]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
d: Import dmd b8384668f, druntime e6caaab9, phobos 5ab9ad256 (v2.098.0-beta.1)
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2021 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p
41 expand_vec_cmp_expr_p
42 bitmask_inv_cst_vector_p)
43
44 /* Operator lists. */
45 (define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47 (define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
51 (define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
53 (define_operator_list simple_comparison lt le eq ne ge gt)
54 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
55
56 #include "cfn-operators.pd"
57
58 /* Define operand lists for math rounding functions {,i,l,ll}FN,
59 where the versions prefixed with "i" return an int, those prefixed with
60 "l" return a long and those prefixed with "ll" return a long long.
61
62 Also define operand lists:
63
64 X<FN>F for all float functions, in the order i, l, ll
65 X<FN> for all double functions, in the same order
66 X<FN>L for all long double functions, in the same order. */
67 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
68 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
69 BUILT_IN_L##FN##F \
70 BUILT_IN_LL##FN##F) \
71 (define_operator_list X##FN BUILT_IN_I##FN \
72 BUILT_IN_L##FN \
73 BUILT_IN_LL##FN) \
74 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
75 BUILT_IN_L##FN##L \
76 BUILT_IN_LL##FN##L)
77
78 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
80 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
81 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
82
83 /* Unary operations and their associated IFN_COND_* function. */
84 (define_operator_list UNCOND_UNARY
85 negate)
86 (define_operator_list COND_UNARY
87 IFN_COND_NEG)
88
89 /* Binary operations and their associated IFN_COND_* function. */
90 (define_operator_list UNCOND_BINARY
91 plus minus
92 mult trunc_div trunc_mod rdiv
93 min max
94 IFN_FMIN IFN_FMAX
95 bit_and bit_ior bit_xor
96 lshift rshift)
97 (define_operator_list COND_BINARY
98 IFN_COND_ADD IFN_COND_SUB
99 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
100 IFN_COND_MIN IFN_COND_MAX
101 IFN_COND_FMIN IFN_COND_FMAX
102 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
103 IFN_COND_SHL IFN_COND_SHR)
104
105 /* Same for ternary operations. */
106 (define_operator_list UNCOND_TERNARY
107 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
108 (define_operator_list COND_TERNARY
109 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
110
111 /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
112 (define_operator_list ATOMIC_FETCH_OR_XOR_N
113 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
114 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
115 BUILT_IN_ATOMIC_FETCH_OR_16
116 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
117 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
118 BUILT_IN_ATOMIC_FETCH_XOR_16
119 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
120 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
121 BUILT_IN_ATOMIC_XOR_FETCH_16)
122 /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
123 (define_operator_list SYNC_FETCH_OR_XOR_N
124 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
125 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
126 BUILT_IN_SYNC_FETCH_AND_OR_16
127 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
128 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
129 BUILT_IN_SYNC_FETCH_AND_XOR_16
130 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
131 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
132 BUILT_IN_SYNC_XOR_AND_FETCH_16)
133 /* __atomic_fetch_and_*. */
134 (define_operator_list ATOMIC_FETCH_AND_N
135 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
136 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
137 BUILT_IN_ATOMIC_FETCH_AND_16)
138 /* __sync_fetch_and_and_*. */
139 (define_operator_list SYNC_FETCH_AND_AND_N
140 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
141 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
142 BUILT_IN_SYNC_FETCH_AND_AND_16)
143
144 /* With nop_convert? combine convert? and view_convert? in one pattern
145 plus conditionalize on tree_nop_conversion_p conversions. */
146 (match (nop_convert @0)
147 (convert @0)
148 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
149 (match (nop_convert @0)
150 (view_convert @0)
151 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
152 && known_eq (TYPE_VECTOR_SUBPARTS (type),
153 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
154 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
155
156 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
157 ABSU_EXPR returns unsigned absolute value of the operand and the operand
158 of the ABSU_EXPR will have the corresponding signed type. */
159 (simplify (abs (convert @0))
160 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
161 && !TYPE_UNSIGNED (TREE_TYPE (@0))
162 && element_precision (type) > element_precision (TREE_TYPE (@0)))
163 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
164 (convert (absu:utype @0)))))
165
166 #if GIMPLE
167 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
168 (simplify
169 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
170 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
171 && !TYPE_UNSIGNED (TREE_TYPE (@0))
172 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
173 (abs @0)))
174 #endif
175
176 /* Simplifications of operations with one constant operand and
177 simplifications to constants or single values. */
178
179 (for op (plus pointer_plus minus bit_ior bit_xor)
180 (simplify
181 (op @0 integer_zerop)
182 (non_lvalue @0)))
183
184 /* 0 +p index -> (type)index */
185 (simplify
186 (pointer_plus integer_zerop @1)
187 (non_lvalue (convert @1)))
188
189 /* ptr - 0 -> (type)ptr */
190 (simplify
191 (pointer_diff @0 integer_zerop)
192 (convert @0))
193
194 /* See if ARG1 is zero and X + ARG1 reduces to X.
195 Likewise if the operands are reversed. */
196 (simplify
197 (plus:c @0 real_zerop@1)
198 (if (fold_real_zero_addition_p (type, @0, @1, 0))
199 (non_lvalue @0)))
200
201 /* See if ARG1 is zero and X - ARG1 reduces to X. */
202 (simplify
203 (minus @0 real_zerop@1)
204 (if (fold_real_zero_addition_p (type, @0, @1, 1))
205 (non_lvalue @0)))
206
207 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
208 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
209 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
210 if not -frounding-math. For sNaNs the first operation would raise
211 exceptions but turn the result into qNan, so the second operation
212 would not raise it. */
213 (for inner_op (plus minus)
214 (for outer_op (plus minus)
215 (simplify
216 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
217 (if (real_zerop (@1)
218 && real_zerop (@2)
219 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
220 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
221 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
222 bool outer_plus
223 = ((outer_op == PLUS_EXPR)
224 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
225 (if (outer_plus && !inner_plus)
226 (outer_op @0 @2)
227 @3))))))
228
229 /* Simplify x - x.
230 This is unsafe for certain floats even in non-IEEE formats.
231 In IEEE, it is unsafe because it does wrong for NaNs.
232 Also note that operand_equal_p is always false if an operand
233 is volatile. */
234 (simplify
235 (minus @0 @0)
236 (if (!FLOAT_TYPE_P (type)
237 || (!tree_expr_maybe_nan_p (@0)
238 && !tree_expr_maybe_infinite_p (@0)))
239 { build_zero_cst (type); }))
240 (simplify
241 (pointer_diff @@0 @0)
242 { build_zero_cst (type); })
243
244 (simplify
245 (mult @0 integer_zerop@1)
246 @1)
247
248 /* -x == x -> x == 0 */
249 (for cmp (eq ne)
250 (simplify
251 (cmp:c @0 (negate @0))
252 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
253 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
254 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
255
256 /* Maybe fold x * 0 to 0. The expressions aren't the same
257 when x is NaN, since x * 0 is also NaN. Nor are they the
258 same in modes with signed zeros, since multiplying a
259 negative value by 0 gives -0, not +0. */
260 (simplify
261 (mult @0 real_zerop@1)
262 (if (!tree_expr_maybe_nan_p (@0)
263 && !tree_expr_maybe_real_minus_zero_p (@0)
264 && !tree_expr_maybe_real_minus_zero_p (@1))
265 @1))
266
267 /* In IEEE floating point, x*1 is not equivalent to x for snans.
268 Likewise for complex arithmetic with signed zeros. */
269 (simplify
270 (mult @0 real_onep)
271 (if (!tree_expr_maybe_signaling_nan_p (@0)
272 && (!HONOR_SIGNED_ZEROS (type)
273 || !COMPLEX_FLOAT_TYPE_P (type)))
274 (non_lvalue @0)))
275
276 /* Transform x * -1.0 into -x. */
277 (simplify
278 (mult @0 real_minus_onep)
279 (if (!tree_expr_maybe_signaling_nan_p (@0)
280 && (!HONOR_SIGNED_ZEROS (type)
281 || !COMPLEX_FLOAT_TYPE_P (type)))
282 (negate @0)))
283
284 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
285 (simplify
286 (mult SSA_NAME@1 SSA_NAME@2)
287 (if (INTEGRAL_TYPE_P (type)
288 && get_nonzero_bits (@1) == 1
289 && get_nonzero_bits (@2) == 1)
290 (bit_and @1 @2)))
291
292 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
293 unless the target has native support for the former but not the latter. */
294 (simplify
295 (mult @0 VECTOR_CST@1)
296 (if (initializer_each_zero_or_onep (@1)
297 && !HONOR_SNANS (type)
298 && !HONOR_SIGNED_ZEROS (type))
299 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
300 (if (itype
301 && (!VECTOR_MODE_P (TYPE_MODE (type))
302 || (VECTOR_MODE_P (TYPE_MODE (itype))
303 && optab_handler (and_optab,
304 TYPE_MODE (itype)) != CODE_FOR_nothing)))
305 (view_convert (bit_and:itype (view_convert @0)
306 (ne @1 { build_zero_cst (type); })))))))
307
308 (for cmp (gt ge lt le)
309 outp (convert convert negate negate)
310 outn (negate negate convert convert)
311 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
312 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
313 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
314 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
315 (simplify
316 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
317 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
318 (outp (abs @0))))
319 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
320 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
321 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
322 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
323 (simplify
324 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
325 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
326 (outn (abs @0)))))
327
328 /* Transform X * copysign (1.0, X) into abs(X). */
329 (simplify
330 (mult:c @0 (COPYSIGN_ALL real_onep @0))
331 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
332 (abs @0)))
333
334 /* Transform X * copysign (1.0, -X) into -abs(X). */
335 (simplify
336 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
337 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
338 (negate (abs @0))))
339
340 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
341 (simplify
342 (COPYSIGN_ALL REAL_CST@0 @1)
343 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
344 (COPYSIGN_ALL (negate @0) @1)))
345
346 /* X * 1, X / 1 -> X. */
347 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
348 (simplify
349 (op @0 integer_onep)
350 (non_lvalue @0)))
351
352 /* (A / (1 << B)) -> (A >> B).
353 Only for unsigned A. For signed A, this would not preserve rounding
354 toward zero.
355 For example: (-1 / ( 1 << B)) != -1 >> B.
356 Also also widening conversions, like:
357 (A / (unsigned long long) (1U << B)) -> (A >> B)
358 or
359 (A / (unsigned long long) (1 << B)) -> (A >> B).
360 If the left shift is signed, it can be done only if the upper bits
361 of A starting from shift's type sign bit are zero, as
362 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
363 so it is valid only if A >> 31 is zero. */
364 (simplify
365 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
366 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
367 && (!VECTOR_TYPE_P (type)
368 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
369 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
370 && (useless_type_conversion_p (type, TREE_TYPE (@1))
371 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
372 && (TYPE_UNSIGNED (TREE_TYPE (@1))
373 || (element_precision (type)
374 == element_precision (TREE_TYPE (@1)))
375 || (INTEGRAL_TYPE_P (type)
376 && (tree_nonzero_bits (@0)
377 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
378 true,
379 element_precision (type))) == 0)))))
380 (if (!VECTOR_TYPE_P (type)
381 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
382 && element_precision (TREE_TYPE (@3)) < element_precision (type))
383 (convert (rshift @3 @2))
384 (rshift @0 @2))))
385
386 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
387 undefined behavior in constexpr evaluation, and assuming that the division
388 traps enables better optimizations than these anyway. */
389 (for div (trunc_div ceil_div floor_div round_div exact_div)
390 /* 0 / X is always zero. */
391 (simplify
392 (div integer_zerop@0 @1)
393 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
394 (if (!integer_zerop (@1))
395 @0))
396 /* X / -1 is -X. */
397 (simplify
398 (div @0 integer_minus_onep@1)
399 (if (!TYPE_UNSIGNED (type))
400 (negate @0)))
401 /* X / bool_range_Y is X. */
402 (simplify
403 (div @0 SSA_NAME@1)
404 (if (INTEGRAL_TYPE_P (type) && ssa_name_has_boolean_range (@1))
405 @0))
406 /* X / X is one. */
407 (simplify
408 (div @0 @0)
409 /* But not for 0 / 0 so that we can get the proper warnings and errors.
410 And not for _Fract types where we can't build 1. */
411 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
412 { build_one_cst (type); }))
413 /* X / abs (X) is X < 0 ? -1 : 1. */
414 (simplify
415 (div:C @0 (abs @0))
416 (if (INTEGRAL_TYPE_P (type)
417 && TYPE_OVERFLOW_UNDEFINED (type))
418 (cond (lt @0 { build_zero_cst (type); })
419 { build_minus_one_cst (type); } { build_one_cst (type); })))
420 /* X / -X is -1. */
421 (simplify
422 (div:C @0 (negate @0))
423 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
424 && TYPE_OVERFLOW_UNDEFINED (type))
425 { build_minus_one_cst (type); })))
426
427 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
428 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
429 (simplify
430 (floor_div @0 @1)
431 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
432 && TYPE_UNSIGNED (type))
433 (trunc_div @0 @1)))
434
435 /* Combine two successive divisions. Note that combining ceil_div
436 and floor_div is trickier and combining round_div even more so. */
437 (for div (trunc_div exact_div)
438 (simplify
439 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
440 (with {
441 wi::overflow_type overflow;
442 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
443 TYPE_SIGN (type), &overflow);
444 }
445 (if (div == EXACT_DIV_EXPR
446 || optimize_successive_divisions_p (@2, @3))
447 (if (!overflow)
448 (div @0 { wide_int_to_tree (type, mul); })
449 (if (TYPE_UNSIGNED (type)
450 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
451 { build_zero_cst (type); }))))))
452
453 /* Combine successive multiplications. Similar to above, but handling
454 overflow is different. */
455 (simplify
456 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
457 (with {
458 wi::overflow_type overflow;
459 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
460 TYPE_SIGN (type), &overflow);
461 }
462 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
463 otherwise undefined overflow implies that @0 must be zero. */
464 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
465 (mult @0 { wide_int_to_tree (type, mul); }))))
466
467 /* Optimize A / A to 1.0 if we don't care about
468 NaNs or Infinities. */
469 (simplify
470 (rdiv @0 @0)
471 (if (FLOAT_TYPE_P (type)
472 && ! HONOR_NANS (type)
473 && ! HONOR_INFINITIES (type))
474 { build_one_cst (type); }))
475
476 /* Optimize -A / A to -1.0 if we don't care about
477 NaNs or Infinities. */
478 (simplify
479 (rdiv:C @0 (negate @0))
480 (if (FLOAT_TYPE_P (type)
481 && ! HONOR_NANS (type)
482 && ! HONOR_INFINITIES (type))
483 { build_minus_one_cst (type); }))
484
485 /* PR71078: x / abs(x) -> copysign (1.0, x) */
486 (simplify
487 (rdiv:C (convert? @0) (convert? (abs @0)))
488 (if (SCALAR_FLOAT_TYPE_P (type)
489 && ! HONOR_NANS (type)
490 && ! HONOR_INFINITIES (type))
491 (switch
492 (if (types_match (type, float_type_node))
493 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
494 (if (types_match (type, double_type_node))
495 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
496 (if (types_match (type, long_double_type_node))
497 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
498
499 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
500 (simplify
501 (rdiv @0 real_onep)
502 (if (!tree_expr_maybe_signaling_nan_p (@0))
503 (non_lvalue @0)))
504
505 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
506 (simplify
507 (rdiv @0 real_minus_onep)
508 (if (!tree_expr_maybe_signaling_nan_p (@0))
509 (negate @0)))
510
511 (if (flag_reciprocal_math)
512 /* Convert (A/B)/C to A/(B*C). */
513 (simplify
514 (rdiv (rdiv:s @0 @1) @2)
515 (rdiv @0 (mult @1 @2)))
516
517 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
518 (simplify
519 (rdiv @0 (mult:s @1 REAL_CST@2))
520 (with
521 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
522 (if (tem)
523 (rdiv (mult @0 { tem; } ) @1))))
524
525 /* Convert A/(B/C) to (A/B)*C */
526 (simplify
527 (rdiv @0 (rdiv:s @1 @2))
528 (mult (rdiv @0 @1) @2)))
529
530 /* Simplify x / (- y) to -x / y. */
531 (simplify
532 (rdiv @0 (negate @1))
533 (rdiv (negate @0) @1))
534
535 (if (flag_unsafe_math_optimizations)
536 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
537 Since C / x may underflow to zero, do this only for unsafe math. */
538 (for op (lt le gt ge)
539 neg_op (gt ge lt le)
540 (simplify
541 (op (rdiv REAL_CST@0 @1) real_zerop@2)
542 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
543 (switch
544 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
545 (op @1 @2))
546 /* For C < 0, use the inverted operator. */
547 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
548 (neg_op @1 @2)))))))
549
550 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
551 (for div (trunc_div ceil_div floor_div round_div exact_div)
552 (simplify
553 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
554 (if (integer_pow2p (@2)
555 && tree_int_cst_sgn (@2) > 0
556 && tree_nop_conversion_p (type, TREE_TYPE (@0))
557 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
558 (rshift (convert @0)
559 { build_int_cst (integer_type_node,
560 wi::exact_log2 (wi::to_wide (@2))); }))))
561
562 /* If ARG1 is a constant, we can convert this to a multiply by the
563 reciprocal. This does not have the same rounding properties,
564 so only do this if -freciprocal-math. We can actually
565 always safely do it if ARG1 is a power of two, but it's hard to
566 tell if it is or not in a portable manner. */
567 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
568 (simplify
569 (rdiv @0 cst@1)
570 (if (optimize)
571 (if (flag_reciprocal_math
572 && !real_zerop (@1))
573 (with
574 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
575 (if (tem)
576 (mult @0 { tem; } )))
577 (if (cst != COMPLEX_CST)
578 (with { tree inverse = exact_inverse (type, @1); }
579 (if (inverse)
580 (mult @0 { inverse; } ))))))))
581
582 (for mod (ceil_mod floor_mod round_mod trunc_mod)
583 /* 0 % X is always zero. */
584 (simplify
585 (mod integer_zerop@0 @1)
586 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
587 (if (!integer_zerop (@1))
588 @0))
589 /* X % 1 is always zero. */
590 (simplify
591 (mod @0 integer_onep)
592 { build_zero_cst (type); })
593 /* X % -1 is zero. */
594 (simplify
595 (mod @0 integer_minus_onep@1)
596 (if (!TYPE_UNSIGNED (type))
597 { build_zero_cst (type); }))
598 /* X % X is zero. */
599 (simplify
600 (mod @0 @0)
601 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
602 (if (!integer_zerop (@0))
603 { build_zero_cst (type); }))
604 /* (X % Y) % Y is just X % Y. */
605 (simplify
606 (mod (mod@2 @0 @1) @1)
607 @2)
608 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
609 (simplify
610 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
611 (if (ANY_INTEGRAL_TYPE_P (type)
612 && TYPE_OVERFLOW_UNDEFINED (type)
613 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
614 TYPE_SIGN (type)))
615 { build_zero_cst (type); }))
616 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
617 modulo and comparison, since it is simpler and equivalent. */
618 (for cmp (eq ne)
619 (simplify
620 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
621 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
622 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
623 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
624
625 /* X % -C is the same as X % C. */
626 (simplify
627 (trunc_mod @0 INTEGER_CST@1)
628 (if (TYPE_SIGN (type) == SIGNED
629 && !TREE_OVERFLOW (@1)
630 && wi::neg_p (wi::to_wide (@1))
631 && !TYPE_OVERFLOW_TRAPS (type)
632 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
633 && !sign_bit_p (@1, @1))
634 (trunc_mod @0 (negate @1))))
635
636 /* X % -Y is the same as X % Y. */
637 (simplify
638 (trunc_mod @0 (convert? (negate @1)))
639 (if (INTEGRAL_TYPE_P (type)
640 && !TYPE_UNSIGNED (type)
641 && !TYPE_OVERFLOW_TRAPS (type)
642 && tree_nop_conversion_p (type, TREE_TYPE (@1))
643 /* Avoid this transformation if X might be INT_MIN or
644 Y might be -1, because we would then change valid
645 INT_MIN % -(-1) into invalid INT_MIN % -1. */
646 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
647 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
648 (TREE_TYPE (@1))))))
649 (trunc_mod @0 (convert @1))))
650
651 /* X - (X / Y) * Y is the same as X % Y. */
652 (simplify
653 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
654 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
655 (convert (trunc_mod @0 @1))))
656
657 /* x * (1 + y / x) - y -> x - y % x */
658 (simplify
659 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
660 (if (INTEGRAL_TYPE_P (type))
661 (minus @0 (trunc_mod @1 @0))))
662
663 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
664 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
665 Also optimize A % (C << N) where C is a power of 2,
666 to A & ((C << N) - 1).
667 Also optimize "A shift (B % C)", if C is a power of 2, to
668 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
669 and assume (B % C) is nonnegative as shifts negative values would
670 be UB. */
671 (match (power_of_two_cand @1)
672 INTEGER_CST@1)
673 (match (power_of_two_cand @1)
674 (lshift INTEGER_CST@1 @2))
675 (for mod (trunc_mod floor_mod)
676 (for shift (lshift rshift)
677 (simplify
678 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
679 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
680 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
681 1); }))))))
682 (simplify
683 (mod @0 (convert? (power_of_two_cand@1 @2)))
684 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
685 /* Allow any integral conversions of the divisor, except
686 conversion from narrower signed to wider unsigned type
687 where if @1 would be negative power of two, the divisor
688 would not be a power of two. */
689 && INTEGRAL_TYPE_P (type)
690 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
691 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
692 || TYPE_UNSIGNED (TREE_TYPE (@1))
693 || !TYPE_UNSIGNED (type))
694 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
695 (with { tree utype = TREE_TYPE (@1);
696 if (!TYPE_OVERFLOW_WRAPS (utype))
697 utype = unsigned_type_for (utype); }
698 (bit_and @0 (convert (minus (convert:utype @1)
699 { build_one_cst (utype); })))))))
700
701 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
702 (simplify
703 (trunc_div (mult @0 integer_pow2p@1) @1)
704 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
705 (bit_and @0 { wide_int_to_tree
706 (type, wi::mask (TYPE_PRECISION (type)
707 - wi::exact_log2 (wi::to_wide (@1)),
708 false, TYPE_PRECISION (type))); })))
709
710 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
711 (simplify
712 (mult (trunc_div @0 integer_pow2p@1) @1)
713 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
714 (bit_and @0 (negate @1))))
715
716 /* Simplify (t * 2) / 2) -> t. */
717 (for div (trunc_div ceil_div floor_div round_div exact_div)
718 (simplify
719 (div (mult:c @0 @1) @1)
720 (if (ANY_INTEGRAL_TYPE_P (type))
721 (if (TYPE_OVERFLOW_UNDEFINED (type))
722 @0
723 #if GIMPLE
724 (with
725 {
726 bool overflowed = true;
727 value_range vr0, vr1;
728 if (INTEGRAL_TYPE_P (type)
729 && get_global_range_query ()->range_of_expr (vr0, @0)
730 && get_global_range_query ()->range_of_expr (vr1, @1)
731 && vr0.kind () == VR_RANGE
732 && vr1.kind () == VR_RANGE)
733 {
734 wide_int wmin0 = vr0.lower_bound ();
735 wide_int wmax0 = vr0.upper_bound ();
736 wide_int wmin1 = vr1.lower_bound ();
737 wide_int wmax1 = vr1.upper_bound ();
738 /* If the multiplication can't overflow/wrap around, then
739 it can be optimized too. */
740 wi::overflow_type min_ovf, max_ovf;
741 wi::mul (wmin0, wmin1, TYPE_SIGN (type), &min_ovf);
742 wi::mul (wmax0, wmax1, TYPE_SIGN (type), &max_ovf);
743 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
744 {
745 wi::mul (wmin0, wmax1, TYPE_SIGN (type), &min_ovf);
746 wi::mul (wmax0, wmin1, TYPE_SIGN (type), &max_ovf);
747 if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
748 overflowed = false;
749 }
750 }
751 }
752 (if (!overflowed)
753 @0))
754 #endif
755 ))))
756
757 (for op (negate abs)
758 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
759 (for coss (COS COSH)
760 (simplify
761 (coss (op @0))
762 (coss @0)))
763 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
764 (for pows (POW)
765 (simplify
766 (pows (op @0) REAL_CST@1)
767 (with { HOST_WIDE_INT n; }
768 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
769 (pows @0 @1)))))
770 /* Likewise for powi. */
771 (for pows (POWI)
772 (simplify
773 (pows (op @0) INTEGER_CST@1)
774 (if ((wi::to_wide (@1) & 1) == 0)
775 (pows @0 @1))))
776 /* Strip negate and abs from both operands of hypot. */
777 (for hypots (HYPOT)
778 (simplify
779 (hypots (op @0) @1)
780 (hypots @0 @1))
781 (simplify
782 (hypots @0 (op @1))
783 (hypots @0 @1)))
784 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
785 (for copysigns (COPYSIGN_ALL)
786 (simplify
787 (copysigns (op @0) @1)
788 (copysigns @0 @1))))
789
790 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
791 (simplify
792 (mult (abs@1 @0) @1)
793 (mult @0 @0))
794
795 /* Convert absu(x)*absu(x) -> x*x. */
796 (simplify
797 (mult (absu@1 @0) @1)
798 (mult (convert@2 @0) @2))
799
800 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
801 (for coss (COS COSH)
802 copysigns (COPYSIGN)
803 (simplify
804 (coss (copysigns @0 @1))
805 (coss @0)))
806
807 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
808 (for pows (POW)
809 copysigns (COPYSIGN)
810 (simplify
811 (pows (copysigns @0 @2) REAL_CST@1)
812 (with { HOST_WIDE_INT n; }
813 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
814 (pows @0 @1)))))
815 /* Likewise for powi. */
816 (for pows (POWI)
817 copysigns (COPYSIGN)
818 (simplify
819 (pows (copysigns @0 @2) INTEGER_CST@1)
820 (if ((wi::to_wide (@1) & 1) == 0)
821 (pows @0 @1))))
822
823 (for hypots (HYPOT)
824 copysigns (COPYSIGN)
825 /* hypot(copysign(x, y), z) -> hypot(x, z). */
826 (simplify
827 (hypots (copysigns @0 @1) @2)
828 (hypots @0 @2))
829 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
830 (simplify
831 (hypots @0 (copysigns @1 @2))
832 (hypots @0 @1)))
833
834 /* copysign(x, CST) -> [-]abs (x). */
835 (for copysigns (COPYSIGN_ALL)
836 (simplify
837 (copysigns @0 REAL_CST@1)
838 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
839 (negate (abs @0))
840 (abs @0))))
841
842 /* copysign(copysign(x, y), z) -> copysign(x, z). */
843 (for copysigns (COPYSIGN_ALL)
844 (simplify
845 (copysigns (copysigns @0 @1) @2)
846 (copysigns @0 @2)))
847
848 /* copysign(x,y)*copysign(x,y) -> x*x. */
849 (for copysigns (COPYSIGN_ALL)
850 (simplify
851 (mult (copysigns@2 @0 @1) @2)
852 (mult @0 @0)))
853
854 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
855 (for ccoss (CCOS CCOSH)
856 (simplify
857 (ccoss (negate @0))
858 (ccoss @0)))
859
860 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
861 (for ops (conj negate)
862 (for cabss (CABS)
863 (simplify
864 (cabss (ops @0))
865 (cabss @0))))
866
867 /* Fold (a * (1 << b)) into (a << b) */
868 (simplify
869 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
870 (if (! FLOAT_TYPE_P (type)
871 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
872 (lshift @0 @2)))
873
874 /* Fold (1 << (C - x)) where C = precision(type) - 1
875 into ((1 << C) >> x). */
876 (simplify
877 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
878 (if (INTEGRAL_TYPE_P (type)
879 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
880 && single_use (@1))
881 (if (TYPE_UNSIGNED (type))
882 (rshift (lshift @0 @2) @3)
883 (with
884 { tree utype = unsigned_type_for (type); }
885 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
886
887 /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
888 (simplify
889 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
890 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
891 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
892 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
893 (bit_and (convert @0)
894 { wide_int_to_tree (type,
895 wi::lshift (wone, wi::to_wide (@2))); }))))
896
897 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
898 (for cst (INTEGER_CST VECTOR_CST)
899 (simplify
900 (rshift (negate:s @0) cst@1)
901 (if (!TYPE_UNSIGNED (type)
902 && TYPE_OVERFLOW_UNDEFINED (type))
903 (with { tree stype = TREE_TYPE (@1);
904 tree bt = truth_type_for (type);
905 tree zeros = build_zero_cst (type);
906 tree cst = NULL_TREE; }
907 (switch
908 /* Handle scalar case. */
909 (if (INTEGRAL_TYPE_P (type)
910 /* If we apply the rule to the scalar type before vectorization
911 we will enforce the result of the comparison being a bool
912 which will require an extra AND on the result that will be
913 indistinguishable from when the user did actually want 0
914 or 1 as the result so it can't be removed. */
915 && canonicalize_math_after_vectorization_p ()
916 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
917 (negate (convert (gt @0 { zeros; }))))
918 /* Handle vector case. */
919 (if (VECTOR_INTEGER_TYPE_P (type)
920 /* First check whether the target has the same mode for vector
921 comparison results as it's operands do. */
922 && TYPE_MODE (bt) == TYPE_MODE (type)
923 /* Then check to see if the target is able to expand the comparison
924 with the given type later on, otherwise we may ICE. */
925 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
926 && (cst = uniform_integer_cst_p (@1)) != NULL
927 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
928 (view_convert (gt:bt @0 { zeros; }))))))))
929
930 /* Fold (C1/X)*C2 into (C1*C2)/X. */
931 (simplify
932 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
933 (if (flag_associative_math
934 && single_use (@3))
935 (with
936 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
937 (if (tem)
938 (rdiv { tem; } @1)))))
939
940 /* Simplify ~X & X as zero. */
941 (simplify
942 (bit_and:c (convert? @0) (convert? (bit_not @0)))
943 { build_zero_cst (type); })
944
945 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
946 (simplify
947 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
948 (if (TYPE_UNSIGNED (type))
949 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
950
951 (for bitop (bit_and bit_ior)
952 cmp (eq ne)
953 /* PR35691: Transform
954 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
955 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
956 (simplify
957 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
958 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
959 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
960 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
961 (cmp (bit_ior @0 (convert @1)) @2)))
962 /* Transform:
963 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
964 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
965 (simplify
966 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
967 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
968 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
969 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
970 (cmp (bit_and @0 (convert @1)) @2))))
971
972 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
973 (simplify
974 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
975 (minus (bit_xor @0 @1) @1))
976 (simplify
977 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
978 (if (~wi::to_wide (@2) == wi::to_wide (@1))
979 (minus (bit_xor @0 @1) @1)))
980
981 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
982 (simplify
983 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
984 (minus @1 (bit_xor @0 @1)))
985
986 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
987 (for op (bit_ior bit_xor plus)
988 (simplify
989 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
990 (bit_xor @0 @1))
991 (simplify
992 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
993 (if (~wi::to_wide (@2) == wi::to_wide (@1))
994 (bit_xor @0 @1))))
995
996 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
997 (simplify
998 (bit_ior:c (bit_xor:c @0 @1) @0)
999 (bit_ior @0 @1))
1000
1001 /* (a & ~b) | (a ^ b) --> a ^ b */
1002 (simplify
1003 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1004 @2)
1005
1006 /* (a & ~b) ^ ~a --> ~(a & b) */
1007 (simplify
1008 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1009 (bit_not (bit_and @0 @1)))
1010
1011 /* (~a & b) ^ a --> (a | b) */
1012 (simplify
1013 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1014 (bit_ior @0 @1))
1015
1016 /* (a | b) & ~(a ^ b) --> a & b */
1017 (simplify
1018 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1019 (bit_and @0 @1))
1020
1021 /* a | ~(a ^ b) --> a | ~b */
1022 (simplify
1023 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1024 (bit_ior @0 (bit_not @1)))
1025
1026 /* (a | b) | (a &^ b) --> a | b */
1027 (for op (bit_and bit_xor)
1028 (simplify
1029 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1030 @2))
1031
1032 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1033 (simplify
1034 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1035 @2)
1036
1037 /* ~(~a & b) --> a | ~b */
1038 (simplify
1039 (bit_not (bit_and:cs (bit_not @0) @1))
1040 (bit_ior @0 (bit_not @1)))
1041
1042 /* ~(~a | b) --> a & ~b */
1043 (simplify
1044 (bit_not (bit_ior:cs (bit_not @0) @1))
1045 (bit_and @0 (bit_not @1)))
1046
1047 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1048 (simplify
1049 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1050 (bit_and @3 (bit_not @2)))
1051
1052 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1053 (simplify
1054 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1055 (bit_ior @3 @2))
1056
1057 #if GIMPLE
1058 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1059 (simplify
1060 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1061 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1062
1063 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1064 (simplify
1065 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1066 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1067
1068 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1069 (simplify
1070 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1071 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1072 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1073 (bit_xor @0 @1)))
1074 #endif
1075
1076 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1077 ((A & N) + B) & M -> (A + B) & M
1078 Similarly if (N & M) == 0,
1079 ((A | N) + B) & M -> (A + B) & M
1080 and for - instead of + (or unary - instead of +)
1081 and/or ^ instead of |.
