]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
re PR middle-end/85195 (ICE: verify_gimple failed: non-trivial conversion at assignme...
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80 (match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83 (match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && known_eq (TYPE_VECTOR_SUBPARTS (type),
87 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
88 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
89 /* This one has to be last, or it shadows the others. */
90 (match (nop_convert @0)
91 @0)
92
93 /* Simplifications of operations with one constant operand and
94 simplifications to constants or single values. */
95
96 (for op (plus pointer_plus minus bit_ior bit_xor)
97 (simplify
98 (op @0 integer_zerop)
99 (non_lvalue @0)))
100
101 /* 0 +p index -> (type)index */
102 (simplify
103 (pointer_plus integer_zerop @1)
104 (non_lvalue (convert @1)))
105
106 /* ptr - 0 -> (type)ptr */
107 (simplify
108 (pointer_diff @0 integer_zerop)
109 (convert @0))
110
111 /* See if ARG1 is zero and X + ARG1 reduces to X.
112 Likewise if the operands are reversed. */
113 (simplify
114 (plus:c @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 0))
116 (non_lvalue @0)))
117
118 /* See if ARG1 is zero and X - ARG1 reduces to X. */
119 (simplify
120 (minus @0 real_zerop@1)
121 (if (fold_real_zero_addition_p (type, @1, 1))
122 (non_lvalue @0)))
123
124 /* Simplify x - x.
125 This is unsafe for certain floats even in non-IEEE formats.
126 In IEEE, it is unsafe because it does wrong for NaNs.
127 Also note that operand_equal_p is always false if an operand
128 is volatile. */
129 (simplify
130 (minus @0 @0)
131 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
132 { build_zero_cst (type); }))
133 (simplify
134 (pointer_diff @@0 @0)
135 { build_zero_cst (type); })
136
137 (simplify
138 (mult @0 integer_zerop@1)
139 @1)
140
141 /* Maybe fold x * 0 to 0. The expressions aren't the same
142 when x is NaN, since x * 0 is also NaN. Nor are they the
143 same in modes with signed zeros, since multiplying a
144 negative value by 0 gives -0, not +0. */
145 (simplify
146 (mult @0 real_zerop@1)
147 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
148 @1))
149
150 /* In IEEE floating point, x*1 is not equivalent to x for snans.
151 Likewise for complex arithmetic with signed zeros. */
152 (simplify
153 (mult @0 real_onep)
154 (if (!HONOR_SNANS (type)
155 && (!HONOR_SIGNED_ZEROS (type)
156 || !COMPLEX_FLOAT_TYPE_P (type)))
157 (non_lvalue @0)))
158
159 /* Transform x * -1.0 into -x. */
160 (simplify
161 (mult @0 real_minus_onep)
162 (if (!HONOR_SNANS (type)
163 && (!HONOR_SIGNED_ZEROS (type)
164 || !COMPLEX_FLOAT_TYPE_P (type)))
165 (negate @0)))
166
167 (for cmp (gt ge lt le)
168 outp (convert convert negate negate)
169 outn (negate negate convert convert)
170 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
172 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
174 (simplify
175 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
177 && types_match (type, TREE_TYPE (@0)))
178 (switch
179 (if (types_match (type, float_type_node))
180 (BUILT_IN_COPYSIGNF @1 (outp @0)))
181 (if (types_match (type, double_type_node))
182 (BUILT_IN_COPYSIGN @1 (outp @0)))
183 (if (types_match (type, long_double_type_node))
184 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
185 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
187 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
189 (simplify
190 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
191 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
192 && types_match (type, TREE_TYPE (@0)))
193 (switch
194 (if (types_match (type, float_type_node))
195 (BUILT_IN_COPYSIGNF @1 (outn @0)))
196 (if (types_match (type, double_type_node))
197 (BUILT_IN_COPYSIGN @1 (outn @0)))
198 (if (types_match (type, long_double_type_node))
199 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
200
201 /* Transform X * copysign (1.0, X) into abs(X). */
202 (simplify
203 (mult:c @0 (COPYSIGN_ALL real_onep @0))
204 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
205 (abs @0)))
206
207 /* Transform X * copysign (1.0, -X) into -abs(X). */
208 (simplify
209 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
210 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
211 (negate (abs @0))))
212
213 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
214 (simplify
215 (COPYSIGN_ALL REAL_CST@0 @1)
216 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
217 (COPYSIGN_ALL (negate @0) @1)))
218
219 /* X * 1, X / 1 -> X. */
220 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
221 (simplify
222 (op @0 integer_onep)
223 (non_lvalue @0)))
224
225 /* (A / (1 << B)) -> (A >> B).
226 Only for unsigned A. For signed A, this would not preserve rounding
227 toward zero.
228 For example: (-1 / ( 1 << B)) != -1 >> B. */
229 (simplify
230 (trunc_div @0 (lshift integer_onep@1 @2))
231 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
232 && (!VECTOR_TYPE_P (type)
233 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
234 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
235 (rshift @0 @2)))
236
237 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
238 undefined behavior in constexpr evaluation, and assuming that the division
239 traps enables better optimizations than these anyway. */
240 (for div (trunc_div ceil_div floor_div round_div exact_div)
241 /* 0 / X is always zero. */
242 (simplify
243 (div integer_zerop@0 @1)
244 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
245 (if (!integer_zerop (@1))
246 @0))
247 /* X / -1 is -X. */
248 (simplify
249 (div @0 integer_minus_onep@1)
250 (if (!TYPE_UNSIGNED (type))
251 (negate @0)))
252 /* X / X is one. */
253 (simplify
254 (div @0 @0)
255 /* But not for 0 / 0 so that we can get the proper warnings and errors.
256 And not for _Fract types where we can't build 1. */
257 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
258 { build_one_cst (type); }))
259 /* X / abs (X) is X < 0 ? -1 : 1. */
260 (simplify
261 (div:C @0 (abs @0))
262 (if (INTEGRAL_TYPE_P (type)
263 && TYPE_OVERFLOW_UNDEFINED (type))
264 (cond (lt @0 { build_zero_cst (type); })
265 { build_minus_one_cst (type); } { build_one_cst (type); })))
266 /* X / -X is -1. */
267 (simplify
268 (div:C @0 (negate @0))
269 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
270 && TYPE_OVERFLOW_UNDEFINED (type))
271 { build_minus_one_cst (type); })))
272
273 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
274 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
275 (simplify
276 (floor_div @0 @1)
277 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
278 && TYPE_UNSIGNED (type))
279 (trunc_div @0 @1)))
280
281 /* Combine two successive divisions. Note that combining ceil_div
282 and floor_div is trickier and combining round_div even more so. */
283 (for div (trunc_div exact_div)
284 (simplify
285 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
286 (with {
287 bool overflow_p;
288 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
289 TYPE_SIGN (type), &overflow_p);
290 }
291 (if (!overflow_p)
292 (div @0 { wide_int_to_tree (type, mul); })
293 (if (TYPE_UNSIGNED (type)
294 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
295 { build_zero_cst (type); })))))
296
297 /* Combine successive multiplications. Similar to above, but handling
298 overflow is different. */
299 (simplify
300 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
301 (with {
302 bool overflow_p;
303 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
304 TYPE_SIGN (type), &overflow_p);
305 }
306 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
307 otherwise undefined overflow implies that @0 must be zero. */
308 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
309 (mult @0 { wide_int_to_tree (type, mul); }))))
310
311 /* Optimize A / A to 1.0 if we don't care about
312 NaNs or Infinities. */
313 (simplify
314 (rdiv @0 @0)
315 (if (FLOAT_TYPE_P (type)
316 && ! HONOR_NANS (type)
317 && ! HONOR_INFINITIES (type))
318 { build_one_cst (type); }))
319
320 /* Optimize -A / A to -1.0 if we don't care about
321 NaNs or Infinities. */
322 (simplify
323 (rdiv:C @0 (negate @0))
324 (if (FLOAT_TYPE_P (type)
325 && ! HONOR_NANS (type)
326 && ! HONOR_INFINITIES (type))
327 { build_minus_one_cst (type); }))
328
329 /* PR71078: x / abs(x) -> copysign (1.0, x) */
330 (simplify
331 (rdiv:C (convert? @0) (convert? (abs @0)))
332 (if (SCALAR_FLOAT_TYPE_P (type)
333 && ! HONOR_NANS (type)
334 && ! HONOR_INFINITIES (type))
335 (switch
336 (if (types_match (type, float_type_node))
337 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
338 (if (types_match (type, double_type_node))
339 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
340 (if (types_match (type, long_double_type_node))
341 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
342
343 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
344 (simplify
345 (rdiv @0 real_onep)
346 (if (!HONOR_SNANS (type))
347 (non_lvalue @0)))
348
349 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
350 (simplify
351 (rdiv @0 real_minus_onep)
352 (if (!HONOR_SNANS (type))
353 (negate @0)))
354
355 (if (flag_reciprocal_math)
356 /* Convert (A/B)/C to A/(B*C). */
357 (simplify
358 (rdiv (rdiv:s @0 @1) @2)
359 (rdiv @0 (mult @1 @2)))
360
361 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
362 (simplify
363 (rdiv @0 (mult:s @1 REAL_CST@2))
364 (with
365 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
366 (if (tem)
367 (rdiv (mult @0 { tem; } ) @1))))
368
369 /* Convert A/(B/C) to (A/B)*C */
370 (simplify
371 (rdiv @0 (rdiv:s @1 @2))
372 (mult (rdiv @0 @1) @2)))
373
374 /* Simplify x / (- y) to -x / y. */
375 (simplify
376 (rdiv @0 (negate @1))
377 (rdiv (negate @0) @1))
378
379 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
380 (for div (trunc_div ceil_div floor_div round_div exact_div)
381 (simplify
382 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
383 (if (integer_pow2p (@2)
384 && tree_int_cst_sgn (@2) > 0
385 && tree_nop_conversion_p (type, TREE_TYPE (@0))
386 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
387 (rshift (convert @0)
388 { build_int_cst (integer_type_node,
389 wi::exact_log2 (wi::to_wide (@2))); }))))
390
391 /* If ARG1 is a constant, we can convert this to a multiply by the
392 reciprocal. This does not have the same rounding properties,
393 so only do this if -freciprocal-math. We can actually
394 always safely do it if ARG1 is a power of two, but it's hard to
395 tell if it is or not in a portable manner. */
396 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
397 (simplify
398 (rdiv @0 cst@1)
399 (if (optimize)
400 (if (flag_reciprocal_math
401 && !real_zerop (@1))
402 (with
403 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
404 (if (tem)
405 (mult @0 { tem; } )))
406 (if (cst != COMPLEX_CST)
407 (with { tree inverse = exact_inverse (type, @1); }
408 (if (inverse)
409 (mult @0 { inverse; } ))))))))
410
411 (for mod (ceil_mod floor_mod round_mod trunc_mod)
412 /* 0 % X is always zero. */
413 (simplify
414 (mod integer_zerop@0 @1)
415 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
416 (if (!integer_zerop (@1))
417 @0))
418 /* X % 1 is always zero. */
419 (simplify
420 (mod @0 integer_onep)
421 { build_zero_cst (type); })
422 /* X % -1 is zero. */
423 (simplify
424 (mod @0 integer_minus_onep@1)
425 (if (!TYPE_UNSIGNED (type))
426 { build_zero_cst (type); }))
427 /* X % X is zero. */
428 (simplify
429 (mod @0 @0)
430 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
431 (if (!integer_zerop (@0))
432 { build_zero_cst (type); }))
433 /* (X % Y) % Y is just X % Y. */
434 (simplify
435 (mod (mod@2 @0 @1) @1)
436 @2)
437 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
438 (simplify
439 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
440 (if (ANY_INTEGRAL_TYPE_P (type)
441 && TYPE_OVERFLOW_UNDEFINED (type)
442 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
443 TYPE_SIGN (type)))
444 { build_zero_cst (type); })))
445
446 /* X % -C is the same as X % C. */
447 (simplify
448 (trunc_mod @0 INTEGER_CST@1)
449 (if (TYPE_SIGN (type) == SIGNED
450 && !TREE_OVERFLOW (@1)
451 && wi::neg_p (wi::to_wide (@1))
452 && !TYPE_OVERFLOW_TRAPS (type)
453 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
454 && !sign_bit_p (@1, @1))
455 (trunc_mod @0 (negate @1))))
456
457 /* X % -Y is the same as X % Y. */
458 (simplify
459 (trunc_mod @0 (convert? (negate @1)))
460 (if (INTEGRAL_TYPE_P (type)
461 && !TYPE_UNSIGNED (type)
462 && !TYPE_OVERFLOW_TRAPS (type)
463 && tree_nop_conversion_p (type, TREE_TYPE (@1))
464 /* Avoid this transformation if X might be INT_MIN or
465 Y might be -1, because we would then change valid
466 INT_MIN % -(-1) into invalid INT_MIN % -1. */
467 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
468 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
469 (TREE_TYPE (@1))))))
470 (trunc_mod @0 (convert @1))))
471
472 /* X - (X / Y) * Y is the same as X % Y. */
473 (simplify
474 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
475 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
476 (convert (trunc_mod @0 @1))))
477
478 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
479 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
480 Also optimize A % (C << N) where C is a power of 2,
481 to A & ((C << N) - 1). */
482 (match (power_of_two_cand @1)
483 INTEGER_CST@1)
484 (match (power_of_two_cand @1)
485 (lshift INTEGER_CST@1 @2))
486 (for mod (trunc_mod floor_mod)
487 (simplify
488 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
489 (if ((TYPE_UNSIGNED (type)
490 || tree_expr_nonnegative_p (@0))
491 && tree_nop_conversion_p (type, TREE_TYPE (@3))
492 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
493 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
494
495 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
496 (simplify
497 (trunc_div (mult @0 integer_pow2p@1) @1)
498 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499 (bit_and @0 { wide_int_to_tree
500 (type, wi::mask (TYPE_PRECISION (type)
501 - wi::exact_log2 (wi::to_wide (@1)),
502 false, TYPE_PRECISION (type))); })))
503
504 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
505 (simplify
506 (mult (trunc_div @0 integer_pow2p@1) @1)
507 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
508 (bit_and @0 (negate @1))))
509
510 /* Simplify (t * 2) / 2) -> t. */
511 (for div (trunc_div ceil_div floor_div round_div exact_div)
512 (simplify
513 (div (mult:c @0 @1) @1)
514 (if (ANY_INTEGRAL_TYPE_P (type)
515 && TYPE_OVERFLOW_UNDEFINED (type))
516 @0)))
517
518 (for op (negate abs)
519 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
520 (for coss (COS COSH)
521 (simplify
522 (coss (op @0))
523 (coss @0)))
524 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
525 (for pows (POW)
526 (simplify
527 (pows (op @0) REAL_CST@1)
528 (with { HOST_WIDE_INT n; }
529 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
530 (pows @0 @1)))))
531 /* Likewise for powi. */
532 (for pows (POWI)
533 (simplify
534 (pows (op @0) INTEGER_CST@1)
535 (if ((wi::to_wide (@1) & 1) == 0)
536 (pows @0 @1))))
537 /* Strip negate and abs from both operands of hypot. */
538 (for hypots (HYPOT)
539 (simplify
540 (hypots (op @0) @1)
541 (hypots @0 @1))
542 (simplify
543 (hypots @0 (op @1))
544 (hypots @0 @1)))
545 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
546 (for copysigns (COPYSIGN_ALL)
547 (simplify
548 (copysigns (op @0) @1)
549 (copysigns @0 @1))))
550
551 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
552 (simplify
553 (mult (abs@1 @0) @1)
554 (mult @0 @0))
555
