]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
match.pd: Fix popcount (X) + popcount (Y) simplification [PR112719]
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.cc
3 and generic-match.cc from it.
4
5 Copyright (C) 2014-2023 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p
41 expand_vec_cmp_expr_p
42 bitmask_inv_cst_vector_p)
43
44 /* Operator lists. */
45 (define_operator_list tcc_comparison
46 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
47 (define_operator_list inverted_tcc_comparison
48 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list inverted_tcc_comparison_with_nans
50 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
51 (define_operator_list swapped_tcc_comparison
52 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
53 (define_operator_list simple_comparison lt le eq ne ge gt)
54 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
55 (define_operator_list BSWAP BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
56 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
57
58 #include "cfn-operators.pd"
59
60 /* Define operand lists for math rounding functions {,i,l,ll}FN,
61 where the versions prefixed with "i" return an int, those prefixed with
62 "l" return a long and those prefixed with "ll" return a long long.
63
64 Also define operand lists:
65
66 X<FN>F for all float functions, in the order i, l, ll
67 X<FN> for all double functions, in the same order
68 X<FN>L for all long double functions, in the same order. */
69 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
70 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
71 BUILT_IN_L##FN##F \
72 BUILT_IN_LL##FN##F) \
73 (define_operator_list X##FN BUILT_IN_I##FN \
74 BUILT_IN_L##FN \
75 BUILT_IN_LL##FN) \
76 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
77 BUILT_IN_L##FN##L \
78 BUILT_IN_LL##FN##L)
79
80 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
81 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
82 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
83 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
84
85 /* Unary operations and their associated IFN_COND_* function. */
86 (define_operator_list UNCOND_UNARY
87 negate bit_not)
88 (define_operator_list COND_UNARY
89 IFN_COND_NEG IFN_COND_NOT)
90 (define_operator_list COND_LEN_UNARY
91 IFN_COND_LEN_NEG IFN_COND_LEN_NOT)
92
93 /* Binary operations and their associated IFN_COND_* function. */
94 (define_operator_list UNCOND_BINARY
95 plus minus
96 mult trunc_div trunc_mod rdiv
97 min max
98 IFN_FMIN IFN_FMAX IFN_COPYSIGN
99 bit_and bit_ior bit_xor
100 lshift rshift)
101 (define_operator_list COND_BINARY
102 IFN_COND_ADD IFN_COND_SUB
103 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
104 IFN_COND_MIN IFN_COND_MAX
105 IFN_COND_FMIN IFN_COND_FMAX IFN_COND_COPYSIGN
106 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
107 IFN_COND_SHL IFN_COND_SHR)
108 (define_operator_list COND_LEN_BINARY
109 IFN_COND_LEN_ADD IFN_COND_LEN_SUB
110 IFN_COND_LEN_MUL IFN_COND_LEN_DIV
111 IFN_COND_LEN_MOD IFN_COND_LEN_RDIV
112 IFN_COND_LEN_MIN IFN_COND_LEN_MAX
113 IFN_COND_LEN_FMIN IFN_COND_LEN_FMAX IFN_COND_LEN_COPYSIGN
114 IFN_COND_LEN_AND IFN_COND_LEN_IOR IFN_COND_LEN_XOR
115 IFN_COND_LEN_SHL IFN_COND_LEN_SHR)
116
117 /* Same for ternary operations. */
118 (define_operator_list UNCOND_TERNARY
119 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
120 (define_operator_list COND_TERNARY
121 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
122 (define_operator_list COND_LEN_TERNARY
123 IFN_COND_LEN_FMA IFN_COND_LEN_FMS IFN_COND_LEN_FNMA IFN_COND_LEN_FNMS)
124
125 /* __atomic_fetch_or_*, __atomic_fetch_xor_*, __atomic_xor_fetch_* */
126 (define_operator_list ATOMIC_FETCH_OR_XOR_N
127 BUILT_IN_ATOMIC_FETCH_OR_1 BUILT_IN_ATOMIC_FETCH_OR_2
128 BUILT_IN_ATOMIC_FETCH_OR_4 BUILT_IN_ATOMIC_FETCH_OR_8
129 BUILT_IN_ATOMIC_FETCH_OR_16
130 BUILT_IN_ATOMIC_FETCH_XOR_1 BUILT_IN_ATOMIC_FETCH_XOR_2
131 BUILT_IN_ATOMIC_FETCH_XOR_4 BUILT_IN_ATOMIC_FETCH_XOR_8
132 BUILT_IN_ATOMIC_FETCH_XOR_16
133 BUILT_IN_ATOMIC_XOR_FETCH_1 BUILT_IN_ATOMIC_XOR_FETCH_2
134 BUILT_IN_ATOMIC_XOR_FETCH_4 BUILT_IN_ATOMIC_XOR_FETCH_8
135 BUILT_IN_ATOMIC_XOR_FETCH_16)
136 /* __sync_fetch_and_or_*, __sync_fetch_and_xor_*, __sync_xor_and_fetch_* */
137 (define_operator_list SYNC_FETCH_OR_XOR_N
138 BUILT_IN_SYNC_FETCH_AND_OR_1 BUILT_IN_SYNC_FETCH_AND_OR_2
139 BUILT_IN_SYNC_FETCH_AND_OR_4 BUILT_IN_SYNC_FETCH_AND_OR_8
140 BUILT_IN_SYNC_FETCH_AND_OR_16
141 BUILT_IN_SYNC_FETCH_AND_XOR_1 BUILT_IN_SYNC_FETCH_AND_XOR_2
142 BUILT_IN_SYNC_FETCH_AND_XOR_4 BUILT_IN_SYNC_FETCH_AND_XOR_8
143 BUILT_IN_SYNC_FETCH_AND_XOR_16
144 BUILT_IN_SYNC_XOR_AND_FETCH_1 BUILT_IN_SYNC_XOR_AND_FETCH_2
145 BUILT_IN_SYNC_XOR_AND_FETCH_4 BUILT_IN_SYNC_XOR_AND_FETCH_8
146 BUILT_IN_SYNC_XOR_AND_FETCH_16)
147 /* __atomic_fetch_and_*. */
148 (define_operator_list ATOMIC_FETCH_AND_N
149 BUILT_IN_ATOMIC_FETCH_AND_1 BUILT_IN_ATOMIC_FETCH_AND_2
150 BUILT_IN_ATOMIC_FETCH_AND_4 BUILT_IN_ATOMIC_FETCH_AND_8
151 BUILT_IN_ATOMIC_FETCH_AND_16)
152 /* __sync_fetch_and_and_*. */
153 (define_operator_list SYNC_FETCH_AND_AND_N
154 BUILT_IN_SYNC_FETCH_AND_AND_1 BUILT_IN_SYNC_FETCH_AND_AND_2
155 BUILT_IN_SYNC_FETCH_AND_AND_4 BUILT_IN_SYNC_FETCH_AND_AND_8
156 BUILT_IN_SYNC_FETCH_AND_AND_16)
157
158 /* With nop_convert? combine convert? and view_convert? in one pattern
159 plus conditionalize on tree_nop_conversion_p conversions. */
160 (match (nop_convert @0)
161 (convert @0)
162 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
163 (match (nop_convert @0)
164 (view_convert @0)
165 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
166 && known_eq (TYPE_VECTOR_SUBPARTS (type),
167 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
168 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
169
170 #if GIMPLE
171 /* These are used by gimple_bitwise_inverted_equal_p to simplify
172 detection of BIT_NOT and comparisons. */
173 (match (bit_not_with_nop @0)
174 (bit_not @0))
175 (match (bit_not_with_nop @0)
176 (convert (bit_not @0))
177 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
178 (for cmp (tcc_comparison)
179 (match (maybe_cmp @0)
180 (cmp@0 @1 @2))
181 (match (maybe_cmp @0)
182 (convert (cmp@0 @1 @2))
183 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
184 )
185 #endif
186
187 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
188 ABSU_EXPR returns unsigned absolute value of the operand and the operand
189 of the ABSU_EXPR will have the corresponding signed type. */
190 (simplify (abs (convert @0))
191 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
192 && !TYPE_UNSIGNED (TREE_TYPE (@0))
193 && element_precision (type) > element_precision (TREE_TYPE (@0)))
194 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
195 (convert (absu:utype @0)))))
196
197 #if GIMPLE
198 /* Optimize (X + (X >> (prec - 1))) ^ (X >> (prec - 1)) into abs (X). */
199 (simplify
200 (bit_xor:c (plus:c @0 (rshift@2 @0 INTEGER_CST@1)) @2)
201 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
202 && !TYPE_UNSIGNED (TREE_TYPE (@0))
203 && wi::to_widest (@1) == element_precision (TREE_TYPE (@0)) - 1)
204 (abs @0)))
205 #endif
206
207 /* Simplifications of operations with one constant operand and
208 simplifications to constants or single values. */
209
210 (for op (plus pointer_plus minus bit_ior bit_xor)
211 (simplify
212 (op @0 integer_zerop)
213 (non_lvalue @0)))
214
215 /* 0 +p index -> (type)index */
216 (simplify
217 (pointer_plus integer_zerop @1)
218 (non_lvalue (convert @1)))
219
220 /* ptr - 0 -> (type)ptr */
221 (simplify
222 (pointer_diff @0 integer_zerop)
223 (convert @0))
224
225 /* See if ARG1 is zero and X + ARG1 reduces to X.
226 Likewise if the operands are reversed. */
227 (simplify
228 (plus:c @0 real_zerop@1)
229 (if (fold_real_zero_addition_p (type, @0, @1, 0))
230 (non_lvalue @0)))
231
232 /* See if ARG1 is zero and X - ARG1 reduces to X. */
233 (simplify
234 (minus @0 real_zerop@1)
235 (if (fold_real_zero_addition_p (type, @0, @1, 1))
236 (non_lvalue @0)))
237
238 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
239 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
240 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
241 if not -frounding-math. For sNaNs the first operation would raise
242 exceptions but turn the result into qNan, so the second operation
243 would not raise it. */
244 (for inner_op (plus minus)
245 (for outer_op (plus minus)
246 (simplify
247 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
248 (if (real_zerop (@1)
249 && real_zerop (@2)
250 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
251 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
252 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
253 bool outer_plus
254 = ((outer_op == PLUS_EXPR)
255 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
256 (if (outer_plus && !inner_plus)
257 (outer_op @0 @2)
258 @3))))))
259
260 /* Simplify x - x.
261 This is unsafe for certain floats even in non-IEEE formats.
262 In IEEE, it is unsafe because it does wrong for NaNs.
263 PR middle-end/98420: x - x may be -0.0 with FE_DOWNWARD.
264 Also note that operand_equal_p is always false if an operand
265 is volatile. */
266 (simplify
267 (minus @0 @0)
268 (if (!FLOAT_TYPE_P (type)
269 || (!tree_expr_maybe_nan_p (@0)
270 && !tree_expr_maybe_infinite_p (@0)
271 && (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
272 || !HONOR_SIGNED_ZEROS (type))))
273 { build_zero_cst (type); }))
274 (simplify
275 (pointer_diff @@0 @0)
276 { build_zero_cst (type); })
277
278 (simplify
279 (mult @0 integer_zerop@1)
280 @1)
281
282 /* -x == x -> x == 0 */
283 (for cmp (eq ne)
284 (simplify
285 (cmp:c @0 (negate @0))
286 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
287 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE(@0)))
288 (cmp @0 { build_zero_cst (TREE_TYPE(@0)); }))))
289
290 /* Maybe fold x * 0 to 0. The expressions aren't the same
291 when x is NaN, since x * 0 is also NaN. Nor are they the
292 same in modes with signed zeros, since multiplying a
293 negative value by 0 gives -0, not +0. Nor when x is +-Inf,
294 since x * 0 is NaN. */
295 (simplify
296 (mult @0 real_zerop@1)
297 (if (!tree_expr_maybe_nan_p (@0)
298 && (!HONOR_NANS (type) || !tree_expr_maybe_infinite_p (@0))
299 && (!HONOR_SIGNED_ZEROS (type) || tree_expr_nonnegative_p (@0)))
300 @1))
301
302 /* In IEEE floating point, x*1 is not equivalent to x for snans.
303 Likewise for complex arithmetic with signed zeros. */
304 (simplify
305 (mult @0 real_onep)
306 (if (!tree_expr_maybe_signaling_nan_p (@0)
307 && (!HONOR_SIGNED_ZEROS (type)
308 || !COMPLEX_FLOAT_TYPE_P (type)))
309 (non_lvalue @0)))
310
311 /* Transform x * -1.0 into -x. */
312 (simplify
313 (mult @0 real_minus_onep)
314 (if (!tree_expr_maybe_signaling_nan_p (@0)
315 && (!HONOR_SIGNED_ZEROS (type)
316 || !COMPLEX_FLOAT_TYPE_P (type)))
317 (negate @0)))
318
319 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
320 unless the target has native support for the former but not the latter. */
321 (simplify
322 (mult @0 VECTOR_CST@1)
323 (if (initializer_each_zero_or_onep (@1)
324 && !HONOR_SNANS (type)
325 && !HONOR_SIGNED_ZEROS (type))
326 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
327 (if (itype
328 && (!VECTOR_MODE_P (TYPE_MODE (type))
329 || (VECTOR_MODE_P (TYPE_MODE (itype))
330 && optab_handler (and_optab,
331 TYPE_MODE (itype)) != CODE_FOR_nothing)))
332 (view_convert (bit_and:itype (view_convert @0)
333 (ne @1 { build_zero_cst (type); })))))))
334
335 /* In SWAR (SIMD within a register) code a signed comparison of packed data
336 can be constructed with a particular combination of shift, bitwise and,
337 and multiplication by constants. If that code is vectorized we can
338 convert this pattern into a more efficient vector comparison. */
339 (simplify
340 (mult (bit_and (rshift @0 uniform_integer_cst_p@1)
341 uniform_integer_cst_p@2)
342 uniform_integer_cst_p@3)
343 (with {
344 tree rshift_cst = uniform_integer_cst_p (@1);
345 tree bit_and_cst = uniform_integer_cst_p (@2);
346 tree mult_cst = uniform_integer_cst_p (@3);
347 }
348 /* Make sure we're working with vectors and uniform vector constants. */
349 (if (VECTOR_TYPE_P (type)
350 && tree_fits_uhwi_p (rshift_cst)
351 && tree_fits_uhwi_p (mult_cst)
352 && tree_fits_uhwi_p (bit_and_cst))
353 /* Compute what constants would be needed for this to represent a packed
354 comparison based on the shift amount denoted by RSHIFT_CST. */
355 (with {
356 HOST_WIDE_INT vec_elem_bits = vector_element_bits (type);
357 poly_int64 vec_nelts = TYPE_VECTOR_SUBPARTS (type);
358 poly_int64 vec_bits = vec_elem_bits * vec_nelts;
359 unsigned HOST_WIDE_INT cmp_bits_i, bit_and_i, mult_i;
360 unsigned HOST_WIDE_INT target_mult_i, target_bit_and_i;
361 cmp_bits_i = tree_to_uhwi (rshift_cst) + 1;
362 mult_i = tree_to_uhwi (mult_cst);
363 target_mult_i = (HOST_WIDE_INT_1U << cmp_bits_i) - 1;
364 bit_and_i = tree_to_uhwi (bit_and_cst);
365 target_bit_and_i = 0;
366
367 /* The bit pattern in BIT_AND_I should be a mask for the least
368 significant bit of each packed element that is CMP_BITS wide. */
369 for (unsigned i = 0; i < vec_elem_bits / cmp_bits_i; i++)
370 target_bit_and_i = (target_bit_and_i << cmp_bits_i) | 1U;
371 }
372 (if ((exact_log2 (cmp_bits_i)) >= 0
373 && cmp_bits_i < HOST_BITS_PER_WIDE_INT
374 && multiple_p (vec_bits, cmp_bits_i)
375 && vec_elem_bits <= HOST_BITS_PER_WIDE_INT
376 && target_mult_i == mult_i
377 && target_bit_and_i == bit_and_i)
378 /* Compute the vector shape for the comparison and check if the target is
379 able to expand the comparison with that type. */
380 (with {
381 /* We're doing a signed comparison. */
382 tree cmp_type = build_nonstandard_integer_type (cmp_bits_i, 0);
383 poly_int64 vector_type_nelts = exact_div (vec_bits, cmp_bits_i);
384 tree vec_cmp_type = build_vector_type (cmp_type, vector_type_nelts);
385 tree vec_truth_type = truth_type_for (vec_cmp_type);
386 tree zeros = build_zero_cst (vec_cmp_type);
387 tree ones = build_all_ones_cst (vec_cmp_type);
388 }
389 (if (expand_vec_cmp_expr_p (vec_cmp_type, vec_truth_type, LT_EXPR)
390 && expand_vec_cond_expr_p (vec_cmp_type, vec_truth_type, LT_EXPR))
391 (view_convert:type (vec_cond (lt:vec_truth_type
392 (view_convert:vec_cmp_type @0)
393 { zeros; })
394 { ones; } { zeros; })))))))))
395
396 (for cmp (gt ge lt le)
397 outp (convert convert negate negate)
398 outn (negate negate convert convert)
399 /* Transform X * (X > 0.0 ? 1.0 : -1.0) into abs(X). */
400 /* Transform X * (X >= 0.0 ? 1.0 : -1.0) into abs(X). */
401 /* Transform X * (X < 0.0 ? 1.0 : -1.0) into -abs(X). */
402 /* Transform X * (X <= 0.0 ? 1.0 : -1.0) into -abs(X). */
403 (simplify
404 (mult:c @0 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep))
405 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
406 (outp (abs @0))))
407 /* Transform X * (X > 0.0 ? -1.0 : 1.0) into -abs(X). */
408 /* Transform X * (X >= 0.0 ? -1.0 : 1.0) into -abs(X). */
409 /* Transform X * (X < 0.0 ? -1.0 : 1.0) into abs(X). */
410 /* Transform X * (X <= 0.0 ? -1.0 : 1.0) into abs(X). */
411 (simplify
412 (mult:c @0 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1))
413 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
414 (outn (abs @0)))))
415
416 /* Transform X * copysign (1.0, X) into abs(X). */
417 (simplify
418 (mult:c @0 (COPYSIGN_ALL real_onep @0))
419 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
420 (abs @0)))
421
422 /* Transform X * copysign (1.0, -X) into -abs(X). */
423 (simplify
424 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
425 (if (!tree_expr_maybe_nan_p (@0) && !HONOR_SIGNED_ZEROS (type))
426 (negate (abs @0))))
427
428 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
429 (simplify
430 (COPYSIGN_ALL REAL_CST@0 @1)
431 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
432 (COPYSIGN_ALL (negate @0) @1)))
433
434 /* Transform c ? x * copysign (1, y) : z to c ? x ^ signs(y) : z.
435 tree-ssa-math-opts.cc does the corresponding optimization for
436 unconditional multiplications (via xorsign). */
437 (simplify
438 (IFN_COND_MUL:c @0 @1 (IFN_COPYSIGN real_onep @2) @3)
439 (with { tree signs = sign_mask_for (type); }
440 (if (signs)
441 (with { tree inttype = TREE_TYPE (signs); }
442 (view_convert:type
443 (IFN_COND_XOR:inttype @0
444 (view_convert:inttype @1)
445 (bit_and (view_convert:inttype @2) { signs; })
446 (view_convert:inttype @3)))))))
447
448 /* (x >= 0 ? x : 0) + (x <= 0 ? -x : 0) -> abs x. */
449 (simplify
450 (plus:c (max @0 integer_zerop) (max (negate @0) integer_zerop))
451 (abs @0))
452
453 /* X * 1, X / 1 -> X. */
454 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
455 (simplify
456 (op @0 integer_onep)
457 (non_lvalue @0)))
458
459 /* (A / (1 << B)) -> (A >> B).
460 Only for unsigned A. For signed A, this would not preserve rounding
461 toward zero.
462 For example: (-1 / ( 1 << B)) != -1 >> B.
463 Also handle widening conversions, like:
464 (A / (unsigned long long) (1U << B)) -> (A >> B)
465 or
466 (A / (unsigned long long) (1 << B)) -> (A >> B).
467 If the left shift is signed, it can be done only if the upper bits
468 of A starting from shift's type sign bit are zero, as
469 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
470 so it is valid only if A >> 31 is zero. */
471 (simplify
472 (trunc_div (convert?@0 @3) (convert2? (lshift integer_onep@1 @2)))
473 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
474 && (!VECTOR_TYPE_P (type)
475 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
476 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
477 && (useless_type_conversion_p (type, TREE_TYPE (@1))
478 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
479 && (TYPE_UNSIGNED (TREE_TYPE (@1))
480 || (element_precision (type)
481 == element_precision (TREE_TYPE (@1)))
482 || (INTEGRAL_TYPE_P (type)
483 && (tree_nonzero_bits (@0)
484 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
485 true,
486 element_precision (type))) == 0)))))
487 (if (!VECTOR_TYPE_P (type)
488 && useless_type_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1))
489 && element_precision (TREE_TYPE (@3)) < element_precision (type))
490 (convert (rshift @3 @2))
491 (rshift @0 @2))))
492
493 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
494 undefined behavior in constexpr evaluation, and assuming that the division
495 traps enables better optimizations than these anyway. */
496 (for div (trunc_div ceil_div floor_div round_div exact_div)
497 /* 0 / X is always zero. */
498 (simplify
499 (div integer_zerop@0 @1)
500 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
501 (if (!integer_zerop (@1))
502 @0))
503 /* X / -1 is -X. */
504 (simplify
505 (div @0 integer_minus_onep@1)
506 (if (!TYPE_UNSIGNED (type))
507 (negate @0)))
508 /* X / bool_range_Y is X. */
509 (simplify
510 (div @0 SSA_NAME@1)
511 (if (INTEGRAL_TYPE_P (type)
512 && ssa_name_has_boolean_range (@1)
513 && !flag_non_call_exceptions)
514 @0))
515 /* X / X is one. */
516 (simplify
517 (div @0 @0)
518 /* But not for 0 / 0 so that we can get the proper warnings and errors.
519 And not for _Fract types where we can't build 1. */
520 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type))
521 && !integer_zerop (@0)
522 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
523 { build_one_cst (type); }))
524 /* X / abs (X) is X < 0 ? -1 : 1. */
525 (simplify
526 (div:C @0 (abs @0))
527 (if (INTEGRAL_TYPE_P (type)
528 && TYPE_OVERFLOW_UNDEFINED (type)
529 && !integer_zerop (@0)
530 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
531 (cond (lt @0 { build_zero_cst (type); })
532 { build_minus_one_cst (type); } { build_one_cst (type); })))
533 /* X / -X is -1. */
534 (simplify
535 (div:C @0 (negate @0))
536 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
537 && TYPE_OVERFLOW_UNDEFINED (type)
538 && !integer_zerop (@0)
539 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@0)))
540 { build_minus_one_cst (type); })))
541
542 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
543 TRUNC_DIV_EXPR. Rewrite into the latter in this case. Similarly
544 for MOD instead of DIV. */
545 (for floor_divmod (floor_div floor_mod)
546 trunc_divmod (trunc_div trunc_mod)
547 (simplify
548 (floor_divmod @0 @1)
549 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
550 && TYPE_UNSIGNED (type))
551 (trunc_divmod @0 @1))))
552
553 /* 1 / X -> X == 1 for unsigned integer X.
554 1 / X -> X >= -1 && X <= 1 ? X : 0 for signed integer X.
555 But not for 1 / 0 so that we can get proper warnings and errors,
556 and not for 1-bit integers as they are edge cases better handled
557 elsewhere. */
558 (simplify
559 (trunc_div integer_onep@0 @1)
560 (if (INTEGRAL_TYPE_P (type)
561 && TYPE_PRECISION (type) > 1
562 && !integer_zerop (@1)
563 && (!flag_non_call_exceptions || tree_expr_nonzero_p (@1)))
564 (if (TYPE_UNSIGNED (type))
565 (convert (eq:boolean_type_node @1 { build_one_cst (type); }))
566 (with { tree utype = unsigned_type_for (type); }
567 (cond (le (plus (convert:utype @1) { build_one_cst (utype); })
568 { build_int_cst (utype, 2); })
569 @1 { build_zero_cst (type); })))))
570
571 /* Combine two successive divisions. Note that combining ceil_div
572 and floor_div is trickier and combining round_div even more so. */
573 (for div (trunc_div exact_div)
574 (simplify
575 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
576 (with {
577 wi::overflow_type overflow;
578 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
579 TYPE_SIGN (type), &overflow);
580 }
581 (if (div == EXACT_DIV_EXPR
582 || optimize_successive_divisions_p (@2, @3))
583 (if (!overflow)
584 (div @0 { wide_int_to_tree (type, mul); })
585 (if (TYPE_UNSIGNED (type)
586 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
587 { build_zero_cst (type); }))))))
588
589 /* Combine successive multiplications. Similar to above, but handling
590 overflow is different. */
591 (simplify
592 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
593 (with {
594 wi::overflow_type overflow;
595 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
596 TYPE_SIGN (type), &overflow);
597 }
598 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
599 otherwise undefined overflow implies that @0 must be zero. */
600 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
601 (mult @0 { wide_int_to_tree (type, mul); }))))
602
603 /* Similar to above, but there could be an extra add/sub between
604 successive multuiplications. */
605 (simplify
606 (mult (plus:s (mult:s@4 @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
607 (with {
608 bool overflowed = true;
609 wi::overflow_type ovf1, ovf2;
610 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@3),
611 TYPE_SIGN (type), &ovf1);
612 wide_int add = wi::mul (wi::to_wide (@2), wi::to_wide (@3),
613 TYPE_SIGN (type), &ovf2);
614 if (TYPE_OVERFLOW_UNDEFINED (type))
615 {
616 #if GIMPLE
617 value_range vr0;
618 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
619 && get_global_range_query ()->range_of_expr (vr0, @4)
620 && !vr0.varying_p () && !vr0.undefined_p ())
621 {
622 wide_int wmin0 = vr0.lower_bound ();
623 wide_int wmax0 = vr0.upper_bound ();
624 wmin0 = wi::mul (wmin0, wi::to_wide (@3), TYPE_SIGN (type), &ovf1);
625 wmax0 = wi::mul (wmax0, wi::to_wide (@3), TYPE_SIGN (type), &ovf2);
626 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
627 {
628 wi::add (wmin0, add, TYPE_SIGN (type), &ovf1);
629 wi::add (wmax0, add, TYPE_SIGN (type), &ovf2);
630 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
631 overflowed = false;
632 }
633 }
634 #endif
635 }
636 else
637 overflowed = false;
638 }
639 /* Skip folding on overflow. */
640 (if (!overflowed)
641 (plus (mult @0 { wide_int_to_tree (type, mul); })
642 { wide_int_to_tree (type, add); }))))
643
644 /* Similar to above, but a multiplication between successive additions. */
645 (simplify
646 (plus (mult:s (plus:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
647 (with {
648 bool overflowed = true;
649 wi::overflow_type ovf1;
650 wi::overflow_type ovf2;
651 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
652 TYPE_SIGN (type), &ovf1);
653 wide_int add = wi::add (mul, wi::to_wide (@3),
654 TYPE_SIGN (type), &ovf2);
655 if (TYPE_OVERFLOW_UNDEFINED (type))
656 {
657 #if GIMPLE
658 value_range vr0;
659 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE
660 && get_global_range_query ()->range_of_expr (vr0, @0)
661 && !vr0.varying_p () && !vr0.undefined_p ())
662 {
663 wide_int wmin0 = vr0.lower_bound ();
664 wide_int wmax0 = vr0.upper_bound ();
665 wmin0 = wi::mul (wmin0, wi::to_wide (@2), TYPE_SIGN (type), &ovf1);
666 wmax0 = wi::mul (wmax0, wi::to_wide (@2), TYPE_SIGN (type), &ovf2);
667 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
668 {
669 wi::add (wmin0, mul, TYPE_SIGN (type), &ovf1);
670 wi::add (wmax0, mul, TYPE_SIGN (type), &ovf2);
671 if (ovf1 == wi::OVF_NONE && ovf2 == wi::OVF_NONE)
672 overflowed = false;
673 }
674 }
675 #endif
676 }
677 else
678 overflowed = false;
679 }
680 /* Skip folding on overflow. */
681 (if (!overflowed)
682 (plus (mult @0 @2) { wide_int_to_tree (type, add); }))))
683
684 /* Optimize A / A to 1.0 if we don't care about
685 NaNs or Infinities. */
686 (simplify
687 (rdiv @0 @0)
688 (if (FLOAT_TYPE_P (type)
689 && ! HONOR_NANS (type)
690 && ! HONOR_INFINITIES (type))
691 { build_one_cst (type); }))
692
693 /* Optimize -A / A to -1.0 if we don't care about
694 NaNs or Infinities. */
695 (simplify
696 (rdiv:C @0 (negate @0))
697 (if (FLOAT_TYPE_P (type)
698 && ! HONOR_NANS (type)
699 && ! HONOR_INFINITIES (type))
700 { build_minus_one_cst (type); }))
701
702 /* PR71078: x / abs(x) -> copysign (1.0, x) */
703 (simplify
704 (rdiv:C (convert? @0) (convert? (abs @0)))
705 (if (SCALAR_FLOAT_TYPE_P (type)
706 && ! HONOR_NANS (type)
707 && ! HONOR_INFINITIES (type))
708 (switch
709 (if (types_match (type, float_type_node))
710 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
711 (if (types_match (type, double_type_node))
712 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
713 (if (types_match (type, long_double_type_node))
714 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
715
716 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
717 (simplify
718 (rdiv @0 real_onep)
719 (if (!tree_expr_maybe_signaling_nan_p (@0))
720 (non_lvalue @0)))
721
722 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
723 (simplify
724 (rdiv @0 real_minus_onep)
725 (if (!tree_expr_maybe_signaling_nan_p (@0))
726 (negate @0)))
727
728 (if (flag_reciprocal_math)
729 /* Convert (A/B)/C to A/(B*C). */
730 (simplify
731 (rdiv (rdiv:s @0 @1) @2)
732 (rdiv @0 (mult @1 @2)))
733
734 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
735 (simplify
736 (rdiv @0 (mult:s @1 REAL_CST@2))
737 (with
738 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
739 (if (tem)
740 (rdiv (mult @0 { tem; } ) @1))))
741
742 /* Convert A/(B/C) to (A/B)*C */
743 (simplify
744 (rdiv @0 (rdiv:s @1 @2))
745 (mult (rdiv @0 @1) @2)))
746
747 /* Simplify x / (- y) to -x / y. */
748 (simplify
749 (rdiv @0 (negate @1))
750 (rdiv (negate @0) @1))
751
752 (if (flag_unsafe_math_optimizations)
753 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
754 Since C / x may underflow to zero, do this only for unsafe math. */
755 (for op (lt le gt ge)
756 neg_op (gt ge lt le)
757 (simplify
758 (op (rdiv REAL_CST@0 @1) real_zerop@2)
759 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
760 (switch
761 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
762 (op @1 @2))
763 /* For C < 0, use the inverted operator. */
764 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
765 (neg_op @1 @2)))))))
766
767 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
768 (for div (trunc_div ceil_div floor_div round_div exact_div)
769 (simplify
770 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
771 (if (integer_pow2p (@2)
772 && tree_int_cst_sgn (@2) > 0
773 && tree_nop_conversion_p (type, TREE_TYPE (@0))
774 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
775 (rshift (convert @0)
776 { build_int_cst (integer_type_node,
777 wi::exact_log2 (wi::to_wide (@2))); }))))
778
779 /* If ARG1 is a constant, we can convert this to a multiply by the
780 reciprocal. This does not have the same rounding properties,
781 so only do this if -freciprocal-math. We can actually
782 always safely do it if ARG1 is a power of two, but it's hard to
783 tell if it is or not in a portable manner. */
784 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
785 (simplify
786 (rdiv @0 cst@1)
787 (if (optimize)
788 (if (flag_reciprocal_math
789 && !real_zerop (@1))
790 (with
791 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
792 (if (tem)
793 (mult @0 { tem; } )))
794 (if (cst != COMPLEX_CST)
795 (with { tree inverse = exact_inverse (type, @1); }
796 (if (inverse)
797 (mult @0 { inverse; } ))))))))
798
799 (for mod (ceil_mod floor_mod round_mod trunc_mod)
800 /* 0 % X is always zero. */
801 (simplify
802 (mod integer_zerop@0 @1)
803 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
804 (if (!integer_zerop (@1))
805 @0))
806 /* X % 1 is always zero. */
807 (simplify
808 (mod @0 integer_onep)
809 { build_zero_cst (type); })
810 /* X % -1 is zero. */
811 (simplify
812 (mod @0 integer_minus_onep@1)
813 (if (!TYPE_UNSIGNED (type))
814 { build_zero_cst (type); }))
815 /* X % X is zero. */
816 (simplify
817 (mod @0 @0)
818 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
819 (if (!integer_zerop (@0))
820 { build_zero_cst (type); }))
821 /* (X % Y) % Y is just X % Y. */
822 (simplify
823 (mod (mod@2 @0 @1) @1)
824 @2)
825 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
826 (simplify
827 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
828 (if (ANY_INTEGRAL_TYPE_P (type)
829 && TYPE_OVERFLOW_UNDEFINED (type)
830 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
831 TYPE_SIGN (type)))
832 { build_zero_cst (type); }))
833 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
834 modulo and comparison, since it is simpler and equivalent. */
835 (for cmp (eq ne)
836 (simplify
837 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
838 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
839 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
840 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
841
842 /* X % -C is the same as X % C. */
843 (simplify
844 (trunc_mod @0 INTEGER_CST@1)
845 (if (TYPE_SIGN (type) == SIGNED
846 && !TREE_OVERFLOW (@1)
847 && wi::neg_p (wi::to_wide (@1))
848 && !TYPE_OVERFLOW_TRAPS (type)
849 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
850 && !sign_bit_p (@1, @1))
851 (trunc_mod @0 (negate @1))))
852
853 /* X % -Y is the same as X % Y. */
854 (simplify
855 (trunc_mod @0 (convert? (negate @1)))
856 (if (INTEGRAL_TYPE_P (type)
857 && !TYPE_UNSIGNED (type)
858 && !TYPE_OVERFLOW_TRAPS (type)
859 && tree_nop_conversion_p (type, TREE_TYPE (@1))
860 /* Avoid this transformation if X might be INT_MIN or
861 Y might be -1, because we would then change valid
862 INT_MIN % -(-1) into invalid INT_MIN % -1. */
863 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
864 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
865 (TREE_TYPE (@1))))))
866 (trunc_mod @0 (convert @1))))
867
868 /* X - (X / Y) * Y is the same as X % Y. */
869 (simplify
870 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
871 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
872 (convert (trunc_mod @0 @1))))
873
874 /* x * (1 + y / x) - y -> x - y % x */
875 (simplify
876 (minus (mult:cs @0 (plus:s (trunc_div:s @1 @0) integer_onep)) @1)
877 (if (INTEGRAL_TYPE_P (type))
878 (minus @0 (trunc_mod @1 @0))))
879
880 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
881 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
882 Also optimize A % (C << N) where C is a power of 2,
883 to A & ((C << N) - 1).
884 Also optimize "A shift (B % C)", if C is a power of 2, to
885 "A shift (B & (C - 1))". SHIFT operation include "<<" and ">>"
886 and assume (B % C) is nonnegative as shifts negative values would
887 be UB. */
888 (match (power_of_two_cand @1)
889 INTEGER_CST@1)
890 (match (power_of_two_cand @1)
891 (lshift INTEGER_CST@1 @2))
892 (for mod (trunc_mod floor_mod)
893 (for shift (lshift rshift)
894 (simplify
895 (shift @0 (mod @1 (power_of_two_cand@2 @3)))
896 (if (integer_pow2p (@3) && tree_int_cst_sgn (@3) > 0)
897 (shift @0 (bit_and @1 (minus @2 { build_int_cst (TREE_TYPE (@2),
898 1); }))))))
899 (simplify
900 (mod @0 (convert? (power_of_two_cand@1 @2)))
901 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
902 /* Allow any integral conversions of the divisor, except
903 conversion from narrower signed to wider unsigned type
904 where if @1 would be negative power of two, the divisor
905 would not be a power of two. */
906 && INTEGRAL_TYPE_P (type)
907 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
908 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
909 || TYPE_UNSIGNED (TREE_TYPE (@1))
910 || !TYPE_UNSIGNED (type))
911 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
912 (with { tree utype = TREE_TYPE (@1);
913 if (!TYPE_OVERFLOW_WRAPS (utype))
914 utype = unsigned_type_for (utype); }
915 (bit_and @0 (convert (minus (convert:utype @1)
916 { build_one_cst (utype); })))))))
917
918 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
919 (simplify
920 (trunc_div (mult @0 integer_pow2p@1) @1)
921 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
922 (bit_and @0 { wide_int_to_tree
923 (type, wi::mask (TYPE_PRECISION (type)
924 - wi::exact_log2 (wi::to_wide (@1)),
925 false, TYPE_PRECISION (type))); })))
926
927 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
928 (simplify
929 (mult (trunc_div @0 integer_pow2p@1) @1)
930 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && TYPE_UNSIGNED (TREE_TYPE (@0)))
931 (bit_and @0 (negate @1))))
932
933 /* Simplify (t * 2) / 2) -> t. */
934 (for div (trunc_div ceil_div floor_div round_div exact_div)
935 (simplify
936 (div (mult:c @0 @1) @1)
937 (if (ANY_INTEGRAL_TYPE_P (type))
938 (if (TYPE_OVERFLOW_UNDEFINED (type))
939 @0
940 #if GIMPLE
941 (with {value_range vr0, vr1;}
942 (if (INTEGRAL_TYPE_P (type)
943 && get_range_query (cfun)->range_of_expr (vr0, @0)
944 && get_range_query (cfun)->range_of_expr (vr1, @1)
945 && range_op_handler (MULT_EXPR).overflow_free_p (vr0, vr1))
946 @0))
947 #endif
948 ))))
949
950 #if GIMPLE
951 (for div (trunc_div exact_div)
952 /* Simplify (X + M*N) / N -> X / N + M. */
953 (simplify
954 (div (plus:c@4 @0 (mult:c@3 @1 @2)) @2)
955 (with {value_range vr0, vr1, vr2, vr3, vr4;}
956 (if (INTEGRAL_TYPE_P (type)
957 && get_range_query (cfun)->range_of_expr (vr1, @1)
958 && get_range_query (cfun)->range_of_expr (vr2, @2)
959 /* "N*M" doesn't overflow. */
960 && range_op_handler (MULT_EXPR).overflow_free_p (vr1, vr2)
961 && get_range_query (cfun)->range_of_expr (vr0, @0)
962 && get_range_query (cfun)->range_of_expr (vr3, @3)
963 /* "X+(N*M)" doesn't overflow. */
964 && range_op_handler (PLUS_EXPR).overflow_free_p (vr0, vr3)
965 && get_range_query (cfun)->range_of_expr (vr4, @4)
966 && !vr4.undefined_p ()
967 /* "X+N*M" is not with opposite sign as "X". */
968 && (TYPE_UNSIGNED (type)
969 || (vr0.nonnegative_p () && vr4.nonnegative_p ())
970 || (vr0.nonpositive_p () && vr4.nonpositive_p ())))
971 (plus (div @0 @2) @1))))
972
973 /* Simplify (X - M*N) / N -> X / N - M. */
974 (simplify
975 (div (minus@4 @0 (mult:c@3 @1 @2)) @2)
976 (with {value_range vr0, vr1, vr2, vr3, vr4;}
977 (if (INTEGRAL_TYPE_P (type)
978 && get_range_query (cfun)->range_of_expr (vr1, @1)
979 && get_range_query (cfun)->range_of_expr (vr2, @2)
980 /* "N * M" doesn't overflow. */
981 && range_op_handler (MULT_EXPR).overflow_free_p (vr1, vr2)
982 && get_range_query (cfun)->range_of_expr (vr0, @0)
983 && get_range_query (cfun)->range_of_expr (vr3, @3)
984 /* "X - (N*M)" doesn't overflow. */
985 && range_op_handler (MINUS_EXPR).overflow_free_p (vr0, vr3)
986 && get_range_query (cfun)->range_of_expr (vr4, @4)
987 && !vr4.undefined_p ()
988 /* "X-N*M" is not with opposite sign as "X". */
989 && (TYPE_UNSIGNED (type)
990 || (vr0.nonnegative_p () && vr4.nonnegative_p ())
991 || (vr0.nonpositive_p () && vr4.nonpositive_p ())))
992 (minus (div @0 @2) @1)))))
993
994 /* Simplify
995 (X + C) / N -> X / N + C / N where C is multiple of N.
996 (X + C) >> N -> X >> N + C>>N if low N bits of C is 0. */
997 (for op (trunc_div exact_div rshift)
998 (simplify
999 (op (plus@3 @0 INTEGER_CST@1) INTEGER_CST@2)
1000 (with
1001 {
1002 wide_int c = wi::to_wide (@1);
1003 wide_int n = wi::to_wide (@2);
1004 bool shift = op == RSHIFT_EXPR;
1005 #define plus_op1(v) (shift ? wi::rshift (v, n, TYPE_SIGN (type)) \
1006 : wi::div_trunc (v, n, TYPE_SIGN (type)))
1007 #define exact_mod(v) (shift ? wi::ctz (v) >= n.to_shwi () \
1008 : wi::multiple_of_p (v, n, TYPE_SIGN (type)))
1009 value_range vr0, vr1, vr3;
1010 }
1011 (if (INTEGRAL_TYPE_P (type)
1012 && get_range_query (cfun)->range_of_expr (vr0, @0))
1013 (if (exact_mod (c)
1014 && get_range_query (cfun)->range_of_expr (vr1, @1)
1015 /* "X+C" doesn't overflow. */
1016 && range_op_handler (PLUS_EXPR).overflow_free_p (vr0, vr1)
1017 && get_range_query (cfun)->range_of_expr (vr3, @3)
1018 && !vr3.undefined_p ()
1019 /* "X+C" and "X" are not of opposite sign. */
1020 && (TYPE_UNSIGNED (type)
1021 || (vr0.nonnegative_p () && vr3.nonnegative_p ())
1022 || (vr0.nonpositive_p () && vr3.nonpositive_p ())))
1023 (plus (op @0 @2) { wide_int_to_tree (type, plus_op1 (c)); })
1024 (if (!vr0.undefined_p () && TYPE_UNSIGNED (type) && c.sign_mask () < 0
1025 && exact_mod (-c)
1026 /* unsigned "X-(-C)" doesn't underflow. */
1027 && wi::geu_p (vr0.lower_bound (), -c))
1028 (plus (op @0 @2) { wide_int_to_tree (type, -plus_op1 (-c)); })))))))
1029 #undef plus_op1
1030 #undef exact_mod
1031 #endif
1032
1033 /* (nop_outer_cast)-(inner_cast)var -> -(outer_cast)(var)
1034 if var is smaller in precision.
1035 This is always safe for both doing the negative in signed or unsigned
1036 as the value for undefined will not show up. */
1037 (simplify
1038 (convert (negate:s@1 (convert:s @0)))
1039 (if (INTEGRAL_TYPE_P (type)
1040 && tree_nop_conversion_p (type, TREE_TYPE (@1))
1041 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0)))
1042 (negate (convert @0))))
1043
1044 (for op (negate abs)
1045 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
1046 (for coss (COS COSH)
1047 (simplify
1048 (coss (op @0))
1049 (coss @0)))
1050 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
1051 (for pows (POW)
1052 (simplify
1053 (pows (op @0) REAL_CST@1)
1054 (with { HOST_WIDE_INT n; }
1055 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
1056 (pows @0 @1)))))
1057 /* Likewise for powi. */
1058 (for pows (POWI)
1059 (simplify
1060 (pows (op @0) INTEGER_CST@1)
1061 (if ((wi::to_wide (@1) & 1) == 0)
1062 (pows @0 @1))))
1063 /* Strip negate and abs from both operands of hypot. */
1064 (for hypots (HYPOT)
1065 (simplify
1066 (hypots (op @0) @1)
1067 (hypots @0 @1))
1068 (simplify
1069 (hypots @0 (op @1))
1070 (hypots @0 @1)))
1071 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
1072 (for copysigns (COPYSIGN_ALL)
1073 (simplify
1074 (copysigns (op @0) @1)
1075 (copysigns @0 @1))))
1076
1077 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
1078 (simplify
1079 (mult (abs@1 @0) @1)
1080 (mult @0 @0))
1081
1082 /* Convert absu(x)*absu(x) -> x*x. */
1083 (simplify
1084 (mult (absu@1 @0) @1)
1085 (mult (convert@2 @0) @2))
1086
1087 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
1088 (for coss (COS COSH)
1089 (for copysigns (COPYSIGN)
1090 (simplify
1091 (coss (copysigns @0 @1))
1092 (coss @0))))
1093
1094 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
1095 (for pows (POW)
1096 (for copysigns (COPYSIGN)
1097 (simplify
1098 (pows (copysigns @0 @2) REAL_CST@1)
1099 (with { HOST_WIDE_INT n; }
1100 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
1101 (pows @0 @1))))))
1102 /* Likewise for powi. */
1103 (for pows (POWI)
1104 (for copysigns (COPYSIGN)
1105 (simplify
1106 (pows (copysigns @0 @2) INTEGER_CST@1)
1107 (if ((wi::to_wide (@1) & 1) == 0)
1108 (pows @0 @1)))))
1109
1110 (for hypots (HYPOT)
1111 (for copysigns (COPYSIGN)
1112 /* hypot(copysign(x, y), z) -> hypot(x, z). */
1113 (simplify
1114 (hypots (copysigns @0 @1) @2)
1115 (hypots @0 @2))
1116 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
1117 (simplify
1118 (hypots @0 (copysigns @1 @2))
1119 (hypots @0 @1))))
1120
1121 /* copysign(x, CST) -> abs (x). */
1122 (for copysigns (COPYSIGN_ALL)
1123 (simplify
1124 (copysigns @0 REAL_CST@1)
1125 (if (!REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1126 (abs @0))))
1127
1128 /* Transform fneg (fabs (X)) -> copysign (X, -1). */
1129 (simplify
1130 (negate (abs @0))
1131 (IFN_COPYSIGN @0 { build_minus_one_cst (type); }))
1132
1133 /* copysign(copysign(x, y), z) -> copysign(x, z). */
1134 (for copysigns (COPYSIGN_ALL)
1135 (simplify
1136 (copysigns (copysigns @0 @1) @2)
1137 (copysigns @0 @2)))
1138
1139 /* copysign(x,y)*copysign(x,y) -> x*x. */
1140 (for copysigns (COPYSIGN_ALL)
1141 (simplify
1142 (mult (copysigns@2 @0 @1) @2)
1143 (mult @0 @0)))
1144
1145 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
1146 (for ccoss (CCOS CCOSH)
1147 (simplify
1148 (ccoss (negate @0))
1149 (ccoss @0)))
1150
1151 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
1152 (for ops (conj negate)
1153 (for cabss (CABS)
1154 (simplify
1155 (cabss (ops @0))
1156 (cabss @0))))
1157
1158 /* Fold (a * (1 << b)) into (a << b) */
1159 (simplify
1160 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
1161 (if (! FLOAT_TYPE_P (type)
1162 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1163 (lshift @0 @2)))
1164
1165 /* Shifts by precision or greater result in zero. */
1166 (for shift (lshift rshift)
1167 (simplify
1168 (shift @0 uniform_integer_cst_p@1)
1169 (if ((GIMPLE || !sanitize_flags_p (SANITIZE_SHIFT_EXPONENT))
1170 /* Leave arithmetic right shifts of possibly negative values alone. */
1171 && (TYPE_UNSIGNED (type)
1172 || shift == LSHIFT_EXPR
1173 || tree_expr_nonnegative_p (@0))
1174 /* Use a signed compare to leave negative shift counts alone. */
1175 && wi::ges_p (wi::to_wide (uniform_integer_cst_p (@1)),
1176 element_precision (type)))
1177 { build_zero_cst (type); })))
1178
1179 /* Shifts by constants distribute over several binary operations,
1180 hence (X << C) + (Y << C) can be simplified to (X + Y) << C. */
1181 (for op (plus minus)
1182 (simplify
1183 (op (lshift:s @0 @1) (lshift:s @2 @1))
1184 (if (INTEGRAL_TYPE_P (type)
1185 && TYPE_OVERFLOW_WRAPS (type)
1186 && !TYPE_SATURATING (type))
1187 (lshift (op @0 @2) @1))))
1188
1189 (for op (bit_and bit_ior bit_xor)
1190 (simplify
1191 (op (lshift:s @0 @1) (lshift:s @2 @1))
1192 (if (INTEGRAL_TYPE_P (type))
1193 (lshift (op @0 @2) @1)))
1194 (simplify
1195 (op (rshift:s @0 @1) (rshift:s @2 @1))
1196 (if (INTEGRAL_TYPE_P (type))
1197 (rshift (op @0 @2) @1))))
1198
1199 /* Fold (1 << (C - x)) where C = precision(type) - 1
1200 into ((1 << C) >> x). */
1201 (simplify
1202 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
1203 (if (INTEGRAL_TYPE_P (type)
1204 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
1205 && single_use (@1))
1206 (if (TYPE_UNSIGNED (type))
1207 (rshift (lshift @0 @2) @3)
1208 (with
1209 { tree utype = unsigned_type_for (type); }
1210 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
1211
1212 /* Fold ((type)(a<0)) << SIGNBITOFA into ((type)a) & signbit. */
1213 (simplify
1214 (lshift (convert (lt @0 integer_zerop@1)) INTEGER_CST@2)
1215 (if (TYPE_SIGN (TREE_TYPE (@0)) == SIGNED
1216 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0)) - 1))
1217 (with { wide_int wone = wi::one (TYPE_PRECISION (type)); }
1218 (bit_and (convert @0)
1219 { wide_int_to_tree (type,
1220 wi::lshift (wone, wi::to_wide (@2))); }))))
1221
1222 /* Fold (-x >> C) into -(x > 0) where C = precision(type) - 1. */
1223 (for cst (INTEGER_CST VECTOR_CST)
1224 (simplify
1225 (rshift (negate:s @0) cst@1)
1226 (if (!TYPE_UNSIGNED (type)
1227 && TYPE_OVERFLOW_UNDEFINED (type))
1228 (with { tree stype = TREE_TYPE (@1);
1229 tree bt = truth_type_for (type);
1230 tree zeros = build_zero_cst (type);
1231 tree cst = NULL_TREE; }
1232 (switch
1233 /* Handle scalar case. */
1234 (if (INTEGRAL_TYPE_P (type)
1235 /* If we apply the rule to the scalar type before vectorization
1236 we will enforce the result of the comparison being a bool
1237 which will require an extra AND on the result that will be
1238 indistinguishable from when the user did actually want 0
1239 or 1 as the result so it can't be removed. */
1240 && canonicalize_math_after_vectorization_p ()
1241 && wi::eq_p (wi::to_wide (@1), TYPE_PRECISION (type) - 1))
1242 (negate (convert (gt @0 { zeros; }))))
1243 /* Handle vector case. */
1244 (if (VECTOR_INTEGER_TYPE_P (type)
1245 /* First check whether the target has the same mode for vector
1246 comparison results as it's operands do. */
1247 && TYPE_MODE (bt) == TYPE_MODE (type)
1248 /* Then check to see if the target is able to expand the comparison
1249 with the given type later on, otherwise we may ICE. */
1250 && expand_vec_cmp_expr_p (type, bt, GT_EXPR)
1251 && (cst = uniform_integer_cst_p (@1)) != NULL
1252 && wi::eq_p (wi::to_wide (cst), element_precision (type) - 1))
1253 (view_convert (gt:bt @0 { zeros; }))))))))
1254
1255 /* Fold (C1/X)*C2 into (C1*C2)/X. */
1256 (simplify
1257 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
1258 (if (flag_associative_math
1259 && single_use (@3))
1260 (with
1261 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
1262 (if (tem)
1263 (rdiv { tem; } @1)))))
1264
1265 /* Simplify ~X & X as zero. */
1266 (simplify
1267 (bit_and (convert? @0) (convert? @1))
1268 (with { bool wascmp; }
1269 (if (types_match (TREE_TYPE (@0), TREE_TYPE (@1))
1270 && bitwise_inverted_equal_p (@0, @1, wascmp))
1271 { wascmp ? constant_boolean_node (false, type) : build_zero_cst (type); })))
1272
1273 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
1274 (simplify
1275 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
1276 (if (TYPE_UNSIGNED (type))
1277 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
1278
1279 (for bitop (bit_and bit_ior)
1280 cmp (eq ne)
1281 /* PR35691: Transform
1282 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
1283 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
1284 (simplify
1285 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
1286 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1287 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1288 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1289 (cmp (bit_ior @0 (convert @1)) @2)))
1290 /* Transform:
1291 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
1292 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
1293 (simplify
1294 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
1295 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1296 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
1297 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1298 (cmp (bit_and @0 (convert @1)) @2))))
1299
1300 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
1301 (simplify
1302 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
1303 (minus (bit_xor @0 @1) @1))
1304 (simplify
1305 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
1306 (if (~wi::to_wide (@2) == wi::to_wide (@1))
1307 (minus (bit_xor @0 @1) @1)))
1308
1309 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
1310 (simplify
1311 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
1312 (minus @1 (bit_xor @0 @1)))
1313
1314 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
1315 (for op (bit_ior bit_xor plus)
1316 (simplify
1317 (op (bit_and:c @0 @2) (bit_and:c @3 @1))
1318 (with { bool wascmp0, wascmp1; }
1319 (if (bitwise_inverted_equal_p (@2, @1, wascmp0)
1320 && bitwise_inverted_equal_p (@0, @3, wascmp1)
1321 && ((!wascmp0 && !wascmp1)
1322 || element_precision (type) == 1))
1323 (bit_xor @0 @1)))))
1324
1325 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
1326 (simplify
1327 (bit_ior:c (bit_xor:c @0 @1) @0)
1328 (bit_ior @0 @1))
1329
1330 /* (a & ~b) | (a ^ b) --> a ^ b */
1331 (simplify
1332 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
1333 @2)
1334
1335 /* (a & ~b) ^ ~a --> ~(a & b) */
1336 (simplify
1337 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
1338 (bit_not (bit_and @0 @1)))
1339
1340 /* (~a & b) ^ a --> (a | b) */
1341 (simplify
1342 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
1343 (bit_ior @0 @1))
1344
1345 /* (a | b) & ~(a ^ b) --> a & b */
1346 (simplify
1347 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
1348 (bit_and @0 @1))
1349
1350 /* (a | b) & (a == b) --> a & b (boolean version of the above). */
1351 (simplify
1352 (bit_and:c (bit_ior @0 @1) (nop_convert? (eq:c @0 @1)))
1353 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1354 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
1355 (bit_and @0 @1)))
1356
1357 /* a | ~(a ^ b) --> a | ~b */
1358 (simplify
1359 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
1360 (bit_ior @0 (bit_not @1)))
1361
1362 /* a | (a == b) --> a | (b^1) (boolean version of the above). */
1363 (simplify
1364 (bit_ior:c @0 (nop_convert? (eq:c @0 @1)))
1365 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1366 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
1367 (bit_ior @0 (bit_xor @1 { build_one_cst (type); }))))
1368
1369 /* a | ((~a) ^ b) --> a | (~b) (alt version of the above 2) */
1370 (simplify
1371 (bit_ior:c @0 (bit_xor:cs @1 @2))
1372 (with { bool wascmp; }
1373 (if (bitwise_inverted_equal_p (@0, @1, wascmp)
1374 && (!wascmp || element_precision (type) == 1))
1375 (bit_ior @0 (bit_not @2)))))
1376
1377 /* a & ~(a ^ b) --> a & b */
1378 (simplify
1379 (bit_and:c @0 (bit_not (bit_xor:c @0 @1)))
1380 (bit_and @0 @1))
1381
1382 /* a & (a == b) --> a & b (boolean version of the above). */
1383 (simplify
1384 (bit_and:c @0 (nop_convert? (eq:c @0 @1)))
1385 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1386 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
1387 (bit_and @0 @1)))
1388
1389 /* a & ((~a) ^ b) --> a & b (alt version of the above 2) */
1390 (simplify
1391 (bit_and:c @0 (bit_xor:c @1 @2))
1392 (with { bool wascmp; }
1393 (if (bitwise_inverted_equal_p (@0, @1, wascmp)
1394 && (!wascmp || element_precision (type) == 1))
1395 (bit_and @0 @2))))
1396
1397 /* (a | b) | (a &^ b) --> a | b */
1398 (for op (bit_and bit_xor)
1399 (simplify
1400 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
1401 @2))
1402
1403 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
1404 (simplify
1405 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
1406 @2)
1407
1408 /* (a & b) | (a == b) --> a == b */
1409 (simplify
1410 (bit_ior:c (bit_and:c @0 @1) (nop_convert?@2 (eq @0 @1)))
1411 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1412 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
1413 @2))
1414
1415 /* ~(~a & b) --> a | ~b */
1416 (simplify
1417 (bit_not (bit_and:cs (bit_not @0) @1))
1418 (bit_ior @0 (bit_not @1)))
1419
1420 /* ~(~a | b) --> a & ~b */
1421 (simplify
1422 (bit_not (bit_ior:cs (bit_not @0) @1))
1423 (bit_and @0 (bit_not @1)))
1424
1425 /* (a ^ b) & ((b ^ c) ^ a) --> (a ^ b) & ~c */
1426 (simplify
1427 (bit_and:c (bit_xor:c@3 @0 @1) (bit_xor:cs (bit_xor:cs @1 @2) @0))
1428 (bit_and @3 (bit_not @2)))
1429
1430 /* (a ^ b) | ((b ^ c) ^ a) --> (a ^ b) | c */
1431 (simplify
1432 (bit_ior:c (bit_xor:c@3 @0 @1) (bit_xor:c (bit_xor:c @1 @2) @0))
1433 (bit_ior @3 @2))
1434
1435 /* (~X | C) ^ D -> (X | C) ^ (~D ^ C) if (~D ^ C) can be simplified. */
1436 (simplify
1437 (bit_xor:c (bit_ior:cs (bit_not:s @0) @1) @2)
1438 (bit_xor (bit_ior @0 @1) (bit_xor! (bit_not! @2) @1)))
1439
1440 /* (~X & C) ^ D -> (X & C) ^ (D ^ C) if (D ^ C) can be simplified. */
1441 (simplify
1442 (bit_xor:c (bit_and:cs (bit_not:s @0) @1) @2)
1443 (bit_xor (bit_and @0 @1) (bit_xor! @2 @1)))
1444
1445 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
1446 (simplify
1447 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
1448 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1449 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1450 (bit_xor @0 @1)))
1451
1452 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
1453 ((A & N) + B) & M -> (A + B) & M
1454 Similarly if (N & M) == 0,
1455 ((A | N) + B) & M -> (A + B) & M
1456 and for - instead of + (or unary - instead of +)
1457 and/or ^ instead of |.
