @1 @2 @3)
6385 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))