556 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
557 (for coss (COS COSH)
558 copysigns (COPYSIGN)
559 (simplify
560 (coss (copysigns @0 @1))
561 (coss @0)))
562
563 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
564 (for pows (POW)
565 copysigns (COPYSIGN)
566 (simplify
567 (pows (copysigns @0 @2) REAL_CST@1)
568 (with { HOST_WIDE_INT n; }
569 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
570 (pows @0 @1)))))
571 /* Likewise for powi. */
572 (for pows (POWI)
573 copysigns (COPYSIGN)
574 (simplify
575 (pows (copysigns @0 @2) INTEGER_CST@1)
576 (if ((wi::to_wide (@1) & 1) == 0)
577 (pows @0 @1))))
578
579 (for hypots (HYPOT)
580 copysigns (COPYSIGN)
581 /* hypot(copysign(x, y), z) -> hypot(x, z). */
582 (simplify
583 (hypots (copysigns @0 @1) @2)
584 (hypots @0 @2))
585 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
586 (simplify
587 (hypots @0 (copysigns @1 @2))
588 (hypots @0 @1)))
589
590 /* copysign(x, CST) -> [-]abs (x). */
591 (for copysigns (COPYSIGN_ALL)
592 (simplify
593 (copysigns @0 REAL_CST@1)
594 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
595 (negate (abs @0))
596 (abs @0))))
597
598 /* copysign(copysign(x, y), z) -> copysign(x, z). */
599 (for copysigns (COPYSIGN_ALL)
600 (simplify
601 (copysigns (copysigns @0 @1) @2)
602 (copysigns @0 @2)))
603
604 /* copysign(x,y)*copysign(x,y) -> x*x. */
605 (for copysigns (COPYSIGN_ALL)
606 (simplify
607 (mult (copysigns@2 @0 @1) @2)
608 (mult @0 @0)))
609
610 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
611 (for ccoss (CCOS CCOSH)
612 (simplify
613 (ccoss (negate @0))
614 (ccoss @0)))
615
616 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
617 (for ops (conj negate)
618 (for cabss (CABS)
619 (simplify
620 (cabss (ops @0))
621 (cabss @0))))
622
623 /* Fold (a * (1 << b)) into (a << b) */
624 (simplify
625 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
626 (if (! FLOAT_TYPE_P (type)
627 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
628 (lshift @0 @2)))
629
630 /* Fold (1 << (C - x)) where C = precision(type) - 1
631 into ((1 << C) >> x). */
632 (simplify
633 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
634 (if (INTEGRAL_TYPE_P (type)
635 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
636 && single_use (@1))
637 (if (TYPE_UNSIGNED (type))
638 (rshift (lshift @0 @2) @3)
639 (with
640 { tree utype = unsigned_type_for (type); }
641 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
642
643 /* Fold (C1/X)*C2 into (C1*C2)/X. */
644 (simplify
645 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
646 (if (flag_associative_math
647 && single_use (@3))
648 (with
649 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
650 (if (tem)
651 (rdiv { tem; } @1)))))
652
653 /* Simplify ~X & X as zero. */
654 (simplify
655 (bit_and:c (convert? @0) (convert? (bit_not @0)))
656 { build_zero_cst (type); })
657
658 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
659 (simplify
660 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
661 (if (TYPE_UNSIGNED (type))
662 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
663
664 (for bitop (bit_and bit_ior)
665 cmp (eq ne)
666 /* PR35691: Transform
667 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
668 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
669 (simplify
670 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
671 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
672 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
673 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
674 (cmp (bit_ior @0 (convert @1)) @2)))
675 /* Transform:
676 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
677 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
678 (simplify
679 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
680 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
681 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
682 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683 (cmp (bit_and @0 (convert @1)) @2))))
684
685 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
686 (simplify
687 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
688 (minus (bit_xor @0 @1) @1))
689 (simplify
690 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
691 (if (~wi::to_wide (@2) == wi::to_wide (@1))
692 (minus (bit_xor @0 @1) @1)))
693
694 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
695 (simplify
696 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
697 (minus @1 (bit_xor @0 @1)))
698
699 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
700 (for op (bit_ior bit_xor plus)
701 (simplify
702 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
703 (bit_xor @0 @1))
704 (simplify
705 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
706 (if (~wi::to_wide (@2) == wi::to_wide (@1))
707 (bit_xor @0 @1))))
708
709 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
710 (simplify
711 (bit_ior:c (bit_xor:c @0 @1) @0)
712 (bit_ior @0 @1))
713
714 /* (a & ~b) | (a ^ b) --> a ^ b */
715 (simplify
716 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
717 @2)
718
719 /* (a & ~b) ^ ~a --> ~(a & b) */
720 (simplify
721 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
722 (bit_not (bit_and @0 @1)))
723
724 /* (a | b) & ~(a ^ b) --> a & b */
725 (simplify
726 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
727 (bit_and @0 @1))
728
729 /* a | ~(a ^ b) --> a | ~b */
730 (simplify
731 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
732 (bit_ior @0 (bit_not @1)))
733
734 /* (a | b) | (a &^ b) --> a | b */
735 (for op (bit_and bit_xor)
736 (simplify
737 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
738 @2))
739
740 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
741 (simplify
742 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
743 @2)
744
745 /* ~(~a & b) --> a | ~b */
746 (simplify
747 (bit_not (bit_and:cs (bit_not @0) @1))
748 (bit_ior @0 (bit_not @1)))
749
750 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
751 #if GIMPLE
752 (simplify
753 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
755 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
756 (bit_xor @0 @1)))
757 #endif
758
759 /* X % Y is smaller than Y. */
760 (for cmp (lt ge)
761 (simplify
762 (cmp (trunc_mod @0 @1) @1)
763 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
764 { constant_boolean_node (cmp == LT_EXPR, type); })))
765 (for cmp (gt le)
766 (simplify
767 (cmp @1 (trunc_mod @0 @1))
768 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
769 { constant_boolean_node (cmp == GT_EXPR, type); })))
770
771 /* x | ~0 -> ~0 */
772 (simplify
773 (bit_ior @0 integer_all_onesp@1)
774 @1)
775
776 /* x | 0 -> x */
777 (simplify
778 (bit_ior @0 integer_zerop)
779 @0)
780
781 /* x & 0 -> 0 */
782 (simplify
783 (bit_and @0 integer_zerop@1)
784 @1)
785
786 /* ~x | x -> -1 */
787 /* ~x ^ x -> -1 */
788 /* ~x + x -> -1 */
789 (for op (bit_ior bit_xor plus)
790 (simplify
791 (op:c (convert? @0) (convert? (bit_not @0)))
792 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
793
794 /* x ^ x -> 0 */
795 (simplify
796 (bit_xor @0 @0)
797 { build_zero_cst (type); })
798
799 /* Canonicalize X ^ ~0 to ~X. */
800 (simplify
801 (bit_xor @0 integer_all_onesp@1)
802 (bit_not @0))
803
804 /* x & ~0 -> x */
805 (simplify
806 (bit_and @0 integer_all_onesp)
807 (non_lvalue @0))
808
809 /* x & x -> x, x | x -> x */
810 (for bitop (bit_and bit_ior)
811 (simplify
812 (bitop @0 @0)
813 (non_lvalue @0)))
814
815 /* x & C -> x if we know that x & ~C == 0. */
816 #if GIMPLE
817 (simplify
818 (bit_and SSA_NAME@0 INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
820 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
821 @0))
822 #endif
823
824 /* x + (x & 1) -> (x + 1) & ~1 */
825 (simplify
826 (plus:c @0 (bit_and:s @0 integer_onep@1))
827 (bit_and (plus @0 @1) (bit_not @1)))
828
829 /* x & ~(x & y) -> x & ~y */
830 /* x | ~(x | y) -> x | ~y */
831 (for bitop (bit_and bit_ior)
832 (simplify
833 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
834 (bitop @0 (bit_not @1))))
835
836 /* (x | y) & ~x -> y & ~x */
837 /* (x & y) | ~x -> y | ~x */
838 (for bitop (bit_and bit_ior)
839 rbitop (bit_ior bit_and)
840 (simplify
841 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
842 (bitop @1 @2)))
843
844 /* (x & y) ^ (x | y) -> x ^ y */
845 (simplify
846 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
847 (bit_xor @0 @1))
848
849 /* (x ^ y) ^ (x | y) -> x & y */
850 (simplify
851 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
852 (bit_and @0 @1))
853
854 /* (x & y) + (x ^ y) -> x | y */
855 /* (x & y) | (x ^ y) -> x | y */
856 /* (x & y) ^ (x ^ y) -> x | y */
857 (for op (plus bit_ior bit_xor)
858 (simplify
859 (op:c (bit_and @0 @1) (bit_xor @0 @1))
860 (bit_ior @0 @1)))
861
862 /* (x & y) + (x | y) -> x + y */
863 (simplify
864 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
865 (plus @0 @1))
866
867 /* (x + y) - (x | y) -> x & y */
868 (simplify
869 (minus (plus @0 @1) (bit_ior @0 @1))
870 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
871 && !TYPE_SATURATING (type))
872 (bit_and @0 @1)))
873
874 /* (x + y) - (x & y) -> x | y */
875 (simplify
876 (minus (plus @0 @1) (bit_and @0 @1))
877 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
878 && !TYPE_SATURATING (type))
879 (bit_ior @0 @1)))
880
881 /* (x | y) - (x ^ y) -> x & y */
882 (simplify
883 (minus (bit_ior @0 @1) (bit_xor @0 @1))
884 (bit_and @0 @1))
885
886 /* (x | y) - (x & y) -> x ^ y */
887 (simplify
888 (minus (bit_ior @0 @1) (bit_and @0 @1))
889 (bit_xor @0 @1))
890
891 /* (x | y) & ~(x & y) -> x ^ y */
892 (simplify
893 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
894 (bit_xor @0 @1))
895
896 /* (x | y) & (~x ^ y) -> x & y */
897 (simplify
898 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
899 (bit_and @0 @1))
900
901 /* ~x & ~y -> ~(x | y)
902 ~x | ~y -> ~(x & y) */
903 (for op (bit_and bit_ior)
904 rop (bit_ior bit_and)
905 (simplify
906 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
907 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
908 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
909 (bit_not (rop (convert @0) (convert @1))))))
910
911 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
912 with a constant, and the two constants have no bits in common,
913 we should treat this as a BIT_IOR_EXPR since this may produce more
914 simplifications. */
915 (for op (bit_xor plus)
916 (simplify
917 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
918 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
919 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
920 && tree_nop_conversion_p (type, TREE_TYPE (@2))
921 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
922 (bit_ior (convert @4) (convert @5)))))
923
924 /* (X | Y) ^ X -> Y & ~ X*/
925 (simplify
926 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928 (convert (bit_and @1 (bit_not @0)))))
929
930 /* Convert ~X ^ ~Y to X ^ Y. */
931 (simplify
932 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
933 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
935 (bit_xor (convert @0) (convert @1))))
936
937 /* Convert ~X ^ C to X ^ ~C. */
938 (simplify
939 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
940 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
941 (bit_xor (convert @0) (bit_not @1))))
942
943 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
944 (for opo (bit_and bit_xor)
945 opi (bit_xor bit_and)
946 (simplify
947 (opo:c (opi:c @0 @1) @1)
948 (bit_and (bit_not @0) @1)))
949
950 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
951 operands are another bit-wise operation with a common input. If so,
952 distribute the bit operations to save an operation and possibly two if
953 constants are involved. For example, convert
954 (A | B) & (A | C) into A | (B & C)
955 Further simplification will occur if B and C are constants. */
956 (for op (bit_and bit_ior bit_xor)
957 rop (bit_ior bit_and bit_and)
958 (simplify
959 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
960 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
961 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
962 (rop (convert @0) (op (convert @1) (convert @2))))))
963
964 /* Some simple reassociation for bit operations, also handled in reassoc. */
965 /* (X & Y) & Y -> X & Y
966 (X | Y) | Y -> X | Y */
967 (for op (bit_and bit_ior)
968 (simplify
969 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
970 @2))
971 /* (X ^ Y) ^ Y -> X */
972 (simplify
973 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
974 (convert @0))
975 /* (X & Y) & (X & Z) -> (X & Y) & Z
976 (X | Y) | (X | Z) -> (X | Y) | Z */
977 (for op (bit_and bit_ior)
978 (simplify
979 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
980 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
981 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
982 (if (single_use (@5) && single_use (@6))
983 (op @3 (convert @2))
984 (if (single_use (@3) && single_use (@4))
985 (op (convert @1) @5))))))
986 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
987 (simplify
988 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
989 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
990 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
991 (bit_xor (convert @1) (convert @2))))
992
993 (simplify
994 (abs (abs@1 @0))
995 @1)
996 (simplify
997 (abs (negate @0))
998 (abs @0))
999 (simplify
1000 (abs tree_expr_nonnegative_p@0)
1001 @0)
1002
1003 /* A few cases of fold-const.c negate_expr_p predicate. */
1004 (match negate_expr_p
1005 INTEGER_CST
1006 (if ((INTEGRAL_TYPE_P (type)
1007 && TYPE_UNSIGNED (type))
1008 || (!TYPE_OVERFLOW_SANITIZED (type)
1009 && may_negate_without_overflow_p (t)))))
1010 (match negate_expr_p
1011 FIXED_CST)
1012 (match negate_expr_p
1013 (negate @0)
1014 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1015 (match negate_expr_p
1016 REAL_CST
1017 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1018 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1019 ways. */
1020 (match negate_expr_p
1021 VECTOR_CST
1022 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1023 (match negate_expr_p
1024 (minus @0 @1)
1025 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1026 || (FLOAT_TYPE_P (type)
1027 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1028 && !HONOR_SIGNED_ZEROS (type)))))
1029
1030 /* (-A) * (-B) -> A * B */
1031 (simplify
1032 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1034 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1035 (mult (convert @0) (convert (negate @1)))))
1036
1037 /* -(A + B) -> (-B) - A. */
1038 (simplify
1039 (negate (plus:c @0 negate_expr_p@1))
1040 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1041 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1042 (minus (negate @1) @0)))
1043
1044 /* -(A - B) -> B - A. */
1045 (simplify
1046 (negate (minus @0 @1))
1047 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1048 || (FLOAT_TYPE_P (type)
1049 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1050 && !HONOR_SIGNED_ZEROS (type)))
1051 (minus @1 @0)))
1052 (simplify
1053 (negate (pointer_diff @0 @1))
1054 (if (TYPE_OVERFLOW_UNDEFINED (type))
1055 (pointer_diff @1 @0)))
1056
1057 /* A - B -> A + (-B) if B is easily negatable. */
1058 (simplify
1059 (minus @0 negate_expr_p@1)
1060 (if (!FIXED_POINT_TYPE_P (type))
1061 (plus @0 (negate @1))))
1062
1063 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1064 when profitable.
1065 For bitwise binary operations apply operand conversions to the
1066 binary operation result instead of to the operands. This allows
1067 to combine successive conversions and bitwise binary operations.