1458 If B is constant and (B & M) == 0, fold into A & M. */
1459 (for op (plus minus)
1460 (for bitop (bit_and bit_ior bit_xor)
1461 (simplify
1462 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
1463 (with
1464 { tree pmop[2];
1465 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
1466 @3, @4, @1, ERROR_MARK, NULL_TREE,
1467 NULL_TREE, pmop); }
1468 (if (utype)
1469 (convert (bit_and (op (convert:utype { pmop[0]; })
1470 (convert:utype { pmop[1]; }))
1471 (convert:utype @2))))))
1472 (simplify
1473 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
1474 (with
1475 { tree pmop[2];
1476 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1477 NULL_TREE, NULL_TREE, @1, bitop, @3,
1478 @4, pmop); }
1479 (if (utype)
1480 (convert (bit_and (op (convert:utype { pmop[0]; })
1481 (convert:utype { pmop[1]; }))
1482 (convert:utype @2)))))))
1483 (simplify
1484 (bit_and (op:s @0 @1) INTEGER_CST@2)
1485 (with
1486 { tree pmop[2];
1487 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
1488 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
1489 NULL_TREE, NULL_TREE, pmop); }
1490 (if (utype)
1491 (convert (bit_and (op (convert:utype { pmop[0]; })
1492 (convert:utype { pmop[1]; }))
1493 (convert:utype @2)))))))
1494 (for bitop (bit_and bit_ior bit_xor)
1495 (simplify
1496 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
1497 (with
1498 { tree pmop[2];
1499 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
1500 bitop, @2, @3, NULL_TREE, ERROR_MARK,
1501 NULL_TREE, NULL_TREE, pmop); }
1502 (if (utype)
1503 (convert (bit_and (negate (convert:utype { pmop[0]; }))
1504 (convert:utype @1)))))))
1505
1506 /* X % Y is smaller than Y. */
1507 (for cmp (lt ge)
1508 (simplify
1509 (cmp:c (trunc_mod @0 @1) @1)
1510 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
1511 { constant_boolean_node (cmp == LT_EXPR, type); })))
1512
1513 /* x | ~0 -> ~0 */
1514 (simplify
1515 (bit_ior @0 integer_all_onesp@1)
1516 @1)
1517
1518 /* x | 0 -> x */
1519 (simplify
1520 (bit_ior @0 integer_zerop)
1521 @0)
1522
1523 /* x & 0 -> 0 */
1524 (simplify
1525 (bit_and @0 integer_zerop@1)
1526 @1)
1527
1528 /* ~x | x -> -1 */
1529 /* ~x ^ x -> -1 */
1530 (for op (bit_ior bit_xor)
1531 (simplify
1532 (op (convert? @0) (convert? @1))
1533 (with { bool wascmp; }
1534 (if (types_match (TREE_TYPE (@0), TREE_TYPE (@1))
1535 && bitwise_inverted_equal_p (@0, @1, wascmp))
1536 (convert
1537 { wascmp
1538 ? constant_boolean_node (true, type)
1539 : build_all_ones_cst (TREE_TYPE (@0)); })))))
1540
1541 /* x ^ x -> 0 */
1542 (simplify
1543 (bit_xor @0 @0)
1544 { build_zero_cst (type); })
1545
1546 /* Canonicalize X ^ ~0 to ~X. */
1547 (simplify
1548 (bit_xor @0 integer_all_onesp@1)
1549 (bit_not @0))
1550
1551 /* x & ~0 -> x */
1552 (simplify
1553 (bit_and @0 integer_all_onesp)
1554 (non_lvalue @0))
1555
1556 /* x & x -> x, x | x -> x */
1557 (for bitop (bit_and bit_ior)
1558 (simplify
1559 (bitop @0 @0)
1560 (non_lvalue @0)))
1561
1562 /* x & C -> x if we know that x & ~C == 0. */
1563 #if GIMPLE
1564 (simplify
1565 (bit_and SSA_NAME@0 INTEGER_CST@1)
1566 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1567 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1568 @0))
1569
1570 /* `a & (x | CST)` -> a if we know that (a & ~CST) == 0 */
1571 (simplify
1572 (bit_and:c SSA_NAME@0 (bit_ior @1 INTEGER_CST@2))
1573 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1574 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@2)) == 0)
1575 @0))
1576
1577 /* x | C -> C if we know that x & ~C == 0. */
1578 (simplify
1579 (bit_ior SSA_NAME@0 INTEGER_CST@1)
1580 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1581 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1582 @1))
1583 #endif
1584
1585 /* ~(~X - Y) -> X + Y and ~(~X + Y) -> X - Y. */
1586 (simplify
1587 (bit_not (minus (bit_not @0) @1))
1588 (plus @0 @1))
1589 (simplify
1590 (bit_not (plus:c (bit_not @0) @1))
1591 (minus @0 @1))
1592 /* (~X - ~Y) -> Y - X. */
1593 (simplify
1594 (minus (bit_not @0) (bit_not @1))
1595 (if (!TYPE_OVERFLOW_SANITIZED (type))
1596 (with { tree utype = unsigned_type_for (type); }
1597 (convert (minus (convert:utype @1) (convert:utype @0))))))
1598
1599 /* ~(X - Y) -> ~X + Y. */
1600 (simplify
1601 (bit_not (minus:s @0 @1))
1602 (plus (bit_not @0) @1))
1603 (simplify
1604 (bit_not (plus:s @0 INTEGER_CST@1))
1605 (if ((INTEGRAL_TYPE_P (type)
1606 && TYPE_UNSIGNED (type))
1607 || (!TYPE_OVERFLOW_SANITIZED (type)
1608 && may_negate_without_overflow_p (@1)))
1609 (plus (bit_not @0) { const_unop (NEGATE_EXPR, type, @1); })))
1610
1611 #if GIMPLE
1612 /* ~X + Y -> (Y - X) - 1. */
1613 (simplify
1614 (plus:c (bit_not @0) @1)
1615 (if (ANY_INTEGRAL_TYPE_P (type)
1616 && TYPE_OVERFLOW_WRAPS (type)
1617 /* -1 - X is folded to ~X, so we'd recurse endlessly. */
1618 && !integer_all_onesp (@1))
1619 (plus (minus @1 @0) { build_minus_one_cst (type); })
1620 (if (INTEGRAL_TYPE_P (type)
1621 && TREE_CODE (@1) == INTEGER_CST
1622 && wi::to_wide (@1) != wi::min_value (TYPE_PRECISION (type),
1623 SIGNED))
1624 (minus (plus @1 { build_minus_one_cst (type); }) @0))))
1625 #endif
1626
1627 /* ~(X >> Y) -> ~X >> Y if ~X can be simplified. */
1628 (simplify
1629 (bit_not (rshift:s @0 @1))
1630 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
1631 (rshift (bit_not! @0) @1)
1632 /* For logical right shifts, this is possible only if @0 doesn't
1633 have MSB set and the logical right shift is changed into
1634 arithmetic shift. */
1635 (if (INTEGRAL_TYPE_P (type)
1636 && !wi::neg_p (tree_nonzero_bits (@0)))
1637 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1638 (convert (rshift (bit_not! (convert:stype @0)) @1))))))
1639
1640 /* x + (x & 1) -> (x + 1) & ~1 */
1641 (simplify
1642 (plus:c @0 (bit_and:s @0 integer_onep@1))
1643 (bit_and (plus @0 @1) (bit_not @1)))
1644
1645 /* x & ~(x & y) -> x & ~y */
1646 /* x | ~(x | y) -> x | ~y */
1647 (for bitop (bit_and bit_ior)
1648 (simplify
1649 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1650 (bitop @0 (bit_not @1))))
1651
1652 /* (~x & y) | ~(x | y) -> ~x */
1653 (simplify
1654 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1655 @2)
1656
1657 /* (x | y) ^ (x | ~y) -> ~x */
1658 (simplify
1659 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1660 (bit_not @0))
1661
1662 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1663 (simplify
1664 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1665 (bit_not (bit_xor @0 @1)))
1666
1667 /* (~x | y) ^ (x ^ y) -> x | ~y */
1668 (simplify
1669 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1670 (bit_ior @0 (bit_not @1)))
1671
1672 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1673 (simplify
1674 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1675 (bit_not (bit_and @0 @1)))
1676
1677 /* (x & y) ^ (x | y) -> x ^ y */
1678 (simplify
1679 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1680 (bit_xor @0 @1))
1681
1682 /* (x ^ y) ^ (x | y) -> x & y */
1683 (simplify
1684 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1685 (bit_and @0 @1))
1686
1687 /* (x & y) + (x ^ y) -> x | y */
1688 /* (x & y) | (x ^ y) -> x | y */
1689 /* (x & y) ^ (x ^ y) -> x | y */
1690 (for op (plus bit_ior bit_xor)
1691 (simplify
1692 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1693 (bit_ior @0 @1)))
1694
1695 /* (x & y) + (x | y) -> x + y */
1696 (simplify
1697 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1698 (plus @0 @1))
1699
1700 /* (x + y) - (x | y) -> x & y */
1701 (simplify
1702 (minus (plus @0 @1) (bit_ior @0 @1))
1703 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1704 && !TYPE_SATURATING (type))
1705 (bit_and @0 @1)))
1706
1707 /* (x + y) - (x & y) -> x | y */
1708 (simplify
1709 (minus (plus @0 @1) (bit_and @0 @1))
1710 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1711 && !TYPE_SATURATING (type))
1712 (bit_ior @0 @1)))
1713
1714 /* (x | y) - y -> (x & ~y) */
1715 (simplify
1716 (minus (bit_ior:cs @0 @1) @1)
1717 (bit_and @0 (bit_not @1)))
1718
1719 /* (x | y) - (x ^ y) -> x & y */
1720 (simplify
1721 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1722 (bit_and @0 @1))
1723
1724 /* (x | y) - (x & y) -> x ^ y */
1725 (simplify
1726 (minus (bit_ior @0 @1) (bit_and @0 @1))
1727 (bit_xor @0 @1))
1728
1729 /* (x | y) & ~(x & y) -> x ^ y */
1730 (simplify
1731 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1732 (bit_xor @0 @1))
1733
1734 /* (x | y) & (~x ^ y) -> x & y */
1735 (simplify
1736 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 @2))
1737 (with { bool wascmp; }
1738 (if (bitwise_inverted_equal_p (@0, @2, wascmp)
1739 && (!wascmp || element_precision (type) == 1))
1740 (bit_and @0 @1))))
1741
1742 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1743 (simplify
1744 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1745 (bit_not (bit_xor @0 @1)))
1746
1747 /* (~x | y) ^ (x | ~y) -> x ^ y */
1748 (simplify
1749 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1750 (bit_xor @0 @1))
1751
1752 /* ((x & y) - (x | y)) - 1 -> ~(x ^ y) */
1753 (simplify
1754 (plus (nop_convert1? (minus@2 (nop_convert2? (bit_and:c @0 @1))
1755 (nop_convert2? (bit_ior @0 @1))))
1756 integer_all_onesp)
1757 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1758 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1759 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1760 && !TYPE_SATURATING (TREE_TYPE (@2)))
1761 (bit_not (convert (bit_xor @0 @1)))))
1762 (simplify
1763 (minus (nop_convert1? (plus@2 (nop_convert2? (bit_and:c @0 @1))
1764 integer_all_onesp))
1765 (nop_convert3? (bit_ior @0 @1)))
1766 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1767 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1768 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1769 && !TYPE_SATURATING (TREE_TYPE (@2)))
1770 (bit_not (convert (bit_xor @0 @1)))))
1771 (simplify
1772 (minus (nop_convert1? (bit_and @0 @1))
1773 (nop_convert2? (plus@2 (nop_convert3? (bit_ior:c @0 @1))
1774 integer_onep)))
1775 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1776 && !TYPE_SATURATING (type) && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2))
1777 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@2))
1778 && !TYPE_SATURATING (TREE_TYPE (@2)))
1779 (bit_not (convert (bit_xor @0 @1)))))
1780
1781 /* ~x & ~y -> ~(x | y)
1782 ~x | ~y -> ~(x & y) */
1783 (for op (bit_and bit_ior)
1784 rop (bit_ior bit_and)
1785 (simplify
1786 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1787 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1788 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1789 (bit_not (rop (convert @0) (convert @1))))))
1790
1791 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1792 with a constant, and the two constants have no bits in common,
1793 we should treat this as a BIT_IOR_EXPR since this may produce more
1794 simplifications. */
1795 (for op (bit_xor plus)
1796 (simplify
1797 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1798 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1799 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1800 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1801 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1802 (bit_ior (convert @4) (convert @5)))))
1803
1804 /* (X | Y) ^ X -> Y & ~ X*/
1805 (simplify
1806 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1807 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1808 (convert (bit_and @1 (bit_not @0)))))
1809
1810 /* (~X | Y) ^ X -> ~(X & Y). */
1811 (simplify
1812 (bit_xor:c (nop_convert1? (bit_ior:c (nop_convert2? (bit_not @0)) @1)) @2)
1813 (if (bitwise_equal_p (@0, @2))
1814 (convert (bit_not (bit_and @0 (convert @1))))))
1815
1816 /* Convert ~X ^ ~Y to X ^ Y. */
1817 (simplify
1818 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1819 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1820 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1821 (bit_xor (convert @0) (convert @1))))
1822
1823 /* Convert ~X ^ C to X ^ ~C. */
1824 (simplify
1825 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1826 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1827 (bit_xor (convert @0) (bit_not @1))))
1828
1829 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1830 (for opo (bit_and bit_xor)
1831 opi (bit_xor bit_and)
1832 (simplify
1833 (opo:c (opi:cs @0 @1) @1)
1834 (bit_and (bit_not @0) @1)))
1835
1836 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1837 operands are another bit-wise operation with a common input. If so,
1838 distribute the bit operations to save an operation and possibly two if
1839 constants are involved. For example, convert
1840 (A | B) & (A | C) into A | (B & C)
1841 Further simplification will occur if B and C are constants. */
1842 (for op (bit_and bit_ior bit_xor)
1843 rop (bit_ior bit_and bit_and)
1844 (simplify
1845 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1846 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1847 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1848 (rop (convert @0) (op (convert @1) (convert @2))))))
1849
1850 /* Some simple reassociation for bit operations, also handled in reassoc. */
1851 /* (X & Y) & Y -> X & Y
1852 (X | Y) | Y -> X | Y */
1853 (for op (bit_and bit_ior)
1854 (simplify
1855 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1856 @2))
1857 /* (X ^ Y) ^ Y -> X */
1858 (simplify
1859 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1860 (convert @0))
1861
1862 /* (X & ~Y) & Y -> 0 */
1863 (simplify
1864 (bit_and:c (bit_and @0 @1) @2)
1865 (with { bool wascmp; }
1866 (if (bitwise_inverted_equal_p (@0, @2, wascmp)
1867 || bitwise_inverted_equal_p (@1, @2, wascmp))
1868 { wascmp ? constant_boolean_node (false, type) : build_zero_cst (type); })))
1869 /* (X | ~Y) | Y -> -1 */
1870 (simplify
1871 (bit_ior:c (bit_ior @0 @1) @2)
1872 (with { bool wascmp; }
1873 (if ((bitwise_inverted_equal_p (@0, @2, wascmp)
1874 || bitwise_inverted_equal_p (@1, @2, wascmp))
1875 && (!wascmp || element_precision (type) == 1))
1876 { build_all_ones_cst (TREE_TYPE (@0)); })))
1877
1878 /* (X & Y) & (X & Z) -> (X & Y) & Z
1879 (X | Y) | (X | Z) -> (X | Y) | Z */
1880 (for op (bit_and bit_ior)
1881 (simplify
1882 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1883 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1884 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1885 (if (single_use (@5) && single_use (@6))
1886 (op @3 (convert @2))
1887 (if (single_use (@3) && single_use (@4))
1888 (op (convert @1) @5))))))
1889 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1890 (simplify
1891 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1892 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1893 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1894 (bit_xor (convert @1) (convert @2))))
1895
1896 /* Convert abs (abs (X)) into abs (X).
1897 also absu (absu (X)) into absu (X). */
1898 (simplify
1899 (abs (abs@1 @0))
1900 @1)
1901
1902 (simplify
1903 (absu (convert@2 (absu@1 @0)))
1904 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1905 @1))
1906
1907 /* Convert abs[u] (-X) -> abs[u] (X). */
1908 (simplify
1909 (abs (negate @0))
1910 (abs @0))
1911
1912 (simplify
1913 (absu (negate @0))
1914 (absu @0))
1915
1916 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1917 (simplify
1918 (abs tree_expr_nonnegative_p@0)
1919 @0)
1920
1921 (simplify
1922 (absu tree_expr_nonnegative_p@0)
1923 (convert @0))
1924
1925 /* Simplify (-(X < 0) | 1) * X into abs (X) or absu(X). */
1926 (simplify
1927 (mult:c (nop_convert1?
1928 (bit_ior (nop_convert2? (negate (convert? (lt @0 integer_zerop))))
1929 integer_onep))
1930 (nop_convert3? @0))
1931 (if (INTEGRAL_TYPE_P (type)
1932 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1933 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
1934 (if (TYPE_UNSIGNED (type))
1935 (absu @0)
1936 (abs @0)
1937 )
1938 )
1939 )
1940
1941 /* A few cases of fold-const.cc negate_expr_p predicate. */
1942 (match negate_expr_p
1943 INTEGER_CST
1944 (if ((INTEGRAL_TYPE_P (type)
1945 && TYPE_UNSIGNED (type))
1946 || (!TYPE_OVERFLOW_SANITIZED (type)
1947 && may_negate_without_overflow_p (t)))))
1948 (match negate_expr_p
1949 FIXED_CST)
1950 (match negate_expr_p
1951 (negate @0)
1952 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1953 (match negate_expr_p
1954 REAL_CST
1955 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1956 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1957 ways. */
1958 (match negate_expr_p
1959 VECTOR_CST
1960 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1961 (match negate_expr_p
1962 (minus @0 @1)
1963 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1964 || (FLOAT_TYPE_P (type)
1965 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1966 && !HONOR_SIGNED_ZEROS (type)))))
1967
1968 /* (-A) * (-B) -> A * B */
1969 (simplify
1970 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1971 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1972 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1973 (mult (convert @0) (convert (negate @1)))))
1974
1975 /* -(A + B) -> (-B) - A. */
1976 (simplify
1977 (negate (plus:c @0 negate_expr_p@1))
1978 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (type)
1979 && !HONOR_SIGNED_ZEROS (type))
1980 (minus (negate @1) @0)))
1981
1982 /* -(A - B) -> B - A. */
1983 (simplify
1984 (negate (minus @0 @1))
1985 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1986 || (FLOAT_TYPE_P (type)
1987 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1988 && !HONOR_SIGNED_ZEROS (type)))
1989 (minus @1 @0)))
1990 (simplify
1991 (negate (pointer_diff @0 @1))
1992 (if (TYPE_OVERFLOW_UNDEFINED (type))
1993 (pointer_diff @1 @0)))
1994
1995 /* A - B -> A + (-B) if B is easily negatable. */
1996 (simplify
1997 (minus @0 negate_expr_p@1)
1998 (if (!FIXED_POINT_TYPE_P (type))
1999 (plus @0 (negate @1))))
2000
2001 /* 1 - a is a ^ 1 if a had a bool range. */
2002 /* This is only enabled for gimple as sometimes
2003 cfun is not set for the function which contains
2004 the SSA_NAME (e.g. while IPA passes are happening,
2005 fold might be called). */
2006 (simplify
2007 (minus integer_onep@0 SSA_NAME@1)
2008 (if (INTEGRAL_TYPE_P (type)
2009 && ssa_name_has_boolean_range (@1))
2010 (bit_xor @1 @0)))
2011
2012 /* Other simplifications of negation (c.f. fold_negate_expr_1). */
2013 (simplify
2014 (negate (mult:c@0 @1 negate_expr_p@2))
2015 (if (! TYPE_UNSIGNED (type)
2016 && ! HONOR_SIGN_DEPENDENT_ROUNDING (type)
2017 && single_use (@0))
2018 (mult @1 (negate @2))))
2019
2020 (simplify
2021 (negate (rdiv@0 @1 negate_expr_p@2))
2022 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
2023 && single_use (@0))
2024 (rdiv @1 (negate @2))))
2025
2026 (simplify
2027 (negate (rdiv@0 negate_expr_p@1 @2))
2028 (if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)
2029 && single_use (@0))
2030 (rdiv (negate @1) @2)))
2031
2032 /* Fold -((int)x >> (prec - 1)) into (unsigned)x >> (prec - 1). */
2033 (simplify
2034 (negate (convert? (rshift @0 INTEGER_CST@1)))
2035 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2036 && wi::to_wide (@1) == element_precision (type) - 1)
2037 (with { tree stype = TREE_TYPE (@0);
2038 tree ntype = TYPE_UNSIGNED (stype) ? signed_type_for (stype)
2039 : unsigned_type_for (stype); }
2040 (if (VECTOR_TYPE_P (type))
2041 (view_convert (rshift (view_convert:ntype @0) @1))
2042 (convert (rshift (convert:ntype @0) @1))))))
2043
2044 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
2045 when profitable.
2046 For bitwise binary operations apply operand conversions to the
2047 binary operation result instead of to the operands. This allows
2048 to combine successive conversions and bitwise binary operations.
2049 We combine the above two cases by using a conditional convert. */
2050 (for bitop (bit_and bit_ior bit_xor)
2051 (simplify
2052 (bitop (convert@2 @0) (convert?@3 @1))
2053 (if (((TREE_CODE (@1) == INTEGER_CST
2054 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2055 && (int_fits_type_p (@1, TREE_TYPE (@0))
2056 || tree_nop_conversion_p (TREE_TYPE (@0), type)))
2057 || types_match (@0, @1))
2058 && !POINTER_TYPE_P (TREE_TYPE (@0))
2059 && !VECTOR_TYPE_P (TREE_TYPE (@0))
2060 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE
2061 /* ??? This transform conflicts with fold-const.cc doing
2062 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
2063 constants (if x has signed type, the sign bit cannot be set
2064 in c). This folds extension into the BIT_AND_EXPR.
2065 Restrict it to GIMPLE to avoid endless recursions. */
2066 && (bitop != BIT_AND_EXPR || GIMPLE)
2067 && (/* That's a good idea if the conversion widens the operand, thus
2068 after hoisting the conversion the operation will be narrower.
2069 It is also a good if the conversion is a nop as moves the
2070 conversion to one side; allowing for combining of the conversions. */
2071 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
2072 /* The conversion check for being a nop can only be done at the gimple
2073 level as fold_binary has some re-association code which can conflict
2074 with this if there is a "constant" which is not a full INTEGER_CST. */
2075 || (GIMPLE && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
2076 /* It's also a good idea if the conversion is to a non-integer
2077 mode. */
2078 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
2079 /* Or if the precision of TO is not the same as the precision
2080 of its mode. */
2081 || !type_has_mode_precision_p (type)
2082 /* In GIMPLE, getting rid of 2 conversions for one new results
2083 in smaller IL. */
2084 || (GIMPLE
2085 && TREE_CODE (@1) != INTEGER_CST
2086 && tree_nop_conversion_p (type, TREE_TYPE (@0))
2087 && single_use (@2)
2088 && single_use (@3))))
2089 (convert (bitop @0 (convert @1)))))
2090 /* In GIMPLE, getting rid of 2 conversions for one new results
2091 in smaller IL. */
2092 (simplify
2093 (convert (bitop:cs@2 (nop_convert:s @0) @1))
2094 (if (GIMPLE
2095 && TREE_CODE (@1) != INTEGER_CST
2096 && tree_nop_conversion_p (type, TREE_TYPE (@2))
2097 && types_match (type, @0)
2098 && !POINTER_TYPE_P (TREE_TYPE (@0))
2099 && TREE_CODE (TREE_TYPE (@0)) != OFFSET_TYPE)
2100 (bitop @0 (convert @1)))))
2101
2102 (for bitop (bit_and bit_ior)
2103 rbitop (bit_ior bit_and)
2104 /* (x | y) & x -> x */
2105 /* (x & y) | x -> x */
2106 (simplify
2107 (bitop:c (rbitop:c @0 @1) @0)
2108 @0)
2109 /* (~x | y) & x -> x & y */
2110 /* (~x & y) | x -> x | y */
2111 (simplify
2112 (bitop:c (rbitop:c @2 @1) @0)
2113 (with { bool wascmp; }
2114 (if (bitwise_inverted_equal_p (@0, @2, wascmp)
2115 && (!wascmp || element_precision (type) == 1))
2116 (bitop @0 @1))))
2117 /* (x | y) & (x & z) -> (x & z) */
2118 /* (x & y) | (x | z) -> (x | z) */
2119 (simplify
2120 (bitop:c (rbitop:c @0 @1) (bitop:c@3 @0 @2))
2121 @3)
2122 /* (x | c) & ~(y | c) -> x & ~(y | c) */
2123 /* (x & c) | ~(y & c) -> x | ~(y & c) */
2124 (simplify
2125 (bitop:c (rbitop:c @0 @1) (bit_not@3 (rbitop:c @1 @2)))
2126 (bitop @0 @3))
2127 /* x & ~(y | x) -> 0 */
2128 /* x | ~(y & x) -> -1 */
2129 (simplify
2130 (bitop:c @0 (bit_not (rbitop:c @0 @1)))
2131 (if (bitop == BIT_AND_EXPR)
2132 { build_zero_cst (type); }
2133 { build_minus_one_cst (type); })))
2134
2135 /* ((x | y) & z) | x -> (z & y) | x
2136 ((x ^ y) & z) | x -> (z & y) | x */
2137 (for op (bit_ior bit_xor)
2138 (simplify
2139 (bit_ior:c (nop_convert1?:s
2140 (bit_and:cs (nop_convert2?:s (op:cs @0 @1)) @2)) @3)
2141 (if (bitwise_equal_p (@0, @3))
2142 (convert (bit_ior (bit_and @1 (convert @2)) (convert @0))))))
2143
2144 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
2145 (simplify
2146 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
2147 (bit_ior (bit_and @0 @2) (bit_and! @1 @2)))
2148
2149 /* Combine successive equal operations with constants. */
2150 (for bitop (bit_and bit_ior bit_xor)
2151 (simplify
2152 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
2153 (if (!CONSTANT_CLASS_P (@0))
2154 /* This is the canonical form regardless of whether (bitop @1 @2) can be
2155 folded to a constant. */
2156 (bitop @0 (bitop! @1 @2))
2157 /* In this case we have three constants and (bitop @0 @1) doesn't fold
2158 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
2159 the values involved are such that the operation can't be decided at
2160 compile time. Try folding one of @0 or @1 with @2 to see whether
2161 that combination can be decided at compile time.
2162
2163 Keep the existing form if both folds fail, to avoid endless
2164 oscillation. */
2165 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
2166 (if (cst1)
2167 (bitop @1 { cst1; })
2168 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
2169 (if (cst2)
2170 (bitop @0 { cst2; }))))))))
2171
2172 /* Try simple folding for X op !X, and X op X with the help
2173 of the truth_valued_p and logical_inverted_value predicates. */
2174 (match truth_valued_p
2175 @0
2176 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
2177 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
2178 (match truth_valued_p
2179 (op @0 @1)))
2180 (match truth_valued_p
2181 (truth_not @0))
2182
2183 (match (logical_inverted_value @0)
2184 (truth_not @0))
2185 (match (logical_inverted_value @0)
2186 (bit_not truth_valued_p@0))
2187 (match (logical_inverted_value @0)
2188 (eq @0 integer_zerop))
2189 (match (logical_inverted_value @0)
2190 (ne truth_valued_p@0 integer_truep))
2191 (match (logical_inverted_value @0)
2192 (bit_xor truth_valued_p@0 integer_truep))
2193
2194 /* X & !X -> 0. */
2195 (simplify
2196 (bit_and:c @0 (logical_inverted_value @0))
2197 { build_zero_cst (type); })
2198 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
2199 (for op (bit_ior bit_xor)
2200 (simplify
2201 (op:c truth_valued_p@0 (logical_inverted_value @0))
2202 { constant_boolean_node (true, type); }))
2203 /* X ==/!= !X is false/true. */
2204 (for op (eq ne)
2205 (simplify
2206 (op:c truth_valued_p@0 (logical_inverted_value @0))
2207 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
2208
2209 /* ~~x -> x */
2210 (simplify
2211 (bit_not (bit_not @0))
2212 @0)
2213
2214 /* zero_one_valued_p will match when a value is known to be either
2215 0 or 1 including constants 0 or 1.
2216 Signed 1-bits includes -1 so they cannot match here. */
2217 (match zero_one_valued_p
2218 @0
2219 (if (INTEGRAL_TYPE_P (type)
2220 && (TYPE_UNSIGNED (type)
2221 || TYPE_PRECISION (type) > 1)
2222 && wi::leu_p (tree_nonzero_bits (@0), 1))))
2223 (match zero_one_valued_p
2224 truth_valued_p@0
2225 (if (INTEGRAL_TYPE_P (type)
2226 && (TYPE_UNSIGNED (type)
2227 || TYPE_PRECISION (type) > 1))))
2228
2229 /* (a&1) is always [0,1] too. This is useful again when
2230 the range is not known. */
2231 /* Note this can't be recursive due to VN handling of equivalents,
2232 VN and would cause an infinite recursion. */
2233 (match zero_one_valued_p
2234 (bit_and:c@0 @1 integer_onep)
2235 (if (INTEGRAL_TYPE_P (type))))
2236
2237 /* A conversion from an zero_one_valued_p is still a [0,1].
2238 This is useful when the range of a variable is not known */
2239 /* Note this matches can't be recursive because of the way VN handles
2240 nop conversions being equivalent and then recursive between them. */
2241 (match zero_one_valued_p
2242 (convert@0 @1)
2243 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2244 && (TYPE_UNSIGNED (TREE_TYPE (@1))
2245 || TYPE_PRECISION (TREE_TYPE (@1)) > 1)
2246 && wi::leu_p (tree_nonzero_bits (@1), 1))))
2247
2248 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 }. */
2249 (simplify
2250 (mult zero_one_valued_p@0 zero_one_valued_p@1)
2251 (if (INTEGRAL_TYPE_P (type))
2252 (bit_and @0 @1)))
2253
2254 (for cmp (tcc_comparison)
2255 icmp (inverted_tcc_comparison)
2256 /* Fold (((a < b) & c) | ((a >= b) & d)) into (a < b ? c : d) & 1. */
2257 (simplify
2258 (bit_ior
2259 (bit_and:c (convert? (cmp@0 @01 @02)) @3)
2260 (bit_and:c (convert? (icmp@4 @01 @02)) @5))
2261 (if (INTEGRAL_TYPE_P (type)
2262 && invert_tree_comparison (cmp, HONOR_NANS (@01)) == icmp
2263 /* The scalar version has to be canonicalized after vectorization
2264 because it makes unconditional loads conditional ones, which
2265 means we lose vectorization because the loads may trap. */
2266 && canonicalize_math_after_vectorization_p ())
2267 (bit_and (cond @0 @3 @5) { build_one_cst (type); })))
2268
2269 /* Fold ((-(a < b) & c) | (-(a >= b) & d)) into a < b ? c : d. This is
2270 canonicalized further and we recognize the conditional form:
2271 (a < b ? c : 0) | (a >= b ? d : 0) into a < b ? c : d. */
2272 (simplify
2273 (bit_ior
2274 (cond (cmp@0 @01 @02) @3 zerop)
2275 (cond (icmp@4 @01 @02) @5 zerop))
2276 (if (INTEGRAL_TYPE_P (type)
2277 && invert_tree_comparison (cmp, HONOR_NANS (@01)) == icmp
2278 /* The scalar version has to be canonicalized after vectorization
2279 because it makes unconditional loads conditional ones, which
2280 means we lose vectorization because the loads may trap. */
2281 && canonicalize_math_after_vectorization_p ())
2282 (cond @0 @3 @5)))
2283
2284 /* Vector Fold (((a < b) & c) | ((a >= b) & d)) into a < b ? c : d.
2285 and ((~(a < b) & c) | (~(a >= b) & d)) into a < b ? c : d. */
2286 (simplify
2287 (bit_ior
2288 (bit_and:c (vec_cond:s (cmp@0 @6 @7) @4 @5) @2)
2289 (bit_and:c (vec_cond:s (icmp@1 @6 @7) @4 @5) @3))
2290 (if (integer_zerop (@5)
2291 && invert_tree_comparison (cmp, HONOR_NANS (@6)) == icmp)
2292 (switch
2293 (if (integer_onep (@4))
2294 (bit_and (vec_cond @0 @2 @3) @4))
2295 (if (integer_minus_onep (@4))
2296 (vec_cond @0 @2 @3)))
2297 (if (integer_zerop (@4)
2298 && invert_tree_comparison (cmp, HONOR_NANS (@6)) == icmp)
2299 (switch
2300 (if (integer_onep (@5))
2301 (bit_and (vec_cond @0 @3 @2) @5))
2302 (if (integer_minus_onep (@5))
2303 (vec_cond @0 @3 @2))))))
2304
2305 /* Scalar Vectorized Fold ((-(a < b) & c) | (-(a >= b) & d))
2306 into a < b ? d : c. */
2307 (simplify
2308 (bit_ior
2309 (vec_cond:s (cmp@0 @4 @5) @2 integer_zerop)
2310 (vec_cond:s (icmp@1 @4 @5) @3 integer_zerop))
2311 (if (invert_tree_comparison (cmp, HONOR_NANS (@4)) == icmp)
2312 (vec_cond @0 @2 @3))))
2313
2314 /* Transform X & -Y into X * Y when Y is { 0 or 1 }. */
2315 (simplify
2316 (bit_and:c (convert? (negate zero_one_valued_p@0)) @1)
2317 (if (INTEGRAL_TYPE_P (type)
2318 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2319 && TREE_CODE (TREE_TYPE (@0)) != BOOLEAN_TYPE
2320 /* Sign extending of the neg or a truncation of the neg
2321 is needed. */
2322 && (!TYPE_UNSIGNED (TREE_TYPE (@0))
2323 || TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))
2324 (mult (convert @0) @1)))
2325
2326 /* Narrow integer multiplication by a zero_one_valued_p operand.
2327 Multiplication by [0,1] is guaranteed not to overflow. */
2328 (simplify
2329 (convert (mult@0 zero_one_valued_p@1 INTEGER_CST@2))
2330 (if (INTEGRAL_TYPE_P (type)
2331 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2332 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@0)))
2333 (mult (convert @1) (convert @2))))
2334
2335 /* (X << C) != 0 can be simplified to X, when C is zero_one_valued_p.
2336 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2337 as some targets (such as x86's SSE) may return zero for larger C. */
2338 (simplify
2339 (ne (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2340 (if (tree_fits_shwi_p (@1)
2341 && tree_to_shwi (@1) > 0
2342 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2343 (convert @0)))
2344
2345 /* (X << C) == 0 can be simplified to X == 0, when C is zero_one_valued_p.
2346 Check that the shift is well-defined (C is less than TYPE_PRECISION)
2347 as some targets (such as x86's SSE) may return zero for larger C. */
2348 (simplify
2349 (eq (lshift zero_one_valued_p@0 INTEGER_CST@1) integer_zerop@2)
2350 (if (tree_fits_shwi_p (@1)
2351 && tree_to_shwi (@1) > 0
2352 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
2353 (eq @0 @2)))
2354
2355 /* Convert ~ (-A) to A - 1. */
2356 (simplify
2357 (bit_not (convert? (negate @0)))
2358 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2359 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2360 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
2361
2362 /* Convert - (~A) to A + 1. */
2363 (simplify
2364 (negate (nop_convert? (bit_not @0)))
2365 (plus (view_convert @0) { build_each_one_cst (type); }))
2366
2367 /* (a & b) ^ (a == b) -> !(a | b) */
2368 /* (a & b) == (a ^ b) -> !(a | b) */
2369 (for first_op (bit_xor eq)
2370 second_op (eq bit_xor)
2371 (simplify
2372 (first_op:c (bit_and:c truth_valued_p@0 truth_valued_p@1) (second_op:c @0 @1))
2373 (bit_not (bit_ior @0 @1))))
2374
2375 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
2376 (simplify
2377 (bit_not (convert? (minus @0 integer_each_onep)))
2378 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2379 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2380 (convert (negate @0))))
2381 (simplify
2382 (bit_not (convert? (plus @0 integer_all_onesp)))
2383 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
2384 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
2385 (convert (negate @0))))
2386
2387 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
2388 (simplify
2389 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
2390 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2391 (convert (bit_xor @0 (bit_not @1)))))
2392 (simplify
2393 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
2394 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2395 (convert (bit_xor @0 @1))))
2396
2397 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
2398 (simplify
2399 (bit_xor:c (nop_convert?:s (bit_not:s @0)) @1)
2400 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2401 (bit_not (bit_xor (view_convert @0) @1))))
2402
2403 /* ~(a ^ b) is a == b for truth valued a and b. */
2404 (simplify
2405 (bit_not (bit_xor:s truth_valued_p@0 truth_valued_p@1))
2406 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2407 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2408 (convert (eq @0 @1))))
2409
2410 /* (~a) == b is a ^ b for truth valued a and b. */
2411 (simplify
2412 (eq:c (bit_not:s truth_valued_p@0) truth_valued_p@1)
2413 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2414 && TYPE_PRECISION (TREE_TYPE (@0)) == 1)
2415 (convert (bit_xor @0 @1))))
2416
2417 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
2418 (simplify
2419 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
2420 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
2421
2422 /* Fold A - (A & B) into ~B & A. */
2423 (simplify
2424 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
2425 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
2426 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
2427 (convert (bit_and (bit_not @1) @0))))
2428
2429 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
2430 (if (!canonicalize_math_p ())
2431 (for cmp (tcc_comparison)
2432 (simplify
2433 (mult:c (convert (cmp@0 @1 @2)) @3)
2434 (if (INTEGRAL_TYPE_P (type)
2435 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2436 (cond @0 @3 { build_zero_cst (type); })))
2437 /* (-(m1 CMP m2)) & d -> (m1 CMP m2) ? d : 0 */
2438 (simplify
2439 (bit_and:c (negate (convert (cmp@0 @1 @2))) @3)
2440 (if (INTEGRAL_TYPE_P (type)
2441 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2442 (cond @0 @3 { build_zero_cst (type); })))
2443 )
2444 )
2445
2446 /* For integral types with undefined overflow and C != 0 fold
2447 x * C EQ/NE y * C into x EQ/NE y. */
2448 (for cmp (eq ne)
2449 (simplify
2450 (cmp (mult:c @0 @1) (mult:c @2 @1))
2451 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2452 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2453 && tree_expr_nonzero_p (@1))
2454 (cmp @0 @2))))
2455
2456 /* For integral types with wrapping overflow and C odd fold
2457 x * C EQ/NE y * C into x EQ/NE y. */
2458 (for cmp (eq ne)
2459 (simplify
2460 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
2461 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2462 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
2463 && (TREE_INT_CST_LOW (@1) & 1) != 0)
2464 (cmp @0 @2))))
2465
2466 /* For integral types with undefined overflow and C != 0 fold
2467 x * C RELOP y * C into:
2468
2469 x RELOP y for nonnegative C
2470 y RELOP x for negative C */
2471 (for cmp (lt gt le ge)
2472 (simplify
2473 (cmp (mult:c @0 @1) (mult:c @2 @1))
2474 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2476 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
2477 (cmp @0 @2)
2478 (if (TREE_CODE (@1) == INTEGER_CST
2479 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
2480 (cmp @2 @0))))))
2481
2482 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
2483 (for cmp (le gt)
2484 icmp (gt le)
2485 (simplify
2486 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
2487 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2488 && TYPE_UNSIGNED (TREE_TYPE (@0))
2489 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
2490 && (wi::to_wide (@2)
2491 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
2492 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2493 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
2494
2495 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
2496 (for cmp (simple_comparison)
2497 (simplify
2498 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
2499 (if (element_precision (@3) >= element_precision (@0)
2500 && types_match (@0, @1))
2501 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
2502 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
2503 (cmp @1 @0)
2504 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
2505 (with
2506 {
2507 tree utype = unsigned_type_for (TREE_TYPE (@0));
2508 }
2509 (cmp (convert:utype @1) (convert:utype @0)))))
2510 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
2511 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
2512 (cmp @0 @1)
2513 (with
2514 {
2515 tree utype = unsigned_type_for (TREE_TYPE (@0));
2516 }
2517 (cmp (convert:utype @0) (convert:utype @1)))))))))
2518
2519 /* X / C1 op C2 into a simple range test. */
2520 (for cmp (simple_comparison)
2521 (simplify
2522 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
2523 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2524 && integer_nonzerop (@1)
2525 && !TREE_OVERFLOW (@1)
2526 && !TREE_OVERFLOW (@2))
2527 (with { tree lo, hi; bool neg_overflow;
2528 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
2529 &neg_overflow); }
2530 (switch
2531 (if (code == LT_EXPR || code == GE_EXPR)
2532 (if (TREE_OVERFLOW (lo))
2533 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
2534 (if (code == LT_EXPR)
2535 (lt @0 { lo; })
2536 (ge @0 { lo; }))))
2537 (if (code == LE_EXPR || code == GT_EXPR)
2538 (if (TREE_OVERFLOW (hi))
2539 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
2540 (if (code == LE_EXPR)
2541 (le @0 { hi; })
2542 (gt @0 { hi; }))))
2543 (if (!lo && !hi)
2544 { build_int_cst (type, code == NE_EXPR); })
2545 (if (code == EQ_EXPR && !hi)
2546 (ge @0 { lo; }))
2547 (if (code == EQ_EXPR && !lo)
2548 (le @0 { hi; }))
2549 (if (code == NE_EXPR && !hi)
2550 (lt @0 { lo; }))
2551 (if (code == NE_EXPR && !lo)
2552 (gt @0 { hi; }))
2553 (if (GENERIC)
2554 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
2555 lo, hi); })
2556 (with
2557 {
2558 tree etype = range_check_type (TREE_TYPE (@0));
2559 if (etype)
2560 {
2561 hi = fold_convert (etype, hi);
2562 lo = fold_convert (etype, lo);
2563 hi = const_binop (MINUS_EXPR, etype, hi, lo);
2564 }
2565 }
2566 (if (etype && hi && !TREE_OVERFLOW (hi))
2567 (if (code == EQ_EXPR)
2568 (le (minus (convert:etype @0) { lo; }) { hi; })
2569 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
2570
2571 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
2572 (for op (lt le ge gt)
2573 (simplify
2574 (op (plus:c @0 @2) (plus:c @1 @2))
2575 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2576 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2577 (op @0 @1))))
2578
2579 /* As a special case, X + C < Y + C is the same as (signed) X < (signed) Y
2580 when C is an unsigned integer constant with only the MSB set, and X and
2581 Y have types of equal or lower integer conversion rank than C's. */
2582 (for op (lt le ge gt)
2583 (simplify
2584 (op (plus @1 INTEGER_CST@0) (plus @2 @0))
2585 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
2586 && TYPE_UNSIGNED (TREE_TYPE (@0))
2587 && wi::only_sign_bit_p (wi::to_wide (@0)))
2588 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
2589 (op (convert:stype @1) (convert:stype @2))))))
2590
2591 /* For equality and subtraction, this is also true with wrapping overflow. */
2592 (for op (eq ne minus)
2593 (simplify
2594 (op (plus:c @0 @2) (plus:c @1 @2))
2595 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2596 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2597 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2598 (op @0 @1))))
2599 /* And similar for pointers. */
2600 (for op (eq ne)
2601 (simplify
2602 (op (pointer_plus @0 @1) (pointer_plus @0 @2))
2603 (op @1 @2)))
2604 (simplify
2605 (pointer_diff (pointer_plus @0 @1) (pointer_plus @0 @2))
2606 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2607 (convert (minus @1 @2))))
2608
2609 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
2610 (for op (lt le ge gt)
2611 (simplify
2612 (op (minus @0 @2) (minus @1 @2))
2613 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2614 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2615 (op @0 @1))))
2616 /* For equality and subtraction, this is also true with wrapping overflow. */
2617 (for op (eq ne minus)
2618 (simplify
2619 (op (minus @0 @2) (minus @1 @2))
2620 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2621 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2622 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2623 (op @0 @1))))
2624 /* And for pointers... */
2625 (for op (simple_comparison)
2626 (simplify
2627 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2628 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2629 (op @0 @1))))
2630 (simplify
2631 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
2632 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2633 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2634 (pointer_diff @0 @1)))
2635
2636 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
2637 (for op (lt le ge gt)
2638 (simplify
2639 (op (minus @2 @0) (minus @2 @1))
2640 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2641 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2642 (op @1 @0))))
2643 /* For equality and subtraction, this is also true with wrapping overflow. */
2644 (for op (eq ne minus)
2645 (simplify
2646 (op (minus @2 @0) (minus @2 @1))
2647 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2648 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2649 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2650 (op @1 @0))))
2651 /* And for pointers... */
2652 (for op (simple_comparison)
2653 (simplify
2654 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2655 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2656 (op @1 @0))))
2657 (simplify
2658 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
2659 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
2660 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
2661 (pointer_diff @1 @0)))
2662
2663 /* X + Y < Y is the same as X < 0 when there is no overflow. */
2664 (for op (lt le gt ge)
2665 (simplify
2666 (op:c (plus:c@2 @0 @1) @1)
2667 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2668 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2669 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2670 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
2671 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
2672 /* For equality, this is also true with wrapping overflow. */
2673 (for op (eq ne)
2674 (simplify
2675 (op:c (nop_convert?@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
2676 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2677 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2678 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2679 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
2680 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
2681 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
2682 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
2683 (simplify
2684 (op:c (nop_convert?@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
2685 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
2686 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
2687 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
2688 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2689
2690 /* (&a + b) !=/== (&a[1] + c) -> (&a[0] - &a[1]) + b !=/== c */
2691 (for neeq (ne eq)
2692 (simplify
2693 (neeq:c ADDR_EXPR@0 (pointer_plus @2 @3))
2694 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@3);}
2695 (if (ptr_difference_const (@0, @2, &diff))
2696 (neeq { build_int_cst_type (inner_type, diff); } @3))))
2697 (simplify
2698 (neeq (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2699 (with { poly_int64 diff; tree inner_type = TREE_TYPE (@1);}
2700 (if (ptr_difference_const (@0, @2, &diff))
2701 (neeq (plus { build_int_cst_type (inner_type, diff); } @1) @3)))))
2702
2703 /* X - Y < X is the same as Y > 0 when there is no overflow.