1082 If B is constant and (B & M) == 0, fold into A & M. */
1083 (for op (plus minus)
1084 (for bitop (bit_and bit_ior bit_xor)
1085 (simplify
1086 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1087 (with
1088 { tree pmop[2];
1089 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1090 @3, @4, @1, ERROR_MARK, NULL_TREE,
1091 NULL_TREE, pmop); }
1092 (if (utype)
1093 (convert (bit_and (op (convert:utype { pmop[0]; })
1094 (convert:utype { pmop[1]; }))
1095 (convert:utype @2))))))
1096 (simplify
1097 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1098 (with
1099 { tree pmop[2];
1100 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1101 NULL_TREE, NULL_TREE, @1, bitop, @3,
1102 @4, pmop); }
1103 (if (utype)
1104 (convert (bit_and (op (convert:utype { pmop[0]; })
1105 (convert:utype { pmop[1]; }))
1106 (convert:utype @2)))))))
1107 (simplify
1108 (bit_and (op:s @0 @1) INTEGER_CST@2)
1109 (with
1110 { tree pmop[2];
1111 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1112 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1113 NULL_TREE, NULL_TREE, pmop); }
1114 (if (utype)
1115 (convert (bit_and (op (convert:utype { pmop[0]; })
1116 (convert:utype { pmop[1]; }))
1117 (convert:utype @2)))))))
1118 (for bitop (bit_and bit_ior bit_xor)
1119 (simplify
1120 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1121 (with
1122 { tree pmop[2];
1123 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1124 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1125 NULL_TREE, NULL_TREE, pmop); }
1126 (if (utype)
1127 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1128 (convert:utype @1)))))))
1129
1130 /* X % Y is smaller than Y. */
1131 (for cmp (lt ge)
1132 (simplify
1133 (cmp (trunc_mod @0 @1) @1)
1134 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1135 { constant_boolean_node (cmp == LT_EXPR, type); })))
1136 (for cmp (gt le)
1137 (simplify
1138 (cmp @1 (trunc_mod @0 @1))
1139 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1140 { constant_boolean_node (cmp == GT_EXPR, type); })))
1141
1142 /* x | ~0 -> ~0 */
1143 (simplify
1144 (bit_ior @0 integer_all_onesp@1)
1145 @1)
1146
1147 /* x | 0 -> x */
1148 (simplify
1149 (bit_ior @0 integer_zerop)
1150 @0)
1151
1152 /* x & 0 -> 0 */
1153 (simplify
1154 (bit_and @0 integer_zerop@1)
1155 @1)
1156
1157 /* ~x | x -> -1 */
1158 /* ~x ^ x -> -1 */
1159 /* ~x + x -> -1 */
1160 (for op (bit_ior bit_xor plus)
1161 (simplify
1162 (op:c (convert? @0) (convert? (bit_not @0)))
1163 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
1164
1165 /* x ^ x -> 0 */
1166 (simplify
1167 (bit_xor @0 @0)
1168 { build_zero_cst (type); })
1169
1170 /* Canonicalize X ^ ~0 to ~X. */
1171 (simplify
1172 (bit_xor @0 integer_all_onesp@1)
1173 (bit_not @0))
1174
1175 /* x & ~0 -> x */
1176 (simplify
1177 (bit_and @0 integer_all_onesp)
1178 (non_lvalue @0))
1179
1180 /* x & x -> x, x | x -> x */
1181 (for bitop (bit_and bit_ior)
1182 (simplify
1183 (bitop @0 @0)
1184 (non_lvalue @0)))
1185
1186 /* x & C -> x if we know that x & ~C == 0. */
1187 #if GIMPLE
1188 (simplify
1189 (bit_and SSA_NAME@0 INTEGER_CST@1)
1190 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1191 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1192 @0))
1193 #endif
1194
1195 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1196 (simplify
1197 (bit_not (minus (bit_not @0) @1))
1198 (plus @0 @1))
1199 (simplify
1200 (bit_not (plus:c (bit_not @0) @1))
1201 (minus @0 @1))
1202
1203 /* ~(X - Y) -> ~X + Y. */
1204 (simplify
1205 (bit_not (minus:s @0 @1))
1206 (plus (bit_not @0) @1))
1207 (simplify
1208 (bit_not (plus:s @0 INTEGER_CST@1))
1209 (if ((INTEGRAL_TYPE_P (type)
1210 && TYPE_UNSIGNED (type))
1211 || (!TYPE_OVERFLOW_SANITIZED (type)
1212 && may_negate_without_overflow_p (@1)))
1213 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1214
1215 #if GIMPLE
1216 /* ~X + Y -> (Y - X) - 1. */
1217 (simplify
1218 (plus:c (bit_not @0) @1)
1219 (if (ANY_INTEGRAL_TYPE_P (type)
1220 && TYPE_OVERFLOW_WRAPS (type)
1221 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1222 && !integer_all_onesp (@1))
1223 (plus (minus @1 @0) { build_minus_one_cst (type); })
1224 (if (INTEGRAL_TYPE_P (type)
1225 && TREE_CODE (@1) == INTEGER_CST
1226 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1227 SIGNED))
1228 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1229
1230 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1231 (simplify
1232 (bit_not (rshift:s @0 @1))
1233 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1234 (rshift (bit_not! @0) @1)
1235 /* For logical right shifts, this is possible only if @0 doesn't
1236 have MSB set and the logical right shift is changed into
1237 arithmetic shift. */
1238 (if (!wi::neg_p (tree_nonzero_bits (@0)))
1239 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1240 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1241 #endif
1242
1243 /* x + (x & 1) -> (x + 1) & ~1 */
1244 (simplify
1245 (plus:c @0 (bit_and:s @0 integer_onep@1))
1246 (bit_and (plus @0 @1) (bit_not @1)))
1247
1248 /* x & ~(x & y) -> x & ~y */
1249 /* x | ~(x | y) -> x | ~y */
1250 (for bitop (bit_and bit_ior)
1251 (simplify
1252 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1253 (bitop @0 (bit_not @1))))
1254
1255 /* (~x & y) | ~(x | y) -> ~x */
1256 (simplify
1257 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1258 @2)
1259
1260 /* (x | y) ^ (x | ~y) -> ~x */
1261 (simplify
1262 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1263 (bit_not @0))
1264
1265 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1266 (simplify
1267 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1268 (bit_not (bit_xor @0 @1)))
1269
1270 /* (~x | y) ^ (x ^ y) -> x | ~y */
1271 (simplify
1272 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1273 (bit_ior @0 (bit_not @1)))
1274
1275 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1276 (simplify
1277 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1278 (bit_not (bit_and @0 @1)))
1279
1280 /* (x | y) & ~x -> y & ~x */
1281 /* (x & y) | ~x -> y | ~x */
1282 (for bitop (bit_and bit_ior)
1283 rbitop (bit_ior bit_and)
1284 (simplify
1285 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1286 (bitop @1 @2)))
1287
1288 /* (x & y) ^ (x | y) -> x ^ y */
1289 (simplify
1290 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1291 (bit_xor @0 @1))
1292
1293 /* (x ^ y) ^ (x | y) -> x & y */
1294 (simplify
1295 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1296 (bit_and @0 @1))
1297
1298 /* (x & y) + (x ^ y) -> x | y */
1299 /* (x & y) | (x ^ y) -> x | y */
1300 /* (x & y) ^ (x ^ y) -> x | y */
1301 (for op (plus bit_ior bit_xor)
1302 (simplify
1303 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1304 (bit_ior @0 @1)))
1305
1306 /* (x & y) + (x | y) -> x + y */
1307 (simplify
1308 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1309 (plus @0 @1))
1310
1311 /* (x + y) - (x | y) -> x & y */
1312 (simplify
1313 (minus (plus @0 @1) (bit_ior @0 @1))
1314 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1315 && !TYPE_SATURATING (type))
1316 (bit_and @0 @1)))
1317
1318 /* (x + y) - (x & y) -> x | y */
1319 (simplify
1320 (minus (plus @0 @1) (bit_and @0 @1))
1321 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1322 && !TYPE_SATURATING (type))
1323 (bit_ior @0 @1)))
1324
1325 /* (x | y) - y -> (x & ~y) */
1326 (simplify
1327 (minus (bit_ior:cs @0 @1) @1)
1328 (bit_and @0 (bit_not @1)))
1329
1330 /* (x | y) - (x ^ y) -> x & y */
1331 (simplify
1332 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1333 (bit_and @0 @1))
1334
1335 /* (x | y) - (x & y) -> x ^ y */
1336 (simplify
1337 (minus (bit_ior @0 @1) (bit_and @0 @1))
1338 (bit_xor @0 @1))
1339
1340 /* (x | y) & ~(x & y) -> x ^ y */
1341 (simplify
1342 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1343 (bit_xor @0 @1))
1344
1345 /* (x | y) & (~x ^ y) -> x & y */
1346 (simplify
1347 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1348 (bit_and @0 @1))
1349
1350 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1351 (simplify
1352 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1353 (bit_not (bit_xor @0 @1)))
1354
1355 /* (~x | y) ^ (x | ~y) -> x ^ y */
1356 (simplify
1357 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1358 (bit_xor @0 @1))
1359
1360 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1361 (simplify
1362 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1363 (nop_convert2? (bit_ior @0 @1))))
1364 integer_all_onesp)
1365 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1366 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1367 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1368 && !TYPE_SATURATING (TREE_TYPE (@2)))
1369 (bit_not (convert (bit_xor @0 @1)))))
1370 (simplify
1371 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1372 integer_all_onesp))
1373 (nop_convert3? (bit_ior @0 @1)))
1374 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1375 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1376 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1377 && !TYPE_SATURATING (TREE_TYPE (@2)))
1378 (bit_not (convert (bit_xor @0 @1)))))
1379 (simplify
1380 (minus (nop_convert1? (bit_and @0 @1))
1381 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1382 integer_onep)))
1383 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1384 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1385 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1386 && !TYPE_SATURATING (TREE_TYPE (@2)))
1387 (bit_not (convert (bit_xor @0 @1)))))
1388
1389 /* ~x & ~y -> ~(x | y)
1390 ~x | ~y -> ~(x & y) */
1391 (for op (bit_and bit_ior)
1392 rop (bit_ior bit_and)
1393 (simplify
1394 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1395 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1396 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1397 (bit_not (rop (convert @0) (convert @1))))))
1398
1399 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1400 with a constant, and the two constants have no bits in common,
1401 we should treat this as a BIT_IOR_EXPR since this may produce more
1402 simplifications. */
1403 (for op (bit_xor plus)
1404 (simplify
1405 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1406 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1407 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1408 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1409 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1410 (bit_ior (convert @4) (convert @5)))))
1411
1412 /* (X | Y) ^ X -> Y & ~ X*/
1413 (simplify
1414 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1415 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1416 (convert (bit_and @1 (bit_not @0)))))
1417
1418 /* Convert ~X ^ ~Y to X ^ Y. */
1419 (simplify
1420 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1421 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1422 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1423 (bit_xor (convert @0) (convert @1))))
1424
1425 /* Convert ~X ^ C to X ^ ~C. */
1426 (simplify
1427 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1428 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1429 (bit_xor (convert @0) (bit_not @1))))
1430
1431 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1432 (for opo (bit_and bit_xor)
1433 opi (bit_xor bit_and)
1434 (simplify
1435 (opo:c (opi:cs @0 @1) @1)
1436 (bit_and (bit_not @0) @1)))
1437
1438 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1439 operands are another bit-wise operation with a common input. If so,
1440 distribute the bit operations to save an operation and possibly two if
1441 constants are involved. For example, convert
1442 (A | B) & (A | C) into A | (B & C)
1443 Further simplification will occur if B and C are constants. */
1444 (for op (bit_and bit_ior bit_xor)
1445 rop (bit_ior bit_and bit_and)
1446 (simplify
1447 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1448 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1449 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1450 (rop (convert @0) (op (convert @1) (convert @2))))))
1451
1452 /* Some simple reassociation for bit operations, also handled in reassoc. */
1453 /* (X & Y) & Y -> X & Y
1454 (X | Y) | Y -> X | Y */
1455 (for op (bit_and bit_ior)
1456 (simplify
1457 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1458 @2))
1459 /* (X ^ Y) ^ Y -> X */
1460 (simplify
1461 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1462 (convert @0))
1463 /* (X & Y) & (X & Z) -> (X & Y) & Z
1464 (X | Y) | (X | Z) -> (X | Y) | Z */
1465 (for op (bit_and bit_ior)
1466 (simplify
1467 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1468 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1469 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1470 (if (single_use (@5) && single_use (@6))
1471 (op @3 (convert @2))
1472 (if (single_use (@3) && single_use (@4))
1473 (op (convert @1) @5))))))
1474 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1475 (simplify
1476 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1477 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1478 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1479 (bit_xor (convert @1) (convert @2))))
1480
1481 /* Convert abs (abs (X)) into abs (X).
1482 also absu (absu (X)) into absu (X). */
1483 (simplify
1484 (abs (abs@1 @0))
1485 @1)
1486
1487 (simplify
1488 (absu (convert@2 (absu@1 @0)))
1489 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1490 @1))
1491
1492 /* Convert abs[u] (-X) -> abs[u] (X). */
1493 (simplify
1494 (abs (negate @0))
1495 (abs @0))
1496
1497 (simplify
1498 (absu (negate @0))
1499 (absu @0))
1500
1501 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1502 (simplify
1503 (abs tree_expr_nonnegative_p@0)
1504 @0)
1505
1506 (simplify
1507 (absu tree_expr_nonnegative_p@0)
1508 (convert @0))
1509
1510 /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
1511 (simplify
1512 (mult:c (nop_convert1?
1513 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1514 integer_onep))
1515 (nop_convert3? @0))
1516 (if (INTEGRAL_TYPE_P (type)
1517 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1518 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1519 (if (TYPE_UNSIGNED (type))
1520 (absu @0)
1521 (abs @0)
1522 )
1523 )
1524 )
1525
1526 /* A few cases of fold-const.c negate_expr_p predicate. */
1527 (match negate_expr_p
1528 INTEGER_CST
1529 (if ((INTEGRAL_TYPE_P (type)
1530 && TYPE_UNSIGNED (type))
1531 || (!TYPE_OVERFLOW_SANITIZED (type)
1532 && may_negate_without_overflow_p (t)))))
1533 (match negate_expr_p
1534 FIXED_CST)
1535 (match negate_expr_p
1536 (negate @0)
1537 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1538 (match negate_expr_p
1539 REAL_CST
1540 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1541 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1542 ways. */
1543 (match negate_expr_p
1544 VECTOR_CST
1545 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1546 (match negate_expr_p
1547 (minus @0 @1)
1548 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1549 || (FLOAT_TYPE_P (type)
1550 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1551 && !HONOR_SIGNED_ZEROS (type)))))
1552
1553 /* (-A) * (-B) -> A * B */
1554 (simplify
1555 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1556 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1557 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1558 (mult (convert @0) (convert (negate @1)))))
1559
1560 /* -(A + B) -> (-B) - A. */
1561 (simplify
1562 (negate (plus:c @0 negate_expr_p@1))
1563 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1564 && !HONOR_SIGNED_ZEROS (type))
1565 (minus (negate @1) @0)))
1566
1567 /* -(A - B) -> B - A. */
1568 (simplify
1569 (negate (minus @0 @1))
1570 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1571 || (FLOAT_TYPE_P (type)
1572 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1573 && !HONOR_SIGNED_ZEROS (type)))
1574 (minus @1 @0)))
1575 (simplify
1576 (negate (pointer_diff @0 @1))
1577 (if (TYPE_OVERFLOW_UNDEFINED (type))
1578 (pointer_diff @1 @0)))
1579
1580 /* A - B -> A + (-B) if B is easily negatable. */
1581 (simplify
1582 (minus @0 negate_expr_p@1)
1583 (if (!FIXED_POINT_TYPE_P (type))
1584 (plus @0 (negate @1))))
1585
1586 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
1587 (simplify
1588 (negate (mult:c@0 @1 negate_expr_p@2))
1589 (if (! TYPE_UNSIGNED (type)
1590 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1591 && single_use (@0))
1592 (mult @1 (negate @2))))
1593
1594 (simplify
1595 (negate (rdiv@0 @1 negate_expr_p@2))
1596 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1597 && single_use (@0))
1598 (rdiv @1 (negate @2))))
1599
1600 (simplify
1601 (negate (rdiv@0 negate_expr_p@1 @2))
1602 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
1603 && single_use (@0))
1604 (rdiv (negate @1) @2)))
1605
1606 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
1607 (simplify
1608 (negate (convert? (rshift @0 INTEGER_CST@1)))
1609 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1610 && wi::to_wide (@1) == element_precision (type) - 1)
1611 (with { tree stype = TREE_TYPE (@0);
1612 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
1613 : unsigned_type_for (stype); }
1614 (if (VECTOR_TYPE_P (type))
1615 (view_convert (rshift (view_convert:ntype @0) @1))
1616 (convert (rshift (convert:ntype @0) @1))))))
1617
1618 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1619 when profitable.
1620 For bitwise binary operations apply operand conversions to the
1621 binary operation result instead of to the operands. This allows
1622 to combine successive conversions and bitwise binary operations.
1623 We combine the above two cases by using a conditional convert. */
1624 (for bitop (bit_and bit_ior bit_xor)
1625 (simplify
1626 (bitop (convert@2 @0) (convert?@3 @1))
1627 (if (((TREE_CODE (@1) == INTEGER_CST
1628 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1629 && (int_fits_type_p (@1, TREE_TYPE (@0))
1630 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
1631 || types_match (@0, @1))
1632 /* ??? This transform conflicts with fold-const.c doing
1633 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1634 constants (if x has signed type, the sign bit cannot be set
1635 in c). This folds extension into the BIT_AND_EXPR.
1636 Restrict it to GIMPLE to avoid endless recursions. */
1637 && (bitop != BIT_AND_EXPR || GIMPLE)
1638 && (/* That's a good idea if the conversion widens the operand, thus
1639 after hoisting the conversion the operation will be narrower.
1640 It is also a good if the conversion is a nop as moves the
1641 conversion to one side; allowing for combining of the conversions. */
1642 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1643 /* The conversion check for being a nop can only be done at the gimple
1644 level as fold_binary has some re-association code which can conflict
1645 with this if there is a "constant" which is not a full INTEGER_CST. */
1646 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
1647 /* It's also a good idea if the conversion is to a non-integer
1648 mode. */
1649 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1650 /* Or if the precision of TO is not the same as the precision
1651 of its mode. */
1652 || !type_has_mode_precision_p (type)
1653 /* In GIMPLE, getting rid of 2 conversions for one new results
1654 in smaller IL. */
1655 || (GIMPLE
1656 && TREE_CODE (@1) != INTEGER_CST
1657 && tree_nop_conversion_p (type, TREE_TYPE (@0))
1658 && single_use (@2)
1659 && single_use (@3))))
1660 (convert (bitop @0 (convert @1)))))
1661 /* In GIMPLE, getting rid of 2 conversions for one new results
1662 in smaller IL. */
1663 (simplify
1664 (convert (bitop:cs@2 (nop_convert:s @0) @1))
1665 (if (GIMPLE
1666 && TREE_CODE (@1) != INTEGER_CST
1667 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1668 && types_match (type, @0))
1669 (bitop @0 (convert @1)))))
1670
1671 (for bitop (bit_and bit_ior)
1672 rbitop (bit_ior bit_and)
1673 /* (x | y) & x -> x */
1674 /* (x & y) | x -> x */
1675 (simplify
1676 (bitop:c (rbitop:c @0 @1) @0)
1677 @0)
1678 /* (~x | y) & x -> x & y */
1679 /* (~x & y) | x -> x | y */
1680 (simplify
1681 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1682 (bitop @0 @1)))
1683
1684 /* ((x | y) & z) | x -> (z & y) | x */
1685 (simplify
1686 (bit_ior:c (bit_and:cs (bit_ior:cs @0 @1) @2) @0)
1687 (bit_ior (bit_and @2 @1) @0))
1688
1689 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1690 (simplify
1691 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1692 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1693
1694 /* Combine successive equal operations with constants. */
1695 (for bitop (bit_and bit_ior bit_xor)
1696 (simplify
1697 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1698 (if (!CONSTANT_CLASS_P (@0))
1699 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1700 folded to a constant. */
1701 (bitop @0 (bitop @1 @2))
1702 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1703 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1704 the values involved are such that the operation can't be decided at
1705 compile time. Try folding one of @0 or @1 with @2 to see whether
1706 that combination can be decided at compile time.
1707
1708 Keep the existing form if both folds fail, to avoid endless
1709 oscillation. */
1710 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1711 (if (cst1)
1712 (bitop @1 { cst1; })
1713 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1714 (if (cst2)
1715 (bitop @0 { cst2; }))))))))
1716
1717 /* Try simple folding for X op !X, and X op X with the help
1718 of the truth_valued_p and logical_inverted_value predicates. */
1719 (match truth_valued_p
1720 @0
1721 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1722 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1723 (match truth_valued_p
1724 (op @0 @1)))
1725 (match truth_valued_p
1726 (truth_not @0))
1727
1728 (match (logical_inverted_value @0)
1729 (truth_not @0))
1730 (match (logical_inverted_value @0)
1731 (bit_not truth_valued_p@0))
1732 (match (logical_inverted_value @0)
1733 (eq @0 integer_zerop))
1734 (match (logical_inverted_value @0)
1735 (ne truth_valued_p@0 integer_truep))
1736 (match (logical_inverted_value @0)
1737 (bit_xor truth_valued_p@0 integer_truep))
1738
1739 /* X & !X -> 0. */
1740 (simplify
1741 (bit_and:c @0 (logical_inverted_value @0))
1742 { build_zero_cst (type); })
1743 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1744 (for op (bit_ior bit_xor)
1745 (simplify
1746 (op:c truth_valued_p@0 (logical_inverted_value @0))
1747 { constant_boolean_node (true, type); }))
1748 /* X ==/!= !X is false/true. */
1749 (for op (eq ne)
1750 (simplify
1751 (op:c truth_valued_p@0 (logical_inverted_value @0))
1752 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1753
1754 /* ~~x -> x */
1755 (simplify
1756 (bit_not (bit_not @0))
1757 @0)
1758
1759 /* Convert ~ (-A) to A - 1. */
1760 (simplify
1761 (bit_not (convert? (negate @0)))
1762 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1763 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1764 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1765
1766 /* Convert - (~A) to A + 1. */
1767 (simplify
1768 (negate (nop_convert? (bit_not @0)))
1769 (plus (view_convert @0) { build_each_one_cst (type); }))
1770
1771 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1772 (simplify
1773 (bit_not (convert? (minus @0 integer_each_onep)))
1774 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1775 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1776 (convert (negate @0))))
1777 (simplify
1778 (bit_not (convert? (plus @0 integer_all_onesp)))
1779 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1780 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1781 (convert (negate @0))))
1782
1783 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1784 (simplify
1785 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1786 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1787 (convert (bit_xor @0 (bit_not @1)))))
1788 (simplify
1789 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1790 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1791 (convert (bit_xor @0 @1))))
1792
1793 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1794 (simplify
1795 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
1796 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1797 (bit_not (bit_xor (view_convert @0) @1))))
1798
1799 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1800 (simplify
1801 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1802 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1803
1804 /* Fold A - (A & B) into ~B & A. */
1805 (simplify
1806 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1807 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1808 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1809 (convert (bit_and (bit_not @1) @0))))
1810
1811 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1812 (if (!canonicalize_math_p ())
1813 (for cmp (gt lt ge le)
1814 (simplify
1815 (mult (convert (cmp @0 @1)) @2)
1816 (cond (cmp @0 @1) @2 { build_zero_cst (type); }))))
1817
1818 /* For integral types with undefined overflow and C != 0 fold
1819 x * C EQ/NE y * C into x EQ/NE y. */
1820 (for cmp (eq ne)
1821 (simplify
1822 (cmp (mult:c @0 @1) (mult:c @2 @1))
1823 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1824 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1825 && tree_expr_nonzero_p (@1))
1826 (cmp @0 @2))))
1827
1828 /* For integral types with wrapping overflow and C odd fold
1829 x * C EQ/NE y * C into x EQ/NE y. */
1830 (for cmp (eq ne)
1831 (simplify
1832 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1833 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1834 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1835 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1836 (cmp @0 @2))))
1837
1838 /* For integral types with undefined overflow and C != 0 fold
1839 x * C RELOP y * C into:
1840
1841 x RELOP y for nonnegative C
1842 y RELOP x for negative C */
1843 (for cmp (lt gt le ge)
1844 (simplify
1845 (cmp (mult:c @0 @1) (mult:c @2 @1))
1846 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1847 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1848 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1849 (cmp @0 @2)
1850 (if (TREE_CODE (@1) == INTEGER_CST
1851 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1852 (cmp @2 @0))))))
1853
1854 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1855 (for cmp (le gt)
1856 icmp (gt le)
1857 (simplify
1858 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1859 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1860 && TYPE_UNSIGNED (TREE_TYPE (@0))
1861 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1862 && (wi::to_wide (@2)
1863 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1864 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1865 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1866
1867 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1868 (for cmp (simple_comparison)
1869 (simplify
1870 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1871 (if (element_precision (@3) >= element_precision (@0)
1872 && types_match (@0, @1))
1873 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1874 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1875 (cmp @1 @0)
1876 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1877 (with
1878 {
1879 tree utype = unsigned_type_for (TREE_TYPE (@0));
1880 }
1881 (cmp (convert:utype @1) (convert:utype @0)))))
1882 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1883 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1884 (cmp @0 @1)
1885 (with
1886 {
1887 tree utype = unsigned_type_for (TREE_TYPE (@0));
1888 }
1889 (cmp (convert:utype @0) (convert:utype @1)))))))))
1890
1891 /* X / C1 op C2 into a simple range test. */
1892 (for cmp (simple_comparison)
1893 (simplify
1894 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1895 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1896 && integer_nonzerop (@1)
1897 && !TREE_OVERFLOW (@1)
1898 && !TREE_OVERFLOW (@2))
1899 (with { tree lo, hi; bool neg_overflow;
1900 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1901 &neg_overflow); }
1902 (switch
1903 (if (code == LT_EXPR || code == GE_EXPR)
1904 (if (TREE_OVERFLOW (lo))
1905 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1906 (if (code == LT_EXPR)
1907 (lt @0 { lo; })
1908 (ge @0 { lo; }))))
1909 (if (code == LE_EXPR || code == GT_EXPR)
1910 (if (TREE_OVERFLOW (hi))
1911 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1912 (if (code == LE_EXPR)
1913 (le @0 { hi; })
1914 (gt @0 { hi; }))))
1915 (if (!lo && !hi)
1916 { build_int_cst (type, code == NE_EXPR); })
1917 (if (code == EQ_EXPR && !hi)
1918 (ge @0 { lo; }))
1919 (if (code == EQ_EXPR && !lo)
1920 (le @0 { hi; }))
1921 (if (code == NE_EXPR && !hi)
1922 (lt @0 { lo; }))
1923 (if (code == NE_EXPR && !lo)
1924 (gt @0 { hi; }))
1925 (if (GENERIC)
1926 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1927 lo, hi); })
1928 (with
1929 {
1930 tree etype = range_check_type (TREE_TYPE (@0));
1931 if (etype)
1932 {
1933 hi = fold_convert (etype, hi);
1934 lo = fold_convert (etype, lo);
1935 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1936 }
1937 }
1938 (if (etype && hi && !TREE_OVERFLOW (hi))
1939 (if (code == EQ_EXPR)
1940 (le (minus (convert:etype @0) { lo; }) { hi; })
1941 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1942
1943 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1944 (for op (lt le ge gt)
1945 (simplify
1946 (op (plus:c @0 @2) (plus:c @1 @2))
1947 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1948 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1949 (op @0 @1))))
1950 /* For equality and subtraction, this is also true with wrapping overflow. */
1951 (for op (eq ne minus)
1952 (simplify
1953 (op (plus:c @0 @2) (plus:c @1 @2))
1954 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1955 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1956 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1957 (op @0 @1))))
1958
1959 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1960 (for op (lt le ge gt)
1961 (simplify
1962 (op (minus @0 @2) (minus @1 @2))
1963 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1964 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1965 (op @0 @1))))
1966 /* For equality and subtraction, this is also true with wrapping overflow. */
1967 (for op (eq ne minus)
1968 (simplify
1969 (op (minus @0 @2) (minus @1 @2))
1970 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1971 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1972 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1973 (op @0 @1))))
1974 /* And for pointers... */
1975 (for op (simple_comparison)
1976 (simplify
1977 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1978 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1979 (op @0 @1))))
1980 (simplify
1981 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1982 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1983 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1984 (pointer_diff @0 @1)))
1985
1986 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1987 (for op (lt le ge gt)
1988 (simplify
1989 (op (minus @2 @0) (minus @2 @1))
1990 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1991 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1992 (op @1 @0))))
1993 /* For equality and subtraction, this is also true with wrapping overflow. */
1994 (for op (eq ne minus)
1995 (simplify
1996 (op (minus @2 @0) (minus @2 @1))
1997 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1998 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1999 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2000 (op @1 @0))))
2001 /* And for pointers... */
2002 (for op (simple_comparison)
2003 (simplify
2004 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2005 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2006 (op @1 @0))))
2007 (simplify
2008 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2009 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2010 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2011 (pointer_diff @1 @0)))
2012
2013 /* X + Y < Y is the same as X < 0 when there is no overflow. */
2014 (for op (lt le gt ge)
2015 (simplify
2016 (op:c (plus:c@2 @0 @1) @1)
2017 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2018 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2019 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2020 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2021 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2022 /* For equality, this is also true with wrapping overflow. */
2023 (for op (eq ne)
2024 (simplify
2025 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2026 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2027 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2028 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2029 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2030 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2031 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2032 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2033 (simplify
2034 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2035 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2036 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2037 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2038 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2039
2040 /* X - Y < X is the same as Y > 0 when there is no overflow.