1068 We combine the above two cases by using a conditional convert. */
1069 (for bitop (bit_and bit_ior bit_xor)
1070 (simplify
1071 (bitop (convert @0) (convert? @1))
1072 (if (((TREE_CODE (@1) == INTEGER_CST
1073 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1074 && int_fits_type_p (@1, TREE_TYPE (@0)))
1075 || types_match (@0, @1))
1076 /* ??? This transform conflicts with fold-const.c doing
1077 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1078 constants (if x has signed type, the sign bit cannot be set
1079 in c). This folds extension into the BIT_AND_EXPR.
1080 Restrict it to GIMPLE to avoid endless recursions. */
1081 && (bitop != BIT_AND_EXPR || GIMPLE)
1082 && (/* That's a good idea if the conversion widens the operand, thus
1083 after hoisting the conversion the operation will be narrower. */
1084 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1085 /* It's also a good idea if the conversion is to a non-integer
1086 mode. */
1087 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1088 /* Or if the precision of TO is not the same as the precision
1089 of its mode. */
1090 || !type_has_mode_precision_p (type)))
1091 (convert (bitop @0 (convert @1))))))
1092
1093 (for bitop (bit_and bit_ior)
1094 rbitop (bit_ior bit_and)
1095 /* (x | y) & x -> x */
1096 /* (x & y) | x -> x */
1097 (simplify
1098 (bitop:c (rbitop:c @0 @1) @0)
1099 @0)
1100 /* (~x | y) & x -> x & y */
1101 /* (~x & y) | x -> x | y */
1102 (simplify
1103 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1104 (bitop @0 @1)))
1105
1106 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1107 (simplify
1108 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1109 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1110
1111 /* Combine successive equal operations with constants. */
1112 (for bitop (bit_and bit_ior bit_xor)
1113 (simplify
1114 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1115 (if (!CONSTANT_CLASS_P (@0))
1116 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1117 folded to a constant. */
1118 (bitop @0 (bitop @1 @2))
1119 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1120 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1121 the values involved are such that the operation can't be decided at
1122 compile time. Try folding one of @0 or @1 with @2 to see whether
1123 that combination can be decided at compile time.
1124
1125 Keep the existing form if both folds fail, to avoid endless
1126 oscillation. */
1127 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1128 (if (cst1)
1129 (bitop @1 { cst1; })
1130 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1131 (if (cst2)
1132 (bitop @0 { cst2; }))))))))
1133
1134 /* Try simple folding for X op !X, and X op X with the help
1135 of the truth_valued_p and logical_inverted_value predicates. */
1136 (match truth_valued_p
1137 @0
1138 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1139 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1140 (match truth_valued_p
1141 (op @0 @1)))
1142 (match truth_valued_p
1143 (truth_not @0))
1144
1145 (match (logical_inverted_value @0)
1146 (truth_not @0))
1147 (match (logical_inverted_value @0)
1148 (bit_not truth_valued_p@0))
1149 (match (logical_inverted_value @0)
1150 (eq @0 integer_zerop))
1151 (match (logical_inverted_value @0)
1152 (ne truth_valued_p@0 integer_truep))
1153 (match (logical_inverted_value @0)
1154 (bit_xor truth_valued_p@0 integer_truep))
1155
1156 /* X & !X -> 0. */
1157 (simplify
1158 (bit_and:c @0 (logical_inverted_value @0))
1159 { build_zero_cst (type); })
1160 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1161 (for op (bit_ior bit_xor)
1162 (simplify
1163 (op:c truth_valued_p@0 (logical_inverted_value @0))
1164 { constant_boolean_node (true, type); }))
1165 /* X ==/!= !X is false/true. */
1166 (for op (eq ne)
1167 (simplify
1168 (op:c truth_valued_p@0 (logical_inverted_value @0))
1169 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1170
1171 /* ~~x -> x */
1172 (simplify
1173 (bit_not (bit_not @0))
1174 @0)
1175
1176 /* Convert ~ (-A) to A - 1. */
1177 (simplify
1178 (bit_not (convert? (negate @0)))
1179 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1180 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1181 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1182
1183 /* Convert - (~A) to A + 1. */
1184 (simplify
1185 (negate (nop_convert (bit_not @0)))
1186 (plus (view_convert @0) { build_each_one_cst (type); }))
1187
1188 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1189 (simplify
1190 (bit_not (convert? (minus @0 integer_each_onep)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (negate @0))))
1194 (simplify
1195 (bit_not (convert? (plus @0 integer_all_onesp)))
1196 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1197 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1198 (convert (negate @0))))
1199
1200 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1201 (simplify
1202 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1203 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1204 (convert (bit_xor @0 (bit_not @1)))))
1205 (simplify
1206 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1208 (convert (bit_xor @0 @1))))
1209
1210 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1211 (simplify
1212 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1214 (bit_not (bit_xor (view_convert @0) @1))))
1215
1216 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1217 (simplify
1218 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1219 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1220
1221 /* Fold A - (A & B) into ~B & A. */
1222 (simplify
1223 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1224 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1225 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1226 (convert (bit_and (bit_not @1) @0))))
1227
1228 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1229 (for cmp (gt lt ge le)
1230 (simplify
1231 (mult (convert (cmp @0 @1)) @2)
1232 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1233
1234 /* For integral types with undefined overflow and C != 0 fold
1235 x * C EQ/NE y * C into x EQ/NE y. */
1236 (for cmp (eq ne)
1237 (simplify
1238 (cmp (mult:c @0 @1) (mult:c @2 @1))
1239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1241 && tree_expr_nonzero_p (@1))
1242 (cmp @0 @2))))
1243
1244 /* For integral types with wrapping overflow and C odd fold
1245 x * C EQ/NE y * C into x EQ/NE y. */
1246 (for cmp (eq ne)
1247 (simplify
1248 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1249 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1250 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1251 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1252 (cmp @0 @2))))
1253
1254 /* For integral types with undefined overflow and C != 0 fold
1255 x * C RELOP y * C into:
1256
1257 x RELOP y for nonnegative C
1258 y RELOP x for negative C */
1259 (for cmp (lt gt le ge)
1260 (simplify
1261 (cmp (mult:c @0 @1) (mult:c @2 @1))
1262 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1264 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1265 (cmp @0 @2)
1266 (if (TREE_CODE (@1) == INTEGER_CST
1267 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1268 (cmp @2 @0))))))
1269
1270 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1271 (for cmp (le gt)
1272 icmp (gt le)
1273 (simplify
1274 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1275 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1276 && TYPE_UNSIGNED (TREE_TYPE (@0))
1277 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1278 && (wi::to_wide (@2)
1279 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1280 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1281 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1282
1283 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1284 (for cmp (simple_comparison)
1285 (simplify
1286 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1287 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1288 (cmp @0 @1))))
1289
1290 /* X / C1 op C2 into a simple range test. */
1291 (for cmp (simple_comparison)
1292 (simplify
1293 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295 && integer_nonzerop (@1)
1296 && !TREE_OVERFLOW (@1)
1297 && !TREE_OVERFLOW (@2))
1298 (with { tree lo, hi; bool neg_overflow;
1299 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1300 &neg_overflow); }
1301 (switch
1302 (if (code == LT_EXPR || code == GE_EXPR)
1303 (if (TREE_OVERFLOW (lo))
1304 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1305 (if (code == LT_EXPR)
1306 (lt @0 { lo; })
1307 (ge @0 { lo; }))))
1308 (if (code == LE_EXPR || code == GT_EXPR)
1309 (if (TREE_OVERFLOW (hi))
1310 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1311 (if (code == LE_EXPR)
1312 (le @0 { hi; })
1313 (gt @0 { hi; }))))
1314 (if (!lo && !hi)
1315 { build_int_cst (type, code == NE_EXPR); })
1316 (if (code == EQ_EXPR && !hi)
1317 (ge @0 { lo; }))
1318 (if (code == EQ_EXPR && !lo)
1319 (le @0 { hi; }))
1320 (if (code == NE_EXPR && !hi)
1321 (lt @0 { lo; }))
1322 (if (code == NE_EXPR && !lo)
1323 (gt @0 { hi; }))
1324 (if (GENERIC)
1325 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1326 lo, hi); })
1327 (with
1328 {
1329 tree etype = range_check_type (TREE_TYPE (@0));
1330 if (etype)
1331 {
1332 if (! TYPE_UNSIGNED (etype))
1333 etype = unsigned_type_for (etype);
1334 hi = fold_convert (etype, hi);
1335 lo = fold_convert (etype, lo);
1336 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1337 }
1338 }
1339 (if (etype && hi && !TREE_OVERFLOW (hi))
1340 (if (code == EQ_EXPR)
1341 (le (minus (convert:etype @0) { lo; }) { hi; })
1342 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1343
1344 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1345 (for op (lt le ge gt)
1346 (simplify
1347 (op (plus:c @0 @2) (plus:c @1 @2))
1348 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1349 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1350 (op @0 @1))))
1351 /* For equality and subtraction, this is also true with wrapping overflow. */
1352 (for op (eq ne minus)
1353 (simplify
1354 (op (plus:c @0 @2) (plus:c @1 @2))
1355 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1356 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1357 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1358 (op @0 @1))))
1359
1360 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1361 (for op (lt le ge gt)
1362 (simplify
1363 (op (minus @0 @2) (minus @1 @2))
1364 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1366 (op @0 @1))))
1367 /* For equality and subtraction, this is also true with wrapping overflow. */
1368 (for op (eq ne minus)
1369 (simplify
1370 (op (minus @0 @2) (minus @1 @2))
1371 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1372 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1373 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1374 (op @0 @1))))
1375 /* And for pointers... */
1376 (for op (simple_comparison)
1377 (simplify
1378 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1379 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1380 (op @0 @1))))
1381 (simplify
1382 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1383 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1384 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1385 (pointer_diff @0 @1)))
1386
1387 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1388 (for op (lt le ge gt)
1389 (simplify
1390 (op (minus @2 @0) (minus @2 @1))
1391 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1392 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1393 (op @1 @0))))
1394 /* For equality and subtraction, this is also true with wrapping overflow. */
1395 (for op (eq ne minus)
1396 (simplify
1397 (op (minus @2 @0) (minus @2 @1))
1398 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1399 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1400 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1401 (op @1 @0))))
1402 /* And for pointers... */
1403 (for op (simple_comparison)
1404 (simplify
1405 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1406 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1407 (op @1 @0))))
1408 (simplify
1409 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1410 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1411 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1412 (pointer_diff @1 @0)))
1413
1414 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1415 (for op (lt le gt ge)
1416 (simplify
1417 (op:c (plus:c@2 @0 @1) @1)
1418 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1419 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1420 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1421 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1422 /* For equality, this is also true with wrapping overflow. */
1423 (for op (eq ne)
1424 (simplify
1425 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1426 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1427 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1428 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1429 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1430 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1431 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1432 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1433 (simplify
1434 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1435 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1436 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1437 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1438 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1439
1440 /* X - Y < X is the same as Y > 0 when there is no overflow.
1441 For equality, this is also true with wrapping overflow. */
1442 (for op (simple_comparison)
1443 (simplify
1444 (op:c @0 (minus@2 @0 @1))
1445 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1446 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1447 || ((op == EQ_EXPR || op == NE_EXPR)
1448 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1449 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1452 /* Transform:
1453 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1454 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1455 */
1456 (for cmp (eq ne)
1457 ocmp (lt ge)
1458 (simplify
1459 (cmp (trunc_div @0 @1) integer_zerop)
1460 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1461 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1462 (ocmp @0 @1))))
1463
1464 /* X == C - X can never be true if C is odd. */
1465 (for cmp (eq ne)
1466 (simplify
1467 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1468 (if (TREE_INT_CST_LOW (@1) & 1)
1469 { constant_boolean_node (cmp == NE_EXPR, type); })))
1470
1471 /* Arguments on which one can call get_nonzero_bits to get the bits
1472 possibly set. */
1473 (match with_possible_nonzero_bits
1474 INTEGER_CST@0)
1475 (match with_possible_nonzero_bits
1476 SSA_NAME@0
1477 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1478 /* Slightly extended version, do not make it recursive to keep it cheap. */
1479 (match (with_possible_nonzero_bits2 @0)
1480 with_possible_nonzero_bits@0)
1481 (match (with_possible_nonzero_bits2 @0)
1482 (bit_and:c with_possible_nonzero_bits@0 @2))
1483
1484 /* Same for bits that are known to be set, but we do not have
1485 an equivalent to get_nonzero_bits yet. */
1486 (match (with_certain_nonzero_bits2 @0)
1487 INTEGER_CST@0)
1488 (match (with_certain_nonzero_bits2 @0)
1489 (bit_ior @1 INTEGER_CST@0))
1490
1491 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1492 (for cmp (eq ne)
1493 (simplify
1494 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1495 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1496 { constant_boolean_node (cmp == NE_EXPR, type); })))
1497
1498 /* ((X inner_op C0) outer_op C1)
1499 With X being a tree where value_range has reasoned certain bits to always be
1500 zero throughout its computed value range,
1501 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1502 where zero_mask has 1's for all bits that are sure to be 0 in
1503 and 0's otherwise.