2704 For equality, this is also true with wrapping overflow. */
2705 (for op (simple_comparison)
2706 (simplify
2707 (op:c @0 (minus@2 @0 @1))
2708 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2709 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2710 || ((op == EQ_EXPR || op == NE_EXPR)
2711 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
2712 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
2713 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
2714
2715 /* Transform:
2716 (X / Y) == 0 -> X < Y if X, Y are unsigned.
2717 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
2718 (for cmp (eq ne)
2719 ocmp (lt ge)
2720 (simplify
2721 (cmp (trunc_div @0 @1) integer_zerop)
2722 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
2723 /* Complex ==/!= is allowed, but not </>=. */
2724 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
2725 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
2726 (ocmp @0 @1))))
2727
2728 /* X == C - X can never be true if C is odd. */
2729 (for cmp (eq ne)
2730 (simplify
2731 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
2732 (if (TREE_INT_CST_LOW (@1) & 1)
2733 { constant_boolean_node (cmp == NE_EXPR, type); })))
2734
2735 /*
2736 U & N <= U -> true
2737 U & N > U -> false
2738 U needs to be non-negative.
2739
2740 U | N < U -> false
2741 U | N >= U -> true
2742 U and N needs to be non-negative
2743
2744 U | N < U -> true
2745 U | N >= U -> false
2746 U needs to be non-negative and N needs to be a negative constant.
2747 */
2748 (for cmp (lt ge le gt )
2749 bitop (bit_ior bit_ior bit_and bit_and)
2750 (simplify
2751 (cmp:c (bitop:c tree_expr_nonnegative_p@0 @1) @0)
2752 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2753 (if (bitop == BIT_AND_EXPR || tree_expr_nonnegative_p (@1))
2754 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); }
2755 /* The sign is opposite now so the comparison is swapped around. */
2756 (if (TREE_CODE (@1) == INTEGER_CST && wi::neg_p (wi::to_wide (@1)))
2757 { constant_boolean_node (cmp == LT_EXPR, type); })))))
2758
2759 /* Arguments on which one can call get_nonzero_bits to get the bits
2760 possibly set. */
2761 (match with_possible_nonzero_bits
2762 INTEGER_CST@0)
2763 (match with_possible_nonzero_bits
2764 SSA_NAME@0
2765 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
2766 /* Slightly extended version, do not make it recursive to keep it cheap. */
2767 (match (with_possible_nonzero_bits2 @0)
2768 with_possible_nonzero_bits@0)
2769 (match (with_possible_nonzero_bits2 @0)
2770 (bit_and:c with_possible_nonzero_bits@0 @2))
2771
2772 /* Same for bits that are known to be set, but we do not have
2773 an equivalent to get_nonzero_bits yet. */
2774 (match (with_certain_nonzero_bits2 @0)
2775 INTEGER_CST@0)
2776 (match (with_certain_nonzero_bits2 @0)
2777 (bit_ior @1 INTEGER_CST@0))
2778
2779 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
2780 (for cmp (eq ne)
2781 (simplify
2782 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
2783 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
2784 { constant_boolean_node (cmp == NE_EXPR, type); })))
2785
2786 /* ((X inner_op C0) outer_op C1)
2787 With X being a tree where value_range has reasoned certain bits to always be
2788 zero throughout its computed value range,
2789 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
2790 where zero_mask has 1's for all bits that are sure to be 0 in
2791 and 0's otherwise.
2792 if (inner_op == '^') C0 &= ~C1;
2793 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
2794 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
2795 */
2796 (for inner_op (bit_ior bit_xor)
2797 outer_op (bit_xor bit_ior)
2798 (simplify
2799 (outer_op
2800 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
2801 (with
2802 {
2803 bool fail = false;
2804 wide_int zero_mask_not;
2805 wide_int C0;
2806 wide_int cst_emit;
2807
2808 if (TREE_CODE (@2) == SSA_NAME)
2809 zero_mask_not = get_nonzero_bits (@2);
2810 else
2811 fail = true;
2812
2813 if (inner_op == BIT_XOR_EXPR)
2814 {
2815 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
2816 cst_emit = C0 | wi::to_wide (@1);
2817 }
2818 else
2819 {
2820 C0 = wi::to_wide (@0);
2821 cst_emit = C0 ^ wi::to_wide (@1);
2822 }
2823 }
2824 (if (!fail && (C0 & zero_mask_not) == 0)
2825 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
2826 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
2827 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
2828
2829 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
2830 (simplify
2831 (pointer_plus (pointer_plus:s @0 @1) @3)
2832 (pointer_plus @0 (plus @1 @3)))
2833 #if GENERIC
2834 (simplify
2835 (pointer_plus (convert:s (pointer_plus:s @0 @1)) @3)
2836 (convert:type (pointer_plus @0 (plus @1 @3))))
2837 #endif
2838
2839 /* Pattern match
2840 tem1 = (long) ptr1;
2841 tem2 = (long) ptr2;
2842 tem3 = tem2 - tem1;
2843 tem4 = (unsigned long) tem3;
2844 tem5 = ptr1 + tem4;
2845 and produce
2846 tem5 = ptr2; */
2847 (simplify
2848 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
2849 /* Conditionally look through a sign-changing conversion. */
2850 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
2851 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
2852 || (GENERIC && type == TREE_TYPE (@1))))
2853 @1))
2854 (simplify
2855 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
2856 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
2857 (convert @1)))
2858
2859 /* Pattern match
2860 tem = (sizetype) ptr;
2861 tem = tem & algn;
2862 tem = -tem;
2863 ... = ptr p+ tem;
2864 and produce the simpler and easier to analyze with respect to alignment
2865 ... = ptr & ~algn; */
2866 (simplify
2867 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
2868 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
2869 (bit_and @0 { algn; })))
2870
2871 /* Try folding difference of addresses. */
2872 (simplify
2873 (minus (convert ADDR_EXPR@0) (convert (pointer_plus @1 @2)))
2874 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2875 (with { poly_int64 diff; }
2876 (if (ptr_difference_const (@0, @1, &diff))
2877 (minus { build_int_cst_type (type, diff); } (convert @2))))))
2878 (simplify
2879 (minus (convert (pointer_plus @0 @2)) (convert ADDR_EXPR@1))
2880 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2881 (with { poly_int64 diff; }
2882 (if (ptr_difference_const (@0, @1, &diff))
2883 (plus (convert @2) { build_int_cst_type (type, diff); })))))
2884 (simplify
2885 (minus (convert ADDR_EXPR@0) (convert @1))
2886 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2887 (with { poly_int64 diff; }
2888 (if (ptr_difference_const (@0, @1, &diff))
2889 { build_int_cst_type (type, diff); }))))
2890 (simplify
2891 (minus (convert @0) (convert ADDR_EXPR@1))
2892 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2893 (with { poly_int64 diff; }
2894 (if (ptr_difference_const (@0, @1, &diff))
2895 { build_int_cst_type (type, diff); }))))
2896 (simplify
2897 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
2898 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2899 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2900 (with { poly_int64 diff; }
2901 (if (ptr_difference_const (@0, @1, &diff))
2902 { build_int_cst_type (type, diff); }))))
2903 (simplify
2904 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
2905 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
2906 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
2907 (with { poly_int64 diff; }
2908 (if (ptr_difference_const (@0, @1, &diff))
2909 { build_int_cst_type (type, diff); }))))
2910
2911 /* (&a+b) - (&a[1] + c) -> sizeof(a[0]) + (b - c) */
2912 (simplify
2913 (pointer_diff (pointer_plus ADDR_EXPR@0 @1) (pointer_plus ADDR_EXPR@2 @3))
2914 (with { poly_int64 diff; }
2915 (if (ptr_difference_const (@0, @2, &diff))
2916 (plus { build_int_cst_type (type, diff); } (convert (minus @1 @3))))))
2917 /* (p + b) - &p->d -> offsetof (*p, d) + b */
2918 (simplify
2919 (pointer_diff (pointer_plus @0 @1) ADDR_EXPR@2)
2920 (with { poly_int64 diff; }
2921 (if (ptr_difference_const (@0, @2, &diff))
2922 (plus { build_int_cst_type (type, diff); } (convert @1)))))
2923 (simplify
2924 (pointer_diff ADDR_EXPR@0 (pointer_plus @1 @2))
2925 (with { poly_int64 diff; }
2926 (if (ptr_difference_const (@0, @1, &diff))
2927 (minus { build_int_cst_type (type, diff); } (convert @2)))))
2928
2929 /* Canonicalize (T *)(ptr - ptr-cst) to &MEM[ptr + -ptr-cst]. */
2930 (simplify
2931 (convert (pointer_diff @0 INTEGER_CST@1))
2932 (if (POINTER_TYPE_P (type))
2933 { build_fold_addr_expr_with_type
2934 (build2 (MEM_REF, char_type_node, @0,
2935 wide_int_to_tree (ptr_type_node, wi::neg (wi::to_wide (@1)))),
2936 type); }))
2937
2938 /* If arg0 is derived from the address of an object or function, we may
2939 be able to fold this expression using the object or function's
2940 alignment. */
2941 (simplify
2942 (bit_and (convert? @0) INTEGER_CST@1)
2943 (if (POINTER_TYPE_P (TREE_TYPE (@0))
2944 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2945 (with
2946 {
2947 unsigned int align;
2948 unsigned HOST_WIDE_INT bitpos;
2949 get_pointer_alignment_1 (@0, &align, &bitpos);
2950 }
2951 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
2952 { wide_int_to_tree (type, (wi::to_wide (@1)
2953 & (bitpos / BITS_PER_UNIT))); }))))
2954
2955 (match min_value
2956 uniform_integer_cst_p
2957 (with {
2958 tree int_cst = uniform_integer_cst_p (t);
2959 tree inner_type = TREE_TYPE (int_cst);
2960 }
2961 (if ((INTEGRAL_TYPE_P (inner_type)
2962 || POINTER_TYPE_P (inner_type))
2963 && wi::eq_p (wi::to_wide (int_cst), wi::min_value (inner_type))))))
2964
2965 (match max_value
2966 uniform_integer_cst_p
2967 (with {
2968 tree int_cst = uniform_integer_cst_p (t);
2969 tree itype = TREE_TYPE (int_cst);
2970 }
2971 (if ((INTEGRAL_TYPE_P (itype)
2972 || POINTER_TYPE_P (itype))
2973 && wi::eq_p (wi::to_wide (int_cst), wi::max_value (itype))))))
2974
2975 /* x > y && x != XXX_MIN --> x > y
2976 x > y && x == XXX_MIN --> false . */
2977 (for eqne (eq ne)
2978 (simplify
2979 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
2980 (switch
2981 (if (eqne == EQ_EXPR)
2982 { constant_boolean_node (false, type); })
2983 (if (eqne == NE_EXPR)
2984 @2)
2985 )))
2986
2987 /* x < y && x != XXX_MAX --> x < y
2988 x < y && x == XXX_MAX --> false. */
2989 (for eqne (eq ne)
2990 (simplify
2991 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
2992 (switch
2993 (if (eqne == EQ_EXPR)
2994 { constant_boolean_node (false, type); })
2995 (if (eqne == NE_EXPR)
2996 @2)
2997 )))
2998
2999 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
3000 (simplify
3001 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
3002 @2)
3003
3004 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
3005 (simplify
3006 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
3007 @2)
3008
3009 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
3010 (simplify
3011 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
3012 @2)
3013
3014 /* x <= y || x != XXX_MIN --> true. */
3015 (simplify
3016 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
3017 { constant_boolean_node (true, type); })
3018
3019 /* x <= y || x == XXX_MIN --> x <= y. */
3020 (simplify
3021 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
3022 @2)
3023
3024 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
3025 (simplify
3026 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
3027 @2)
3028
3029 /* x >= y || x != XXX_MAX --> true
3030 x >= y || x == XXX_MAX --> x >= y. */
3031 (for eqne (eq ne)
3032 (simplify
3033 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
3034 (switch
3035 (if (eqne == EQ_EXPR)
3036 @2)
3037 (if (eqne == NE_EXPR)
3038 { constant_boolean_node (true, type); }))))
3039
3040 /* y == XXX_MIN || x < y --> x <= y - 1 */
3041 (simplify
3042 (bit_ior:c (eq:s @1 min_value) (lt:cs @0 @1))
3043 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3044 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
3045 (le @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
3046
3047 /* y != XXX_MIN && x >= y --> x > y - 1 */
3048 (simplify
3049 (bit_and:c (ne:s @1 min_value) (ge:cs @0 @1))
3050 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3051 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
3052 (gt @0 (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))
3053
3054 /* Convert (X == CST1) && ((other)X OP2 CST2) to a known value
3055 based on CST1 OP2 CST2. Similarly for (X != CST1). */
3056 /* Convert (X == Y) && (X OP2 Y) to a known value if X is an integral type.
3057 Similarly for (X != Y). */
3058
3059 (for code1 (eq ne)
3060 (for code2 (eq ne lt gt le ge)
3061 (simplify
3062 (bit_and:c (code1:c@3 @0 @1) (code2:c@4 (convert?@c0 @0) @2))
3063 (if ((TREE_CODE (@1) == INTEGER_CST
3064 && TREE_CODE (@2) == INTEGER_CST)
3065 || ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
3066 || POINTER_TYPE_P (TREE_TYPE (@1)))
3067 && bitwise_equal_p (@1, @2)))
3068 (with
3069 {
3070 bool one_before = false;
3071 bool one_after = false;
3072 int cmp = 0;
3073 bool allbits = true;
3074 if (TREE_CODE (@1) == INTEGER_CST
3075 && TREE_CODE (@2) == INTEGER_CST)
3076 {
3077 allbits = TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (TREE_TYPE (@2));
3078 auto t1 = wi::to_wide (fold_convert (TREE_TYPE (@2), @1));
3079 auto t2 = wi::to_wide (@2);
3080 cmp = wi::cmp (t1, t2, TYPE_SIGN (TREE_TYPE (@2)));
3081 if (cmp < 0
3082 && t1 == t2 - 1)
3083 one_before = true;
3084 if (cmp > 0
3085 && t1 == t2 + 1)
3086 one_after = true;
3087 }
3088 bool val;
3089 switch (code2)
3090 {
3091 case EQ_EXPR: val = (cmp == 0); break;
3092 case NE_EXPR: val = (cmp != 0); break;
3093 case LT_EXPR: val = (cmp < 0); break;
3094 case GT_EXPR: val = (cmp > 0); break;
3095 case LE_EXPR: val = (cmp <= 0); break;
3096 case GE_EXPR: val = (cmp >= 0); break;
3097 default: gcc_unreachable ();
3098 }
3099 }
3100 (switch
3101 (if (code1 == EQ_EXPR && val) @3)
3102 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
3103 (if (code1 == NE_EXPR && !val && allbits) @4)
3104 (if (code1 == NE_EXPR
3105 && code2 == GE_EXPR
3106 && cmp == 0
3107 && allbits)
3108 (gt @c0 (convert @1)))
3109 (if (code1 == NE_EXPR
3110 && code2 == LE_EXPR
3111 && cmp == 0
3112 && allbits)
3113 (lt @c0 (convert @1)))
3114 /* (a != (b+1)) & (a > b) -> a > (b+1) */
3115 (if (code1 == NE_EXPR
3116 && code2 == GT_EXPR
3117 && one_after
3118 && allbits)
3119 (gt @c0 (convert @1)))
3120 /* (a != (b-1)) & (a < b) -> a < (b-1) */
3121 (if (code1 == NE_EXPR
3122 && code2 == LT_EXPR
3123 && one_before
3124 && allbits)
3125 (lt @c0 (convert @1)))
3126 )
3127 )
3128 )
3129 )
3130 )
3131 )
3132
3133 /* Convert (X OP1 CST1) && (X OP2 CST2).
3134 Convert (X OP1 Y) && (X OP2 Y). */
3135
3136 (for code1 (lt le gt ge)
3137 (for code2 (lt le gt ge)
3138 (simplify
3139 (bit_and (code1:c@3 @0 @1) (code2:c@4 @0 @2))
3140 (if ((TREE_CODE (@1) == INTEGER_CST
3141 && TREE_CODE (@2) == INTEGER_CST)
3142 || ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
3143 || POINTER_TYPE_P (TREE_TYPE (@1)))
3144 && operand_equal_p (@1, @2)))
3145 (with
3146 {
3147 int cmp = 0;
3148 if (TREE_CODE (@1) == INTEGER_CST
3149 && TREE_CODE (@2) == INTEGER_CST)
3150 cmp = tree_int_cst_compare (@1, @2);
3151 }
3152 (switch
3153 /* Choose the more restrictive of two < or <= comparisons. */
3154 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
3155 && (code2 == LT_EXPR || code2 == LE_EXPR))
3156 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
3157 @3
3158 @4))
3159 /* Likewise chose the more restrictive of two > or >= comparisons. */
3160 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
3161 && (code2 == GT_EXPR || code2 == GE_EXPR))
3162 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
3163 @3
3164 @4))
3165 /* Check for singleton ranges. */
3166 (if (cmp == 0
3167 && ((code1 == LE_EXPR && code2 == GE_EXPR)
3168 || (code1 == GE_EXPR && code2 == LE_EXPR)))
3169 (eq @0 @1))
3170 /* Check for disjoint ranges. */
3171 (if (cmp <= 0
3172 && (code1 == LT_EXPR || code1 == LE_EXPR)
3173 && (code2 == GT_EXPR || code2 == GE_EXPR))
3174 { constant_boolean_node (false, type); })
3175 (if (cmp >= 0
3176 && (code1 == GT_EXPR || code1 == GE_EXPR)
3177 && (code2 == LT_EXPR || code2 == LE_EXPR))
3178 { constant_boolean_node (false, type); })
3179 ))))))
3180
3181 /* Convert (X == CST1) || (X OP2 CST2) to a known value
3182 based on CST1 OP2 CST2. Similarly for (X != CST1). */
3183 /* Convert (X == Y) || (X OP2 Y) to a known value if X is an integral type.
3184 Similarly for (X != Y). */
3185
3186 (for code1 (eq ne)
3187 (for code2 (eq ne lt gt le ge)
3188 (simplify
3189 (bit_ior:c (code1:c@3 @0 @1) (code2:c@4 (convert?@c0 @0) @2))
3190 (if ((TREE_CODE (@1) == INTEGER_CST
3191 && TREE_CODE (@2) == INTEGER_CST)
3192 || ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
3193 || POINTER_TYPE_P (TREE_TYPE (@1)))
3194 && bitwise_equal_p (@1, @2)))
3195 (with
3196 {
3197 bool one_before = false;
3198 bool one_after = false;
3199 int cmp = 0;
3200 bool allbits = true;
3201 if (TREE_CODE (@1) == INTEGER_CST
3202 && TREE_CODE (@2) == INTEGER_CST)
3203 {
3204 allbits = TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (TREE_TYPE (@2));
3205 auto t1 = wi::to_wide (fold_convert (TREE_TYPE (@2), @1));
3206 auto t2 = wi::to_wide (@2);
3207 cmp = wi::cmp (t1, t2, TYPE_SIGN (TREE_TYPE (@2)));
3208 if (cmp < 0
3209 && t1 == t2 - 1)
3210 one_before = true;
3211 if (cmp > 0
3212 && t1 == t2 + 1)
3213 one_after = true;
3214 }
3215 bool val;
3216 switch (code2)
3217 {
3218 case EQ_EXPR: val = (cmp == 0); break;
3219 case NE_EXPR: val = (cmp != 0); break;
3220 case LT_EXPR: val = (cmp < 0); break;
3221 case GT_EXPR: val = (cmp > 0); break;
3222 case LE_EXPR: val = (cmp <= 0); break;
3223 case GE_EXPR: val = (cmp >= 0); break;
3224 default: gcc_unreachable ();
3225 }
3226 }
3227 (switch
3228 (if (code1 == EQ_EXPR && val) @4)
3229 (if (code1 == NE_EXPR && val && allbits) { constant_boolean_node (true, type); })
3230 (if (code1 == NE_EXPR && !val && allbits) @3)
3231 (if (code1 == EQ_EXPR
3232 && code2 == GT_EXPR
3233 && cmp == 0
3234 && allbits)
3235 (ge @c0 @2))
3236 (if (code1 == EQ_EXPR
3237 && code2 == LT_EXPR
3238 && cmp == 0
3239 && allbits)
3240 (le @c0 @2))
3241 /* (a == (b-1)) | (a >= b) -> a >= (b-1) */
3242 (if (code1 == EQ_EXPR
3243 && code2 == GE_EXPR
3244 && one_before
3245 && allbits)
3246 (ge @c0 (convert @1)))
3247 /* (a == (b+1)) | (a <= b) -> a <= (b-1) */
3248 (if (code1 == EQ_EXPR
3249 && code2 == LE_EXPR
3250 && one_after
3251 && allbits)
3252 (le @c0 (convert @1)))
3253 )
3254 )
3255 )
3256 )
3257 )
3258 )
3259
3260 /* Convert (X OP1 CST1) || (X OP2 CST2).
3261 Convert (X OP1 Y) || (X OP2 Y). */
3262
3263 (for code1 (lt le gt ge)
3264 (for code2 (lt le gt ge)
3265 (simplify
3266 (bit_ior (code1@3 @0 @1) (code2@4 @0 @2))
3267 (if ((TREE_CODE (@1) == INTEGER_CST
3268 && TREE_CODE (@2) == INTEGER_CST)
3269 || ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
3270 || POINTER_TYPE_P (TREE_TYPE (@1)))
3271 && operand_equal_p (@1, @2)))
3272 (with
3273 {
3274 int cmp = 0;
3275 if (TREE_CODE (@1) == INTEGER_CST
3276 && TREE_CODE (@2) == INTEGER_CST)
3277 cmp = tree_int_cst_compare (@1, @2);
3278 }
3279 (switch
3280 /* Choose the more restrictive of two < or <= comparisons. */
3281 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
3282 && (code2 == LT_EXPR || code2 == LE_EXPR))
3283 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
3284 @4
3285 @3))
3286 /* Likewise chose the more restrictive of two > or >= comparisons. */
3287 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
3288 && (code2 == GT_EXPR || code2 == GE_EXPR))
3289 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
3290 @4
3291 @3))
3292 /* Check for singleton ranges. */
3293 (if (cmp == 0
3294 && ((code1 == LT_EXPR && code2 == GT_EXPR)
3295 || (code1 == GT_EXPR && code2 == LT_EXPR)))
3296 (ne @0 @2))
3297 /* Check for disjoint ranges. */
3298 (if (cmp >= 0
3299 && (code1 == LT_EXPR || code1 == LE_EXPR)
3300 && (code2 == GT_EXPR || code2 == GE_EXPR))
3301 { constant_boolean_node (true, type); })
3302 (if (cmp <= 0
3303 && (code1 == GT_EXPR || code1 == GE_EXPR)
3304 && (code2 == LT_EXPR || code2 == LE_EXPR))
3305 { constant_boolean_node (true, type); })
3306 ))))))
3307
3308 /* Optimize (a CMP b) ^ (a CMP b) */
3309 /* Optimize (a CMP b) != (a CMP b) */
3310 (for op (bit_xor ne)
3311 (for cmp1 (lt lt lt le le le)
3312 cmp2 (gt eq ne ge eq ne)
3313 rcmp (ne le gt ne lt ge)
3314 (simplify
3315 (op:c (cmp1:c @0 @1) (cmp2:c @0 @1))
3316 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3317 (rcmp @0 @1)))))
3318
3319 /* Optimize (a CMP b) == (a CMP b) */
3320 (for cmp1 (lt lt lt le le le)
3321 cmp2 (gt eq ne ge eq ne)
3322 rcmp (eq gt le eq ge lt)
3323 (simplify
3324 (eq:c (cmp1:c @0 @1) (cmp2:c @0 @1))
3325 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
3326 (rcmp @0 @1))))
3327
3328 /* We can't reassociate at all for saturating types. */
3329 (if (!TYPE_SATURATING (type))
3330
3331 /* Contract negates. */
3332 /* A + (-B) -> A - B */
3333 (simplify
3334 (plus:c @0 (convert? (negate @1)))
3335 /* Apply STRIP_NOPS on the negate. */
3336 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
3337 && !TYPE_OVERFLOW_SANITIZED (type))
3338 (with
3339 {
3340 tree t1 = type;
3341 if (INTEGRAL_TYPE_P (type)
3342 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
3343 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
3344 }
3345 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
3346 /* A - (-B) -> A + B */
3347 (simplify
3348 (minus @0 (convert? (negate @1)))
3349 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
3350 && !TYPE_OVERFLOW_SANITIZED (type))
3351 (with
3352 {
3353 tree t1 = type;
3354 if (INTEGRAL_TYPE_P (type)
3355 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
3356 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
3357 }
3358 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
3359 /* -(T)(-A) -> (T)A
3360 Sign-extension is ok except for INT_MIN, which thankfully cannot
3361 happen without overflow. */
3362 (simplify
3363 (negate (convert (negate @1)))
3364 (if (INTEGRAL_TYPE_P (type)
3365 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
3366 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
3367 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3368 && !TYPE_OVERFLOW_SANITIZED (type)
3369 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
3370 (convert @1)))
3371 (simplify
3372 (negate (convert negate_expr_p@1))
3373 (if (SCALAR_FLOAT_TYPE_P (type)
3374 && ((DECIMAL_FLOAT_TYPE_P (type)
3375 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
3376 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
3377 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
3378 (convert (negate @1))))
3379 (simplify
3380 (negate (nop_convert? (negate @1)))
3381 (if (!TYPE_OVERFLOW_SANITIZED (type)
3382 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
3383 (view_convert @1)))
3384
3385 /* We can't reassociate floating-point unless -fassociative-math
3386 or fixed-point plus or minus because of saturation to +-Inf. */
3387 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
3388 && !FIXED_POINT_TYPE_P (type))
3389
3390 /* Match patterns that allow contracting a plus-minus pair
3391 irrespective of overflow issues. */
3392 /* (A +- B) - A -> +- B */
3393 /* (A +- B) -+ B -> A */
3394 /* A - (A +- B) -> -+ B */
3395 /* A +- (B -+ A) -> +- B */
3396 (simplify
3397 (minus (nop_convert1? (plus:c (nop_convert2? @0) @1)) @0)
3398 (view_convert @1))
3399 (simplify
3400 (minus (nop_convert1? (minus (nop_convert2? @0) @1)) @0)
3401 (if (!ANY_INTEGRAL_TYPE_P (type)
3402 || TYPE_OVERFLOW_WRAPS (type))
3403 (negate (view_convert @1))
3404 (view_convert (negate @1))))
3405 (simplify
3406 (plus:c (nop_convert1? (minus @0 (nop_convert2? @1))) @1)
3407 (view_convert @0))
3408 (simplify
3409 (minus @0 (nop_convert1? (plus:c (nop_convert2? @0) @1)))
3410 (if (!ANY_INTEGRAL_TYPE_P (type)
3411 || TYPE_OVERFLOW_WRAPS (type))
3412 (negate (view_convert @1))
3413 (view_convert (negate @1))))
3414 (simplify
3415 (minus @0 (nop_convert1? (minus (nop_convert2? @0) @1)))
3416 (view_convert @1))
3417 /* (A +- B) + (C - A) -> C +- B */
3418 /* (A + B) - (A - C) -> B + C */
3419 /* More cases are handled with comparisons. */
3420 (simplify
3421 (plus:c (plus:c @0 @1) (minus @2 @0))
3422 (plus @2 @1))
3423 (simplify
3424 (plus:c (minus @0 @1) (minus @2 @0))
3425 (minus @2 @1))
3426 (simplify
3427 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
3428 (if (TYPE_OVERFLOW_UNDEFINED (type)
3429 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
3430 (pointer_diff @2 @1)))
3431 (simplify
3432 (minus (plus:c @0 @1) (minus @0 @2))
3433 (plus @1 @2))
3434
3435 /* (A +- CST1) +- CST2 -> A + CST3
3436 Use view_convert because it is safe for vectors and equivalent for
3437 scalars. */
3438 (for outer_op (plus minus)
3439 (for inner_op (plus minus)
3440 neg_inner_op (minus plus)
3441 (simplify
3442 (outer_op (nop_convert? (inner_op @0 CONSTANT_CLASS_P@1))
3443 CONSTANT_CLASS_P@2)
3444 /* If one of the types wraps, use that one. */
3445 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3446 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
3447 forever if something doesn't simplify into a constant. */
3448 (if (!CONSTANT_CLASS_P (@0))
3449 (if (outer_op == PLUS_EXPR)
3450 (plus (view_convert @0) (inner_op! @2 (view_convert @1)))
3451 (minus (view_convert @0) (neg_inner_op! @2 (view_convert @1)))))
3452 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3453 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3454 (if (outer_op == PLUS_EXPR)
3455 (view_convert (plus @0 (inner_op! (view_convert @2) @1)))
3456 (view_convert (minus @0 (neg_inner_op! (view_convert @2) @1))))
3457 /* If the constant operation overflows we cannot do the transform
3458 directly as we would introduce undefined overflow, for example
3459 with (a - 1) + INT_MIN. */
3460 (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type))
3461 (with { tree cst = const_binop (outer_op == inner_op
3462 ? PLUS_EXPR : MINUS_EXPR,
3463 type, @1, @2); }
3464 (if (cst)
3465 (if (INTEGRAL_TYPE_P (type) && !TREE_OVERFLOW (cst))
3466 (inner_op @0 { cst; } )
3467 /* X+INT_MAX+1 is X-INT_MIN. */
3468 (if (INTEGRAL_TYPE_P (type)
3469 && wi::to_wide (cst) == wi::min_value (type))
3470 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
3471 /* Last resort, use some unsigned type. */
3472 (with { tree utype = unsigned_type_for (type); }
3473 (if (utype)
3474 (view_convert (inner_op
3475 (view_convert:utype @0)
3476 (view_convert:utype
3477 { TREE_OVERFLOW (cst)
3478 ? drop_tree_overflow (cst) : cst; })))))))))))))))
3479
3480 /* (CST1 - A) +- CST2 -> CST3 - A */
3481 (for outer_op (plus minus)
3482 (simplify
3483 (outer_op (nop_convert? (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
3484 /* If one of the types wraps, use that one. */
3485 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3486 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
3487 forever if something doesn't simplify into a constant. */
3488 (if (!CONSTANT_CLASS_P (@0))
3489 (minus (outer_op! (view_convert @1) @2) (view_convert @0)))
3490 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3491 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3492 (view_convert (minus (outer_op! @1 (view_convert @2)) @0))
3493 (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type))
3494 (with { tree cst = const_binop (outer_op, type, @1, @2); }
3495 (if (cst && !TREE_OVERFLOW (cst))
3496 (minus { cst; } @0))))))))
3497
3498 /* CST1 - (CST2 - A) -> CST3 + A
3499 Use view_convert because it is safe for vectors and equivalent for
3500 scalars. */
3501 (simplify
3502 (minus CONSTANT_CLASS_P@1 (nop_convert? (minus CONSTANT_CLASS_P@2 @0)))
3503 /* If one of the types wraps, use that one. */
3504 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
3505 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
3506 forever if something doesn't simplify into a constant. */
3507 (if (!CONSTANT_CLASS_P (@0))
3508 (plus (view_convert @0) (minus! @1 (view_convert @2))))
3509 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3510 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3511 (view_convert (plus @0 (minus! (view_convert @1) @2)))
3512 (if (types_match (type, @0) && !TYPE_OVERFLOW_SANITIZED (type))
3513 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
3514 (if (cst && !TREE_OVERFLOW (cst))
3515 (plus { cst; } @0)))))))
3516
3517 /* ((T)(A)) + CST -> (T)(A + CST) */
3518 #if GIMPLE
3519 (simplify
3520 (plus (convert:s SSA_NAME@0) INTEGER_CST@1)
3521 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
3522 && TREE_CODE (type) == INTEGER_TYPE
3523 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
3524 && int_fits_type_p (@1, TREE_TYPE (@0)))
3525 /* Perform binary operation inside the cast if the constant fits
3526 and (A + CST)'s range does not overflow. */
3527 (with
3528 {
3529 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
3530 max_ovf = wi::OVF_OVERFLOW;
3531 tree inner_type = TREE_TYPE (@0);
3532
3533 wide_int w1
3534 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
3535 TYPE_SIGN (inner_type));
3536
3537 value_range vr;
3538 if (get_global_range_query ()->range_of_expr (vr, @0)
3539 && !vr.varying_p () && !vr.undefined_p ())
3540 {
3541 wide_int wmin0 = vr.lower_bound ();
3542 wide_int wmax0 = vr.upper_bound ();
3543 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
3544 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
3545 }
3546 }
3547 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
3548 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
3549 )))
3550 #endif
3551
3552 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
3553 #if GIMPLE
3554 (for op (plus minus)
3555 (simplify
3556 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
3557 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
3558 && TREE_CODE (type) == INTEGER_TYPE
3559 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
3560 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3561 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
3562 && TYPE_OVERFLOW_WRAPS (type))
3563 (plus (convert @0) (op @2 (convert @1))))))
3564 #endif
3565
3566 /* (T)(A) +- (T)(B) -> (T)(A +- B) only when (A +- B) could be simplified
3567 to a simple value. */
3568 (for op (plus minus)
3569 (simplify
3570 (op (convert @0) (convert @1))
3571 (if (INTEGRAL_TYPE_P (type)
3572 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3573 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3574 && types_match (TREE_TYPE (@0), TREE_TYPE (@1))
3575 && !TYPE_OVERFLOW_TRAPS (type)
3576 && !TYPE_OVERFLOW_SANITIZED (type))
3577 (convert (op! @0 @1)))))
3578
3579 /* ~A + A -> -1 */
3580 (simplify
3581 (plus:c (convert? (bit_not @0)) (convert? @0))
3582 (if (!TYPE_OVERFLOW_TRAPS (type))
3583 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
3584
3585 /* ~A + 1 -> -A */
3586 (simplify
3587 (plus (convert? (bit_not @0)) integer_each_onep)
3588 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
3589 (negate (convert @0))))
3590
3591 /* -A - 1 -> ~A */
3592 (simplify
3593 (minus (convert? (negate @0)) integer_each_onep)
3594 (if (!TYPE_OVERFLOW_TRAPS (type)
3595 && TREE_CODE (type) != COMPLEX_TYPE
3596 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
3597 (bit_not (convert @0))))
3598
3599 /* -1 - A -> ~A */
3600 (simplify
3601 (minus integer_all_onesp @0)
3602 (if (TREE_CODE (type) != COMPLEX_TYPE)
3603 (bit_not @0)))
3604
3605 /* (T)(P + A) - (T)P -> (T) A */
3606 (simplify
3607 (minus (convert (plus:c @@0 @1))
3608 (convert? @0))
3609 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3610 /* For integer types, if A has a smaller type
3611 than T the result depends on the possible
3612 overflow in P + A.
3613 E.g. T=size_t, A=(unsigned)429497295, P>0.
3614 However, if an overflow in P + A would cause
3615 undefined behavior, we can assume that there
3616 is no overflow. */
3617 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3618 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3619 (convert @1)))
3620 (simplify
3621 (minus (convert (pointer_plus @@0 @1))
3622 (convert @0))
3623 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3624 /* For pointer types, if the conversion of A to the
3625 final type requires a sign- or zero-extension,
3626 then we have to punt - it is not defined which
3627 one is correct. */
3628 || (POINTER_TYPE_P (TREE_TYPE (@0))
3629 && TREE_CODE (@1) == INTEGER_CST
3630 && tree_int_cst_sign_bit (@1) == 0))
3631 (convert @1)))
3632 (simplify
3633 (pointer_diff (pointer_plus @@0 @1) @0)
3634 /* The second argument of pointer_plus must be interpreted as signed, and
3635 thus sign-extended if necessary. */
3636 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3637 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3638 second arg is unsigned even when we need to consider it as signed,
3639 we don't want to diagnose overflow here. */
3640 (convert (view_convert:stype @1))))
3641
3642 /* (T)P - (T)(P + A) -> -(T) A */
3643 (simplify
3644 (minus (convert? @0)
3645 (convert (plus:c @@0 @1)))
3646 (if (INTEGRAL_TYPE_P (type)
3647 && TYPE_OVERFLOW_UNDEFINED (type)
3648 /* For integer literals, using an intermediate unsigned type to avoid
3649 an overflow at run time is counter-productive because it introduces
3650 spurious overflows at compile time, in the form of TREE_OVERFLOW on
3651 the result, which may be problematic in GENERIC for some front-ends:
3652 (T)P - (T)(P + 4) -> (T)(-(U)4) -> (T)(4294967292) -> -4(OVF)
3653 so we use the direct path for them. */
3654 && TREE_CODE (@1) != INTEGER_CST
3655 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3656 (with { tree utype = unsigned_type_for (type); }
3657 (convert (negate (convert:utype @1))))
3658 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3659 /* For integer types, if A has a smaller type
3660 than T the result depends on the possible
3661 overflow in P + A.
3662 E.g. T=size_t, A=(unsigned)429497295, P>0.
3663 However, if an overflow in P + A would cause
3664 undefined behavior, we can assume that there
3665 is no overflow. */
3666 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3667 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
3668 (negate (convert @1)))))
3669 (simplify
3670 (minus (convert @0)
3671 (convert (pointer_plus @@0 @1)))
3672 (if (INTEGRAL_TYPE_P (type)
3673 && TYPE_OVERFLOW_UNDEFINED (type)
3674 /* See above the rationale for this condition. */
3675 && TREE_CODE (@1) != INTEGER_CST
3676 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3677 (with { tree utype = unsigned_type_for (type); }
3678 (convert (negate (convert:utype @1))))
3679 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3680 /* For pointer types, if the conversion of A to the
3681 final type requires a sign- or zero-extension,
3682 then we have to punt - it is not defined which
3683 one is correct. */
3684 || (POINTER_TYPE_P (TREE_TYPE (@0))
3685 && TREE_CODE (@1) == INTEGER_CST
3686 && tree_int_cst_sign_bit (@1) == 0))
3687 (negate (convert @1)))))
3688 (simplify
3689 (pointer_diff @0 (pointer_plus @@0 @1))
3690 /* The second argument of pointer_plus must be interpreted as signed, and
3691 thus sign-extended if necessary. */
3692 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3693 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3694 second arg is unsigned even when we need to consider it as signed,
3695 we don't want to diagnose overflow here. */
3696 (negate (convert (view_convert:stype @1)))))
3697
3698 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
3699 (simplify
3700 (minus (convert (plus:c @@0 @1))
3701 (convert (plus:c @0 @2)))
3702 (if (INTEGRAL_TYPE_P (type)
3703 && TYPE_OVERFLOW_UNDEFINED (type)
3704 && element_precision (type) <= element_precision (TREE_TYPE (@1))
3705 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
3706 (with { tree utype = unsigned_type_for (type); }
3707 (convert (minus (convert:utype @1) (convert:utype @2))))
3708 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
3709 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
3710 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
3711 /* For integer types, if A has a smaller type
3712 than T the result depends on the possible
3713 overflow in P + A.
3714 E.g. T=size_t, A=(unsigned)429497295, P>0.
3715 However, if an overflow in P + A would cause
3716 undefined behavior, we can assume that there
3717 is no overflow. */
3718 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
3719 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
3720 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
3721 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
3722 (minus (convert @1) (convert @2)))))
3723 (simplify
3724 (minus (convert (pointer_plus @@0 @1))
3725 (convert (pointer_plus @0 @2)))
3726 (if (INTEGRAL_TYPE_P (type)
3727 && TYPE_OVERFLOW_UNDEFINED (type)
3728 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
3729 (with { tree utype = unsigned_type_for (type); }
3730 (convert (minus (convert:utype @1) (convert:utype @2))))
3731 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
3732 /* For pointer types, if the conversion of A to the
3733 final type requires a sign- or zero-extension,
3734 then we have to punt - it is not defined which
3735 one is correct. */
3736 || (POINTER_TYPE_P (TREE_TYPE (@0))
3737 && TREE_CODE (@1) == INTEGER_CST
3738 && tree_int_cst_sign_bit (@1) == 0
3739 && TREE_CODE (@2) == INTEGER_CST
3740 && tree_int_cst_sign_bit (@2) == 0))
3741 (minus (convert @1) (convert @2)))))
3742 (simplify
3743 (pointer_diff (pointer_plus @0 @2) (pointer_plus @1 @2))
3744 (pointer_diff @0 @1))
3745 (simplify
3746 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
3747 /* The second argument of pointer_plus must be interpreted as signed, and
3748 thus sign-extended if necessary. */
3749 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
3750 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
3751 second arg is unsigned even when we need to consider it as signed,
3752 we don't want to diagnose overflow here. */
3753 (minus (convert (view_convert:stype @1))
3754 (convert (view_convert:stype @2)))))))
3755
3756 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
3757 Modeled after fold_plusminus_mult_expr. */
3758 (if (!TYPE_SATURATING (type)
3759 && (!FLOAT_TYPE_P (type) || flag_associative_math))
3760 (for plusminus (plus minus)
3761 (simplify
3762 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
3763 (if (!ANY_INTEGRAL_TYPE_P (type)
3764 || TYPE_OVERFLOW_WRAPS (type)
3765 || (INTEGRAL_TYPE_P (type)
3766 && tree_expr_nonzero_p (@0)
3767 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
3768 (if (single_use (@3) || single_use (@4))
3769 /* If @1 +- @2 is constant require a hard single-use on either
3770 original operand (but not on both). */
3771 (mult (plusminus @1 @2) @0)
3772 (mult! (plusminus @1 @2) @0)
3773 )))
3774 /* We cannot generate constant 1 for fract. */
3775 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
3776 (simplify
3777 (plusminus @0 (mult:c@3 @0 @2))
3778 (if ((!ANY_INTEGRAL_TYPE_P (type)
3779 || TYPE_OVERFLOW_WRAPS (type)
3780 /* For @0 + @0*@2 this transformation would introduce UB
3781 (where there was none before) for @0 in [-1,0] and @2 max.
3782 For @0 - @0*@2 this transformation would introduce UB
3783 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
3784 || (INTEGRAL_TYPE_P (type)
3785 && ((tree_expr_nonzero_p (@0)
3786 && expr_not_equal_to (@0,
3787 wi::minus_one (TYPE_PRECISION (type))))
3788 || (plusminus == PLUS_EXPR
3789 ? expr_not_equal_to (@2,
3790 wi::max_value (TYPE_PRECISION (type), SIGNED))
3791 /* Let's ignore the @0 -1 and @2 min case. */
3792 : (expr_not_equal_to (@2,
3793 wi::min_value (TYPE_PRECISION (type), SIGNED))
3794 && expr_not_equal_to (@2,
3795 wi::min_value (TYPE_PRECISION (type), SIGNED)
3796 + 1))))))
3797 && single_use (@3))
3798 (mult (plusminus { build_one_cst (type); } @2) @0)))
3799 (simplify
3800 (plusminus (mult:c@3 @0 @2) @0)
3801 (if ((!ANY_INTEGRAL_TYPE_P (type)
3802 || TYPE_OVERFLOW_WRAPS (type)
3803 /* For @0*@2 + @0 this transformation would introduce UB
3804 (where there was none before) for @0 in [-1,0] and @2 max.
3805 For @0*@2 - @0 this transformation would introduce UB
3806 for @0 0 and @2 min. */
3807 || (INTEGRAL_TYPE_P (type)
3808 && ((tree_expr_nonzero_p (@0)
3809 && (plusminus == MINUS_EXPR
3810 || expr_not_equal_to (@0,
3811 wi::minus_one (TYPE_PRECISION (type)))))
3812 || expr_not_equal_to (@2,
3813 (plusminus == PLUS_EXPR
3814 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
3815 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
3816 && single_use (@3))
3817 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
3818
3819 #if GIMPLE
3820 /* Canonicalize X + (X << C) into X * (1 + (1 << C)) and
3821 (X << C1) + (X << C2) into X * ((1 << C1) + (1 << C2)). */
3822 (simplify
3823 (plus:c @0 (lshift:s @0 INTEGER_CST@1))
3824 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3825 && tree_fits_uhwi_p (@1)
3826 && tree_to_uhwi (@1) < element_precision (type)
3827 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3828 || optab_handler (smul_optab,
3829 TYPE_MODE (type)) != CODE_FOR_nothing))
3830 (with { tree t = type;
3831 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3832 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1),
3833 element_precision (type));
3834 w += 1;
3835 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3836 : t, w);
3837 cst = build_uniform_cst (t, cst); }
3838 (convert (mult (convert:t @0) { cst; })))))
3839 (simplify
3840 (plus (lshift:s @0 INTEGER_CST@1) (lshift:s @0 INTEGER_CST@2))
3841 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3842 && tree_fits_uhwi_p (@1)
3843 && tree_to_uhwi (@1) < element_precision (type)
3844 && tree_fits_uhwi_p (@2)
3845 && tree_to_uhwi (@2) < element_precision (type)
3846 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3847 || optab_handler (smul_optab,
3848 TYPE_MODE (type)) != CODE_FOR_nothing))
3849 (with { tree t = type;
3850 if (!TYPE_OVERFLOW_WRAPS (t)) t = unsigned_type_for (t);
3851 unsigned int prec = element_precision (type);
3852 wide_int w = wi::set_bit_in_zero (tree_to_uhwi (@1), prec);
3853 w += wi::set_bit_in_zero (tree_to_uhwi (@2), prec);
3854 tree cst = wide_int_to_tree (VECTOR_TYPE_P (t) ? TREE_TYPE (t)
3855 : t, w);
3856 cst = build_uniform_cst (t, cst); }
3857 (convert (mult (convert:t @0) { cst; })))))
3858 #endif
3859
3860 /* Canonicalize (X*C1)|(X*C2) and (X*C1)^(X*C2) to (C1+C2)*X when
3861 tree_nonzero_bits allows IOR and XOR to be treated like PLUS.