2041 For equality, this is also true with wrapping overflow. */
2042 (for op (simple_comparison)
2043 (simplify
2044 (op:c @0 (minus@2 @0 @1))
2045 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2046 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2047 || ((op == EQ_EXPR || op == NE_EXPR)
2048 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2049 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2050 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2051
2052 /* Transform:
2053 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2054 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
2055 (for cmp (eq ne)
2056 ocmp (lt ge)
2057 (simplify
2058 (cmp (trunc_div @0 @1) integer_zerop)
2059 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2060 /* Complex ==/!= is allowed, but not </>=. */
2061 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2062 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2063 (ocmp @0 @1))))
2064
2065 /* X == C - X can never be true if C is odd. */
2066 (for cmp (eq ne)
2067 (simplify
2068 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2069 (if (TREE_INT_CST_LOW (@1) & 1)
2070 { constant_boolean_node (cmp == NE_EXPR, type); })))
2071
2072 /* Arguments on which one can call get_nonzero_bits to get the bits
2073 possibly set. */
2074 (match with_possible_nonzero_bits
2075 INTEGER_CST@0)
2076 (match with_possible_nonzero_bits
2077 SSA_NAME@0
2078 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2079 /* Slightly extended version, do not make it recursive to keep it cheap. */
2080 (match (with_possible_nonzero_bits2 @0)
2081 with_possible_nonzero_bits@0)
2082 (match (with_possible_nonzero_bits2 @0)
2083 (bit_and:c with_possible_nonzero_bits@0 @2))
2084
2085 /* Same for bits that are known to be set, but we do not have
2086 an equivalent to get_nonzero_bits yet. */
2087 (match (with_certain_nonzero_bits2 @0)
2088 INTEGER_CST@0)
2089 (match (with_certain_nonzero_bits2 @0)
2090 (bit_ior @1 INTEGER_CST@0))
2091
2092 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2093 (for cmp (eq ne)
2094 (simplify
2095 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2096 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2097 { constant_boolean_node (cmp == NE_EXPR, type); })))
2098
2099 /* ((X inner_op C0) outer_op C1)
2100 With X being a tree where value_range has reasoned certain bits to always be
2101 zero throughout its computed value range,
2102 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2103 where zero_mask has 1's for all bits that are sure to be 0 in
2104 and 0's otherwise.
2105 if (inner_op == '^') C0 &= ~C1;
2106 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2107 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2108 */
2109 (for inner_op (bit_ior bit_xor)
2110 outer_op (bit_xor bit_ior)
2111 (simplify
2112 (outer_op
2113 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2114 (with
2115 {
2116 bool fail = false;
2117 wide_int zero_mask_not;
2118 wide_int C0;
2119 wide_int cst_emit;
2120
2121 if (TREE_CODE (@2) == SSA_NAME)
2122 zero_mask_not = get_nonzero_bits (@2);
2123 else
2124 fail = true;
2125
2126 if (inner_op == BIT_XOR_EXPR)
2127 {
2128 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2129 cst_emit = C0 | wi::to_wide (@1);
2130 }
2131 else
2132 {
2133 C0 = wi::to_wide (@0);
2134 cst_emit = C0 ^ wi::to_wide (@1);
2135 }
2136 }
2137 (if (!fail && (C0 & zero_mask_not) == 0)
2138 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2139 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2140 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2141
2142 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2143 (simplify
2144 (pointer_plus (pointer_plus:s @0 @1) @3)
2145 (pointer_plus @0 (plus @1 @3)))
2146
2147 /* Pattern match
2148 tem1 = (long) ptr1;
2149 tem2 = (long) ptr2;
2150 tem3 = tem2 - tem1;
2151 tem4 = (unsigned long) tem3;
2152 tem5 = ptr1 + tem4;
2153 and produce
2154 tem5 = ptr2; */
2155 (simplify
2156 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2157 /* Conditionally look through a sign-changing conversion. */
2158 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2159 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2160 || (GENERIC && type == TREE_TYPE (@1))))
2161 @1))
2162 (simplify
2163 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2164 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2165 (convert @1)))
2166
2167 /* Pattern match
2168 tem = (sizetype) ptr;
2169 tem = tem & algn;
2170 tem = -tem;
2171 ... = ptr p+ tem;
2172 and produce the simpler and easier to analyze with respect to alignment
2173 ... = ptr & ~algn; */
2174 (simplify
2175 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2176 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2177 (bit_and @0 { algn; })))
2178
2179 /* Try folding difference of addresses. */
2180 (simplify
2181 (minus (convert ADDR_EXPR@0) (convert @1))
2182 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2183 (with { poly_int64 diff; }
2184 (if (ptr_difference_const (@0, @1, &diff))
2185 { build_int_cst_type (type, diff); }))))
2186 (simplify
2187 (minus (convert @0) (convert ADDR_EXPR@1))
2188 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2189 (with { poly_int64 diff; }
2190 (if (ptr_difference_const (@0, @1, &diff))
2191 { build_int_cst_type (type, diff); }))))
2192 (simplify
2193 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2194 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2195 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2196 (with { poly_int64 diff; }
2197 (if (ptr_difference_const (@0, @1, &diff))
2198 { build_int_cst_type (type, diff); }))))
2199 (simplify
2200 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2201 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2202 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2203 (with { poly_int64 diff; }
2204 (if (ptr_difference_const (@0, @1, &diff))
2205 { build_int_cst_type (type, diff); }))))
2206
2207 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2208 (simplify
2209 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2210 (with { poly_int64 diff; }
2211 (if (ptr_difference_const (@0, @2, &diff))
2212 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2213
2214 /* (&a+b) !=/== (&a[1] + c) -> sizeof(a[0]) + b !=/== c */
2215 (for neeq (ne eq)
2216 (simplify
2217 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2218 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2219 (if (ptr_difference_const (@0, @2, &diff))
2220 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2221
2222 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2223 (simplify
2224 (convert (pointer_diff @0 INTEGER_CST@1))
2225 (if (POINTER_TYPE_P (type))
2226 { build_fold_addr_expr_with_type
2227 (build2 (MEM_REF, char_type_node, @0,
2228 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2229 type); }))
2230
2231 /* If arg0 is derived from the address of an object or function, we may
2232 be able to fold this expression using the object or function's
2233 alignment. */
2234 (simplify
2235 (bit_and (convert? @0) INTEGER_CST@1)
2236 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2237 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2238 (with
2239 {
2240 unsigned int align;
2241 unsigned HOST_WIDE_INT bitpos;
2242 get_pointer_alignment_1 (@0, &align, &bitpos);
2243 }
2244 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2245 { wide_int_to_tree (type, (wi::to_wide (@1)
2246 & (bitpos / BITS_PER_UNIT))); }))))
2247
2248 (match min_value
2249 INTEGER_CST
2250 (if (INTEGRAL_TYPE_P (type)
2251 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
2252
2253 (match max_value
2254 INTEGER_CST
2255 (if (INTEGRAL_TYPE_P (type)
2256 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
2257
2258 /* x > y && x != XXX_MIN --> x > y
2259 x > y && x == XXX_MIN --> false . */
2260 (for eqne (eq ne)
2261 (simplify
2262 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2263 (switch
2264 (if (eqne == EQ_EXPR)
2265 { constant_boolean_node (false, type); })
2266 (if (eqne == NE_EXPR)
2267 @2)
2268 )))
2269
2270 /* x < y && x != XXX_MAX --> x < y
2271 x < y && x == XXX_MAX --> false. */
2272 (for eqne (eq ne)
2273 (simplify
2274 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2275 (switch
2276 (if (eqne == EQ_EXPR)
2277 { constant_boolean_node (false, type); })
2278 (if (eqne == NE_EXPR)
2279 @2)
2280 )))
2281
2282 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
2283 (simplify
2284 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
2285 @2)
2286
2287 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
2288 (simplify
2289 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
2290 @2)
2291
2292 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
2293 (simplify
2294 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
2295 @2)
2296
2297 /* x <= y || x != XXX_MIN --> true. */
2298 (simplify
2299 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
2300 { constant_boolean_node (true, type); })
2301
2302 /* x <= y || x == XXX_MIN --> x <= y. */
2303 (simplify
2304 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
2305 @2)
2306
2307 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
2308 (simplify
2309 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
2310 @2)
2311
2312 /* x >= y || x != XXX_MAX --> true
2313 x >= y || x == XXX_MAX --> x >= y. */
2314 (for eqne (eq ne)
2315 (simplify
2316 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
2317 (switch
2318 (if (eqne == EQ_EXPR)
2319 @2)
2320 (if (eqne == NE_EXPR)
2321 { constant_boolean_node (true, type); }))))
2322
2323 /* y == XXX_MIN || x < y --> x <= y - 1 */
2324 (simplify
2325 (bit_ior:c (eq:s @1 min_value) (lt:s @0 @1))
2326 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2327 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2328 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2329
2330 /* y != XXX_MIN && x >= y --> x > y - 1 */
2331 (simplify
2332 (bit_and:c (ne:s @1 min_value) (ge:s @0 @1))
2333 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2334 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2335 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
2336
2337 /* Convert (X == CST1) && (X OP2 CST2) to a known value
2338 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2339
2340 (for code1 (eq ne)
2341 (for code2 (eq ne lt gt le ge)
2342 (simplify
2343 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2344 (with
2345 {
2346 int cmp = tree_int_cst_compare (@1, @2);
2347 bool val;
2348 switch (code2)
2349 {
2350 case EQ_EXPR: val = (cmp == 0); break;
2351 case NE_EXPR: val = (cmp != 0); break;
2352 case LT_EXPR: val = (cmp < 0); break;
2353 case GT_EXPR: val = (cmp > 0); break;
2354 case LE_EXPR: val = (cmp <= 0); break;
2355 case GE_EXPR: val = (cmp >= 0); break;
2356 default: gcc_unreachable ();
2357 }
2358 }
2359 (switch
2360 (if (code1 == EQ_EXPR && val) @3)
2361 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
2362 (if (code1 == NE_EXPR && !val) @4))))))
2363
2364 /* Convert (X OP1 CST1) && (X OP2 CST2). */
2365
2366 (for code1 (lt le gt ge)
2367 (for code2 (lt le gt ge)
2368 (simplify
2369 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
2370 (with
2371 {
2372 int cmp = tree_int_cst_compare (@1, @2);
2373 }
2374 (switch
2375 /* Choose the more restrictive of two < or <= comparisons. */
2376 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2377 && (code2 == LT_EXPR || code2 == LE_EXPR))
2378 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2379 @3
2380 @4))
2381 /* Likewise chose the more restrictive of two > or >= comparisons. */
2382 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2383 && (code2 == GT_EXPR || code2 == GE_EXPR))
2384 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2385 @3
2386 @4))
2387 /* Check for singleton ranges. */
2388 (if (cmp == 0
2389 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2390 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2391 (eq @0 @1))
2392 /* Check for disjoint ranges. */
2393 (if (cmp <= 0
2394 && (code1 == LT_EXPR || code1 == LE_EXPR)
2395 && (code2 == GT_EXPR || code2 == GE_EXPR))
2396 { constant_boolean_node (false, type); })
2397 (if (cmp >= 0
2398 && (code1 == GT_EXPR || code1 == GE_EXPR)
2399 && (code2 == LT_EXPR || code2 == LE_EXPR))
2400 { constant_boolean_node (false, type); })
2401 )))))
2402
2403 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2404 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2405
2406 (for code1 (eq ne)
2407 (for code2 (eq ne lt gt le ge)
2408 (simplify
2409 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2410 (with
2411 {
2412 int cmp = tree_int_cst_compare (@1, @2);
2413 bool val;
2414 switch (code2)
2415 {
2416 case EQ_EXPR: val = (cmp == 0); break;
2417 case NE_EXPR: val = (cmp != 0); break;
2418 case LT_EXPR: val = (cmp < 0); break;
2419 case GT_EXPR: val = (cmp > 0); break;
2420 case LE_EXPR: val = (cmp <= 0); break;
2421 case GE_EXPR: val = (cmp >= 0); break;
2422 default: gcc_unreachable ();
2423 }
2424 }
2425 (switch
2426 (if (code1 == EQ_EXPR && val) @4)
2427 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2428 (if (code1 == NE_EXPR && !val) @3))))))
2429
2430 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2431
2432 (for code1 (lt le gt ge)
2433 (for code2 (lt le gt ge)
2434 (simplify
2435 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2436 (with
2437 {
2438 int cmp = tree_int_cst_compare (@1, @2);
2439 }
2440 (switch
2441 /* Choose the more restrictive of two < or <= comparisons. */
2442 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2443 && (code2 == LT_EXPR || code2 == LE_EXPR))
2444 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2445 @4
2446 @3))
2447 /* Likewise chose the more restrictive of two > or >= comparisons. */
2448 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2449 && (code2 == GT_EXPR || code2 == GE_EXPR))
2450 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2451 @4
2452 @3))
2453 /* Check for singleton ranges. */
2454 (if (cmp == 0
2455 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2456 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2457 (ne @0 @2))
2458 /* Check for disjoint ranges. */
2459 (if (cmp >= 0
2460 && (code1 == LT_EXPR || code1 == LE_EXPR)
2461 && (code2 == GT_EXPR || code2 == GE_EXPR))
2462 { constant_boolean_node (true, type); })
2463 (if (cmp <= 0
2464 && (code1 == GT_EXPR || code1 == GE_EXPR)
2465 && (code2 == LT_EXPR || code2 == LE_EXPR))
2466 { constant_boolean_node (true, type); })
2467 )))))
2468
2469 /* We can't reassociate at all for saturating types. */
2470 (if (!TYPE_SATURATING (type))
2471
2472 /* Contract negates. */
2473 /* A + (-B) -> A - B */
2474 (simplify
2475 (plus:c @0 (convert? (negate @1)))
2476 /* Apply STRIP_NOPS on the negate. */
2477 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2478 && !TYPE_OVERFLOW_SANITIZED (type))
2479 (with
2480 {
2481 tree t1 = type;
2482 if (INTEGRAL_TYPE_P (type)
2483 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2484 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2485 }
2486 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2487 /* A - (-B) -> A + B */
2488 (simplify
2489 (minus @0 (convert? (negate @1)))
2490 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2491 && !TYPE_OVERFLOW_SANITIZED (type))
2492 (with
2493 {
2494 tree t1 = type;
2495 if (INTEGRAL_TYPE_P (type)
2496 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2497 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2498 }
2499 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2500 /* -(T)(-A) -> (T)A
2501 Sign-extension is ok except for INT_MIN, which thankfully cannot
2502 happen without overflow. */
2503 (simplify
2504 (negate (convert (negate @1)))
2505 (if (INTEGRAL_TYPE_P (type)
2506 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2507 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2508 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2509 && !TYPE_OVERFLOW_SANITIZED (type)
2510 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2511 (convert @1)))
2512 (simplify
2513 (negate (convert negate_expr_p@1))
2514 (if (SCALAR_FLOAT_TYPE_P (type)
2515 && ((DECIMAL_FLOAT_TYPE_P (type)
2516 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2517 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2518 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2519 (convert (negate @1))))
2520 (simplify
2521 (negate (nop_convert? (negate @1)))
2522 (if (!TYPE_OVERFLOW_SANITIZED (type)
2523 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2524 (view_convert @1)))
2525
2526 /* We can't reassociate floating-point unless -fassociative-math
2527 or fixed-point plus or minus because of saturation to +-Inf. */
2528 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2529 && !FIXED_POINT_TYPE_P (type))
2530
2531 /* Match patterns that allow contracting a plus-minus pair
2532 irrespective of overflow issues. */
2533 /* (A +- B) - A -> +- B */
2534 /* (A +- B) -+ B -> A */
2535 /* A - (A +- B) -> -+ B */
2536 /* A +- (B -+ A) -> +- B */
2537 (simplify
2538 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
2539 (view_convert @1))
2540 (simplify
2541 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
2542 (if (!ANY_INTEGRAL_TYPE_P (type)
2543 || TYPE_OVERFLOW_WRAPS (type))
2544 (negate (view_convert @1))
2545 (view_convert (negate @1))))
2546 (simplify
2547 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
2548 (view_convert @0))
2549 (simplify
2550 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
2551 (if (!ANY_INTEGRAL_TYPE_P (type)
2552 || TYPE_OVERFLOW_WRAPS (type))
2553 (negate (view_convert @1))
2554 (view_convert (negate @1))))
2555 (simplify
2556 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
2557 (view_convert @1))
2558 /* (A +- B) + (C - A) -> C +- B */
2559 /* (A + B) - (A - C) -> B + C */
2560 /* More cases are handled with comparisons. */
2561 (simplify
2562 (plus:c (plus:c @0 @1) (minus @2 @0))
2563 (plus @2 @1))
2564 (simplify
2565 (plus:c (minus @0 @1) (minus @2 @0))
2566 (minus @2 @1))
2567 (simplify
2568 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2569 (if (TYPE_OVERFLOW_UNDEFINED (type)
2570 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2571 (pointer_diff @2 @1)))
2572 (simplify
2573 (minus (plus:c @0 @1) (minus @0 @2))
2574 (plus @1 @2))
2575
2576 /* (A +- CST1) +- CST2 -> A + CST3
2577 Use view_convert because it is safe for vectors and equivalent for
2578 scalars. */
2579 (for outer_op (plus minus)
2580 (for inner_op (plus minus)
2581 neg_inner_op (minus plus)
2582 (simplify
2583 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
2584 CONSTANT_CLASS_P@2)
2585 /* If one of the types wraps, use that one. */
2586 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2587 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2588 forever if something doesn't simplify into a constant. */
2589 (if (!CONSTANT_CLASS_P (@0))
2590 (if (outer_op == PLUS_EXPR)
2591 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2592 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2593 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2594 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2595 (if (outer_op == PLUS_EXPR)
2596 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2597 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2598 /* If the constant operation overflows we cannot do the transform
2599 directly as we would introduce undefined overflow, for example
2600 with (a - 1) + INT_MIN. */
2601 (if (types_match (type, @0))
2602 (with { tree cst = const_binop (outer_op == inner_op
2603 ? PLUS_EXPR : MINUS_EXPR,
2604 type, @1, @2); }
2605 (if (cst && !TREE_OVERFLOW (cst))
2606 (inner_op @0 { cst; } )
2607 /* X+INT_MAX+1 is X-INT_MIN. */
2608 (if (INTEGRAL_TYPE_P (type) && cst
2609 && wi::to_wide (cst) == wi::min_value (type))
2610 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2611 /* Last resort, use some unsigned type. */
2612 (with { tree utype = unsigned_type_for (type); }
2613 (if (utype)
2614 (view_convert (inner_op
2615 (view_convert:utype @0)
2616 (view_convert:utype
2617 { drop_tree_overflow (cst); }))))))))))))))
2618
2619 /* (CST1 - A) +- CST2 -> CST3 - A */
2620 (for outer_op (plus minus)
2621 (simplify
2622 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2623 /* If one of the types wraps, use that one. */
2624 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2625 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2626 forever if something doesn't simplify into a constant. */
2627 (if (!CONSTANT_CLASS_P (@0))
2628 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2629 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2630 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2631 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2632 (if (types_match (type, @0))
2633 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2634 (if (cst && !TREE_OVERFLOW (cst))
2635 (minus { cst; } @0))))))))
2636
2637 /* CST1 - (CST2 - A) -> CST3 + A
2638 Use view_convert because it is safe for vectors and equivalent for
2639 scalars. */
2640 (simplify
2641 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
2642 /* If one of the types wraps, use that one. */
2643 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2644 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2645 forever if something doesn't simplify into a constant. */
2646 (if (!CONSTANT_CLASS_P (@0))
2647 (plus (view_convert @0) (minus @1 (view_convert @2))))
2648 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2649 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2650 (view_convert (plus @0 (minus (view_convert @1) @2)))
2651 (if (types_match (type, @0))
2652 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2653 (if (cst && !TREE_OVERFLOW (cst))
2654 (plus { cst; } @0)))))))
2655
2656 /* ((T)(A)) + CST -> (T)(A + CST) */
2657 #if GIMPLE
2658 (simplify
2659 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
2660 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2661 && TREE_CODE (type) == INTEGER_TYPE
2662 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2663 && int_fits_type_p (@1, TREE_TYPE (@0)))
2664 /* Perform binary operation inside the cast if the constant fits
2665 and (A + CST)'s range does not overflow. */
2666 (with
2667 {
2668 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2669 max_ovf = wi::OVF_OVERFLOW;
2670 tree inner_type = TREE_TYPE (@0);
2671
2672 wide_int w1
2673 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2674 TYPE_SIGN (inner_type));
2675
2676 value_range vr;
2677 if (get_global_range_query ()->range_of_expr (vr, @0)
2678 && vr.kind () == VR_RANGE)
2679 {
2680 wide_int wmin0 = vr.lower_bound ();
2681 wide_int wmax0 = vr.upper_bound ();
2682 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2683 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2684 }
2685 }
2686 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2687 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2688 )))
2689 #endif
2690
2691 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2692 #if GIMPLE
2693 (for op (plus minus)
2694 (simplify
2695 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2696 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2697 && TREE_CODE (type) == INTEGER_TYPE
2698 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2699 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2700 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2701 && TYPE_OVERFLOW_WRAPS (type))
2702 (plus (convert @0) (op @2 (convert @1))))))
2703 #endif
2704
2705 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
2706 to a simple value. */
2707 #if GIMPLE
2708 (for op (plus minus)
2709 (simplify
2710 (op (convert @0) (convert @1))
2711 (if (INTEGRAL_TYPE_P (type)
2712 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2713 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2714 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
2715 && !TYPE_OVERFLOW_TRAPS (type)
2716 && !TYPE_OVERFLOW_SANITIZED (type))
2717 (convert (op! @0 @1)))))
2718 #endif
2719
2720 /* ~A + A -> -1 */
2721 (simplify
2722 (plus:c (bit_not @0) @0)
2723 (if (!TYPE_OVERFLOW_TRAPS (type))
2724 { build_all_ones_cst (type); }))
2725
2726 /* ~A + 1 -> -A */
2727 (simplify
2728 (plus (convert? (bit_not @0)) integer_each_onep)
2729 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2730 (negate (convert @0))))
2731
2732 /* -A - 1 -> ~A */
2733 (simplify
2734 (minus (convert? (negate @0)) integer_each_onep)
2735 (if (!TYPE_OVERFLOW_TRAPS (type)
2736 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2737 (bit_not (convert @0))))
2738
2739 /* -1 - A -> ~A */
2740 (simplify
2741 (minus integer_all_onesp @0)
2742 (bit_not @0))
2743
2744 /* (T)(P + A) - (T)P -> (T) A */
2745 (simplify
2746 (minus (convert (plus:c @@0 @1))
2747 (convert? @0))
2748 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2749 /* For integer types, if A has a smaller type
2750 than T the result depends on the possible
2751 overflow in P + A.
2752 E.g. T=size_t, A=(unsigned)429497295, P>0.
2753 However, if an overflow in P + A would cause
2754 undefined behavior, we can assume that there
2755 is no overflow. */
2756 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2757 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2758 (convert @1)))
2759 (simplify
2760 (minus (convert (pointer_plus @@0 @1))
2761 (convert @0))
2762 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2763 /* For pointer types, if the conversion of A to the
2764 final type requires a sign- or zero-extension,
2765 then we have to punt - it is not defined which
2766 one is correct. */
2767 || (POINTER_TYPE_P (TREE_TYPE (@0))
2768 && TREE_CODE (@1) == INTEGER_CST
2769 && tree_int_cst_sign_bit (@1) == 0))
2770 (convert @1)))
2771 (simplify
2772 (pointer_diff (pointer_plus @@0 @1) @0)
2773 /* The second argument of pointer_plus must be interpreted as signed, and
2774 thus sign-extended if necessary. */
2775 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2776 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2777 second arg is unsigned even when we need to consider it as signed,
2778 we don't want to diagnose overflow here. */
2779 (convert (view_convert:stype @1))))
2780
2781 /* (T)P - (T)(P + A) -> -(T) A */
2782 (simplify
2783 (minus (convert? @0)
2784 (convert (plus:c @@0 @1)))
2785 (if (INTEGRAL_TYPE_P (type)
2786 && TYPE_OVERFLOW_UNDEFINED (type)
2787 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2788 (with { tree utype = unsigned_type_for (type); }
2789 (convert (negate (convert:utype @1))))
2790 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2791 /* For integer types, if A has a smaller type
2792 than T the result depends on the possible
2793 overflow in P + A.
2794 E.g. T=size_t, A=(unsigned)429497295, P>0.
2795 However, if an overflow in P + A would cause
2796 undefined behavior, we can assume that there
2797 is no overflow. */
2798 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2799 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2800 (negate (convert @1)))))
2801 (simplify
2802 (minus (convert @0)
2803 (convert (pointer_plus @@0 @1)))
2804 (if (INTEGRAL_TYPE_P (type)
2805 && TYPE_OVERFLOW_UNDEFINED (type)
2806 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2807 (with { tree utype = unsigned_type_for (type); }
2808 (convert (negate (convert:utype @1))))
2809 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2810 /* For pointer types, if the conversion of A to the
2811 final type requires a sign- or zero-extension,
2812 then we have to punt - it is not defined which
2813 one is correct. */
2814 || (POINTER_TYPE_P (TREE_TYPE (@0))
2815 && TREE_CODE (@1) == INTEGER_CST
2816 && tree_int_cst_sign_bit (@1) == 0))
2817 (negate (convert @1)))))
2818 (simplify
2819 (pointer_diff @0 (pointer_plus @@0 @1))
2820 /* The second argument of pointer_plus must be interpreted as signed, and
2821 thus sign-extended if necessary. */
2822 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2823 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2824 second arg is unsigned even when we need to consider it as signed,
2825 we don't want to diagnose overflow here. */
2826 (negate (convert (view_convert:stype @1)))))
2827
2828 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2829 (simplify
2830 (minus (convert (plus:c @@0 @1))
2831 (convert (plus:c @0 @2)))
2832 (if (INTEGRAL_TYPE_P (type)
2833 && TYPE_OVERFLOW_UNDEFINED (type)
2834 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2835 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2836 (with { tree utype = unsigned_type_for (type); }
2837 (convert (minus (convert:utype @1) (convert:utype @2))))
2838 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2839 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2840 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2841 /* For integer types, if A has a smaller type
2842 than T the result depends on the possible
2843 overflow in P + A.
2844 E.g. T=size_t, A=(unsigned)429497295, P>0.
2845 However, if an overflow in P + A would cause
2846 undefined behavior, we can assume that there
2847 is no overflow. */
2848 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2849 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2850 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2851 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2852 (minus (convert @1) (convert @2)))))
2853 (simplify
2854 (minus (convert (pointer_plus @@0 @1))
2855 (convert (pointer_plus @0 @2)))
2856 (if (INTEGRAL_TYPE_P (type)
2857 && TYPE_OVERFLOW_UNDEFINED (type)
2858 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2859 (with { tree utype = unsigned_type_for (type); }
2860 (convert (minus (convert:utype @1) (convert:utype @2))))
2861 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2862 /* For pointer types, if the conversion of A to the
2863 final type requires a sign- or zero-extension,
2864 then we have to punt - it is not defined which
2865 one is correct. */
2866 || (POINTER_TYPE_P (TREE_TYPE (@0))
2867 && TREE_CODE (@1) == INTEGER_CST
2868 && tree_int_cst_sign_bit (@1) == 0
2869 && TREE_CODE (@2) == INTEGER_CST
2870 && tree_int_cst_sign_bit (@2) == 0))
2871 (minus (convert @1) (convert @2)))))
2872 (simplify
2873 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
2874 (pointer_diff @0 @1))
2875 (simplify
2876 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2877 /* The second argument of pointer_plus must be interpreted as signed, and
2878 thus sign-extended if necessary. */
2879 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2880 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2881 second arg is unsigned even when we need to consider it as signed,
2882 we don't want to diagnose overflow here. */
2883 (minus (convert (view_convert:stype @1))
2884 (convert (view_convert:stype @2)))))))
2885
2886 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2887 Modeled after fold_plusminus_mult_expr. */
2888 (if (!TYPE_SATURATING (type)
2889 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2890 (for plusminus (plus minus)
2891 (simplify
2892 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2893 (if (!ANY_INTEGRAL_TYPE_P (type)
2894 || TYPE_OVERFLOW_WRAPS (type)
2895 || (INTEGRAL_TYPE_P (type)
2896 && tree_expr_nonzero_p (@0)
2897 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2898 (if (single_use (@3) || single_use (@4))
2899 /* If @1 +- @2 is constant require a hard single-use on either
2900 original operand (but not on both). */
2901 (mult (plusminus @1 @2) @0)
2902 #if GIMPLE
2903 (mult! (plusminus @1 @2) @0)
2904 #endif
2905 )))
2906 /* We cannot generate constant 1 for fract. */
2907 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2908 (simplify
2909 (plusminus @0 (mult:c@3 @0 @2))
2910 (if ((!ANY_INTEGRAL_TYPE_P (type)
2911 || TYPE_OVERFLOW_WRAPS (type)
2912 /* For @0 + @0*@2 this transformation would introduce UB
2913 (where there was none before) for @0 in [-1,0] and @2 max.
2914 For @0 - @0*@2 this transformation would introduce UB
2915 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2916 || (INTEGRAL_TYPE_P (type)
2917 && ((tree_expr_nonzero_p (@0)
2918 && expr_not_equal_to (@0,
2919 wi::minus_one (TYPE_PRECISION (type))))
2920 || (plusminus == PLUS_EXPR
2921 ? expr_not_equal_to (@2,
2922 wi::max_value (TYPE_PRECISION (type), SIGNED))
2923 /* Let's ignore the @0 -1 and @2 min case. */
2924 : (expr_not_equal_to (@2,
2925 wi::min_value (TYPE_PRECISION (type), SIGNED))
2926 && expr_not_equal_to (@2,
2927 wi::min_value (TYPE_PRECISION (type), SIGNED)
2928 + 1))))))
2929 && single_use (@3))
2930 (mult (plusminus { build_one_cst (type); } @2) @0)))
2931 (simplify
2932 (plusminus (mult:c@3 @0 @2) @0)
2933 (if ((!ANY_INTEGRAL_TYPE_P (type)
2934 || TYPE_OVERFLOW_WRAPS (type)
2935 /* For @0*@2 + @0 this transformation would introduce UB
2936 (where there was none before) for @0 in [-1,0] and @2 max.