1504 if (inner_op == '^') C0 &= ~C1;
1505 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1506 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1507 */
1508 (for inner_op (bit_ior bit_xor)
1509 outer_op (bit_xor bit_ior)
1510 (simplify
1511 (outer_op
1512 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1513 (with
1514 {
1515 bool fail = false;
1516 wide_int zero_mask_not;
1517 wide_int C0;
1518 wide_int cst_emit;
1519
1520 if (TREE_CODE (@2) == SSA_NAME)
1521 zero_mask_not = get_nonzero_bits (@2);
1522 else
1523 fail = true;
1524
1525 if (inner_op == BIT_XOR_EXPR)
1526 {
1527 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1528 cst_emit = C0 | wi::to_wide (@1);
1529 }
1530 else
1531 {
1532 C0 = wi::to_wide (@0);
1533 cst_emit = C0 ^ wi::to_wide (@1);
1534 }
1535 }
1536 (if (!fail && (C0 & zero_mask_not) == 0)
1537 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1538 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1539 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1540
1541 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1542 (simplify
1543 (pointer_plus (pointer_plus:s @0 @1) @3)
1544 (pointer_plus @0 (plus @1 @3)))
1545
1546 /* Pattern match
1547 tem1 = (long) ptr1;
1548 tem2 = (long) ptr2;
1549 tem3 = tem2 - tem1;
1550 tem4 = (unsigned long) tem3;
1551 tem5 = ptr1 + tem4;
1552 and produce
1553 tem5 = ptr2; */
1554 (simplify
1555 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1556 /* Conditionally look through a sign-changing conversion. */
1557 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1558 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1559 || (GENERIC && type == TREE_TYPE (@1))))
1560 @1))
1561 (simplify
1562 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1563 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1564 (convert @1)))
1565
1566 /* Pattern match
1567 tem = (sizetype) ptr;
1568 tem = tem & algn;
1569 tem = -tem;
1570 ... = ptr p+ tem;
1571 and produce the simpler and easier to analyze with respect to alignment
1572 ... = ptr & ~algn; */
1573 (simplify
1574 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1575 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1576 (bit_and @0 { algn; })))
1577
1578 /* Try folding difference of addresses. */
1579 (simplify
1580 (minus (convert ADDR_EXPR@0) (convert @1))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1582 (with { poly_int64 diff; }
1583 (if (ptr_difference_const (@0, @1, &diff))
1584 { build_int_cst_type (type, diff); }))))
1585 (simplify
1586 (minus (convert @0) (convert ADDR_EXPR@1))
1587 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1588 (with { poly_int64 diff; }
1589 (if (ptr_difference_const (@0, @1, &diff))
1590 { build_int_cst_type (type, diff); }))))
1591 (simplify
1592 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1593 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1594 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1595 (with { poly_int64 diff; }
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1598 (simplify
1599 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1601 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1602 (with { poly_int64 diff; }
1603 (if (ptr_difference_const (@0, @1, &diff))
1604 { build_int_cst_type (type, diff); }))))
1605
1606 /* If arg0 is derived from the address of an object or function, we may
1607 be able to fold this expression using the object or function's
1608 alignment. */
1609 (simplify
1610 (bit_and (convert? @0) INTEGER_CST@1)
1611 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1612 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1613 (with
1614 {
1615 unsigned int align;
1616 unsigned HOST_WIDE_INT bitpos;
1617 get_pointer_alignment_1 (@0, &align, &bitpos);
1618 }
1619 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1620 { wide_int_to_tree (type, (wi::to_wide (@1)
1621 & (bitpos / BITS_PER_UNIT))); }))))
1622
1623
1624 /* We can't reassociate at all for saturating types. */
1625 (if (!TYPE_SATURATING (type))
1626
1627 /* Contract negates. */
1628 /* A + (-B) -> A - B */
1629 (simplify
1630 (plus:c @0 (convert? (negate @1)))
1631 /* Apply STRIP_NOPS on the negate. */
1632 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1633 && !TYPE_OVERFLOW_SANITIZED (type))
1634 (with
1635 {
1636 tree t1 = type;
1637 if (INTEGRAL_TYPE_P (type)
1638 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1639 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1640 }
1641 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1642 /* A - (-B) -> A + B */
1643 (simplify
1644 (minus @0 (convert? (negate @1)))
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1646 && !TYPE_OVERFLOW_SANITIZED (type))
1647 (with
1648 {
1649 tree t1 = type;
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653 }
1654 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1655 /* -(T)(-A) -> (T)A
1656 Sign-extension is ok except for INT_MIN, which thankfully cannot
1657 happen without overflow. */
1658 (simplify
1659 (negate (convert (negate @1)))
1660 (if (INTEGRAL_TYPE_P (type)
1661 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1662 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1663 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1664 && !TYPE_OVERFLOW_SANITIZED (type)
1665 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1666 (convert @1)))
1667 (simplify
1668 (negate (convert negate_expr_p@1))
1669 (if (SCALAR_FLOAT_TYPE_P (type)
1670 && ((DECIMAL_FLOAT_TYPE_P (type)
1671 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1672 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1673 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1674 (convert (negate @1))))
1675 (simplify
1676 (negate (nop_convert (negate @1)))
1677 (if (!TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1679 (view_convert @1)))
1680
1681 /* We can't reassociate floating-point unless -fassociative-math
1682 or fixed-point plus or minus because of saturation to +-Inf. */
1683 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1684 && !FIXED_POINT_TYPE_P (type))
1685
1686 /* Match patterns that allow contracting a plus-minus pair
1687 irrespective of overflow issues. */
1688 /* (A +- B) - A -> +- B */
1689 /* (A +- B) -+ B -> A */
1690 /* A - (A +- B) -> -+ B */
1691 /* A +- (B -+ A) -> +- B */
1692 (simplify
1693 (minus (plus:c @0 @1) @0)
1694 @1)
1695 (simplify
1696 (minus (minus @0 @1) @0)
1697 (negate @1))
1698 (simplify
1699 (plus:c (minus @0 @1) @1)
1700 @0)
1701 (simplify
1702 (minus @0 (plus:c @0 @1))
1703 (negate @1))
1704 (simplify
1705 (minus @0 (minus @0 @1))
1706 @1)
1707 /* (A +- B) + (C - A) -> C +- B */
1708 /* (A + B) - (A - C) -> B + C */
1709 /* More cases are handled with comparisons. */
1710 (simplify
1711 (plus:c (plus:c @0 @1) (minus @2 @0))
1712 (plus @2 @1))
1713 (simplify
1714 (plus:c (minus @0 @1) (minus @2 @0))
1715 (minus @2 @1))
1716 (simplify
1717 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1718 (if (TYPE_OVERFLOW_UNDEFINED (type)
1719 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1720 (pointer_diff @2 @1)))
1721 (simplify
1722 (minus (plus:c @0 @1) (minus @0 @2))
1723 (plus @1 @2))
1724
1725 /* (A +- CST1) +- CST2 -> A + CST3
1726 Use view_convert because it is safe for vectors and equivalent for
1727 scalars. */
1728 (for outer_op (plus minus)
1729 (for inner_op (plus minus)
1730 neg_inner_op (minus plus)
1731 (simplify
1732 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1733 CONSTANT_CLASS_P@2)
1734 /* If one of the types wraps, use that one. */
1735 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1736 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1737 forever if something doesn't simplify into a constant. */
1738 (if (!CONSTANT_CLASS_P (@0))
1739 (if (outer_op == PLUS_EXPR)
1740 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1741 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1742 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1743 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1744 (if (outer_op == PLUS_EXPR)
1745 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1746 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1747 /* If the constant operation overflows we cannot do the transform
1748 directly as we would introduce undefined overflow, for example
1749 with (a - 1) + INT_MIN. */
1750 (if (types_match (type, @0))
1751 (with { tree cst = const_binop (outer_op == inner_op
1752 ? PLUS_EXPR : MINUS_EXPR,
1753 type, @1, @2); }
1754 (if (cst && !TREE_OVERFLOW (cst))
1755 (inner_op @0 { cst; } )
1756 /* X+INT_MAX+1 is X-INT_MIN. */
1757 (if (INTEGRAL_TYPE_P (type) && cst
1758 && wi::to_wide (cst) == wi::min_value (type))
1759 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1760 /* Last resort, use some unsigned type. */
1761 (with { tree utype = unsigned_type_for (type); }
1762 (view_convert (inner_op
1763 (view_convert:utype @0)
1764 (view_convert:utype
1765 { drop_tree_overflow (cst); })))))))))))))
1766
1767 /* (CST1 - A) +- CST2 -> CST3 - A */
1768 (for outer_op (plus minus)
1769 (simplify
1770 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1771 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1772 (if (cst && !TREE_OVERFLOW (cst))
1773 (minus { cst; } @0)))))
1774
1775 /* CST1 - (CST2 - A) -> CST3 + A */
1776 (simplify
1777 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1778 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1779 (if (cst && !TREE_OVERFLOW (cst))
1780 (plus { cst; } @0))))
1781
1782 /* ~A + A -> -1 */
1783 (simplify
1784 (plus:c (bit_not @0) @0)
1785 (if (!TYPE_OVERFLOW_TRAPS (type))
1786 { build_all_ones_cst (type); }))
1787
1788 /* ~A + 1 -> -A */
1789 (simplify
1790 (plus (convert? (bit_not @0)) integer_each_onep)
1791 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1792 (negate (convert @0))))
1793
1794 /* -A - 1 -> ~A */
1795 (simplify
1796 (minus (convert? (negate @0)) integer_each_onep)
1797 (if (!TYPE_OVERFLOW_TRAPS (type)
1798 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1799 (bit_not (convert @0))))
1800
1801 /* -1 - A -> ~A */
1802 (simplify
1803 (minus integer_all_onesp @0)
1804 (bit_not @0))
1805
1806 /* (T)(P + A) - (T)P -> (T) A */
1807 (simplify
1808 (minus (convert (plus:c @@0 @1))
1809 (convert? @0))
1810 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1811 /* For integer types, if A has a smaller type
1812 than T the result depends on the possible
1813 overflow in P + A.
1814 E.g. T=size_t, A=(unsigned)429497295, P>0.
1815 However, if an overflow in P + A would cause
1816 undefined behavior, we can assume that there
1817 is no overflow. */
1818 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1820 (convert @1)))
1821 (simplify
1822 (minus (convert (pointer_plus @@0 @1))
1823 (convert @0))
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For pointer types, if the conversion of A to the
1826 final type requires a sign- or zero-extension,
1827 then we have to punt - it is not defined which
1828 one is correct. */
1829 || (POINTER_TYPE_P (TREE_TYPE (@0))
1830 && TREE_CODE (@1) == INTEGER_CST
1831 && tree_int_cst_sign_bit (@1) == 0))
1832 (convert @1)))
1833 (simplify
1834 (pointer_diff (pointer_plus @@0 @1) @0)
1835 /* The second argument of pointer_plus must be interpreted as signed, and
1836 thus sign-extended if necessary. */
1837 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1838 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1839 second arg is unsigned even when we need to consider it as signed,
1840 we don't want to diagnose overflow here. */
1841 (convert (view_convert:stype @1))))
1842
1843 /* (T)P - (T)(P + A) -> -(T) A */
1844 (simplify
1845 (minus (convert? @0)
1846 (convert (plus:c @@0 @1)))
1847 (if (INTEGRAL_TYPE_P (type)
1848 && TYPE_OVERFLOW_UNDEFINED (type)
1849 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1850 (with { tree utype = unsigned_type_for (type); }
1851 (convert (negate (convert:utype @1))))
1852 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1853 /* For integer types, if A has a smaller type
1854 than T the result depends on the possible
1855 overflow in P + A.
1856 E.g. T=size_t, A=(unsigned)429497295, P>0.
1857 However, if an overflow in P + A would cause
1858 undefined behavior, we can assume that there
1859 is no overflow. */
1860 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1861 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1862 (negate (convert @1)))))
1863 (simplify
1864 (minus (convert @0)
1865 (convert (pointer_plus @@0 @1)))
1866 (if (INTEGRAL_TYPE_P (type)
1867 && TYPE_OVERFLOW_UNDEFINED (type)
1868 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1869 (with { tree utype = unsigned_type_for (type); }
1870 (convert (negate (convert:utype @1))))
1871 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1872 /* For pointer types, if the conversion of A to the
1873 final type requires a sign- or zero-extension,
1874 then we have to punt - it is not defined which
1875 one is correct. */
1876 || (POINTER_TYPE_P (TREE_TYPE (@0))
1877 && TREE_CODE (@1) == INTEGER_CST
1878 && tree_int_cst_sign_bit (@1) == 0))
1879 (negate (convert @1)))))
1880 (simplify
1881 (pointer_diff @0 (pointer_plus @@0 @1))
1882 /* The second argument of pointer_plus must be interpreted as signed, and
1883 thus sign-extended if necessary. */
1884 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1885 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1886 second arg is unsigned even when we need to consider it as signed,
1887 we don't want to diagnose overflow here. */
1888 (negate (convert (view_convert:stype @1)))))
1889
1890 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1891 (simplify
1892 (minus (convert (plus:c @@0 @1))
1893 (convert (plus:c @0 @2)))
1894 (if (INTEGRAL_TYPE_P (type)
1895 && TYPE_OVERFLOW_UNDEFINED (type)
1896 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1897 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1898 (with { tree utype = unsigned_type_for (type); }
1899 (convert (minus (convert:utype @1) (convert:utype @2))))
1900 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1901 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1902 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1903 /* For integer types, if A has a smaller type
1904 than T the result depends on the possible
1905 overflow in P + A.
1906 E.g. T=size_t, A=(unsigned)429497295, P>0.
1907 However, if an overflow in P + A would cause
1908 undefined behavior, we can assume that there
1909 is no overflow. */
1910 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1911 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1912 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1913 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1914 (minus (convert @1) (convert @2)))))
1915 (simplify
1916 (minus (convert (pointer_plus @@0 @1))
1917 (convert (pointer_plus @0 @2)))
1918 (if (INTEGRAL_TYPE_P (type)
1919 && TYPE_OVERFLOW_UNDEFINED (type)
1920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1921 (with { tree utype = unsigned_type_for (type); }
1922 (convert (minus (convert:utype @1) (convert:utype @2))))
1923 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1924 /* For pointer types, if the conversion of A to the
1925 final type requires a sign- or zero-extension,
1926 then we have to punt - it is not defined which
1927 one is correct. */
1928 || (POINTER_TYPE_P (TREE_TYPE (@0))
1929 && TREE_CODE (@1) == INTEGER_CST
1930 && tree_int_cst_sign_bit (@1) == 0
1931 && TREE_CODE (@2) == INTEGER_CST
1932 && tree_int_cst_sign_bit (@2) == 0))
1933 (minus (convert @1) (convert @2)))))
1934 (simplify
1935 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1936 /* The second argument of pointer_plus must be interpreted as signed, and
1937 thus sign-extended if necessary. */
1938 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1939 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1940 second arg is unsigned even when we need to consider it as signed,
1941 we don't want to diagnose overflow here. */
1942 (minus (convert (view_convert:stype @1))
1943 (convert (view_convert:stype @2)))))))
1944
1945 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1946 Modeled after fold_plusminus_mult_expr. */
1947 (if (!TYPE_SATURATING (type)
1948 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1949 (for plusminus (plus minus)
1950 (simplify
1951 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1952 (if ((!ANY_INTEGRAL_TYPE_P (type)
1953 || TYPE_OVERFLOW_WRAPS (type)
1954 || (INTEGRAL_TYPE_P (type)
1955 && tree_expr_nonzero_p (@0)
1956 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1957 /* If @1 +- @2 is constant require a hard single-use on either
1958 original operand (but not on both). */
1959 && (single_use (@3) || single_use (@4)))
1960 (mult (plusminus @1 @2) @0)))
1961 /* We cannot generate constant 1 for fract. */
1962 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1963 (simplify
1964 (plusminus @0 (mult:c@3 @0 @2))
1965 (if ((!ANY_INTEGRAL_TYPE_P (type)
1966 || TYPE_OVERFLOW_WRAPS (type)
1967 || (INTEGRAL_TYPE_P (type)
1968 && tree_expr_nonzero_p (@0)
1969 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1970 && single_use (@3))
1971 (mult (plusminus { build_one_cst (type); } @2) @0)))
1972 (simplify
1973 (plusminus (mult:c@3 @0 @2) @0)
1974 (if ((!ANY_INTEGRAL_TYPE_P (type)
1975 || TYPE_OVERFLOW_WRAPS (type)
1976 || (INTEGRAL_TYPE_P (type)
1977 && tree_expr_nonzero_p (@0)
1978 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1979 && single_use (@3))
1980 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1981
1982 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1983
1984 (for minmax (min max FMIN_ALL FMAX_ALL)
1985 (simplify
1986 (minmax @0 @0)
1987 @0))
1988 /* min(max(x,y),y) -> y. */
1989 (simplify
1990 (min:c (max:c @0 @1) @1)
1991 @1)
1992 /* max(min(x,y),y) -> y. */
1993 (simplify
1994 (max:c (min:c @0 @1) @1)
1995 @1)
1996 /* max(a,-a) -> abs(a). */
1997 (simplify
1998 (max:c @0 (negate @0))
1999 (if (TREE_CODE (type) != COMPLEX_TYPE
2000 && (! ANY_INTEGRAL_TYPE_P (type)
2001 || TYPE_OVERFLOW_UNDEFINED (type)))
2002 (abs @0)))
2003 /* min(a,-a) -> -abs(a). */
2004 (simplify
2005 (min:c @0 (negate @0))
2006 (if (TREE_CODE (type) != COMPLEX_TYPE
2007 && (! ANY_INTEGRAL_TYPE_P (type)
2008 || TYPE_OVERFLOW_UNDEFINED (type)))
2009 (negate (abs @0))))
2010 (simplify
2011 (min @0 @1)
2012 (switch
2013 (if (INTEGRAL_TYPE_P (type)
2014 && TYPE_MIN_VALUE (type)
2015 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2016 @1)
2017 (if (INTEGRAL_TYPE_P (type)
2018 && TYPE_MAX_VALUE (type)
2019 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2020 @0)))
2021 (simplify
2022 (max @0 @1)
2023 (switch
2024 (if (INTEGRAL_TYPE_P (type)
2025 && TYPE_MAX_VALUE (type)
2026 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2027 @1)
2028 (if (INTEGRAL_TYPE_P (type)
2029 && TYPE_MIN_VALUE (type)
2030 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2031 @0)))
2032
2033 /* max (a, a + CST) -> a + CST where CST is positive. */
2034 /* max (a, a + CST) -> a where CST is negative. */
2035 (simplify
2036 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2037 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2038 (if (tree_int_cst_sgn (@1) > 0)
2039 @2
2040 @0)))
2041
2042 /* min (a, a + CST) -> a where CST is positive. */
2043 /* min (a, a + CST) -> a + CST where CST is negative. */
2044 (simplify
2045 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2046 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2047 (if (tree_int_cst_sgn (@1) > 0)
2048 @0
2049 @2)))
2050
2051 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2052 and the outer convert demotes the expression back to x's type. */
2053 (for minmax (min max)
2054 (simplify
2055 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2056 (if (INTEGRAL_TYPE_P (type)
2057 && types_match (@1, type) && int_fits_type_p (@2, type)
2058 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2059 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2060 (minmax @1 (convert @2)))))
2061
2062 (for minmax (FMIN_ALL FMAX_ALL)
2063 /* If either argument is NaN, return the other one. Avoid the
2064 transformation if we get (and honor) a signalling NaN. */
2065 (simplify
2066 (minmax:c @0 REAL_CST@1)
2067 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2068 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2069 @0)))
2070 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2071 functions to return the numeric arg if the other one is NaN.