3862 Likewise, handle (X<<C3) and X as legitimate variants of X*C. */
3863 (for op (bit_ior bit_xor)
3864 (simplify
3865 (op (mult:s@0 @1 INTEGER_CST@2)
3866 (mult:s@3 @1 INTEGER_CST@4))
3867 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3868 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3869 (mult @1
3870 { wide_int_to_tree (type, wi::to_wide (@2) + wi::to_wide (@4)); })))
3871 (simplify
3872 (op:c (mult:s@0 @1 INTEGER_CST@2)
3873 (lshift:s@3 @1 INTEGER_CST@4))
3874 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3875 && tree_int_cst_sgn (@4) > 0
3876 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3877 (with { wide_int wone = wi::one (TYPE_PRECISION (type));
3878 wide_int c = wi::add (wi::to_wide (@2),
3879 wi::lshift (wone, wi::to_wide (@4))); }
3880 (mult @1 { wide_int_to_tree (type, c); }))))
3881 (simplify
3882 (op:c (mult:s@0 @1 INTEGER_CST@2)
3883 @1)
3884 (if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type)
3885 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3886 (mult @1
3887 { wide_int_to_tree (type,
3888 wi::add (wi::to_wide (@2), 1)); })))
3889 (simplify
3890 (op (lshift:s@0 @1 INTEGER_CST@2)
3891 (lshift:s@3 @1 INTEGER_CST@4))
3892 (if (INTEGRAL_TYPE_P (type)
3893 && tree_int_cst_sgn (@2) > 0
3894 && tree_int_cst_sgn (@4) > 0
3895 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@3)) == 0)
3896 (with { tree t = type;
3897 if (!TYPE_OVERFLOW_WRAPS (t))
3898 t = unsigned_type_for (t);
3899 wide_int wone = wi::one (TYPE_PRECISION (t));
3900 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)),
3901 wi::lshift (wone, wi::to_wide (@4))); }
3902 (convert (mult:t (convert:t @1) { wide_int_to_tree (t,c); })))))
3903 (simplify
3904 (op:c (lshift:s@0 @1 INTEGER_CST@2)
3905 @1)
3906 (if (INTEGRAL_TYPE_P (type)
3907 && tree_int_cst_sgn (@2) > 0
3908 && (tree_nonzero_bits (@0) & tree_nonzero_bits (@1)) == 0)
3909 (with { tree t = type;
3910 if (!TYPE_OVERFLOW_WRAPS (t))
3911 t = unsigned_type_for (t);
3912 wide_int wone = wi::one (TYPE_PRECISION (t));
3913 wide_int c = wi::add (wi::lshift (wone, wi::to_wide (@2)), wone); }
3914 (convert (mult:t (convert:t @1) { wide_int_to_tree (t, c); }))))))
3915
3916 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
3917
3918 (for minmax (min max)
3919 (simplify
3920 (minmax @0 @0)
3921 @0)
3922 /* max(max(x,y),x) -> max(x,y) */
3923 (simplify
3924 (minmax:c (minmax:c@2 @0 @1) @0)
3925 @2))
3926 /* For fmin() and fmax(), skip folding when both are sNaN. */
3927 (for minmax (FMIN_ALL FMAX_ALL)
3928 (simplify
3929 (minmax @0 @0)
3930 (if (!tree_expr_maybe_signaling_nan_p (@0))
3931 @0)))
3932 /* min(max(x,y),y) -> y. */
3933 (simplify
3934 (min:c (max:c @0 @1) @1)
3935 @1)
3936 /* max(min(x,y),y) -> y. */
3937 (simplify
3938 (max:c (min:c @0 @1) @1)
3939 @1)
3940 /* max(a,-a) -> abs(a). */
3941 (simplify
3942 (max:c @0 (negate @0))
3943 (if (TREE_CODE (type) != COMPLEX_TYPE
3944 && (! ANY_INTEGRAL_TYPE_P (type)
3945 || TYPE_OVERFLOW_UNDEFINED (type)))
3946 (abs @0)))
3947 /* min(a,-a) -> -abs(a). */
3948 (simplify
3949 (min:c @0 (negate @0))
3950 (if (TREE_CODE (type) != COMPLEX_TYPE
3951 && (! ANY_INTEGRAL_TYPE_P (type)
3952 || TYPE_OVERFLOW_UNDEFINED (type)))
3953 (negate (abs @0))))
3954 (simplify
3955 (min @0 @1)
3956 (switch
3957 (if (INTEGRAL_TYPE_P (type)
3958 && TYPE_MIN_VALUE (type)
3959 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3960 @1)
3961 (if (INTEGRAL_TYPE_P (type)
3962 && TYPE_MAX_VALUE (type)
3963 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3964 @0)))
3965 (simplify
3966 (max @0 @1)
3967 (switch
3968 (if (INTEGRAL_TYPE_P (type)
3969 && TYPE_MAX_VALUE (type)
3970 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
3971 @1)
3972 (if (INTEGRAL_TYPE_P (type)
3973 && TYPE_MIN_VALUE (type)
3974 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
3975 @0)))
3976
3977 /* max (a, a + CST) -> a + CST where CST is positive. */
3978 /* max (a, a + CST) -> a where CST is negative. */
3979 (simplify
3980 (max:c @0 (plus@2 @0 INTEGER_CST@1))
3981 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3982 (if (tree_int_cst_sgn (@1) > 0)
3983 @2
3984 @0)))
3985
3986 /* min (a, a + CST) -> a where CST is positive. */
3987 /* min (a, a + CST) -> a + CST where CST is negative. */
3988 (simplify
3989 (min:c @0 (plus@2 @0 INTEGER_CST@1))
3990 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
3991 (if (tree_int_cst_sgn (@1) > 0)
3992 @0
3993 @2)))
3994
3995 /* Simplify min (&var[off0], &var[off1]) etc. depending on whether
3996 the addresses are known to be less, equal or greater. */
3997 (for minmax (min max)
3998 cmp (lt gt)
3999 (simplify
4000 (minmax (convert1?@2 addr@0) (convert2?@3 addr@1))
4001 (with
4002 {
4003 poly_int64 off0, off1;
4004 tree base0, base1;
4005 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
4006 off0, off1, GENERIC);
4007 }
4008 (if (equal == 1)
4009 (if (minmax == MIN_EXPR)
4010 (if (known_le (off0, off1))
4011 @2
4012 (if (known_gt (off0, off1))
4013 @3))
4014 (if (known_ge (off0, off1))
4015 @2
4016 (if (known_lt (off0, off1))
4017 @3)))))))
4018
4019 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
4020 and the outer convert demotes the expression back to x's type. */
4021 (for minmax (min max)
4022 (simplify
4023 (convert (minmax@0 (convert @1) INTEGER_CST@2))
4024 (if (INTEGRAL_TYPE_P (type)
4025 && types_match (@1, type) && int_fits_type_p (@2, type)
4026 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
4027 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
4028 (minmax @1 (convert @2)))))
4029
4030 (for minmax (FMIN_ALL FMAX_ALL)
4031 /* If either argument is NaN and other one is not sNaN, return the other
4032 one. Avoid the transformation if we get (and honor) a signalling NaN. */
4033 (simplify
4034 (minmax:c @0 REAL_CST@1)
4035 (if (real_isnan (TREE_REAL_CST_PTR (@1))
4036 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling)
4037 && !tree_expr_maybe_signaling_nan_p (@0))
4038 @0)))
4039 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
4040 functions to return the numeric arg if the other one is NaN.
4041 MIN and MAX don't honor that, so only transform if -ffinite-math-only
4042 is set. C99 doesn't require -0.0 to be handled, so we don't have to
4043 worry about it either. */
4044 (if (flag_finite_math_only)
4045 (simplify
4046 (FMIN_ALL @0 @1)
4047 (min @0 @1))
4048 (simplify
4049 (FMAX_ALL @0 @1)
4050 (max @0 @1)))
4051 /* min (-A, -B) -> -max (A, B) */
4052 (for minmax (min max FMIN_ALL FMAX_ALL)
4053 maxmin (max min FMAX_ALL FMIN_ALL)
4054 (simplify
4055 (minmax (negate:s@2 @0) (negate:s@3 @1))
4056 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4057 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4058 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4059 (negate (maxmin @0 @1)))))
4060 /* MIN (~X, ~Y) -> ~MAX (X, Y)
4061 MAX (~X, ~Y) -> ~MIN (X, Y) */
4062 (for minmax (min max)
4063 maxmin (max min)
4064 (simplify
4065 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
4066 (bit_not (maxmin @0 @1)))
4067 /* ~MAX(~X, Y) --> MIN(X, ~Y) */
4068 /* ~MIN(~X, Y) --> MAX(X, ~Y) */
4069 (simplify
4070 (bit_not (minmax:cs (bit_not @0) @1))
4071 (maxmin @0 (bit_not @1))))
4072
4073 /* MIN (X, Y) == X -> X <= Y */
4074 /* MIN (X, Y) < X -> X > Y */
4075 /* MIN (X, Y) >= X -> X <= Y */
4076 (for minmax (min min min min max max max max)
4077 cmp (eq ne lt ge eq ne gt le )
4078 out (le gt gt le ge lt lt ge )
4079 (simplify
4080 (cmp:c (minmax:c @0 @1) @0)
4081 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4082 (out @0 @1))))
4083 /* MIN (X, 5) == 0 -> X == 0
4084 MIN (X, 5) == 7 -> false */
4085 (for cmp (eq ne)
4086 (simplify
4087 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
4088 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
4089 TYPE_SIGN (TREE_TYPE (@0))))
4090 { constant_boolean_node (cmp == NE_EXPR, type); }
4091 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
4092 TYPE_SIGN (TREE_TYPE (@0))))
4093 (cmp @0 @2)))))
4094 (for cmp (eq ne)
4095 (simplify
4096 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
4097 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
4098 TYPE_SIGN (TREE_TYPE (@0))))
4099 { constant_boolean_node (cmp == NE_EXPR, type); }
4100 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
4101 TYPE_SIGN (TREE_TYPE (@0))))
4102 (cmp @0 @2)))))
4103
4104 /* X <= MAX(X, Y) -> true
4105 X > MAX(X, Y) -> false
4106 X >= MIN(X, Y) -> true
4107 X < MIN(X, Y) -> false */
4108 (for minmax (min min max max )
4109 cmp (ge lt le gt )
4110 (simplify
4111 (cmp:c @0 (minmax:c @0 @1))
4112 { constant_boolean_node (cmp == GE_EXPR || cmp == LE_EXPR, type); } ))
4113
4114 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
4115 (for minmax (min min max max min min max max )
4116 cmp (lt le gt ge gt ge lt le )
4117 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
4118 (simplify
4119 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
4120 (comb (cmp @0 @2) (cmp @1 @2))))
4121
4122 /* Undo fancy ways of writing max/min or other ?: expressions, like
4123 a - ((a - b) & -(a < b)) and a - (a - b) * (a < b) into (a < b) ? b : a.
4124 People normally use ?: and that is what we actually try to optimize. */
4125 /* Transform A + (B-A)*cmp into cmp ? B : A. */
4126 (simplify
4127 (plus:c @0 (mult:c (minus @1 @0) zero_one_valued_p@2))
4128 (if (INTEGRAL_TYPE_P (type)
4129 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
4130 (cond (convert:boolean_type_node @2) @1 @0)))
4131 /* Transform A - (A-B)*cmp into cmp ? B : A. */
4132 (simplify
4133 (minus @0 (mult:c (minus @0 @1) zero_one_valued_p@2))
4134 (if (INTEGRAL_TYPE_P (type)
4135 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
4136 (cond (convert:boolean_type_node @2) @1 @0)))
4137 /* Transform A ^ (A^B)*cmp into cmp ? B : A. */
4138 (simplify
4139 (bit_xor:c @0 (mult:c (bit_xor:c @0 @1) zero_one_valued_p@2))
4140 (if (INTEGRAL_TYPE_P (type)
4141 && (GIMPLE || !TREE_SIDE_EFFECTS (@1)))
4142 (cond (convert:boolean_type_node @2) @1 @0)))
4143
4144 /* (x <= 0 ? -x : 0) -> max(-x, 0). */
4145 (simplify
4146 (cond (le @0 integer_zerop@1) (negate@2 @0) integer_zerop@1)
4147 (max @2 @1))
4148
4149 /* (zero_one == 0) ? y : z <op> y -> ((typeof(y))zero_one * z) <op> y */
4150 (for op (bit_xor bit_ior plus)
4151 (simplify
4152 (cond (eq zero_one_valued_p@0
4153 integer_zerop)
4154 @1
4155 (op:c @2 @1))
4156 (if (INTEGRAL_TYPE_P (type)
4157 && TYPE_PRECISION (type) > 1
4158 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
4159 (op (mult (convert:type @0) @2) @1))))
4160
4161 /* (zero_one != 0) ? z <op> y : y -> ((typeof(y))zero_one * z) <op> y */
4162 (for op (bit_xor bit_ior plus)
4163 (simplify
4164 (cond (ne zero_one_valued_p@0
4165 integer_zerop)
4166 (op:c @2 @1)
4167 @1)
4168 (if (INTEGRAL_TYPE_P (type)
4169 && TYPE_PRECISION (type) > 1
4170 && (INTEGRAL_TYPE_P (TREE_TYPE (@0))))
4171 (op (mult (convert:type @0) @2) @1))))
4172
4173 /* ?: Value replacement. */
4174 /* a == 0 ? b : b + a -> b + a */
4175 (for op (plus bit_ior bit_xor)
4176 (simplify
4177 (cond (eq @0 integer_zerop) @1 (op:c@2 @1 @0))
4178 @2))
4179 /* a == 0 ? b : b - a -> b - a */
4180 /* a == 0 ? b : b ptr+ a -> b ptr+ a */
4181 /* a == 0 ? b : b shift/rotate a -> b shift/rotate a */
4182 (for op (lrotate rrotate lshift rshift minus pointer_plus)
4183 (simplify
4184 (cond (eq @0 integer_zerop) @1 (op@2 @1 @0))
4185 @2))
4186
4187 /* a == 1 ? b : b / a -> b / a */
4188 (for op (trunc_div ceil_div floor_div round_div exact_div)
4189 (simplify
4190 (cond (eq @0 integer_onep) @1 (op@2 @1 @0))
4191 @2))
4192
4193 /* a == 1 ? b : a * b -> a * b */
4194 (for op (mult)
4195 (simplify
4196 (cond (eq @0 integer_onep) @1 (op:c@2 @1 @0))
4197 @2))
4198
4199 /* a == -1 ? b : a & b -> a & b */
4200 (for op (bit_and)
4201 (simplify
4202 (cond (eq @0 integer_all_onesp) @1 (op:c@2 @1 @0))
4203 @2))
4204
4205 /* Simplifications of shift and rotates. */
4206
4207 (for rotate (lrotate rrotate)
4208 (simplify
4209 (rotate integer_all_onesp@0 @1)
4210 @0))
4211
4212 /* Optimize -1 >> x for arithmetic right shifts. */
4213 (simplify
4214 (rshift integer_all_onesp@0 @1)
4215 (if (!TYPE_UNSIGNED (type))
4216 @0))
4217
4218 /* Optimize (x >> c) << c into x & (-1<<c). */
4219 (simplify
4220 (lshift (nop_convert? (rshift @0 INTEGER_CST@1)) @1)
4221 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
4222 /* It doesn't matter if the right shift is arithmetic or logical. */
4223 (bit_and (view_convert @0) (lshift { build_minus_one_cst (type); } @1))))
4224
4225 (simplify
4226 (lshift (convert (convert@2 (rshift @0 INTEGER_CST@1))) @1)
4227 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type))
4228 /* Allow intermediate conversion to integral type with whatever sign, as
4229 long as the low TYPE_PRECISION (type)
4230 - TYPE_PRECISION (TREE_TYPE (@2)) bits are preserved. */
4231 && INTEGRAL_TYPE_P (type)
4232 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4233 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4234 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
4235 && (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (type)
4236 || wi::geu_p (wi::to_wide (@1),
4237 TYPE_PRECISION (type)
4238 - TYPE_PRECISION (TREE_TYPE (@2)))))
4239 (bit_and (convert @0) (lshift { build_minus_one_cst (type); } @1))))
4240
4241 /* For (x << c) >> c, optimize into x & ((unsigned)-1 >> c) for
4242 unsigned x OR truncate into the precision(type) - c lowest bits
4243 of signed x (if they have mode precision or a precision of 1). */
4244 (simplify
4245 (rshift (nop_convert? (lshift @0 INTEGER_CST@1)) @@1)
4246 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
4247 (if (TYPE_UNSIGNED (type))
4248 (bit_and (convert @0) (rshift { build_minus_one_cst (type); } @1))
4249 (if (INTEGRAL_TYPE_P (type))
4250 (with {
4251 int width = element_precision (type) - tree_to_uhwi (@1);
4252 tree stype = NULL_TREE;
4253 if (width <= MAX_FIXED_MODE_SIZE)
4254 stype = build_nonstandard_integer_type (width, 0);
4255 }
4256 (if (stype && (width == 1 || type_has_mode_precision_p (stype)))
4257 (convert (convert:stype @0))))))))
4258
4259 /* Optimize x >> x into 0 */
4260 (simplify
4261 (rshift @0 @0)
4262 { build_zero_cst (type); })
4263
4264 (for shiftrotate (lrotate rrotate lshift rshift)
4265 (simplify
4266 (shiftrotate @0 integer_zerop)
4267 (non_lvalue @0))
4268 (simplify
4269 (shiftrotate integer_zerop@0 @1)
4270 @0)
4271 /* Prefer vector1 << scalar to vector1 << vector2
4272 if vector2 is uniform. */
4273 (for vec (VECTOR_CST CONSTRUCTOR)
4274 (simplify
4275 (shiftrotate @0 vec@1)
4276 (with { tree tem = uniform_vector_p (@1); }
4277 (if (tem)
4278 (shiftrotate @0 { tem; }))))))
4279
4280 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
4281 Y is 0. Similarly for X >> Y. */
4282 #if GIMPLE
4283 (for shift (lshift rshift)
4284 (simplify
4285 (shift @0 SSA_NAME@1)
4286 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4287 (with {
4288 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
4289 int prec = TYPE_PRECISION (TREE_TYPE (@1));
4290 }
4291 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
4292 @0)))))
4293 #endif
4294
4295 /* Rewrite an LROTATE_EXPR by a constant into an
4296 RROTATE_EXPR by a new constant. */
4297 (simplify
4298 (lrotate @0 INTEGER_CST@1)
4299 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
4300 build_int_cst (TREE_TYPE (@1),
4301 element_precision (type)), @1); }))
4302
4303 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
4304 (for op (lrotate rrotate rshift lshift)
4305 (simplify
4306 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
4307 (with { unsigned int prec = element_precision (type); }
4308 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
4309 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
4310 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
4311 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
4312 (with { unsigned int low = (tree_to_uhwi (@1)
4313 + tree_to_uhwi (@2)); }
4314 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
4315 being well defined. */
4316 (if (low >= prec)
4317 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
4318 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
4319 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
4320 { build_zero_cst (type); }
4321 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
4322 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
4323
4324
4325 /* Simplify (CST << x) & 1 to 0 if CST is even or to x == 0 if it is odd. */
4326 (simplify
4327 (bit_and (lshift INTEGER_CST@1 @0) integer_onep)
4328 (if ((wi::to_wide (@1) & 1) != 0)
4329 (convert (eq:boolean_type_node @0 { build_zero_cst (TREE_TYPE (@0)); }))
4330 { build_zero_cst (type); }))
4331
4332 /* Simplify ((C << x) & D) != 0 where C and D are power of two constants,
4333 either to false if D is smaller (unsigned comparison) than C, or to
4334 x == log2 (D) - log2 (C). Similarly for right shifts.
4335 Note for `(1 >> x)`, the & 1 has been removed so matching that seperately. */
4336 (for cmp (ne eq)
4337 icmp (eq ne)
4338 (simplify
4339 (cmp (bit_and (lshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
4340 (with { int c1 = wi::clz (wi::to_wide (@1));
4341 int c2 = wi::clz (wi::to_wide (@2)); }
4342 (if (c1 < c2)
4343 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
4344 (icmp @0 { build_int_cst (TREE_TYPE (@0), c1 - c2); }))))
4345 (simplify
4346 (cmp (bit_and (rshift integer_pow2p@1 @0) integer_pow2p@2) integer_zerop)
4347 (if (tree_int_cst_sgn (@1) > 0)
4348 (with { int c1 = wi::clz (wi::to_wide (@1));
4349 int c2 = wi::clz (wi::to_wide (@2)); }
4350 (if (c1 > c2)
4351 { constant_boolean_node (cmp == NE_EXPR ? false : true, type); }
4352 (icmp @0 { build_int_cst (TREE_TYPE (@0), c2 - c1); })))))
4353 /* `(1 >> X) != 0` -> `X == 0` */
4354 /* `(1 >> X) == 0` -> `X != 0` */
4355 (simplify
4356 (cmp (rshift integer_onep@1 @0) integer_zerop)
4357 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4358 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); }))))
4359
4360 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
4361 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
4362 if CST2 != 0. */
4363 (for cmp (ne eq)
4364 (simplify
4365 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
4366 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
4367 (if (cand < 0
4368 || (!integer_zerop (@2)
4369 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
4370 { constant_boolean_node (cmp == NE_EXPR, type); }
4371 (if (!integer_zerop (@2)
4372 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
4373 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
4374
4375 /* Fold ((X << C1) & C2) cmp C3 into (X & (C2 >> C1)) cmp (C3 >> C1)
4376 ((X >> C1) & C2) cmp C3 into (X & (C2 << C1)) cmp (C3 << C1). */
4377 (for cmp (ne eq)
4378 (simplify
4379 (cmp (bit_and:s (lshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
4380 (if (tree_fits_shwi_p (@1)
4381 && tree_to_shwi (@1) > 0
4382 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
4383 (if (tree_to_shwi (@1) > wi::ctz (wi::to_wide (@3)))
4384 { constant_boolean_node (cmp == NE_EXPR, type); }
4385 (with { wide_int c1 = wi::to_wide (@1);
4386 wide_int c2 = wi::lrshift (wi::to_wide (@2), c1);
4387 wide_int c3 = wi::lrshift (wi::to_wide (@3), c1); }
4388 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0), c2); })
4389 { wide_int_to_tree (TREE_TYPE (@0), c3); })))))
4390 (simplify
4391 (cmp (bit_and:s (rshift:s @0 INTEGER_CST@1) INTEGER_CST@2) INTEGER_CST@3)
4392 (if (tree_fits_shwi_p (@1)
4393 && tree_to_shwi (@1) > 0
4394 && tree_to_shwi (@1) < TYPE_PRECISION (TREE_TYPE (@0)))
4395 (with { tree t0 = TREE_TYPE (@0);
4396 unsigned int prec = TYPE_PRECISION (t0);
4397 wide_int c1 = wi::to_wide (@1);
4398 wide_int c2 = wi::to_wide (@2);
4399 wide_int c3 = wi::to_wide (@3);
4400 wide_int sb = wi::set_bit_in_zero (prec - 1, prec); }
4401 (if ((c2 & c3) != c3)
4402 { constant_boolean_node (cmp == NE_EXPR, type); }
4403 (if (TYPE_UNSIGNED (t0))
4404 (if ((c3 & wi::arshift (sb, c1 - 1)) != 0)
4405 { constant_boolean_node (cmp == NE_EXPR, type); }
4406 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
4407 { wide_int_to_tree (t0, c3 << c1); }))
4408 (with { wide_int smask = wi::arshift (sb, c1); }
4409 (switch
4410 (if ((c2 & smask) == 0)
4411 (cmp (bit_and @0 { wide_int_to_tree (t0, c2 << c1); })
4412 { wide_int_to_tree (t0, c3 << c1); }))
4413 (if ((c3 & smask) == 0)
4414 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
4415 { wide_int_to_tree (t0, c3 << c1); }))
4416 (if ((c2 & smask) != (c3 & smask))
4417 { constant_boolean_node (cmp == NE_EXPR, type); })
4418 (cmp (bit_and @0 { wide_int_to_tree (t0, (c2 << c1) | sb); })
4419 { wide_int_to_tree (t0, (c3 << c1) | sb); })))))))))
4420
4421 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
4422 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
4423 if the new mask might be further optimized. */
4424 (for shift (lshift rshift)
4425 (simplify
4426 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
4427 INTEGER_CST@2)
4428 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
4429 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
4430 && tree_fits_uhwi_p (@1)
4431 && tree_to_uhwi (@1) > 0
4432 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
4433 (with
4434 {
4435 unsigned int shiftc = tree_to_uhwi (@1);
4436 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
4437 unsigned HOST_WIDE_INT newmask, zerobits = 0;
4438 tree shift_type = TREE_TYPE (@3);
4439 unsigned int prec;
4440
4441 if (shift == LSHIFT_EXPR)
4442 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
4443 else if (shift == RSHIFT_EXPR
4444 && type_has_mode_precision_p (shift_type))
4445 {
4446 prec = TYPE_PRECISION (TREE_TYPE (@3));
4447 tree arg00 = @0;
4448 /* See if more bits can be proven as zero because of
4449 zero extension. */
4450 if (@3 != @0
4451 && TYPE_UNSIGNED (TREE_TYPE (@0)))
4452 {
4453 tree inner_type = TREE_TYPE (@0);
4454 if (type_has_mode_precision_p (inner_type)
4455 && TYPE_PRECISION (inner_type) < prec)
4456 {
4457 prec = TYPE_PRECISION (inner_type);
4458 /* See if we can shorten the right shift. */
4459 if (shiftc < prec)
4460 shift_type = inner_type;
4461 /* Otherwise X >> C1 is all zeros, so we'll optimize
4462 it into (X, 0) later on by making sure zerobits
4463 is all ones. */
4464 }
4465 }
4466 zerobits = HOST_WIDE_INT_M1U;
4467 if (shiftc < prec)
4468 {
4469 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
4470 zerobits <<= prec - shiftc;
4471 }
4472 /* For arithmetic shift if sign bit could be set, zerobits
4473 can contain actually sign bits, so no transformation is
4474 possible, unless MASK masks them all away. In that
4475 case the shift needs to be converted into logical shift. */
4476 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
4477 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
4478 {
4479 if ((mask & zerobits) == 0)
4480 shift_type = unsigned_type_for (TREE_TYPE (@3));
4481 else
4482 zerobits = 0;
4483 }
4484 }
4485 }
4486 /* ((X << 16) & 0xff00) is (X, 0). */
4487 (if ((mask & zerobits) == mask)
4488 { build_int_cst (type, 0); }
4489 (with { newmask = mask | zerobits; }
4490 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
4491 (with
4492 {
4493 /* Only do the transformation if NEWMASK is some integer
4494 mode's mask. */
4495 for (prec = BITS_PER_UNIT;
4496 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
4497 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
4498 break;
4499 }
4500 (if (prec < HOST_BITS_PER_WIDE_INT
4501 || newmask == HOST_WIDE_INT_M1U)
4502 (with
4503 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
4504 (if (!tree_int_cst_equal (newmaskt, @2))
4505 (if (shift_type != TREE_TYPE (@3))
4506 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
4507 (bit_and @4 { newmaskt; })))))))))))))
4508
4509 /* ((1 << n) & M) != 0 -> n == log2 (M) */
4510 (for cmp (ne eq)
4511 icmp (eq ne)
4512 (simplify
4513 (cmp
4514 (bit_and
4515 (nop_convert? (lshift integer_onep @0)) integer_pow2p@1) integer_zerop)
4516 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4517 (icmp @0 { wide_int_to_tree (TREE_TYPE (@0),
4518 wi::exact_log2 (wi::to_wide (@1))); }))))
4519
4520 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
4521 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
4522 (for shift (lshift rshift)
4523 (for bit_op (bit_and bit_xor bit_ior)
4524 (simplify
4525 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
4526 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
4527 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
4528 (if (mask)
4529 (bit_op (shift (convert @0) @1) { mask; })))))))
4530
4531 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
4532 (simplify
4533 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
4534 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
4535 && (element_precision (TREE_TYPE (@0))
4536 <= element_precision (TREE_TYPE (@1))
4537 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
4538 (with
4539 { tree shift_type = TREE_TYPE (@0); }
4540 (convert (rshift (convert:shift_type @1) @2)))))
4541
4542 /* ~(~X >>r Y) -> X >>r Y
4543 ~(~X <<r Y) -> X <<r Y */
4544 (for rotate (lrotate rrotate)
4545 (simplify
4546 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
4547 (if ((element_precision (TREE_TYPE (@0))
4548 <= element_precision (TREE_TYPE (@1))
4549 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
4550 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
4551 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
4552 (with
4553 { tree rotate_type = TREE_TYPE (@0); }
4554 (convert (rotate (convert:rotate_type @1) @2))))))
4555
4556 (for cmp (eq ne)
4557 (for rotate (lrotate rrotate)
4558 invrot (rrotate lrotate)
4559 /* (X >>r Y) cmp (Z >>r Y) may simplify to X cmp Y. */
4560 (simplify
4561 (cmp (rotate @1 @0) (rotate @2 @0))
4562 (cmp @1 @2))
4563 /* (X >>r C1) cmp C2 may simplify to X cmp C3. */
4564 (simplify
4565 (cmp (rotate @0 INTEGER_CST@1) INTEGER_CST@2)
4566 (cmp @0 { const_binop (invrot, TREE_TYPE (@0), @2, @1); }))
4567 /* (X >>r Y) cmp C where C is 0 or ~0, may simplify to X cmp C. */
4568 (simplify
4569 (cmp (rotate @0 @1) INTEGER_CST@2)
4570 (if (integer_zerop (@2) || integer_all_onesp (@2))
4571 (cmp @0 @2)))))
4572
4573 /* Narrow a lshift by constant. */
4574 (simplify
4575 (convert (lshift:s@0 @1 INTEGER_CST@2))
4576 (if (INTEGRAL_TYPE_P (type)
4577 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4578 && !integer_zerop (@2)
4579 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))
4580 (if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0))
4581 || wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (type)))
4582 (lshift (convert @1) @2)
4583 (if (wi::ltu_p (wi::to_wide (@2), TYPE_PRECISION (TREE_TYPE (@0))))
4584 { build_zero_cst (type); }))))
4585
4586 /* Simplifications of conversions. */
4587
4588 /* Basic strip-useless-type-conversions / strip_nops. */
4589 (for cvt (convert view_convert float fix_trunc)
4590 (simplify
4591 (cvt @0)
4592 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
4593 || (GENERIC && type == TREE_TYPE (@0)))
4594 @0)))
4595
4596 /* Contract view-conversions. */
4597 (simplify
4598 (view_convert (view_convert @0))
4599 (view_convert @0))
4600
4601 /* For integral conversions with the same precision or pointer
4602 conversions use a NOP_EXPR instead. */
4603 (simplify
4604 (view_convert @0)
4605 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
4606 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4607 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
4608 (convert @0)))
4609
4610 /* Strip inner integral conversions that do not change precision or size, or
4611 zero-extend while keeping the same size (for bool-to-char). */
4612 (simplify
4613 (view_convert (convert@0 @1))
4614 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
4615 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
4616 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
4617 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
4618 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
4619 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
4620 (view_convert @1)))
4621
4622 /* Simplify a view-converted empty or single-element constructor. */
4623 (simplify
4624 (view_convert CONSTRUCTOR@0)
4625 (with
4626 { tree ctor = (TREE_CODE (@0) == SSA_NAME
4627 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0); }
4628 (switch
4629 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4630 { build_zero_cst (type); })
4631 (if (CONSTRUCTOR_NELTS (ctor) == 1
4632 && VECTOR_TYPE_P (TREE_TYPE (ctor))
4633 && operand_equal_p (TYPE_SIZE (type),
4634 TYPE_SIZE (TREE_TYPE
4635 (CONSTRUCTOR_ELT (ctor, 0)->value))))
4636 (view_convert { CONSTRUCTOR_ELT (ctor, 0)->value; })))))
4637
4638 /* Re-association barriers around constants and other re-association
4639 barriers can be removed. */
4640 (simplify
4641 (paren CONSTANT_CLASS_P@0)
4642 @0)
4643 (simplify
4644 (paren (paren@1 @0))
4645 @1)
4646
4647 /* Handle cases of two conversions in a row. */
4648 (for ocvt (convert float fix_trunc)
4649 (for icvt (convert float)
4650 (simplify
4651 (ocvt (icvt@1 @0))
4652 (with
4653 {
4654 tree inside_type = TREE_TYPE (@0);
4655 tree inter_type = TREE_TYPE (@1);
4656 int inside_int = INTEGRAL_TYPE_P (inside_type);
4657 int inside_ptr = POINTER_TYPE_P (inside_type);
4658 int inside_float = FLOAT_TYPE_P (inside_type);
4659 int inside_vec = VECTOR_TYPE_P (inside_type);
4660 unsigned int inside_prec = element_precision (inside_type);
4661 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
4662 int inter_int = INTEGRAL_TYPE_P (inter_type);
4663 int inter_ptr = POINTER_TYPE_P (inter_type);
4664 int inter_float = FLOAT_TYPE_P (inter_type);
4665 int inter_vec = VECTOR_TYPE_P (inter_type);
4666 unsigned int inter_prec = element_precision (inter_type);
4667 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
4668 int final_int = INTEGRAL_TYPE_P (type);
4669 int final_ptr = POINTER_TYPE_P (type);
4670 int final_float = FLOAT_TYPE_P (type);
4671 int final_vec = VECTOR_TYPE_P (type);
4672 unsigned int final_prec = element_precision (type);
4673 int final_unsignedp = TYPE_UNSIGNED (type);
4674 }
4675 (switch
4676 /* In addition to the cases of two conversions in a row
4677 handled below, if we are converting something to its own
4678 type via an object of identical or wider precision, neither
4679 conversion is needed. */
4680 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
4681 || (GENERIC
4682 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
4683 && (((inter_int || inter_ptr) && final_int)
4684 || (inter_float && final_float))
4685 && inter_prec >= final_prec)
4686 (ocvt @0))
4687
4688 /* Likewise, if the intermediate and initial types are either both
4689 float or both integer, we don't need the middle conversion if the
4690 former is wider than the latter and doesn't change the signedness
4691 (for integers). Avoid this if the final type is a pointer since
4692 then we sometimes need the middle conversion. */
4693 (if (((inter_int && inside_int) || (inter_float && inside_float))
4694 && (final_int || final_float)
4695 && inter_prec >= inside_prec
4696 && (inter_float || inter_unsignedp == inside_unsignedp))
4697 (ocvt @0))
4698
4699 /* If we have a sign-extension of a zero-extended value, we can
4700 replace that by a single zero-extension. Likewise if the
4701 final conversion does not change precision we can drop the
4702 intermediate conversion. */
4703 (if (inside_int && inter_int && final_int
4704 && ((inside_prec < inter_prec && inter_prec < final_prec
4705 && inside_unsignedp && !inter_unsignedp)
4706 || final_prec == inter_prec))
4707 (ocvt @0))
4708
4709 /* Two conversions in a row are not needed unless:
4710 - some conversion is floating-point (overstrict for now), or
4711 - some conversion is a vector (overstrict for now), or
4712 - the intermediate type is narrower than both initial and
4713 final, or
4714 - the intermediate type and innermost type differ in signedness,
4715 and the outermost type is wider than the intermediate, or
4716 - the initial type is a pointer type and the precisions of the
4717 intermediate and final types differ, or
4718 - the final type is a pointer type and the precisions of the
4719 initial and intermediate types differ. */
4720 (if (! inside_float && ! inter_float && ! final_float
4721 && ! inside_vec && ! inter_vec && ! final_vec
4722 && (inter_prec >= inside_prec || inter_prec >= final_prec)
4723 && ! (inside_int && inter_int
4724 && inter_unsignedp != inside_unsignedp
4725 && inter_prec < final_prec)
4726 && ((inter_unsignedp && inter_prec > inside_prec)
4727 == (final_unsignedp && final_prec > inter_prec))
4728 && ! (inside_ptr && inter_prec != final_prec)
4729 && ! (final_ptr && inside_prec != inter_prec))
4730 (ocvt @0))
4731
4732 /* `(outer:M)(inter:N) a:O`
4733 can be converted to `(outer:M) a`
4734 if M <= O && N >= O. No matter what signedness of the casts,
4735 as the final is either a truncation from the original or just
4736 a sign change of the type. */
4737 (if (inside_int && inter_int && final_int
4738 && final_prec <= inside_prec
4739 && inter_prec >= inside_prec)
4740 (convert @0))
4741
4742 /* A truncation to an unsigned type (a zero-extension) should be
4743 canonicalized as bitwise and of a mask. */
4744 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
4745 && final_int && inter_int && inside_int
4746 && final_prec == inside_prec
4747 && final_prec > inter_prec
4748 && inter_unsignedp)
4749 (convert (bit_and @0 { wide_int_to_tree
4750 (inside_type,
4751 wi::mask (inter_prec, false,
4752 TYPE_PRECISION (inside_type))); })))
4753
4754 /* If we are converting an integer to a floating-point that can
4755 represent it exactly and back to an integer, we can skip the
4756 floating-point conversion. */
4757 (if (GIMPLE /* PR66211 */
4758 && inside_int && inter_float && final_int &&
4759 (unsigned) significand_size (TYPE_MODE (inter_type))
4760 >= inside_prec - !inside_unsignedp)
4761 (convert @0)))))))
4762
4763 /* (float_type)(integer_type) x -> trunc (x) if the type of x matches
4764 float_type. Only do the transformation if we do not need to preserve
4765 trapping behaviour, so require !flag_trapping_math. */
4766 #if GIMPLE
4767 (simplify
4768 (float (fix_trunc @0))
4769 (if (!flag_trapping_math
4770 && types_match (type, TREE_TYPE (@0))
4771 && direct_internal_fn_supported_p (IFN_TRUNC, type,
4772 OPTIMIZE_FOR_BOTH))
4773 (IFN_TRUNC @0)))
4774 #endif
4775
4776 /* If we have a narrowing conversion to an integral type that is fed by a
4777 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
4778 masks off bits outside the final type (and nothing else). */
4779 (simplify
4780 (convert (bit_and @0 INTEGER_CST@1))
4781 (if (INTEGRAL_TYPE_P (type)
4782 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4783 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
4784 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
4785 TYPE_PRECISION (type)), 0))
4786 (convert @0)))
4787
4788
4789 /* (X /[ex] A) * A -> X. */
4790 (simplify
4791 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
4792 (convert @0))
4793
4794 /* Simplify (A / B) * B + (A % B) -> A. */
4795 (for div (trunc_div ceil_div floor_div round_div)
4796 mod (trunc_mod ceil_mod floor_mod round_mod)
4797 (simplify
4798 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
4799 @0))
4800
4801 /* x / y * y == x -> x % y == 0. */
4802 (simplify
4803 (eq:c (mult:c (trunc_div:s @0 @1) @1) @0)
4804 (if (TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE)
4805 (eq (trunc_mod @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
4806
4807 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
4808 (for op (plus minus)
4809 (simplify
4810 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
4811 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
4812 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
4813 (with
4814 {
4815 wi::overflow_type overflow;
4816 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
4817 TYPE_SIGN (type), &overflow);
4818 }
4819 (if (types_match (type, TREE_TYPE (@2))
4820 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
4821 (op @0 { wide_int_to_tree (type, mul); })
4822 (with { tree utype = unsigned_type_for (type); }
4823 (convert (op (convert:utype @0)
4824 (mult (convert:utype @1) (convert:utype @2))))))))))
4825
4826 /* Canonicalization of binary operations. */
4827
4828 /* Convert X + -C into X - C. */
4829 (simplify
4830 (plus @0 REAL_CST@1)
4831 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
4832 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
4833 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
4834 (minus @0 { tem; })))))
4835
4836 /* Convert x+x into x*2. */
4837 (simplify
4838 (plus @0 @0)
4839 (if (SCALAR_FLOAT_TYPE_P (type))
4840 (mult @0 { build_real (type, dconst2); })
4841 (if (INTEGRAL_TYPE_P (type))
4842 (mult @0 { build_int_cst (type, 2); }))))
4843
4844 /* 0 - X -> -X. */
4845 (simplify
4846 (minus integer_zerop @1)
4847 (negate @1))
4848 (simplify
4849 (pointer_diff integer_zerop @1)
4850 (negate (convert @1)))
4851
4852 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
4853 ARG0 is zero and X + ARG0 reduces to X, since that would mean
4854 (-ARG1 + ARG0) reduces to -ARG1. */
4855 (simplify
4856 (minus real_zerop@0 @1)
4857 (if (fold_real_zero_addition_p (type, @1, @0, 0))
4858 (negate @1)))
4859
4860 /* Transform x * -1 into -x. */
4861 (simplify
4862 (mult @0 integer_minus_onep)
4863 (negate @0))
4864
4865 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
4866 signed overflow for CST != 0 && CST != -1. */
4867 (simplify
4868 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
4869 (if (TREE_CODE (@2) != INTEGER_CST
4870 && single_use (@3)
4871 && !integer_zerop (@1) && !integer_minus_onep (@1))
4872 (mult (mult @0 @2) @1)))
4873
4874 /* True if we can easily extract the real and imaginary parts of a complex
4875 number. */
4876 (match compositional_complex
4877 (convert? (complex @0 @1)))
4878
4879 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
4880 (simplify
4881 (complex (realpart @0) (imagpart @0))
4882 @0)
4883 (simplify
4884 (realpart (complex @0 @1))
4885 @0)
4886 (simplify
4887 (imagpart (complex @0 @1))
4888 @1)
4889
4890 /* Sometimes we only care about half of a complex expression. */
4891 (simplify
4892 (realpart (convert?:s (conj:s @0)))
4893 (convert (realpart @0)))
4894 (simplify
4895 (imagpart (convert?:s (conj:s @0)))
4896 (convert (negate (imagpart @0))))
4897 (for part (realpart imagpart)
4898 (for op (plus minus)
4899 (simplify
4900 (part (convert?:s@2 (op:s @0 @1)))
4901 (convert (op (part @0) (part @1))))))
4902 (simplify
4903 (realpart (convert?:s (CEXPI:s @0)))
4904 (convert (COS @0)))
4905 (simplify
4906 (imagpart (convert?:s (CEXPI:s @0)))
4907 (convert (SIN @0)))
4908
4909 /* conj(conj(x)) -> x */
4910 (simplify
4911 (conj (convert? (conj @0)))
4912 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
4913 (convert @0)))
4914
4915 /* conj({x,y}) -> {x,-y} */
4916 (simplify
4917 (conj (convert?:s (complex:s @0 @1)))
4918 (with { tree itype = TREE_TYPE (type); }
4919 (complex (convert:itype @0) (negate (convert:itype @1)))))
4920
4921 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
4922 (for bswap (BSWAP)
4923 (simplify
4924 (bswap (bswap @0))
4925 @0)
4926 (simplify
4927 (bswap (bit_not (bswap @0)))
4928 (bit_not @0))
4929 (for bitop (bit_xor bit_ior bit_and)
4930 (simplify
4931 (bswap (bitop:c (bswap @0) @1))
4932 (bitop @0 (bswap @1))))
4933 (for cmp (eq ne)
4934 (simplify
4935 (cmp (bswap@2 @0) (bswap @1))
4936 (with { tree ctype = TREE_TYPE (@2); }
4937 (cmp (convert:ctype @0) (convert:ctype @1))))
4938 (simplify
4939 (cmp (bswap @0) INTEGER_CST@1)
4940 (with { tree ctype = TREE_TYPE (@1); }
4941 (cmp (convert:ctype @0) (bswap! @1)))))
4942 /* (bswap(x) >> C1) & C2 can sometimes be simplified to (x >> C3) & C2. */
4943 (simplify
4944 (bit_and (convert1? (rshift@0 (convert2? (bswap@4 @1)) INTEGER_CST@2))
4945 INTEGER_CST@3)
4946 (if (BITS_PER_UNIT == 8
4947 && tree_fits_uhwi_p (@2)
4948 && tree_fits_uhwi_p (@3))
4949 (with
4950 {
4951 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@4));
4952 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@2);
4953 unsigned HOST_WIDE_INT mask = tree_to_uhwi (@3);
4954 unsigned HOST_WIDE_INT lo = bits & 7;
4955 unsigned HOST_WIDE_INT hi = bits - lo;
4956 }
4957 (if (bits < prec
4958 && mask < (256u>>lo)
4959 && bits < TYPE_PRECISION (TREE_TYPE(@0)))
4960 (with { unsigned HOST_WIDE_INT ns = (prec - (hi + 8)) + lo; }
4961 (if (ns == 0)
4962 (bit_and (convert @1) @3)
4963 (with
4964 {
4965 tree utype = unsigned_type_for (TREE_TYPE (@1));
4966 tree nst = build_int_cst (integer_type_node, ns);
4967 }
4968 (bit_and (convert (rshift:utype (convert:utype @1) {nst;})) @3))))))))
4969 /* bswap(x) >> C1 can sometimes be simplified to (T)x >> C2. */
4970 (simplify
4971 (rshift (convert? (bswap@2 @0)) INTEGER_CST@1)
4972 (if (BITS_PER_UNIT == 8
4973 && CHAR_TYPE_SIZE == 8
4974 && tree_fits_uhwi_p (@1))
4975 (with
4976 {
4977 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
4978 unsigned HOST_WIDE_INT bits = tree_to_uhwi (@1);
4979 /* If the bswap was extended before the original shift, this
4980 byte (shift) has the sign of the extension, not the sign of
4981 the original shift. */
4982 tree st = TYPE_PRECISION (type) > prec ? TREE_TYPE (@2) : type;
4983 }
4984 /* Special case: logical right shift of sign-extended bswap.
4985 (unsigned)(short)bswap16(x)>>12 is (unsigned)((short)x<<8)>>12. */
4986 (if (TYPE_PRECISION (type) > prec
4987 && !TYPE_UNSIGNED (TREE_TYPE (@2))
4988 && TYPE_UNSIGNED (type)
4989 && bits < prec && bits + 8 >= prec)
4990 (with { tree nst = build_int_cst (integer_type_node, prec - 8); }
4991 (rshift (convert (lshift:st (convert:st @0) {nst;})) @1))
4992 (if (bits + 8 == prec)
4993 (if (TYPE_UNSIGNED (st))
4994 (convert (convert:unsigned_char_type_node @0))
4995 (convert (convert:signed_char_type_node @0)))
4996 (if (bits < prec && bits + 8 > prec)
4997 (with
4998 {
4999 tree nst = build_int_cst (integer_type_node, bits & 7);
5000 tree bt = TYPE_UNSIGNED (st) ? unsigned_char_type_node
5001 : signed_char_type_node;
5002 }
5003 (convert (rshift:bt (convert:bt @0) {nst;})))))))))
5004 /* bswap(x) & C1 can sometimes be simplified to (x >> C2) & C1. */
5005 (simplify
5006 (bit_and (convert? (bswap@2 @0)) INTEGER_CST@1)
5007 (if (BITS_PER_UNIT == 8
5008 && tree_fits_uhwi_p (@1)
5009 && tree_to_uhwi (@1) < 256)
5010 (with
5011 {
5012 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (TREE_TYPE (@2));
5013 tree utype = unsigned_type_for (TREE_TYPE (@0));
5014 tree nst = build_int_cst (integer_type_node, prec - 8);
5015 }
5016 (bit_and (convert (rshift:utype (convert:utype @0) {nst;})) @1)))))
5017
5018
5019 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
5020
5021 /* Simplify constant conditions.
5022 Only optimize constant conditions when the selected branch
5023 has the same type as the COND_EXPR. This avoids optimizing
5024 away "c ? x : throw", where the throw has a void type.