2937 For @0*@2 - @0 this transformation would introduce UB
2938 for @0 0 and @2 min. */
2939 || (INTEGRAL_TYPE_P (type)
2940 && ((tree_expr_nonzero_p (@0)
2941 && (plusminus == MINUS_EXPR
2942 || expr_not_equal_to (@0,
2943 wi::minus_one (TYPE_PRECISION (type)))))
2944 || expr_not_equal_to (@2,
2945 (plusminus == PLUS_EXPR
2946 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2947 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2948 && single_use (@3))
2949 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2950
2951 #if GIMPLE
2952 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
2953 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
2954 (simplify
2955 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
2956 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2957 && tree_fits_uhwi_p (@1)
2958 && tree_to_uhwi (@1) < element_precision (type)
2959 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2960 || optab_handler (smul_optab,
2961 TYPE_MODE (type)) != CODE_FOR_nothing))
2962 (with { tree t = type;
2963 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2964 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
2965 element_precision (type));
2966 w += 1;
2967 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2968 : t, w);
2969 cst = build_uniform_cst (t, cst); }
2970 (convert (mult (convert:t @0) { cst; })))))
2971 (simplify
2972 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
2973 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2974 && tree_fits_uhwi_p (@1)
2975 && tree_to_uhwi (@1) < element_precision (type)
2976 && tree_fits_uhwi_p (@2)
2977 && tree_to_uhwi (@2) < element_precision (type)
2978 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2979 || optab_handler (smul_optab,
2980 TYPE_MODE (type)) != CODE_FOR_nothing))
2981 (with { tree t = type;
2982 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
2983 unsigned int prec = element_precision (type);
2984 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
2985 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
2986 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
2987 : t, w);
2988 cst = build_uniform_cst (t, cst); }
2989 (convert (mult (convert:t @0) { cst; })))))
2990 #endif
2991
2992 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
2993 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
2994 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
2995 (for op (bit_ior bit_xor)
2996 (simplify
2997 (op (mult:s@0 @1 INTEGER_CST@2)
2998 (mult:s@3 @1 INTEGER_CST@4))
2999 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3000 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3001 (mult @1
3002 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3003 (simplify
3004 (op:c (mult:s@0 @1 INTEGER_CST@2)
3005 (lshift:s@3 @1 INTEGER_CST@4))
3006 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3007 && tree_int_cst_sgn (@4) > 0
3008 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3009 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3010 wide_int c = wi::add (wi::to_wide (@2),
3011 wi::lshift (wone, wi::to_wide (@4))); }
3012 (mult @1 { wide_int_to_tree (type, c); }))))
3013 (simplify
3014 (op:c (mult:s@0 @1 INTEGER_CST@2)
3015 @1)
3016 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3017 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3018 (mult @1
3019 { wide_int_to_tree (type,
3020 wi::add (wi::to_wide (@2), 1)); })))
3021 (simplify
3022 (op (lshift:s@0 @1 INTEGER_CST@2)
3023 (lshift:s@3 @1 INTEGER_CST@4))
3024 (if (INTEGRAL_TYPE_P (type)
3025 && tree_int_cst_sgn (@2) > 0
3026 && tree_int_cst_sgn (@4) > 0
3027 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3028 (with { tree t = type;
3029 if (!TYPE_OVERFLOW_WRAPS (t))
3030 t = unsigned_type_for (t);
3031 wide_int wone = wi::one (TYPE_PRECISION (t));
3032 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3033 wi::lshift (wone, wi::to_wide (@4))); }
3034 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3035 (simplify
3036 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3037 @1)
3038 (if (INTEGRAL_TYPE_P (type)
3039 && tree_int_cst_sgn (@2) > 0
3040 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3041 (with { tree t = type;
3042 if (!TYPE_OVERFLOW_WRAPS (t))
3043 t = unsigned_type_for (t);
3044 wide_int wone = wi::one (TYPE_PRECISION (t));
3045 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3046 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3047
3048 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
3049
3050 (for minmax (min max FMIN_ALL FMAX_ALL)
3051 (simplify
3052 (minmax @0 @0)
3053 @0))
3054 /* min(max(x,y),y) -> y. */
3055 (simplify
3056 (min:c (max:c @0 @1) @1)
3057 @1)
3058 /* max(min(x,y),y) -> y. */
3059 (simplify
3060 (max:c (min:c @0 @1) @1)
3061 @1)
3062 /* max(a,-a) -> abs(a). */
3063 (simplify
3064 (max:c @0 (negate @0))
3065 (if (TREE_CODE (type) != COMPLEX_TYPE
3066 && (! ANY_INTEGRAL_TYPE_P (type)
3067 || TYPE_OVERFLOW_UNDEFINED (type)))
3068 (abs @0)))
3069 /* min(a,-a) -> -abs(a). */
3070 (simplify
3071 (min:c @0 (negate @0))
3072 (if (TREE_CODE (type) != COMPLEX_TYPE
3073 && (! ANY_INTEGRAL_TYPE_P (type)
3074 || TYPE_OVERFLOW_UNDEFINED (type)))
3075 (negate (abs @0))))
3076 (simplify
3077 (min @0 @1)
3078 (switch
3079 (if (INTEGRAL_TYPE_P (type)
3080 && TYPE_MIN_VALUE (type)
3081 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3082 @1)
3083 (if (INTEGRAL_TYPE_P (type)
3084 && TYPE_MAX_VALUE (type)
3085 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3086 @0)))
3087 (simplify
3088 (max @0 @1)
3089 (switch
3090 (if (INTEGRAL_TYPE_P (type)
3091 && TYPE_MAX_VALUE (type)
3092 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3093 @1)
3094 (if (INTEGRAL_TYPE_P (type)
3095 && TYPE_MIN_VALUE (type)
3096 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3097 @0)))
3098
3099 /* max (a, a + CST) -> a + CST where CST is positive. */
3100 /* max (a, a + CST) -> a where CST is negative. */
3101 (simplify
3102 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3103 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3104 (if (tree_int_cst_sgn (@1) > 0)
3105 @2
3106 @0)))
3107
3108 /* min (a, a + CST) -> a where CST is positive. */
3109 /* min (a, a + CST) -> a + CST where CST is negative. */
3110 (simplify
3111 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3112 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3113 (if (tree_int_cst_sgn (@1) > 0)
3114 @0
3115 @2)))
3116
3117 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3118 the addresses are known to be less, equal or greater. */
3119 (for minmax (min max)
3120 cmp (lt gt)
3121 (simplify
3122 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
3123 (with
3124 {
3125 poly_int64 off0, off1;
3126 tree base0, base1;
3127 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
3128 off0, off1, GENERIC);
3129 }
3130 (if (equal == 1)
3131 (if (minmax == MIN_EXPR)
3132 (if (known_le (off0, off1))
3133 @2
3134 (if (known_gt (off0, off1))
3135 @3))
3136 (if (known_ge (off0, off1))
3137 @2
3138 (if (known_lt (off0, off1))
3139 @3)))))))
3140
3141 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
3142 and the outer convert demotes the expression back to x's type. */
3143 (for minmax (min max)
3144 (simplify
3145 (convert (minmax@0 (convert @1) INTEGER_CST@2))
3146 (if (INTEGRAL_TYPE_P (type)
3147 && types_match (@1, type) && int_fits_type_p (@2, type)
3148 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
3149 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
3150 (minmax @1 (convert @2)))))
3151
3152 (for minmax (FMIN_ALL FMAX_ALL)
3153 /* If either argument is NaN, return the other one. Avoid the
3154 transformation if we get (and honor) a signalling NaN. */
3155 (simplify
3156 (minmax:c @0 REAL_CST@1)
3157 (if (real_isnan (TREE_REAL_CST_PTR (@1))
3158 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
3159 @0)))
3160 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
3161 functions to return the numeric arg if the other one is NaN.
3162 MIN and MAX don't honor that, so only transform if -ffinite-math-only
3163 is set. C99 doesn't require -0.0 to be handled, so we don't have to
3164 worry about it either. */
3165 (if (flag_finite_math_only)
3166 (simplify
3167 (FMIN_ALL @0 @1)
3168 (min @0 @1))
3169 (simplify
3170 (FMAX_ALL @0 @1)
3171 (max @0 @1)))
3172 /* min (-A, -B) -> -max (A, B) */
3173 (for minmax (min max FMIN_ALL FMAX_ALL)
3174 maxmin (max min FMAX_ALL FMIN_ALL)
3175 (simplify
3176 (minmax (negate:s@2 @0) (negate:s@3 @1))
3177 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3178 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3179 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3180 (negate (maxmin @0 @1)))))
3181 /* MIN (~X, ~Y) -> ~MAX (X, Y)
3182 MAX (~X, ~Y) -> ~MIN (X, Y) */
3183 (for minmax (min max)
3184 maxmin (max min)
3185 (simplify
3186 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
3187 (bit_not (maxmin @0 @1))))
3188
3189 /* MIN (X, Y) == X -> X <= Y */
3190 (for minmax (min min max max)
3191 cmp (eq ne eq ne )
3192 out (le gt ge lt )
3193 (simplify
3194 (cmp:c (minmax:c @0 @1) @0)
3195 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3196 (out @0 @1))))
3197 /* MIN (X, 5) == 0 -> X == 0
3198 MIN (X, 5) == 7 -> false */
3199 (for cmp (eq ne)
3200 (simplify
3201 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
3202 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3203 TYPE_SIGN (TREE_TYPE (@0))))
3204 { constant_boolean_node (cmp == NE_EXPR, type); }
3205 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3206 TYPE_SIGN (TREE_TYPE (@0))))
3207 (cmp @0 @2)))))
3208 (for cmp (eq ne)
3209 (simplify
3210 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
3211 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
3212 TYPE_SIGN (TREE_TYPE (@0))))
3213 { constant_boolean_node (cmp == NE_EXPR, type); }
3214 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
3215 TYPE_SIGN (TREE_TYPE (@0))))
3216 (cmp @0 @2)))))
3217 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
3218 (for minmax (min min max max min min max max )
3219 cmp (lt le gt ge gt ge lt le )
3220 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
3221 (simplify
3222 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
3223 (comb (cmp @0 @2) (cmp @1 @2))))
3224
3225 /* X <= MAX(X, Y) -> true
3226 X > MAX(X, Y) -> false
3227 X >= MIN(X, Y) -> true
3228 X < MIN(X, Y) -> false */
3229 (for minmax (min min max max )
3230 cmp (ge lt le gt )
3231 (simplify
3232 (cmp @0 (minmax:c @0 @1))
3233 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
3234
3235 /* Undo fancy way of writing max/min or other ?: expressions,
3236 like a - ((a - b) & -(a < b)), in this case into (a < b) ? b : a.
3237 People normally use ?: and that is what we actually try to optimize. */
3238 (for cmp (simple_comparison)
3239 (simplify
3240 (minus @0 (bit_and:c (minus @0 @1)
3241 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3242 (if (INTEGRAL_TYPE_P (type)
3243 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3244 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3245 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3246 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3247 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3248 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3249 (cond (cmp @2 @3) @1 @0)))
3250 (simplify
3251 (plus:c @0 (bit_and:c (minus @1 @0)
3252 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3253 (if (INTEGRAL_TYPE_P (type)
3254 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3255 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3256 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3257 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3258 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3259 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3260 (cond (cmp @2 @3) @1 @0)))
3261 /* Similarly with ^ instead of - though in that case with :c. */
3262 (simplify
3263 (bit_xor:c @0 (bit_and:c (bit_xor:c @0 @1)
3264 (convert? (negate@4 (convert? (cmp@5 @2 @3))))))
3265 (if (INTEGRAL_TYPE_P (type)
3266 && INTEGRAL_TYPE_P (TREE_TYPE (@4))
3267 && TREE_CODE (TREE_TYPE (@4)) != BOOLEAN_TYPE
3268 && INTEGRAL_TYPE_P (TREE_TYPE (@5))
3269 && (TYPE_PRECISION (TREE_TYPE (@4)) >= TYPE_PRECISION (type)
3270 || !TYPE_UNSIGNED (TREE_TYPE (@4)))
3271 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
3272 (cond (cmp @2 @3) @1 @0))))
3273
3274 /* Simplifications of shift and rotates. */
3275
3276 (for rotate (lrotate rrotate)
3277 (simplify
3278 (rotate integer_all_onesp@0 @1)
3279 @0))
3280
3281 /* Optimize -1 >> x for arithmetic right shifts. */
3282 (simplify
3283 (rshift integer_all_onesp@0 @1)
3284 (if (!TYPE_UNSIGNED (type))
3285 @0))
3286
3287 /* Optimize (x >> c) << c into x & (-1<<c). */
3288 (simplify
3289 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
3290 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
3291 /* It doesn't matter if the right shift is arithmetic or logical. */
3292 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
3293
3294 (simplify
3295 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
3296 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
3297 /* Allow intermediate conversion to integral type with whatever sign, as
3298 long as the low TYPE_PRECISION (type)
3299 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
3300 && INTEGRAL_TYPE_P (type)
3301 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3302 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3303 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
3304 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
3305 || wi::geu_p (wi::to_wide (@1),
3306 TYPE_PRECISION (type)
3307 - TYPE_PRECISION (TREE_TYPE (@2)))))
3308 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
3309
3310 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
3311 types. */
3312 (simplify
3313 (rshift (lshift @0 INTEGER_CST@1) @1)
3314 (if (TYPE_UNSIGNED (type)
3315 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
3316 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
3317
3318 /* Optimize x >> x into 0 */
3319 (simplify
3320 (rshift @0 @0)
3321 { build_zero_cst (type); })
3322
3323 (for shiftrotate (lrotate rrotate lshift rshift)
3324 (simplify
3325 (shiftrotate @0 integer_zerop)
3326 (non_lvalue @0))
3327 (simplify
3328 (shiftrotate integer_zerop@0 @1)
3329 @0)
3330 /* Prefer vector1 << scalar to vector1 << vector2
3331 if vector2 is uniform. */
3332 (for vec (VECTOR_CST CONSTRUCTOR)
3333 (simplify
3334 (shiftrotate @0 vec@1)
3335 (with { tree tem = uniform_vector_p (@1); }
3336 (if (tem)
3337 (shiftrotate @0 { tem; }))))))
3338
3339 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
3340 Y is 0. Similarly for X >> Y. */
3341 #if GIMPLE
3342 (for shift (lshift rshift)
3343 (simplify
3344 (shift @0 SSA_NAME@1)
3345 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3346 (with {
3347 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
3348 int prec = TYPE_PRECISION (TREE_TYPE (@1));
3349 }
3350 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
3351 @0)))))
3352 #endif
3353
3354 /* Rewrite an LROTATE_EXPR by a constant into an
3355 RROTATE_EXPR by a new constant. */
3356 (simplify
3357 (lrotate @0 INTEGER_CST@1)
3358 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
3359 build_int_cst (TREE_TYPE (@1),
3360 element_precision (type)), @1); }))
3361
3362 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
3363 (for op (lrotate rrotate rshift lshift)
3364 (simplify
3365 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
3366 (with { unsigned int prec = element_precision (type); }
3367 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
3368 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
3369 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
3370 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
3371 (with { unsigned int low = (tree_to_uhwi (@1)
3372 + tree_to_uhwi (@2)); }
3373 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
3374 being well defined. */
3375 (if (low >= prec)
3376 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
3377 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
3378 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
3379 { build_zero_cst (type); }
3380 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
3381 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
3382
3383
3384 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
3385 (simplify
3386 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
3387 (if ((wi::to_wide (@1) & 1) != 0)
3388 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
3389 { build_zero_cst (type); }))
3390
3391 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
3392 either to false if D is smaller (unsigned comparison) than C, or to
3393 x == log2 (D) - log2 (C). Similarly for right shifts. */
3394 (for cmp (ne eq)
3395 icmp (eq ne)
3396 (simplify
3397 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3398 (with { int c1 = wi::clz (wi::to_wide (@1));
3399 int c2 = wi::clz (wi::to_wide (@2)); }
3400 (if (c1 < c2)
3401 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3402 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
3403 (simplify
3404 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
3405 (if (tree_int_cst_sgn (@1) > 0)
3406 (with { int c1 = wi::clz (wi::to_wide (@1));
3407 int c2 = wi::clz (wi::to_wide (@2)); }
3408 (if (c1 > c2)
3409 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
3410 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); }))))))
3411
3412 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
3413 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
3414 if CST2 != 0. */
3415 (for cmp (ne eq)
3416 (simplify
3417 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
3418 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
3419 (if (cand < 0
3420 || (!integer_zerop (@2)
3421 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
3422 { constant_boolean_node (cmp == NE_EXPR, type); }
3423 (if (!integer_zerop (@2)
3424 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
3425 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
3426
3427 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
3428 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
3429 if the new mask might be further optimized. */
3430 (for shift (lshift rshift)
3431 (simplify
3432 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
3433 INTEGER_CST@2)
3434 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
3435 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
3436 && tree_fits_uhwi_p (@1)
3437 && tree_to_uhwi (@1) > 0
3438 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
3439 (with
3440 {
3441 unsigned int shiftc = tree_to_uhwi (@1);
3442 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
3443 unsigned HOST_WIDE_INT newmask, zerobits = 0;
3444 tree shift_type = TREE_TYPE (@3);
3445 unsigned int prec;
3446
3447 if (shift == LSHIFT_EXPR)
3448 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
3449 else if (shift == RSHIFT_EXPR
3450 && type_has_mode_precision_p (shift_type))
3451 {
3452 prec = TYPE_PRECISION (TREE_TYPE (@3));
3453 tree arg00 = @0;
3454 /* See if more bits can be proven as zero because of
3455 zero extension. */
3456 if (@3 != @0
3457 && TYPE_UNSIGNED (TREE_TYPE (@0)))
3458 {
3459 tree inner_type = TREE_TYPE (@0);
3460 if (type_has_mode_precision_p (inner_type)
3461 && TYPE_PRECISION (inner_type) < prec)
3462 {
3463 prec = TYPE_PRECISION (inner_type);
3464 /* See if we can shorten the right shift. */
3465 if (shiftc < prec)
3466 shift_type = inner_type;
3467 /* Otherwise X >> C1 is all zeros, so we'll optimize
3468 it into (X, 0) later on by making sure zerobits
3469 is all ones. */
3470 }
3471 }
3472 zerobits = HOST_WIDE_INT_M1U;
3473 if (shiftc < prec)
3474 {
3475 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
3476 zerobits <<= prec - shiftc;
3477 }
3478 /* For arithmetic shift if sign bit could be set, zerobits
3479 can contain actually sign bits, so no transformation is
3480 possible, unless MASK masks them all away. In that
3481 case the shift needs to be converted into logical shift. */
3482 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
3483 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
3484 {
3485 if ((mask & zerobits) == 0)
3486 shift_type = unsigned_type_for (TREE_TYPE (@3));
3487 else
3488 zerobits = 0;
3489 }
3490 }
3491 }
3492 /* ((X << 16) & 0xff00) is (X, 0). */
3493 (if ((mask & zerobits) == mask)
3494 { build_int_cst (type, 0); }
3495 (with { newmask = mask | zerobits; }
3496 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
3497 (with
3498 {
3499 /* Only do the transformation if NEWMASK is some integer
3500 mode's mask. */
3501 for (prec = BITS_PER_UNIT;
3502 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
3503 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
3504 break;
3505 }
3506 (if (prec < HOST_BITS_PER_WIDE_INT
3507 || newmask == HOST_WIDE_INT_M1U)
3508 (with
3509 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
3510 (if (!tree_int_cst_equal (newmaskt, @2))
3511 (if (shift_type != TREE_TYPE (@3))
3512 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
3513 (bit_and @4 { newmaskt; })))))))))))))
3514
3515 /* ((1 << n) & M) != 0 -> n == log2 (M) */
3516 (for cmp (ne eq)
3517 icmp (eq ne)
3518 (simplify
3519 (cmp
3520 (bit_and
3521 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
3522 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3523 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
3524 wi::exact_log2 (wi::to_wide (@1))); }))))
3525
3526 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
3527 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
3528 (for shift (lshift rshift)
3529 (for bit_op (bit_and bit_xor bit_ior)
3530 (simplify
3531 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
3532 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3533 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
3534 (if (mask)
3535 (bit_op (shift (convert @0) @1) { mask; })))))))
3536
3537 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
3538 (simplify
3539 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
3540 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
3541 && (element_precision (TREE_TYPE (@0))
3542 <= element_precision (TREE_TYPE (@1))
3543 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
3544 (with
3545 { tree shift_type = TREE_TYPE (@0); }
3546 (convert (rshift (convert:shift_type @1) @2)))))
3547
3548 /* ~(~X >>r Y) -> X >>r Y
3549 ~(~X <<r Y) -> X <<r Y */
3550 (for rotate (lrotate rrotate)
3551 (simplify
3552 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
3553 (if ((element_precision (TREE_TYPE (@0))
3554 <= element_precision (TREE_TYPE (@1))
3555 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
3556 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
3557 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
3558 (with
3559 { tree rotate_type = TREE_TYPE (@0); }
3560 (convert (rotate (convert:rotate_type @1) @2))))))
3561
3562 (for cmp (eq ne)
3563 (for rotate (lrotate rrotate)
3564 invrot (rrotate lrotate)
3565 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
3566 (simplify
3567 (cmp (rotate @1 @0) (rotate @2 @0))
3568 (cmp @1 @2))
3569 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
3570 (simplify
3571 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
3572 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
3573 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
3574 (simplify
3575 (cmp (rotate @0 @1) INTEGER_CST@2)
3576 (if (integer_zerop (@2) || integer_all_onesp (@2))
3577 (cmp @0 @2)))))
3578
3579 /* Both signed and unsigned lshift produce the same result, so use
3580 the form that minimizes the number of conversions. Postpone this
3581 transformation until after shifts by zero have been folded. */
3582 (simplify
3583 (convert (lshift:s@0 (convert:s@1 @2) INTEGER_CST@3))
3584 (if (INTEGRAL_TYPE_P (type)
3585 && tree_nop_conversion_p (type, TREE_TYPE (@0))
3586 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3587 && TYPE_PRECISION (TREE_TYPE (@2)) <= TYPE_PRECISION (type)
3588 && !integer_zerop (@3))
3589 (lshift (convert @2) @3)))
3590
3591 /* Simplifications of conversions. */
3592
3593 /* Basic strip-useless-type-conversions / strip_nops. */
3594 (for cvt (convert view_convert float fix_trunc)
3595 (simplify
3596 (cvt @0)
3597 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
3598 || (GENERIC && type == TREE_TYPE (@0)))
3599 @0)))
3600
3601 /* Contract view-conversions. */
3602 (simplify
3603 (view_convert (view_convert @0))
3604 (view_convert @0))
3605
3606 /* For integral conversions with the same precision or pointer
3607 conversions use a NOP_EXPR instead. */
3608 (simplify
3609 (view_convert @0)
3610 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
3611 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3612 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
3613 (convert @0)))
3614
3615 /* Strip inner integral conversions that do not change precision or size, or
3616 zero-extend while keeping the same size (for bool-to-char). */
3617 (simplify
3618 (view_convert (convert@0 @1))
3619 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3620 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3621 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
3622 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
3623 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
3624 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
3625 (view_convert @1)))
3626
3627 /* Simplify a view-converted empty constructor. */
3628 (simplify
3629 (view_convert CONSTRUCTOR@0)
3630 (if (TREE_CODE (@0) != SSA_NAME
3631 && CONSTRUCTOR_NELTS (@0) == 0)
3632 { build_zero_cst (type); }))
3633
3634 /* Re-association barriers around constants and other re-association
3635 barriers can be removed. */
3636 (simplify
3637 (paren CONSTANT_CLASS_P@0)
3638 @0)
3639 (simplify
3640 (paren (paren@1 @0))
3641 @1)
3642
3643 /* Handle cases of two conversions in a row. */
3644 (for ocvt (convert float fix_trunc)
3645 (for icvt (convert float)
3646 (simplify
3647 (ocvt (icvt@1 @0))
3648 (with
3649 {
3650 tree inside_type = TREE_TYPE (@0);
3651 tree inter_type = TREE_TYPE (@1);
3652 int inside_int = INTEGRAL_TYPE_P (inside_type);
3653 int inside_ptr = POINTER_TYPE_P (inside_type);
3654 int inside_float = FLOAT_TYPE_P (inside_type);
3655 int inside_vec = VECTOR_TYPE_P (inside_type);
3656 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3657 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3658 int inter_int = INTEGRAL_TYPE_P (inter_type);
3659 int inter_ptr = POINTER_TYPE_P (inter_type);
3660 int inter_float = FLOAT_TYPE_P (inter_type);
3661 int inter_vec = VECTOR_TYPE_P (inter_type);
3662 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3663 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3664 int final_int = INTEGRAL_TYPE_P (type);
3665 int final_ptr = POINTER_TYPE_P (type);
3666 int final_float = FLOAT_TYPE_P (type);
3667 int final_vec = VECTOR_TYPE_P (type);
3668 unsigned int final_prec = TYPE_PRECISION (type);
3669 int final_unsignedp = TYPE_UNSIGNED (type);
3670 }
3671 (switch
3672 /* In addition to the cases of two conversions in a row
3673 handled below, if we are converting something to its own
3674 type via an object of identical or wider precision, neither
3675 conversion is needed. */
3676 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3677 || (GENERIC
3678 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3679 && (((inter_int || inter_ptr) && final_int)
3680 || (inter_float && final_float))
3681 && inter_prec >= final_prec)
3682 (ocvt @0))
3683
3684 /* Likewise, if the intermediate and initial types are either both
3685 float or both integer, we don't need the middle conversion if the
3686 former is wider than the latter and doesn't change the signedness
3687 (for integers). Avoid this if the final type is a pointer since
3688 then we sometimes need the middle conversion. */
3689 (if (((inter_int && inside_int) || (inter_float && inside_float))
3690 && (final_int || final_float)
3691 && inter_prec >= inside_prec
3692 && (inter_float || inter_unsignedp == inside_unsignedp))
3693 (ocvt @0))
3694
3695 /* If we have a sign-extension of a zero-extended value, we can
3696 replace that by a single zero-extension. Likewise if the
3697 final conversion does not change precision we can drop the
3698 intermediate conversion. */
3699 (if (inside_int && inter_int && final_int
3700 && ((inside_prec < inter_prec && inter_prec < final_prec
3701 && inside_unsignedp && !inter_unsignedp)
3702 || final_prec == inter_prec))
3703 (ocvt @0))
3704
3705 /* Two conversions in a row are not needed unless:
3706 - some conversion is floating-point (overstrict for now), or
3707 - some conversion is a vector (overstrict for now), or
3708 - the intermediate type is narrower than both initial and
3709 final, or
3710 - the intermediate type and innermost type differ in signedness,
3711 and the outermost type is wider than the intermediate, or
3712 - the initial type is a pointer type and the precisions of the
3713 intermediate and final types differ, or
3714 - the final type is a pointer type and the precisions of the
3715 initial and intermediate types differ. */
3716 (if (! inside_float && ! inter_float && ! final_float
3717 && ! inside_vec && ! inter_vec && ! final_vec
3718 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3719 && ! (inside_int && inter_int
3720 && inter_unsignedp != inside_unsignedp
3721 && inter_prec < final_prec)
3722 && ((inter_unsignedp && inter_prec > inside_prec)
3723 == (final_unsignedp && final_prec > inter_prec))
3724 && ! (inside_ptr && inter_prec != final_prec)
3725 && ! (final_ptr && inside_prec != inter_prec))
3726 (ocvt @0))
3727
3728 /* A truncation to an unsigned type (a zero-extension) should be
3729 canonicalized as bitwise and of a mask. */
3730 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3731 && final_int && inter_int && inside_int
3732 && final_prec == inside_prec
3733 && final_prec > inter_prec
3734 && inter_unsignedp)
3735 (convert (bit_and @0 { wide_int_to_tree
3736 (inside_type,
3737 wi::mask (inter_prec, false,
3738 TYPE_PRECISION (inside_type))); })))
3739
3740 /* If we are converting an integer to a floating-point that can
3741 represent it exactly and back to an integer, we can skip the
3742 floating-point conversion. */
3743 (if (GIMPLE /* PR66211 */
3744 && inside_int && inter_float && final_int &&
3745 (unsigned) significand_size (TYPE_MODE (inter_type))
3746 >= inside_prec - !inside_unsignedp)
3747 (convert @0)))))))
3748
3749 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
3750 float_type. Only do the transformation if we do not need to preserve
3751 trapping behaviour, so require !flag_trapping_math. */
3752 #if GIMPLE
3753 (simplify
3754 (float (fix_trunc @0))
3755 (if (!flag_trapping_math
3756 && types_match (type, TREE_TYPE (@0))
3757 && direct_internal_fn_supported_p (IFN_TRUNC, type,
3758 OPTIMIZE_FOR_BOTH))
3759 (IFN_TRUNC @0)))
3760 #endif
3761
3762 /* If we have a narrowing conversion to an integral type that is fed by a
3763 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3764 masks off bits outside the final type (and nothing else). */
3765 (simplify
3766 (convert (bit_and @0 INTEGER_CST@1))
3767 (if (INTEGRAL_TYPE_P (type)
3768 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3769 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3770 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3771 TYPE_PRECISION (type)), 0))
3772 (convert @0)))
3773
3774
3775 /* (X /[ex] A) * A -> X. */
3776 (simplify
3777 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3778 (convert @0))
3779
3780 /* Simplify (A / B) * B + (A % B) -> A. */
3781 (for div (trunc_div ceil_div floor_div round_div)
3782 mod (trunc_mod ceil_mod floor_mod round_mod)
3783 (simplify
3784 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3785 @0))
3786
3787 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3788 (for op (plus minus)
3789 (simplify
3790 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3791 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3792 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3793 (with
3794 {
3795 wi::overflow_type overflow;
3796 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3797 TYPE_SIGN (type), &overflow);
3798 }
3799 (if (types_match (type, TREE_TYPE (@2))
3800 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3801 (op @0 { wide_int_to_tree (type, mul); })
3802 (with { tree utype = unsigned_type_for (type); }
3803 (convert (op (convert:utype @0)
3804 (mult (convert:utype @1) (convert:utype @2))))))))))
3805
3806 /* Canonicalization of binary operations. */
3807
3808 /* Convert X + -C into X - C. */
3809 (simplify
3810 (plus @0 REAL_CST@1)
3811 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3812 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3813 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3814 (minus @0 { tem; })))))
3815
3816 /* Convert x+x into x*2. */
3817 (simplify
3818 (plus @0 @0)
3819 (if (SCALAR_FLOAT_TYPE_P (type))
3820 (mult @0 { build_real (type, dconst2); })
3821 (if (INTEGRAL_TYPE_P (type))
3822 (mult @0 { build_int_cst (type, 2); }))))
3823
3824 /* 0 - X -> -X. */
3825 (simplify
3826 (minus integer_zerop @1)
3827 (negate @1))
3828 (simplify
3829 (pointer_diff integer_zerop @1)
3830 (negate (convert @1)))
3831
3832 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3833 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3834 (-ARG1 + ARG0) reduces to -ARG1. */
3835 (simplify
3836 (minus real_zerop@0 @1)
3837 (if (fold_real_zero_addition_p (type, @1, @0, 0))
3838 (negate @1)))
3839
3840 /* Transform x * -1 into -x. */
3841 (simplify
3842 (mult @0 integer_minus_onep)
3843 (negate @0))
3844
3845 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3846 signed overflow for CST != 0 && CST != -1. */
3847 (simplify
3848 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3849 (if (TREE_CODE (@2) != INTEGER_CST
3850 && single_use (@3)
3851 && !integer_zerop (@1) && !integer_minus_onep (@1))
3852 (mult (mult @0 @2) @1)))
3853
3854 /* True if we can easily extract the real and imaginary parts of a complex
3855 number. */
3856 (match compositional_complex
3857 (convert? (complex @0 @1)))
3858
3859 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3860 (simplify
3861 (complex (realpart @0) (imagpart @0))
3862 @0)
3863 (simplify
3864 (realpart (complex @0 @1))
3865 @0)
3866 (simplify
3867 (imagpart (complex @0 @1))
3868 @1)
3869
3870 /* Sometimes we only care about half of a complex expression. */
3871 (simplify
3872 (realpart (convert?:s (conj:s @0)))
3873 (convert (realpart @0)))
3874 (simplify
3875 (imagpart (convert?:s (conj:s @0)))
3876 (convert (negate (imagpart @0))))
3877 (for part (realpart imagpart)
3878 (for op (plus minus)
3879 (simplify
3880 (part (convert?:s@2 (op:s @0 @1)))
3881 (convert (op (part @0) (part @1))))))
3882 (simplify
3883 (realpart (convert?:s (CEXPI:s @0)))
3884 (convert (COS @0)))
3885 (simplify
3886 (imagpart (convert?:s (CEXPI:s @0)))
3887 (convert (SIN @0)))
3888
3889 /* conj(conj(x)) -> x */
3890 (simplify
3891 (conj (convert? (conj @0)))
3892 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3893 (convert @0)))
3894
3895 /* conj({x,y}) -> {x,-y} */
3896 (simplify
3897 (conj (convert?:s (complex:s @0 @1)))
3898 (with { tree itype = TREE_TYPE (type); }
3899 (complex (convert:itype @0) (negate (convert:itype @1)))))
3900
3901 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3902 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
3903 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
3904 (simplify
3905 (bswap (bswap @0))
3906 @0)
3907 (simplify
3908 (bswap (bit_not (bswap @0)))
3909 (bit_not @0))
3910 (for bitop (bit_xor bit_ior bit_and)
3911 (simplify
3912 (bswap (bitop:c (bswap @0) @1))
3913 (bitop @0 (bswap @1))))
3914 (for cmp (eq ne)
3915 (simplify
3916 (cmp (bswap@2 @0) (bswap @1))
3917 (with { tree ctype = TREE_TYPE (@2); }
3918 (cmp (convert:ctype @0) (convert:ctype @1))))
3919 (simplify
3920 (cmp (bswap @0) INTEGER_CST@1)
3921 (with { tree ctype = TREE_TYPE (@1); }
3922 (cmp (convert:ctype @0) (bswap @1)))))
3923 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
3924 (simplify
3925 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
3926 INTEGER_CST@3)
3927 (if (BITS_PER_UNIT == 8
3928 && tree_fits_uhwi_p (@2)
3929 && tree_fits_uhwi_p (@3))
3930 (with
3931 {
3932 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
3933 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
3934 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
3935 unsigned HOST_WIDE_INT lo = bits & 7;
3936 unsigned HOST_WIDE_INT hi = bits - lo;
3937 }
3938 (if (bits < prec
3939 && mask < (256u>>lo)
3940 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
3941 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
3942 (if (ns == 0)
3943 (bit_and (convert @1) @3)
3944 (with
3945 {
3946 tree utype = unsigned_type_for (TREE_TYPE (@1));
3947 tree nst = build_int_cst (integer_type_node, ns);
3948 }
3949 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
3950 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
3951 (simplify
3952 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
3953 (if (BITS_PER_UNIT == 8
3954 && CHAR_TYPE_SIZE == 8
3955 && tree_fits_uhwi_p (@1))
3956 (with
3957 {
3958 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3959 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
3960 /* If the bswap was extended before the original shift, this
3961 byte (shift) has the sign of the extension, not the sign of
3962 the original shift. */
3963 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
3964 }
3965 /* Special case: logical right shift of sign-extended bswap.