2072 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2073 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2074 worry about it either. */
2075 (if (flag_finite_math_only)
2076 (simplify
2077 (FMIN_ALL @0 @1)
2078 (min @0 @1))
2079 (simplify
2080 (FMAX_ALL @0 @1)
2081 (max @0 @1)))
2082 /* min (-A, -B) -> -max (A, B) */
2083 (for minmax (min max FMIN_ALL FMAX_ALL)
2084 maxmin (max min FMAX_ALL FMIN_ALL)
2085 (simplify
2086 (minmax (negate:s@2 @0) (negate:s@3 @1))
2087 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2088 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2089 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2090 (negate (maxmin @0 @1)))))
2091 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2092 MAX (~X, ~Y) -> ~MIN (X, Y) */
2093 (for minmax (min max)
2094 maxmin (max min)
2095 (simplify
2096 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2097 (bit_not (maxmin @0 @1))))
2098
2099 /* MIN (X, Y) == X -> X <= Y */
2100 (for minmax (min min max max)
2101 cmp (eq ne eq ne )
2102 out (le gt ge lt )
2103 (simplify
2104 (cmp:c (minmax:c @0 @1) @0)
2105 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2106 (out @0 @1))))
2107 /* MIN (X, 5) == 0 -> X == 0
2108 MIN (X, 5) == 7 -> false */
2109 (for cmp (eq ne)
2110 (simplify
2111 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2112 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2113 TYPE_SIGN (TREE_TYPE (@0))))
2114 { constant_boolean_node (cmp == NE_EXPR, type); }
2115 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2116 TYPE_SIGN (TREE_TYPE (@0))))
2117 (cmp @0 @2)))))
2118 (for cmp (eq ne)
2119 (simplify
2120 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2121 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2122 TYPE_SIGN (TREE_TYPE (@0))))
2123 { constant_boolean_node (cmp == NE_EXPR, type); }
2124 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2125 TYPE_SIGN (TREE_TYPE (@0))))
2126 (cmp @0 @2)))))
2127 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2128 (for minmax (min min max max min min max max )
2129 cmp (lt le gt ge gt ge lt le )
2130 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2131 (simplify
2132 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2133 (comb (cmp @0 @2) (cmp @1 @2))))
2134
2135 /* Simplifications of shift and rotates. */
2136
2137 (for rotate (lrotate rrotate)
2138 (simplify
2139 (rotate integer_all_onesp@0 @1)
2140 @0))
2141
2142 /* Optimize -1 >> x for arithmetic right shifts. */
2143 (simplify
2144 (rshift integer_all_onesp@0 @1)
2145 (if (!TYPE_UNSIGNED (type)
2146 && tree_expr_nonnegative_p (@1))
2147 @0))
2148
2149 /* Optimize (x >> c) << c into x & (-1<<c). */
2150 (simplify
2151 (lshift (rshift @0 INTEGER_CST@1) @1)
2152 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2153 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2154
2155 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2156 types. */
2157 (simplify
2158 (rshift (lshift @0 INTEGER_CST@1) @1)
2159 (if (TYPE_UNSIGNED (type)
2160 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2161 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2162
2163 (for shiftrotate (lrotate rrotate lshift rshift)
2164 (simplify
2165 (shiftrotate @0 integer_zerop)
2166 (non_lvalue @0))
2167 (simplify
2168 (shiftrotate integer_zerop@0 @1)
2169 @0)
2170 /* Prefer vector1 << scalar to vector1 << vector2
2171 if vector2 is uniform. */
2172 (for vec (VECTOR_CST CONSTRUCTOR)
2173 (simplify
2174 (shiftrotate @0 vec@1)
2175 (with { tree tem = uniform_vector_p (@1); }
2176 (if (tem)
2177 (shiftrotate @0 { tem; }))))))
2178
2179 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2180 Y is 0. Similarly for X >> Y. */
2181 #if GIMPLE
2182 (for shift (lshift rshift)
2183 (simplify
2184 (shift @0 SSA_NAME@1)
2185 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2186 (with {
2187 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2188 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2189 }
2190 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2191 @0)))))
2192 #endif
2193
2194 /* Rewrite an LROTATE_EXPR by a constant into an
2195 RROTATE_EXPR by a new constant. */
2196 (simplify
2197 (lrotate @0 INTEGER_CST@1)
2198 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2199 build_int_cst (TREE_TYPE (@1),
2200 element_precision (type)), @1); }))
2201
2202 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2203 (for op (lrotate rrotate rshift lshift)
2204 (simplify
2205 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2206 (with { unsigned int prec = element_precision (type); }
2207 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2208 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2209 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2210 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2211 (with { unsigned int low = (tree_to_uhwi (@1)
2212 + tree_to_uhwi (@2)); }
2213 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2214 being well defined. */
2215 (if (low >= prec)
2216 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2217 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2218 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2219 { build_zero_cst (type); }
2220 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2221 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2222
2223
2224 /* ((1 << A) & 1) != 0 -> A == 0
2225 ((1 << A) & 1) == 0 -> A != 0 */
2226 (for cmp (ne eq)
2227 icmp (eq ne)
2228 (simplify
2229 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2230 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2231
2232 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2233 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2234 if CST2 != 0. */
2235 (for cmp (ne eq)
2236 (simplify
2237 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2238 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2239 (if (cand < 0
2240 || (!integer_zerop (@2)
2241 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2242 { constant_boolean_node (cmp == NE_EXPR, type); }
2243 (if (!integer_zerop (@2)
2244 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2245 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2246
2247 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2248 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2249 if the new mask might be further optimized. */
2250 (for shift (lshift rshift)
2251 (simplify
2252 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2253 INTEGER_CST@2)
2254 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2255 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2256 && tree_fits_uhwi_p (@1)
2257 && tree_to_uhwi (@1) > 0
2258 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2259 (with
2260 {
2261 unsigned int shiftc = tree_to_uhwi (@1);
2262 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2263 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2264 tree shift_type = TREE_TYPE (@3);
2265 unsigned int prec;
2266
2267 if (shift == LSHIFT_EXPR)
2268 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2269 else if (shift == RSHIFT_EXPR
2270 && type_has_mode_precision_p (shift_type))
2271 {
2272 prec = TYPE_PRECISION (TREE_TYPE (@3));
2273 tree arg00 = @0;
2274 /* See if more bits can be proven as zero because of
2275 zero extension. */
2276 if (@3 != @0
2277 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2278 {
2279 tree inner_type = TREE_TYPE (@0);
2280 if (type_has_mode_precision_p (inner_type)
2281 && TYPE_PRECISION (inner_type) < prec)
2282 {
2283 prec = TYPE_PRECISION (inner_type);
2284 /* See if we can shorten the right shift. */
2285 if (shiftc < prec)
2286 shift_type = inner_type;
2287 /* Otherwise X >> C1 is all zeros, so we'll optimize
2288 it into (X, 0) later on by making sure zerobits
2289 is all ones. */
2290 }
2291 }
2292 zerobits = HOST_WIDE_INT_M1U;
2293 if (shiftc < prec)
2294 {
2295 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2296 zerobits <<= prec - shiftc;
2297 }
2298 /* For arithmetic shift if sign bit could be set, zerobits
2299 can contain actually sign bits, so no transformation is
2300 possible, unless MASK masks them all away. In that
2301 case the shift needs to be converted into logical shift. */
2302 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2303 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2304 {
2305 if ((mask & zerobits) == 0)
2306 shift_type = unsigned_type_for (TREE_TYPE (@3));
2307 else
2308 zerobits = 0;
2309 }
2310 }
2311 }
2312 /* ((X << 16) & 0xff00) is (X, 0). */
2313 (if ((mask & zerobits) == mask)
2314 { build_int_cst (type, 0); }
2315 (with { newmask = mask | zerobits; }
2316 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2317 (with
2318 {
2319 /* Only do the transformation if NEWMASK is some integer
2320 mode's mask. */
2321 for (prec = BITS_PER_UNIT;
2322 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2323 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2324 break;
2325 }
2326 (if (prec < HOST_BITS_PER_WIDE_INT
2327 || newmask == HOST_WIDE_INT_M1U)
2328 (with
2329 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2330 (if (!tree_int_cst_equal (newmaskt, @2))
2331 (if (shift_type != TREE_TYPE (@3))
2332 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2333 (bit_and @4 { newmaskt; })))))))))))))
2334
2335 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2336 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2337 (for shift (lshift rshift)
2338 (for bit_op (bit_and bit_xor bit_ior)
2339 (simplify
2340 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2341 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2342 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2343 (bit_op (shift (convert @0) @1) { mask; }))))))
2344
2345 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2346 (simplify
2347 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2348 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2349 && (element_precision (TREE_TYPE (@0))
2350 <= element_precision (TREE_TYPE (@1))
2351 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2352 (with
2353 { tree shift_type = TREE_TYPE (@0); }
2354 (convert (rshift (convert:shift_type @1) @2)))))
2355
2356 /* ~(~X >>r Y) -> X >>r Y
2357 ~(~X <<r Y) -> X <<r Y */
2358 (for rotate (lrotate rrotate)
2359 (simplify
2360 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2361 (if ((element_precision (TREE_TYPE (@0))
2362 <= element_precision (TREE_TYPE (@1))
2363 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2364 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2365 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2366 (with
2367 { tree rotate_type = TREE_TYPE (@0); }
2368 (convert (rotate (convert:rotate_type @1) @2))))))
2369
2370 /* Simplifications of conversions. */
2371
2372 /* Basic strip-useless-type-conversions / strip_nops. */
2373 (for cvt (convert view_convert float fix_trunc)
2374 (simplify
2375 (cvt @0)
2376 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2377 || (GENERIC && type == TREE_TYPE (@0)))
2378 @0)))
2379
2380 /* Contract view-conversions. */
2381 (simplify
2382 (view_convert (view_convert @0))
2383 (view_convert @0))
2384
2385 /* For integral conversions with the same precision or pointer
2386 conversions use a NOP_EXPR instead. */
2387 (simplify
2388 (view_convert @0)
2389 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2390 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2391 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2392 (convert @0)))
2393
2394 /* Strip inner integral conversions that do not change precision or size, or
2395 zero-extend while keeping the same size (for bool-to-char). */
2396 (simplify
2397 (view_convert (convert@0 @1))
2398 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2399 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2400 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2401 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2402 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2403 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2404 (view_convert @1)))
2405
2406 /* Re-association barriers around constants and other re-association
2407 barriers can be removed. */
2408 (simplify
2409 (paren CONSTANT_CLASS_P@0)
2410 @0)
2411 (simplify
2412 (paren (paren@1 @0))
2413 @1)
2414
2415 /* Handle cases of two conversions in a row. */
2416 (for ocvt (convert float fix_trunc)
2417 (for icvt (convert float)
2418 (simplify
2419 (ocvt (icvt@1 @0))
2420 (with
2421 {
2422 tree inside_type = TREE_TYPE (@0);
2423 tree inter_type = TREE_TYPE (@1);
2424 int inside_int = INTEGRAL_TYPE_P (inside_type);
2425 int inside_ptr = POINTER_TYPE_P (inside_type);
2426 int inside_float = FLOAT_TYPE_P (inside_type);
2427 int inside_vec = VECTOR_TYPE_P (inside_type);
2428 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2429 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2430 int inter_int = INTEGRAL_TYPE_P (inter_type);
2431 int inter_ptr = POINTER_TYPE_P (inter_type);
2432 int inter_float = FLOAT_TYPE_P (inter_type);
2433 int inter_vec = VECTOR_TYPE_P (inter_type);
2434 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2435 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2436 int final_int = INTEGRAL_TYPE_P (type);
2437 int final_ptr = POINTER_TYPE_P (type);
2438 int final_float = FLOAT_TYPE_P (type);
2439 int final_vec = VECTOR_TYPE_P (type);
2440 unsigned int final_prec = TYPE_PRECISION (type);
2441 int final_unsignedp = TYPE_UNSIGNED (type);
2442 }
2443 (switch
2444 /* In addition to the cases of two conversions in a row
2445 handled below, if we are converting something to its own
2446 type via an object of identical or wider precision, neither
2447 conversion is needed. */
2448 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2449 || (GENERIC
2450 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2451 && (((inter_int || inter_ptr) && final_int)
2452 || (inter_float && final_float))
2453 && inter_prec >= final_prec)
2454 (ocvt @0))
2455
2456 /* Likewise, if the intermediate and initial types are either both
2457 float or both integer, we don't need the middle conversion if the
2458 former is wider than the latter and doesn't change the signedness
2459 (for integers). Avoid this if the final type is a pointer since
2460 then we sometimes need the middle conversion. */
2461 (if (((inter_int && inside_int) || (inter_float && inside_float))
2462 && (final_int || final_float)
2463 && inter_prec >= inside_prec
2464 && (inter_float || inter_unsignedp == inside_unsignedp))
2465 (ocvt @0))
2466
2467 /* If we have a sign-extension of a zero-extended value, we can
2468 replace that by a single zero-extension. Likewise if the
2469 final conversion does not change precision we can drop the
2470 intermediate conversion. */
2471 (if (inside_int && inter_int && final_int
2472 && ((inside_prec < inter_prec && inter_prec < final_prec
2473 && inside_unsignedp && !inter_unsignedp)
2474 || final_prec == inter_prec))
2475 (ocvt @0))
2476
2477 /* Two conversions in a row are not needed unless:
2478 - some conversion is floating-point (overstrict for now), or
2479 - some conversion is a vector (overstrict for now), or
2480 - the intermediate type is narrower than both initial and
2481 final, or
2482 - the intermediate type and innermost type differ in signedness,
2483 and the outermost type is wider than the intermediate, or
2484 - the initial type is a pointer type and the precisions of the
2485 intermediate and final types differ, or
2486 - the final type is a pointer type and the precisions of the
2487 initial and intermediate types differ. */
2488 (if (! inside_float && ! inter_float && ! final_float
2489 && ! inside_vec && ! inter_vec && ! final_vec
2490 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2491 && ! (inside_int && inter_int