5025 Note that we cannot throw away the fold-const.cc variant nor
5026 this one as we depend on doing this transform before possibly
5027 A ? B : B -> B triggers and the fold-const.cc one can optimize
5028 0 ? A : B to B even if A has side-effects. Something
5029 genmatch cannot handle. */
5030 (simplify
5031 (cond INTEGER_CST@0 @1 @2)
5032 (if (integer_zerop (@0))
5033 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
5034 @2)
5035 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
5036 @1)))
5037 (simplify
5038 (vec_cond VECTOR_CST@0 @1 @2)
5039 (if (integer_all_onesp (@0))
5040 @1
5041 (if (integer_zerop (@0))
5042 @2)))
5043
5044 /* Sink unary operations to branches, but only if we do fold both. */
5045 (for op (negate bit_not abs absu)
5046 (simplify
5047 (op (vec_cond:s @0 @1 @2))
5048 (vec_cond @0 (op! @1) (op! @2))))
5049
5050 /* Sink unary conversions to branches, but only if we do fold both
5051 and the target's truth type is the same as we already have. */
5052 (simplify
5053 (convert (vec_cond:s @0 @1 @2))
5054 (if (VECTOR_TYPE_P (type)
5055 && types_match (TREE_TYPE (@0), truth_type_for (type)))
5056 (vec_cond @0 (convert! @1) (convert! @2))))
5057
5058 /* Likewise for view_convert of nop_conversions. */
5059 (simplify
5060 (view_convert (vec_cond:s @0 @1 @2))
5061 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@1))
5062 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5063 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
5064 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@1))))
5065 (vec_cond @0 (view_convert! @1) (view_convert! @2))))
5066
5067 /* Sink binary operation to branches, but only if we can fold it. */
5068 (for op (tcc_comparison plus minus mult bit_and bit_ior bit_xor
5069 lshift rshift rdiv trunc_div ceil_div floor_div round_div
5070 trunc_mod ceil_mod floor_mod round_mod min max)
5071 /* (c ? a : b) op (c ? d : e) --> c ? (a op d) : (b op e) */
5072 (simplify
5073 (op (vec_cond:s @0 @1 @2) (vec_cond:s @0 @3 @4))
5074 (vec_cond @0 (op! @1 @3) (op! @2 @4)))
5075
5076 /* (c ? a : b) op d --> c ? (a op d) : (b op d) */
5077 (simplify
5078 (op (vec_cond:s @0 @1 @2) @3)
5079 (vec_cond @0 (op! @1 @3) (op! @2 @3)))
5080 (simplify
5081 (op @3 (vec_cond:s @0 @1 @2))
5082 (vec_cond @0 (op! @3 @1) (op! @3 @2))))
5083
5084 #if GIMPLE
5085 (match (nop_atomic_bit_test_and_p @0 @1 @4)
5086 (bit_and (convert?@4 (ATOMIC_FETCH_OR_XOR_N @2 INTEGER_CST@0 @3))
5087 INTEGER_CST@1)
5088 (with {
5089 int ibit = tree_log2 (@0);
5090 int ibit2 = tree_log2 (@1);
5091 }
5092 (if (ibit == ibit2
5093 && ibit >= 0
5094 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
5095
5096 (match (nop_atomic_bit_test_and_p @0 @1 @3)
5097 (bit_and (convert?@3 (SYNC_FETCH_OR_XOR_N @2 INTEGER_CST@0))
5098 INTEGER_CST@1)
5099 (with {
5100 int ibit = tree_log2 (@0);
5101 int ibit2 = tree_log2 (@1);
5102 }
5103 (if (ibit == ibit2
5104 && ibit >= 0
5105 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
5106
5107 (match (nop_atomic_bit_test_and_p @0 @0 @4)
5108 (bit_and:c
5109 (convert1?@4
5110 (ATOMIC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@5 @6)) @3))
5111 (convert2? @0))
5112 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
5113
5114 (match (nop_atomic_bit_test_and_p @0 @0 @4)
5115 (bit_and:c
5116 (convert1?@4
5117 (SYNC_FETCH_OR_XOR_N @2 (nop_convert? (lshift@0 integer_onep@3 @5))))
5118 (convert2? @0))
5119 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0)))))
5120
5121 (match (nop_atomic_bit_test_and_p @0 @1 @3)
5122 (bit_and@4 (convert?@3 (ATOMIC_FETCH_AND_N @2 INTEGER_CST@0 @5))
5123 INTEGER_CST@1)
5124 (with {
5125 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
5126 TYPE_PRECISION(type)));
5127 int ibit2 = tree_log2 (@1);
5128 }
5129 (if (ibit == ibit2
5130 && ibit >= 0
5131 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
5132
5133 (match (nop_atomic_bit_test_and_p @0 @1 @3)
5134 (bit_and@4
5135 (convert?@3 (SYNC_FETCH_AND_AND_N @2 INTEGER_CST@0))
5136 INTEGER_CST@1)
5137 (with {
5138 int ibit = wi::exact_log2 (wi::zext (wi::bit_not (wi::to_wide (@0)),
5139 TYPE_PRECISION(type)));
5140 int ibit2 = tree_log2 (@1);
5141 }
5142 (if (ibit == ibit2
5143 && ibit >= 0
5144 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))))))
5145
5146 (match (nop_atomic_bit_test_and_p @4 @0 @3)
5147 (bit_and:c
5148 (convert1?@3
5149 (ATOMIC_FETCH_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7))) @5))
5150 (convert2? @0))
5151 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
5152
5153 (match (nop_atomic_bit_test_and_p @4 @0 @3)
5154 (bit_and:c
5155 (convert1?@3
5156 (SYNC_FETCH_AND_AND_N @2 (nop_convert?@4 (bit_not (lshift@0 integer_onep@6 @7)))))
5157 (convert2? @0))
5158 (if (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@4)))))
5159
5160 #endif
5161
5162 /* (v ? w : 0) ? a : b is just (v & w) ? a : b
5163 Currently disabled after pass lvec because ARM understands
5164 VEC_COND_EXPR<v==w,-1,0> but not a plain v==w fed to BIT_IOR_EXPR. */
5165 #if GIMPLE
5166 /* These can only be done in gimple as fold likes to convert:
5167 (CMP) & N into (CMP) ? N : 0
5168 and we try to match the same pattern again and again. */
5169 (simplify
5170 (vec_cond (vec_cond:s @0 @3 integer_zerop) @1 @2)
5171 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
5172 (vec_cond (bit_and @0 @3) @1 @2)))
5173 (simplify
5174 (vec_cond (vec_cond:s @0 integer_all_onesp @3) @1 @2)
5175 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
5176 (vec_cond (bit_ior @0 @3) @1 @2)))
5177 (simplify
5178 (vec_cond (vec_cond:s @0 integer_zerop @3) @1 @2)
5179 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
5180 (vec_cond (bit_ior @0 (bit_not @3)) @2 @1)))
5181 (simplify
5182 (vec_cond (vec_cond:s @0 @3 integer_all_onesp) @1 @2)
5183 (if (optimize_vectors_before_lowering_p () && types_match (@0, @3))
5184 (vec_cond (bit_and @0 (bit_not @3)) @2 @1)))
5185
5186 /* c1 ? c2 ? a : b : b --> (c1 & c2) ? a : b */
5187 (simplify
5188 (vec_cond @0 (vec_cond:s @1 @2 @3) @3)
5189 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
5190 (vec_cond (bit_and @0 @1) @2 @3)))
5191 (simplify
5192 (vec_cond @0 @2 (vec_cond:s @1 @2 @3))
5193 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
5194 (vec_cond (bit_ior @0 @1) @2 @3)))
5195 (simplify
5196 (vec_cond @0 (vec_cond:s @1 @2 @3) @2)
5197 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
5198 (vec_cond (bit_ior (bit_not @0) @1) @2 @3)))
5199 (simplify
5200 (vec_cond @0 @3 (vec_cond:s @1 @2 @3))
5201 (if (optimize_vectors_before_lowering_p () && types_match (@0, @1))
5202 (vec_cond (bit_and (bit_not @0) @1) @2 @3)))
5203 #endif
5204
5205 /* Canonicalize mask ? { 0, ... } : { -1, ...} to ~mask if the mask
5206 types are compatible. */
5207 (simplify
5208 (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2)
5209 (if (VECTOR_BOOLEAN_TYPE_P (type)
5210 && types_match (type, TREE_TYPE (@0)))
5211 (if (integer_zerop (@1) && integer_all_onesp (@2))
5212 (bit_not @0)
5213 (if (integer_all_onesp (@1) && integer_zerop (@2))
5214 @0))))
5215
5216 /* A few simplifications of "a ? CST1 : CST2". */
5217 /* NOTE: Only do this on gimple as the if-chain-to-switch
5218 optimization depends on the gimple to have if statements in it. */
5219 #if GIMPLE
5220 (simplify
5221 (cond @0 INTEGER_CST@1 INTEGER_CST@2)
5222 (switch
5223 (if (integer_zerop (@2))
5224 (switch
5225 /* a ? 1 : 0 -> a if 0 and 1 are integral types. */
5226 (if (integer_onep (@1))
5227 (convert (convert:boolean_type_node @0)))
5228 /* a ? -1 : 0 -> -a. */
5229 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@1))
5230 (if (TYPE_PRECISION (type) == 1)
5231 /* For signed 1-bit precision just cast bool to the type. */
5232 (convert (convert:boolean_type_node @0))
5233 (if (TREE_CODE (type) == BOOLEAN_TYPE)
5234 (with {
5235 tree intt = build_nonstandard_integer_type (TYPE_PRECISION (type),
5236 TYPE_UNSIGNED (type));
5237 }
5238 (convert (negate (convert:intt (convert:boolean_type_node @0)))))
5239 (negate (convert:type (convert:boolean_type_node @0))))))
5240 /* a ? powerof2cst : 0 -> a << (log2(powerof2cst)) */
5241 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@1))
5242 (with {
5243 tree shift = build_int_cst (integer_type_node, tree_log2 (@1));
5244 }
5245 (lshift (convert (convert:boolean_type_node @0)) { shift; })))))
5246 (if (integer_zerop (@1))
5247 (switch
5248 /* a ? 0 : 1 -> !a. */
5249 (if (integer_onep (@2))
5250 (convert (bit_xor (convert:boolean_type_node @0) { boolean_true_node; })))
5251 /* a ? 0 : -1 -> -(!a). */
5252 (if (INTEGRAL_TYPE_P (type) && integer_all_onesp (@2))
5253 (if (TYPE_PRECISION (type) == 1)
5254 /* For signed 1-bit precision just cast bool to the type. */
5255 (convert (bit_xor (convert:boolean_type_node @0) { boolean_true_node; }))
5256 (if (TREE_CODE (type) == BOOLEAN_TYPE)
5257 (with {
5258 tree intt = build_nonstandard_integer_type (TYPE_PRECISION (type),
5259 TYPE_UNSIGNED (type));
5260 }
5261 (convert (negate (convert:intt (bit_xor (convert:boolean_type_node @0)
5262 { boolean_true_node; })))))
5263 (negate (convert:type (bit_xor (convert:boolean_type_node @0)
5264 { boolean_true_node; }))))))
5265 /* a ? 0 : powerof2cst -> (!a) << (log2(powerof2cst)) */
5266 (if (INTEGRAL_TYPE_P (type) && integer_pow2p (@2))
5267 (with {
5268 tree shift = build_int_cst (integer_type_node, tree_log2 (@2));
5269 }
5270 (lshift (convert (bit_xor (convert:boolean_type_node @0)
5271 { boolean_true_node; })) { shift; })))))))
5272
5273 /* (a > 1) ? 0 : (cast)a is the same as (cast)(a == 1)
5274 for unsigned types. */
5275 (simplify
5276 (cond (gt @0 integer_onep@1) integer_zerop (convert? @2))
5277 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5278 && bitwise_equal_p (@0, @2))
5279 (convert (eq @0 @1))
5280 )
5281 )
5282
5283 /* (a <= 1) & (cast)a is the same as (cast)(a == 1)
5284 for unsigned types. */
5285 (simplify
5286 (bit_and:c (convert1? (le @0 integer_onep@1)) (convert2? @2))
5287 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
5288 && bitwise_equal_p (@0, @2))
5289 (convert (eq @0 @1))
5290 )
5291 )
5292
5293 /* `(a == CST) & a` can be simplified to `0` or `(a == CST)` depending
5294 on the first bit of the CST. */
5295 (simplify
5296 (bit_and:c (convert@2 (eq @0 INTEGER_CST@1)) (convert? @0))
5297 (if ((wi::to_wide (@1) & 1) != 0)
5298 @2
5299 { build_zero_cst (type); }))
5300
5301 /* Optimize
5302 # x_5 in range [cst1, cst2] where cst2 = cst1 + 1
5303 x_5 == cstN ? cst4 : cst3
5304 # op is == or != and N is 1 or 2
5305 to r_6 = x_5 + (min (cst3, cst4) - cst1) or
5306 r_6 = (min (cst3, cst4) + cst1) - x_5 depending on op, N and which
5307 of cst3 and cst4 is smaller.
5308 This was originally done by two_value_replacement in phiopt (PR 88676). */
5309 (for eqne (ne eq)
5310 (simplify
5311 (cond (eqne SSA_NAME@0 INTEGER_CST@1) INTEGER_CST@2 INTEGER_CST@3)
5312 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5313 && INTEGRAL_TYPE_P (type)
5314 && (wi::to_widest (@2) + 1 == wi::to_widest (@3)
5315 || wi::to_widest (@2) == wi::to_widest (@3) + 1))
5316 (with {
5317 value_range r;
5318 get_range_query (cfun)->range_of_expr (r, @0);
5319 if (r.undefined_p ())
5320 r.set_varying (TREE_TYPE (@0));
5321
5322 wide_int min = r.lower_bound ();
5323 wide_int max = r.upper_bound ();
5324 }
5325 (if (min + 1 == max
5326 && (wi::to_wide (@1) == min
5327 || wi::to_wide (@1) == max))
5328 (with {
5329 tree arg0 = @2, arg1 = @3;
5330 tree type1;
5331 if ((eqne == EQ_EXPR) ^ (wi::to_wide (@1) == min))
5332 std::swap (arg0, arg1);
5333 if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
5334 type1 = TREE_TYPE (@0);
5335 else
5336 type1 = type;
5337 auto prec = TYPE_PRECISION (type1);
5338 auto unsign = TYPE_UNSIGNED (type1);
5339 if (TREE_CODE (type1) == BOOLEAN_TYPE)
5340 type1 = build_nonstandard_integer_type (prec, unsign);
5341 min = wide_int::from (min, prec,
5342 TYPE_SIGN (TREE_TYPE (@0)));
5343 wide_int a = wide_int::from (wi::to_wide (arg0), prec,
5344 TYPE_SIGN (type));
5345 enum tree_code code;
5346 wi::overflow_type ovf;
5347 if (tree_int_cst_lt (arg0, arg1))
5348 {
5349 code = PLUS_EXPR;
5350 a -= min;
5351 if (!unsign)
5352 {
5353 /* lhs is known to be in range [min, min+1] and we want to add a
5354 to it. Check if that operation can overflow for those 2 values
5355 and if yes, force unsigned type. */
5356 wi::add (min + (wi::neg_p (a) ? 0 : 1), a, SIGNED, &ovf);
5357 if (ovf)
5358 type1 = unsigned_type_for (type1);
5359 }
5360 }
5361 else
5362 {
5363 code = MINUS_EXPR;
5364 a += min;
5365 if (!unsign)
5366 {
5367 /* lhs is known to be in range [min, min+1] and we want to subtract
5368 it from a. Check if that operation can overflow for those 2
5369 values and if yes, force unsigned type. */
5370 wi::sub (a, min + (wi::neg_p (min) ? 0 : 1), SIGNED, &ovf);
5371 if (ovf)
5372 type1 = unsigned_type_for (type1);
5373 }
5374 }
5375 tree arg = wide_int_to_tree (type1, a);
5376 }
5377 (if (code == PLUS_EXPR)
5378 (convert (plus (convert:type1 @0) { arg; }))
5379 (convert (minus { arg; } (convert:type1 @0))))))))))
5380 #endif
5381
5382 (simplify
5383 (convert (cond@0 @1 INTEGER_CST@2 INTEGER_CST@3))
5384 (if (INTEGRAL_TYPE_P (type)
5385 && INTEGRAL_TYPE_P (TREE_TYPE (@0)))
5386 (cond @1 (convert @2) (convert @3))))
5387
5388 /* Simplification moved from fold_cond_expr_with_comparison. It may also
5389 be extended. */
5390 /* This pattern implements two kinds simplification:
5391
5392 Case 1)
5393 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
5394 1) Conversions are type widening from smaller type.
5395 2) Const c1 equals to c2 after canonicalizing comparison.
5396 3) Comparison has tree code LT, LE, GT or GE.
5397 This specific pattern is needed when (cmp (convert x) c) may not
5398 be simplified by comparison patterns because of multiple uses of
5399 x. It also makes sense here because simplifying across multiple
5400 referred var is always benefitial for complicated cases.
5401
5402 Case 2)
5403 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
5404 (for cmp (lt le gt ge eq ne)
5405 (simplify
5406 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
5407 (with
5408 {
5409 tree from_type = TREE_TYPE (@1);
5410 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
5411 enum tree_code code = ERROR_MARK;
5412
5413 if (INTEGRAL_TYPE_P (from_type)
5414 && int_fits_type_p (@2, from_type)
5415 && (types_match (c1_type, from_type)
5416 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
5417 && (TYPE_UNSIGNED (from_type)
5418 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
5419 && (types_match (c2_type, from_type)
5420 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
5421 && (TYPE_UNSIGNED (from_type)
5422 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
5423 {
5424 if (cmp != EQ_EXPR)
5425 code = minmax_from_comparison (cmp, @1, @3, @1, @2);
5426 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
5427 else if (int_fits_type_p (@3, from_type))
5428 code = EQ_EXPR;
5429 }
5430 }
5431 (if (code == MAX_EXPR)
5432 (convert (max @1 (convert @2)))
5433 (if (code == MIN_EXPR)
5434 (convert (min @1 (convert @2)))
5435 (if (code == EQ_EXPR)
5436 (convert (cond (eq @1 (convert @3))
5437 (convert:from_type @3) (convert:from_type @2)))))))))
5438
5439 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
5440
5441 1) OP is PLUS or MINUS.
5442 2) CMP is LT, LE, GT or GE.
5443 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
5444
5445 This pattern also handles special cases like:
5446
5447 A) Operand x is a unsigned to signed type conversion and c1 is
5448 integer zero. In this case,
5449 (signed type)x < 0 <=> x > MAX_VAL(signed type)
5450 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
5451 B) Const c1 may not equal to (C3 op' C2). In this case we also
5452 check equality for (c1+1) and (c1-1) by adjusting comparison
5453 code.
5454
5455 TODO: Though signed type is handled by this pattern, it cannot be
5456 simplified at the moment because C standard requires additional
5457 type promotion. In order to match&simplify it here, the IR needs
5458 to be cleaned up by other optimizers, i.e, VRP. */
5459 (for op (plus minus)
5460 (for cmp (lt le gt ge)
5461 (simplify
5462 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
5463 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
5464 (if (types_match (from_type, to_type)
5465 /* Check if it is special case A). */
5466 || (TYPE_UNSIGNED (from_type)
5467 && !TYPE_UNSIGNED (to_type)
5468 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
5469 && integer_zerop (@1)
5470 && (cmp == LT_EXPR || cmp == GE_EXPR)))
5471 (with
5472 {
5473 wi::overflow_type overflow = wi::OVF_NONE;
5474 enum tree_code code, cmp_code = cmp;
5475 wide_int real_c1;
5476 wide_int c1 = wi::to_wide (@1);
5477 wide_int c2 = wi::to_wide (@2);
5478 wide_int c3 = wi::to_wide (@3);
5479 signop sgn = TYPE_SIGN (from_type);
5480
5481 /* Handle special case A), given x of unsigned type:
5482 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
5483 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
5484 if (!types_match (from_type, to_type))
5485 {
5486 if (cmp_code == LT_EXPR)
5487 cmp_code = GT_EXPR;
5488 if (cmp_code == GE_EXPR)
5489 cmp_code = LE_EXPR;
5490 c1 = wi::max_value (to_type);
5491 }
5492 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
5493 compute (c3 op' c2) and check if it equals to c1 with op' being
5494 the inverted operator of op. Make sure overflow doesn't happen
5495 if it is undefined. */
5496 if (op == PLUS_EXPR)
5497 real_c1 = wi::sub (c3, c2, sgn, &overflow);
5498 else
5499 real_c1 = wi::add (c3, c2, sgn, &overflow);
5500
5501 code = cmp_code;
5502 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
5503 {
5504 /* Check if c1 equals to real_c1. Boundary condition is handled
5505 by adjusting comparison operation if necessary. */
5506 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
5507 && !overflow)
5508 {
5509 /* X <= Y - 1 equals to X < Y. */
5510 if (cmp_code == LE_EXPR)
5511 code = LT_EXPR;
5512 /* X > Y - 1 equals to X >= Y. */
5513 if (cmp_code == GT_EXPR)
5514 code = GE_EXPR;
5515 }
5516 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
5517 && !overflow)
5518 {
5519 /* X < Y + 1 equals to X <= Y. */
5520 if (cmp_code == LT_EXPR)
5521 code = LE_EXPR;
5522 /* X >= Y + 1 equals to X > Y. */
5523 if (cmp_code == GE_EXPR)
5524 code = GT_EXPR;
5525 }
5526 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
5527 {
5528 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
5529 code = MIN_EXPR;
5530 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
5531 code = MAX_EXPR;
5532 }
5533 }
5534 }
5535 (if (code == MAX_EXPR)
5536 (op (max @X { wide_int_to_tree (from_type, real_c1); })
5537 { wide_int_to_tree (from_type, c2); })
5538 (if (code == MIN_EXPR)
5539 (op (min @X { wide_int_to_tree (from_type, real_c1); })
5540 { wide_int_to_tree (from_type, c2); })))))))))
5541
5542 #if GIMPLE
5543 /* A >= B ? A : B -> max (A, B) and friends. The code is still
5544 in fold_cond_expr_with_comparison for GENERIC folding with
5545 some extra constraints. */
5546 (for cmp (eq ne le lt unle unlt ge gt unge ungt uneq ltgt)
5547 (simplify
5548 (cond (cmp:c (nop_convert1?@c0 @0) (nop_convert2?@c1 @1))
5549 (convert3? @0) (convert4? @1))
5550 (if (!HONOR_SIGNED_ZEROS (type)
5551 && (/* Allow widening conversions of the compare operands as data. */
5552 (INTEGRAL_TYPE_P (type)
5553 && types_match (TREE_TYPE (@c0), TREE_TYPE (@0))
5554 && types_match (TREE_TYPE (@c1), TREE_TYPE (@1))
5555 && TYPE_PRECISION (TREE_TYPE (@0)) <= TYPE_PRECISION (type)
5556 && TYPE_PRECISION (TREE_TYPE (@1)) <= TYPE_PRECISION (type))
5557 /* Or sign conversions for the comparison. */
5558 || (types_match (type, TREE_TYPE (@0))
5559 && types_match (type, TREE_TYPE (@1)))))
5560 (switch
5561 (if (cmp == EQ_EXPR)
5562 (if (VECTOR_TYPE_P (type))
5563 (view_convert @c1)
5564 (convert @c1)))
5565 (if (cmp == NE_EXPR)
5566 (if (VECTOR_TYPE_P (type))
5567 (view_convert @c0)
5568 (convert @c0)))
5569 (if (cmp == LE_EXPR || cmp == UNLE_EXPR || cmp == LT_EXPR || cmp == UNLT_EXPR)
5570 (if (!HONOR_NANS (type))
5571 (if (VECTOR_TYPE_P (type))
5572 (view_convert (min @c0 @c1))
5573 (convert (min @c0 @c1)))))
5574 (if (cmp == GE_EXPR || cmp == UNGE_EXPR || cmp == GT_EXPR || cmp == UNGT_EXPR)
5575 (if (!HONOR_NANS (type))
5576 (if (VECTOR_TYPE_P (type))
5577 (view_convert (max @c0 @c1))
5578 (convert (max @c0 @c1)))))
5579 (if (cmp == UNEQ_EXPR)
5580 (if (!HONOR_NANS (type))
5581 (if (VECTOR_TYPE_P (type))
5582 (view_convert @c1)
5583 (convert @c1))))
5584 (if (cmp == LTGT_EXPR)
5585 (if (!HONOR_NANS (type))
5586 (if (VECTOR_TYPE_P (type))
5587 (view_convert @c0)
5588 (convert @c0))))))))
5589 #endif
5590
5591 (for cnd (cond vec_cond)
5592 /* (a != b) ? (a - b) : 0 -> (a - b) */
5593 (simplify
5594 (cnd (ne:c @0 @1) (minus@2 @0 @1) integer_zerop)
5595 @2)
5596 /* (a != b) ? (a ^ b) : 0 -> (a ^ b) */
5597 (simplify
5598 (cnd (ne:c @0 @1) (bit_xor:c@2 @0 @1) integer_zerop)
5599 @2)
5600 /* (a != b) ? (a & b) : a -> (a & b) */
5601 /* (a != b) ? (a | b) : a -> (a | b) */
5602 /* (a != b) ? min(a,b) : a -> min(a,b) */
5603 /* (a != b) ? max(a,b) : a -> max(a,b) */
5604 (for op (bit_and bit_ior min max)
5605 (simplify
5606 (cnd (ne:c @0 @1) (op:c@2 @0 @1) @0)
5607 @2))
5608 /* (a != b) ? (a * b) : (a * a) -> (a * b) */
5609 /* (a != b) ? (a + b) : (a + a) -> (a + b) */
5610 (for op (mult plus)
5611 (simplify
5612 (cnd (ne:c @0 @1) (op@2 @0 @1) (op @0 @0))
5613 (if (ANY_INTEGRAL_TYPE_P (type))
5614 @2)))
5615 /* (a != b) ? (a + b) : (2 * a) -> (a + b) */
5616 (simplify
5617 (cnd (ne:c @0 @1) (plus@2 @0 @1) (mult @0 uniform_integer_cst_p@3))
5618 (if (wi::to_wide (uniform_integer_cst_p (@3)) == 2)
5619 @2))
5620 )
5621
5622 /* These was part of minmax phiopt. */
5623 /* Optimize (a CMP b) ? minmax<a, c> : minmax<b, c>
5624 to minmax<min/max<a, b>, c> */
5625 (for minmax (min max)
5626 (for cmp (lt le gt ge ne)
5627 (simplify
5628 (cond (cmp:c @1 @3) (minmax:c @1 @4) (minmax:c @2 @4))
5629 (with
5630 {
5631 tree_code code = minmax_from_comparison (cmp, @1, @2, @1, @3);
5632 }
5633 (if (code == MIN_EXPR)
5634 (minmax (min @1 @2) @4)
5635 (if (code == MAX_EXPR)
5636 (minmax (max @1 @2) @4)))))))
5637
5638 /* Optimize (a CMP CST1) ? max<a,CST2> : a */
5639 (for cmp (gt ge lt le)
5640 minmax (min min max max)
5641 (simplify
5642 (cond (cmp:c @0 @1) (minmax:c@2 @0 @3) @4)
5643 (with
5644 {
5645 tree_code code = minmax_from_comparison (cmp, @0, @1, @0, @4);
5646 }
5647 (if ((cmp == LT_EXPR || cmp == LE_EXPR)
5648 && code == MIN_EXPR
5649 && integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node, @3, @4)))
5650 (min @2 @4)
5651 (if ((cmp == GT_EXPR || cmp == GE_EXPR)
5652 && code == MAX_EXPR
5653 && integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node, @3, @4)))
5654 (max @2 @4))))))
5655
5656 #if GIMPLE
5657 /* These patterns should be after min/max detection as simplifications
5658 of `(type)(zero_one ==/!= 0)` to `(type)(zero_one)`
5659 and `(type)(zero_one^1)` are not done yet. See PR 110637.
5660 Even without those, reaching min/max/and/ior faster is better. */
5661 (simplify
5662 (cond @0 zero_one_valued_p@1 zero_one_valued_p@2)
5663 (switch
5664 /* bool0 ? bool1 : 0 -> bool0 & bool1 */
5665 (if (integer_zerop (@2))
5666 (bit_and (convert @0) @1))
5667 /* bool0 ? 0 : bool2 -> (bool0^1) & bool2 */
5668 (if (integer_zerop (@1))
5669 (bit_and (bit_xor (convert @0) { build_one_cst (type); } ) @2))
5670 /* bool0 ? 1 : bool2 -> bool0 | bool2 */
5671 (if (integer_onep (@1))
5672 (bit_ior (convert @0) @2))
5673 /* bool0 ? bool1 : 1 -> (bool0^1) | bool1 */
5674 (if (integer_onep (@2))
5675 (bit_ior (bit_xor (convert @0) @2) @1))
5676 )
5677 )
5678 #endif
5679
5680 /* X != C1 ? -X : C2 simplifies to -X when -C1 == C2. */
5681 (simplify
5682 (cond (ne @0 INTEGER_CST@1) (negate@3 @0) INTEGER_CST@2)
5683 (if (!TYPE_SATURATING (type)
5684 && (TYPE_OVERFLOW_WRAPS (type)
5685 || !wi::only_sign_bit_p (wi::to_wide (@1)))
5686 && wi::eq_p (wi::neg (wi::to_wide (@1)), wi::to_wide (@2)))
5687 @3))
5688
5689 /* X != C1 ? ~X : C2 simplifies to ~X when ~C1 == C2. */
5690 (simplify
5691 (cond (ne @0 INTEGER_CST@1) (bit_not@3 @0) INTEGER_CST@2)
5692 (if (wi::eq_p (wi::bit_not (wi::to_wide (@1)), wi::to_wide (@2)))
5693 @3))
5694
5695 /* X != C1 ? abs(X) : C2 simplifies to abs(x) when abs(C1) == C2. */
5696 (for op (abs absu)
5697 (simplify
5698 (cond (ne @0 INTEGER_CST@1) (op@3 @0) INTEGER_CST@2)
5699 (if (wi::abs (wi::to_wide (@1)) == wi::to_wide (@2))
5700 (if (op != ABSU_EXPR && wi::only_sign_bit_p (wi::to_wide (@1)))
5701 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5702 (convert (absu:utype @0)))
5703 @3))))
5704
5705 /* (X + 1) > Y ? -X : 1 simplifies to X >= Y ? -X : 1 when
5706 X is unsigned, as when X + 1 overflows, X is -1, so -X == 1. */
5707 (simplify
5708 (cond (gt (plus @0 integer_onep) @1) (negate @0) integer_onep@2)
5709 (if (TYPE_UNSIGNED (type))
5710 (cond (ge @0 @1) (negate @0) @2)))
5711
5712 (for cnd (cond vec_cond)
5713 /* A ? B : (A ? X : C) -> A ? B : C. */
5714 (simplify
5715 (cnd @0 (cnd @0 @1 @2) @3)
5716 (cnd @0 @1 @3))
5717 (simplify
5718 (cnd @0 @1 (cnd @0 @2 @3))
5719 (cnd @0 @1 @3))
5720 /* A ? B : (!A ? C : X) -> A ? B : C. */
5721 /* ??? This matches embedded conditions open-coded because genmatch
5722 would generate matching code for conditions in separate stmts only.
5723 The following is still important to merge then and else arm cases
5724 from if-conversion. */
5725 (simplify
5726 (cnd @0 @1 (cnd @2 @3 @4))
5727 (if (inverse_conditions_p (@0, @2))
5728 (cnd @0 @1 @3)))
5729 (simplify
5730 (cnd @0 (cnd @1 @2 @3) @4)
5731 (if (inverse_conditions_p (@0, @1))
5732 (cnd @0 @3 @4)))
5733
5734 /* A ? B : B -> B. */
5735 (simplify
5736 (cnd @0 @1 @1)
5737 @1)
5738
5739 /* !A ? B : C -> A ? C : B. */
5740 (simplify
5741 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
5742 (cnd @0 @2 @1)))
5743
5744 /* abs/negative simplifications moved from fold_cond_expr_with_comparison.
5745
5746 None of these transformations work for modes with signed
5747 zeros. If A is +/-0, the first two transformations will
5748 change the sign of the result (from +0 to -0, or vice
5749 versa). The last four will fix the sign of the result,
5750 even though the original expressions could be positive or
5751 negative, depending on the sign of A.
5752
5753 Note that all these transformations are correct if A is
5754 NaN, since the two alternatives (A and -A) are also NaNs. */
5755
5756 (for cnd (cond vec_cond)
5757 /* A == 0 ? A : -A same as -A */
5758 (for cmp (eq uneq)
5759 (simplify
5760 (cnd (cmp @0 zerop) @2 (negate@1 @2))
5761 (if (!HONOR_SIGNED_ZEROS (type)
5762 && bitwise_equal_p (@0, @2))
5763 @1))
5764 (simplify
5765 (cnd (cmp @0 zerop) zerop (negate@1 @2))
5766 (if (!HONOR_SIGNED_ZEROS (type)
5767 && bitwise_equal_p (@0, @2))
5768 @1))
5769 )
5770 /* A != 0 ? A : -A same as A */
5771 (for cmp (ne ltgt)
5772 (simplify
5773 (cnd (cmp @0 zerop) @1 (negate @1))
5774 (if (!HONOR_SIGNED_ZEROS (type)
5775 && bitwise_equal_p (@0, @1))
5776 @1))
5777 (simplify
5778 (cnd (cmp @0 zerop) @1 integer_zerop)
5779 (if (!HONOR_SIGNED_ZEROS (type)
5780 && bitwise_equal_p (@0, @1))
5781 @1))
5782 )
5783 /* A >=/> 0 ? A : -A same as abs (A) */
5784 (for cmp (ge gt)
5785 (simplify
5786 (cnd (cmp @0 zerop) @1 (negate @1))
5787 (if (!HONOR_SIGNED_ZEROS (TREE_TYPE(@0))
5788 && !TYPE_UNSIGNED (TREE_TYPE(@0))
5789 && bitwise_equal_p (@0, @1))
5790 (if (TYPE_UNSIGNED (type))
5791 (absu:type @0)
5792 (abs @0)))))
5793 /* A <=/< 0 ? A : -A same as -abs (A) */
5794 (for cmp (le lt)
5795 (simplify
5796 (cnd (cmp @0 zerop) @1 (negate @1))
5797 (if (!HONOR_SIGNED_ZEROS (TREE_TYPE(@0))
5798 && !TYPE_UNSIGNED (TREE_TYPE(@0))
5799 && bitwise_equal_p (@0, @1))
5800 (if ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
5801 && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5802 || TYPE_UNSIGNED (type))
5803 (with {
5804 tree utype = unsigned_type_for (TREE_TYPE(@0));
5805 }
5806 (convert (negate (absu:utype @0))))
5807 (negate (abs @0)))))
5808 )
5809
5810 /* (A - B) == 0 ? (A - B) : (B - A) same as (B - A) */
5811 (for cmp (eq uneq)
5812 (simplify
5813 (cnd (cmp (minus@0 @1 @2) zerop) @0 (minus@3 @2 @1))
5814 (if (!HONOR_SIGNED_ZEROS (type))
5815 @3))
5816 (simplify
5817 (cnd (cmp (minus@0 @1 @2) integer_zerop) integer_zerop (minus@3 @2 @1))
5818 @3)
5819 )
5820 /* (A - B) != 0 ? (A - B) : (B - A) same as (A - B) */
5821 (for cmp (ne ltgt)
5822 (simplify
5823 (cnd (cmp (minus@0 @1 @2) zerop) @0 (minus @2 @1))
5824 (if (!HONOR_SIGNED_ZEROS (type))
5825 @0))
5826 (simplify
5827 (cnd (cmp (minus@0 @1 @2) integer_zerop) @0 integer_zerop)
5828 @0)
5829 )
5830 /* (A - B) >=/> 0 ? (A - B) : (B - A) same as abs (A - B) */
5831 (for cmp (ge gt)
5832 (simplify
5833 (cnd (cmp (minus@0 @1 @2) zerop) @0 (minus @2 @1))
5834 (if (!HONOR_SIGNED_ZEROS (type)
5835 && !TYPE_UNSIGNED (type))
5836 (abs @0))))
5837 /* (A - B) <=/< 0 ? (A - B) : (B - A) same as -abs (A - B) */
5838 (for cmp (le lt)
5839 (simplify
5840 (cnd (cmp (minus@0 @1 @2) zerop) @0 (minus @2 @1))
5841 (if (!HONOR_SIGNED_ZEROS (type)
5842 && !TYPE_UNSIGNED (type))
5843 (if (ANY_INTEGRAL_TYPE_P (type)
5844 && !TYPE_OVERFLOW_WRAPS (type))
5845 (with {
5846 tree utype = unsigned_type_for (type);
5847 }
5848 (convert (negate (absu:utype @0))))
5849 (negate (abs @0)))))
5850 )
5851 )
5852
5853 /* -(type)!A -> (type)A - 1. */
5854 (simplify
5855 (negate (convert?:s (logical_inverted_value:s @0)))
5856 (if (INTEGRAL_TYPE_P (type)
5857 && TREE_CODE (type) != BOOLEAN_TYPE
5858 && TYPE_PRECISION (type) > 1
5859 && TREE_CODE (@0) == SSA_NAME
5860 && ssa_name_has_boolean_range (@0))
5861 (plus (convert:type @0) { build_all_ones_cst (type); })))
5862
5863 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
5864 return all -1 or all 0 results. */
5865 /* ??? We could instead convert all instances of the vec_cond to negate,
5866 but that isn't necessarily a win on its own. */
5867 (simplify
5868 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
5869 (if (VECTOR_TYPE_P (type)
5870 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5871 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
5872 && (TYPE_MODE (TREE_TYPE (type))
5873 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
5874 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
5875
5876 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
5877 (simplify
5878 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
5879 (if (VECTOR_TYPE_P (type)
5880 && known_eq (TYPE_VECTOR_SUBPARTS (type),
5881 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
5882 && (TYPE_MODE (TREE_TYPE (type))
5883 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
5884 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
5885
5886
5887 /* Simplifications of comparisons. */
5888
5889 /* See if we can reduce the magnitude of a constant involved in a
5890 comparison by changing the comparison code. This is a canonicalization
5891 formerly done by maybe_canonicalize_comparison_1. */
5892 (for cmp (le gt)
5893 acmp (lt ge)
5894 (simplify
5895 (cmp @0 uniform_integer_cst_p@1)
5896 (with { tree cst = uniform_integer_cst_p (@1); }
5897 (if (tree_int_cst_sgn (cst) == -1)
5898 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5899 wide_int_to_tree (TREE_TYPE (cst),
5900 wi::to_wide (cst)
5901 + 1)); })))))
5902 (for cmp (ge lt)
5903 acmp (gt le)
5904 (simplify
5905 (cmp @0 uniform_integer_cst_p@1)
5906 (with { tree cst = uniform_integer_cst_p (@1); }
5907 (if (tree_int_cst_sgn (cst) == 1)
5908 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
5909 wide_int_to_tree (TREE_TYPE (cst),
5910 wi::to_wide (cst) - 1)); })))))
5911
5912 /* We can simplify a logical negation of a comparison to the
5913 inverted comparison. As we cannot compute an expression
5914 operator using invert_tree_comparison we have to simulate
5915 that with expression code iteration. */
5916 (for cmp (tcc_comparison)
5917 icmp (inverted_tcc_comparison)
5918 ncmp (inverted_tcc_comparison_with_nans)
5919 /* Ideally we'd like to combine the following two patterns
5920 and handle some more cases by using
5921 (logical_inverted_value (cmp @0 @1))
5922 here but for that genmatch would need to "inline" that.
5923 For now implement what forward_propagate_comparison did. */
5924 (simplify
5925 (bit_not (cmp @0 @1))
5926 (if (VECTOR_TYPE_P (type)
5927 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
5928 /* Comparison inversion may be impossible for trapping math,
5929 invert_tree_comparison will tell us. But we can't use
5930 a computed operator in the replacement tree thus we have
5931 to play the trick below. */
5932 (with { enum tree_code ic = invert_tree_comparison
5933 (cmp, HONOR_NANS (@0)); }
5934 (if (ic == icmp)
5935 (icmp @0 @1)
5936 (if (ic == ncmp)
5937 (ncmp @0 @1))))))
5938 (simplify
5939 (bit_xor (cmp @0 @1) integer_truep)
5940 (with { enum tree_code ic = invert_tree_comparison
5941 (cmp, HONOR_NANS (@0)); }
5942 (if (ic == icmp)
5943 (icmp @0 @1)
5944 (if (ic == ncmp)
5945 (ncmp @0 @1)))))
5946 /* The following bits are handled by fold_binary_op_with_conditional_arg. */
5947 (simplify
5948 (ne (cmp@2 @0 @1) integer_zerop)
5949 (if (types_match (type, TREE_TYPE (@2)))
5950 (cmp @0 @1)))
5951 (simplify
5952 (eq (cmp@2 @0 @1) integer_truep)
5953 (if (types_match (type, TREE_TYPE (@2)))
5954 (cmp @0 @1)))
5955 (simplify
5956 (ne (cmp@2 @0 @1) integer_truep)
5957 (if (types_match (type, TREE_TYPE (@2)))
5958 (with { enum tree_code ic = invert_tree_comparison
5959 (cmp, HONOR_NANS (@0)); }
5960 (if (ic == icmp)
5961 (icmp @0 @1)
5962 (if (ic == ncmp)
5963 (ncmp @0 @1))))))
5964 (simplify
5965 (eq (cmp@2 @0 @1) integer_zerop)
5966 (if (types_match (type, TREE_TYPE (@2)))
5967 (with { enum tree_code ic = invert_tree_comparison
5968 (cmp, HONOR_NANS (@0)); }
5969 (if (ic == icmp)
5970 (icmp @0 @1)
5971 (if (ic == ncmp)
5972 (ncmp @0 @1)))))))
5973
5974 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
5975 ??? The transformation is valid for the other operators if overflow
5976 is undefined for the type, but performing it here badly interacts
5977 with the transformation in fold_cond_expr_with_comparison which
5978 attempts to synthetize ABS_EXPR. */
5979 (for cmp (eq ne)
5980 (for sub (minus pointer_diff)
5981 (simplify
5982 (cmp (sub@2 @0 @1) integer_zerop)
5983 (if (single_use (@2))
5984 (cmp @0 @1)))))
5985
5986 /* Simplify (x < 0) ^ (y < 0) to (x ^ y) < 0 and
5987 (x >= 0) ^ (y >= 0) to (x ^ y) < 0. */
5988 (for cmp (lt ge)
5989 (simplify
5990 (bit_xor (cmp:s @0 integer_zerop) (cmp:s @1 integer_zerop))
5991 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5992 && !TYPE_UNSIGNED (TREE_TYPE (@0))
5993 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
5994 (lt (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); }))))
5995 /* Simplify (x < 0) ^ (y >= 0) to (x ^ y) >= 0 and
5996 (x >= 0) ^ (y < 0) to (x ^ y) >= 0. */
5997 (simplify
5998 (bit_xor:c (lt:s @0 integer_zerop) (ge:s @1 integer_zerop))
5999 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6000 && !TYPE_UNSIGNED (TREE_TYPE (@0))
6001 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
6002 (ge (bit_xor @0 @1) { build_zero_cst (TREE_TYPE (@0)); })))
6003
6004 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
6005 signed arithmetic case. That form is created by the compiler
6006 often enough for folding it to be of value. One example is in
6007 computing loop trip counts after Operator Strength Reduction. */
6008 (for cmp (simple_comparison)
6009 scmp (swapped_simple_comparison)
6010 (simplify
6011 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
6012 /* Handle unfolded multiplication by zero. */
6013 (if (integer_zerop (@1))
6014 (cmp @1 @2)
6015 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6016 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6017 && single_use (@3))
6018 /* If @1 is negative we swap the sense of the comparison. */
6019 (if (tree_int_cst_sgn (@1) < 0)
6020 (scmp @0 @2)
6021 (cmp @0 @2))))))
6022
6023 /* For integral types with undefined overflow fold
6024 x * C1 == C2 into x == C2 / C1 or false.
6025 If overflow wraps and C1 is odd, simplify to x == C2 / C1 in the ring
6026 Z / 2^n Z. */
6027 (for cmp (eq ne)
6028 (simplify
6029 (cmp (mult @0 INTEGER_CST@1) INTEGER_CST@2)
6030 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6031 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
6032 && wi::to_wide (@1) != 0)
6033 (with { widest_int quot; }
6034 (if (wi::multiple_of_p (wi::to_widest (@2), wi::to_widest (@1),
6035 TYPE_SIGN (TREE_TYPE (@0)), &quot))
6036 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), quot); })
6037 { constant_boolean_node (cmp == NE_EXPR, type); }))
6038 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6039 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
6040 && (wi::bit_and (wi::to_wide (@1), 1) == 1))
6041 (cmp @0
6042 {
6043 tree itype = TREE_TYPE (@0);
6044 int p = TYPE_PRECISION (itype);
6045 wide_int m = wi::one (p + 1) << p;
6046 wide_int a = wide_int::from (wi::to_wide (@1), p + 1, UNSIGNED);
6047 wide_int i = wide_int::from (wi::mod_inv (a, m),
6048 p, TYPE_SIGN (itype));
6049 wide_int_to_tree (itype, wi::mul (i, wi::to_wide (@2)));
6050 })))))
6051
6052 /* Simplify comparison of something with itself. For IEEE
6053 floating-point, we can only do some of these simplifications. */
6054 (for cmp (eq ge le)
6055 (simplify
6056 (cmp @0 @0)
6057 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
6058 || ! tree_expr_maybe_nan_p (@0))
6059 { constant_boolean_node (true, type); }
6060 (if (cmp != EQ_EXPR
6061 /* With -ftrapping-math conversion to EQ loses an exception. */
6062 && (! FLOAT_TYPE_P (TREE_TYPE (@0))
6063 || ! flag_trapping_math))
6064 (eq @0 @0)))))
6065 (for cmp (ne gt lt)
6066 (simplify
6067 (cmp @0 @0)
6068 (if (cmp != NE_EXPR
6069 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
6070 || ! tree_expr_maybe_nan_p (@0))
6071 { constant_boolean_node (false, type); })))
6072 (for cmp (unle unge uneq)
6073 (simplify
6074 (cmp @0 @0)
6075 { constant_boolean_node (true, type); }))
6076 (for cmp (unlt ungt)
6077 (simplify
6078 (cmp @0 @0)
6079 (unordered @0 @0)))
6080 (simplify
6081 (ltgt @0 @0)
6082 (if (!flag_trapping_math || !tree_expr_maybe_nan_p (@0))
6083 { constant_boolean_node (false, type); }))
6084
6085 /* x == ~x -> false */
6086 /* x != ~x -> true */
6087 (for cmp (eq ne)
6088 (simplify
6089 (cmp:c @0 (bit_not @0))
6090 { constant_boolean_node (cmp == NE_EXPR, type); }))
6091
6092 /* Fold ~X op ~Y as Y op X. */
6093 (for cmp (simple_comparison)
6094 (simplify
6095 (cmp (nop_convert1?@4 (bit_not@2 @0)) (nop_convert2? (bit_not@3 @1)))
6096 (if (single_use (@2) && single_use (@3))
6097 (with { tree otype = TREE_TYPE (@4); }
6098 (cmp (convert:otype @1) (convert:otype @0))))))
6099
6100 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
6101 (for cmp (simple_comparison)
6102 scmp (swapped_simple_comparison)
6103 (simplify
6104 (cmp (nop_convert? (bit_not@2 @0)) CONSTANT_CLASS_P@1)
6105 (if (single_use (@2)
6106 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
6107 (with { tree otype = TREE_TYPE (@1); }
6108 (scmp (convert:otype @0) (bit_not @1))))))
6109
6110 (for cmp (simple_comparison)
6111 (simplify
6112 (cmp @0 REAL_CST@1)
6113 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
6114 (switch
6115 /* a CMP (-0) -> a CMP 0 */
6116 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
6117 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
6118 /* (-0) CMP b -> 0 CMP b. */
6119 (if (TREE_CODE (@0) == REAL_CST
6120 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@0)))
6121 (cmp { build_real (TREE_TYPE (@0), dconst0); } @1))
6122 /* x != NaN is always true, other ops are always false. */
6123 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
6124 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
6125 && !tree_expr_signaling_nan_p (@1)
6126 && !tree_expr_maybe_signaling_nan_p (@0))
6127 { constant_boolean_node (cmp == NE_EXPR, type); })
6128 /* NaN != y is always true, other ops are always false. */
6129 (if (TREE_CODE (@0) == REAL_CST
6130 && REAL_VALUE_ISNAN (TREE_REAL_CST (@0))
6131 && (cmp == EQ_EXPR || cmp == NE_EXPR || !flag_trapping_math)
6132 && !tree_expr_signaling_nan_p (@0)
6133 && !tree_expr_signaling_nan_p (@1))
6134 { constant_boolean_node (cmp == NE_EXPR, type); })
6135 /* Fold comparisons against infinity. */
6136 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
6137 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
6138 (with
6139 {
6140 REAL_VALUE_TYPE max;
6141 enum tree_code code = cmp;
6142 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
6143 if (neg)
6144 code = swap_tree_comparison (code);
6145 }
6146 (switch
6147 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
6148 (if (code == GT_EXPR
6149 && !(HONOR_NANS (@0) && flag_trapping_math))
6150 { constant_boolean_node (false, type); })
6151 (if (code == LE_EXPR)
6152 /* x <= +Inf is always true, if we don't care about NaNs. */
6153 (if (! HONOR_NANS (@0))
6154 { constant_boolean_node (true, type); }
6155 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
6156 an "invalid" exception. */
6157 (if (!flag_trapping_math)
6158 (eq @0 @0))))
6159 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
6160 for == this introduces an exception for x a NaN. */
6161 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
6162 || code == GE_EXPR)
6163 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
6164 (if (neg)
6165 (lt @0 { build_real (TREE_TYPE (@0), max); })
6166 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
6167 /* x < +Inf is always equal to x <= DBL_MAX. */
6168 (if (code == LT_EXPR)
6169 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
6170 (if (neg)
6171 (ge @0 { build_real (TREE_TYPE (@0), max); })
6172 (le @0 { build_real (TREE_TYPE (@0), max); }))))
6173 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
6174 an exception for x a NaN so use an unordered comparison. */
6175 (if (code == NE_EXPR)
6176 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
6177 (if (! HONOR_NANS (@0))
6178 (if (neg)
6179 (ge @0 { build_real (TREE_TYPE (@0), max); })
6180 (le @0 { build_real (TREE_TYPE (@0), max); }))
6181 (if (neg)
6182 (unge @0 { build_real (TREE_TYPE (@0), max); })
6183 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
6184
6185 /* If this is a comparison of a real constant with a PLUS_EXPR
6186 or a MINUS_EXPR of a real constant, we can convert it into a
6187 comparison with a revised real constant as long as no overflow
6188 occurs when unsafe_math_optimizations are enabled. */
6189 (if (flag_unsafe_math_optimizations)
6190 (for op (plus minus)
6191 (simplify
6192 (cmp (op @0 REAL_CST@1) REAL_CST@2)
6193 (with
6194 {
6195 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
6196 TREE_TYPE (@1), @2, @1);
6197 }
6198 (if (tem && !TREE_OVERFLOW (tem))
6199 (cmp @0 { tem; }))))))
6200
6201 /* Likewise, we can simplify a comparison of a real constant with
6202 a MINUS_EXPR whose first operand is also a real constant, i.e.
6203 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
6204 floating-point types only if -fassociative-math is set. */
6205 (if (flag_associative_math)
6206 (simplify
6207 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
6208 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
6209 (if (tem && !TREE_OVERFLOW (tem))
6210 (cmp { tem; } @1)))))
6211
6212 /* Fold comparisons against built-in math functions. */
6213 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
6214 (for sq (SQRT)
6215 (simplify
6216 (cmp (sq @0) REAL_CST@1)
6217 (switch
6218 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
6219 (switch
6220 /* sqrt(x) < y is always false, if y is negative. */
6221 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
6222 { constant_boolean_node (false, type); })
6223 /* sqrt(x) > y is always true, if y is negative and we
6224 don't care about NaNs, i.e. negative values of x. */
6225 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
6226 { constant_boolean_node (true, type); })
6227 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6228 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
6229 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
6230 (switch
6231 /* sqrt(x) < 0 is always false. */
6232 (if (cmp == LT_EXPR)
6233 { constant_boolean_node (false, type); })
6234 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
6235 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
6236 { constant_boolean_node (true, type); })
6237 /* sqrt(x) <= 0 -> x == 0. */
6238 (if (cmp == LE_EXPR)
6239 (eq @0 @1))
6240 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
6241 == or !=. In the last case:
6242
6243 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
6244
6245 if x is negative or NaN. Due to -funsafe-math-optimizations,
6246 the results for other x follow from natural arithmetic. */
6247 (cmp @0 @1)))
6248 (if ((cmp == LT_EXPR
6249 || cmp == LE_EXPR
6250 || cmp == GT_EXPR
6251 || cmp == GE_EXPR)
6252 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
6253 /* Give up for -frounding-math. */
6254 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
6255 (with
6256 {
6257 REAL_VALUE_TYPE c2;
6258 enum tree_code ncmp = cmp;
6259 const real_format *fmt
6260 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
6261 real_arithmetic (&c2, MULT_EXPR,
6262 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
6263 real_convert (&c2, fmt, &c2);
6264 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
6265 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
6266 if (!REAL_VALUE_ISINF (c2))
6267 {
6268 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
6269 build_real (TREE_TYPE (@0), c2));
6270 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
6271 ncmp = ERROR_MARK;
6272 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
6273 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
6274 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
6275 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
6276 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
6277 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
6278 else
6279 {
6280 /* With rounding to even, sqrt of up to 3 different values
6281 gives the same normal result, so in some cases c2 needs
6282 to be adjusted. */
6283 REAL_VALUE_TYPE c2alt, tow;
6284 if (cmp == LT_EXPR || cmp == GE_EXPR)
6285 tow = dconst0;
6286 else
6287 tow = dconstinf;
6288 real_nextafter (&c2alt, fmt, &c2, &tow);
6289 real_convert (&c2alt, fmt, &c2alt);
6290 if (REAL_VALUE_ISINF (c2alt))
6291 ncmp = ERROR_MARK;
6292 else
6293 {
6294 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
6295 build_real (TREE_TYPE (@0), c2alt));
6296 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
6297 ncmp = ERROR_MARK;
6298 else if (real_equal (&TREE_REAL_CST (c3),
6299 &TREE_REAL_CST (@1)))
6300 c2 = c2alt;
6301 }
6302 }
6303 }
6304 }
6305 (if (cmp == GT_EXPR || cmp == GE_EXPR)
6306 (if (REAL_VALUE_ISINF (c2))
6307 /* sqrt(x) > y is x == +Inf, when y is very large. */
6308 (if (HONOR_INFINITIES (@0))
6309 (eq @0 { build_real (TREE_TYPE (@0), c2); })
6310 { constant_boolean_node (false, type); })
6311 /* sqrt(x) > c is the same as x > c*c. */
6312 (if (ncmp != ERROR_MARK)
6313 (if (ncmp == GE_EXPR)
6314 (ge @0 { build_real (TREE_TYPE (@0), c2); })
6315 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
6316 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
6317 (if (REAL_VALUE_ISINF (c2))
6318 (switch
6319 /* sqrt(x) < y is always true, when y is a very large
6320 value and we don't care about NaNs or Infinities. */
6321 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
6322 { constant_boolean_node (true, type); })
6323 /* sqrt(x) < y is x != +Inf when y is very large and we
6324 don't care about NaNs. */
6325 (if (! HONOR_NANS (@0))
6326 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
6327 /* sqrt(x) < y is x >= 0 when y is very large and we
6328 don't care about Infinities. */
6329 (if (! HONOR_INFINITIES (@0))
6330 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
6331 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6332 (if (GENERIC)
6333 (truth_andif
6334 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
6335 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
6336 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6337 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
6338 (if (ncmp == LT_EXPR)
6339 (lt @0 { build_real (TREE_TYPE (@0), c2); })
6340 (le @0 { build_real (TREE_TYPE (@0), c2); }))
6341 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6342 (if (ncmp != ERROR_MARK && GENERIC)
6343 (if (ncmp == LT_EXPR)
6344 (truth_andif
6345 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
6346 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
6347 (truth_andif
6348 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
6349 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
6350 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
6351 (simplify
6352 (cmp (sq @0) (sq @1))
6353 (if (! HONOR_NANS (@0))
6354 (cmp @0 @1))))))
6355
6356 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
6357 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
6358 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
6359 (simplify
6360 (cmp (float@0 @1) (float @2))
6361 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
6362 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
6363 (with
6364 {
6365 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
6366 tree type1 = TREE_TYPE (@1);
6367 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
6368 tree type2 = TREE_TYPE (@2);
6369 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
6370 }
6371 (if (fmt.can_represent_integral_type_p (type1)
6372 && fmt.can_represent_integral_type_p (type2))
6373 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
6374 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
6375 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
6376 && type1_signed_p >= type2_signed_p)
6377 (icmp @1 (convert @2))
6378 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
6379 && type1_signed_p <= type2_signed_p)
6380 (icmp (convert:type2 @1) @2)
6381 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
6382 && type1_signed_p == type2_signed_p)
6383 (icmp @1 @2))))))))))
6384
6385 /* Optimize various special cases of (FTYPE) N CMP CST. */
6386 (for cmp (lt le eq ne ge gt)
6387 icmp (le le eq ne ge ge)
6388 (simplify
6389 (cmp (float @0) REAL_CST@1)
6390 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
6391 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
6392 (with
6393 {
6394 tree itype = TREE_TYPE (@0);
6395 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
6396 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
6397 /* Be careful to preserve any potential exceptions due to
6398 NaNs. qNaNs are ok in == or != context.
6399 TODO: relax under -fno-trapping-math or
6400 -fno-signaling-nans. */
6401 bool exception_p
6402 = real_isnan (cst) && (cst->signalling
6403 || (cmp != EQ_EXPR && cmp != NE_EXPR));
6404 }
6405 /* TODO: allow non-fitting itype and SNaNs when
6406 -fno-trapping-math. */
6407 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
6408 (with
6409 {
6410 signop isign = TYPE_SIGN (itype);
6411 REAL_VALUE_TYPE imin, imax;
6412 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
6413 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
6414
6415 REAL_VALUE_TYPE icst;
6416 if (cmp == GT_EXPR || cmp == GE_EXPR)
6417 real_ceil (&icst, fmt, cst);
6418 else if (cmp == LT_EXPR || cmp == LE_EXPR)
6419 real_floor (&icst, fmt, cst);
6420 else
6421 real_trunc (&icst, fmt, cst);
6422
6423 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
6424
6425 bool overflow_p = false;
6426 wide_int icst_val
6427 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
6428 }
6429 (switch
6430 /* Optimize cases when CST is outside of ITYPE's range. */
6431 (if (real_compare (LT_EXPR, cst, &imin))
6432 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
6433 type); })
6434 (if (real_compare (GT_EXPR, cst, &imax))
6435 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
6436 type); })
6437 /* Remove cast if CST is an integer representable by ITYPE. */
6438 (if (cst_int_p)
6439 (cmp @0 { gcc_assert (!overflow_p);
6440 wide_int_to_tree (itype, icst_val); })
6441 )
6442 /* When CST is fractional, optimize
6443 (FTYPE) N == CST -> 0
6444 (FTYPE) N != CST -> 1. */
6445 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
6446 { constant_boolean_node (cmp == NE_EXPR, type); })
6447 /* Otherwise replace with sensible integer constant. */
6448 (with
6449 {
6450 gcc_checking_assert (!overflow_p);
6451 }
6452 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
6453
6454 /* Fold A /[ex] B CMP C to A CMP B * C. */
6455 (for cmp (eq ne)
6456 (simplify
6457 (cmp (exact_div @0 @1) INTEGER_CST@2)
6458 (if (!integer_zerop (@1))
6459 (if (wi::to_wide (@2) == 0)
6460 (cmp @0 @2)
6461 (if (TREE_CODE (@1) == INTEGER_CST)
6462 (with
6463 {
6464 wi::overflow_type ovf;
6465 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
6466 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
6467 }
6468 (if (ovf)
6469 { constant_boolean_node (cmp == NE_EXPR, type); }
6470 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
6471 (for cmp (lt le gt ge)
6472 (simplify
6473 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
6474 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
6475 (with
6476 {
6477 wi::overflow_type ovf;
6478 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
6479 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
6480 }
6481 (if (ovf)
6482 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
6483 TYPE_SIGN (TREE_TYPE (@2)))
6484 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
6485 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
6486
6487 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
6488
6489 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
6490 For large C (more than min/B+2^size), this is also true, with the
6491 multiplication computed modulo 2^size.