3966 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
3967 (if (TYPE_PRECISION (type) > prec
3968 && !TYPE_UNSIGNED (TREE_TYPE (@2))
3969 && TYPE_UNSIGNED (type)
3970 && bits < prec && bits + 8 >= prec)
3971 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
3972 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
3973 (if (bits + 8 == prec)
3974 (if (TYPE_UNSIGNED (st))
3975 (convert (convert:unsigned_char_type_node @0))
3976 (convert (convert:signed_char_type_node @0)))
3977 (if (bits < prec && bits + 8 > prec)
3978 (with
3979 {
3980 tree nst = build_int_cst (integer_type_node, bits & 7);
3981 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
3982 : signed_char_type_node;
3983 }
3984 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
3985 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
3986 (simplify
3987 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
3988 (if (BITS_PER_UNIT == 8
3989 && tree_fits_uhwi_p (@1)
3990 && tree_to_uhwi (@1) < 256)
3991 (with
3992 {
3993 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
3994 tree utype = unsigned_type_for (TREE_TYPE (@0));
3995 tree nst = build_int_cst (integer_type_node, prec - 8);
3996 }
3997 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
3998
3999
4000 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
4001
4002 /* Simplify constant conditions.
4003 Only optimize constant conditions when the selected branch
4004 has the same type as the COND_EXPR. This avoids optimizing
4005 away "c ? x : throw", where the throw has a void type.
4006 Note that we cannot throw away the fold-const.c variant nor
4007 this one as we depend on doing this transform before possibly
4008 A ? B : B -> B triggers and the fold-const.c one can optimize
4009 0 ? A : B to B even if A has side-effects. Something
4010 genmatch cannot handle. */
4011 (simplify
4012 (cond INTEGER_CST@0 @1 @2)
4013 (if (integer_zerop (@0))
4014 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
4015 @2)
4016 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
4017 @1)))
4018 (simplify
4019 (vec_cond VECTOR_CST@0 @1 @2)
4020 (if (integer_all_onesp (@0))
4021 @1
4022 (if (integer_zerop (@0))
4023 @2)))
4024
4025 #if GIMPLE
4026 /* Sink unary operations to branches, but only if we do fold both. */
4027 (for op (negate bit_not abs absu)
4028 (simplify
4029 (op (vec_cond:s @0 @1 @2))
4030 (vec_cond @0 (op! @1) (op! @2))))
4031
4032 /* Sink binary operation to branches, but only if we can fold it. */
4033 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
4034 lshift rshift rdiv trunc_div ceil_div floor_div round_div
4035 trunc_mod ceil_mod floor_mod round_mod min max)
4036 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
4037 (simplify
4038 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
4039 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
4040
4041 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
4042 (simplify
4043 (op (vec_cond:s @0 @1 @2) @3)
4044 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
4045 (simplify
4046 (op @3 (vec_cond:s @0 @1 @2))
4047 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
4048 #endif
4049
4050 #if GIMPLE
4051 (match (nop_atomic_bit_test_and_p @0 @1 @4)
4052 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
4053 INTEGER_CST@1)
4054 (with {
4055 int ibit = tree_log2 (@0);
4056 int ibit2 = tree_log2 (@1);
4057 }
4058 (if (ibit == ibit2
4059 && ibit >= 0
4060 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4061
4062 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4063 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
4064 INTEGER_CST@1)
4065 (with {
4066 int ibit = tree_log2 (@0);
4067 int ibit2 = tree_log2 (@1);
4068 }
4069 (if (ibit == ibit2
4070 && ibit >= 0
4071 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4072
4073 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4074 (bit_and:c
4075 (convert1?@4
4076 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
4077 (convert2? @0))
4078 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4079
4080 (match (nop_atomic_bit_test_and_p @0 @0 @4)
4081 (bit_and:c
4082 (convert1?@4
4083 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
4084 (convert2? @0))
4085 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
4086
4087 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4088 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
4089 INTEGER_CST@1)
4090 (with {
4091 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4092 TYPE_PRECISION(type)));
4093 int ibit2 = tree_log2 (@1);
4094 }
4095 (if (ibit == ibit2
4096 && ibit >= 0
4097 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4098
4099 (match (nop_atomic_bit_test_and_p @0 @1 @3)
4100 (bit_and@4
4101 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
4102 INTEGER_CST@1)
4103 (with {
4104 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
4105 TYPE_PRECISION(type)));
4106 int ibit2 = tree_log2 (@1);
4107 }
4108 (if (ibit == ibit2
4109 && ibit >= 0
4110 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
4111
4112 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4113 (bit_and:c
4114 (convert1?@3
4115 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
4116 (convert2? @0))
4117 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4118
4119 (match (nop_atomic_bit_test_and_p @4 @0 @3)
4120 (bit_and:c
4121 (convert1?@3
4122 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
4123 (convert2? @0))
4124 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
4125
4126 #endif
4127
4128 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
4129 Currently disabled after pass lvec because ARM understands
4130 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
4131 (simplify
4132 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
4133 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4134 (vec_cond (bit_and @0 @3) @1 @2)))
4135 (simplify
4136 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
4137 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4138 (vec_cond (bit_ior @0 @3) @1 @2)))
4139 (simplify
4140 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
4141 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4142 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
4143 (simplify
4144 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
4145 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
4146 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
4147
4148 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
4149 (simplify
4150 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
4151 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4152 (vec_cond (bit_and @0 @1) @2 @3)))
4153 (simplify
4154 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
4155 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4156 (vec_cond (bit_ior @0 @1) @2 @3)))
4157 (simplify
4158 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
4159 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4160 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
4161 (simplify
4162 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
4163 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
4164 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
4165
4166 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
4167 types are compatible. */
4168 (simplify
4169 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
4170 (if (VECTOR_BOOLEAN_TYPE_P (type)
4171 && types_match (type, TREE_TYPE (@0)))
4172 (if (integer_zerop (@1) && integer_all_onesp (@2))
4173 (bit_not @0)
4174 (if (integer_all_onesp (@1) && integer_zerop (@2))
4175 @0))))
4176
4177 /* A few simplifications of "a ? CST1 : CST2". */
4178 /* NOTE: Only do this on gimple as the if-chain-to-switch
4179 optimization depends on the gimple to have if statements in it. */
4180 #if GIMPLE
4181 (simplify
4182 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
4183 (switch
4184 (if (integer_zerop (@2))
4185 (switch
4186 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
4187 (if (integer_onep (@1))
4188 (convert (convert:boolean_type_node @0)))
4189 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
4190 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
4191 (with {
4192 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
4193 }
4194 (lshift (convert (convert:boolean_type_node @0)) { shift; })))
4195 /* a ? -1 : 0 -> -a. No need to check the TYPE_PRECISION not being 1
4196 here as the powerof2cst case above will handle that case correctly. */
4197 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
4198 (negate (convert (convert:boolean_type_node @0))))))
4199 (if (integer_zerop (@1))
4200 (with {
4201 tree booltrue = constant_boolean_node (true, boolean_type_node);
4202 }
4203 (switch
4204 /* a ? 0 : 1 -> !a. */
4205 (if (integer_onep (@2))
4206 (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } )))
4207 /* a ? powerof2cst : 0 -> (!a) << (log2(powerof2cst)) */
4208 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
4209 (with {
4210 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
4211 }
4212 (lshift (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))
4213 { shift; })))
4214 /* a ? -1 : 0 -> -(!a). No need to check the TYPE_PRECISION not being 1
4215 here as the powerof2cst case above will handle that case correctly. */
4216 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
4217 (negate (convert (bit_xor (convert:boolean_type_node @0) { booltrue; } ))))
4218 )
4219 )
4220 )
4221 )
4222 )
4223 #endif
4224
4225 /* Simplification moved from fold_cond_expr_with_comparison. It may also
4226 be extended. */
4227 /* This pattern implements two kinds simplification:
4228
4229 Case 1)
4230 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
4231 1) Conversions are type widening from smaller type.
4232 2) Const c1 equals to c2 after canonicalizing comparison.
4233 3) Comparison has tree code LT, LE, GT or GE.
4234 This specific pattern is needed when (cmp (convert x) c) may not
4235 be simplified by comparison patterns because of multiple uses of
4236 x. It also makes sense here because simplifying across multiple
4237 referred var is always benefitial for complicated cases.
4238
4239 Case 2)
4240 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
4241 (for cmp (lt le gt ge eq)
4242 (simplify
4243 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
4244 (with
4245 {
4246 tree from_type = TREE_TYPE (@1);
4247 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
4248 enum tree_code code = ERROR_MARK;
4249
4250 if (INTEGRAL_TYPE_P (from_type)
4251 && int_fits_type_p (@2, from_type)
4252 && (types_match (c1_type, from_type)
4253 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
4254 && (TYPE_UNSIGNED (from_type)
4255 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
4256 && (types_match (c2_type, from_type)
4257 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
4258 && (TYPE_UNSIGNED (from_type)
4259 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
4260 {
4261 if (cmp != EQ_EXPR)
4262 {
4263 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
4264 {
4265 /* X <= Y - 1 equals to X < Y. */
4266 if (cmp == LE_EXPR)
4267 code = LT_EXPR;
4268 /* X > Y - 1 equals to X >= Y. */
4269 if (cmp == GT_EXPR)
4270 code = GE_EXPR;
4271 }
4272 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
4273 {
4274 /* X < Y + 1 equals to X <= Y. */
4275 if (cmp == LT_EXPR)
4276 code = LE_EXPR;
4277 /* X >= Y + 1 equals to X > Y. */
4278 if (cmp == GE_EXPR)
4279 code = GT_EXPR;
4280 }
4281 if (code != ERROR_MARK
4282 || wi::to_widest (@2) == wi::to_widest (@3))
4283 {
4284 if (cmp == LT_EXPR || cmp == LE_EXPR)
4285 code = MIN_EXPR;
4286 if (cmp == GT_EXPR || cmp == GE_EXPR)
4287 code = MAX_EXPR;
4288 }
4289 }
4290 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
4291 else if (int_fits_type_p (@3, from_type))
4292 code = EQ_EXPR;
4293 }
4294 }
4295 (if (code == MAX_EXPR)
4296 (convert (max @1 (convert @2)))
4297 (if (code == MIN_EXPR)
4298 (convert (min @1 (convert @2)))
4299 (if (code == EQ_EXPR)
4300 (convert (cond (eq @1 (convert @3))
4301 (convert:from_type @3) (convert:from_type @2)))))))))
4302
4303 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
4304
4305 1) OP is PLUS or MINUS.
4306 2) CMP is LT, LE, GT or GE.
4307 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
4308
4309 This pattern also handles special cases like:
4310
4311 A) Operand x is a unsigned to signed type conversion and c1 is
4312 integer zero. In this case,
4313 (signed type)x < 0 <=> x > MAX_VAL(signed type)
4314 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
4315 B) Const c1 may not equal to (C3 op' C2). In this case we also
4316 check equality for (c1+1) and (c1-1) by adjusting comparison
4317 code.
4318
4319 TODO: Though signed type is handled by this pattern, it cannot be
4320 simplified at the moment because C standard requires additional
4321 type promotion. In order to match&simplify it here, the IR needs
4322 to be cleaned up by other optimizers, i.e, VRP. */
4323 (for op (plus minus)
4324 (for cmp (lt le gt ge)
4325 (simplify
4326 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
4327 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
4328 (if (types_match (from_type, to_type)
4329 /* Check if it is special case A). */
4330 || (TYPE_UNSIGNED (from_type)
4331 && !TYPE_UNSIGNED (to_type)
4332 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
4333 && integer_zerop (@1)
4334 && (cmp == LT_EXPR || cmp == GE_EXPR)))
4335 (with
4336 {
4337 wi::overflow_type overflow = wi::OVF_NONE;
4338 enum tree_code code, cmp_code = cmp;
4339 wide_int real_c1;
4340 wide_int c1 = wi::to_wide (@1);
4341 wide_int c2 = wi::to_wide (@2);
4342 wide_int c3 = wi::to_wide (@3);
4343 signop sgn = TYPE_SIGN (from_type);
4344
4345 /* Handle special case A), given x of unsigned type:
4346 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
4347 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
4348 if (!types_match (from_type, to_type))
4349 {
4350 if (cmp_code == LT_EXPR)
4351 cmp_code = GT_EXPR;
4352 if (cmp_code == GE_EXPR)
4353 cmp_code = LE_EXPR;
4354 c1 = wi::max_value (to_type);
4355 }
4356 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
4357 compute (c3 op' c2) and check if it equals to c1 with op' being
4358 the inverted operator of op. Make sure overflow doesn't happen
4359 if it is undefined. */
4360 if (op == PLUS_EXPR)
4361 real_c1 = wi::sub (c3, c2, sgn, &overflow);
4362 else
4363 real_c1 = wi::add (c3, c2, sgn, &overflow);
4364
4365 code = cmp_code;
4366 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
4367 {
4368 /* Check if c1 equals to real_c1. Boundary condition is handled
4369 by adjusting comparison operation if necessary. */
4370 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
4371 && !overflow)
4372 {
4373 /* X <= Y - 1 equals to X < Y. */
4374 if (cmp_code == LE_EXPR)
4375 code = LT_EXPR;
4376 /* X > Y - 1 equals to X >= Y. */
4377 if (cmp_code == GT_EXPR)
4378 code = GE_EXPR;
4379 }
4380 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
4381 && !overflow)
4382 {
4383 /* X < Y + 1 equals to X <= Y. */
4384 if (cmp_code == LT_EXPR)
4385 code = LE_EXPR;
4386 /* X >= Y + 1 equals to X > Y. */
4387 if (cmp_code == GE_EXPR)
4388 code = GT_EXPR;
4389 }
4390 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
4391 {
4392 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
4393 code = MIN_EXPR;
4394 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
4395 code = MAX_EXPR;
4396 }
4397 }
4398 }
4399 (if (code == MAX_EXPR)
4400 (op (max @X { wide_int_to_tree (from_type, real_c1); })
4401 { wide_int_to_tree (from_type, c2); })
4402 (if (code == MIN_EXPR)
4403 (op (min @X { wide_int_to_tree (from_type, real_c1); })
4404 { wide_int_to_tree (from_type, c2); })))))))))
4405
4406 (for cnd (cond vec_cond)
4407 /* A ? B : (A ? X : C) -> A ? B : C. */
4408 (simplify
4409 (cnd @0 (cnd @0 @1 @2) @3)
4410 (cnd @0 @1 @3))
4411 (simplify
4412 (cnd @0 @1 (cnd @0 @2 @3))
4413 (cnd @0 @1 @3))
4414 /* A ? B : (!A ? C : X) -> A ? B : C. */
4415 /* ??? This matches embedded conditions open-coded because genmatch
4416 would generate matching code for conditions in separate stmts only.
4417 The following is still important to merge then and else arm cases
4418 from if-conversion. */
4419 (simplify
4420 (cnd @0 @1 (cnd @2 @3 @4))
4421 (if (inverse_conditions_p (@0, @2))
4422 (cnd @0 @1 @3)))
4423 (simplify
4424 (cnd @0 (cnd @1 @2 @3) @4)
4425 (if (inverse_conditions_p (@0, @1))
4426 (cnd @0 @3 @4)))
4427
4428 /* A ? B : B -> B. */
4429 (simplify
4430 (cnd @0 @1 @1)
4431 @1)
4432
4433 /* !A ? B : C -> A ? C : B. */
4434 (simplify
4435 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
4436 (cnd @0 @2 @1)))
4437
4438 /* abs/negative simplifications moved from fold_cond_expr_with_comparison,
4439 Need to handle (A - B) case as fold_cond_expr_with_comparison does.
4440 Need to handle UN* comparisons.
4441
4442 None of these transformations work for modes with signed
4443 zeros. If A is +/-0, the first two transformations will
4444 change the sign of the result (from +0 to -0, or vice
4445 versa). The last four will fix the sign of the result,
4446 even though the original expressions could be positive or
4447 negative, depending on the sign of A.
4448
4449 Note that all these transformations are correct if A is
4450 NaN, since the two alternatives (A and -A) are also NaNs. */
4451
4452 (for cnd (cond vec_cond)
4453 /* A == 0 ? A : -A same as -A */
4454 (for cmp (eq uneq)
4455 (simplify
4456 (cnd (cmp @0 zerop) @0 (negate@1 @0))
4457 (if (!HONOR_SIGNED_ZEROS (type))
4458 @1))
4459 (simplify
4460 (cnd (cmp @0 zerop) integer_zerop (negate@1 @0))
4461 (if (!HONOR_SIGNED_ZEROS (type))
4462 @1))
4463 )
4464 /* A != 0 ? A : -A same as A */
4465 (for cmp (ne ltgt)
4466 (simplify
4467 (cnd (cmp @0 zerop) @0 (negate @0))
4468 (if (!HONOR_SIGNED_ZEROS (type))
4469 @0))
4470 (simplify
4471 (cnd (cmp @0 zerop) @0 integer_zerop)
4472 (if (!HONOR_SIGNED_ZEROS (type))
4473 @0))
4474 )
4475 /* A >=/> 0 ? A : -A same as abs (A) */
4476 (for cmp (ge gt)
4477 (simplify
4478 (cnd (cmp @0 zerop) @0 (negate @0))
4479 (if (!HONOR_SIGNED_ZEROS (type)
4480 && !TYPE_UNSIGNED (type))
4481 (abs @0))))
4482 /* A <=/< 0 ? A : -A same as -abs (A) */
4483 (for cmp (le lt)
4484 (simplify
4485 (cnd (cmp @0 zerop) @0 (negate @0))
4486 (if (!HONOR_SIGNED_ZEROS (type)
4487 && !TYPE_UNSIGNED (type))
4488 (if (ANY_INTEGRAL_TYPE_P (type)
4489 && !TYPE_OVERFLOW_WRAPS (type))
4490 (with {
4491 tree utype = unsigned_type_for (type);
4492 }
4493 (convert (negate (absu:utype @0))))
4494 (negate (abs @0)))))
4495 )
4496 )
4497
4498 /* -(type)!A -> (type)A - 1. */
4499 (simplify
4500 (negate (convert?:s (logical_inverted_value:s @0)))
4501 (if (INTEGRAL_TYPE_P (type)
4502 && TREE_CODE (type) != BOOLEAN_TYPE
4503 && TYPE_PRECISION (type) > 1
4504 && TREE_CODE (@0) == SSA_NAME
4505 && ssa_name_has_boolean_range (@0))
4506 (plus (convert:type @0) { build_all_ones_cst (type); })))
4507
4508 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
4509 return all -1 or all 0 results. */
4510 /* ??? We could instead convert all instances of the vec_cond to negate,
4511 but that isn't necessarily a win on its own. */
4512 (simplify
4513 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4514 (if (VECTOR_TYPE_P (type)
4515 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4516 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4517 && (TYPE_MODE (TREE_TYPE (type))
4518 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4519 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4520
4521 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
4522 (simplify
4523 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
4524 (if (VECTOR_TYPE_P (type)
4525 && known_eq (TYPE_VECTOR_SUBPARTS (type),
4526 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
4527 && (TYPE_MODE (TREE_TYPE (type))
4528 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
4529 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
4530
4531
4532 /* Simplifications of comparisons. */
4533
4534 /* See if we can reduce the magnitude of a constant involved in a
4535 comparison by changing the comparison code. This is a canonicalization
4536 formerly done by maybe_canonicalize_comparison_1. */
4537 (for cmp (le gt)
4538 acmp (lt ge)
4539 (simplify
4540 (cmp @0 uniform_integer_cst_p@1)
4541 (with { tree cst = uniform_integer_cst_p (@1); }
4542 (if (tree_int_cst_sgn (cst) == -1)
4543 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4544 wide_int_to_tree (TREE_TYPE (cst),
4545 wi::to_wide (cst)
4546 + 1)); })))))
4547 (for cmp (ge lt)
4548 acmp (gt le)
4549 (simplify
4550 (cmp @0 uniform_integer_cst_p@1)
4551 (with { tree cst = uniform_integer_cst_p (@1); }
4552 (if (tree_int_cst_sgn (cst) == 1)
4553 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
4554 wide_int_to_tree (TREE_TYPE (cst),
4555 wi::to_wide (cst) - 1)); })))))
4556
4557 /* We can simplify a logical negation of a comparison to the
4558 inverted comparison. As we cannot compute an expression
4559 operator using invert_tree_comparison we have to simulate
4560 that with expression code iteration. */
4561 (for cmp (tcc_comparison)
4562 icmp (inverted_tcc_comparison)
4563 ncmp (inverted_tcc_comparison_with_nans)
4564 /* Ideally we'd like to combine the following two patterns
4565 and handle some more cases by using
4566 (logical_inverted_value (cmp @0 @1))
4567 here but for that genmatch would need to "inline" that.
4568 For now implement what forward_propagate_comparison did. */
4569 (simplify
4570 (bit_not (cmp @0 @1))
4571 (if (VECTOR_TYPE_P (type)
4572 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
4573 /* Comparison inversion may be impossible for trapping math,
4574 invert_tree_comparison will tell us. But we can't use
4575 a computed operator in the replacement tree thus we have
4576 to play the trick below. */
4577 (with { enum tree_code ic = invert_tree_comparison
4578 (cmp, HONOR_NANS (@0)); }
4579 (if (ic == icmp)
4580 (icmp @0 @1)
4581 (if (ic == ncmp)
4582 (ncmp @0 @1))))))
4583 (simplify
4584 (bit_xor (cmp @0 @1) integer_truep)
4585 (with { enum tree_code ic = invert_tree_comparison
4586 (cmp, HONOR_NANS (@0)); }
4587 (if (ic == icmp)
4588 (icmp @0 @1)
4589 (if (ic == ncmp)
4590 (ncmp @0 @1))))))
4591
4592 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
4593 ??? The transformation is valid for the other operators if overflow
4594 is undefined for the type, but performing it here badly interacts
4595 with the transformation in fold_cond_expr_with_comparison which
4596 attempts to synthetize ABS_EXPR. */
4597 (for cmp (eq ne)
4598 (for sub (minus pointer_diff)
4599 (simplify
4600 (cmp (sub@2 @0 @1) integer_zerop)
4601 (if (single_use (@2))
4602 (cmp @0 @1)))))
4603
4604 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
4605 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
4606 (for cmp (lt ge)
4607 (simplify
4608 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
4609 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4610 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4611 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4612 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
4613 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
4614 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
4615 (simplify
4616 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
4617 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4618 && !TYPE_UNSIGNED (TREE_TYPE (@0))
4619 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4620 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4621
4622 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
4623 signed arithmetic case. That form is created by the compiler
4624 often enough for folding it to be of value. One example is in
4625 computing loop trip counts after Operator Strength Reduction. */
4626 (for cmp (simple_comparison)
4627 scmp (swapped_simple_comparison)
4628 (simplify
4629 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
4630 /* Handle unfolded multiplication by zero. */
4631 (if (integer_zerop (@1))
4632 (cmp @1 @2)
4633 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4634 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4635 && single_use (@3))
4636 /* If @1 is negative we swap the sense of the comparison. */
4637 (if (tree_int_cst_sgn (@1) < 0)
4638 (scmp @0 @2)
4639 (cmp @0 @2))))))
4640
4641 /* For integral types with undefined overflow fold
4642 x * C1 == C2 into x == C2 / C1 or false.
4643 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
4644 Z / 2^n Z. */
4645 (for cmp (eq ne)
4646 (simplify
4647 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
4648 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4649 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4650 && wi::to_wide (@1) != 0)
4651 (with { widest_int quot; }
4652 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
4653 TYPE_SIGN (TREE_TYPE (@0)), &quot))
4654 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
4655 { constant_boolean_node (cmp == NE_EXPR, type); }))
4656 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4657 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4658 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
4659 (cmp @0
4660 {
4661 tree itype = TREE_TYPE (@0);
4662 int p = TYPE_PRECISION (itype);
4663 wide_int m = wi::one (p + 1) << p;
4664 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
4665 wide_int i = wide_int::from (wi::mod_inv (a, m),
4666 p, TYPE_SIGN (itype));
4667 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
4668 })))))
4669
4670 /* Simplify comparison of something with itself. For IEEE
4671 floating-point, we can only do some of these simplifications. */
4672 (for cmp (eq ge le)
4673 (simplify
4674 (cmp @0 @0)
4675 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
4676 || ! HONOR_NANS (@0))
4677 { constant_boolean_node (true, type); }
4678 (if (cmp != EQ_EXPR
4679 /* With -ftrapping-math conversion to EQ loses an exception. */
4680 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
4681 || ! flag_trapping_math))
4682 (eq @0 @0)))))
4683 (for cmp (ne gt lt)
4684 (simplify
4685 (cmp @0 @0)
4686 (if (cmp != NE_EXPR
4687 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
4688 || ! HONOR_NANS (@0))
4689 { constant_boolean_node (false, type); })))
4690 (for cmp (unle unge uneq)
4691 (simplify
4692 (cmp @0 @0)
4693 { constant_boolean_node (true, type); }))
4694 (for cmp (unlt ungt)
4695 (simplify
4696 (cmp @0 @0)
4697 (unordered @0 @0)))
4698 (simplify
4699 (ltgt @0 @0)
4700 (if (!flag_trapping_math)
4701 { constant_boolean_node (false, type); }))
4702
4703 /* x == ~x -> false */
4704 /* x != ~x -> true */
4705 (for cmp (eq ne)
4706 (simplify
4707 (cmp:c @0 (bit_not @0))
4708 { constant_boolean_node (cmp == NE_EXPR, type); }))
4709
4710 /* Fold ~X op ~Y as Y op X. */
4711 (for cmp (simple_comparison)
4712 (simplify
4713 (cmp (bit_not@2 @0) (bit_not@3 @1))
4714 (if (single_use (@2) && single_use (@3))
4715 (cmp @1 @0))))
4716
4717 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
4718 (for cmp (simple_comparison)
4719 scmp (swapped_simple_comparison)
4720 (simplify
4721 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
4722 (if (single_use (@2)
4723 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
4724 (scmp @0 (bit_not @1)))))
4725
4726 (for cmp (simple_comparison)
4727 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
4728 (simplify
4729 (cmp (convert@2 @0) (convert? @1))
4730 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4731 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4732 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
4733 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
4734 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
4735 (with
4736 {
4737 tree type1 = TREE_TYPE (@1);
4738 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
4739 {
4740 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
4741 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
4742 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
4743 type1 = float_type_node;
4744 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
4745 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
4746 type1 = double_type_node;
4747 }
4748 tree newtype
4749 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
4750 ? TREE_TYPE (@0) : type1);
4751 }
4752 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
4753 (cmp (convert:newtype @0) (convert:newtype @1))))))
4754
4755 (simplify
4756 (cmp @0 REAL_CST@1)
4757 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
4758 (switch
4759 /* a CMP (-0) -> a CMP 0 */
4760 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
4761 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
4762 /* (-0) CMP b -> 0 CMP b. */
4763 (if (TREE_CODE (@0) == REAL_CST
4764 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
4765 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
4766 /* x != NaN is always true, other ops are always false. */
4767 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4768 && !tree_expr_signaling_nan_p (@1)
4769 && !tree_expr_maybe_signaling_nan_p (@0))
4770 { constant_boolean_node (cmp == NE_EXPR, type); })
4771 /* NaN != y is always true, other ops are always false. */
4772 (if (TREE_CODE (@0) == REAL_CST
4773 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
4774 && !tree_expr_signaling_nan_p (@0)
4775 && !tree_expr_signaling_nan_p (@1))
4776 { constant_boolean_node (cmp == NE_EXPR, type); })
4777 /* Fold comparisons against infinity. */
4778 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
4779 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
4780 (with
4781 {
4782 REAL_VALUE_TYPE max;
4783 enum tree_code code = cmp;
4784 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
4785 if (neg)
4786 code = swap_tree_comparison (code);
4787 }
4788 (switch
4789 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
4790 (if (code == GT_EXPR
4791 && !(HONOR_NANS (@0) && flag_trapping_math))
4792 { constant_boolean_node (false, type); })
4793 (if (code == LE_EXPR)
4794 /* x <= +Inf is always true, if we don't care about NaNs. */
4795 (if (! HONOR_NANS (@0))
4796 { constant_boolean_node (true, type); }
4797 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
4798 an "invalid" exception. */
4799 (if (!flag_trapping_math)
4800 (eq @0 @0))))
4801 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
4802 for == this introduces an exception for x a NaN. */
4803 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
4804 || code == GE_EXPR)
4805 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4806 (if (neg)
4807 (lt @0 { build_real (TREE_TYPE (@0), max); })
4808 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
4809 /* x < +Inf is always equal to x <= DBL_MAX. */
4810 (if (code == LT_EXPR)
4811 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4812 (if (neg)
4813 (ge @0 { build_real (TREE_TYPE (@0), max); })
4814 (le @0 { build_real (TREE_TYPE (@0), max); }))))
4815 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
4816 an exception for x a NaN so use an unordered comparison. */
4817 (if (code == NE_EXPR)
4818 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
4819 (if (! HONOR_NANS (@0))
4820 (if (neg)
4821 (ge @0 { build_real (TREE_TYPE (@0), max); })
4822 (le @0 { build_real (TREE_TYPE (@0), max); }))
4823 (if (neg)
4824 (unge @0 { build_real (TREE_TYPE (@0), max); })
4825 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
4826
4827 /* If this is a comparison of a real constant with a PLUS_EXPR
4828 or a MINUS_EXPR of a real constant, we can convert it into a
4829 comparison with a revised real constant as long as no overflow
4830 occurs when unsafe_math_optimizations are enabled. */
4831 (if (flag_unsafe_math_optimizations)
4832 (for op (plus minus)
4833 (simplify
4834 (cmp (op @0 REAL_CST@1) REAL_CST@2)
4835 (with
4836 {
4837 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
4838 TREE_TYPE (@1), @2, @1);
4839 }
4840 (if (tem && !TREE_OVERFLOW (tem))
4841 (cmp @0 { tem; }))))))
4842
4843 /* Likewise, we can simplify a comparison of a real constant with
4844 a MINUS_EXPR whose first operand is also a real constant, i.e.