2492 && inter_unsignedp != inside_unsignedp
2493 && inter_prec < final_prec)
2494 && ((inter_unsignedp && inter_prec > inside_prec)
2495 == (final_unsignedp && final_prec > inter_prec))
2496 && ! (inside_ptr && inter_prec != final_prec)
2497 && ! (final_ptr && inside_prec != inter_prec))
2498 (ocvt @0))
2499
2500 /* A truncation to an unsigned type (a zero-extension) should be
2501 canonicalized as bitwise and of a mask. */
2502 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2503 && final_int && inter_int && inside_int
2504 && final_prec == inside_prec
2505 && final_prec > inter_prec
2506 && inter_unsignedp)
2507 (convert (bit_and @0 { wide_int_to_tree
2508 (inside_type,
2509 wi::mask (inter_prec, false,
2510 TYPE_PRECISION (inside_type))); })))
2511
2512 /* If we are converting an integer to a floating-point that can
2513 represent it exactly and back to an integer, we can skip the
2514 floating-point conversion. */
2515 (if (GIMPLE /* PR66211 */
2516 && inside_int && inter_float && final_int &&
2517 (unsigned) significand_size (TYPE_MODE (inter_type))
2518 >= inside_prec - !inside_unsignedp)
2519 (convert @0)))))))
2520
2521 /* If we have a narrowing conversion to an integral type that is fed by a
2522 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2523 masks off bits outside the final type (and nothing else). */
2524 (simplify
2525 (convert (bit_and @0 INTEGER_CST@1))
2526 (if (INTEGRAL_TYPE_P (type)
2527 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2528 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2529 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2530 TYPE_PRECISION (type)), 0))
2531 (convert @0)))
2532
2533
2534 /* (X /[ex] A) * A -> X. */
2535 (simplify
2536 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2537 (convert @0))
2538
2539 /* Canonicalization of binary operations. */
2540
2541 /* Convert X + -C into X - C. */
2542 (simplify
2543 (plus @0 REAL_CST@1)
2544 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2545 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2546 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2547 (minus @0 { tem; })))))
2548
2549 /* Convert x+x into x*2. */
2550 (simplify
2551 (plus @0 @0)
2552 (if (SCALAR_FLOAT_TYPE_P (type))
2553 (mult @0 { build_real (type, dconst2); })
2554 (if (INTEGRAL_TYPE_P (type))
2555 (mult @0 { build_int_cst (type, 2); }))))
2556
2557 /* 0 - X -> -X. */
2558 (simplify
2559 (minus integer_zerop @1)
2560 (negate @1))
2561 (simplify
2562 (pointer_diff integer_zerop @1)
2563 (negate (convert @1)))
2564
2565 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2566 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2567 (-ARG1 + ARG0) reduces to -ARG1. */
2568 (simplify
2569 (minus real_zerop@0 @1)
2570 (if (fold_real_zero_addition_p (type, @0, 0))
2571 (negate @1)))
2572
2573 /* Transform x * -1 into -x. */
2574 (simplify
2575 (mult @0 integer_minus_onep)
2576 (negate @0))
2577
2578 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2579 signed overflow for CST != 0 && CST != -1. */
2580 (simplify
2581 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2582 (if (TREE_CODE (@2) != INTEGER_CST
2583 && !integer_zerop (@1) && !integer_minus_onep (@1))
2584 (mult (mult @0 @2) @1)))
2585
2586 /* True if we can easily extract the real and imaginary parts of a complex
2587 number. */
2588 (match compositional_complex
2589 (convert? (complex @0 @1)))
2590
2591 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2592 (simplify
2593 (complex (realpart @0) (imagpart @0))
2594 @0)
2595 (simplify
2596 (realpart (complex @0 @1))
2597 @0)
2598 (simplify
2599 (imagpart (complex @0 @1))
2600 @1)
2601
2602 /* Sometimes we only care about half of a complex expression. */
2603 (simplify
2604 (realpart (convert?:s (conj:s @0)))
2605 (convert (realpart @0)))
2606 (simplify
2607 (imagpart (convert?:s (conj:s @0)))
2608 (convert (negate (imagpart @0))))
2609 (for part (realpart imagpart)
2610 (for op (plus minus)
2611 (simplify
2612 (part (convert?:s@2 (op:s @0 @1)))
2613 (convert (op (part @0) (part @1))))))
2614 (simplify
2615 (realpart (convert?:s (CEXPI:s @0)))
2616 (convert (COS @0)))
2617 (simplify
2618 (imagpart (convert?:s (CEXPI:s @0)))
2619 (convert (SIN @0)))
2620
2621 /* conj(conj(x)) -> x */
2622 (simplify
2623 (conj (convert? (conj @0)))
2624 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2625 (convert @0)))
2626
2627 /* conj({x,y}) -> {x,-y} */
2628 (simplify
2629 (conj (convert?:s (complex:s @0 @1)))
2630 (with { tree itype = TREE_TYPE (type); }
2631 (complex (convert:itype @0) (negate (convert:itype @1)))))
2632
2633 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2634 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2635 (simplify
2636 (bswap (bswap @0))
2637 @0)
2638 (simplify
2639 (bswap (bit_not (bswap @0)))
2640 (bit_not @0))
2641 (for bitop (bit_xor bit_ior bit_and)
2642 (simplify
2643 (bswap (bitop:c (bswap @0) @1))
2644 (bitop @0 (bswap @1)))))
2645
2646
2647 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2648
2649 /* Simplify constant conditions.
2650 Only optimize constant conditions when the selected branch
2651 has the same type as the COND_EXPR. This avoids optimizing
2652 away "c ? x : throw", where the throw has a void type.
2653 Note that we cannot throw away the fold-const.c variant nor
2654 this one as we depend on doing this transform before possibly
2655 A ? B : B -> B triggers and the fold-const.c one can optimize
2656 0 ? A : B to B even if A has side-effects. Something
2657 genmatch cannot handle. */
2658 (simplify
2659 (cond INTEGER_CST@0 @1 @2)
2660 (if (integer_zerop (@0))
2661 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2662 @2)
2663 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2664 @1)))
2665 (simplify
2666 (vec_cond VECTOR_CST@0 @1 @2)
2667 (if (integer_all_onesp (@0))
2668 @1
2669 (if (integer_zerop (@0))
2670 @2)))
2671
2672 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2673 be extended. */
2674 /* This pattern implements two kinds simplification:
2675
2676 Case 1)
2677 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2678 1) Conversions are type widening from smaller type.
2679 2) Const c1 equals to c2 after canonicalizing comparison.
2680 3) Comparison has tree code LT, LE, GT or GE.
2681 This specific pattern is needed when (cmp (convert x) c) may not
2682 be simplified by comparison patterns because of multiple uses of
2683 x. It also makes sense here because simplifying across multiple
2684 referred var is always benefitial for complicated cases.
2685
2686 Case 2)
2687 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2688 (for cmp (lt le gt ge eq)
2689 (simplify
2690 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2691 (with
2692 {
2693 tree from_type = TREE_TYPE (@1);
2694 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2695 enum tree_code code = ERROR_MARK;
2696
2697 if (INTEGRAL_TYPE_P (from_type)
2698 && int_fits_type_p (@2, from_type)
2699 && (types_match (c1_type, from_type)
2700 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2701 && (TYPE_UNSIGNED (from_type)
2702 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2703 && (types_match (c2_type, from_type)
2704 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2705 && (TYPE_UNSIGNED (from_type)
2706 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2707 {
2708 if (cmp != EQ_EXPR)
2709 {
2710 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2711 {
2712 /* X <= Y - 1 equals to X < Y. */
2713 if (cmp == LE_EXPR)
2714 code = LT_EXPR;
2715 /* X > Y - 1 equals to X >= Y. */
2716 if (cmp == GT_EXPR)
2717 code = GE_EXPR;
2718 }
2719 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2720 {
2721 /* X < Y + 1 equals to X <= Y. */
2722 if (cmp == LT_EXPR)
2723 code = LE_EXPR;
2724 /* X >= Y + 1 equals to X > Y. */
2725 if (cmp == GE_EXPR)
2726 code = GT_EXPR;
2727 }
2728 if (code != ERROR_MARK
2729 || wi::to_widest (@2) == wi::to_widest (@3))
2730 {
2731 if (cmp == LT_EXPR || cmp == LE_EXPR)
2732 code = MIN_EXPR;
2733 if (cmp == GT_EXPR || cmp == GE_EXPR)
2734 code = MAX_EXPR;
2735 }
2736 }
2737 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2738 else if (int_fits_type_p (@3, from_type))
2739 code = EQ_EXPR;
2740 }
2741 }
2742 (if (code == MAX_EXPR)
2743 (convert (max @1 (convert @2)))
2744 (if (code == MIN_EXPR)
2745 (convert (min @1 (convert @2)))
2746 (if (code == EQ_EXPR)
2747 (convert (cond (eq @1 (convert @3))
2748 (convert:from_type @3) (convert:from_type @2)))))))))
2749
2750 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2751
2752 1) OP is PLUS or MINUS.
2753 2) CMP is LT, LE, GT or GE.
2754 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2755
2756 This pattern also handles special cases like:
2757
2758 A) Operand x is a unsigned to signed type conversion and c1 is
2759 integer zero. In this case,
2760 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2761 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2762 B) Const c1 may not equal to (C3 op' C2). In this case we also
2763 check equality for (c1+1) and (c1-1) by adjusting comparison
2764 code.
2765
2766 TODO: Though signed type is handled by this pattern, it cannot be
2767 simplified at the moment because C standard requires additional
2768 type promotion. In order to match&simplify it here, the IR needs
2769 to be cleaned up by other optimizers, i.e, VRP. */
2770 (for op (plus minus)
2771 (for cmp (lt le gt ge)
2772 (simplify
2773 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2774 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2775 (if (types_match (from_type, to_type)
2776 /* Check if it is special case A). */
2777 || (TYPE_UNSIGNED (from_type)
2778 && !TYPE_UNSIGNED (to_type)
2779 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2780 && integer_zerop (@1)
2781 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2782 (with
2783 {
2784 bool overflow = false;
2785 enum tree_code code, cmp_code = cmp;
2786 wide_int real_c1;
2787 wide_int c1 = wi::to_wide (@1);
2788 wide_int c2 = wi::to_wide (@2);
2789 wide_int c3 = wi::to_wide (@3);
2790 signop sgn = TYPE_SIGN (from_type);
2791
2792 /* Handle special case A), given x of unsigned type:
2793 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2794 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2795 if (!types_match (from_type, to_type))
2796 {
2797 if (cmp_code == LT_EXPR)
2798 cmp_code = GT_EXPR;
2799 if (cmp_code == GE_EXPR)
2800 cmp_code = LE_EXPR;
2801 c1 = wi::max_value (to_type);
2802 }
2803 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2804 compute (c3 op' c2) and check if it equals to c1 with op' being
2805 the inverted operator of op. Make sure overflow doesn't happen
2806 if it is undefined. */
2807 if (op == PLUS_EXPR)
2808 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2809 else
2810 real_c1 = wi::add (c3, c2, sgn, &overflow);
2811
2812 code = cmp_code;
2813 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2814 {
2815 /* Check if c1 equals to real_c1. Boundary condition is handled
2816 by adjusting comparison operation if necessary. */
2817 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2818 && !overflow)
2819 {
2820 /* X <= Y - 1 equals to X < Y. */
2821 if (cmp_code == LE_EXPR)
2822 code = LT_EXPR;
2823 /* X > Y - 1 equals to X >= Y. */
2824 if (cmp_code == GT_EXPR)
2825 code = GE_EXPR;
2826 }
2827 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2828 && !overflow)
2829 {
2830 /* X < Y + 1 equals to X <= Y. */
2831 if (cmp_code == LT_EXPR)
2832 code = LE_EXPR;
2833 /* X >= Y + 1 equals to X > Y. */
2834 if (cmp_code == GE_EXPR)
2835 code = GT_EXPR;
2836 }
2837 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2838 {
2839 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2840 code = MIN_EXPR;
2841 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2842 code = MAX_EXPR;
2843 }
2844 }
2845 }
2846 (if (code == MAX_EXPR)
2847 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2848 { wide_int_to_tree (from_type, c2); })
2849 (if (code == MIN_EXPR)
2850 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2851 { wide_int_to_tree (from_type, c2); })))))))))
2852
2853 (for cnd (cond vec_cond)
2854 /* A ? B : (A ? X : C) -> A ? B : C. */
2855 (simplify
2856 (cnd @0 (cnd @0 @1 @2) @3)
2857 (cnd @0 @1 @3))
2858 (simplify
2859 (cnd @0 @1 (cnd @0 @2 @3))
2860 (cnd @0 @1 @3))
2861 /* A ? B : (!A ? C : X) -> A ? B : C. */
2862 /* ??? This matches embedded conditions open-coded because genmatch
2863 would generate matching code for conditions in separate stmts only.
2864 The following is still important to merge then and else arm cases
2865 from if-conversion. */
2866 (simplify
2867 (cnd @0 @1 (cnd @2 @3 @4))
2868 (if (COMPARISON_CLASS_P (@0)
2869 && COMPARISON_CLASS_P (@2)
2870 && invert_tree_comparison
2871 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2872 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2873 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2874 (cnd @0 @1 @3)))
2875 (simplify
2876 (cnd @0 (cnd @1 @2 @3) @4)
2877 (if (COMPARISON_CLASS_P (@0)
2878 && COMPARISON_CLASS_P (@1)
2879 && invert_tree_comparison
2880 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2881 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2882 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2883 (cnd @0 @3 @4)))
2884
2885 /* A ? B : B -> B. */
2886 (simplify
2887 (cnd @0 @1 @1)
2888 @1)
2889
2890 /* !A ? B : C -> A ? C : B. */
2891 (simplify
2892 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2893 (cnd @0 @2 @1)))
2894
2895 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2896 return all -1 or all 0 results. */
2897 /* ??? We could instead convert all instances of the vec_cond to negate,
2898 but that isn't necessarily a win on its own. */
2899 (simplify
2900 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2901 (if (VECTOR_TYPE_P (type)
2902 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2903 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2904 && (TYPE_MODE (TREE_TYPE (type))
2905 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2906 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2907
2908 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2909 (simplify
2910 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2911 (if (VECTOR_TYPE_P (type)
2912 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2913 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2914 && (TYPE_MODE (TREE_TYPE (type))
2915 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2916 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2917
2918
2919 /* Simplifications of comparisons. */
2920
2921 /* See if we can reduce the magnitude of a constant involved in a
2922 comparison by changing the comparison code. This is a canonicalization
2923 formerly done by maybe_canonicalize_comparison_1. */
2924 (for cmp (le gt)
2925 acmp (lt ge)
2926 (simplify
2927 (cmp @0 INTEGER_CST@1)
2928 (if (tree_int_cst_sgn (@1) == -1)
2929 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2930 (for cmp (ge lt)
2931 acmp (gt le)
2932 (simplify
2933 (cmp @0 INTEGER_CST@1)
2934 (if (tree_int_cst_sgn (@1) == 1)
2935 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2936
2937
2938 /* We can simplify a logical negation of a comparison to the
2939 inverted comparison. As we cannot compute an expression
2940 operator using invert_tree_comparison we have to simulate
2941 that with expression code iteration. */
2942 (for cmp (tcc_comparison)
2943 icmp (inverted_tcc_comparison)
2944 ncmp (inverted_tcc_comparison_with_nans)
2945 /* Ideally we'd like to combine the following two patterns
2946 and handle some more cases by using
2947 (logical_inverted_value (cmp @0 @1))
2948 here but for that genmatch would need to "inline" that.