6492 For intermediate C, this just tests the sign of A. */
6493 (for cmp (lt le gt ge)
6494 cmp2 (ge ge lt lt)
6495 (simplify
6496 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
6497 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
6498 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
6499 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
6500 (with
6501 {
6502 tree utype = TREE_TYPE (@2);
6503 wide_int denom = wi::to_wide (@1);
6504 wide_int right = wi::to_wide (@2);
6505 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
6506 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
6507 bool small = wi::leu_p (right, smax);
6508 bool large = wi::geu_p (right, smin);
6509 }
6510 (if (small || large)
6511 (cmp (convert:utype @0) (mult @2 (convert @1)))
6512 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
6513
6514 /* Unordered tests if either argument is a NaN. */
6515 (simplify
6516 (bit_ior (unordered @0 @0) (unordered @1 @1))
6517 (if (types_match (@0, @1))
6518 (unordered @0 @1)))
6519 (simplify
6520 (bit_and (ordered @0 @0) (ordered @1 @1))
6521 (if (types_match (@0, @1))
6522 (ordered @0 @1)))
6523 (simplify
6524 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
6525 @2)
6526 (simplify
6527 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
6528 @2)
6529
6530 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
6531 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
6532
6533 Note that comparisons
6534 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
6535 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
6536 will be canonicalized to above so there's no need to
6537 consider them here.
6538 */
6539
6540 (for cmp (le gt)
6541 eqcmp (eq ne)
6542 (simplify
6543 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
6544 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
6545 (with
6546 {
6547 tree ty = TREE_TYPE (@0);
6548 unsigned prec = TYPE_PRECISION (ty);
6549 wide_int mask = wi::to_wide (@2, prec);
6550 wide_int rhs = wi::to_wide (@3, prec);
6551 signop sgn = TYPE_SIGN (ty);
6552 }
6553 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
6554 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
6555 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
6556 { build_zero_cst (ty); }))))))
6557
6558 /* -A CMP -B -> B CMP A. */
6559 (for cmp (tcc_comparison)
6560 scmp (swapped_tcc_comparison)
6561 (simplify
6562 (cmp (negate @0) (negate @1))
6563 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
6564 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6565 && (cmp == EQ_EXPR
6566 || cmp == NE_EXPR
6567 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))))
6568 (scmp @0 @1)))
6569 (simplify
6570 (cmp (negate @0) CONSTANT_CLASS_P@1)
6571 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
6572 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6573 && (cmp == EQ_EXPR
6574 || cmp == NE_EXPR
6575 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))))
6576 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
6577 (if (tem && !TREE_OVERFLOW (tem))
6578 (scmp @0 { tem; }))))))
6579
6580 /* Convert ABS[U]_EXPR<x> == 0 or ABS[U]_EXPR<x> != 0 to x == 0 or x != 0. */
6581 (for op (abs absu)
6582 (for eqne (eq ne)
6583 (simplify
6584 (eqne (op @0) zerop@1)
6585 (eqne @0 { build_zero_cst (TREE_TYPE (@0)); }))))
6586
6587 /* From fold_sign_changed_comparison and fold_widened_comparison.
6588 FIXME: the lack of symmetry is disturbing. */
6589 (for cmp (simple_comparison)
6590 (simplify
6591 (cmp (convert@0 @00) (convert?@1 @10))
6592 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6593 /* Disable this optimization if we're casting a function pointer
6594 type on targets that require function pointer canonicalization. */
6595 && !(targetm.have_canonicalize_funcptr_for_compare ()
6596 && ((POINTER_TYPE_P (TREE_TYPE (@00))
6597 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
6598 || (POINTER_TYPE_P (TREE_TYPE (@10))
6599 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
6600 && single_use (@0))
6601 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
6602 && (TREE_CODE (@10) == INTEGER_CST
6603 || @1 != @10)
6604 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
6605 || cmp == NE_EXPR
6606 || cmp == EQ_EXPR)
6607 && !POINTER_TYPE_P (TREE_TYPE (@00))
6608 /* (int)bool:32 != (int)uint is not the same as
6609 bool:32 != (bool:32)uint since boolean types only have two valid
6610 values independent of their precision. */
6611 && (TREE_CODE (TREE_TYPE (@00)) != BOOLEAN_TYPE
6612 || TREE_CODE (TREE_TYPE (@10)) == BOOLEAN_TYPE))
6613 /* ??? The special-casing of INTEGER_CST conversion was in the original
6614 code and here to avoid a spurious overflow flag on the resulting
6615 constant which fold_convert produces. */
6616 (if (TREE_CODE (@1) == INTEGER_CST)
6617 (cmp @00 { force_fit_type (TREE_TYPE (@00),
6618 wide_int::from (wi::to_wide (@1),
6619 MAX (TYPE_PRECISION (TREE_TYPE (@1)),
6620 TYPE_PRECISION (TREE_TYPE (@00))),
6621 TYPE_SIGN (TREE_TYPE (@1))),
6622 0, TREE_OVERFLOW (@1)); })
6623 (cmp @00 (convert @1)))
6624
6625 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
6626 /* If possible, express the comparison in the shorter mode. */
6627 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
6628 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
6629 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
6630 && TYPE_UNSIGNED (TREE_TYPE (@00))))
6631 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
6632 || ((TYPE_PRECISION (TREE_TYPE (@00))
6633 >= TYPE_PRECISION (TREE_TYPE (@10)))
6634 && (TYPE_UNSIGNED (TREE_TYPE (@00))
6635 == TYPE_UNSIGNED (TREE_TYPE (@10))))
6636 || (TREE_CODE (@10) == INTEGER_CST
6637 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
6638 && int_fits_type_p (@10, TREE_TYPE (@00)))))
6639 (cmp @00 (convert @10))
6640 (if (TREE_CODE (@10) == INTEGER_CST
6641 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
6642 && !int_fits_type_p (@10, TREE_TYPE (@00)))
6643 (with
6644 {
6645 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
6646 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
6647 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
6648 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
6649 }
6650 (if (above || below)
6651 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
6652 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
6653 (if (cmp == LT_EXPR || cmp == LE_EXPR)
6654 { constant_boolean_node (above ? true : false, type); }
6655 (if (cmp == GT_EXPR || cmp == GE_EXPR)
6656 { constant_boolean_node (above ? false : true, type); })))))))))
6657 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
6658 (if (FLOAT_TYPE_P (TREE_TYPE (@00))
6659 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
6660 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@00)))
6661 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
6662 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@10))))
6663 (with
6664 {
6665 tree type1 = TREE_TYPE (@10);
6666 if (TREE_CODE (@10) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
6667 {
6668 REAL_VALUE_TYPE orig = TREE_REAL_CST (@10);
6669 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
6670 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
6671 type1 = float_type_node;
6672 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
6673 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
6674 type1 = double_type_node;
6675 }
6676 tree newtype
6677 = (element_precision (TREE_TYPE (@00)) > element_precision (type1)
6678 ? TREE_TYPE (@00) : type1);
6679 }
6680 (if (element_precision (TREE_TYPE (@0)) > element_precision (newtype))
6681 (cmp (convert:newtype @00) (convert:newtype @10))))))))
6682
6683
6684 (for cmp (eq ne)
6685 (simplify
6686 /* SSA names are canonicalized to 2nd place. */
6687 (cmp addr@0 SSA_NAME@1)
6688 (with
6689 {
6690 poly_int64 off; tree base;
6691 tree addr = (TREE_CODE (@0) == SSA_NAME
6692 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
6693 }
6694 /* A local variable can never be pointed to by
6695 the default SSA name of an incoming parameter. */
6696 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
6697 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL
6698 && (base = get_base_address (TREE_OPERAND (addr, 0)))
6699 && TREE_CODE (base) == VAR_DECL
6700 && auto_var_in_fn_p (base, current_function_decl))
6701 (if (cmp == NE_EXPR)
6702 { constant_boolean_node (true, type); }
6703 { constant_boolean_node (false, type); })
6704 /* If the address is based on @1 decide using the offset. */
6705 (if ((base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0), &off))
6706 && TREE_CODE (base) == MEM_REF
6707 && TREE_OPERAND (base, 0) == @1)
6708 (with { off += mem_ref_offset (base).force_shwi (); }
6709 (if (known_ne (off, 0))
6710 { constant_boolean_node (cmp == NE_EXPR, type); }
6711 (if (known_eq (off, 0))
6712 { constant_boolean_node (cmp == EQ_EXPR, type); }))))))))
6713
6714 /* Equality compare simplifications from fold_binary */
6715 (for cmp (eq ne)
6716
6717 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
6718 Similarly for NE_EXPR. */
6719 (simplify
6720 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
6721 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
6722 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
6723 { constant_boolean_node (cmp == NE_EXPR, type); }))
6724
6725 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
6726 (simplify
6727 (cmp (bit_xor @0 @1) integer_zerop)
6728 (cmp @0 @1))
6729
6730 /* (X ^ Y) == Y becomes X == 0.
6731 Likewise (X ^ Y) == X becomes Y == 0. */
6732 (simplify
6733 (cmp:c (bit_xor:c @0 @1) @0)
6734 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
6735
6736 /* (X & Y) == X becomes (X & ~Y) == 0. */
6737 (simplify
6738 (cmp:c (bit_and:c @0 @1) @0)
6739 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
6740 (simplify
6741 (cmp:c (convert@3 (bit_and (convert@2 @0) INTEGER_CST@1)) (convert @0))
6742 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6743 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
6744 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
6745 && TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@0))
6746 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@2))
6747 && !wi::neg_p (wi::to_wide (@1)))
6748 (cmp (bit_and @0 (convert (bit_not @1)))
6749 { build_zero_cst (TREE_TYPE (@0)); })))
6750
6751 /* (X | Y) == Y becomes (X & ~Y) == 0. */
6752 (simplify
6753 (cmp:c (bit_ior:c @0 @1) @1)
6754 (cmp (bit_and @0 (bit_not! @1)) { build_zero_cst (TREE_TYPE (@0)); }))
6755
6756 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
6757 (simplify
6758 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
6759 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
6760 (cmp @0 (bit_xor @1 (convert @2)))))
6761
6762 (simplify
6763 (cmp (nop_convert? @0) integer_zerop)
6764 (if (tree_expr_nonzero_p (@0))
6765 { constant_boolean_node (cmp == NE_EXPR, type); }))
6766
6767 /* (X & C) op (Y & C) into (X ^ Y) & C op 0. */
6768 (simplify
6769 (cmp (bit_and:cs @0 @2) (bit_and:cs @1 @2))
6770 (cmp (bit_and (bit_xor @0 @1) @2) { build_zero_cst (TREE_TYPE (@2)); })))
6771
6772 /* (X < 0) != (Y < 0) into (X ^ Y) < 0.
6773 (X >= 0) != (Y >= 0) into (X ^ Y) < 0.
6774 (X < 0) == (Y < 0) into (X ^ Y) >= 0.
6775 (X >= 0) == (Y >= 0) into (X ^ Y) >= 0. */
6776 (for cmp (eq ne)
6777 ncmp (ge lt)
6778 (for sgncmp (ge lt)
6779 (simplify
6780 (cmp (sgncmp @0 integer_zerop@2) (sgncmp @1 integer_zerop))
6781 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6782 && !TYPE_UNSIGNED (TREE_TYPE (@0))
6783 && types_match (@0, @1))
6784 (ncmp (bit_xor @0 @1) @2)))))
6785 /* (X < 0) == (Y >= 0) into (X ^ Y) < 0.
6786 (X < 0) != (Y >= 0) into (X ^ Y) >= 0. */
6787 (for cmp (eq ne)
6788 ncmp (lt ge)
6789 (simplify
6790 (cmp:c (lt @0 integer_zerop@2) (ge @1 integer_zerop))
6791 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
6792 && !TYPE_UNSIGNED (TREE_TYPE (@0))
6793 && types_match (@0, @1))
6794 (ncmp (bit_xor @0 @1) @2))))
6795
6796 /* If we have (A & C) == C where C is a power of 2, convert this into
6797 (A & C) != 0. Similarly for NE_EXPR. */
6798 (for cmp (eq ne)
6799 icmp (ne eq)
6800 (simplify
6801 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
6802 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
6803
6804 #if GIMPLE
6805 /* From fold_binary_op_with_conditional_arg handle the case of
6806 rewriting (a ? b : c) > d to a ? (b > d) : (c > d) when the
6807 compares simplify. */
6808 (for cmp (simple_comparison)
6809 (simplify
6810 (cmp:c (cond @0 @1 @2) @3)
6811 /* Do not move possibly trapping operations into the conditional as this
6812 pessimizes code and causes gimplification issues when applied late. */
6813 (if (!FLOAT_TYPE_P (TREE_TYPE (@3))
6814 || !operation_could_trap_p (cmp, true, false, @3))
6815 (cond @0 (cmp! @1 @3) (cmp! @2 @3)))))
6816 #endif
6817
6818 (for cmp (ge lt)
6819 /* x < 0 ? ~y : y into (x >> (prec-1)) ^ y. */
6820 /* x >= 0 ? ~y : y into ~((x >> (prec-1)) ^ y). */
6821 (simplify
6822 (cond (cmp @0 integer_zerop) (bit_not @1) @1)
6823 (if (INTEGRAL_TYPE_P (type)
6824 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6825 && !TYPE_UNSIGNED (TREE_TYPE (@0))
6826 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
6827 (with
6828 {
6829 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
6830 }
6831 (if (cmp == LT_EXPR)
6832 (bit_xor (convert (rshift @0 {shifter;})) @1)
6833 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1))))))
6834 /* x < 0 ? y : ~y into ~((x >> (prec-1)) ^ y). */
6835 /* x >= 0 ? y : ~y into (x >> (prec-1)) ^ y. */
6836 (simplify
6837 (cond (cmp @0 integer_zerop) @1 (bit_not @1))
6838 (if (INTEGRAL_TYPE_P (type)
6839 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
6840 && !TYPE_UNSIGNED (TREE_TYPE (@0))
6841 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
6842 (with
6843 {
6844 tree shifter = build_int_cst (integer_type_node, TYPE_PRECISION (type) - 1);
6845 }
6846 (if (cmp == GE_EXPR)
6847 (bit_xor (convert (rshift @0 {shifter;})) @1)
6848 (bit_not (bit_xor (convert (rshift @0 {shifter;})) @1)))))))
6849
6850 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
6851 convert this into a shift followed by ANDing with D. */
6852 (simplify
6853 (cond
6854 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
6855 INTEGER_CST@2 integer_zerop)
6856 (if (!POINTER_TYPE_P (type) && integer_pow2p (@2))
6857 (with {
6858 int shift = (wi::exact_log2 (wi::to_wide (@2))
6859 - wi::exact_log2 (wi::to_wide (@1)));
6860 }
6861 (if (shift > 0)
6862 (bit_and
6863 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
6864 (bit_and
6865 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
6866 @2)))))
6867
6868 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6869 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6870 (for cmp (eq ne)
6871 ncmp (ge lt)
6872 (simplify
6873 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
6874 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6875 && type_has_mode_precision_p (TREE_TYPE (@0))
6876 && element_precision (@2) >= element_precision (@0)
6877 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
6878 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
6879 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
6880
6881 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
6882 this into a right shift or sign extension followed by ANDing with C. */
6883 (simplify
6884 (cond
6885 (lt @0 integer_zerop)
6886 INTEGER_CST@1 integer_zerop)
6887 (if (integer_pow2p (@1)
6888 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
6889 (with {
6890 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
6891 }
6892 (if (shift >= 0)
6893 (bit_and
6894 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
6895 @1)
6896 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
6897 sign extension followed by AND with C will achieve the effect. */
6898 (bit_and (convert @0) @1)))))
6899
6900 /* When the addresses are not directly of decls compare base and offset.
6901 This implements some remaining parts of fold_comparison address
6902 comparisons but still no complete part of it. Still it is good
6903 enough to make fold_stmt not regress when not dispatching to fold_binary. */
6904 (for cmp (simple_comparison)
6905 (simplify
6906 (cmp (convert1?@2 addr@0) (convert2? addr@1))
6907 (with
6908 {
6909 poly_int64 off0, off1;
6910 tree base0, base1;
6911 int equal = address_compare (cmp, TREE_TYPE (@2), @0, @1, base0, base1,
6912 off0, off1, GENERIC);
6913 }
6914 (if (equal == 1)
6915 (switch
6916 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6917 { constant_boolean_node (known_eq (off0, off1), type); })
6918 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
6919 { constant_boolean_node (known_ne (off0, off1), type); })
6920 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
6921 { constant_boolean_node (known_lt (off0, off1), type); })
6922 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
6923 { constant_boolean_node (known_le (off0, off1), type); })
6924 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
6925 { constant_boolean_node (known_ge (off0, off1), type); })
6926 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
6927 { constant_boolean_node (known_gt (off0, off1), type); }))
6928 (if (equal == 0)
6929 (switch
6930 (if (cmp == EQ_EXPR)
6931 { constant_boolean_node (false, type); })
6932 (if (cmp == NE_EXPR)
6933 { constant_boolean_node (true, type); })))))))
6934
6935 #if GIMPLE
6936 /* a?~t:t -> (-(a))^t */
6937 (simplify
6938 (cond @0 @1 @2)
6939 (with { bool wascmp; }
6940 (if (INTEGRAL_TYPE_P (type)
6941 && bitwise_inverted_equal_p (@1, @2, wascmp)
6942 && (!wascmp || TYPE_PRECISION (type) == 1))
6943 (if ((!TYPE_UNSIGNED (type) && TREE_CODE (type) == BOOLEAN_TYPE)
6944 || TYPE_PRECISION (type) == 1)
6945 (bit_xor (convert:type @0) @2)
6946 (bit_xor (negate (convert:type @0)) @2)))))
6947 #endif
6948
6949 /* Simplify pointer equality compares using PTA. */
6950 (for neeq (ne eq)
6951 (simplify
6952 (neeq @0 @1)
6953 (if (POINTER_TYPE_P (TREE_TYPE (@0))
6954 && ptrs_compare_unequal (@0, @1))
6955 { constant_boolean_node (neeq != EQ_EXPR, type); })))
6956
6957 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
6958 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
6959 Disable the transform if either operand is pointer to function.
6960 This broke pr22051-2.c for arm where function pointer
6961 canonicalizaion is not wanted. */
6962
6963 (for cmp (ne eq)
6964 (simplify
6965 (cmp (convert @0) INTEGER_CST@1)
6966 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
6967 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
6968 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
6969 /* Don't perform this optimization in GENERIC if @0 has reference
6970 type when sanitizing. See PR101210. */
6971 && !(GENERIC
6972 && TREE_CODE (TREE_TYPE (@0)) == REFERENCE_TYPE
6973 && (flag_sanitize & (SANITIZE_NULL | SANITIZE_ALIGNMENT))))
6974 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
6975 && POINTER_TYPE_P (TREE_TYPE (@1))
6976 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
6977 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
6978 (cmp @0 (convert @1)))))
6979
6980 /* Non-equality compare simplifications from fold_binary */
6981 (for cmp (lt gt le ge)
6982 /* Comparisons with the highest or lowest possible integer of
6983 the specified precision will have known values. */
6984 (simplify
6985 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
6986 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
6987 || POINTER_TYPE_P (TREE_TYPE (@1))
6988 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
6989 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
6990 (with
6991 {
6992 tree cst = uniform_integer_cst_p (@1);
6993 tree arg1_type = TREE_TYPE (cst);
6994 unsigned int prec = TYPE_PRECISION (arg1_type);
6995 wide_int max = wi::max_value (arg1_type);
6996 wide_int signed_max = wi::max_value (prec, SIGNED);
6997 wide_int min = wi::min_value (arg1_type);
6998 }
6999 (switch
7000 (if (wi::to_wide (cst) == max)
7001 (switch
7002 (if (cmp == GT_EXPR)
7003 { constant_boolean_node (false, type); })
7004 (if (cmp == GE_EXPR)
7005 (eq @2 @1))
7006 (if (cmp == LE_EXPR)
7007 { constant_boolean_node (true, type); })
7008 (if (cmp == LT_EXPR)
7009 (ne @2 @1))))
7010 (if (wi::to_wide (cst) == min)
7011 (switch
7012 (if (cmp == LT_EXPR)
7013 { constant_boolean_node (false, type); })
7014 (if (cmp == LE_EXPR)
7015 (eq @2 @1))
7016 (if (cmp == GE_EXPR)
7017 { constant_boolean_node (true, type); })
7018 (if (cmp == GT_EXPR)
7019 (ne @2 @1))))
7020 (if (wi::to_wide (cst) == max - 1)
7021 (switch
7022 (if (cmp == GT_EXPR)
7023 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
7024 wide_int_to_tree (TREE_TYPE (cst),
7025 wi::to_wide (cst)
7026 + 1)); }))
7027 (if (cmp == LE_EXPR)
7028 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
7029 wide_int_to_tree (TREE_TYPE (cst),
7030 wi::to_wide (cst)
7031 + 1)); }))))
7032 (if (wi::to_wide (cst) == min + 1)
7033 (switch
7034 (if (cmp == GE_EXPR)
7035 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
7036 wide_int_to_tree (TREE_TYPE (cst),
7037 wi::to_wide (cst)
7038 - 1)); }))
7039 (if (cmp == LT_EXPR)
7040 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
7041 wide_int_to_tree (TREE_TYPE (cst),
7042 wi::to_wide (cst)
7043 - 1)); }))))
7044 (if (wi::to_wide (cst) == signed_max
7045 && TYPE_UNSIGNED (arg1_type)
7046 && TYPE_MODE (arg1_type) != BLKmode
7047 /* We will flip the signedness of the comparison operator
7048 associated with the mode of @1, so the sign bit is
7049 specified by this mode. Check that @1 is the signed
7050 max associated with this sign bit. */
7051 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
7052 /* signed_type does not work on pointer types. */
7053 && INTEGRAL_TYPE_P (arg1_type))
7054 /* The following case also applies to X < signed_max+1
7055 and X >= signed_max+1 because previous transformations. */
7056 (if (cmp == LE_EXPR || cmp == GT_EXPR)
7057 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
7058 (switch
7059 (if (cst == @1 && cmp == LE_EXPR)
7060 (ge (convert:st @0) { build_zero_cst (st); }))
7061 (if (cst == @1 && cmp == GT_EXPR)
7062 (lt (convert:st @0) { build_zero_cst (st); }))
7063 (if (cmp == LE_EXPR)
7064 (ge (view_convert:st @0) { build_zero_cst (st); }))
7065 (if (cmp == GT_EXPR)
7066 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
7067
7068 /* unsigned < (typeof unsigned)(unsigned != 0) is always false. */
7069 (simplify
7070 (lt:c @0 (convert (ne @0 integer_zerop)))
7071 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
7072 { constant_boolean_node (false, type); }))
7073
7074 /* x != (typeof x)(x == CST) -> CST == 0 ? 1 : (CST == 1 ? (x!=0&&x!=1) : x != 0) */
7075 /* x != (typeof x)(x != CST) -> CST == 1 ? 1 : (CST == 0 ? (x!=0&&x!=1) : x != 1) */
7076 /* x == (typeof x)(x == CST) -> CST == 0 ? 0 : (CST == 1 ? (x==0||x==1) : x == 0) */
7077 /* x == (typeof x)(x != CST) -> CST == 1 ? 0 : (CST == 0 ? (x==0||x==1) : x == 1) */
7078 (for outer (ne eq)
7079 (for inner (ne eq)
7080 (simplify
7081 (outer:c @0 (convert (inner @0 INTEGER_CST@1)))
7082 (with {
7083 bool cst1 = integer_onep (@1);
7084 bool cst0 = integer_zerop (@1);
7085 bool innereq = inner == EQ_EXPR;
7086 bool outereq = outer == EQ_EXPR;
7087 }
7088 (switch
7089 (if (innereq ? cst0 : cst1)
7090 { constant_boolean_node (!outereq, type); })
7091 (if (innereq ? cst1 : cst0)
7092 (with {
7093 tree utype = unsigned_type_for (TREE_TYPE (@0));
7094 tree ucst1 = build_one_cst (utype);
7095 }
7096 (if (!outereq)
7097 (gt (convert:utype @0) { ucst1; })
7098 (le (convert:utype @0) { ucst1; })
7099 )
7100 )
7101 )
7102 (with {
7103 tree value = build_int_cst (TREE_TYPE (@0), !innereq);
7104 }
7105 (if (outereq)
7106 (eq @0 { value; })
7107 (ne @0 { value; })
7108 )
7109 )
7110 )
7111 )
7112 )
7113 )
7114 )
7115
7116 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
7117 /* If the second operand is NaN, the result is constant. */
7118 (simplify
7119 (cmp @0 REAL_CST@1)
7120 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
7121 && (cmp != LTGT_EXPR || ! flag_trapping_math))
7122 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
7123 ? false : true, type); })))
7124
7125 /* Fold UNORDERED if either operand must be NaN, or neither can be. */
7126 (simplify
7127 (unordered @0 @1)
7128 (switch
7129 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
7130 { constant_boolean_node (true, type); })
7131 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
7132 { constant_boolean_node (false, type); })))
7133
7134 /* Fold ORDERED if either operand must be NaN, or neither can be. */
7135 (simplify
7136 (ordered @0 @1)
7137 (switch
7138 (if (tree_expr_nan_p (@0) || tree_expr_nan_p (@1))
7139 { constant_boolean_node (false, type); })
7140 (if (!tree_expr_maybe_nan_p (@0) && !tree_expr_maybe_nan_p (@1))
7141 { constant_boolean_node (true, type); })))
7142
7143 /* bool_var != 0 becomes bool_var. */
7144 (simplify
7145 (ne @0 integer_zerop)
7146 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
7147 && types_match (type, TREE_TYPE (@0)))
7148 (non_lvalue @0)))
7149 /* bool_var == 1 becomes bool_var. */
7150 (simplify
7151 (eq @0 integer_onep)
7152 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
7153 && types_match (type, TREE_TYPE (@0)))
7154 (non_lvalue @0)))
7155 /* Do not handle
7156 bool_var == 0 becomes !bool_var or
7157 bool_var != 1 becomes !bool_var
7158 here because that only is good in assignment context as long
7159 as we require a tcc_comparison in GIMPLE_CONDs where we'd
7160 replace if (x == 0) with tem = ~x; if (tem != 0) which is
7161 clearly less optimal and which we'll transform again in forwprop. */
7162
7163 /* Transform comparisons of the form (X & Y) CMP 0 to X CMP2 Z
7164 where ~Y + 1 == pow2 and Z = ~Y. */
7165 (for cst (VECTOR_CST INTEGER_CST)
7166 (for cmp (eq ne)
7167 icmp (le gt)
7168 (simplify
7169 (cmp (bit_and:c@2 @0 cst@1) integer_zerop)
7170 (with { tree csts = bitmask_inv_cst_vector_p (@1); }
7171 (if (csts && (VECTOR_TYPE_P (TREE_TYPE (@1)) || single_use (@2)))
7172 (with { auto optab = VECTOR_TYPE_P (TREE_TYPE (@1))
7173 ? optab_vector : optab_default;
7174 tree utype = unsigned_type_for (TREE_TYPE (@1)); }
7175 (if (target_supports_op_p (utype, icmp, optab)
7176 || (optimize_vectors_before_lowering_p ()
7177 && (!target_supports_op_p (type, cmp, optab)
7178 || !target_supports_op_p (type, BIT_AND_EXPR, optab))))
7179 (if (TYPE_UNSIGNED (TREE_TYPE (@1)))
7180 (icmp @0 { csts; })
7181 (icmp (view_convert:utype @0) { csts; })))))))))
7182
7183 /* When one argument is a constant, overflow detection can be simplified.
7184 Currently restricted to single use so as not to interfere too much with
7185 ADD_OVERFLOW detection in tree-ssa-math-opts.cc.
7186 CONVERT?(CONVERT?(A) + CST) CMP A -> A CMP' CST' */
7187 (for cmp (lt le ge gt)
7188 out (gt gt le le)
7189 (simplify
7190 (cmp:c (convert?@3 (plus@2 (convert?@4 @0) INTEGER_CST@1)) @0)
7191 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@2))
7192 && types_match (TREE_TYPE (@0), TREE_TYPE (@3))
7193 && tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@0))
7194 && wi::to_wide (@1) != 0
7195 && single_use (@2))
7196 (with {
7197 unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0));
7198 signop sign = TYPE_SIGN (TREE_TYPE (@0));
7199 }
7200 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
7201 wi::max_value (prec, sign)
7202 - wi::to_wide (@1)); })))))
7203
7204 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
7205 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.cc
7206 expects the long form, so we restrict the transformation for now. */
7207 (for cmp (gt le)
7208 (simplify
7209 (cmp:c (minus@2 @0 @1) @0)
7210 (if (single_use (@2)
7211 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
7212 && TYPE_UNSIGNED (TREE_TYPE (@0)))
7213 (cmp @1 @0))))
7214
7215 /* Optimize A - B + -1 >= A into B >= A for unsigned comparisons. */
7216 (for cmp (ge lt)
7217 (simplify
7218 (cmp:c (plus (minus @0 @1) integer_minus_onep) @0)
7219 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
7220 && TYPE_UNSIGNED (TREE_TYPE (@0)))
7221 (cmp @1 @0))))
7222
7223 /* Testing for overflow is unnecessary if we already know the result. */
7224 /* A - B > A */
7225 (for cmp (gt le)
7226 out (ne eq)
7227 (simplify
7228 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
7229 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
7230 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
7231 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
7232 /* A + B < A */
7233 (for cmp (lt ge)
7234 out (ne eq)
7235 (simplify
7236 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
7237 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
7238 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
7239 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
7240
7241 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
7242 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
7243 (for cmp (lt ge)
7244 out (ne eq)
7245 (simplify
7246 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
7247 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
7248 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
7249 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
7250
7251 /* Similarly, for unsigned operands, (((type) A * B) >> prec) != 0 where type
7252 is at least twice as wide as type of A and B, simplify to
7253 __builtin_mul_overflow (A, B, <unused>). */
7254 (for cmp (eq ne)
7255 (simplify
7256 (cmp (rshift (mult:s (convert@3 @0) (convert @1)) INTEGER_CST@2)
7257 integer_zerop)
7258 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7259 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
7260 && TYPE_UNSIGNED (TREE_TYPE (@0))
7261 && (TYPE_PRECISION (TREE_TYPE (@3))
7262 >= 2 * TYPE_PRECISION (TREE_TYPE (@0)))
7263 && tree_fits_uhwi_p (@2)
7264 && tree_to_uhwi (@2) == TYPE_PRECISION (TREE_TYPE (@0))
7265 && types_match (@0, @1)
7266 && type_has_mode_precision_p (TREE_TYPE (@0))
7267 && (optab_handler (umulv4_optab, TYPE_MODE (TREE_TYPE (@0)))
7268 != CODE_FOR_nothing))
7269 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
7270 (cmp (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
7271
7272 /* Demote operands of IFN_{ADD,SUB,MUL}_OVERFLOW. */
7273 (for ovf (IFN_ADD_OVERFLOW IFN_SUB_OVERFLOW IFN_MUL_OVERFLOW)
7274 (simplify
7275 (ovf (convert@2 @0) @1)
7276 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7277 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
7278 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
7279 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
7280 (ovf @0 @1)))
7281 (simplify
7282 (ovf @1 (convert@2 @0))
7283 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7284 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
7285 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
7286 && (!TYPE_UNSIGNED (TREE_TYPE (@2)) || TYPE_UNSIGNED (TREE_TYPE (@0))))
7287 (ovf @1 @0))))
7288
7289 /* Optimize __builtin_mul_overflow_p (x, cst, (utype) 0) if all 3 types
7290 are unsigned to x > (umax / cst). Similarly for signed type, but
7291 in that case it needs to be outside of a range. */
7292 (simplify
7293 (imagpart (IFN_MUL_OVERFLOW:cs@2 @0 integer_nonzerop@1))
7294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
7295 && TYPE_MAX_VALUE (TREE_TYPE (@0))
7296 && types_match (TREE_TYPE (@0), TREE_TYPE (TREE_TYPE (@2)))
7297 && int_fits_type_p (@1, TREE_TYPE (@0)))
7298 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
7299 (convert (gt @0 (trunc_div! { TYPE_MAX_VALUE (TREE_TYPE (@0)); } @1)))
7300 (if (TYPE_MIN_VALUE (TREE_TYPE (@0)))
7301 (if (integer_minus_onep (@1))
7302 (convert (eq @0 { TYPE_MIN_VALUE (TREE_TYPE (@0)); }))
7303 (with
7304 {
7305 tree div = fold_convert (TREE_TYPE (@0), @1);
7306 tree lo = int_const_binop (TRUNC_DIV_EXPR,
7307 TYPE_MIN_VALUE (TREE_TYPE (@0)), div);
7308 tree hi = int_const_binop (TRUNC_DIV_EXPR,
7309 TYPE_MAX_VALUE (TREE_TYPE (@0)), div);
7310 tree etype = range_check_type (TREE_TYPE (@0));
7311 if (etype)
7312 {
7313 if (wi::neg_p (wi::to_wide (div)))
7314 std::swap (lo, hi);
7315 lo = fold_convert (etype, lo);
7316 hi = fold_convert (etype, hi);
7317 hi = int_const_binop (MINUS_EXPR, hi, lo);
7318 }
7319 }
7320 (if (etype)
7321 (convert (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
7322
7323 /* Simplification of math builtins. These rules must all be optimizations
7324 as well as IL simplifications. If there is a possibility that the new
7325 form could be a pessimization, the rule should go in the canonicalization
7326 section that follows this one.
7327
7328 Rules can generally go in this section if they satisfy one of
7329 the following:
7330
7331 - the rule describes an identity
7332
7333 - the rule replaces calls with something as simple as addition or
7334 multiplication
7335
7336 - the rule contains unary calls only and simplifies the surrounding
7337 arithmetic. (The idea here is to exclude non-unary calls in which
7338 one operand is constant and in which the call is known to be cheap
7339 when the operand has that value.) */
7340
7341 (if (flag_unsafe_math_optimizations)
7342 /* Simplify sqrt(x) * sqrt(x) -> x. */
7343 (simplify
7344 (mult (SQRT_ALL@1 @0) @1)
7345 (if (!tree_expr_maybe_signaling_nan_p (@0))
7346 @0))
7347
7348 (for op (plus minus)
7349 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
7350 (simplify
7351 (op (rdiv @0 @1)
7352 (rdiv @2 @1))
7353 (rdiv (op @0 @2) @1)))
7354
7355 (for cmp (lt le gt ge)
7356 neg_cmp (gt ge lt le)
7357 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
7358 (simplify
7359 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
7360 (with
7361 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
7362 (if (tem
7363 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
7364 || (real_zerop (tem) && !real_zerop (@1))))
7365 (switch
7366 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
7367 (cmp @0 { tem; }))
7368 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
7369 (neg_cmp @0 { tem; })))))))
7370
7371 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
7372 (for root (SQRT CBRT)
7373 (simplify
7374 (mult (root:s @0) (root:s @1))
7375 (root (mult @0 @1))))
7376
7377 /* Simplify expN(x) * expN(y) -> expN(x+y). */
7378 (for exps (EXP EXP2 EXP10 POW10)
7379 (simplify
7380 (mult (exps:s @0) (exps:s @1))
7381 (exps (plus @0 @1))))
7382
7383 /* Simplify a/root(b/c) into a*root(c/b). */
7384 (for root (SQRT CBRT)
7385 (simplify
7386 (rdiv @0 (root:s (rdiv:s @1 @2)))
7387 (mult @0 (root (rdiv @2 @1)))))
7388
7389 /* Simplify x/expN(y) into x*expN(-y). */
7390 (for exps (EXP EXP2 EXP10 POW10)
7391 (simplify
7392 (rdiv @0 (exps:s @1))
7393 (mult @0 (exps (negate @1)))))
7394
7395 (for logs (LOG LOG2 LOG10 LOG10)
7396 exps (EXP EXP2 EXP10 POW10)
7397 /* logN(expN(x)) -> x. */
7398 (simplify
7399 (logs (exps @0))
7400 @0)
7401 /* expN(logN(x)) -> x. */
7402 (simplify
7403 (exps (logs @0))
7404 @0))
7405
7406 /* Optimize logN(func()) for various exponential functions. We
7407 want to determine the value "x" and the power "exponent" in
7408 order to transform logN(x**exponent) into exponent*logN(x). */
7409 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
7410 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
7411 (simplify
7412 (logs (exps @0))
7413 (if (SCALAR_FLOAT_TYPE_P (type))
7414 (with {
7415 tree x;
7416 switch (exps)
7417 {
7418 CASE_CFN_EXP:
7419 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
7420 x = build_real_truncate (type, dconst_e ());
7421 break;
7422 CASE_CFN_EXP2:
7423 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
7424 x = build_real (type, dconst2);
7425 break;
7426 CASE_CFN_EXP10:
7427 CASE_CFN_POW10:
7428 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
7429 {
7430 REAL_VALUE_TYPE dconst10;
7431 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
7432 x = build_real (type, dconst10);
7433 }
7434 break;
7435 default:
7436 gcc_unreachable ();
7437 }
7438 }
7439 (mult (logs { x; }) @0)))))
7440
7441 (for logs (LOG LOG
7442 LOG2 LOG2
7443 LOG10 LOG10)
7444 exps (SQRT CBRT)
7445 (simplify
7446 (logs (exps @0))
7447 (if (SCALAR_FLOAT_TYPE_P (type))
7448 (with {
7449 tree x;
7450 switch (exps)
7451 {
7452 CASE_CFN_SQRT:
7453 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
7454 x = build_real (type, dconsthalf);
7455 break;
7456 CASE_CFN_CBRT:
7457 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
7458 x = build_real_truncate (type, dconst_third ());
7459 break;
7460 default:
7461 gcc_unreachable ();
7462 }
7463 }
7464 (mult { x; } (logs @0))))))
7465
7466 /* logN(pow(x,exponent)) -> exponent*logN(x). */
7467 (for logs (LOG LOG2 LOG10)
7468 pows (POW)
7469 (simplify
7470 (logs (pows @0 @1))
7471 (mult @1 (logs @0))))
7472
7473 /* pow(C,x) -> exp(log(C)*x) if C > 0,
7474 or if C is a positive power of 2,
7475 pow(C,x) -> exp2(log2(C)*x). */
7476 #if GIMPLE
7477 (for pows (POW)
7478 exps (EXP)
7479 logs (LOG)
7480 exp2s (EXP2)
7481 log2s (LOG2)
7482 (simplify
7483 (pows REAL_CST@0 @1)
7484 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
7485 && real_isfinite (TREE_REAL_CST_PTR (@0))
7486 /* As libmvec doesn't have a vectorized exp2, defer optimizing
7487 the use_exp2 case until after vectorization. It seems actually
7488 beneficial for all constants to postpone this until later,
7489 because exp(log(C)*x), while faster, will have worse precision
7490 and if x folds into a constant too, that is unnecessary
7491 pessimization. */
7492 && canonicalize_math_after_vectorization_p ())
7493 (with {
7494 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
7495 bool use_exp2 = false;
7496 if (targetm.libc_has_function (function_c99_misc, TREE_TYPE (@0))
7497 && value->cl == rvc_normal)
7498 {
7499 REAL_VALUE_TYPE frac_rvt = *value;
7500 SET_REAL_EXP (&frac_rvt, 1);
7501 if (real_equal (&frac_rvt, &dconst1))
7502 use_exp2 = true;
7503 }
7504 }
7505 (if (!use_exp2)
7506 (if (optimize_pow_to_exp (@0, @1))
7507 (exps (mult (logs @0) @1)))
7508 (exp2s (mult (log2s @0) @1)))))))
7509 #endif
7510
7511 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
7512 (for pows (POW)
7513 exps (EXP EXP2 EXP10 POW10)
7514 logs (LOG LOG2 LOG10 LOG10)
7515 (simplify
7516 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
7517 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
7518 && real_isfinite (TREE_REAL_CST_PTR (@0)))
7519 (exps (plus (mult (logs @0) @1) @2)))))
7520
7521 (for sqrts (SQRT)
7522 cbrts (CBRT)
7523 pows (POW)
7524 exps (EXP EXP2 EXP10 POW10)
7525 /* sqrt(expN(x)) -> expN(x*0.5). */
7526 (simplify
7527 (sqrts (exps @0))
7528 (exps (mult @0 { build_real (type, dconsthalf); })))
7529 /* cbrt(expN(x)) -> expN(x/3). */
7530 (simplify
7531 (cbrts (exps @0))
7532 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
7533 /* pow(expN(x), y) -> expN(x*y). */
7534 (simplify
7535 (pows (exps @0) @1)
7536 (exps (mult @0 @1))))
7537
7538 /* tan(atan(x)) -> x. */
7539 (for tans (TAN)
7540 atans (ATAN)
7541 (simplify
7542 (tans (atans @0))
7543 @0)))
7544
7545 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
7546 (for sins (SIN)
7547 atans (ATAN)
7548 sqrts (SQRT)
7549 copysigns (COPYSIGN)
7550 (simplify
7551 (sins (atans:s @0))
7552 (with
7553 {
7554 REAL_VALUE_TYPE r_cst;
7555 build_sinatan_real (&r_cst, type);
7556 tree t_cst = build_real (type, r_cst);
7557 tree t_one = build_one_cst (type);
7558 }
7559 (if (SCALAR_FLOAT_TYPE_P (type))
7560 (cond (lt (abs @0) { t_cst; })
7561 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
7562 (copysigns { t_one; } @0))))))
7563
7564 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
7565 (for coss (COS)
7566 atans (ATAN)
7567 sqrts (SQRT)
7568 copysigns (COPYSIGN)
7569 (simplify
7570 (coss (atans:s @0))
7571 (with
7572 {
7573 REAL_VALUE_TYPE r_cst;
7574 build_sinatan_real (&r_cst, type);
7575 tree t_cst = build_real (type, r_cst);
7576 tree t_one = build_one_cst (type);
7577 tree t_zero = build_zero_cst (type);
7578 }
7579 (if (SCALAR_FLOAT_TYPE_P (type))
7580 (cond (lt (abs @0) { t_cst; })
7581 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
7582 (copysigns { t_zero; } @0))))))
7583
7584 (if (!flag_errno_math)
7585 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
7586 (for sinhs (SINH)
7587 atanhs (ATANH)
7588 sqrts (SQRT)
7589 (simplify
7590 (sinhs (atanhs:s @0))
7591 (with { tree t_one = build_one_cst (type); }
7592 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
7593
7594 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
7595 (for coshs (COSH)
7596 atanhs (ATANH)
7597 sqrts (SQRT)
7598 (simplify
7599 (coshs (atanhs:s @0))
7600 (with { tree t_one = build_one_cst (type); }
7601 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
7602
7603 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
7604 (simplify
7605 (CABS (complex:C @0 real_zerop@1))
7606 (abs @0))
7607
7608 /* trunc(trunc(x)) -> trunc(x), etc. */
7609 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
7610 (simplify
7611 (fns (fns @0))
7612 (fns @0)))
7613 /* f(x) -> x if x is integer valued and f does nothing for such values. */
7614 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
7615 (simplify
7616 (fns integer_valued_real_p@0)
7617 @0))
7618
7619 /* hypot(x,0) and hypot(0,x) -> abs(x). */
7620 (simplify
7621 (HYPOT:c @0 real_zerop@1)
7622 (abs @0))
7623
7624 /* pow(1,x) -> 1. */
7625 (simplify
7626 (POW real_onep@0 @1)
7627 @0)
7628
7629 (simplify
7630 /* copysign(x,x) -> x. */
7631 (COPYSIGN_ALL @0 @0)
7632 @0)
7633
7634 (simplify
7635 /* copysign(x,-x) -> -x. */
7636 (COPYSIGN_ALL @0 (negate@1 @0))
7637 @1)
7638
7639 (simplify
7640 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
7641 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
7642 (abs @0))
7643
7644 (simplify
7645 /* fabs (copysign(x, y)) -> fabs (x). */
7646 (abs (COPYSIGN_ALL @0 @1))
7647 (abs @0))
7648
7649 (for scale (LDEXP SCALBN SCALBLN)
7650 /* ldexp(0, x) -> 0. */
7651 (simplify
7652 (scale real_zerop@0 @1)
7653 @0)
7654 /* ldexp(x, 0) -> x. */
7655 (simplify
7656 (scale @0 integer_zerop@1)
7657 @0)
7658 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
7659 (simplify
7660 (scale REAL_CST@0 @1)
7661 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
7662 @0)))
7663
7664 /* Canonicalization of sequences of math builtins. These rules represent
7665 IL simplifications but are not necessarily optimizations.
7666
7667 The sincos pass is responsible for picking "optimal" implementations
7668 of math builtins, which may be more complicated and can sometimes go
7669 the other way, e.g. converting pow into a sequence of sqrts.