4845 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
4846 floating-point types only if -fassociative-math is set. */
4847 (if (flag_associative_math)
4848 (simplify
4849 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
4850 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
4851 (if (tem && !TREE_OVERFLOW (tem))
4852 (cmp { tem; } @1)))))
4853
4854 /* Fold comparisons against built-in math functions. */
4855 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
4856 (for sq (SQRT)
4857 (simplify
4858 (cmp (sq @0) REAL_CST@1)
4859 (switch
4860 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4861 (switch
4862 /* sqrt(x) < y is always false, if y is negative. */
4863 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
4864 { constant_boolean_node (false, type); })
4865 /* sqrt(x) > y is always true, if y is negative and we
4866 don't care about NaNs, i.e. negative values of x. */
4867 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
4868 { constant_boolean_node (true, type); })
4869 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
4870 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
4871 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
4872 (switch
4873 /* sqrt(x) < 0 is always false. */
4874 (if (cmp == LT_EXPR)
4875 { constant_boolean_node (false, type); })
4876 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
4877 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
4878 { constant_boolean_node (true, type); })
4879 /* sqrt(x) <= 0 -> x == 0. */
4880 (if (cmp == LE_EXPR)
4881 (eq @0 @1))
4882 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
4883 == or !=. In the last case:
4884
4885 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
4886
4887 if x is negative or NaN. Due to -funsafe-math-optimizations,
4888 the results for other x follow from natural arithmetic. */
4889 (cmp @0 @1)))
4890 (if ((cmp == LT_EXPR
4891 || cmp == LE_EXPR
4892 || cmp == GT_EXPR
4893 || cmp == GE_EXPR)
4894 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4895 /* Give up for -frounding-math. */
4896 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
4897 (with
4898 {
4899 REAL_VALUE_TYPE c2;
4900 enum tree_code ncmp = cmp;
4901 const real_format *fmt
4902 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
4903 real_arithmetic (&c2, MULT_EXPR,
4904 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
4905 real_convert (&c2, fmt, &c2);
4906 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
4907 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
4908 if (!REAL_VALUE_ISINF (c2))
4909 {
4910 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4911 build_real (TREE_TYPE (@0), c2));
4912 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4913 ncmp = ERROR_MARK;
4914 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
4915 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
4916 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
4917 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
4918 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
4919 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
4920 else
4921 {
4922 /* With rounding to even, sqrt of up to 3 different values
4923 gives the same normal result, so in some cases c2 needs
4924 to be adjusted. */
4925 REAL_VALUE_TYPE c2alt, tow;
4926 if (cmp == LT_EXPR || cmp == GE_EXPR)
4927 tow = dconst0;
4928 else
4929 real_inf (&tow);
4930 real_nextafter (&c2alt, fmt, &c2, &tow);
4931 real_convert (&c2alt, fmt, &c2alt);
4932 if (REAL_VALUE_ISINF (c2alt))
4933 ncmp = ERROR_MARK;
4934 else
4935 {
4936 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
4937 build_real (TREE_TYPE (@0), c2alt));
4938 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
4939 ncmp = ERROR_MARK;
4940 else if (real_equal (&TREE_REAL_CST (c3),
4941 &TREE_REAL_CST (@1)))
4942 c2 = c2alt;
4943 }
4944 }
4945 }
4946 }
4947 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4948 (if (REAL_VALUE_ISINF (c2))
4949 /* sqrt(x) > y is x == +Inf, when y is very large. */
4950 (if (HONOR_INFINITIES (@0))
4951 (eq @0 { build_real (TREE_TYPE (@0), c2); })
4952 { constant_boolean_node (false, type); })
4953 /* sqrt(x) > c is the same as x > c*c. */
4954 (if (ncmp != ERROR_MARK)
4955 (if (ncmp == GE_EXPR)
4956 (ge @0 { build_real (TREE_TYPE (@0), c2); })
4957 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
4958 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
4959 (if (REAL_VALUE_ISINF (c2))
4960 (switch
4961 /* sqrt(x) < y is always true, when y is a very large
4962 value and we don't care about NaNs or Infinities. */
4963 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
4964 { constant_boolean_node (true, type); })
4965 /* sqrt(x) < y is x != +Inf when y is very large and we
4966 don't care about NaNs. */
4967 (if (! HONOR_NANS (@0))
4968 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
4969 /* sqrt(x) < y is x >= 0 when y is very large and we
4970 don't care about Infinities. */
4971 (if (! HONOR_INFINITIES (@0))
4972 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
4973 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
4974 (if (GENERIC)
4975 (truth_andif
4976 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4977 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
4978 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
4979 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
4980 (if (ncmp == LT_EXPR)
4981 (lt @0 { build_real (TREE_TYPE (@0), c2); })
4982 (le @0 { build_real (TREE_TYPE (@0), c2); }))
4983 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
4984 (if (ncmp != ERROR_MARK && GENERIC)
4985 (if (ncmp == LT_EXPR)
4986 (truth_andif
4987 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4988 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
4989 (truth_andif
4990 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
4991 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
4992 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
4993 (simplify
4994 (cmp (sq @0) (sq @1))
4995 (if (! HONOR_NANS (@0))
4996 (cmp @0 @1))))))
4997
4998 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
4999 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
5000 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
5001 (simplify
5002 (cmp (float@0 @1) (float @2))
5003 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
5004 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
5005 (with
5006 {
5007 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
5008 tree type1 = TREE_TYPE (@1);
5009 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
5010 tree type2 = TREE_TYPE (@2);
5011 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
5012 }
5013 (if (fmt.can_represent_integral_type_p (type1)
5014 && fmt.can_represent_integral_type_p (type2))
5015 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
5016 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
5017 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
5018 && type1_signed_p >= type2_signed_p)
5019 (icmp @1 (convert @2))
5020 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
5021 && type1_signed_p <= type2_signed_p)
5022 (icmp (convert:type2 @1) @2)
5023 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
5024 && type1_signed_p == type2_signed_p)
5025 (icmp @1 @2))))))))))
5026
5027 /* Optimize various special cases of (FTYPE) N CMP CST. */
5028 (for cmp (lt le eq ne ge gt)
5029 icmp (le le eq ne ge ge)
5030 (simplify
5031 (cmp (float @0) REAL_CST@1)
5032 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
5033 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
5034 (with
5035 {
5036 tree itype = TREE_TYPE (@0);
5037 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
5038 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
5039 /* Be careful to preserve any potential exceptions due to
5040 NaNs. qNaNs are ok in == or != context.
5041 TODO: relax under -fno-trapping-math or
5042 -fno-signaling-nans. */
5043 bool exception_p
5044 = real_isnan (cst) && (cst->signalling
5045 || (cmp != EQ_EXPR && cmp != NE_EXPR));
5046 }
5047 /* TODO: allow non-fitting itype and SNaNs when
5048 -fno-trapping-math. */
5049 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
5050 (with
5051 {
5052 signop isign = TYPE_SIGN (itype);
5053 REAL_VALUE_TYPE imin, imax;
5054 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
5055 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
5056
5057 REAL_VALUE_TYPE icst;
5058 if (cmp == GT_EXPR || cmp == GE_EXPR)
5059 real_ceil (&icst, fmt, cst);
5060 else if (cmp == LT_EXPR || cmp == LE_EXPR)
5061 real_floor (&icst, fmt, cst);
5062 else
5063 real_trunc (&icst, fmt, cst);
5064
5065 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
5066
5067 bool overflow_p = false;
5068 wide_int icst_val
5069 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
5070 }
5071 (switch
5072 /* Optimize cases when CST is outside of ITYPE's range. */
5073 (if (real_compare (LT_EXPR, cst, &imin))
5074 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
5075 type); })
5076 (if (real_compare (GT_EXPR, cst, &imax))
5077 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
5078 type); })
5079 /* Remove cast if CST is an integer representable by ITYPE. */
5080 (if (cst_int_p)
5081 (cmp @0 { gcc_assert (!overflow_p);
5082 wide_int_to_tree (itype, icst_val); })
5083 )
5084 /* When CST is fractional, optimize
5085 (FTYPE) N == CST -> 0
5086 (FTYPE) N != CST -> 1. */
5087 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5088 { constant_boolean_node (cmp == NE_EXPR, type); })
5089 /* Otherwise replace with sensible integer constant. */
5090 (with
5091 {
5092 gcc_checking_assert (!overflow_p);
5093 }
5094 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
5095
5096 /* Fold A /[ex] B CMP C to A CMP B * C. */
5097 (for cmp (eq ne)
5098 (simplify
5099 (cmp (exact_div @0 @1) INTEGER_CST@2)
5100 (if (!integer_zerop (@1))
5101 (if (wi::to_wide (@2) == 0)
5102 (cmp @0 @2)
5103 (if (TREE_CODE (@1) == INTEGER_CST)
5104 (with
5105 {
5106 wi::overflow_type ovf;
5107 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5108 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5109 }
5110 (if (ovf)
5111 { constant_boolean_node (cmp == NE_EXPR, type); }
5112 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
5113 (for cmp (lt le gt ge)
5114 (simplify
5115 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
5116 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5117 (with
5118 {
5119 wi::overflow_type ovf;
5120 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
5121 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
5122 }
5123 (if (ovf)
5124 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
5125 TYPE_SIGN (TREE_TYPE (@2)))
5126 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
5127 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
5128
5129 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
5130
5131 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
5132 For large C (more than min/B+2^size), this is also true, with the
5133 multiplication computed modulo 2^size.
5134 For intermediate C, this just tests the sign of A. */
5135 (for cmp (lt le gt ge)
5136 cmp2 (ge ge lt lt)
5137 (simplify
5138 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
5139 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
5140 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
5141 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
5142 (with
5143 {
5144 tree utype = TREE_TYPE (@2);
5145 wide_int denom = wi::to_wide (@1);
5146 wide_int right = wi::to_wide (@2);
5147 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
5148 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
5149 bool small = wi::leu_p (right, smax);
5150 bool large = wi::geu_p (right, smin);
5151 }
5152 (if (small || large)
5153 (cmp (convert:utype @0) (mult @2 (convert @1)))
5154 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
5155
5156 /* Unordered tests if either argument is a NaN. */
5157 (simplify
5158 (bit_ior (unordered @0 @0) (unordered @1 @1))
5159 (if (types_match (@0, @1))
5160 (unordered @0 @1)))
5161 (simplify
5162 (bit_and (ordered @0 @0) (ordered @1 @1))
5163 (if (types_match (@0, @1))
5164 (ordered @0 @1)))
5165 (simplify
5166 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
5167 @2)
5168 (simplify
5169 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
5170 @2)
5171
5172 /* Simple range test simplifications. */
5173 /* A < B || A >= B -> true. */
5174 (for test1 (lt le le le ne ge)
5175 test2 (ge gt ge ne eq ne)
5176 (simplify
5177 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
5178 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5179 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5180 { constant_boolean_node (true, type); })))
5181 /* A < B && A >= B -> false. */
5182 (for test1 (lt lt lt le ne eq)
5183 test2 (ge gt eq gt eq gt)
5184 (simplify
5185 (bit_and:c (test1 @0 @1) (test2 @0 @1))
5186 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5187 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
5188 { constant_boolean_node (false, type); })))
5189
5190 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
5191 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
5192
5193 Note that comparisons
5194 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
5195 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
5196 will be canonicalized to above so there's no need to
5197 consider them here.
5198 */
5199
5200 (for cmp (le gt)
5201 eqcmp (eq ne)
5202 (simplify
5203 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
5204 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5205 (with
5206 {
5207 tree ty = TREE_TYPE (@0);
5208 unsigned prec = TYPE_PRECISION (ty);
5209 wide_int mask = wi::to_wide (@2, prec);
5210 wide_int rhs = wi::to_wide (@3, prec);
5211 signop sgn = TYPE_SIGN (ty);
5212 }
5213 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
5214 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
5215 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
5216 { build_zero_cst (ty); }))))))
5217
5218 /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
5219 where ~Y + 1 == pow2 and Z = ~Y. */
5220 (for cst (VECTOR_CST INTEGER_CST)
5221 (for cmp (eq ne)
5222 icmp (le gt)
5223 (simplify
5224 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
5225 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
5226 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
5227 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
5228 (icmp @0 { csts; })
5229 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5230 (icmp (convert:utype @0) { csts; }))))))))
5231
5232 /* -A CMP -B -> B CMP A. */
5233 (for cmp (tcc_comparison)
5234 scmp (swapped_tcc_comparison)
5235 (simplify
5236 (cmp (negate @0) (negate @1))
5237 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5238 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5239 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5240 (scmp @0 @1)))
5241 (simplify
5242 (cmp (negate @0) CONSTANT_CLASS_P@1)
5243 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
5244 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5245 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
5246 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
5247 (if (tem && !TREE_OVERFLOW (tem))
5248 (scmp @0 { tem; }))))))
5249
5250 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
5251 (for op (eq ne)
5252 (simplify
5253 (op (abs @0) zerop@1)
5254 (op @0 @1)))
5255
5256 /* From fold_sign_changed_comparison and fold_widened_comparison.
5257 FIXME: the lack of symmetry is disturbing. */
5258 (for cmp (simple_comparison)
5259 (simplify
5260 (cmp (convert@0 @00) (convert?@1 @10))
5261 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5262 /* Disable this optimization if we're casting a function pointer
5263 type on targets that require function pointer canonicalization. */
5264 && !(targetm.have_canonicalize_funcptr_for_compare ()
5265 && ((POINTER_TYPE_P (TREE_TYPE (@00))
5266 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
5267 || (POINTER_TYPE_P (TREE_TYPE (@10))
5268 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
5269 && single_use (@0))
5270 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
5271 && (TREE_CODE (@10) == INTEGER_CST
5272 || @1 != @10)
5273 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
5274 || cmp == NE_EXPR
5275 || cmp == EQ_EXPR)
5276 && !POINTER_TYPE_P (TREE_TYPE (@00)))
5277 /* ??? The special-casing of INTEGER_CST conversion was in the original
5278 code and here to avoid a spurious overflow flag on the resulting
5279 constant which fold_convert produces. */
5280 (if (TREE_CODE (@1) == INTEGER_CST)
5281 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
5282 TREE_OVERFLOW (@1)); })
5283 (cmp @00 (convert @1)))
5284
5285 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
5286 /* If possible, express the comparison in the shorter mode. */
5287 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
5288 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
5289 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
5290 && TYPE_UNSIGNED (TREE_TYPE (@00))))
5291 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
5292 || ((TYPE_PRECISION (TREE_TYPE (@00))
5293 >= TYPE_PRECISION (TREE_TYPE (@10)))
5294 && (TYPE_UNSIGNED (TREE_TYPE (@00))
5295 == TYPE_UNSIGNED (TREE_TYPE (@10))))
5296 || (TREE_CODE (@10) == INTEGER_CST
5297 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5298 && int_fits_type_p (@10, TREE_TYPE (@00)))))
5299 (cmp @00 (convert @10))
5300 (if (TREE_CODE (@10) == INTEGER_CST
5301 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
5302 && !int_fits_type_p (@10, TREE_TYPE (@00)))
5303 (with
5304 {
5305 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5306 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
5307 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
5308 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
5309 }
5310 (if (above || below)
5311 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
5312 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
5313 (if (cmp == LT_EXPR || cmp == LE_EXPR)
5314 { constant_boolean_node (above ? true : false, type); }
5315 (if (cmp == GT_EXPR || cmp == GE_EXPR)
5316 { constant_boolean_node (above ? false : true, type); }))))))))))))
5317
5318 (for cmp (eq ne)
5319 (simplify
5320 /* SSA names are canonicalized to 2nd place. */
5321 (cmp addr@0 SSA_NAME@1)
5322 (with
5323 { poly_int64 off; tree base; }
5324 /* A local variable can never be pointed to by
5325 the default SSA name of an incoming parameter. */
5326 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
5327 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
5328 && (base = get_base_address (TREE_OPERAND (@0, 0)))
5329 && TREE_CODE (base) == VAR_DECL
5330 && auto_var_in_fn_p (base, current_function_decl))
5331 (if (cmp == NE_EXPR)
5332 { constant_boolean_node (true, type); }
5333 { constant_boolean_node (false, type); })
5334 /* If the address is based on @1 decide using the offset. */
5335 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off))
5336 && TREE_CODE (base) == MEM_REF
5337 && TREE_OPERAND (base, 0) == @1)
5338 (with { off += mem_ref_offset (base).force_shwi (); }
5339 (if (known_ne (off, 0))
5340 { constant_boolean_node (cmp == NE_EXPR, type); }
5341 (if (known_eq (off, 0))
5342 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
5343
5344 /* Equality compare simplifications from fold_binary */
5345 (for cmp (eq ne)
5346
5347 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
5348 Similarly for NE_EXPR. */
5349 (simplify
5350 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
5351 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
5352 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
5353 { constant_boolean_node (cmp == NE_EXPR, type); }))
5354
5355 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
5356 (simplify
5357 (cmp (bit_xor @0 @1) integer_zerop)
5358 (cmp @0 @1))
5359
5360 /* (X ^ Y) == Y becomes X == 0.
5361 Likewise (X ^ Y) == X becomes Y == 0. */
5362 (simplify
5363 (cmp:c (bit_xor:c @0 @1) @0)
5364 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
5365
5366 #if GIMPLE
5367 /* (X & Y) == X becomes (X & ~Y) == 0. */
5368 (simplify
5369 (cmp:c (bit_and:c @0 @1) @0)
5370 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5371 (simplify
5372 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
5373 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5374 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5375 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5376 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
5377 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
5378 && !wi::neg_p (wi::to_wide (@1)))
5379 (cmp (bit_and @0 (convert (bit_not @1)))
5380 { build_zero_cst (TREE_TYPE (@0)); })))
5381
5382 /* (X | Y) == Y becomes (X & ~Y) == 0. */
5383 (simplify
5384 (cmp:c (bit_ior:c @0 @1) @1)
5385 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
5386 #endif
5387
5388 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
5389 (simplify
5390 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
5391 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
5392 (cmp @0 (bit_xor @1 (convert @2)))))
5393
5394 (simplify
5395 (cmp (convert? addr@0) integer_zerop)
5396 (if (tree_single_nonzero_warnv_p (@0, NULL))
5397 { constant_boolean_node (cmp == NE_EXPR, type); }))
5398
5399 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
5400 (simplify
5401 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
5402 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
5403
5404 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
5405 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
5406 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
5407 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
5408 (for cmp (eq ne)
5409 ncmp (ge lt)
5410 (for sgncmp (ge lt)
5411 (simplify
5412 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
5413 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5414 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5415 && types_match (@0, @1))
5416 (ncmp (bit_xor @0 @1) @2)))))
5417 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
5418 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
5419 (for cmp (eq ne)
5420 ncmp (lt ge)
5421 (simplify
5422 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
5423 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5424 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5425 && types_match (@0, @1))
5426 (ncmp (bit_xor @0 @1) @2))))
5427
5428 /* If we have (A & C) == C where C is a power of 2, convert this into
5429 (A & C) != 0. Similarly for NE_EXPR. */
5430 (for cmp (eq ne)
5431 icmp (ne eq)
5432 (simplify
5433 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
5434 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
5435
5436 (for cmp (ge lt)
5437 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
5438 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
5439 (simplify
5440 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
5441 (if (INTEGRAL_TYPE_P (type)
5442 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5443 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5444 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5445 (with
5446 {
5447 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5448 }
5449 (if (cmp == LT_EXPR)
5450 (bit_xor (convert (rshift @0 {shifter;})) @1)
5451 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
5452 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
5453 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
5454 (simplify
5455 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
5456 (if (INTEGRAL_TYPE_P (type)
5457 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5458 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5459 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
5460 (with
5461 {
5462 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
5463 }
5464 (if (cmp == GE_EXPR)
5465 (bit_xor (convert (rshift @0 {shifter;})) @1)
5466 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
5467
5468 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
5469 convert this into a shift followed by ANDing with D. */
5470 (simplify
5471 (cond
5472 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
5473 INTEGER_CST@2 integer_zerop)
5474 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
5475 (with {
5476 int shift = (wi::exact_log2 (wi::to_wide (@2))
5477 - wi::exact_log2 (wi::to_wide (@1)));
5478 }
5479 (if (shift > 0)
5480 (bit_and
5481 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
5482 (bit_and
5483 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
5484 @2)))))
5485
5486 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5487 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5488 (for cmp (eq ne)
5489 ncmp (ge lt)
5490 (simplify
5491 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
5492 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5493 && type_has_mode_precision_p (TREE_TYPE (@0))
5494 && element_precision (@2) >= element_precision (@0)
5495 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
5496 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
5497 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
5498
5499 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
5500 this into a right shift or sign extension followed by ANDing with C. */
5501 (simplify
5502 (cond
5503 (lt @0 integer_zerop)
5504 INTEGER_CST@1 integer_zerop)
5505 (if (integer_pow2p (@1)
5506 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
5507 (with {
5508 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
5509 }
5510 (if (shift >= 0)
5511 (bit_and
5512 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
5513 @1)
5514 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
5515 sign extension followed by AND with C will achieve the effect. */
5516 (bit_and (convert @0) @1)))))
5517
5518 /* When the addresses are not directly of decls compare base and offset.
5519 This implements some remaining parts of fold_comparison address
5520 comparisons but still no complete part of it. Still it is good
5521 enough to make fold_stmt not regress when not dispatching to fold_binary. */
5522 (for cmp (simple_comparison)
5523 (simplify
5524 (cmp (convert1?@2 addr@0) (convert2? addr@1))
5525 (with
5526 {
5527 poly_int64 off0, off1;
5528 tree base0, base1;
5529 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
5530 off0, off1, GENERIC);
5531 }
5532 (if (equal == 1)
5533 (switch
5534 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5535 { constant_boolean_node (known_eq (off0, off1), type); })
5536 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
5537 { constant_boolean_node (known_ne (off0, off1), type); })
5538 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
5539 { constant_boolean_node (known_lt (off0, off1), type); })
5540 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
5541 { constant_boolean_node (known_le (off0, off1), type); })
5542 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
5543 { constant_boolean_node (known_ge (off0, off1), type); })
5544 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
5545 { constant_boolean_node (known_gt (off0, off1), type); }))
5546 (if (equal == 0)
5547 (switch
5548 (if (cmp == EQ_EXPR)
5549 { constant_boolean_node (false, type); })
5550 (if (cmp == NE_EXPR)
5551 { constant_boolean_node (true, type); })))))))
5552
5553 /* Simplify pointer equality compares using PTA. */
5554 (for neeq (ne eq)
5555 (simplify
5556 (neeq @0 @1)
5557 (if (POINTER_TYPE_P (TREE_TYPE (@0))
5558 && ptrs_compare_unequal (@0, @1))
5559 { constant_boolean_node (neeq != EQ_EXPR, type); })))
5560
5561 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
5562 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
5563 Disable the transform if either operand is pointer to function.
5564 This broke pr22051-2.c for arm where function pointer
5565 canonicalizaion is not wanted. */
5566
5567 (for cmp (ne eq)
5568 (simplify
5569 (cmp (convert @0) INTEGER_CST@1)
5570 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
5571 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
5572 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5573 /* Don't perform this optimization in GENERIC if @0 has reference
5574 type when sanitizing. See PR101210. */
5575 && !(GENERIC
5576 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
5577 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
5578 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5579 && POINTER_TYPE_P (TREE_TYPE (@1))
5580 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
5581 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
5582 (cmp @0 (convert @1)))))
5583
5584 /* Non-equality compare simplifications from fold_binary */
5585 (for cmp (lt gt le ge)
5586 /* Comparisons with the highest or lowest possible integer of
5587 the specified precision will have known values. */
5588 (simplify
5589 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
5590 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
5591 || POINTER_TYPE_P (TREE_TYPE (@1))
5592 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
5593 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
5594 (with
5595 {
5596 tree cst = uniform_integer_cst_p (@1);
5597 tree arg1_type = TREE_TYPE (cst);
5598 unsigned int prec = TYPE_PRECISION (arg1_type);
5599 wide_int max = wi::max_value (arg1_type);
5600 wide_int signed_max = wi::max_value (prec, SIGNED);
5601 wide_int min = wi::min_value (arg1_type);
5602 }
5603 (switch
5604 (if (wi::to_wide (cst) == max)
5605 (switch
5606 (if (cmp == GT_EXPR)
5607 { constant_boolean_node (false, type); })
5608 (if (cmp == GE_EXPR)
5609 (eq @2 @1))
5610 (if (cmp == LE_EXPR)
5611 { constant_boolean_node (true, type); })
5612 (if (cmp == LT_EXPR)
5613 (ne @2 @1))))
5614 (if (wi::to_wide (cst) == min)
5615 (switch
5616 (if (cmp == LT_EXPR)
5617 { constant_boolean_node (false, type); })
5618 (if (cmp == LE_EXPR)
5619 (eq @2 @1))
5620 (if (cmp == GE_EXPR)
5621 { constant_boolean_node (true, type); })
5622 (if (cmp == GT_EXPR)
5623 (ne @2 @1))))
5624 (if (wi::to_wide (cst) == max - 1)
5625 (switch
5626 (if (cmp == GT_EXPR)
5627 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5628 wide_int_to_tree (TREE_TYPE (cst),
5629 wi::to_wide (cst)
5630 + 1)); }))
5631 (if (cmp == LE_EXPR)
5632 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5633 wide_int_to_tree (TREE_TYPE (cst),
5634 wi::to_wide (cst)
5635 + 1)); }))))
5636 (if (wi::to_wide (cst) == min + 1)
5637 (switch
5638 (if (cmp == GE_EXPR)
5639 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
5640 wide_int_to_tree (TREE_TYPE (cst),
5641 wi::to_wide (cst)
5642 - 1)); }))
5643 (if (cmp == LT_EXPR)
5644 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
5645 wide_int_to_tree (TREE_TYPE (cst),
5646 wi::to_wide (cst)
5647 - 1)); }))))
5648 (if (wi::to_wide (cst) == signed_max
5649 && TYPE_UNSIGNED (arg1_type)
5650 /* We will flip the signedness of the comparison operator
5651 associated with the mode of @1, so the sign bit is
5652 specified by this mode. Check that @1 is the signed
5653 max associated with this sign bit. */
5654 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
5655 /* signed_type does not work on pointer types. */
5656 && INTEGRAL_TYPE_P (arg1_type))
5657 /* The following case also applies to X < signed_max+1
5658 and X >= signed_max+1 because previous transformations. */
5659 (if (cmp == LE_EXPR || cmp == GT_EXPR)
5660 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
5661 (switch
5662 (if (cst == @1 && cmp == LE_EXPR)
5663 (ge (convert:st @0) { build_zero_cst (st); }))
5664 (if (cst == @1 && cmp == GT_EXPR)
5665 (lt (convert:st @0) { build_zero_cst (st); }))
5666 (if (cmp == LE_EXPR)
5667 (ge (view_convert:st @0) { build_zero_cst (st); }))
5668 (if (cmp == GT_EXPR)
5669 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
5670
5671 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
5672 /* If the second operand is NaN, the result is constant. */
5673 (simplify
5674 (cmp @0 REAL_CST@1)
5675 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
5676 && (cmp != LTGT_EXPR || ! flag_trapping_math))
5677 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
5678 ? false : true, type); })))
5679
5680 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
5681 (simplify
5682 (unordered @0 @1)
5683 (switch
5684 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5685 { constant_boolean_node (true, type); })
5686 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5687 { constant_boolean_node (false, type); })))
5688
5689 /* Fold ORDERED if either operand must be NaN, or neither can be. */
5690 (simplify
5691 (ordered @0 @1)
5692 (switch
5693 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
5694 { constant_boolean_node (false, type); })
5695 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
5696 { constant_boolean_node (true, type); })))
5697
5698 /* bool_var != 0 becomes bool_var. */
5699 (simplify
5700 (ne @0 integer_zerop)
5701 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5702 && types_match (type, TREE_TYPE (@0)))
5703 (non_lvalue @0)))
5704 /* bool_var == 1 becomes bool_var. */
5705 (simplify
5706 (eq @0 integer_onep)
5707 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
5708 && types_match (type, TREE_TYPE (@0)))
5709 (non_lvalue @0)))
5710 /* Do not handle
5711 bool_var == 0 becomes !bool_var or
5712 bool_var != 1 becomes !bool_var
5713 here because that only is good in assignment context as long
5714 as we require a tcc_comparison in GIMPLE_CONDs where we'd
5715 replace if (x == 0) with tem = ~x; if (tem != 0) which is
5716 clearly less optimal and which we'll transform again in forwprop. */
5717
5718 /* When one argument is a constant, overflow detection can be simplified.
5719 Currently restricted to single use so as not to interfere too much with
5720 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
5721 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
5722 (for cmp (lt le ge gt)
5723 out (gt gt le le)
5724 (simplify
5725 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
5726 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
5727 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
5728 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
5729 && wi::to_wide (@1) != 0
5730 && single_use (@2))
5731 (with {
5732 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
5733 signop sign = TYPE_SIGN (TREE_TYPE (@0));
5734 }
5735 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
5736 wi::max_value (prec, sign)
5737 - wi::to_wide (@1)); })))))
5738
5739 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
5740 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
5741 expects the long form, so we restrict the transformation for now. */
5742 (for cmp (gt le)
5743 (simplify
5744 (cmp:c (minus@2 @0 @1) @0)
5745 (if (single_use (@2)
5746 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5747 && TYPE_UNSIGNED (TREE_TYPE (@0)))
5748 (cmp @1 @0))))
5749
5750 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
5751 (for cmp (ge lt)
5752 (simplify
5753 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
5754 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5755 && TYPE_UNSIGNED (TREE_TYPE (@0)))
5756 (cmp @1 @0))))
5757
5758 /* Testing for overflow is unnecessary if we already know the result. */
5759 /* A - B > A */
5760 (for cmp (gt le)
5761 out (ne eq)
5762 (simplify
5763 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
5764 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5765 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5766 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5767 /* A + B < A */
5768 (for cmp (lt ge)
5769 out (ne eq)
5770 (simplify
5771 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
5772 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5773 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5774 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
5775
5776 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
5777 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
5778 (for cmp (lt ge)
5779 out (ne eq)
5780 (simplify
5781 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
5782 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
5783 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5784 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5785
5786 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
5787 is at least twice as wide as type of A and B, simplify to
5788 __builtin_mul_overflow (A, B, <unused>). */
5789 (for cmp (eq ne)
5790 (simplify
5791 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
5792 integer_zerop)
5793 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5794 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5795 && TYPE_UNSIGNED (TREE_TYPE (@0))
5796 && (TYPE_PRECISION (TREE_TYPE (@3))
5797 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
5798 && tree_fits_uhwi_p (@2)
5799 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
5800 && types_match (@0, @1)
5801 && type_has_mode_precision_p (TREE_TYPE (@0))
5802 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
5803 != CODE_FOR_nothing))
5804 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
5805 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
5806
5807 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
5808 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
5809 (simplify
5810 (ovf (convert@2 @0) @1)
5811 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5812 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5813 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5814 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5815 (ovf @0 @1)))
5816 (simplify
5817 (ovf @1 (convert@2 @0))
5818 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5819 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5820 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5821 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
5822 (ovf @1 @0))))
5823
5824 /* Simplification of math builtins. These rules must all be optimizations
5825 as well as IL simplifications. If there is a possibility that the new
5826 form could be a pessimization, the rule should go in the canonicalization
5827 section that follows this one.