2949 For now implement what forward_propagate_comparison did. */
2950 (simplify
2951 (bit_not (cmp @0 @1))
2952 (if (VECTOR_TYPE_P (type)
2953 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2954 /* Comparison inversion may be impossible for trapping math,
2955 invert_tree_comparison will tell us. But we can't use
2956 a computed operator in the replacement tree thus we have
2957 to play the trick below. */
2958 (with { enum tree_code ic = invert_tree_comparison
2959 (cmp, HONOR_NANS (@0)); }
2960 (if (ic == icmp)
2961 (icmp @0 @1)
2962 (if (ic == ncmp)
2963 (ncmp @0 @1))))))
2964 (simplify
2965 (bit_xor (cmp @0 @1) integer_truep)
2966 (with { enum tree_code ic = invert_tree_comparison
2967 (cmp, HONOR_NANS (@0)); }
2968 (if (ic == icmp)
2969 (icmp @0 @1)
2970 (if (ic == ncmp)
2971 (ncmp @0 @1))))))
2972
2973 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2974 ??? The transformation is valid for the other operators if overflow
2975 is undefined for the type, but performing it here badly interacts
2976 with the transformation in fold_cond_expr_with_comparison which
2977 attempts to synthetize ABS_EXPR. */
2978 (for cmp (eq ne)
2979 (for sub (minus pointer_diff)
2980 (simplify
2981 (cmp (sub@2 @0 @1) integer_zerop)
2982 (if (single_use (@2))
2983 (cmp @0 @1)))))
2984
2985 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2986 signed arithmetic case. That form is created by the compiler
2987 often enough for folding it to be of value. One example is in
2988 computing loop trip counts after Operator Strength Reduction. */
2989 (for cmp (simple_comparison)
2990 scmp (swapped_simple_comparison)
2991 (simplify
2992 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2993 /* Handle unfolded multiplication by zero. */
2994 (if (integer_zerop (@1))
2995 (cmp @1 @2)
2996 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2998 && single_use (@3))
2999 /* If @1 is negative we swap the sense of the comparison. */
3000 (if (tree_int_cst_sgn (@1) < 0)
3001 (scmp @0 @2)
3002 (cmp @0 @2))))))
3003
3004 /* Simplify comparison of something with itself. For IEEE
3005 floating-point, we can only do some of these simplifications. */
3006 (for cmp (eq ge le)
3007 (simplify
3008 (cmp @0 @0)
3009 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3010 || ! HONOR_NANS (@0))
3011 { constant_boolean_node (true, type); }
3012 (if (cmp != EQ_EXPR)
3013 (eq @0 @0)))))
3014 (for cmp (ne gt lt)
3015 (simplify
3016 (cmp @0 @0)
3017 (if (cmp != NE_EXPR
3018 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3019 || ! HONOR_NANS (@0))
3020 { constant_boolean_node (false, type); })))
3021 (for cmp (unle unge uneq)
3022 (simplify
3023 (cmp @0 @0)
3024 { constant_boolean_node (true, type); }))
3025 (for cmp (unlt ungt)
3026 (simplify
3027 (cmp @0 @0)
3028 (unordered @0 @0)))
3029 (simplify
3030 (ltgt @0 @0)
3031 (if (!flag_trapping_math)
3032 { constant_boolean_node (false, type); }))
3033
3034 /* Fold ~X op ~Y as Y op X. */
3035 (for cmp (simple_comparison)
3036 (simplify
3037 (cmp (bit_not@2 @0) (bit_not@3 @1))
3038 (if (single_use (@2) && single_use (@3))
3039 (cmp @1 @0))))
3040
3041 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3042 (for cmp (simple_comparison)
3043 scmp (swapped_simple_comparison)
3044 (simplify
3045 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3046 (if (single_use (@2)
3047 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3048 (scmp @0 (bit_not @1)))))
3049
3050 (for cmp (simple_comparison)
3051 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3052 (simplify
3053 (cmp (convert@2 @0) (convert? @1))
3054 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3055 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3056 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3057 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3058 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3059 (with
3060 {
3061 tree type1 = TREE_TYPE (@1);
3062 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3063 {
3064 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3065 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3066 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3067 type1 = float_type_node;
3068 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3069 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3070 type1 = double_type_node;
3071 }
3072 tree newtype
3073 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3074 ? TREE_TYPE (@0) : type1);
3075 }
3076 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3077 (cmp (convert:newtype @0) (convert:newtype @1))))))
3078
3079 (simplify
3080 (cmp @0 REAL_CST@1)
3081 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3082 (switch
3083 /* a CMP (-0) -> a CMP 0 */
3084 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3085 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3086 /* x != NaN is always true, other ops are always false. */
3087 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3088 && ! HONOR_SNANS (@1))
3089 { constant_boolean_node (cmp == NE_EXPR, type); })
3090 /* Fold comparisons against infinity. */
3091 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3092 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3093 (with
3094 {
3095 REAL_VALUE_TYPE max;
3096 enum tree_code code = cmp;
3097 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3098 if (neg)
3099 code = swap_tree_comparison (code);
3100 }
3101 (switch
3102 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3103 (if (code == GT_EXPR
3104 && !(HONOR_NANS (@0) && flag_trapping_math))
3105 { constant_boolean_node (false, type); })
3106 (if (code == LE_EXPR)
3107 /* x <= +Inf is always true, if we don't care about NaNs. */
3108 (if (! HONOR_NANS (@0))
3109 { constant_boolean_node (true, type); }
3110 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3111 an "invalid" exception. */
3112 (if (!flag_trapping_math)
3113 (eq @0 @0))))
3114 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3115 for == this introduces an exception for x a NaN. */
3116 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3117 || code == GE_EXPR)
3118 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3119 (if (neg)
3120 (lt @0 { build_real (TREE_TYPE (@0), max); })
3121 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3122 /* x < +Inf is always equal to x <= DBL_MAX. */
3123 (if (code == LT_EXPR)
3124 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3125 (if (neg)
3126 (ge @0 { build_real (TREE_TYPE (@0), max); })
3127 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3128 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3129 an exception for x a NaN so use an unordered comparison. */
3130 (if (code == NE_EXPR)
3131 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3132 (if (! HONOR_NANS (@0))
3133 (if (neg)
3134 (ge @0 { build_real (TREE_TYPE (@0), max); })
3135 (le @0 { build_real (TREE_TYPE (@0), max); }))
3136 (if (neg)
3137 (unge @0 { build_real (TREE_TYPE (@0), max); })
3138 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3139
3140 /* If this is a comparison of a real constant with a PLUS_EXPR
3141 or a MINUS_EXPR of a real constant, we can convert it into a
3142 comparison with a revised real constant as long as no overflow
3143 occurs when unsafe_math_optimizations are enabled. */
3144 (if (flag_unsafe_math_optimizations)
3145 (for op (plus minus)
3146 (simplify
3147 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3148 (with
3149 {
3150 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3151 TREE_TYPE (@1), @2, @1);
3152 }
3153 (if (tem && !TREE_OVERFLOW (tem))
3154 (cmp @0 { tem; }))))))
3155
3156 /* Likewise, we can simplify a comparison of a real constant with
3157 a MINUS_EXPR whose first operand is also a real constant, i.e.
3158 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3159 floating-point types only if -fassociative-math is set. */
3160 (if (flag_associative_math)
3161 (simplify
3162 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3163 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3164 (if (tem && !TREE_OVERFLOW (tem))
3165 (cmp { tem; } @1)))))
3166
3167 /* Fold comparisons against built-in math functions. */
3168 (if (flag_unsafe_math_optimizations
3169 && ! flag_errno_math)
3170 (for sq (SQRT)
3171 (simplify
3172 (cmp (sq @0) REAL_CST@1)
3173 (switch
3174 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3175 (switch
3176 /* sqrt(x) < y is always false, if y is negative. */
3177 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3178 { constant_boolean_node (false, type); })
3179 /* sqrt(x) > y is always true, if y is negative and we
3180 don't care about NaNs, i.e. negative values of x. */
3181 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3182 { constant_boolean_node (true, type); })
3183 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3184 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3185 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3186 (switch
3187 /* sqrt(x) < 0 is always false. */
3188 (if (cmp == LT_EXPR)
3189 { constant_boolean_node (false, type); })
3190 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3191 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3192 { constant_boolean_node (true, type); })
3193 /* sqrt(x) <= 0 -> x == 0. */
3194 (if (cmp == LE_EXPR)
3195 (eq @0 @1))
3196 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3197 == or !=. In the last case:
3198
3199 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3200
3201 if x is negative or NaN. Due to -funsafe-math-optimizations,
3202 the results for other x follow from natural arithmetic. */
3203 (cmp @0 @1)))
3204 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3205 (with
3206 {
3207 REAL_VALUE_TYPE c2;
3208 real_arithmetic (&c2, MULT_EXPR,
3209 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3210 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3211 }
3212 (if (REAL_VALUE_ISINF (c2))
3213 /* sqrt(x) > y is x == +Inf, when y is very large. */
3214 (if (HONOR_INFINITIES (@0))
3215 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3216 { constant_boolean_node (false, type); })
3217 /* sqrt(x) > c is the same as x > c*c. */
3218 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3219 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3220 (with
3221 {
3222 REAL_VALUE_TYPE c2;
3223 real_arithmetic (&c2, MULT_EXPR,
3224 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3225 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3226 }
3227 (if (REAL_VALUE_ISINF (c2))
3228 (switch
3229 /* sqrt(x) < y is always true, when y is a very large
3230 value and we don't care about NaNs or Infinities. */
3231 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3232 { constant_boolean_node (true, type); })
3233 /* sqrt(x) < y is x != +Inf when y is very large and we
3234 don't care about NaNs. */
3235 (if (! HONOR_NANS (@0))
3236 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3237 /* sqrt(x) < y is x >= 0 when y is very large and we
3238 don't care about Infinities. */
3239 (if (! HONOR_INFINITIES (@0))
3240 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3241 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3242 (if (GENERIC)
3243 (truth_andif
3244 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3245 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3246 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3247 (if (! HONOR_NANS (@0))
3248 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3249 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3250 (if (GENERIC)
3251 (truth_andif
3252 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3253 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3254 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3255 (simplify
3256 (cmp (sq @0) (sq @1))
3257 (if (! HONOR_NANS (@0))
3258 (cmp @0 @1))))))
3259
3260 /* Optimize various special cases of (FTYPE) N CMP CST. */
3261 (for cmp (lt le eq ne ge gt)
3262 icmp (le le eq ne ge ge)
3263 (simplify
3264 (cmp (float @0) REAL_CST@1)
3265 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3266 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3267 (with
3268 {
3269 tree itype = TREE_TYPE (@0);
3270 signop isign = TYPE_SIGN (itype);
3271 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3272 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3273 /* Be careful to preserve any potential exceptions due to
3274 NaNs. qNaNs are ok in == or != context.
3275 TODO: relax under -fno-trapping-math or
3276 -fno-signaling-nans. */
3277 bool exception_p
3278 = real_isnan (cst) && (cst->signalling
3279 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3280 /* INT?_MIN is power-of-two so it takes
3281 only one mantissa bit. */
3282 bool signed_p = isign == SIGNED;
3283 bool itype_fits_ftype_p
3284 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3285 }
3286 /* TODO: allow non-fitting itype and SNaNs when
3287 -fno-trapping-math. */
3288 (if (itype_fits_ftype_p && ! exception_p)
3289 (with
3290 {
3291 REAL_VALUE_TYPE imin, imax;
3292 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3293 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3294
3295 REAL_VALUE_TYPE icst;
3296 if (cmp == GT_EXPR || cmp == GE_EXPR)
3297 real_ceil (&icst, fmt, cst);
3298 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3299 real_floor (&icst, fmt, cst);
3300 else
3301 real_trunc (&icst, fmt, cst);
3302
3303 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3304
3305 bool overflow_p = false;
3306 wide_int icst_val
3307 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3308 }
3309 (switch
3310 /* Optimize cases when CST is outside of ITYPE's range. */
3311 (if (real_compare (LT_EXPR, cst, &imin))
3312 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3313 type); })
3314 (if (real_compare (GT_EXPR, cst, &imax))
3315 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3316 type); })
3317 /* Remove cast if CST is an integer representable by ITYPE. */
3318 (if (cst_int_p)
3319 (cmp @0 { gcc_assert (!overflow_p);
3320 wide_int_to_tree (itype, icst_val); })
3321 )
3322 /* When CST is fractional, optimize
3323 (FTYPE) N == CST -> 0
3324 (FTYPE) N != CST -> 1. */
3325 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3326 { constant_boolean_node (cmp == NE_EXPR, type); })
3327 /* Otherwise replace with sensible integer constant. */
3328 (with
3329 {
3330 gcc_checking_assert (!overflow_p);
3331 }
3332 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3333
3334 /* Fold A /[ex] B CMP C to A CMP B * C. */
3335 (for cmp (eq ne)
3336 (simplify
3337 (cmp (exact_div @0 @1) INTEGER_CST@2)
3338 (if (!integer_zerop (@1))
3339 (if (wi::to_wide (@2) == 0)
3340 (cmp @0 @2)
3341 (if (TREE_CODE (@1) == INTEGER_CST)
3342 (with
3343 {
3344 bool ovf;
3345 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3346 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3347 }
3348 (if (ovf)
3349 { constant_boolean_node (cmp == NE_EXPR, type); }
3350 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3351 (for cmp (lt le gt ge)
3352 (simplify
3353 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3354 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3355 (with
3356 {
3357 bool ovf;
3358 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3359 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3360 }
3361 (if (ovf)
3362 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3363 TYPE_SIGN (TREE_TYPE (@2)))
3364 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3365 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3366
3367 /* Unordered tests if either argument is a NaN. */
3368 (simplify
3369 (bit_ior (unordered @0 @0) (unordered @1 @1))
3370 (if (types_match (@0, @1))
3371 (unordered @0 @1)))
3372 (simplify
3373 (bit_and (ordered @0 @0) (ordered @1 @1))
3374 (if (types_match (@0, @1))
3375 (ordered @0 @1)))
3376 (simplify
3377 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3378 @2)
3379 (simplify
3380 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3381 @2)
3382
3383 /* Simple range test simplifications. */
3384 /* A < B || A >= B -> true. */
3385 (for test1 (lt le le le ne ge)
3386 test2 (ge gt ge ne eq ne)
3387 (simplify
3388 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3389 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3390 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3391 { constant_boolean_node (true, type); })))
3392 /* A < B && A >= B -> false. */
3393 (for test1 (lt lt lt le ne eq)
3394 test2 (ge gt eq gt eq gt)
3395 (simplify
3396 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3397 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3398 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3399 { constant_boolean_node (false, type); })))
3400
3401 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3402 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3403
3404 Note that comparisons
3405 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3406 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3407 will be canonicalized to above so there's no need to
3408 consider them here.