7670 We only want to do these canonicalizations before the pass has run. */
7671
7672 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
7673 /* Simplify tan(x) * cos(x) -> sin(x). */
7674 (simplify
7675 (mult:c (TAN:s @0) (COS:s @0))
7676 (SIN @0))
7677
7678 /* Simplify x * pow(x,c) -> pow(x,c+1). */
7679 (simplify
7680 (mult:c @0 (POW:s @0 REAL_CST@1))
7681 (if (!TREE_OVERFLOW (@1))
7682 (POW @0 (plus @1 { build_one_cst (type); }))))
7683
7684 /* Simplify sin(x) / cos(x) -> tan(x). */
7685 (simplify
7686 (rdiv (SIN:s @0) (COS:s @0))
7687 (TAN @0))
7688
7689 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
7690 (simplify
7691 (rdiv (SINH:s @0) (COSH:s @0))
7692 (TANH @0))
7693
7694 /* Simplify tanh (x) / sinh (x) -> 1.0 / cosh (x). */
7695 (simplify
7696 (rdiv (TANH:s @0) (SINH:s @0))
7697 (rdiv {build_one_cst (type);} (COSH @0)))
7698
7699 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
7700 (simplify
7701 (rdiv (COS:s @0) (SIN:s @0))
7702 (rdiv { build_one_cst (type); } (TAN @0)))
7703
7704 /* Simplify sin(x) / tan(x) -> cos(x). */
7705 (simplify
7706 (rdiv (SIN:s @0) (TAN:s @0))
7707 (if (! HONOR_NANS (@0)
7708 && ! HONOR_INFINITIES (@0))
7709 (COS @0)))
7710
7711 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
7712 (simplify
7713 (rdiv (TAN:s @0) (SIN:s @0))
7714 (if (! HONOR_NANS (@0)
7715 && ! HONOR_INFINITIES (@0))
7716 (rdiv { build_one_cst (type); } (COS @0))))
7717
7718 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
7719 (simplify
7720 (mult (POW:s @0 @1) (POW:s @0 @2))
7721 (POW @0 (plus @1 @2)))
7722
7723 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
7724 (simplify
7725 (mult (POW:s @0 @1) (POW:s @2 @1))
7726 (POW (mult @0 @2) @1))
7727
7728 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
7729 (simplify
7730 (mult (POWI:s @0 @1) (POWI:s @2 @1))
7731 (POWI (mult @0 @2) @1))
7732
7733 /* Simplify pow(x,c) / x -> pow(x,c-1). */
7734 (simplify
7735 (rdiv (POW:s @0 REAL_CST@1) @0)
7736 (if (!TREE_OVERFLOW (@1))
7737 (POW @0 (minus @1 { build_one_cst (type); }))))
7738
7739 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
7740 (simplify
7741 (rdiv @0 (POW:s @1 @2))
7742 (mult @0 (POW @1 (negate @2))))
7743
7744 (for sqrts (SQRT)
7745 cbrts (CBRT)
7746 pows (POW)
7747 /* sqrt(sqrt(x)) -> pow(x,1/4). */
7748 (simplify
7749 (sqrts (sqrts @0))
7750 (pows @0 { build_real (type, dconst_quarter ()); }))
7751 /* sqrt(cbrt(x)) -> pow(x,1/6). */
7752 (simplify
7753 (sqrts (cbrts @0))
7754 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
7755 /* cbrt(sqrt(x)) -> pow(x,1/6). */
7756 (simplify
7757 (cbrts (sqrts @0))
7758 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
7759 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
7760 (simplify
7761 (cbrts (cbrts tree_expr_nonnegative_p@0))
7762 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
7763 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
7764 (simplify
7765 (sqrts (pows @0 @1))
7766 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
7767 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
7768 (simplify
7769 (cbrts (pows tree_expr_nonnegative_p@0 @1))
7770 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
7771 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
7772 (simplify
7773 (pows (sqrts @0) @1)
7774 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
7775 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
7776 (simplify
7777 (pows (cbrts tree_expr_nonnegative_p@0) @1)
7778 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
7779 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
7780 (simplify
7781 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
7782 (pows @0 (mult @1 @2))))
7783
7784 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
7785 (simplify
7786 (CABS (complex @0 @0))
7787 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
7788
7789 /* hypot(x,x) -> fabs(x)*sqrt(2). */
7790 (simplify
7791 (HYPOT @0 @0)
7792 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
7793
7794 /* cexp(x+yi) -> exp(x)*cexpi(y). */
7795 (for cexps (CEXP)
7796 exps (EXP)
7797 cexpis (CEXPI)
7798 (simplify
7799 (cexps compositional_complex@0)
7800 (if (targetm.libc_has_function (function_c99_math_complex, TREE_TYPE (@0)))
7801 (complex
7802 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
7803 (mult @1 (imagpart @2)))))))
7804
7805 (if (canonicalize_math_p ())
7806 /* floor(x) -> trunc(x) if x is nonnegative. */
7807 (for floors (FLOOR_ALL)
7808 truncs (TRUNC_ALL)
7809 (simplify
7810 (floors tree_expr_nonnegative_p@0)
7811 (truncs @0))))
7812
7813 (match double_value_p
7814 @0
7815 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
7816 (for froms (BUILT_IN_TRUNCL
7817 BUILT_IN_FLOORL
7818 BUILT_IN_CEILL
7819 BUILT_IN_ROUNDL
7820 BUILT_IN_NEARBYINTL
7821 BUILT_IN_RINTL)
7822 tos (BUILT_IN_TRUNC
7823 BUILT_IN_FLOOR
7824 BUILT_IN_CEIL
7825 BUILT_IN_ROUND
7826 BUILT_IN_NEARBYINT
7827 BUILT_IN_RINT)
7828 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
7829 (if (optimize && canonicalize_math_p ())
7830 (simplify
7831 (froms (convert double_value_p@0))
7832 (convert (tos @0)))))
7833
7834 (match float_value_p
7835 @0
7836 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
7837 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
7838 BUILT_IN_FLOORL BUILT_IN_FLOOR
7839 BUILT_IN_CEILL BUILT_IN_CEIL
7840 BUILT_IN_ROUNDL BUILT_IN_ROUND
7841 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
7842 BUILT_IN_RINTL BUILT_IN_RINT)
7843 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
7844 BUILT_IN_FLOORF BUILT_IN_FLOORF
7845 BUILT_IN_CEILF BUILT_IN_CEILF
7846 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
7847 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
7848 BUILT_IN_RINTF BUILT_IN_RINTF)
7849 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
7850 if x is a float. */
7851 (if (optimize && canonicalize_math_p ()
7852 && targetm.libc_has_function (function_c99_misc, NULL_TREE))
7853 (simplify
7854 (froms (convert float_value_p@0))
7855 (convert (tos @0)))))
7856
7857 #if GIMPLE
7858 (match float16_value_p
7859 @0
7860 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float16_type_node)))
7861 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC BUILT_IN_TRUNCF
7862 BUILT_IN_FLOORL BUILT_IN_FLOOR BUILT_IN_FLOORF
7863 BUILT_IN_CEILL BUILT_IN_CEIL BUILT_IN_CEILF
7864 BUILT_IN_ROUNDEVENL BUILT_IN_ROUNDEVEN BUILT_IN_ROUNDEVENF
7865 BUILT_IN_ROUNDL BUILT_IN_ROUND BUILT_IN_ROUNDF
7866 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT BUILT_IN_NEARBYINTF
7867 BUILT_IN_RINTL BUILT_IN_RINT BUILT_IN_RINTF
7868 BUILT_IN_SQRTL BUILT_IN_SQRT BUILT_IN_SQRTF)
7869 tos (IFN_TRUNC IFN_TRUNC IFN_TRUNC
7870 IFN_FLOOR IFN_FLOOR IFN_FLOOR
7871 IFN_CEIL IFN_CEIL IFN_CEIL
7872 IFN_ROUNDEVEN IFN_ROUNDEVEN IFN_ROUNDEVEN
7873 IFN_ROUND IFN_ROUND IFN_ROUND
7874 IFN_NEARBYINT IFN_NEARBYINT IFN_NEARBYINT
7875 IFN_RINT IFN_RINT IFN_RINT
7876 IFN_SQRT IFN_SQRT IFN_SQRT)
7877 /* (_Float16) round ((doube) x) -> __built_in_roundf16 (x), etc.,
7878 if x is a _Float16. */
7879 (simplify
7880 (convert (froms (convert float16_value_p@0)))
7881 (if (optimize
7882 && types_match (type, TREE_TYPE (@0))
7883 && direct_internal_fn_supported_p (as_internal_fn (tos),
7884 type, OPTIMIZE_FOR_BOTH))
7885 (tos @0))))
7886
7887 /* Simplify (trunc)copysign ((extend)x, (extend)y) to copysignf (x, y),
7888 x,y is float value, similar for _Float16/double. */
7889 (for copysigns (COPYSIGN_ALL)
7890 (simplify
7891 (convert (copysigns (convert@2 @0) (convert @1)))
7892 (if (optimize
7893 && !HONOR_SNANS (@2)
7894 && types_match (type, TREE_TYPE (@0))
7895 && types_match (type, TREE_TYPE (@1))
7896 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@2))
7897 && direct_internal_fn_supported_p (IFN_COPYSIGN,
7898 type, OPTIMIZE_FOR_BOTH))
7899 (IFN_COPYSIGN @0 @1))))
7900
7901 (for froms (BUILT_IN_FMAF BUILT_IN_FMA BUILT_IN_FMAL)
7902 tos (IFN_FMA IFN_FMA IFN_FMA)
7903 (simplify
7904 (convert (froms (convert@3 @0) (convert @1) (convert @2)))
7905 (if (flag_unsafe_math_optimizations
7906 && optimize
7907 && FLOAT_TYPE_P (type)
7908 && FLOAT_TYPE_P (TREE_TYPE (@3))
7909 && types_match (type, TREE_TYPE (@0))
7910 && types_match (type, TREE_TYPE (@1))
7911 && types_match (type, TREE_TYPE (@2))
7912 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (@3))
7913 && direct_internal_fn_supported_p (as_internal_fn (tos),
7914 type, OPTIMIZE_FOR_BOTH))
7915 (tos @0 @1 @2))))
7916
7917 (for maxmin (max min)
7918 (simplify
7919 (convert (maxmin (convert@2 @0) (convert @1)))
7920 (if (optimize
7921 && FLOAT_TYPE_P (type)
7922 && FLOAT_TYPE_P (TREE_TYPE (@2))
7923 && types_match (type, TREE_TYPE (@0))
7924 && types_match (type, TREE_TYPE (@1))
7925 && element_precision (type) < element_precision (TREE_TYPE (@2)))
7926 (maxmin @0 @1))))
7927 #endif
7928
7929 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
7930 tos (XFLOOR XCEIL XROUND XRINT)
7931 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
7932 (if (optimize && canonicalize_math_p ())
7933 (simplify
7934 (froms (convert double_value_p@0))
7935 (tos @0))))
7936
7937 (for froms (XFLOORL XCEILL XROUNDL XRINTL
7938 XFLOOR XCEIL XROUND XRINT)
7939 tos (XFLOORF XCEILF XROUNDF XRINTF)
7940 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
7941 if x is a float. */
7942 (if (optimize && canonicalize_math_p ())
7943 (simplify
7944 (froms (convert float_value_p@0))
7945 (tos @0))))
7946
7947 (if (canonicalize_math_p ())
7948 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
7949 (for floors (IFLOOR LFLOOR LLFLOOR)
7950 (simplify
7951 (floors tree_expr_nonnegative_p@0)
7952 (fix_trunc @0))))
7953
7954 (if (canonicalize_math_p ())
7955 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
7956 (for fns (IFLOOR LFLOOR LLFLOOR
7957 ICEIL LCEIL LLCEIL
7958 IROUND LROUND LLROUND)
7959 (simplify
7960 (fns integer_valued_real_p@0)
7961 (fix_trunc @0)))
7962 (if (!flag_errno_math)
7963 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
7964 (for rints (IRINT LRINT LLRINT)
7965 (simplify
7966 (rints integer_valued_real_p@0)
7967 (fix_trunc @0)))))
7968
7969 (if (canonicalize_math_p ())
7970 (for ifn (IFLOOR ICEIL IROUND IRINT)
7971 lfn (LFLOOR LCEIL LROUND LRINT)
7972 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
7973 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
7974 sizeof (int) == sizeof (long). */
7975 (if (TYPE_PRECISION (integer_type_node)
7976 == TYPE_PRECISION (long_integer_type_node))
7977 (simplify
7978 (ifn @0)
7979 (lfn:long_integer_type_node @0)))
7980 /* Canonicalize llround (x) to lround (x) on LP64 targets where
7981 sizeof (long long) == sizeof (long). */
7982 (if (TYPE_PRECISION (long_long_integer_type_node)
7983 == TYPE_PRECISION (long_integer_type_node))
7984 (simplify
7985 (llfn @0)
7986 (lfn:long_integer_type_node @0)))))
7987
7988 /* cproj(x) -> x if we're ignoring infinities. */
7989 (simplify
7990 (CPROJ @0)
7991 (if (!HONOR_INFINITIES (type))
7992 @0))
7993
7994 /* If the real part is inf and the imag part is known to be
7995 nonnegative, return (inf + 0i). */
7996 (simplify
7997 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
7998 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
7999 { build_complex_inf (type, false); }))
8000
8001 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
8002 (simplify
8003 (CPROJ (complex @0 REAL_CST@1))
8004 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
8005 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
8006
8007 (for pows (POW)
8008 sqrts (SQRT)
8009 cbrts (CBRT)
8010 (simplify
8011 (pows @0 REAL_CST@1)
8012 (with {
8013 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
8014 REAL_VALUE_TYPE tmp;
8015 }
8016 (switch
8017 /* pow(x,0) -> 1. */
8018 (if (real_equal (value, &dconst0))
8019 { build_real (type, dconst1); })
8020 /* pow(x,1) -> x. */
8021 (if (real_equal (value, &dconst1))
8022 @0)
8023 /* pow(x,-1) -> 1/x. */
8024 (if (real_equal (value, &dconstm1))
8025 (rdiv { build_real (type, dconst1); } @0))
8026 /* pow(x,0.5) -> sqrt(x). */
8027 (if (flag_unsafe_math_optimizations
8028 && canonicalize_math_p ()
8029 && real_equal (value, &dconsthalf))
8030 (sqrts @0))
8031 /* pow(x,1/3) -> cbrt(x). */
8032 (if (flag_unsafe_math_optimizations
8033 && canonicalize_math_p ()
8034 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
8035 real_equal (value, &tmp)))
8036 (cbrts @0))))))
8037
8038 /* powi(1,x) -> 1. */
8039 (simplify
8040 (POWI real_onep@0 @1)
8041 @0)
8042
8043 (simplify
8044 (POWI @0 INTEGER_CST@1)
8045 (switch
8046 /* powi(x,0) -> 1. */
8047 (if (wi::to_wide (@1) == 0)
8048 { build_real (type, dconst1); })
8049 /* powi(x,1) -> x. */
8050 (if (wi::to_wide (@1) == 1)
8051 @0)
8052 /* powi(x,-1) -> 1/x. */
8053 (if (wi::to_wide (@1) == -1)
8054 (rdiv { build_real (type, dconst1); } @0))))
8055
8056 /* Narrowing of arithmetic and logical operations.
8057
8058 These are conceptually similar to the transformations performed for
8059 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
8060 term we want to move all that code out of the front-ends into here. */
8061
8062 /* Convert (outertype)((innertype0)a+(innertype1)b)
8063 into ((newtype)a+(newtype)b) where newtype
8064 is the widest mode from all of these. */
8065 (for op (plus minus mult rdiv)
8066 (simplify
8067 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
8068 /* If we have a narrowing conversion of an arithmetic operation where
8069 both operands are widening conversions from the same type as the outer
8070 narrowing conversion. Then convert the innermost operands to a
8071 suitable unsigned type (to avoid introducing undefined behavior),
8072 perform the operation and convert the result to the desired type. */
8073 (if (INTEGRAL_TYPE_P (type)
8074 && op != MULT_EXPR
8075 && op != RDIV_EXPR
8076 /* We check for type compatibility between @0 and @1 below,
8077 so there's no need to check that @2/@4 are integral types. */
8078 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
8079 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
8080 /* The precision of the type of each operand must match the
8081 precision of the mode of each operand, similarly for the
8082 result. */
8083 && type_has_mode_precision_p (TREE_TYPE (@1))
8084 && type_has_mode_precision_p (TREE_TYPE (@2))
8085 && type_has_mode_precision_p (type)
8086 /* The inner conversion must be a widening conversion. */
8087 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
8088 && types_match (@1, type)
8089 && (types_match (@1, @2)
8090 /* Or the second operand is const integer or converted const
8091 integer from valueize. */
8092 || poly_int_tree_p (@4)))
8093 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
8094 (op @1 (convert @2))
8095 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
8096 (convert (op (convert:utype @1)
8097 (convert:utype @2)))))
8098 (if (FLOAT_TYPE_P (type)
8099 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
8100 == DECIMAL_FLOAT_TYPE_P (type))
8101 (with { tree arg0 = strip_float_extensions (@1);
8102 tree arg1 = strip_float_extensions (@2);
8103 tree itype = TREE_TYPE (@0);
8104 tree ty1 = TREE_TYPE (arg0);
8105 tree ty2 = TREE_TYPE (arg1);
8106 enum tree_code code = TREE_CODE (itype); }
8107 (if (FLOAT_TYPE_P (ty1)
8108 && FLOAT_TYPE_P (ty2))
8109 (with { tree newtype = type;
8110 if (TYPE_MODE (ty1) == SDmode
8111 || TYPE_MODE (ty2) == SDmode
8112 || TYPE_MODE (type) == SDmode)
8113 newtype = dfloat32_type_node;
8114 if (TYPE_MODE (ty1) == DDmode
8115 || TYPE_MODE (ty2) == DDmode
8116 || TYPE_MODE (type) == DDmode)
8117 newtype = dfloat64_type_node;
8118 if (TYPE_MODE (ty1) == TDmode
8119 || TYPE_MODE (ty2) == TDmode
8120 || TYPE_MODE (type) == TDmode)
8121 newtype = dfloat128_type_node; }
8122 (if ((newtype == dfloat32_type_node
8123 || newtype == dfloat64_type_node
8124 || newtype == dfloat128_type_node)
8125 && newtype == type
8126 && types_match (newtype, type))
8127 (op (convert:newtype @1) (convert:newtype @2))
8128 (with { if (element_precision (ty1) > element_precision (newtype))
8129 newtype = ty1;
8130 if (element_precision (ty2) > element_precision (newtype))
8131 newtype = ty2; }
8132 /* Sometimes this transformation is safe (cannot
8133 change results through affecting double rounding
8134 cases) and sometimes it is not. If NEWTYPE is
8135 wider than TYPE, e.g. (float)((long double)double
8136 + (long double)double) converted to
8137 (float)(double + double), the transformation is
8138 unsafe regardless of the details of the types
8139 involved; double rounding can arise if the result
8140 of NEWTYPE arithmetic is a NEWTYPE value half way
8141 between two representable TYPE values but the
8142 exact value is sufficiently different (in the
8143 right direction) for this difference to be
8144 visible in ITYPE arithmetic. If NEWTYPE is the
8145 same as TYPE, however, the transformation may be
8146 safe depending on the types involved: it is safe
8147 if the ITYPE has strictly more than twice as many
8148 mantissa bits as TYPE, can represent infinities
8149 and NaNs if the TYPE can, and has sufficient
8150 exponent range for the product or ratio of two
8151 values representable in the TYPE to be within the
8152 range of normal values of ITYPE. */
8153 (if (element_precision (newtype) < element_precision (itype)
8154 && (!VECTOR_MODE_P (TYPE_MODE (newtype))
8155 || target_supports_op_p (newtype, op, optab_default))
8156 && (flag_unsafe_math_optimizations
8157 || (element_precision (newtype) == element_precision (type)
8158 && real_can_shorten_arithmetic (element_mode (itype),
8159 element_mode (type))
8160 && !excess_precision_type (newtype)))
8161 && !types_match (itype, newtype))
8162 (convert:type (op (convert:newtype @1)
8163 (convert:newtype @2)))
8164 )))) )
8165 ))
8166 )))
8167
8168 /* This is another case of narrowing, specifically when there's an outer
8169 BIT_AND_EXPR which masks off bits outside the type of the innermost
8170 operands. Like the previous case we have to convert the operands
8171 to unsigned types to avoid introducing undefined behavior for the
8172 arithmetic operation. */
8173 (for op (minus plus)
8174 (simplify
8175 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
8176 (if (INTEGRAL_TYPE_P (type)
8177 /* We check for type compatibility between @0 and @1 below,
8178 so there's no need to check that @1/@3 are integral types. */
8179 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8180 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
8181 /* The precision of the type of each operand must match the
8182 precision of the mode of each operand, similarly for the
8183 result. */
8184 && type_has_mode_precision_p (TREE_TYPE (@0))
8185 && type_has_mode_precision_p (TREE_TYPE (@1))
8186 && type_has_mode_precision_p (type)
8187 /* The inner conversion must be a widening conversion. */
8188 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
8189 && types_match (@0, @1)
8190 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
8191 <= TYPE_PRECISION (TREE_TYPE (@0)))
8192 && (wi::to_wide (@4)
8193 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
8194 true, TYPE_PRECISION (type))) == 0)
8195 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
8196 (with { tree ntype = TREE_TYPE (@0); }
8197 (convert (bit_and (op @0 @1) (convert:ntype @4))))
8198 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
8199 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
8200 (convert:utype @4))))))))
8201
8202 /* Transform (@0 < @1 and @0 < @2) to use min,
8203 (@0 > @1 and @0 > @2) to use max */
8204 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
8205 op (lt le gt ge lt le gt ge )
8206 ext (min min max max max max min min )
8207 (simplify
8208 (logic (op:cs @0 @1) (op:cs @0 @2))
8209 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8210 && TREE_CODE (@0) != INTEGER_CST)
8211 (op @0 (ext @1 @2)))))
8212
8213 /* Max<bool0, bool1> -> bool0 | bool1
8214 Min<bool0, bool1> -> bool0 & bool1 */
8215 (for op (max min)
8216 logic (bit_ior bit_and)
8217 (simplify
8218 (op zero_one_valued_p@0 zero_one_valued_p@1)
8219 (logic @0 @1)))
8220
8221 /* signbit(x) != 0 ? -x : x -> abs(x)
8222 signbit(x) == 0 ? -x : x -> -abs(x) */
8223 (for sign (SIGNBIT)
8224 (for neeq (ne eq)
8225 (simplify
8226 (cond (neeq (sign @0) integer_zerop) (negate @0) @0)
8227 (if (neeq == NE_EXPR)
8228 (abs @0)
8229 (negate (abs @0))))))
8230
8231 (simplify
8232 /* signbit(x) -> 0 if x is nonnegative. */
8233 (SIGNBIT tree_expr_nonnegative_p@0)
8234 { integer_zero_node; })
8235
8236 (simplify
8237 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
8238 (SIGNBIT @0)
8239 (if (!HONOR_SIGNED_ZEROS (@0))
8240 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
8241
8242 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
8243 (for cmp (eq ne)
8244 (for op (plus minus)
8245 rop (minus plus)
8246 (simplify
8247 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
8248 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
8249 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
8250 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
8251 && !TYPE_SATURATING (TREE_TYPE (@0)))
8252 (with { tree res = int_const_binop (rop, @2, @1); }
8253 (if (TREE_OVERFLOW (res)
8254 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
8255 { constant_boolean_node (cmp == NE_EXPR, type); }
8256 (if (single_use (@3))
8257 (cmp @0 { TREE_OVERFLOW (res)
8258 ? drop_tree_overflow (res) : res; }))))))))
8259 (for cmp (lt le gt ge)
8260 (for op (plus minus)
8261 rop (minus plus)
8262 (simplify
8263 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
8264 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
8265 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
8266 (with { tree res = int_const_binop (rop, @2, @1); }
8267 (if (TREE_OVERFLOW (res))
8268 {
8269 fold_overflow_warning (("assuming signed overflow does not occur "
8270 "when simplifying conditional to constant"),
8271 WARN_STRICT_OVERFLOW_CONDITIONAL);
8272 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
8273 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
8274 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
8275 TYPE_SIGN (TREE_TYPE (@1)))
8276 != (op == MINUS_EXPR);
8277 constant_boolean_node (less == ovf_high, type);
8278 }
8279 (if (single_use (@3))
8280 (with
8281 {
8282 fold_overflow_warning (("assuming signed overflow does not occur "
8283 "when changing X +- C1 cmp C2 to "
8284 "X cmp C2 -+ C1"),
8285 WARN_STRICT_OVERFLOW_COMPARISON);
8286 }
8287 (cmp @0 { res; })))))))))
8288
8289 /* Canonicalizations of BIT_FIELD_REFs. */
8290
8291 (simplify
8292 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
8293 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
8294
8295 (simplify
8296 (BIT_FIELD_REF (view_convert @0) @1 @2)
8297 (if (! INTEGRAL_TYPE_P (TREE_TYPE (@0))
8298 || type_has_mode_precision_p (TREE_TYPE (@0)))
8299 (BIT_FIELD_REF @0 @1 @2)))
8300
8301 (simplify
8302 (BIT_FIELD_REF @0 @1 integer_zerop)
8303 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
8304 (view_convert @0)))
8305
8306 (simplify
8307 (BIT_FIELD_REF @0 @1 @2)
8308 (switch
8309 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
8310 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
8311 (switch
8312 (if (integer_zerop (@2))
8313 (view_convert (realpart @0)))
8314 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
8315 (view_convert (imagpart @0)))))
8316 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8317 && INTEGRAL_TYPE_P (type)
8318 /* On GIMPLE this should only apply to register arguments. */
8319 && (! GIMPLE || is_gimple_reg (@0))
8320 /* A bit-field-ref that referenced the full argument can be stripped. */
8321 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
8322 && integer_zerop (@2))
8323 /* Low-parts can be reduced to integral conversions.
8324 ??? The following doesn't work for PDP endian. */
8325 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
8326 /* But only do this after vectorization. */
8327 && canonicalize_math_after_vectorization_p ()
8328 /* Don't even think about BITS_BIG_ENDIAN. */
8329 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
8330 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
8331 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
8332 ? (TYPE_PRECISION (TREE_TYPE (@0))
8333 - TYPE_PRECISION (type))
8334 : 0)) == 0)))
8335 (convert @0))))
8336
8337 /* Simplify vector extracts. */
8338
8339 (simplify
8340 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
8341 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
8342 && tree_fits_uhwi_p (TYPE_SIZE (type))
8343 && ((tree_to_uhwi (TYPE_SIZE (type))
8344 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
8345 || (VECTOR_TYPE_P (type)
8346 && (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))
8347 == tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0))))))))
8348 (with
8349 {
8350 tree ctor = (TREE_CODE (@0) == SSA_NAME
8351 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
8352 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
8353 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
8354 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
8355 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
8356 }
8357 (if (n != 0
8358 && (idx % width) == 0
8359 && (n % width) == 0
8360 && known_le ((idx + n) / width,
8361 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
8362 (with
8363 {
8364 idx = idx / width;
8365 n = n / width;
8366 /* Constructor elements can be subvectors. */
8367 poly_uint64 k = 1;
8368 if (CONSTRUCTOR_NELTS (ctor) != 0)
8369 {
8370 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
8371 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
8372 k = TYPE_VECTOR_SUBPARTS (cons_elem);
8373 }
8374 unsigned HOST_WIDE_INT elt, count, const_k;
8375 }
8376 (switch
8377 /* We keep an exact subset of the constructor elements. */
8378 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
8379 (if (CONSTRUCTOR_NELTS (ctor) == 0)
8380 { build_zero_cst (type); }
8381 (if (count == 1)
8382 (if (elt < CONSTRUCTOR_NELTS (ctor))
8383 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
8384 { build_zero_cst (type); })
8385 /* We don't want to emit new CTORs unless the old one goes away.
8386 ??? Eventually allow this if the CTOR ends up constant or
8387 uniform. */
8388 (if (single_use (@0))
8389 (with
8390 {
8391 vec<constructor_elt, va_gc> *vals;
8392 vec_alloc (vals, count);
8393 bool constant_p = true;
8394 tree res;
8395 for (unsigned i = 0;
8396 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
8397 {
8398 tree e = CONSTRUCTOR_ELT (ctor, elt + i)->value;
8399 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE, e);
8400 if (!CONSTANT_CLASS_P (e))
8401 constant_p = false;
8402 }
8403 tree evtype = (types_match (TREE_TYPE (type),
8404 TREE_TYPE (TREE_TYPE (ctor)))
8405 ? type
8406 : build_vector_type (TREE_TYPE (TREE_TYPE (ctor)),
8407 count * k));
8408 /* We used to build a CTOR in the non-constant case here
8409 but that's not a GIMPLE value. We'd have to expose this
8410 operation somehow so the code generation can properly
8411 split it out to a separate stmt. */
8412 res = (constant_p ? build_vector_from_ctor (evtype, vals)
8413 : (GIMPLE ? NULL_TREE : build_constructor (evtype, vals)));
8414 }
8415 (if (res)
8416 (view_convert { res; })))))))
8417 /* The bitfield references a single constructor element. */
8418 (if (k.is_constant (&const_k)
8419 && idx + n <= (idx / const_k + 1) * const_k)
8420 (switch
8421 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
8422 { build_zero_cst (type); })
8423 (if (n == const_k)
8424 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
8425 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
8426 @1 { bitsize_int ((idx % const_k) * width); })))))))))
8427
8428 /* Simplify a bit extraction from a bit insertion for the cases with
8429 the inserted element fully covering the extraction or the insertion
8430 not touching the extraction. */
8431 (simplify
8432 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
8433 (with
8434 {
8435 unsigned HOST_WIDE_INT isize;
8436 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
8437 isize = TYPE_PRECISION (TREE_TYPE (@1));
8438 else
8439 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
8440 }
8441 (switch
8442 (if ((!INTEGRAL_TYPE_P (TREE_TYPE (@1))
8443 || type_has_mode_precision_p (TREE_TYPE (@1)))
8444 && wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
8445 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
8446 wi::to_wide (@ipos) + isize))
8447 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
8448 wi::to_wide (@rpos)
8449 - wi::to_wide (@ipos)); }))
8450 (if (wi::eq_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
8451 && compare_tree_int (@rsize, isize) == 0)
8452 (convert @1))
8453 (if (wi::geu_p (wi::to_wide (@ipos),
8454 wi::to_wide (@rpos) + wi::to_wide (@rsize))
8455 || wi::geu_p (wi::to_wide (@rpos),
8456 wi::to_wide (@ipos) + isize))
8457 (BIT_FIELD_REF @0 @rsize @rpos)))))
8458
8459 /* Simplify vector inserts of other vector extracts to a permute. */
8460 (simplify
8461 (bit_insert @0 (BIT_FIELD_REF@2 @1 @rsize @rpos) @ipos)
8462 (if (VECTOR_TYPE_P (type)
8463 && types_match (@0, @1)
8464 && types_match (TREE_TYPE (TREE_TYPE (@0)), TREE_TYPE (@2))
8465 && TYPE_VECTOR_SUBPARTS (type).is_constant ())
8466 (with
8467 {
8468 unsigned HOST_WIDE_INT elsz
8469 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (@1))));
8470 poly_uint64 relt = exact_div (tree_to_poly_uint64 (@rpos), elsz);
8471 poly_uint64 ielt = exact_div (tree_to_poly_uint64 (@ipos), elsz);
8472 unsigned nunits = TYPE_VECTOR_SUBPARTS (type).to_constant ();
8473 vec_perm_builder builder;
8474 builder.new_vector (nunits, nunits, 1);
8475 for (unsigned i = 0; i < nunits; ++i)
8476 builder.quick_push (known_eq (ielt, i) ? nunits + relt : i);
8477 vec_perm_indices sel (builder, 2, nunits);
8478 }
8479 (if (!VECTOR_MODE_P (TYPE_MODE (type))
8480 || can_vec_perm_const_p (TYPE_MODE (type), TYPE_MODE (type), sel, false))
8481 (vec_perm @0 @1 { vec_perm_indices_to_tree
8482 (build_vector_type (ssizetype, nunits), sel); })))))
8483
8484 (if (canonicalize_math_after_vectorization_p ())
8485 (for fmas (FMA)
8486 (simplify
8487 (fmas:c (negate @0) @1 @2)
8488 (IFN_FNMA @0 @1 @2))
8489 (simplify
8490 (fmas @0 @1 (negate @2))
8491 (IFN_FMS @0 @1 @2))
8492 (simplify
8493 (fmas:c (negate @0) @1 (negate @2))
8494 (IFN_FNMS @0 @1 @2))
8495 (simplify
8496 (negate (fmas@3 @0 @1 @2))
8497 (if (single_use (@3))
8498 (IFN_FNMS @0 @1 @2))))
8499
8500 (simplify
8501 (IFN_FMS:c (negate @0) @1 @2)
8502 (IFN_FNMS @0 @1 @2))
8503 (simplify
8504 (IFN_FMS @0 @1 (negate @2))
8505 (IFN_FMA @0 @1 @2))
8506 (simplify
8507 (IFN_FMS:c (negate @0) @1 (negate @2))
8508 (IFN_FNMA @0 @1 @2))
8509 (simplify
8510 (negate (IFN_FMS@3 @0 @1 @2))
8511 (if (single_use (@3))
8512 (IFN_FNMA @0 @1 @2)))
8513
8514 (simplify
8515 (IFN_FNMA:c (negate @0) @1 @2)
8516 (IFN_FMA @0 @1 @2))
8517 (simplify
8518 (IFN_FNMA @0 @1 (negate @2))
8519 (IFN_FNMS @0 @1 @2))
8520 (simplify
8521 (IFN_FNMA:c (negate @0) @1 (negate @2))
8522 (IFN_FMS @0 @1 @2))
8523 (simplify
8524 (negate (IFN_FNMA@3 @0 @1 @2))
8525 (if (single_use (@3))
8526 (IFN_FMS @0 @1 @2)))
8527
8528 (simplify
8529 (IFN_FNMS:c (negate @0) @1 @2)
8530 (IFN_FMS @0 @1 @2))
8531 (simplify
8532 (IFN_FNMS @0 @1 (negate @2))
8533 (IFN_FNMA @0 @1 @2))
8534 (simplify
8535 (IFN_FNMS:c (negate @0) @1 (negate @2))
8536 (IFN_FMA @0 @1 @2))
8537 (simplify
8538 (negate (IFN_FNMS@3 @0 @1 @2))
8539 (if (single_use (@3))
8540 (IFN_FMA @0 @1 @2))))
8541
8542 /* CLZ simplifications. */
8543 (for clz (CLZ)
8544 (for op (eq ne)
8545 cmp (lt ge)
8546 (simplify
8547 (op (clz:s@2 @0) INTEGER_CST@1)
8548 (if (integer_zerop (@1) && single_use (@2))
8549 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
8550 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
8551 (cmp (convert:stype @0) { build_zero_cst (stype); }))
8552 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
8553 (if (wi::to_wide (@1) == TYPE_PRECISION (TREE_TYPE (@0)) - 1)
8554 (op @0 { build_one_cst (TREE_TYPE (@0)); }))))))
8555 (for op (eq ne)
8556 cmp (lt ge)
8557 (simplify
8558 (op (IFN_CLZ:s@2 @0 @3) INTEGER_CST@1)
8559 (if (integer_zerop (@1) && single_use (@2))
8560 /* clz(X) == 0 is (int)X < 0 and clz(X) != 0 is (int)X >= 0. */
8561 (with { tree type0 = TREE_TYPE (@0);
8562 tree stype = signed_type_for (TREE_TYPE (@0));
8563 /* Punt if clz(0) == 0. */
8564 if (integer_zerop (@3))
8565 stype = NULL_TREE;
8566 }
8567 (if (stype)
8568 (cmp (convert:stype @0) { build_zero_cst (stype); })))
8569 /* clz(X) == (prec-1) is X == 1 and clz(X) != (prec-1) is X != 1. */
8570 (with { bool ok = true;
8571 tree type0 = TREE_TYPE (@0);
8572 /* Punt if clz(0) == prec - 1. */
8573 if (wi::to_widest (@3) == TYPE_PRECISION (type0) - 1)
8574 ok = false;
8575 }
8576 (if (ok && wi::to_wide (@1) == (TYPE_PRECISION (type0) - 1))
8577 (op @0 { build_one_cst (type0); }))))))
8578
8579 /* CTZ simplifications. */
8580 (for ctz (CTZ)
8581 (for op (ge gt le lt)
8582 cmp (eq eq ne ne)
8583 (simplify
8584 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
8585 (op (ctz:s @0) INTEGER_CST@1)
8586 (with { bool ok = true;
8587 HOST_WIDE_INT val = 0;
8588 if (!tree_fits_shwi_p (@1))
8589 ok = false;
8590 else
8591 {
8592 val = tree_to_shwi (@1);
8593 /* Canonicalize to >= or <. */
8594 if (op == GT_EXPR || op == LE_EXPR)
8595 {
8596 if (val == HOST_WIDE_INT_MAX)
8597 ok = false;
8598 else
8599 val++;
8600 }
8601 }
8602 tree type0 = TREE_TYPE (@0);
8603 int prec = TYPE_PRECISION (type0);
8604 }
8605 (if (ok && prec <= MAX_FIXED_MODE_SIZE)
8606 (if (val <= 0)
8607 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); }
8608 (if (val >= prec)
8609 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
8610 (cmp (bit_and @0 { wide_int_to_tree (type0,
8611 wi::mask (val, false, prec)); })
8612 { build_zero_cst (type0); })))))))
8613 (for op (eq ne)
8614 (simplify
8615 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
8616 (op (ctz:s @0) INTEGER_CST@1)
8617 (with { tree type0 = TREE_TYPE (@0);
8618 int prec = TYPE_PRECISION (type0);
8619 }
8620 (if (prec <= MAX_FIXED_MODE_SIZE)
8621 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
8622 { constant_boolean_node (op == EQ_EXPR ? false : true, type); }
8623 (op (bit_and @0 { wide_int_to_tree (type0,
8624 wi::mask (tree_to_uhwi (@1) + 1,
8625 false, prec)); })
8626 { wide_int_to_tree (type0,
8627 wi::shifted_mask (tree_to_uhwi (@1), 1,
8628 false, prec)); })))))))
8629 (for op (ge gt le lt)
8630 cmp (eq eq ne ne)
8631 (simplify
8632 /* __builtin_ctz (x) >= C -> (x & ((1 << C) - 1)) == 0. */
8633 (op (IFN_CTZ:s @0 @2) INTEGER_CST@1)
8634 (with { bool ok = true;
8635 HOST_WIDE_INT val = 0;
8636 if (!tree_fits_shwi_p (@1))
8637 ok = false;
8638 else
8639 {
8640 val = tree_to_shwi (@1);
8641 /* Canonicalize to >= or <. */
8642 if (op == GT_EXPR || op == LE_EXPR)
8643 {
8644 if (val == HOST_WIDE_INT_MAX)
8645 ok = false;
8646 else
8647 val++;
8648 }
8649 }
8650 HOST_WIDE_INT zero_val = tree_to_shwi (@2);
8651 tree type0 = TREE_TYPE (@0);
8652 int prec = TYPE_PRECISION (type0);
8653 if (prec > MAX_FIXED_MODE_SIZE)
8654 ok = false;
8655 }
8656 (if (val <= 0)
8657 (if (ok && zero_val >= val)
8658 { constant_boolean_node (cmp == EQ_EXPR ? true : false, type); })
8659 (if (val >= prec)
8660 (if (ok && zero_val < val)
8661 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); })
8662 (if (ok && (zero_val < 0 || zero_val >= prec))
8663 (cmp (bit_and @0 { wide_int_to_tree (type0,
8664 wi::mask (val, false, prec)); })
8665 { build_zero_cst (type0); })))))))
8666 (for op (eq ne)
8667 (simplify
8668 /* __builtin_ctz (x) == C -> (x & ((1 << (C + 1)) - 1)) == (1 << C). */
8669 (op (IFN_CTZ:s @0 @2) INTEGER_CST@1)
8670 (with { HOST_WIDE_INT zero_val = tree_to_shwi (@2);
8671 tree type0 = TREE_TYPE (@0);
8672 int prec = TYPE_PRECISION (type0);
8673 }
8674 (if (prec <= MAX_FIXED_MODE_SIZE)
8675 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) >= prec)
8676 (if (zero_val != wi::to_widest (@1))
8677 { constant_boolean_node (op == EQ_EXPR ? false : true, type); })
8678 (if (zero_val < 0 || zero_val >= prec)
8679 (op (bit_and @0 { wide_int_to_tree (type0,
8680 wi::mask (tree_to_uhwi (@1) + 1,
8681 false, prec)); })
8682 { wide_int_to_tree (type0,
8683 wi::shifted_mask (tree_to_uhwi (@1), 1,
8684 false, prec)); })))))))
8685
8686 #if GIMPLE
8687 /* ctz(ext(X)) == ctz(X). Valid just for the UB at zero cases though. */
8688 (simplify
8689 (CTZ (convert@1 @0))
8690 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
8691 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8692 && TYPE_PRECISION (TREE_TYPE (@1)) > TYPE_PRECISION (TREE_TYPE (@0)))
8693 (with { combined_fn cfn = CFN_LAST;
8694 tree type0 = TREE_TYPE (@0);
8695 if (TREE_CODE (type0) == BITINT_TYPE)
8696 {
8697 if (TYPE_PRECISION (type0) > MAX_FIXED_MODE_SIZE)
8698 cfn = CFN_CTZ;
8699 else
8700 type0
8701 = build_nonstandard_integer_type (TYPE_PRECISION (type0),
8702 1);
8703 }
8704 type0 = unsigned_type_for (type0);
8705 if (cfn == CFN_LAST
8706 && direct_internal_fn_supported_p (IFN_CTZ, type0,
8707 OPTIMIZE_FOR_BOTH))
8708 cfn = CFN_CTZ;
8709 if (cfn == CFN_LAST
8710 && TYPE_PRECISION (TREE_TYPE (@1)) > BITS_PER_WORD
8711 && !direct_internal_fn_supported_p (IFN_CTZ,
8712 TREE_TYPE (@1),
8713 OPTIMIZE_FOR_BOTH))
8714 {
8715 if (TYPE_PRECISION (type0)
8716 == TYPE_PRECISION (unsigned_type_node))
8717 cfn = CFN_BUILT_IN_CTZ;
8718 else if (TYPE_PRECISION (type0)
8719 == TYPE_PRECISION (long_long_unsigned_type_node))
8720 cfn = CFN_BUILT_IN_CTZLL;
8721 } }
8722 (if (cfn == CFN_CTZ)
8723 (IFN_CTZ (convert:type0 @0))
8724 (if (cfn == CFN_BUILT_IN_CTZ)
8725 (BUILT_IN_CTZ (convert:type0 @0))
8726 (if (cfn == CFN_BUILT_IN_CTZLL)
8727 (BUILT_IN_CTZLL (convert:type0 @0))))))))
8728 #endif
8729
8730 /* POPCOUNT simplifications. */
8731 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
8732 (simplify
8733 (plus (POPCOUNT:s @0) (POPCOUNT:s @1))
8734 (if (INTEGRAL_TYPE_P (type)
8735 && (wi::bit_and (widest_int::from (tree_nonzero_bits (@0), UNSIGNED),
8736 widest_int::from (tree_nonzero_bits (@1), UNSIGNED))
8737 == 0))
8738 (with { tree utype = TREE_TYPE (@0);
8739 if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (@1)))
8740 utype = TREE_TYPE (@1); }
8741 (POPCOUNT (bit_ior (convert:utype @0) (convert:utype @1))))))
8742
8743 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
8744 (for popcount (POPCOUNT)
8745 (for cmp (le eq ne gt)
8746 rep (eq eq ne ne)
8747 (simplify
8748 (cmp (popcount @0) integer_zerop)
8749 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
8750
8751 /* popcount(bswap(x)) is popcount(x). */
8752 (for popcount (POPCOUNT)
8753 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
8754 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
8755 (simplify
8756 (popcount (convert?@0 (bswap:s@1 @2)))
8757 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8758 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
8759 (with { tree type0 = TREE_TYPE (@0);
8760 tree type1 = TREE_TYPE (@1);
8761 unsigned int prec0 = TYPE_PRECISION (type0);
8762 unsigned int prec1 = TYPE_PRECISION (type1); }
8763 (if (prec0 == prec1 || (prec0 > prec1 && TYPE_UNSIGNED (type1)))
8764 (popcount (convert:type0 (convert:type1 @2)))))))))
8765
8766 /* popcount(rotate(X Y)) is popcount(X). */
8767 (for popcount (POPCOUNT)
8768 (for rot (lrotate rrotate)
8769 (simplify
8770 (popcount (convert?@0 (rot:s@1 @2 @3)))
8771 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8772 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
8773 && (GIMPLE || !TREE_SIDE_EFFECTS (@3)))
8774 (with { tree type0 = TREE_TYPE (@0);
8775 tree type1 = TREE_TYPE (@1);
8776 unsigned int prec0 = TYPE_PRECISION (type0);
8777 unsigned int prec1 = TYPE_PRECISION (type1); }
8778 (if (prec0 == prec1 || (prec0 > prec1 && TYPE_UNSIGNED (type1)))
8779 (popcount (convert:type0 @2))))))))
8780
8781 /* Canonicalize POPCOUNT(x)&1 as PARITY(X). */
8782 (simplify
8783 (bit_and (POPCOUNT @0) integer_onep)
8784 (PARITY @0))
8785
8786 /* popcount(X&Y) + popcount(X|Y) is popcount(x) + popcount(Y). */
8787 (simplify
8788 (plus:c (POPCOUNT:s (bit_and:s @0 @1)) (POPCOUNT:s (bit_ior:cs @0 @1)))
8789 (plus (POPCOUNT:type @0) (POPCOUNT:type @1)))
8790
8791 /* popcount(X) + popcount(Y) - popcount(X&Y) is popcount(X|Y). */
8792 /* popcount(X) + popcount(Y) - popcount(X|Y) is popcount(X&Y). */
8793 (for popcount (POPCOUNT)
8794 (for log1 (bit_and bit_ior)
8795 log2 (bit_ior bit_and)
8796 (simplify
8797 (minus (plus:s (popcount:s @0) (popcount:s @1))
8798 (popcount:s (log1:cs @0 @1)))
8799 (popcount (log2 @0 @1)))
8800 (simplify
8801 (plus:c (minus:s (popcount:s @0) (popcount:s (log1:cs @0 @1)))
8802 (popcount:s @1))
8803 (popcount (log2 @0 @1)))))
8804
8805 #if GIMPLE
8806 /* popcount(zext(X)) == popcount(X). */
8807 (simplify
8808 (POPCOUNT (convert@1 @0))
8809 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
8810 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8811 && TYPE_UNSIGNED (TREE_TYPE (@0))
8812 && TYPE_PRECISION (TREE_TYPE (@1)) > TYPE_PRECISION (TREE_TYPE (@0)))
8813 (with { combined_fn cfn = CFN_LAST;
8814 tree type0 = TREE_TYPE (@0);
8815 if (TREE_CODE (type0) == BITINT_TYPE)
8816 {
8817 if (TYPE_PRECISION (type0) > MAX_FIXED_MODE_SIZE)
8818 cfn = CFN_POPCOUNT;
8819 else
8820 type0
8821 = build_nonstandard_integer_type (TYPE_PRECISION (type0),
8822 1);
8823 }
8824 if (cfn == CFN_LAST
8825 && direct_internal_fn_supported_p (IFN_POPCOUNT, type0,
8826 OPTIMIZE_FOR_BOTH))
8827 cfn = CFN_POPCOUNT;
8828 if (cfn == CFN_LAST
8829 && TYPE_PRECISION (TREE_TYPE (@1)) > BITS_PER_WORD
8830 && !direct_internal_fn_supported_p (IFN_POPCOUNT,
8831 TREE_TYPE (@1),
8832 OPTIMIZE_FOR_BOTH))
8833 {
8834 if (TYPE_PRECISION (type0)
8835 == TYPE_PRECISION (unsigned_type_node))
8836 cfn = CFN_BUILT_IN_POPCOUNT;
8837 else if (TYPE_PRECISION (type0)
8838 == TYPE_PRECISION (long_long_unsigned_type_node))
8839 cfn = CFN_BUILT_IN_POPCOUNTLL;
8840 } }
8841 (if (cfn == CFN_POPCOUNT)
8842 (IFN_POPCOUNT (convert:type0 @0))
8843 (if (cfn == CFN_BUILT_IN_POPCOUNT)
8844 (BUILT_IN_POPCOUNT (convert:type0 @0))
8845 (if (cfn == CFN_BUILT_IN_POPCOUNTLL)
8846 (BUILT_IN_POPCOUNTLL (convert:type0 @0))))))))
8847 #endif
8848
8849 /* PARITY simplifications. */
8850 /* parity(~X) is parity(X). */
8851 (simplify
8852 (PARITY (bit_not @0))
8853 (PARITY @0))
8854
8855 /* parity(bswap(x)) is parity(x). */
8856 (for parity (PARITY)
8857 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32
8858 BUILT_IN_BSWAP64 BUILT_IN_BSWAP128)
8859 (simplify
8860 (parity (convert?@0 (bswap:s@1 @2)))
8861 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8862 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
8863 && TYPE_PRECISION (TREE_TYPE (@0))
8864 >= TYPE_PRECISION (TREE_TYPE (@1)))
8865 (with { tree type0 = TREE_TYPE (@0);
8866 tree type1 = TREE_TYPE (@1); }
8867 (parity (convert:type0 (convert:type1 @2))))))))
8868
8869 /* parity(rotate(X Y)) is parity(X). */
8870 (for parity (PARITY)
8871 (for rot (lrotate rrotate)
8872 (simplify
8873 (parity (convert?@0 (rot:s@1 @2 @3)))
8874 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
8875 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
8876 && (GIMPLE || !TREE_SIDE_EFFECTS (@3))
8877 && TYPE_PRECISION (TREE_TYPE (@0))
8878 >= TYPE_PRECISION (TREE_TYPE (@1)))
8879 (with { tree type0 = TREE_TYPE (@0); }
8880 (parity (convert:type0 @2)))))))
8881
8882 /* parity(X)^parity(Y) is parity(X^Y). */
8883 (simplify
8884 (bit_xor (PARITY:s @0) (PARITY:s @1))
8885 (PARITY (bit_xor @0 @1)))
8886
8887 #if GIMPLE
8888 /* parity(zext(X)) == parity(X). */
8889 /* parity(sext(X)) == parity(X) if the difference in precision is even. */
8890 (simplify
8891 (PARITY (convert@1 @0))
8892 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
8893 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
8894 && TYPE_PRECISION (TREE_TYPE (@1)) > TYPE_PRECISION (TREE_TYPE (@0))
8895 && (TYPE_UNSIGNED (TREE_TYPE (@0))
8896 || ((TYPE_PRECISION (TREE_TYPE (@1))
8897 - TYPE_PRECISION (TREE_TYPE (@0))) & 1) == 0))
8898 (with { combined_fn cfn = CFN_LAST;
8899 tree type0 = TREE_TYPE (@0);
8900 if (TREE_CODE (type0) == BITINT_TYPE)
8901 {
8902 if (TYPE_PRECISION (type0) > MAX_FIXED_MODE_SIZE)
8903 cfn = CFN_PARITY;
8904 else
8905 type0
8906 = build_nonstandard_integer_type (TYPE_PRECISION (type0),
8907 1);
8908 }
8909 type0 = unsigned_type_for (type0);
8910 if (cfn == CFN_LAST
8911 && direct_internal_fn_supported_p (IFN_PARITY, type0,
8912 OPTIMIZE_FOR_BOTH))
8913 cfn = CFN_PARITY;
8914 if (cfn == CFN_LAST
8915 && TYPE_PRECISION (TREE_TYPE (@1)) > BITS_PER_WORD
8916 && !direct_internal_fn_supported_p (IFN_PARITY,
8917 TREE_TYPE (@1),
8918 OPTIMIZE_FOR_BOTH))
8919 {
8920 if (TYPE_PRECISION (type0)
8921 == TYPE_PRECISION (unsigned_type_node))
8922 cfn = CFN_BUILT_IN_PARITY;
8923 else if (TYPE_PRECISION (type0)
8924 == TYPE_PRECISION (long_long_unsigned_type_node))
8925 cfn = CFN_BUILT_IN_PARITYLL;
8926 } }
8927 (if (cfn == CFN_PARITY)
8928 (IFN_PARITY (convert:type0 @0))
8929 (if (cfn == CFN_BUILT_IN_PARITY)
8930 (BUILT_IN_PARITY (convert:type0 @0))
8931 (if (cfn == CFN_BUILT_IN_PARITYLL)
8932 (BUILT_IN_PARITYLL (convert:type0 @0))))))))
8933 #endif
8934
8935 /* a != 0 ? FUN(a) : 0 -> Fun(a) for some builtin functions. */
8936 (for func (POPCOUNT BSWAP FFS PARITY)
8937 (simplify
8938 (cond (ne @0 integer_zerop@1) (func@3 (convert? @0)) integer_zerop@2)
8939 @3))
8940
8941 /* a != 0 ? FUN(a) : CST -> Fun(a) for some CLRSB builtins
8942 where CST is precision-1. */
8943 (for func (CLRSB)
8944 (simplify
8945 (cond (ne @0 integer_zerop@1) (func@4 (convert?@3 @0)) INTEGER_CST@2)
8946 (if (wi::to_widest (@2) == TYPE_PRECISION (TREE_TYPE (@3)) - 1)
8947 @4)))
8948
8949 #if GIMPLE
8950 /* a != 0 ? CLZ(a) : CST -> .CLZ(a) where CST is the result of the internal function for 0. */
8951 (for func (CLZ)
8952 (simplify
8953 (cond (ne @0 integer_zerop@1) (func (convert?@3 @0)) INTEGER_CST@2)
8954 (with { int val;
8955 internal_fn ifn = IFN_LAST;
8956 if (TREE_CODE (TREE_TYPE (@3)) == BITINT_TYPE)
8957 {
8958 if (tree_fits_shwi_p (@2))
8959 {
8960 HOST_WIDE_INT valw = tree_to_shwi (@2);
8961 if ((int) valw == valw)
8962 {
8963 val = valw;
8964 ifn = IFN_CLZ;
8965 }
8966 }
8967 }
8968 else if (direct_internal_fn_supported_p (IFN_CLZ, TREE_TYPE (@3),
8969 OPTIMIZE_FOR_BOTH)
8970 && CLZ_DEFINED_VALUE_AT_ZERO
8971 (SCALAR_INT_TYPE_MODE (TREE_TYPE (@3)), val) == 2)
8972 ifn = IFN_CLZ;
8973 }
8974 (if (ifn == IFN_CLZ && wi::to_widest (@2) == val)
8975 (IFN_CLZ @3 @2)))))
8976 (simplify
8977 (cond (ne @0 integer_zerop@1) (IFN_CLZ (convert?@3 @0) INTEGER_CST@2) @2)
8978 (with { int val;
8979 internal_fn ifn = IFN_LAST;
8980 if (TREE_CODE (TREE_TYPE (@3)) == BITINT_TYPE)
8981 ifn = IFN_CLZ;
8982 else if (direct_internal_fn_supported_p (IFN_CLZ, TREE_TYPE (@3),
8983 OPTIMIZE_FOR_BOTH))
8984 ifn = IFN_CLZ;
8985 }
8986 (if (ifn == IFN_CLZ)
8987 (IFN_CLZ @3 @2))))
8988
8989 /* a != 0 ? CTZ(a) : CST -> .CTZ(a) where CST is the result of the internal function for 0. */
8990 (for func (CTZ)
8991 (simplify
8992 (cond (ne @0 integer_zerop@1) (func (convert?@3 @0)) INTEGER_CST@2)
8993 (with { int val;
8994 internal_fn ifn = IFN_LAST;
8995 if (TREE_CODE (TREE_TYPE (@3)) == BITINT_TYPE)
8996 {
8997 if (tree_fits_shwi_p (@2))
8998 {
8999 HOST_WIDE_INT valw = tree_to_shwi (@2);
9000 if ((int) valw == valw)
9001 {
9002 val = valw;
9003 ifn = IFN_CTZ;
9004 }
9005 }
9006 }
9007 else if (direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@3),
9008 OPTIMIZE_FOR_BOTH)
9009 && CTZ_DEFINED_VALUE_AT_ZERO
9010 (SCALAR_INT_TYPE_MODE (TREE_TYPE (@3)), val) == 2)
9011 ifn = IFN_CTZ;
9012 }
9013 (if (ifn == IFN_CTZ && wi::to_widest (@2) == val)
9014 (IFN_CTZ @3 @2)))))
9015 (simplify
9016 (cond (ne @0 integer_zerop@1) (IFN_CTZ (convert?@3 @0) INTEGER_CST@2) @2)
9017 (with { int val;
9018 internal_fn ifn = IFN_LAST;
9019 if (TREE_CODE (TREE_TYPE (@3)) == BITINT_TYPE)
9020 ifn = IFN_CTZ;
9021 else if (direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@3),
9022 OPTIMIZE_FOR_BOTH))
9023 ifn = IFN_CTZ;
9024 }
9025 (if (ifn == IFN_CTZ)
9026 (IFN_CTZ @3 @2))))
9027 #endif
9028
9029 /* Common POPCOUNT/PARITY simplifications. */
9030 /* popcount(X&C1) is (X>>C2)&1 when C1 == 1<<C2. Same for parity(X&C1). */
9031 (for pfun (POPCOUNT PARITY)
9032 (simplify
9033 (pfun @0)
9034 (if (INTEGRAL_TYPE_P (type))
9035 (with { wide_int nz = tree_nonzero_bits (@0); }
9036 (switch
9037 (if (nz == 1)
9038 (convert @0))
9039 (if (wi::popcount (nz) == 1)
9040 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
9041 (convert (rshift:utype (convert:utype @0)
9042 { build_int_cst (integer_type_node,
9043 wi::ctz (nz)); })))))))))
9044
9045 #if GIMPLE
9046 /* 64- and 32-bits branchless implementations of popcount are detected:
9047
9048 int popcount64c (uint64_t x)
9049 {
9050 x -= (x >> 1) & 0x5555555555555555ULL;
9051 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
9052 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
9053 return (x * 0x0101010101010101ULL) >> 56;
9054 }
9055
9056 int popcount32c (uint32_t x)
9057 {
9058 x -= (x >> 1) & 0x55555555;
9059 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
9060 x = (x + (x >> 4)) & 0x0f0f0f0f;
9061 return (x * 0x01010101) >> 24;
9062 } */
9063 (simplify
9064 (rshift
9065 (mult
9066 (bit_and
9067 (plus:c
9068 (rshift @8 INTEGER_CST@5)
9069 (plus:c@8
9070 (bit_and @6 INTEGER_CST@7)
9071 (bit_and
9072 (rshift
9073 (minus@6 @0
9074 (bit_and (rshift @0 INTEGER_CST@4) INTEGER_CST@11))
9075 INTEGER_CST@10)
9076 INTEGER_CST@9)))
9077 INTEGER_CST@3)
9078 INTEGER_CST@2)
9079 INTEGER_CST@1)
9080 /* Check constants and optab. */
9081 (with { unsigned prec = TYPE_PRECISION (type);
9082 int shift = (64 - prec) & 63;
9083 unsigned HOST_WIDE_INT c1
9084 = HOST_WIDE_INT_UC (0x0101010101010101) >> shift;
9085 unsigned HOST_WIDE_INT c2
9086 = HOST_WIDE_INT_UC (0x0F0F0F0F0F0F0F0F) >> shift;
9087 unsigned HOST_WIDE_INT c3
9088 = HOST_WIDE_INT_UC (0x3333333333333333) >> shift;
9089 unsigned HOST_WIDE_INT c4
9090 = HOST_WIDE_INT_UC (0x5555555555555555) >> shift;
9091 }
9092 (if (prec >= 16
9093 && prec <= 64
9094 && pow2p_hwi (prec)
9095 && TYPE_UNSIGNED (type)
9096 && integer_onep (@4)
9097 && wi::to_widest (@10) == 2
9098 && wi::to_widest (@5) == 4
9099 && wi::to_widest (@1) == prec - 8
9100 && tree_to_uhwi (@2) == c1
9101 && tree_to_uhwi (@3) == c2
9102 && tree_to_uhwi (@9) == c3
9103 && tree_to_uhwi (@7) == c3
9104 && tree_to_uhwi (@11) == c4)
9105 (if (direct_internal_fn_supported_p (IFN_POPCOUNT, type,
9106 OPTIMIZE_FOR_BOTH))
9107 (convert (IFN_POPCOUNT:type @0))
9108 /* Try to do popcount in two halves. PREC must be at least
9109 five bits for this to work without extension before adding. */
9110 (with {
9111 tree half_type = NULL_TREE;
9112 opt_machine_mode m = mode_for_size ((prec + 1) / 2, MODE_INT, 1);
9113 int half_prec = 8;
9114 if (m.exists ()
9115 && m.require () != TYPE_MODE (type))
9116 {
9117 half_prec = GET_MODE_PRECISION (as_a <scalar_int_mode> (m));
9118 half_type = build_nonstandard_integer_type (half_prec, 1);
9119 }
9120 gcc_assert (half_prec > 2);
9121 }
9122 (if (half_type != NULL_TREE
9123 && direct_internal_fn_supported_p (IFN_POPCOUNT, half_type,
9124 OPTIMIZE_FOR_BOTH))
9125 (convert (plus
9126 (IFN_POPCOUNT:half_type (convert @0))
9127 (IFN_POPCOUNT:half_type (convert (rshift @0
9128 { build_int_cst (integer_type_node, half_prec); } )))))))))))
9129
9130 /* __builtin_ffs needs to deal on many targets with the possible zero
9131 argument. If we know the argument is always non-zero, __builtin_ctz + 1
9132 should lead to better code. */
9133 (simplify
9134 (FFS tree_expr_nonzero_p@0)
9135 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
9136 && direct_internal_fn_supported_p (IFN_CTZ, TREE_TYPE (@0),
9137 OPTIMIZE_FOR_SPEED))
9138 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
9139 (plus (CTZ:type (convert:utype @0)) { build_one_cst (type); }))))
9140 #endif
9141
9142 (for ffs (FFS)
9143 /* __builtin_ffs (X) == 0 -> X == 0.