5828
5829 Rules can generally go in this section if they satisfy one of
5830 the following:
5831
5832 - the rule describes an identity
5833
5834 - the rule replaces calls with something as simple as addition or
5835 multiplication
5836
5837 - the rule contains unary calls only and simplifies the surrounding
5838 arithmetic. (The idea here is to exclude non-unary calls in which
5839 one operand is constant and in which the call is known to be cheap
5840 when the operand has that value.) */
5841
5842 (if (flag_unsafe_math_optimizations)
5843 /* Simplify sqrt(x) * sqrt(x) -> x. */
5844 (simplify
5845 (mult (SQRT_ALL@1 @0) @1)
5846 (if (!tree_expr_maybe_signaling_nan_p (@0))
5847 @0))
5848
5849 (for op (plus minus)
5850 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
5851 (simplify
5852 (op (rdiv @0 @1)
5853 (rdiv @2 @1))
5854 (rdiv (op @0 @2) @1)))
5855
5856 (for cmp (lt le gt ge)
5857 neg_cmp (gt ge lt le)
5858 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
5859 (simplify
5860 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
5861 (with
5862 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
5863 (if (tem
5864 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
5865 || (real_zerop (tem) && !real_zerop (@1))))
5866 (switch
5867 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
5868 (cmp @0 { tem; }))
5869 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
5870 (neg_cmp @0 { tem; })))))))
5871
5872 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
5873 (for root (SQRT CBRT)
5874 (simplify
5875 (mult (root:s @0) (root:s @1))
5876 (root (mult @0 @1))))
5877
5878 /* Simplify expN(x) * expN(y) -> expN(x+y). */
5879 (for exps (EXP EXP2 EXP10 POW10)
5880 (simplify
5881 (mult (exps:s @0) (exps:s @1))
5882 (exps (plus @0 @1))))
5883
5884 /* Simplify a/root(b/c) into a*root(c/b). */
5885 (for root (SQRT CBRT)
5886 (simplify
5887 (rdiv @0 (root:s (rdiv:s @1 @2)))
5888 (mult @0 (root (rdiv @2 @1)))))
5889
5890 /* Simplify x/expN(y) into x*expN(-y). */
5891 (for exps (EXP EXP2 EXP10 POW10)
5892 (simplify
5893 (rdiv @0 (exps:s @1))
5894 (mult @0 (exps (negate @1)))))
5895
5896 (for logs (LOG LOG2 LOG10 LOG10)
5897 exps (EXP EXP2 EXP10 POW10)
5898 /* logN(expN(x)) -> x. */
5899 (simplify
5900 (logs (exps @0))
5901 @0)
5902 /* expN(logN(x)) -> x. */
5903 (simplify
5904 (exps (logs @0))
5905 @0))
5906
5907 /* Optimize logN(func()) for various exponential functions. We
5908 want to determine the value "x" and the power "exponent" in
5909 order to transform logN(x**exponent) into exponent*logN(x). */
5910 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
5911 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
5912 (simplify
5913 (logs (exps @0))
5914 (if (SCALAR_FLOAT_TYPE_P (type))
5915 (with {
5916 tree x;
5917 switch (exps)
5918 {
5919 CASE_CFN_EXP:
5920 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
5921 x = build_real_truncate (type, dconst_e ());
5922 break;
5923 CASE_CFN_EXP2:
5924 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
5925 x = build_real (type, dconst2);
5926 break;
5927 CASE_CFN_EXP10:
5928 CASE_CFN_POW10:
5929 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
5930 {
5931 REAL_VALUE_TYPE dconst10;
5932 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
5933 x = build_real (type, dconst10);
5934 }
5935 break;
5936 default:
5937 gcc_unreachable ();
5938 }
5939 }
5940 (mult (logs { x; }) @0)))))
5941
5942 (for logs (LOG LOG
5943 LOG2 LOG2
5944 LOG10 LOG10)
5945 exps (SQRT CBRT)
5946 (simplify
5947 (logs (exps @0))
5948 (if (SCALAR_FLOAT_TYPE_P (type))
5949 (with {
5950 tree x;
5951 switch (exps)
5952 {
5953 CASE_CFN_SQRT:
5954 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
5955 x = build_real (type, dconsthalf);
5956 break;
5957 CASE_CFN_CBRT:
5958 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
5959 x = build_real_truncate (type, dconst_third ());
5960 break;
5961 default:
5962 gcc_unreachable ();
5963 }
5964 }
5965 (mult { x; } (logs @0))))))
5966
5967 /* logN(pow(x,exponent)) -> exponent*logN(x). */
5968 (for logs (LOG LOG2 LOG10)
5969 pows (POW)
5970 (simplify
5971 (logs (pows @0 @1))
5972 (mult @1 (logs @0))))
5973
5974 /* pow(C,x) -> exp(log(C)*x) if C > 0,
5975 or if C is a positive power of 2,
5976 pow(C,x) -> exp2(log2(C)*x). */
5977 #if GIMPLE
5978 (for pows (POW)
5979 exps (EXP)
5980 logs (LOG)
5981 exp2s (EXP2)
5982 log2s (LOG2)
5983 (simplify
5984 (pows REAL_CST@0 @1)
5985 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
5986 && real_isfinite (TREE_REAL_CST_PTR (@0))
5987 /* As libmvec doesn't have a vectorized exp2, defer optimizing
5988 the use_exp2 case until after vectorization. It seems actually
5989 beneficial for all constants to postpone this until later,
5990 because exp(log(C)*x), while faster, will have worse precision
5991 and if x folds into a constant too, that is unnecessary
5992 pessimization. */
5993 && canonicalize_math_after_vectorization_p ())
5994 (with {
5995 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
5996 bool use_exp2 = false;
5997 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
5998 && value->cl == rvc_normal)
5999 {
6000 REAL_VALUE_TYPE frac_rvt = *value;
6001 SET_REAL_EXP (&frac_rvt, 1);
6002 if (real_equal (&frac_rvt, &dconst1))
6003 use_exp2 = true;
6004 }
6005 }
6006 (if (!use_exp2)
6007 (if (optimize_pow_to_exp (@0, @1))
6008 (exps (mult (logs @0) @1)))
6009 (exp2s (mult (log2s @0) @1)))))))
6010 #endif
6011
6012 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
6013 (for pows (POW)
6014 exps (EXP EXP2 EXP10 POW10)
6015 logs (LOG LOG2 LOG10 LOG10)
6016 (simplify
6017 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
6018 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
6019 && real_isfinite (TREE_REAL_CST_PTR (@0)))
6020 (exps (plus (mult (logs @0) @1) @2)))))
6021
6022 (for sqrts (SQRT)
6023 cbrts (CBRT)
6024 pows (POW)
6025 exps (EXP EXP2 EXP10 POW10)
6026 /* sqrt(expN(x)) -> expN(x*0.5). */
6027 (simplify
6028 (sqrts (exps @0))
6029 (exps (mult @0 { build_real (type, dconsthalf); })))
6030 /* cbrt(expN(x)) -> expN(x/3). */
6031 (simplify
6032 (cbrts (exps @0))
6033 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
6034 /* pow(expN(x), y) -> expN(x*y). */
6035 (simplify
6036 (pows (exps @0) @1)
6037 (exps (mult @0 @1))))
6038
6039 /* tan(atan(x)) -> x. */
6040 (for tans (TAN)
6041 atans (ATAN)
6042 (simplify
6043 (tans (atans @0))
6044 @0)))
6045
6046 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
6047 (for sins (SIN)
6048 atans (ATAN)
6049 sqrts (SQRT)
6050 copysigns (COPYSIGN)
6051 (simplify
6052 (sins (atans:s @0))
6053 (with
6054 {
6055 REAL_VALUE_TYPE r_cst;
6056 build_sinatan_real (&r_cst, type);
6057 tree t_cst = build_real (type, r_cst);
6058 tree t_one = build_one_cst (type);
6059 }
6060 (if (SCALAR_FLOAT_TYPE_P (type))
6061 (cond (lt (abs @0) { t_cst; })
6062 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
6063 (copysigns { t_one; } @0))))))
6064
6065 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
6066 (for coss (COS)
6067 atans (ATAN)
6068 sqrts (SQRT)
6069 copysigns (COPYSIGN)
6070 (simplify
6071 (coss (atans:s @0))
6072 (with
6073 {
6074 REAL_VALUE_TYPE r_cst;
6075 build_sinatan_real (&r_cst, type);
6076 tree t_cst = build_real (type, r_cst);
6077 tree t_one = build_one_cst (type);
6078 tree t_zero = build_zero_cst (type);
6079 }
6080 (if (SCALAR_FLOAT_TYPE_P (type))
6081 (cond (lt (abs @0) { t_cst; })
6082 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
6083 (copysigns { t_zero; } @0))))))
6084
6085 (if (!flag_errno_math)
6086 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
6087 (for sinhs (SINH)
6088 atanhs (ATANH)
6089 sqrts (SQRT)
6090 (simplify
6091 (sinhs (atanhs:s @0))
6092 (with { tree t_one = build_one_cst (type); }
6093 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
6094
6095 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
6096 (for coshs (COSH)
6097 atanhs (ATANH)
6098 sqrts (SQRT)
6099 (simplify
6100 (coshs (atanhs:s @0))
6101 (with { tree t_one = build_one_cst (type); }
6102 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
6103
6104 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
6105 (simplify
6106 (CABS (complex:C @0 real_zerop@1))
6107 (abs @0))
6108
6109 /* trunc(trunc(x)) -> trunc(x), etc. */
6110 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6111 (simplify
6112 (fns (fns @0))
6113 (fns @0)))
6114 /* f(x) -> x if x is integer valued and f does nothing for such values. */
6115 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
6116 (simplify
6117 (fns integer_valued_real_p@0)
6118 @0))
6119
6120 /* hypot(x,0) and hypot(0,x) -> abs(x). */
6121 (simplify
6122 (HYPOT:c @0 real_zerop@1)
6123 (abs @0))
6124
6125 /* pow(1,x) -> 1. */
6126 (simplify
6127 (POW real_onep@0 @1)
6128 @0)
6129
6130 (simplify
6131 /* copysign(x,x) -> x. */
6132 (COPYSIGN_ALL @0 @0)
6133 @0)
6134
6135 (simplify
6136 /* copysign(x,-x) -> -x. */
6137 (COPYSIGN_ALL @0 (negate@1 @0))
6138 @1)
6139
6140 (simplify
6141 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
6142 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
6143 (abs @0))
6144
6145 (for scale (LDEXP SCALBN SCALBLN)
6146 /* ldexp(0, x) -> 0. */
6147 (simplify
6148 (scale real_zerop@0 @1)
6149 @0)
6150 /* ldexp(x, 0) -> x. */
6151 (simplify
6152 (scale @0 integer_zerop@1)
6153 @0)
6154 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
6155 (simplify
6156 (scale REAL_CST@0 @1)
6157 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
6158 @0)))
6159
6160 /* Canonicalization of sequences of math builtins. These rules represent
6161 IL simplifications but are not necessarily optimizations.
6162
6163 The sincos pass is responsible for picking "optimal" implementations
6164 of math builtins, which may be more complicated and can sometimes go
6165 the other way, e.g. converting pow into a sequence of sqrts.
6166 We only want to do these canonicalizations before the pass has run. */
6167
6168 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
6169 /* Simplify tan(x) * cos(x) -> sin(x). */
6170 (simplify
6171 (mult:c (TAN:s @0) (COS:s @0))
6172 (SIN @0))
6173
6174 /* Simplify x * pow(x,c) -> pow(x,c+1). */
6175 (simplify
6176 (mult:c @0 (POW:s @0 REAL_CST@1))
6177 (if (!TREE_OVERFLOW (@1))
6178 (POW @0 (plus @1 { build_one_cst (type); }))))
6179
6180 /* Simplify sin(x) / cos(x) -> tan(x). */
6181 (simplify
6182 (rdiv (SIN:s @0) (COS:s @0))
6183 (TAN @0))
6184
6185 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
6186 (simplify
6187 (rdiv (SINH:s @0) (COSH:s @0))
6188 (TANH @0))
6189
6190 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
6191 (simplify
6192 (rdiv (TANH:s @0) (SINH:s @0))
6193 (rdiv {build_one_cst (type);} (COSH @0)))
6194
6195 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
6196 (simplify
6197 (rdiv (COS:s @0) (SIN:s @0))
6198 (rdiv { build_one_cst (type); } (TAN @0)))
6199
6200 /* Simplify sin(x) / tan(x) -> cos(x). */
6201 (simplify
6202 (rdiv (SIN:s @0) (TAN:s @0))
6203 (if (! HONOR_NANS (@0)
6204 && ! HONOR_INFINITIES (@0))
6205 (COS @0)))
6206
6207 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
6208 (simplify
6209 (rdiv (TAN:s @0) (SIN:s @0))
6210 (if (! HONOR_NANS (@0)
6211 && ! HONOR_INFINITIES (@0))
6212 (rdiv { build_one_cst (type); } (COS @0))))
6213
6214 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
6215 (simplify
6216 (mult (POW:s @0 @1) (POW:s @0 @2))
6217 (POW @0 (plus @1 @2)))
6218
6219 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
6220 (simplify
6221 (mult (POW:s @0 @1) (POW:s @2 @1))
6222 (POW (mult @0 @2) @1))
6223
6224 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
6225 (simplify
6226 (mult (POWI:s @0 @1) (POWI:s @2 @1))
6227 (POWI (mult @0 @2) @1))
6228
6229 /* Simplify pow(x,c) / x -> pow(x,c-1). */
6230 (simplify
6231 (rdiv (POW:s @0 REAL_CST@1) @0)
6232 (if (!TREE_OVERFLOW (@1))
6233 (POW @0 (minus @1 { build_one_cst (type); }))))
6234
6235 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
6236 (simplify
6237 (rdiv @0 (POW:s @1 @2))
6238 (mult @0 (POW @1 (negate @2))))
6239
6240 (for sqrts (SQRT)
6241 cbrts (CBRT)
6242 pows (POW)
6243 /* sqrt(sqrt(x)) -> pow(x,1/4). */
6244 (simplify
6245 (sqrts (sqrts @0))
6246 (pows @0 { build_real (type, dconst_quarter ()); }))
6247 /* sqrt(cbrt(x)) -> pow(x,1/6). */
6248 (simplify
6249 (sqrts (cbrts @0))
6250 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6251 /* cbrt(sqrt(x)) -> pow(x,1/6). */
6252 (simplify
6253 (cbrts (sqrts @0))
6254 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
6255 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
6256 (simplify
6257 (cbrts (cbrts tree_expr_nonnegative_p@0))
6258 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
6259 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
6260 (simplify
6261 (sqrts (pows @0 @1))
6262 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
6263 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
6264 (simplify
6265 (cbrts (pows tree_expr_nonnegative_p@0 @1))
6266 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6267 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
6268 (simplify
6269 (pows (sqrts @0) @1)
6270 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
6271 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
6272 (simplify
6273 (pows (cbrts tree_expr_nonnegative_p@0) @1)
6274 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
6275 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
6276 (simplify
6277 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
6278 (pows @0 (mult @1 @2))))
6279
6280 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
6281 (simplify
6282 (CABS (complex @0 @0))
6283 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6284
6285 /* hypot(x,x) -> fabs(x)*sqrt(2). */
6286 (simplify
6287 (HYPOT @0 @0)
6288 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
6289
6290 /* cexp(x+yi) -> exp(x)*cexpi(y). */
6291 (for cexps (CEXP)
6292 exps (EXP)
6293 cexpis (CEXPI)
6294 (simplify
6295 (cexps compositional_complex@0)
6296 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
6297 (complex
6298 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
6299 (mult @1 (imagpart @2)))))))
6300
6301 (if (canonicalize_math_p ())
6302 /* floor(x) -> trunc(x) if x is nonnegative. */
6303 (for floors (FLOOR_ALL)
6304 truncs (TRUNC_ALL)
6305 (simplify
6306 (floors tree_expr_nonnegative_p@0)
6307 (truncs @0))))
6308
6309 (match double_value_p
6310 @0
6311 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
6312 (for froms (BUILT_IN_TRUNCL
6313 BUILT_IN_FLOORL
6314 BUILT_IN_CEILL
6315 BUILT_IN_ROUNDL
6316 BUILT_IN_NEARBYINTL
6317 BUILT_IN_RINTL)
6318 tos (BUILT_IN_TRUNC
6319 BUILT_IN_FLOOR
6320 BUILT_IN_CEIL
6321 BUILT_IN_ROUND
6322 BUILT_IN_NEARBYINT
6323 BUILT_IN_RINT)
6324 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
6325 (if (optimize && canonicalize_math_p ())
6326 (simplify
6327 (froms (convert double_value_p@0))
6328 (convert (tos @0)))))
6329
6330 (match float_value_p
6331 @0
6332 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
6333 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
6334 BUILT_IN_FLOORL BUILT_IN_FLOOR
6335 BUILT_IN_CEILL BUILT_IN_CEIL
6336 BUILT_IN_ROUNDL BUILT_IN_ROUND
6337 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
6338 BUILT_IN_RINTL BUILT_IN_RINT)
6339 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
6340 BUILT_IN_FLOORF BUILT_IN_FLOORF
6341 BUILT_IN_CEILF BUILT_IN_CEILF
6342 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
6343 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
6344 BUILT_IN_RINTF BUILT_IN_RINTF)
6345 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
6346 if x is a float. */
6347 (if (optimize && canonicalize_math_p ()
6348 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
6349 (simplify
6350 (froms (convert float_value_p@0))
6351 (convert (tos @0)))))
6352
6353 #if GIMPLE
6354 (match float16_value_p
6355 @0
6356 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
6357 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
6358 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
6359 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
6360 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
6361 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
6362 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
6363 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
6364 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
6365 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
6366 IFN_FLOOR IFN_FLOOR IFN_FLOOR
6367 IFN_CEIL IFN_CEIL IFN_CEIL
6368 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
6369 IFN_ROUND IFN_ROUND IFN_ROUND
6370 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
6371 IFN_RINT IFN_RINT IFN_RINT
6372 IFN_SQRT IFN_SQRT IFN_SQRT)
6373 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
6374 if x is a _Float16. */
6375 (simplify
6376 (convert (froms (convert float16_value_p@0)))
6377 (if (optimize
6378 && types_match (type, TREE_TYPE (@0))
6379 && direct_internal_fn_supported_p (as_internal_fn (tos),
6380 type, OPTIMIZE_FOR_BOTH))
6381 (tos @0))))
6382
6383 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
6384 x,y is float value, similar for _Float16/double. */
6385 (for copysigns (COPYSIGN_ALL)
6386 (simplify
6387 (convert (copysigns (convert@2 @0) (convert @1)))
6388 (if (optimize
6389 && !HONOR_SNANS (@2)
6390 && types_match (type, TREE_TYPE (@0))
6391 && types_match (type, TREE_TYPE (@1))
6392 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
6393 && direct_internal_fn_supported_p (IFN_COPYSIGN,
6394 type, OPTIMIZE_FOR_BOTH))
6395 (IFN_COPYSIGN @0 @1))))
6396
6397 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
6398 tos (IFN_FMA IFN_FMA IFN_FMA)
6399 (simplify
6400 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
6401 (if (flag_unsafe_math_optimizations
6402 && optimize
6403 && FLOAT_TYPE_P (type)
6404 && FLOAT_TYPE_P (TREE_TYPE (@3))
6405 && types_match (type, TREE_TYPE (@0))
6406 && types_match (type, TREE_TYPE (@1))
6407 && types_match (type, TREE_TYPE (@2))
6408 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
6409 && direct_internal_fn_supported_p (as_internal_fn (tos),
6410 type, OPTIMIZE_FOR_BOTH))
6411 (tos @0 @1 @2))))
6412
6413 (for maxmin (max min)
6414 (simplify
6415 (convert (maxmin (convert@2 @0) (convert @1)))
6416 (if (optimize
6417 && FLOAT_TYPE_P (type)
6418 && FLOAT_TYPE_P (TREE_TYPE (@2))
6419 && types_match (type, TREE_TYPE (@0))
6420 && types_match (type, TREE_TYPE (@1))
6421 && element_precision (type) < element_precision (TREE_TYPE (@2)))
6422 (maxmin @0 @1))))
6423 #endif
6424
6425 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
6426 tos (XFLOOR XCEIL XROUND XRINT)
6427 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
6428 (if (optimize && canonicalize_math_p ())
6429 (simplify
6430 (froms (convert double_value_p@0))
6431 (tos @0))))
6432
6433 (for froms (XFLOORL XCEILL XROUNDL XRINTL
6434 XFLOOR XCEIL XROUND XRINT)
6435 tos (XFLOORF XCEILF XROUNDF XRINTF)
6436 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
6437 if x is a float. */
6438 (if (optimize && canonicalize_math_p ())
6439 (simplify
6440 (froms (convert float_value_p@0))
6441 (tos @0))))
6442
6443 (if (canonicalize_math_p ())
6444 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
6445 (for floors (IFLOOR LFLOOR LLFLOOR)
6446 (simplify
6447 (floors tree_expr_nonnegative_p@0)
6448 (fix_trunc @0))))
6449
6450 (if (canonicalize_math_p ())
6451 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
6452 (for fns (IFLOOR LFLOOR LLFLOOR
6453 ICEIL LCEIL LLCEIL
6454 IROUND LROUND LLROUND)
6455 (simplify
6456 (fns integer_valued_real_p@0)
6457 (fix_trunc @0)))
6458 (if (!flag_errno_math)
6459 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
6460 (for rints (IRINT LRINT LLRINT)
6461 (simplify
6462 (rints integer_valued_real_p@0)
6463 (fix_trunc @0)))))
6464
6465 (if (canonicalize_math_p ())
6466 (for ifn (IFLOOR ICEIL IROUND IRINT)
6467 lfn (LFLOOR LCEIL LROUND LRINT)
6468 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
6469 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
6470 sizeof (int) == sizeof (long). */
6471 (if (TYPE_PRECISION (integer_type_node)
6472 == TYPE_PRECISION (long_integer_type_node))
6473 (simplify
6474 (ifn @0)
6475 (lfn:long_integer_type_node @0)))
6476 /* Canonicalize llround (x) to lround (x) on LP64 targets where
6477 sizeof (long long) == sizeof (long). */
6478 (if (TYPE_PRECISION (long_long_integer_type_node)
6479 == TYPE_PRECISION (long_integer_type_node))
6480 (simplify
6481 (llfn @0)
6482 (lfn:long_integer_type_node @0)))))
6483
6484 /* cproj(x) -> x if we're ignoring infinities. */
6485 (simplify
6486 (CPROJ @0)
6487 (if (!HONOR_INFINITIES (type))
6488 @0))
6489
6490 /* If the real part is inf and the imag part is known to be
6491 nonnegative, return (inf + 0i). */
6492 (simplify
6493 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
6494 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
6495 { build_complex_inf (type, false); }))
6496
6497 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
6498 (simplify
6499 (CPROJ (complex @0 REAL_CST@1))
6500 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
6501 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
6502
6503 (for pows (POW)
6504 sqrts (SQRT)
6505 cbrts (CBRT)
6506 (simplify
6507 (pows @0 REAL_CST@1)
6508 (with {
6509 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
6510 REAL_VALUE_TYPE tmp;
6511 }
6512 (switch
6513 /* pow(x,0) -> 1. */
6514 (if (real_equal (value, &dconst0))
6515 { build_real (type, dconst1); })
6516 /* pow(x,1) -> x. */
6517 (if (real_equal (value, &dconst1))
6518 @0)
6519 /* pow(x,-1) -> 1/x. */
6520 (if (real_equal (value, &dconstm1))
6521 (rdiv { build_real (type, dconst1); } @0))
6522 /* pow(x,0.5) -> sqrt(x). */
6523 (if (flag_unsafe_math_optimizations
6524 && canonicalize_math_p ()
6525 && real_equal (value, &dconsthalf))
6526 (sqrts @0))
6527 /* pow(x,1/3) -> cbrt(x). */
6528 (if (flag_unsafe_math_optimizations
6529 && canonicalize_math_p ()
6530 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
6531 real_equal (value, &tmp)))
6532 (cbrts @0))))))
6533
6534 /* powi(1,x) -> 1. */
6535 (simplify
6536 (POWI real_onep@0 @1)
6537 @0)
6538
6539 (simplify
6540 (POWI @0 INTEGER_CST@1)
6541 (switch
6542 /* powi(x,0) -> 1. */
6543 (if (wi::to_wide (@1) == 0)
6544 { build_real (type, dconst1); })
6545 /* powi(x,1) -> x. */
6546 (if (wi::to_wide (@1) == 1)
6547 @0)
6548 /* powi(x,-1) -> 1/x. */
6549 (if (wi::to_wide (@1) == -1)
6550 (rdiv { build_real (type, dconst1); } @0))))
6551
6552 /* Narrowing of arithmetic and logical operations.
6553
6554 These are conceptually similar to the transformations performed for
6555 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
6556 term we want to move all that code out of the front-ends into here. */
6557
6558 /* Convert (outertype)((innertype0)a+(innertype1)b)
6559 into ((newtype)a+(newtype)b) where newtype
6560 is the widest mode from all of these. */
6561 (for op (plus minus mult rdiv)
6562 (simplify
6563 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
6564 /* If we have a narrowing conversion of an arithmetic operation where
6565 both operands are widening conversions from the same type as the outer
6566 narrowing conversion. Then convert the innermost operands to a
6567 suitable unsigned type (to avoid introducing undefined behavior),
6568 perform the operation and convert the result to the desired type. */
6569 (if (INTEGRAL_TYPE_P (type)
6570 && op != MULT_EXPR
6571 && op != RDIV_EXPR
6572 /* We check for type compatibility between @0 and @1 below,
6573 so there's no need to check that @2/@4 are integral types. */
6574 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6575 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6576 /* The precision of the type of each operand must match the
6577 precision of the mode of each operand, similarly for the
6578 result. */
6579 && type_has_mode_precision_p (TREE_TYPE (@1))
6580 && type_has_mode_precision_p (TREE_TYPE (@2))
6581 && type_has_mode_precision_p (type)
6582 /* The inner conversion must be a widening conversion. */
6583 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
6584 && types_match (@1, type)
6585 && (types_match (@1, @2)
6586 /* Or the second operand is const integer or converted const
6587 integer from valueize. */
6588 || poly_int_tree_p (@4)))
6589 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
6590 (op @1 (convert @2))
6591 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
6592 (convert (op (convert:utype @1)
6593 (convert:utype @2)))))
6594 (if (FLOAT_TYPE_P (type)
6595 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
6596 == DECIMAL_FLOAT_TYPE_P (type))
6597 (with { tree arg0 = strip_float_extensions (@1);
6598 tree arg1 = strip_float_extensions (@2);
6599 tree itype = TREE_TYPE (@0);
6600 tree ty1 = TREE_TYPE (arg0);
6601 tree ty2 = TREE_TYPE (arg1);
6602 enum tree_code code = TREE_CODE (itype); }
6603 (if (FLOAT_TYPE_P (ty1)
6604 && FLOAT_TYPE_P (ty2))
6605 (with { tree newtype = type;
6606 if (TYPE_MODE (ty1) == SDmode
6607 || TYPE_MODE (ty2) == SDmode
6608 || TYPE_MODE (type) == SDmode)
6609 newtype = dfloat32_type_node;
6610 if (TYPE_MODE (ty1) == DDmode
6611 || TYPE_MODE (ty2) == DDmode
6612 || TYPE_MODE (type) == DDmode)
6613 newtype = dfloat64_type_node;
6614 if (TYPE_MODE (ty1) == TDmode
6615 || TYPE_MODE (ty2) == TDmode
6616 || TYPE_MODE (type) == TDmode)
6617 newtype = dfloat128_type_node; }
6618 (if ((newtype == dfloat32_type_node
6619 || newtype == dfloat64_type_node
6620 || newtype == dfloat128_type_node)
6621 && newtype == type
6622 && types_match (newtype, type))
6623 (op (convert:newtype @1) (convert:newtype @2))
6624 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
6625 newtype = ty1;
6626 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
6627 newtype = ty2; }
6628 /* Sometimes this transformation is safe (cannot
6629 change results through affecting double rounding
6630 cases) and sometimes it is not. If NEWTYPE is
6631 wider than TYPE, e.g. (float)((long double)double
6632 + (long double)double) converted to
6633 (float)(double + double), the transformation is
6634 unsafe regardless of the details of the types
6635 involved; double rounding can arise if the result
6636 of NEWTYPE arithmetic is a NEWTYPE value half way
6637 between two representable TYPE values but the
6638 exact value is sufficiently different (in the
6639 right direction) for this difference to be
6640 visible in ITYPE arithmetic. If NEWTYPE is the
6641 same as TYPE, however, the transformation may be
6642 safe depending on the types involved: it is safe
6643 if the ITYPE has strictly more than twice as many
6644 mantissa bits as TYPE, can represent infinities
6645 and NaNs if the TYPE can, and has sufficient
6646 exponent range for the product or ratio of two
6647 values representable in the TYPE to be within the
6648 range of normal values of ITYPE. */
6649 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
6650 && (flag_unsafe_math_optimizations
6651 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
6652 && real_can_shorten_arithmetic (TYPE_MODE (itype),
6653 TYPE_MODE (type))
6654 && !excess_precision_type (newtype)))
6655 && !types_match (itype, newtype))
6656 (convert:type (op (convert:newtype @1)
6657 (convert:newtype @2)))
6658 )))) )
6659 ))
6660 )))
6661
6662 /* This is another case of narrowing, specifically when there's an outer
6663 BIT_AND_EXPR which masks off bits outside the type of the innermost
6664 operands. Like the previous case we have to convert the operands
6665 to unsigned types to avoid introducing undefined behavior for the
6666 arithmetic operation. */
6667 (for op (minus plus)
6668 (simplify
6669 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
6670 (if (INTEGRAL_TYPE_P (type)
6671 /* We check for type compatibility between @0 and @1 below,
6672 so there's no need to check that @1/@3 are integral types. */
6673 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6674 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6675 /* The precision of the type of each operand must match the
6676 precision of the mode of each operand, similarly for the
6677 result. */
6678 && type_has_mode_precision_p (TREE_TYPE (@0))
6679 && type_has_mode_precision_p (TREE_TYPE (@1))
6680 && type_has_mode_precision_p (type)
6681 /* The inner conversion must be a widening conversion. */
6682 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
6683 && types_match (@0, @1)
6684 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
6685 <= TYPE_PRECISION (TREE_TYPE (@0)))
6686 && (wi::to_wide (@4)
6687 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
6688 true, TYPE_PRECISION (type))) == 0)
6689 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
6690 (with { tree ntype = TREE_TYPE (@0); }
6691 (convert (bit_and (op @0 @1) (convert:ntype @4))))
6692 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
6693 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
6694 (convert:utype @4))))))))
6695
6696 /* Transform (@0 < @1 and @0 < @2) to use min,
6697 (@0 > @1 and @0 > @2) to use max */
6698 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
6699 op (lt le gt ge lt le gt ge )
6700 ext (min min max max max max min min )
6701 (simplify
6702 (logic (op:cs @0 @1) (op:cs @0 @2))
6703 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6704 && TREE_CODE (@0) != INTEGER_CST)
6705 (op @0 (ext @1 @2)))))
6706
6707 (simplify
6708 /* signbit(x) -> 0 if x is nonnegative. */
6709 (SIGNBIT tree_expr_nonnegative_p@0)
6710 { integer_zero_node; })
6711
6712 (simplify
6713 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
6714 (SIGNBIT @0)
6715 (if (!HONOR_SIGNED_ZEROS (@0))
6716 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
6717
6718 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
6719 (for cmp (eq ne)
6720 (for op (plus minus)
6721 rop (minus plus)
6722 (simplify
6723 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6724 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6725 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
6726 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
6727 && !TYPE_SATURATING (TREE_TYPE (@0)))
6728 (with { tree res = int_const_binop (rop, @2, @1); }
6729 (if (TREE_OVERFLOW (res)
6730 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6731 { constant_boolean_node (cmp == NE_EXPR, type); }
6732 (if (single_use (@3))
6733 (cmp @0 { TREE_OVERFLOW (res)
6734 ? drop_tree_overflow (res) : res; }))))))))
6735 (for cmp (lt le gt ge)
6736 (for op (plus minus)
6737 rop (minus plus)
6738 (simplify
6739 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
6740 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
6741 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
6742 (with { tree res = int_const_binop (rop, @2, @1); }
6743 (if (TREE_OVERFLOW (res))
6744 {
6745 fold_overflow_warning (("assuming signed overflow does not occur "
6746 "when simplifying conditional to constant"),
6747 WARN_STRICT_OVERFLOW_CONDITIONAL);
6748 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
6749 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
6750 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
6751 TYPE_SIGN (TREE_TYPE (@1)))
6752 != (op == MINUS_EXPR);
6753 constant_boolean_node (less == ovf_high, type);
6754 }
6755 (if (single_use (@3))
6756 (with
6757 {
6758 fold_overflow_warning (("assuming signed overflow does not occur "
6759 "when changing X +- C1 cmp C2 to "
6760 "X cmp C2 -+ C1"),
6761 WARN_STRICT_OVERFLOW_COMPARISON);
6762 }
6763 (cmp @0 { res; })))))))))
6764
6765 /* Canonicalizations of BIT_FIELD_REFs. */
6766
6767 (simplify
6768 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
6769 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
6770
6771 (simplify
6772 (BIT_FIELD_REF (view_convert @0) @1 @2)
6773 (BIT_FIELD_REF @0 @1 @2))
6774
6775 (simplify
6776 (BIT_FIELD_REF @0 @1 integer_zerop)
6777 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
6778 (view_convert @0)))
6779
6780 (simplify
6781 (BIT_FIELD_REF @0 @1 @2)
6782 (switch
6783 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
6784 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6785 (switch
6786 (if (integer_zerop (@2))
6787 (view_convert (realpart @0)))
6788 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6789 (view_convert (imagpart @0)))))
6790 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6791 && INTEGRAL_TYPE_P (type)
6792 /* On GIMPLE this should only apply to register arguments. */
6793 && (! GIMPLE || is_gimple_reg (@0))
6794 /* A bit-field-ref that referenced the full argument can be stripped. */
6795 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
6796 && integer_zerop (@2))
6797 /* Low-parts can be reduced to integral conversions.