9144 __builtin_ffs (X) == 6 -> (X & 63) == 32. */
9145 (for cmp (eq ne)
9146 (simplify
9147 (cmp (ffs@2 @0) INTEGER_CST@1)
9148 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
9149 (switch
9150 (if (integer_zerop (@1))
9151 (cmp @0 { build_zero_cst (TREE_TYPE (@0)); }))
9152 (if (tree_int_cst_sgn (@1) < 0 || wi::to_widest (@1) > prec)
9153 { constant_boolean_node (cmp == NE_EXPR ? true : false, type); })
9154 (if (single_use (@2))
9155 (cmp (bit_and @0 { wide_int_to_tree (TREE_TYPE (@0),
9156 wi::mask (tree_to_uhwi (@1),
9157 false, prec)); })
9158 { wide_int_to_tree (TREE_TYPE (@0),
9159 wi::shifted_mask (tree_to_uhwi (@1) - 1, 1,
9160 false, prec)); }))))))
9161
9162 /* __builtin_ffs (X) > 6 -> X != 0 && (X & 63) == 0. */
9163 (for cmp (gt le)
9164 cmp2 (ne eq)
9165 cmp3 (eq ne)
9166 bit_op (bit_and bit_ior)
9167 (simplify
9168 (cmp (ffs@2 @0) INTEGER_CST@1)
9169 (with { int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
9170 (switch
9171 (if (integer_zerop (@1))
9172 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))
9173 (if (tree_int_cst_sgn (@1) < 0)
9174 { constant_boolean_node (cmp == GT_EXPR ? true : false, type); })
9175 (if (wi::to_widest (@1) >= prec)
9176 { constant_boolean_node (cmp == GT_EXPR ? false : true, type); })
9177 (if (wi::to_widest (@1) == prec - 1)
9178 (cmp3 @0 { wide_int_to_tree (TREE_TYPE (@0),
9179 wi::shifted_mask (prec - 1, 1,
9180 false, prec)); }))
9181 (if (single_use (@2))
9182 (bit_op (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); })
9183 (cmp3 (bit_and @0
9184 { wide_int_to_tree (TREE_TYPE (@0),
9185 wi::mask (tree_to_uhwi (@1),
9186 false, prec)); })
9187 { build_zero_cst (TREE_TYPE (@0)); }))))))))
9188
9189 #if GIMPLE
9190 /* ffs(ext(X)) == ffs(X). */
9191 (simplify
9192 (FFS (convert@1 @0))
9193 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
9194 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
9195 && TYPE_PRECISION (TREE_TYPE (@1)) > TYPE_PRECISION (TREE_TYPE (@0)))
9196 (with { combined_fn cfn = CFN_LAST;
9197 tree type0 = TREE_TYPE (@0);
9198 if (TREE_CODE (type0) == BITINT_TYPE)
9199 {
9200 if (TYPE_PRECISION (type0) > MAX_FIXED_MODE_SIZE)
9201 cfn = CFN_FFS;
9202 else
9203 type0
9204 = build_nonstandard_integer_type (TYPE_PRECISION (type0),
9205 0);
9206 }
9207 type0 = signed_type_for (type0);
9208 if (cfn == CFN_LAST
9209 && direct_internal_fn_supported_p (IFN_FFS, type0,
9210 OPTIMIZE_FOR_BOTH))
9211 cfn = CFN_FFS;
9212 if (cfn == CFN_LAST
9213 && TYPE_PRECISION (TREE_TYPE (@1)) > BITS_PER_WORD
9214 && !direct_internal_fn_supported_p (IFN_FFS,
9215 TREE_TYPE (@1),
9216 OPTIMIZE_FOR_BOTH))
9217 {
9218 if (TYPE_PRECISION (type0)
9219 == TYPE_PRECISION (integer_type_node))
9220 cfn = CFN_BUILT_IN_FFS;
9221 else if (TYPE_PRECISION (type0)
9222 == TYPE_PRECISION (long_long_integer_type_node))
9223 cfn = CFN_BUILT_IN_FFSLL;
9224 } }
9225 (if (cfn == CFN_FFS)
9226 (IFN_FFS (convert:type0 @0))
9227 (if (cfn == CFN_BUILT_IN_FFS)
9228 (BUILT_IN_FFS (convert:type0 @0))
9229 (if (cfn == CFN_BUILT_IN_FFSLL)
9230 (BUILT_IN_FFSLL (convert:type0 @0))))))))
9231 #endif
9232
9233 #if GIMPLE
9234
9235 /* Simplify:
9236 a = op a1
9237 r = cond ? a : b
9238 --> r = .COND_FN (cond, a, b)
9239 and,
9240 a = op a1
9241 r = cond ? b : a
9242 --> r = .COND_FN (~cond, b, a). */
9243
9244 (for uncond_op (UNCOND_UNARY)
9245 cond_op (COND_UNARY)
9246 (simplify
9247 (vec_cond @0 (view_convert? (uncond_op@3 @1)) @2)
9248 (with { tree op_type = TREE_TYPE (@3); }
9249 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9250 && is_truth_type_for (op_type, TREE_TYPE (@0)))
9251 (cond_op @0 (view_convert @1) @2))))
9252 (simplify
9253 (vec_cond @0 @1 (view_convert? (uncond_op@3 @2)))
9254 (with { tree op_type = TREE_TYPE (@3); }
9255 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9256 && is_truth_type_for (op_type, TREE_TYPE (@0)))
9257 (cond_op (bit_not @0) (view_convert @2) @1)))))
9258
9259 (for uncond_op (UNCOND_UNARY)
9260 cond_op (COND_LEN_UNARY)
9261 (simplify
9262 (IFN_VCOND_MASK_LEN @0 (view_convert? (uncond_op@3 @1)) @2 @4 @5)
9263 (with { tree op_type = TREE_TYPE (@3); }
9264 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9265 && is_truth_type_for (op_type, TREE_TYPE (@0)))
9266 (cond_op @0 (view_convert @1) @2 @4 @5))))
9267 (simplify
9268 (IFN_VCOND_MASK_LEN @0 @1 (view_convert? (uncond_op@3 @2)) @4 @5)
9269 (with { tree op_type = TREE_TYPE (@3); }
9270 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9271 && is_truth_type_for (op_type, TREE_TYPE (@0)))
9272 (cond_op (bit_not @0) (view_convert @2) @1 @4 @5)))))
9273
9274 /* `(a ? -1 : 0) ^ b` can be converted into a conditional not. */
9275 (simplify
9276 (bit_xor:c (vec_cond @0 uniform_integer_cst_p@1 uniform_integer_cst_p@2) @3)
9277 (if (canonicalize_math_after_vectorization_p ()
9278 && vectorized_internal_fn_supported_p (IFN_COND_NOT, type)
9279 && is_truth_type_for (type, TREE_TYPE (@0)))
9280 (if (integer_all_onesp (@1) && integer_zerop (@2))
9281 (IFN_COND_NOT @0 @3 @3))
9282 (if (integer_all_onesp (@2) && integer_zerop (@1))
9283 (IFN_COND_NOT (bit_not @0) @3 @3))))
9284
9285 /* Simplify:
9286
9287 a = a1 op a2
9288 r = c ? a : b;
9289
9290 to:
9291
9292 r = c ? a1 op a2 : b;
9293
9294 if the target can do it in one go. This makes the operation conditional
9295 on c, so could drop potentially-trapping arithmetic, but that's a valid
9296 simplification if the result of the operation isn't needed.
9297
9298 Avoid speculatively generating a stand-alone vector comparison
9299 on targets that might not support them. Any target implementing
9300 conditional internal functions must support the same comparisons
9301 inside and outside a VEC_COND_EXPR. */
9302
9303 (for uncond_op (UNCOND_BINARY)
9304 cond_op (COND_BINARY)
9305 (simplify
9306 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
9307 (with { tree op_type = TREE_TYPE (@4); }
9308 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9309 && is_truth_type_for (op_type, TREE_TYPE (@0))
9310 && single_use (@4))
9311 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
9312 (simplify
9313 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
9314 (with { tree op_type = TREE_TYPE (@4); }
9315 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9316 && is_truth_type_for (op_type, TREE_TYPE (@0))
9317 && single_use (@4))
9318 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
9319
9320 (for uncond_op (UNCOND_BINARY)
9321 cond_op (COND_LEN_BINARY)
9322 (simplify
9323 (IFN_VCOND_MASK_LEN @0 (view_convert? (uncond_op@4 @1 @2)) @3 @5 @6)
9324 (with { tree op_type = TREE_TYPE (@4); }
9325 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9326 && is_truth_type_for (op_type, TREE_TYPE (@0))
9327 && single_use (@4))
9328 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3) @5 @6)))))
9329 (simplify
9330 (IFN_VCOND_MASK_LEN @0 @1 (view_convert? (uncond_op@4 @2 @3)) @5 @6)
9331 (with { tree op_type = TREE_TYPE (@4); }
9332 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9333 && is_truth_type_for (op_type, TREE_TYPE (@0))
9334 && single_use (@4))
9335 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1) @5 @6))))))
9336
9337 /* Same for ternary operations. */
9338 (for uncond_op (UNCOND_TERNARY)
9339 cond_op (COND_TERNARY)
9340 (simplify
9341 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
9342 (with { tree op_type = TREE_TYPE (@5); }
9343 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9344 && is_truth_type_for (op_type, TREE_TYPE (@0))
9345 && single_use (@5))
9346 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
9347 (simplify
9348 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
9349 (with { tree op_type = TREE_TYPE (@5); }
9350 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9351 && is_truth_type_for (op_type, TREE_TYPE (@0))
9352 && single_use (@5))
9353 (view_convert (cond_op (bit_not @0) @2 @3 @4
9354 (view_convert:op_type @1)))))))
9355
9356 (for uncond_op (UNCOND_TERNARY)
9357 cond_op (COND_LEN_TERNARY)
9358 (simplify
9359 (IFN_VCOND_MASK_LEN @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4 @6 @7)
9360 (with { tree op_type = TREE_TYPE (@5); }
9361 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9362 && is_truth_type_for (op_type, TREE_TYPE (@0))
9363 && single_use (@5))
9364 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4) @6 @7)))))
9365 (simplify
9366 (IFN_VCOND_MASK_LEN @0 @1 (view_convert? (uncond_op@5 @2 @3 @4 @6 @7)))
9367 (with { tree op_type = TREE_TYPE (@5); }
9368 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
9369 && is_truth_type_for (op_type, TREE_TYPE (@0))
9370 && single_use (@5))
9371 (view_convert (cond_op (bit_not @0) @2 @3 @4 (view_convert:op_type @1) @6 @7))))))
9372 #endif
9373
9374 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
9375 "else" value of an IFN_COND_*. */
9376 (for cond_op (COND_BINARY)
9377 (simplify
9378 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
9379 (with { tree op_type = TREE_TYPE (@3); }
9380 (if (element_precision (type) == element_precision (op_type))
9381 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
9382 (simplify
9383 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
9384 (with { tree op_type = TREE_TYPE (@5); }
9385 (if (inverse_conditions_p (@0, @2)
9386 && element_precision (type) == element_precision (op_type))
9387 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
9388
9389 /* Same for ternary operations. */
9390 (for cond_op (COND_TERNARY)
9391 (simplify
9392 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
9393 (with { tree op_type = TREE_TYPE (@4); }
9394 (if (element_precision (type) == element_precision (op_type))
9395 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
9396 (simplify
9397 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
9398 (with { tree op_type = TREE_TYPE (@6); }
9399 (if (inverse_conditions_p (@0, @2)
9400 && element_precision (type) == element_precision (op_type))
9401 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
9402
9403 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
9404 "else" value of an IFN_COND_LEN_*. */
9405 (for cond_len_op (COND_LEN_BINARY)
9406 (simplify
9407 (vec_cond @0 (view_convert? (cond_len_op @0 @1 @2 @3 @4 @5)) @6)
9408 (with { tree op_type = TREE_TYPE (@3); }
9409 (if (element_precision (type) == element_precision (op_type))
9410 (view_convert (cond_len_op @0 @1 @2 (view_convert:op_type @6) @4 @5)))))
9411 (simplify
9412 (vec_cond @0 @1 (view_convert? (cond_len_op @2 @3 @4 @5 @6 @7)))
9413 (with { tree op_type = TREE_TYPE (@5); }
9414 (if (inverse_conditions_p (@0, @2)
9415 && element_precision (type) == element_precision (op_type))
9416 (view_convert (cond_len_op @2 @3 @4 (view_convert:op_type @1) @6 @7))))))
9417
9418 /* Same for ternary operations. */
9419 (for cond_len_op (COND_LEN_TERNARY)
9420 (simplify
9421 (vec_cond @0 (view_convert? (cond_len_op @0 @1 @2 @3 @4 @5 @6)) @7)
9422 (with { tree op_type = TREE_TYPE (@4); }
9423 (if (element_precision (type) == element_precision (op_type))
9424 (view_convert (cond_len_op @0 @1 @2 @3 (view_convert:op_type @7) @5 @6)))))
9425 (simplify
9426 (vec_cond @0 @1 (view_convert? (cond_len_op @2 @3 @4 @5 @6 @7 @8)))
9427 (with { tree op_type = TREE_TYPE (@6); }
9428 (if (inverse_conditions_p (@0, @2)
9429 && element_precision (type) == element_precision (op_type))
9430 (view_convert (cond_len_op @2 @3 @4 @5 (view_convert:op_type @1) @7 @8))))))
9431
9432 /* Detect simplication for a conditional reduction where
9433
9434 a = mask1 ? b : 0
9435 c = mask2 ? d + a : d
9436
9437 is turned into
9438
9439 c = mask1 && mask2 ? d + b : d. */
9440 (simplify
9441 (IFN_COND_ADD @0 @1 (vec_cond @2 @3 zerop@4) @1)
9442 (if (ANY_INTEGRAL_TYPE_P (type)
9443 || (FLOAT_TYPE_P (type)
9444 && fold_real_zero_addition_p (type, NULL_TREE, @4, 0)))
9445 (IFN_COND_ADD (bit_and @0 @2) @1 @3 @1)))
9446
9447 /* Detect simplication for a conditional length reduction where
9448
9449 a = mask ? b : 0
9450 c = i < len + bias ? d + a : d
9451
9452 is turned into
9453
9454 c = mask && i < len + bias ? d + b : d. */
9455 (simplify
9456 (IFN_COND_LEN_ADD integer_truep @0 (vec_cond @1 @2 zerop@5) @0 @3 @4)
9457 (if (ANY_INTEGRAL_TYPE_P (type)
9458 || (FLOAT_TYPE_P (type)
9459 && fold_real_zero_addition_p (type, NULL_TREE, @5, 0)))
9460 (IFN_COND_LEN_ADD @1 @0 @2 @0 @3 @4)))
9461
9462 /* Detect simplification for vector condition folding where
9463
9464 c = mask1 ? (masked_op mask2 a b) : b
9465
9466 into
9467
9468 c = masked_op (mask1 & mask2) a b
9469
9470 where the operation can be partially applied to one operand. */
9471
9472 (for cond_op (COND_BINARY)
9473 (simplify
9474 (vec_cond @0
9475 (cond_op:s @1 @2 @3 @4) @3)
9476 (cond_op (bit_and @1 @0) @2 @3 @4)))
9477
9478 /* And same for ternary expressions. */
9479
9480 (for cond_op (COND_TERNARY)
9481 (simplify
9482 (vec_cond @0
9483 (cond_op:s @1 @2 @3 @4 @5) @4)
9484 (cond_op (bit_and @1 @0) @2 @3 @4 @5)))
9485
9486 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
9487 expressions like:
9488
9489 A: (@0 + @1 < @2) | (@2 + @1 < @0)
9490 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
9491
9492 If pointers are known not to wrap, B checks whether @1 bytes starting
9493 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
9494 bytes. A is more efficiently tested as:
9495
9496 A: (sizetype) (@0 + @1 - @2) > @1 * 2
9497
9498 The equivalent expression for B is given by replacing @1 with @1 - 1:
9499
9500 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
9501
9502 @0 and @2 can be swapped in both expressions without changing the result.
9503
9504 The folds rely on sizetype's being unsigned (which is always true)
9505 and on its being the same width as the pointer (which we have to check).
9506
9507 The fold replaces two pointer_plus expressions, two comparisons and
9508 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
9509 the best case it's a saving of two operations. The A fold retains one
9510 of the original pointer_pluses, so is a win even if both pointer_pluses
9511 are used elsewhere. The B fold is a wash if both pointer_pluses are
9512 used elsewhere, since all we end up doing is replacing a comparison with
9513 a pointer_plus. We do still apply the fold under those circumstances
9514 though, in case applying it to other conditions eventually makes one of the
9515 pointer_pluses dead. */
9516 (for ior (truth_orif truth_or bit_ior)
9517 (for cmp (le lt)
9518 (simplify
9519 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
9520 (cmp:cs (pointer_plus@4 @2 @1) @0))
9521 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
9522 && TYPE_OVERFLOW_WRAPS (sizetype)
9523 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
9524 /* Calculate the rhs constant. */
9525 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
9526 offset_int rhs = off * 2; }
9527 /* Always fails for negative values. */
9528 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
9529 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
9530 pick a canonical order. This increases the chances of using the
9531 same pointer_plus in multiple checks. */
9532 (with { bool swap_p = tree_swap_operands_p (@0, @2);
9533 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
9534 (if (cmp == LT_EXPR)
9535 (gt (convert:sizetype
9536 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
9537 { swap_p ? @0 : @2; }))
9538 { rhs_tree; })
9539 (gt (convert:sizetype
9540 (pointer_diff:ssizetype
9541 (pointer_plus { swap_p ? @2 : @0; }
9542 { wide_int_to_tree (sizetype, off); })
9543 { swap_p ? @0 : @2; }))
9544 { rhs_tree; })))))))))
9545
9546 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
9547 element of @1. */
9548 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
9549 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
9550 (with { int i = single_nonzero_element (@1); }
9551 (if (i >= 0)
9552 (with { tree elt = vector_cst_elt (@1, i);
9553 tree elt_type = TREE_TYPE (elt);
9554 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
9555 tree size = bitsize_int (elt_bits);
9556 tree pos = bitsize_int (elt_bits * i); }
9557 (view_convert
9558 (bit_and:elt_type
9559 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
9560 { elt; })))))))
9561
9562 /* Fold reduction of a single nonzero element constructor. */
9563 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
9564 (simplify (reduc (CONSTRUCTOR@0))
9565 (with { tree ctor = (TREE_CODE (@0) == SSA_NAME
9566 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
9567 tree elt = ctor_single_nonzero_element (ctor); }
9568 (if (elt
9569 && !HONOR_SNANS (type)
9570 && !HONOR_SIGNED_ZEROS (type))
9571 { elt; }))))
9572
9573 /* Fold REDUC (@0 op VECTOR_CST) as REDUC (@0) op REDUC (VECTOR_CST). */
9574 (for reduc (IFN_REDUC_PLUS IFN_REDUC_MAX IFN_REDUC_MIN IFN_REDUC_FMAX
9575 IFN_REDUC_FMIN IFN_REDUC_AND IFN_REDUC_IOR IFN_REDUC_XOR)
9576 op (plus max min IFN_FMAX IFN_FMIN bit_and bit_ior bit_xor)
9577 (simplify (reduc (op @0 VECTOR_CST@1))
9578 (op (reduc:type @0) (reduc:type @1))))
9579
9580 /* Simplify vector floating point operations of alternating sub/add pairs
9581 into using an fneg of a wider element type followed by a normal add.
9582 under IEEE 754 the fneg of the wider type will negate every even entry
9583 and when doing an add we get a sub of the even and add of every odd
9584 elements. */
9585 (for plusminus (plus minus)
9586 minusplus (minus plus)
9587 (simplify
9588 (vec_perm (plusminus @0 @1) (minusplus @2 @3) VECTOR_CST@4)
9589 (if (!VECTOR_INTEGER_TYPE_P (type)
9590 && !FLOAT_WORDS_BIG_ENDIAN
9591 /* plus is commutative, while minus is not, so :c can't be used.
9592 Do equality comparisons by hand and at the end pick the operands
9593 from the minus. */
9594 && (operand_equal_p (@0, @2, 0)
9595 ? operand_equal_p (@1, @3, 0)
9596 : operand_equal_p (@0, @3, 0) && operand_equal_p (@1, @2, 0)))
9597 (with
9598 {
9599 /* Build a vector of integers from the tree mask. */
9600 vec_perm_builder builder;
9601 }
9602 (if (tree_to_vec_perm_builder (&builder, @4))
9603 (with
9604 {
9605 /* Create a vec_perm_indices for the integer vector. */
9606 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
9607 vec_perm_indices sel (builder, 2, nelts);
9608 machine_mode vec_mode = TYPE_MODE (type);
9609 machine_mode wide_mode;
9610 scalar_mode wide_elt_mode;
9611 poly_uint64 wide_nunits;
9612 scalar_mode inner_mode = GET_MODE_INNER (vec_mode);
9613 }
9614 (if (VECTOR_MODE_P (vec_mode)
9615 && sel.series_p (0, 2, 0, 2)
9616 && sel.series_p (1, 2, nelts + 1, 2)
9617 && GET_MODE_2XWIDER_MODE (inner_mode).exists (&wide_elt_mode)
9618 && multiple_p (GET_MODE_NUNITS (vec_mode), 2, &wide_nunits)
9619 && related_vector_mode (vec_mode, wide_elt_mode,
9620 wide_nunits).exists (&wide_mode))
9621 (with
9622 {
9623 tree stype
9624 = lang_hooks.types.type_for_mode (GET_MODE_INNER (wide_mode),
9625 TYPE_UNSIGNED (type));
9626 tree ntype = build_vector_type_for_mode (stype, wide_mode);
9627
9628 /* The format has to be a non-extended ieee format. */
9629 const struct real_format *fmt_old = FLOAT_MODE_FORMAT (vec_mode);
9630 const struct real_format *fmt_new = FLOAT_MODE_FORMAT (wide_mode);
9631 }
9632 (if (TYPE_MODE (stype) != BLKmode
9633 && VECTOR_TYPE_P (ntype)
9634 && fmt_old != NULL
9635 && fmt_new != NULL)
9636 (with
9637 {
9638 /* If the target doesn't support v1xx vectors, try using
9639 scalar mode xx instead. */
9640 if (known_eq (GET_MODE_NUNITS (wide_mode), 1)
9641 && !target_supports_op_p (ntype, NEGATE_EXPR, optab_vector))
9642 ntype = stype;
9643 }
9644 (if (fmt_new->signbit_rw
9645 == fmt_old->signbit_rw + GET_MODE_UNIT_BITSIZE (vec_mode)
9646 && fmt_new->signbit_rw == fmt_new->signbit_ro
9647 && targetm.can_change_mode_class (TYPE_MODE (ntype),
9648 TYPE_MODE (type), ALL_REGS)
9649 && ((optimize_vectors_before_lowering_p ()
9650 && VECTOR_TYPE_P (ntype))
9651 || target_supports_op_p (ntype, NEGATE_EXPR, optab_vector)))
9652 (if (plusminus == PLUS_EXPR)
9653 (plus (view_convert:type (negate (view_convert:ntype @3))) @2)
9654 (minus @0 (view_convert:type
9655 (negate (view_convert:ntype @1))))))))))))))))
9656
9657 (simplify
9658 (vec_perm @0 @1 VECTOR_CST@2)
9659 (with
9660 {
9661 tree op0 = @0, op1 = @1, op2 = @2;
9662 machine_mode result_mode = TYPE_MODE (type);
9663 machine_mode op_mode = TYPE_MODE (TREE_TYPE (op0));
9664
9665 /* Build a vector of integers from the tree mask. */
9666 vec_perm_builder builder;
9667 }
9668 (if (tree_to_vec_perm_builder (&builder, op2))
9669 (with
9670 {
9671 /* Create a vec_perm_indices for the integer vector. */
9672 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
9673 bool single_arg = (op0 == op1);
9674 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
9675 }
9676 (if (sel.series_p (0, 1, 0, 1))
9677 { op0; }
9678 (if (sel.series_p (0, 1, nelts, 1))
9679 { op1; }
9680 (with
9681 {
9682 if (!single_arg)
9683 {
9684 if (sel.all_from_input_p (0))
9685 op1 = op0;
9686 else if (sel.all_from_input_p (1))
9687 {
9688 op0 = op1;
9689 sel.rotate_inputs (1);
9690 }
9691 else if (known_ge (poly_uint64 (sel[0]), nelts))
9692 {
9693 std::swap (op0, op1);
9694 sel.rotate_inputs (1);
9695 }
9696 }
9697 gassign *def;
9698 tree cop0 = op0, cop1 = op1;
9699 if (TREE_CODE (op0) == SSA_NAME
9700 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
9701 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
9702 cop0 = gimple_assign_rhs1 (def);
9703 if (TREE_CODE (op1) == SSA_NAME
9704 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
9705 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
9706 cop1 = gimple_assign_rhs1 (def);
9707 tree t;
9708 }
9709 (if ((TREE_CODE (cop0) == VECTOR_CST
9710 || TREE_CODE (cop0) == CONSTRUCTOR)
9711 && (TREE_CODE (cop1) == VECTOR_CST
9712 || TREE_CODE (cop1) == CONSTRUCTOR)
9713 && (t = fold_vec_perm (type, cop0, cop1, sel)))
9714 { t; }
9715 (with
9716 {
9717 bool changed = (op0 == op1 && !single_arg);
9718 tree ins = NULL_TREE;
9719 unsigned at = 0;
9720
9721 /* See if the permutation is performing a single element
9722 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
9723 in that case. But only if the vector mode is supported,
9724 otherwise this is invalid GIMPLE. */
9725 if (op_mode != BLKmode
9726 && (TREE_CODE (cop0) == VECTOR_CST
9727 || TREE_CODE (cop0) == CONSTRUCTOR
9728 || TREE_CODE (cop1) == VECTOR_CST
9729 || TREE_CODE (cop1) == CONSTRUCTOR))
9730 {
9731 bool insert_first_p = sel.series_p (1, 1, nelts + 1, 1);
9732 if (insert_first_p)
9733 {
9734 /* After canonicalizing the first elt to come from the
9735 first vector we only can insert the first elt from
9736 the first vector. */
9737 at = 0;
9738 if ((ins = fold_read_from_vector (cop0, sel[0])))
9739 op0 = op1;
9740 }
9741 /* The above can fail for two-element vectors which always
9742 appear to insert the first element, so try inserting
9743 into the second lane as well. For more than two
9744 elements that's wasted time. */
9745 if (!insert_first_p || (!ins && maybe_eq (nelts, 2u)))
9746 {
9747 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
9748 for (at = 0; at < encoded_nelts; ++at)
9749 if (maybe_ne (sel[at], at))
9750 break;
9751 if (at < encoded_nelts
9752 && (known_eq (at + 1, nelts)
9753 || sel.series_p (at + 1, 1, at + 1, 1)))
9754 {
9755 if (known_lt (poly_uint64 (sel[at]), nelts))
9756 ins = fold_read_from_vector (cop0, sel[at]);
9757 else
9758 ins = fold_read_from_vector (cop1, sel[at] - nelts);
9759 }
9760 }
9761 }
9762
9763 /* Generate a canonical form of the selector. */
9764 if (!ins && sel.encoding () != builder)
9765 {
9766 /* Some targets are deficient and fail to expand a single
9767 argument permutation while still allowing an equivalent
9768 2-argument version. */
9769 tree oldop2 = op2;
9770 if (sel.ninputs () == 2
9771 || can_vec_perm_const_p (result_mode, op_mode, sel, false))
9772 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
9773 else
9774 {
9775 vec_perm_indices sel2 (builder, 2, nelts);
9776 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false))
9777 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
9778 else
9779 /* Not directly supported with either encoding,
9780 so use the preferred form. */
9781 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
9782 }
9783 if (!operand_equal_p (op2, oldop2, 0))
9784 changed = true;
9785 }
9786 }
9787 (if (ins)
9788 (bit_insert { op0; } { ins; }
9789 { bitsize_int (at * vector_element_bits (type)); })
9790 (if (changed)
9791 (vec_perm { op0; } { op1; } { op2; }))))))))))))
9792
9793 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
9794
9795 (match vec_same_elem_p
9796 (vec_duplicate @0))
9797
9798 (match vec_same_elem_p
9799 CONSTRUCTOR@0
9800 (if (TREE_CODE (@0) == SSA_NAME
9801 && uniform_vector_p (gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0))))))
9802
9803 (match vec_same_elem_p
9804 @0
9805 (if (uniform_vector_p (@0))))
9806
9807
9808 (simplify
9809 (vec_perm vec_same_elem_p@0 @0 @1)
9810 (if (types_match (type, TREE_TYPE (@0)))
9811 @0
9812 (with
9813 {
9814 tree elem = uniform_vector_p (@0);
9815 }
9816 (if (elem)
9817 { build_vector_from_val (type, elem); }))))
9818
9819 /* Push VEC_PERM earlier if that may help FMA perception (PR101895). */
9820 (simplify
9821 (plus:c (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
9822 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
9823 (plus (mult (vec_perm @1 @1 @3) @2) @4)))
9824 (simplify
9825 (minus (vec_perm:s (mult:c@0 @1 vec_same_elem_p@2) @0 @3) @4)
9826 (if (TREE_CODE (@0) == SSA_NAME && num_imm_uses (@0) == 2)
9827 (minus (mult (vec_perm @1 @1 @3) @2) @4)))
9828
9829
9830 /* Merge
9831 c = VEC_PERM_EXPR <a, b, VCST0>;
9832 d = VEC_PERM_EXPR <c, c, VCST1>;
9833 to
9834 d = VEC_PERM_EXPR <a, b, NEW_VCST>; */
9835
9836 (simplify
9837 (vec_perm (vec_perm@0 @1 @2 VECTOR_CST@3) @0 VECTOR_CST@4)
9838 (if (TYPE_VECTOR_SUBPARTS (type).is_constant ())
9839 (with
9840 {
9841 machine_mode result_mode = TYPE_MODE (type);
9842 machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1));
9843 int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
9844 vec_perm_builder builder0;
9845 vec_perm_builder builder1;
9846 vec_perm_builder builder2 (nelts, nelts, 1);
9847 }
9848 (if (tree_to_vec_perm_builder (&builder0, @3)
9849 && tree_to_vec_perm_builder (&builder1, @4))
9850 (with
9851 {
9852 vec_perm_indices sel0 (builder0, 2, nelts);
9853 vec_perm_indices sel1 (builder1, 1, nelts);
9854
9855 for (int i = 0; i < nelts; i++)
9856 builder2.quick_push (sel0[sel1[i].to_constant ()]);
9857
9858 vec_perm_indices sel2 (builder2, 2, nelts);
9859
9860 tree op0 = NULL_TREE;
9861 /* If the new VEC_PERM_EXPR can't be handled but both
9862 original VEC_PERM_EXPRs can, punt.
9863 If one or both of the original VEC_PERM_EXPRs can't be
9864 handled and the new one can't be either, don't increase
9865 number of VEC_PERM_EXPRs that can't be handled. */
9866 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false)
9867 || (single_use (@0)
9868 ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false)
9869 || !can_vec_perm_const_p (result_mode, op_mode, sel1, false))
9870 : !can_vec_perm_const_p (result_mode, op_mode, sel1, false)))
9871 op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2);
9872 }
9873 (if (op0)
9874 (vec_perm @1 @2 { op0; })))))))
9875
9876 /* Merge
9877 c = VEC_PERM_EXPR <a, b, VCST0>;
9878 d = VEC_PERM_EXPR <x, c, VCST1>;
9879 to
9880 d = VEC_PERM_EXPR <x, {a,b}, NEW_VCST>;
9881 when all elements from a or b are replaced by the later
9882 permutation. */
9883
9884 (simplify
9885 (vec_perm @5 (vec_perm@0 @1 @2 VECTOR_CST@3) VECTOR_CST@4)
9886 (if (TYPE_VECTOR_SUBPARTS (type).is_constant ())
9887 (with
9888 {
9889 machine_mode result_mode = TYPE_MODE (type);
9890 machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1));
9891 int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
9892 vec_perm_builder builder0;
9893 vec_perm_builder builder1;
9894 vec_perm_builder builder2 (nelts, nelts, 2);
9895 }
9896 (if (tree_to_vec_perm_builder (&builder0, @3)
9897 && tree_to_vec_perm_builder (&builder1, @4))
9898 (with
9899 {
9900 vec_perm_indices sel0 (builder0, 2, nelts);
9901 vec_perm_indices sel1 (builder1, 2, nelts);
9902 bool use_1 = false, use_2 = false;
9903
9904 for (int i = 0; i < nelts; i++)
9905 {
9906 if (known_lt ((poly_uint64)sel1[i], sel1.nelts_per_input ()))
9907 builder2.quick_push (sel1[i]);
9908 else
9909 {
9910 poly_uint64 j = sel0[(sel1[i] - sel1.nelts_per_input ())
9911 .to_constant ()];
9912 if (known_lt (j, sel0.nelts_per_input ()))
9913 use_1 = true;
9914 else
9915 {
9916 use_2 = true;
9917 j -= sel0.nelts_per_input ();
9918 }
9919 builder2.quick_push (j + sel1.nelts_per_input ());
9920 }
9921 }
9922 }
9923 (if (use_1 ^ use_2)
9924 (with
9925 {
9926 vec_perm_indices sel2 (builder2, 2, nelts);
9927 tree op0 = NULL_TREE;
9928 /* If the new VEC_PERM_EXPR can't be handled but both
9929 original VEC_PERM_EXPRs can, punt.
9930 If one or both of the original VEC_PERM_EXPRs can't be
9931 handled and the new one can't be either, don't increase
9932 number of VEC_PERM_EXPRs that can't be handled. */
9933 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false)
9934 || (single_use (@0)
9935 ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false)
9936 || !can_vec_perm_const_p (result_mode, op_mode, sel1, false))
9937 : !can_vec_perm_const_p (result_mode, op_mode, sel1, false)))
9938 op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2);
9939 }
9940 (if (op0)
9941 (switch
9942 (if (use_1)
9943 (vec_perm @5 @1 { op0; }))
9944 (if (use_2)
9945 (vec_perm @5 @2 { op0; })))))))))))
9946
9947 /* And the case with swapped outer permute sources. */
9948
9949 (simplify
9950 (vec_perm (vec_perm@0 @1 @2 VECTOR_CST@3) @5 VECTOR_CST@4)
9951 (if (TYPE_VECTOR_SUBPARTS (type).is_constant ())
9952 (with
9953 {
9954 machine_mode result_mode = TYPE_MODE (type);
9955 machine_mode op_mode = TYPE_MODE (TREE_TYPE (@1));
9956 int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
9957 vec_perm_builder builder0;
9958 vec_perm_builder builder1;
9959 vec_perm_builder builder2 (nelts, nelts, 2);
9960 }
9961 (if (tree_to_vec_perm_builder (&builder0, @3)
9962 && tree_to_vec_perm_builder (&builder1, @4))
9963 (with
9964 {
9965 vec_perm_indices sel0 (builder0, 2, nelts);
9966 vec_perm_indices sel1 (builder1, 2, nelts);
9967 bool use_1 = false, use_2 = false;
9968
9969 for (int i = 0; i < nelts; i++)
9970 {
9971 if (known_ge ((poly_uint64)sel1[i], sel1.nelts_per_input ()))
9972 builder2.quick_push (sel1[i]);
9973 else
9974 {
9975 poly_uint64 j = sel0[sel1[i].to_constant ()];
9976 if (known_lt (j, sel0.nelts_per_input ()))
9977 use_1 = true;
9978 else
9979 {
9980 use_2 = true;
9981 j -= sel0.nelts_per_input ();
9982 }
9983 builder2.quick_push (j);
9984 }
9985 }
9986 }
9987 (if (use_1 ^ use_2)
9988 (with
9989 {
9990 vec_perm_indices sel2 (builder2, 2, nelts);
9991 tree op0 = NULL_TREE;
9992 /* If the new VEC_PERM_EXPR can't be handled but both
9993 original VEC_PERM_EXPRs can, punt.
9994 If one or both of the original VEC_PERM_EXPRs can't be
9995 handled and the new one can't be either, don't increase
9996 number of VEC_PERM_EXPRs that can't be handled. */
9997 if (can_vec_perm_const_p (result_mode, op_mode, sel2, false)
9998 || (single_use (@0)
9999 ? (!can_vec_perm_const_p (result_mode, op_mode, sel0, false)
10000 || !can_vec_perm_const_p (result_mode, op_mode, sel1, false))
10001 : !can_vec_perm_const_p (result_mode, op_mode, sel1, false)))
10002 op0 = vec_perm_indices_to_tree (TREE_TYPE (@4), sel2);
10003 }
10004 (if (op0)
10005 (switch
10006 (if (use_1)
10007 (vec_perm @1 @5 { op0; }))
10008 (if (use_2)
10009 (vec_perm @2 @5 { op0; })))))))))))
10010
10011
10012 /* Match count trailing zeroes for simplify_count_trailing_zeroes in fwprop.
10013 The canonical form is array[((x & -x) * C) >> SHIFT] where C is a magic
10014 constant which when multiplied by a power of 2 contains a unique value
10015 in the top 5 or 6 bits. This is then indexed into a table which maps it
10016 to the number of trailing zeroes. */
10017 (match (ctz_table_index @1 @2 @3)
10018 (rshift (mult (bit_and:c (negate @1) @1) INTEGER_CST@2) INTEGER_CST@3))
10019
10020 (match (cond_expr_convert_p @0 @2 @3 @6)
10021 (cond (simple_comparison@6 @0 @1) (convert@4 @2) (convert@5 @3))
10022 (if (INTEGRAL_TYPE_P (type)
10023 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
10024 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
10025 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
10026 && TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (@0))
10027 && TYPE_PRECISION (TREE_TYPE (@0))
10028 == TYPE_PRECISION (TREE_TYPE (@2))
10029 && TYPE_PRECISION (TREE_TYPE (@0))
10030 == TYPE_PRECISION (TREE_TYPE (@3))
10031 /* For vect_recog_cond_expr_convert_pattern, @2 and @3 can differ in
10032 signess when convert is truncation, but not ok for extension since
10033 it's sign_extend vs zero_extend. */
10034 && (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type)
10035 || (TYPE_UNSIGNED (TREE_TYPE (@2))
10036 == TYPE_UNSIGNED (TREE_TYPE (@3))))
10037 && single_use (@4)
10038 && single_use (@5))))
10039
10040 (for bit_op (bit_and bit_ior bit_xor)
10041 (match (bitwise_induction_p @0 @2 @3)
10042 (bit_op:c
10043 (nop_convert1? (bit_not2?@0 (convert3? (lshift integer_onep@1 @2))))
10044 @3)))
10045
10046 (match (bitwise_induction_p @0 @2 @3)
10047 (bit_not
10048 (nop_convert1? (bit_xor@0 (convert2? (lshift integer_onep@1 @2)) @3))))
10049
10050 /* n - (((n > C1) ? n : C1) & -C2) -> n & C1 for unsigned case.
10051 n - (((n > C1) ? n : C1) & -C2) -> (n <= C1) ? n : (n & C1) for signed case. */
10052 (simplify
10053 (minus @0 (bit_and (max @0 INTEGER_CST@1) INTEGER_CST@2))
10054 (with { auto i = wi::neg (wi::to_wide (@2)); }
10055 /* Check if -C2 is a power of 2 and C1 = -C2 - 1. */
10056 (if (wi::popcount (i) == 1
10057 && (wi::to_wide (@1)) == (i - 1))
10058 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
10059 (bit_and @0 @1)
10060 (cond (le @0 @1) @0 (bit_and @0 @1))))))
10061
10062 /* -x & 1 -> x & 1. */
10063 (simplify
10064 (bit_and (negate @0) integer_onep@1)
10065 (if (!TYPE_OVERFLOW_SANITIZED (type))
10066 (bit_and @0 @1)))
10067
10068 /* `-a` is just `a` if the type is 1bit wide or when converting
10069 to a 1bit type; similar to the above transformation of `(-x)&1`.
10070 This is used mostly with the transformation of
10071 `a ? ~b : b` into `(-a)^b`.
10072 It also can show up with bitfields. */
10073 (simplify
10074 (convert? (negate @0))
10075 (if (INTEGRAL_TYPE_P (type)
10076 && TYPE_PRECISION (type) == 1
10077 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
10078 (convert @0)))
10079
10080 /* Optimize
10081 c1 = VEC_PERM_EXPR (a, a, mask)
10082 c2 = VEC_PERM_EXPR (b, b, mask)
10083 c3 = c1 op c2
10084 -->
10085 c = a op b
10086 c3 = VEC_PERM_EXPR (c, c, mask)
10087 For all integer non-div operations. */
10088 (for op (plus minus mult bit_and bit_ior bit_xor
10089 lshift rshift)
10090 (simplify
10091 (op (vec_perm @0 @0 @2) (vec_perm @1 @1 @2))
10092 (if (VECTOR_INTEGER_TYPE_P (type))
10093 (vec_perm (op@3 @0 @1) @3 @2))))
10094
10095 /* Similar for float arithmetic when permutation constant covers
10096 all vector elements. */
10097 (for op (plus minus mult)
10098 (simplify
10099 (op (vec_perm @0 @0 VECTOR_CST@2) (vec_perm @1 @1 VECTOR_CST@2))
10100 (if (VECTOR_FLOAT_TYPE_P (type)
10101 && TYPE_VECTOR_SUBPARTS (type).is_constant ())
10102 (with
10103 {
10104 tree perm_cst = @2;
10105 vec_perm_builder builder;
10106 bool full_perm_p = false;
10107 if (tree_to_vec_perm_builder (&builder, perm_cst))
10108 {
10109 unsigned HOST_WIDE_INT nelts;
10110
10111 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
10112 /* Create a vec_perm_indices for the VECTOR_CST. */
10113 vec_perm_indices sel (builder, 1, nelts);
10114
10115 /* Check if perm indices covers all vector elements. */
10116 if (sel.encoding ().encoded_full_vector_p ())
10117 {
10118 auto_sbitmap seen (nelts);
10119 bitmap_clear (seen);
10120
10121 unsigned HOST_WIDE_INT count = 0, i;
10122
10123 for (i = 0; i < nelts; i++)
10124 {
10125 if (!bitmap_set_bit (seen, sel[i].to_constant ()))
10126 break;
10127 count++;
10128 }
10129 full_perm_p = count == nelts;
10130 }
10131 }
10132 }
10133 (if (full_perm_p)
10134 (vec_perm (op@3 @0 @1) @3 @2))))))