6798 ??? The following doesn't work for PDP endian. */
6799 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
6800 /* But only do this after vectorization. */
6801 && canonicalize_math_after_vectorization_p ()
6802 /* Don't even think about BITS_BIG_ENDIAN. */
6803 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
6804 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
6805 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
6806 ? (TYPE_PRECISION (TREE_TYPE (@0))
6807 - TYPE_PRECISION (type))
6808 : 0)) == 0)))
6809 (convert @0))))
6810
6811 /* Simplify vector extracts. */
6812
6813 (simplify
6814 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
6815 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
6816 && tree_fits_uhwi_p (TYPE_SIZE (type))
6817 && ((tree_to_uhwi (TYPE_SIZE (type))
6818 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
6819 || (VECTOR_TYPE_P (type)
6820 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
6821 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
6822 (with
6823 {
6824 tree ctor = (TREE_CODE (@0) == SSA_NAME
6825 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
6826 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
6827 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
6828 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
6829 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
6830 }
6831 (if (n != 0
6832 && (idx % width) == 0
6833 && (n % width) == 0
6834 && known_le ((idx + n) / width,
6835 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
6836 (with
6837 {
6838 idx = idx / width;
6839 n = n / width;
6840 /* Constructor elements can be subvectors. */
6841 poly_uint64 k = 1;
6842 if (CONSTRUCTOR_NELTS (ctor) != 0)
6843 {
6844 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
6845 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
6846 k = TYPE_VECTOR_SUBPARTS (cons_elem);
6847 }
6848 unsigned HOST_WIDE_INT elt, count, const_k;
6849 }
6850 (switch
6851 /* We keep an exact subset of the constructor elements. */
6852 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
6853 (if (CONSTRUCTOR_NELTS (ctor) == 0)
6854 { build_zero_cst (type); }
6855 (if (count == 1)
6856 (if (elt < CONSTRUCTOR_NELTS (ctor))
6857 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
6858 { build_zero_cst (type); })
6859 /* We don't want to emit new CTORs unless the old one goes away.
6860 ??? Eventually allow this if the CTOR ends up constant or
6861 uniform. */
6862 (if (single_use (@0))
6863 (with
6864 {
6865 vec<constructor_elt, va_gc> *vals;
6866 vec_alloc (vals, count);
6867 bool constant_p = true;
6868 tree res;
6869 for (unsigned i = 0;
6870 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
6871 {
6872 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
6873 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
6874 if (!CONSTANT_CLASS_P (e))
6875 constant_p = false;
6876 }
6877 tree evtype = (types_match (TREE_TYPE (type),
6878 TREE_TYPE (TREE_TYPE (ctor)))
6879 ? type
6880 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
6881 count));
6882 res = (constant_p ? build_vector_from_ctor (evtype, vals)
6883 : build_constructor (evtype, vals));
6884 }
6885 (view_convert { res; }))))))
6886 /* The bitfield references a single constructor element. */
6887 (if (k.is_constant (&const_k)
6888 && idx + n <= (idx / const_k + 1) * const_k)
6889 (switch
6890 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
6891 { build_zero_cst (type); })
6892 (if (n == const_k)
6893 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
6894 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
6895 @1 { bitsize_int ((idx % const_k) * width); })))))))))
6896
6897 /* Simplify a bit extraction from a bit insertion for the cases with
6898 the inserted element fully covering the extraction or the insertion
6899 not touching the extraction. */
6900 (simplify
6901 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
6902 (with
6903 {
6904 unsigned HOST_WIDE_INT isize;
6905 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
6906 isize = TYPE_PRECISION (TREE_TYPE (@1));
6907 else
6908 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
6909 }
6910 (switch
6911 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
6912 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
6913 wi::to_wide (@ipos) + isize))
6914 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
6915 wi::to_wide (@rpos)
6916 - wi::to_wide (@ipos)); }))
6917 (if (wi::geu_p (wi::to_wide (@ipos),
6918 wi::to_wide (@rpos) + wi::to_wide (@rsize))
6919 || wi::geu_p (wi::to_wide (@rpos),
6920 wi::to_wide (@ipos) + isize))
6921 (BIT_FIELD_REF @0 @rsize @rpos)))))
6922
6923 (if (canonicalize_math_after_vectorization_p ())
6924 (for fmas (FMA)
6925 (simplify
6926 (fmas:c (negate @0) @1 @2)
6927 (IFN_FNMA @0 @1 @2))
6928 (simplify
6929 (fmas @0 @1 (negate @2))
6930 (IFN_FMS @0 @1 @2))
6931 (simplify
6932 (fmas:c (negate @0) @1 (negate @2))
6933 (IFN_FNMS @0 @1 @2))
6934 (simplify
6935 (negate (fmas@3 @0 @1 @2))
6936 (if (single_use (@3))
6937 (IFN_FNMS @0 @1 @2))))
6938
6939 (simplify
6940 (IFN_FMS:c (negate @0) @1 @2)
6941 (IFN_FNMS @0 @1 @2))
6942 (simplify
6943 (IFN_FMS @0 @1 (negate @2))
6944 (IFN_FMA @0 @1 @2))
6945 (simplify
6946 (IFN_FMS:c (negate @0) @1 (negate @2))
6947 (IFN_FNMA @0 @1 @2))
6948 (simplify
6949 (negate (IFN_FMS@3 @0 @1 @2))
6950 (if (single_use (@3))
6951 (IFN_FNMA @0 @1 @2)))
6952
6953 (simplify
6954 (IFN_FNMA:c (negate @0) @1 @2)
6955 (IFN_FMA @0 @1 @2))
6956 (simplify
6957 (IFN_FNMA @0 @1 (negate @2))
6958 (IFN_FNMS @0 @1 @2))
6959 (simplify
6960 (IFN_FNMA:c (negate @0) @1 (negate @2))
6961 (IFN_FMS @0 @1 @2))
6962 (simplify
6963 (negate (IFN_FNMA@3 @0 @1 @2))
6964 (if (single_use (@3))
6965 (IFN_FMS @0 @1 @2)))
6966
6967 (simplify
6968 (IFN_FNMS:c (negate @0) @1 @2)
6969 (IFN_FMS @0 @1 @2))
6970 (simplify
6971 (IFN_FNMS @0 @1 (negate @2))
6972 (IFN_FNMA @0 @1 @2))
6973 (simplify
6974 (IFN_FNMS:c (negate @0) @1 (negate @2))
6975 (IFN_FMA @0 @1 @2))
6976 (simplify
6977 (negate (IFN_FNMS@3 @0 @1 @2))
6978 (if (single_use (@3))
6979 (IFN_FMA @0 @1 @2))))
6980
6981 /* CLZ simplifications. */
6982 (for clz (CLZ)
6983 (for op (eq ne)
6984 cmp (lt ge)
6985 (simplify
6986 (op (clz:s@2 @0) INTEGER_CST@1)
6987 (if (integer_zerop (@1) && single_use (@2))
6988 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
6989 (with { tree type0 = TREE_TYPE (@0);
6990 tree stype = signed_type_for (type0);
6991 HOST_WIDE_INT val = 0;
6992 /* Punt on hypothetical weird targets. */
6993 if (clz == CFN_CLZ
6994 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
6995 val) == 2
6996 && val == 0)
6997 stype = NULL_TREE;
6998 }
6999 (if (stype)
7000 (cmp (convert:stype @0) { build_zero_cst (stype); })))
7001 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
7002 (with { bool ok = true;
7003 HOST_WIDE_INT val = 0;
7004 tree type0 = TREE_TYPE (@0);
7005 /* Punt on hypothetical weird targets. */
7006 if (clz == CFN_CLZ
7007 && CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7008 val) == 2
7009 && val == TYPE_PRECISION (type0) - 1)
7010 ok = false;
7011 }
7012 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
7013 (op @0 { build_one_cst (type0); })))))))
7014
7015 /* CTZ simplifications. */
7016 (for ctz (CTZ)
7017 (for op (ge gt le lt)
7018 cmp (eq eq ne ne)
7019 (simplify
7020 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
7021 (op (ctz:s @0) INTEGER_CST@1)
7022 (with { bool ok = true;
7023 HOST_WIDE_INT val = 0;
7024 if (!tree_fits_shwi_p (@1))
7025 ok = false;
7026 else
7027 {
7028 val = tree_to_shwi (@1);
7029 /* Canonicalize to >= or <. */
7030 if (op == GT_EXPR || op == LE_EXPR)
7031 {
7032 if (val == HOST_WIDE_INT_MAX)
7033 ok = false;
7034 else
7035 val++;
7036 }
7037 }
7038 bool zero_res = false;
7039 HOST_WIDE_INT zero_val = 0;
7040 tree type0 = TREE_TYPE (@0);
7041 int prec = TYPE_PRECISION (type0);
7042 if (ctz == CFN_CTZ
7043 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7044 zero_val) == 2)
7045 zero_res = true;
7046 }
7047 (if (val <= 0)
7048 (if (ok && (!zero_res || zero_val >= val))
7049 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
7050 (if (val >= prec)
7051 (if (ok && (!zero_res || zero_val < val))
7052 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
7053 (if (ok && (!zero_res || zero_val < 0 || zero_val >= prec))
7054 (cmp (bit_and @0 { wide_int_to_tree (type0,
7055 wi::mask (val, false, prec)); })
7056 { build_zero_cst (type0); })))))))
7057 (for op (eq ne)
7058 (simplify
7059 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
7060 (op (ctz:s @0) INTEGER_CST@1)
7061 (with { bool zero_res = false;
7062 HOST_WIDE_INT zero_val = 0;
7063 tree type0 = TREE_TYPE (@0);
7064 int prec = TYPE_PRECISION (type0);
7065 if (ctz == CFN_CTZ
7066 && CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_TYPE_MODE (type0),
7067 zero_val) == 2)
7068 zero_res = true;
7069 }
7070 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
7071 (if (!zero_res || zero_val != wi::to_widest (@1))
7072 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
7073 (if (!zero_res || zero_val < 0 || zero_val >= prec)
7074 (op (bit_and @0 { wide_int_to_tree (type0,
7075 wi::mask (tree_to_uhwi (@1) + 1,
7076 false, prec)); })
7077 { wide_int_to_tree (type0,
7078 wi::shifted_mask (tree_to_uhwi (@1), 1,
7079 false, prec)); })))))))
7080
7081 /* POPCOUNT simplifications. */
7082 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
7083 (simplify
7084 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
7085 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
7086 (POPCOUNT (bit_ior @0 @1))))
7087
7088 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
7089 (for popcount (POPCOUNT)
7090 (for cmp (le eq ne gt)
7091 rep (eq eq ne ne)
7092 (simplify
7093 (cmp (popcount @0) integer_zerop)
7094 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
7095
7096 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
7097 (simplify
7098 (bit_and (POPCOUNT @0) integer_onep)
7099 (PARITY @0))
7100
7101 /* PARITY simplifications. */
7102 /* parity(~X) is parity(X). */
7103 (simplify
7104 (PARITY (bit_not @0))
7105 (PARITY @0))
7106
7107 /* parity(X)^parity(Y) is parity(X^Y). */
7108 (simplify
7109 (bit_xor (PARITY:s @0) (PARITY:s @1))
7110 (PARITY (bit_xor @0 @1)))
7111
7112 /* Common POPCOUNT/PARITY simplifications. */
7113 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
7114 (for pfun (POPCOUNT PARITY)
7115 (simplify
7116 (pfun @0)
7117 (with { wide_int nz = tree_nonzero_bits (@0); }
7118 (switch
7119 (if (nz == 1)
7120 (convert @0))
7121 (if (wi::popcount (nz) == 1)
7122 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7123 (convert (rshift:utype (convert:utype @0)
7124 { build_int_cst (integer_type_node,
7125 wi::ctz (nz)); }))))))))
7126
7127 #if GIMPLE
7128 /* 64- and 32-bits branchless implementations of popcount are detected:
7129
7130 int popcount64c (uint64_t x)
7131 {
7132 x -= (x >> 1) & 0x5555555555555555ULL;
7133 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
7134 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
7135 return (x * 0x0101010101010101ULL) >> 56;
7136 }
7137
7138 int popcount32c (uint32_t x)
7139 {
7140 x -= (x >> 1) & 0x55555555;
7141 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
7142 x = (x + (x >> 4)) & 0x0f0f0f0f;
7143 return (x * 0x01010101) >> 24;
7144 } */
7145 (simplify
7146 (rshift
7147 (mult
7148 (bit_and
7149 (plus:c
7150 (rshift @8 INTEGER_CST@5)
7151 (plus:c@8
7152 (bit_and @6 INTEGER_CST@7)
7153 (bit_and
7154 (rshift
7155 (minus@6 @0
7156 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
7157 INTEGER_CST@10)
7158 INTEGER_CST@9)))
7159 INTEGER_CST@3)
7160 INTEGER_CST@2)
7161 INTEGER_CST@1)
7162 /* Check constants and optab. */
7163 (with { unsigned prec = TYPE_PRECISION (type);
7164 int shift = (64 - prec) & 63;
7165 unsigned HOST_WIDE_INT c1
7166 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
7167 unsigned HOST_WIDE_INT c2
7168 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
7169 unsigned HOST_WIDE_INT c3
7170 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
7171 unsigned HOST_WIDE_INT c4
7172 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
7173 }
7174 (if (prec >= 16
7175 && prec <= 64
7176 && pow2p_hwi (prec)
7177 && TYPE_UNSIGNED (type)
7178 && integer_onep (@4)
7179 && wi::to_widest (@10) == 2
7180 && wi::to_widest (@5) == 4
7181 && wi::to_widest (@1) == prec - 8
7182 && tree_to_uhwi (@2) == c1
7183 && tree_to_uhwi (@3) == c2
7184 && tree_to_uhwi (@9) == c3
7185 && tree_to_uhwi (@7) == c3
7186 && tree_to_uhwi (@11) == c4)
7187 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
7188 OPTIMIZE_FOR_BOTH))
7189 (convert (IFN_POPCOUNT:type @0))
7190 /* Try to do popcount in two halves. PREC must be at least
7191 five bits for this to work without extension before adding. */
7192 (with {
7193 tree half_type = NULL_TREE;
7194 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
7195 int half_prec = 8;
7196 if (m.exists ()
7197 && m.require () != TYPE_MODE (type))
7198 {
7199 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
7200 half_type = build_nonstandard_integer_type (half_prec, 1);
7201 }
7202 gcc_assert (half_prec > 2);
7203 }
7204 (if (half_type != NULL_TREE
7205 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
7206 OPTIMIZE_FOR_BOTH))
7207 (convert (plus
7208 (IFN_POPCOUNT:half_type (convert @0))
7209 (IFN_POPCOUNT:half_type (convert (rshift @0
7210 { build_int_cst (integer_type_node, half_prec); } )))))))))))
7211
7212 /* __builtin_ffs needs to deal on many targets with the possible zero
7213 argument. If we know the argument is always non-zero, __builtin_ctz + 1
7214 should lead to better code. */
7215 (simplify
7216 (FFS tree_expr_nonzero_p@0)
7217 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7218 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
7219 OPTIMIZE_FOR_SPEED))
7220 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
7221 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
7222 #endif
7223
7224 (for ffs (BUILT_IN_FFS BUILT_IN_FFSL BUILT_IN_FFSLL
7225 BUILT_IN_FFSIMAX)
7226 /* __builtin_ffs (X) == 0 -> X == 0.
7227 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
7228 (for cmp (eq ne)
7229 (simplify
7230 (cmp (ffs@2 @0) INTEGER_CST@1)
7231 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7232 (switch
7233 (if (integer_zerop (@1))
7234 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
7235 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
7236 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
7237 (if (single_use (@2))
7238 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
7239 wi::mask (tree_to_uhwi (@1),
7240 false, prec)); })
7241 { wide_int_to_tree (TREE_TYPE (@0),
7242 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
7243 false, prec)); }))))))
7244
7245 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
7246 (for cmp (gt le)
7247 cmp2 (ne eq)
7248 cmp3 (eq ne)
7249 bit_op (bit_and bit_ior)
7250 (simplify
7251 (cmp (ffs@2 @0) INTEGER_CST@1)
7252 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
7253 (switch
7254 (if (integer_zerop (@1))
7255 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
7256 (if (tree_int_cst_sgn (@1) < 0)
7257 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
7258 (if (wi::to_widest (@1) >= prec)
7259 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
7260 (if (wi::to_widest (@1) == prec - 1)
7261 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
7262 wi::shifted_mask (prec - 1, 1,
7263 false, prec)); }))
7264 (if (single_use (@2))
7265 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
7266 (cmp3 (bit_and @0
7267 { wide_int_to_tree (TREE_TYPE (@0),
7268 wi::mask (tree_to_uhwi (@1),
7269 false, prec)); })
7270 { build_zero_cst (TREE_TYPE (@0)); }))))))))
7271
7272 #if GIMPLE
7273
7274 /* Simplify:
7275 a = op a1
7276 r = cond ? a : b
7277 --> r = .COND_FN (cond, a, b)
7278 and,
7279 a = op a1
7280 r = cond ? b : a
7281 --> r = .COND_FN (~cond, b, a). */
7282
7283 (for uncond_op (UNCOND_UNARY)
7284 cond_op (COND_UNARY)
7285 (simplify
7286 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
7287 (with { tree op_type = TREE_TYPE (@3); }
7288 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7289 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7290 (cond_op @0 @1 @2))))
7291 (simplify
7292 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
7293 (with { tree op_type = TREE_TYPE (@3); }
7294 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7295 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7296 (cond_op (bit_not @0) @2 @1)))))
7297
7298 /* Simplify:
7299
7300 a = a1 op a2
7301 r = c ? a : b;
7302
7303 to:
7304
7305 r = c ? a1 op a2 : b;
7306
7307 if the target can do it in one go. This makes the operation conditional
7308 on c, so could drop potentially-trapping arithmetic, but that's a valid
7309 simplification if the result of the operation isn't needed.
7310
7311 Avoid speculatively generating a stand-alone vector comparison
7312 on targets that might not support them. Any target implementing
7313 conditional internal functions must support the same comparisons
7314 inside and outside a VEC_COND_EXPR. */
7315
7316 (for uncond_op (UNCOND_BINARY)
7317 cond_op (COND_BINARY)
7318 (simplify
7319 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
7320 (with { tree op_type = TREE_TYPE (@4); }
7321 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7322 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7323 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
7324 (simplify
7325 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
7326 (with { tree op_type = TREE_TYPE (@4); }
7327 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7328 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7329 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
7330
7331 /* Same for ternary operations. */
7332 (for uncond_op (UNCOND_TERNARY)
7333 cond_op (COND_TERNARY)
7334 (simplify
7335 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
7336 (with { tree op_type = TREE_TYPE (@5); }
7337 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7338 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7339 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
7340 (simplify
7341 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
7342 (with { tree op_type = TREE_TYPE (@5); }
7343 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
7344 && is_truth_type_for (op_type, TREE_TYPE (@0)))
7345 (view_convert (cond_op (bit_not @0) @2 @3 @4
7346 (view_convert:op_type @1)))))))
7347 #endif
7348
7349 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
7350 "else" value of an IFN_COND_*. */
7351 (for cond_op (COND_BINARY)
7352 (simplify
7353 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
7354 (with { tree op_type = TREE_TYPE (@3); }
7355 (if (element_precision (type) == element_precision (op_type))
7356 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
7357 (simplify
7358 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
7359 (with { tree op_type = TREE_TYPE (@5); }
7360 (if (inverse_conditions_p (@0, @2)
7361 && element_precision (type) == element_precision (op_type))
7362 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
7363
7364 /* Same for ternary operations. */
7365 (for cond_op (COND_TERNARY)
7366 (simplify
7367 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
7368 (with { tree op_type = TREE_TYPE (@4); }
7369 (if (element_precision (type) == element_precision (op_type))
7370 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
7371 (simplify
7372 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
7373 (with { tree op_type = TREE_TYPE (@6); }
7374 (if (inverse_conditions_p (@0, @2)
7375 && element_precision (type) == element_precision (op_type))
7376 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
7377
7378 /* Detect simplication for a conditional reduction where
7379
7380 a = mask1 ? b : 0
7381 c = mask2 ? d + a : d
7382
7383 is turned into
7384
7385 c = mask1 && mask2 ? d + b : d. */
7386 (simplify
7387 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 integer_zerop) @1)
7388 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1))
7389
7390 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
7391 expressions like:
7392
7393 A: (@0 + @1 < @2) | (@2 + @1 < @0)
7394 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
7395
7396 If pointers are known not to wrap, B checks whether @1 bytes starting
7397 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
7398 bytes. A is more efficiently tested as:
7399
7400 A: (sizetype) (@0 + @1 - @2) > @1 * 2
7401
7402 The equivalent expression for B is given by replacing @1 with @1 - 1:
7403
7404 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
7405
7406 @0 and @2 can be swapped in both expressions without changing the result.
7407
7408 The folds rely on sizetype's being unsigned (which is always true)
7409 and on its being the same width as the pointer (which we have to check).
7410
7411 The fold replaces two pointer_plus expressions, two comparisons and
7412 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
7413 the best case it's a saving of two operations. The A fold retains one
7414 of the original pointer_pluses, so is a win even if both pointer_pluses
7415 are used elsewhere. The B fold is a wash if both pointer_pluses are
7416 used elsewhere, since all we end up doing is replacing a comparison with
7417 a pointer_plus. We do still apply the fold under those circumstances
7418 though, in case applying it to other conditions eventually makes one of the
7419 pointer_pluses dead. */
7420 (for ior (truth_orif truth_or bit_ior)
7421 (for cmp (le lt)
7422 (simplify
7423 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
7424 (cmp:cs (pointer_plus@4 @2 @1) @0))
7425 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
7426 && TYPE_OVERFLOW_WRAPS (sizetype)
7427 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
7428 /* Calculate the rhs constant. */
7429 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
7430 offset_int rhs = off * 2; }
7431 /* Always fails for negative values. */
7432 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
7433 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
7434 pick a canonical order. This increases the chances of using the
7435 same pointer_plus in multiple checks. */
7436 (with { bool swap_p = tree_swap_operands_p (@0, @2);
7437 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
7438 (if (cmp == LT_EXPR)
7439 (gt (convert:sizetype
7440 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
7441 { swap_p ? @0 : @2; }))
7442 { rhs_tree; })
7443 (gt (convert:sizetype
7444 (pointer_diff:ssizetype
7445 (pointer_plus { swap_p ? @2 : @0; }
7446 { wide_int_to_tree (sizetype, off); })
7447 { swap_p ? @0 : @2; }))
7448 { rhs_tree; })))))))))
7449
7450 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
7451 element of @1. */
7452 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
7453 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
7454 (with { int i = single_nonzero_element (@1); }
7455 (if (i >= 0)
7456 (with { tree elt = vector_cst_elt (@1, i);
7457 tree elt_type = TREE_TYPE (elt);
7458 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
7459 tree size = bitsize_int (elt_bits);
7460 tree pos = bitsize_int (elt_bits * i); }
7461 (view_convert
7462 (bit_and:elt_type
7463 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
7464 { elt; })))))))
7465
7466 (simplify
7467 (vec_perm @0 @1 VECTOR_CST@2)
7468 (with
7469 {
7470 tree op0 = @0, op1 = @1, op2 = @2;
7471
7472 /* Build a vector of integers from the tree mask. */
7473 vec_perm_builder builder;
7474 if (!tree_to_vec_perm_builder (&builder, op2))
7475 return NULL_TREE;
7476
7477 /* Create a vec_perm_indices for the integer vector. */
7478 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
7479 bool single_arg = (op0 == op1);
7480 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
7481 }
7482 (if (sel.series_p (0, 1, 0, 1))
7483 { op0; }
7484 (if (sel.series_p (0, 1, nelts, 1))
7485 { op1; }
7486 (with
7487 {
7488 if (!single_arg)
7489 {
7490 if (sel.all_from_input_p (0))
7491 op1 = op0;
7492 else if (sel.all_from_input_p (1))
7493 {
7494 op0 = op1;
7495 sel.rotate_inputs (1);
7496 }
7497 else if (known_ge (poly_uint64 (sel[0]), nelts))
7498 {
7499 std::swap (op0, op1);
7500 sel.rotate_inputs (1);
7501 }
7502 }
7503 gassign *def;
7504 tree cop0 = op0, cop1 = op1;
7505 if (TREE_CODE (op0) == SSA_NAME
7506 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
7507 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7508 cop0 = gimple_assign_rhs1 (def);
7509 if (TREE_CODE (op1) == SSA_NAME
7510 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
7511 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
7512 cop1 = gimple_assign_rhs1 (def);
7513
7514 tree t;
7515 }
7516 (if ((TREE_CODE (cop0) == VECTOR_CST
7517 || TREE_CODE (cop0) == CONSTRUCTOR)
7518 && (TREE_CODE (cop1) == VECTOR_CST
7519 || TREE_CODE (cop1) == CONSTRUCTOR)
7520 && (t = fold_vec_perm (type, cop0, cop1, sel)))
7521 { t; }
7522 (with
7523 {
7524 bool changed = (op0 == op1 && !single_arg);
7525 tree ins = NULL_TREE;
7526 unsigned at = 0;
7527
7528 /* See if the permutation is performing a single element
7529 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
7530 in that case. But only if the vector mode is supported,
7531 otherwise this is invalid GIMPLE. */
7532 if (TYPE_MODE (type) != BLKmode
7533 && (TREE_CODE (cop0) == VECTOR_CST
7534 || TREE_CODE (cop0) == CONSTRUCTOR
7535 || TREE_CODE (cop1) == VECTOR_CST
7536 || TREE_CODE (cop1) == CONSTRUCTOR))
7537 {
7538 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
7539 if (insert_first_p)
7540 {
7541 /* After canonicalizing the first elt to come from the
7542 first vector we only can insert the first elt from
7543 the first vector. */
7544 at = 0;
7545 if ((ins = fold_read_from_vector (cop0, sel[0])))
7546 op0 = op1;
7547 }
7548 /* The above can fail for two-element vectors which always
7549 appear to insert the first element, so try inserting
7550 into the second lane as well. For more than two
7551 elements that's wasted time. */
7552 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
7553 {
7554 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
7555 for (at = 0; at < encoded_nelts; ++at)
7556 if (maybe_ne (sel[at], at))
7557 break;
7558 if (at < encoded_nelts
7559 && (known_eq (at + 1, nelts)
7560 || sel.series_p (at + 1, 1, at + 1, 1)))
7561 {
7562 if (known_lt (poly_uint64 (sel[at]), nelts))
7563 ins = fold_read_from_vector (cop0, sel[at]);
7564 else
7565 ins = fold_read_from_vector (cop1, sel[at] - nelts);
7566 }
7567 }
7568 }
7569
7570 /* Generate a canonical form of the selector. */
7571 if (!ins && sel.encoding () != builder)
7572 {
7573 /* Some targets are deficient and fail to expand a single
7574 argument permutation while still allowing an equivalent
7575 2-argument version. */
7576 tree oldop2 = op2;
7577 if (sel.ninputs () == 2
7578 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
7579 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7580 else
7581 {
7582 vec_perm_indices sel2 (builder, 2, nelts);
7583 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
7584 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
7585 else
7586 /* Not directly supported with either encoding,
7587 so use the preferred form. */
7588 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
7589 }
7590 if (!operand_equal_p (op2, oldop2, 0))
7591 changed = true;
7592 }
7593 }
7594 (if (ins)
7595 (bit_insert { op0; } { ins; }
7596 { bitsize_int (at * vector_element_bits (type)); })
7597 (if (changed)
7598 (vec_perm { op0; } { op1; } { op2; }))))))))))
7599
7600 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
7601
7602 (match vec_same_elem_p
7603 @0
7604 (if (uniform_vector_p (@0))))
7605
7606 (match vec_same_elem_p
7607 (vec_duplicate @0))
7608
7609 (simplify
7610 (vec_perm vec_same_elem_p@0 @0 @1)
7611 @0)
7612
7613 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
7614 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
7615 constant which when multiplied by a power of 2 contains a unique value
7616 in the top 5 or 6 bits. This is then indexed into a table which maps it
7617 to the number of trailing zeroes. */
7618 (match (ctz_table_index @1 @2 @3)
7619 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))