3409 */
3410
3411 (for cmp (le gt)
3412 eqcmp (eq ne)
3413 (simplify
3414 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3415 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3416 (with
3417 {
3418 tree ty = TREE_TYPE (@0);
3419 unsigned prec = TYPE_PRECISION (ty);
3420 wide_int mask = wi::to_wide (@2, prec);
3421 wide_int rhs = wi::to_wide (@3, prec);
3422 signop sgn = TYPE_SIGN (ty);
3423 }
3424 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3425 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3426 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3427 { build_zero_cst (ty); }))))))
3428
3429 /* -A CMP -B -> B CMP A. */
3430 (for cmp (tcc_comparison)
3431 scmp (swapped_tcc_comparison)
3432 (simplify
3433 (cmp (negate @0) (negate @1))
3434 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3435 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3436 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3437 (scmp @0 @1)))
3438 (simplify
3439 (cmp (negate @0) CONSTANT_CLASS_P@1)
3440 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3441 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3442 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3443 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3444 (if (tem && !TREE_OVERFLOW (tem))
3445 (scmp @0 { tem; }))))))
3446
3447 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3448 (for op (eq ne)
3449 (simplify
3450 (op (abs @0) zerop@1)
3451 (op @0 @1)))
3452
3453 /* From fold_sign_changed_comparison and fold_widened_comparison.
3454 FIXME: the lack of symmetry is disturbing. */
3455 (for cmp (simple_comparison)
3456 (simplify
3457 (cmp (convert@0 @00) (convert?@1 @10))
3458 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3459 /* Disable this optimization if we're casting a function pointer
3460 type on targets that require function pointer canonicalization. */
3461 && !(targetm.have_canonicalize_funcptr_for_compare ()
3462 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3463 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3464 && single_use (@0))
3465 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3466 && (TREE_CODE (@10) == INTEGER_CST
3467 || @1 != @10)
3468 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3469 || cmp == NE_EXPR
3470 || cmp == EQ_EXPR)
3471 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3472 /* ??? The special-casing of INTEGER_CST conversion was in the original
3473 code and here to avoid a spurious overflow flag on the resulting
3474 constant which fold_convert produces. */
3475 (if (TREE_CODE (@1) == INTEGER_CST)
3476 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3477 TREE_OVERFLOW (@1)); })
3478 (cmp @00 (convert @1)))
3479
3480 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3481 /* If possible, express the comparison in the shorter mode. */
3482 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3483 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3484 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3485 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3486 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3487 || ((TYPE_PRECISION (TREE_TYPE (@00))
3488 >= TYPE_PRECISION (TREE_TYPE (@10)))
3489 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3490 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3491 || (TREE_CODE (@10) == INTEGER_CST
3492 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3493 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3494 (cmp @00 (convert @10))
3495 (if (TREE_CODE (@10) == INTEGER_CST
3496 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3497 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3498 (with
3499 {
3500 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3501 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3502 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3503 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3504 }
3505 (if (above || below)
3506 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3507 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3508 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3509 { constant_boolean_node (above ? true : false, type); }
3510 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3511 { constant_boolean_node (above ? false : true, type); }))))))))))))
3512
3513 (for cmp (eq ne)
3514 /* A local variable can never be pointed to by
3515 the default SSA name of an incoming parameter.
3516 SSA names are canonicalized to 2nd place. */
3517 (simplify
3518 (cmp addr@0 SSA_NAME@1)
3519 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3520 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3521 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3522 (if (TREE_CODE (base) == VAR_DECL
3523 && auto_var_in_fn_p (base, current_function_decl))
3524 (if (cmp == NE_EXPR)
3525 { constant_boolean_node (true, type); }
3526 { constant_boolean_node (false, type); }))))))
3527
3528 /* Equality compare simplifications from fold_binary */
3529 (for cmp (eq ne)
3530
3531 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3532 Similarly for NE_EXPR. */
3533 (simplify
3534 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3535 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3536 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3537 { constant_boolean_node (cmp == NE_EXPR, type); }))
3538
3539 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3540 (simplify
3541 (cmp (bit_xor @0 @1) integer_zerop)
3542 (cmp @0 @1))
3543
3544 /* (X ^ Y) == Y becomes X == 0.
3545 Likewise (X ^ Y) == X becomes Y == 0. */
3546 (simplify
3547 (cmp:c (bit_xor:c @0 @1) @0)
3548 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3549
3550 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3551 (simplify
3552 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3553 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3554 (cmp @0 (bit_xor @1 (convert @2)))))
3555
3556 (simplify
3557 (cmp (convert? addr@0) integer_zerop)
3558 (if (tree_single_nonzero_warnv_p (@0, NULL))
3559 { constant_boolean_node (cmp == NE_EXPR, type); })))
3560
3561 /* If we have (A & C) == C where C is a power of 2, convert this into
3562 (A & C) != 0. Similarly for NE_EXPR. */
3563 (for cmp (eq ne)
3564 icmp (ne eq)
3565 (simplify
3566 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3567 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3568
3569 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3570 convert this into a shift followed by ANDing with D. */
3571 (simplify
3572 (cond
3573 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3574 INTEGER_CST@2 integer_zerop)
3575 (if (integer_pow2p (@2))
3576 (with {
3577 int shift = (wi::exact_log2 (wi::to_wide (@2))
3578 - wi::exact_log2 (wi::to_wide (@1)));
3579 }
3580 (if (shift > 0)
3581 (bit_and
3582 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3583 (bit_and
3584 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3585 @2)))))
3586
3587 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3588 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3589 (for cmp (eq ne)
3590 ncmp (ge lt)
3591 (simplify
3592 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3593 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3594 && type_has_mode_precision_p (TREE_TYPE (@0))
3595 && element_precision (@2) >= element_precision (@0)
3596 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3597 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3598 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3599
3600 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3601 this into a right shift or sign extension followed by ANDing with C. */
3602 (simplify
3603 (cond
3604 (lt @0 integer_zerop)
3605 INTEGER_CST@1 integer_zerop)
3606 (if (integer_pow2p (@1)
3607 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3608 (with {
3609 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3610 }
3611 (if (shift >= 0)
3612 (bit_and
3613 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3614 @1)
3615 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3616 sign extension followed by AND with C will achieve the effect. */
3617 (bit_and (convert @0) @1)))))
3618
3619 /* When the addresses are not directly of decls compare base and offset.
3620 This implements some remaining parts of fold_comparison address
3621 comparisons but still no complete part of it. Still it is good
3622 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3623 (for cmp (simple_comparison)
3624 (simplify
3625 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3626 (with
3627 {
3628 poly_int64 off0, off1;
3629 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3630 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3631 if (base0 && TREE_CODE (base0) == MEM_REF)
3632 {
3633 off0 += mem_ref_offset (base0).force_shwi ();
3634 base0 = TREE_OPERAND (base0, 0);
3635 }
3636 if (base1 && TREE_CODE (base1) == MEM_REF)
3637 {
3638 off1 += mem_ref_offset (base1).force_shwi ();
3639 base1 = TREE_OPERAND (base1, 0);
3640 }
3641 }
3642 (if (base0 && base1)
3643 (with
3644 {
3645 int equal = 2;
3646 /* Punt in GENERIC on variables with value expressions;
3647 the value expressions might point to fields/elements
3648 of other vars etc. */
3649 if (GENERIC
3650 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3651 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3652 ;
3653 else if (decl_in_symtab_p (base0)
3654 && decl_in_symtab_p (base1))
3655 equal = symtab_node::get_create (base0)
3656 ->equal_address_to (symtab_node::get_create (base1));
3657 else if ((DECL_P (base0)
3658 || TREE_CODE (base0) == SSA_NAME
3659 || TREE_CODE (base0) == STRING_CST)
3660 && (DECL_P (base1)
3661 || TREE_CODE (base1) == SSA_NAME
3662 || TREE_CODE (base1) == STRING_CST))
3663 equal = (base0 == base1);
3664 }
3665 (if (equal == 1
3666 && (cmp == EQ_EXPR || cmp == NE_EXPR
3667 /* If the offsets are equal we can ignore overflow. */
3668 || known_eq (off0, off1)
3669 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3670 /* Or if we compare using pointers to decls or strings. */
3671 || (POINTER_TYPE_P (TREE_TYPE (@2))
3672 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3673 (switch
3674 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3675 { constant_boolean_node (known_eq (off0, off1), type); })
3676 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3677 { constant_boolean_node (known_ne (off0, off1), type); })
3678 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3679 { constant_boolean_node (known_lt (off0, off1), type); })
3680 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3681 { constant_boolean_node (known_le (off0, off1), type); })
3682 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3683 { constant_boolean_node (known_ge (off0, off1), type); })
3684 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3685 { constant_boolean_node (known_gt (off0, off1), type); }))
3686 (if (equal == 0
3687 && DECL_P (base0) && DECL_P (base1)
3688 /* If we compare this as integers require equal offset. */
3689 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3690 || known_eq (off0, off1)))
3691 (switch
3692 (if (cmp == EQ_EXPR)
3693 { constant_boolean_node (false, type); })
3694 (if (cmp == NE_EXPR)
3695 { constant_boolean_node (true, type); })))))))))
3696
3697 /* Simplify pointer equality compares using PTA. */
3698 (for neeq (ne eq)
3699 (simplify
3700 (neeq @0 @1)
3701 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3702 && ptrs_compare_unequal (@0, @1))
3703 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3704
3705 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3706 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3707 Disable the transform if either operand is pointer to function.
3708 This broke pr22051-2.c for arm where function pointer
3709 canonicalizaion is not wanted. */
3710
3711 (for cmp (ne eq)
3712 (simplify
3713 (cmp (convert @0) INTEGER_CST@1)
3714 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3715 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3716 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3717 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3718 (cmp @0 (convert @1)))))
3719
3720 /* Non-equality compare simplifications from fold_binary */
3721 (for cmp (lt gt le ge)
3722 /* Comparisons with the highest or lowest possible integer of
3723 the specified precision will have known values. */
3724 (simplify
3725 (cmp (convert?@2 @0) INTEGER_CST@1)
3726 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3727 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3728 (with
3729 {
3730 tree arg1_type = TREE_TYPE (@1);
3731 unsigned int prec = TYPE_PRECISION (arg1_type);
3732 wide_int max = wi::max_value (arg1_type);
3733 wide_int signed_max = wi::max_value (prec, SIGNED);
3734 wide_int min = wi::min_value (arg1_type);
3735 }
3736 (switch
3737 (if (wi::to_wide (@1) == max)
3738 (switch
3739 (if (cmp == GT_EXPR)
3740 { constant_boolean_node (false, type); })
3741 (if (cmp == GE_EXPR)
3742 (eq @2 @1))
3743 (if (cmp == LE_EXPR)
3744 { constant_boolean_node (true, type); })
3745 (if (cmp == LT_EXPR)
3746 (ne @2 @1))))
3747 (if (wi::to_wide (@1) == min)
3748 (switch
3749 (if (cmp == LT_EXPR)
3750 { constant_boolean_node (false, type); })
3751 (if (cmp == LE_EXPR)
3752 (eq @2 @1))
3753 (if (cmp == GE_EXPR)
3754 { constant_boolean_node (true, type); })
3755 (if (cmp == GT_EXPR)
3756 (ne @2 @1))))
3757 (if (wi::to_wide (@1) == max - 1)
3758 (switch
3759 (if (cmp == GT_EXPR)
3760 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3761 (if (cmp == LE_EXPR)
3762 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3763 (if (wi::to_wide (@1) == min + 1)
3764 (switch
3765 (if (cmp == GE_EXPR)
3766 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3767 (if (cmp == LT_EXPR)
3768 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3769 (if (wi::to_wide (@1) == signed_max
3770 && TYPE_UNSIGNED (arg1_type)
3771 /* We will flip the signedness of the comparison operator
3772 associated with the mode of @1, so the sign bit is
3773 specified by this mode. Check that @1 is the signed
3774 max associated with this sign bit. */
3775 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3776 /* signed_type does not work on pointer types. */
3777 && INTEGRAL_TYPE_P (arg1_type))
3778 /* The following case also applies to X < signed_max+1
3779 and X >= signed_max+1 because previous transformations. */
3780 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3781 (with { tree st = signed_type_for (arg1_type); }
3782 (if (cmp == LE_EXPR)
3783 (ge (convert:st @0) { build_zero_cst (st); })
3784 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3785
3786 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3787 /* If the second operand is NaN, the result is constant. */
3788 (simplify
3789 (cmp @0 REAL_CST@1)
3790 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3791 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3792 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3793 ? false : true, type); })))
3794
3795 /* bool_var != 0 becomes bool_var. */
3796 (simplify
3797 (ne @0 integer_zerop)
3798 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3799 && types_match (type, TREE_TYPE (@0)))
3800 (non_lvalue @0)))
3801 /* bool_var == 1 becomes bool_var. */
3802 (simplify
3803 (eq @0 integer_onep)
3804 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3805 && types_match (type, TREE_TYPE (@0)))
3806 (non_lvalue @0)))
3807 /* Do not handle
3808 bool_var == 0 becomes !bool_var or
3809 bool_var != 1 becomes !bool_var
3810 here because that only is good in assignment context as long
3811 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3812 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3813 clearly less optimal and which we'll transform again in forwprop. */
3814
3815 /* When one argument is a constant, overflow detection can be simplified.
3816 Currently restricted to single use so as not to interfere too much with
3817 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3818 A + CST CMP A -> A CMP' CST' */
3819 (for cmp (lt le ge gt)
3820 out (gt gt le le)
3821 (simplify
3822 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3823 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3824 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3825 && wi::to_wide (@1) != 0
3826 && single_use (@2))
3827 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3828 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3829 wi::max_value (prec, UNSIGNED)
3830 - wi::to_wide (@1)); })))))
3831
3832 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3833 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3834 expects the long form, so we restrict the transformation for now. */
3835 (for cmp (gt le)
3836 (simplify
3837 (cmp:c (minus@2 @0 @1) @0)
3838 (if (single_use (@2)
3839 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3840 && TYPE_UNSIGNED (TREE_TYPE (@0))
3841 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3842 (cmp @1 @0))))
3843
3844 /* Testing for overflow is unnecessary if we already know the result. */
3845 /* A - B > A */
3846 (for cmp (gt le)
3847 out (ne eq)
3848 (simplify
3849 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3850 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3851 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3852 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3853 /* A + B < A */
3854 (for cmp (lt ge)
3855 out (ne eq)
3856 (simplify
3857 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3858 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3859 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3860 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3861
3862 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3863 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3864 (for cmp (lt ge)
3865 out (ne eq)
3866 (simplify
3867 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3868 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3869 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3870 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3871
3872 /* Simplification of math builtins. These rules must all be optimizations
3873 as well as IL simplifications. If there is a possibility that the new
3874 form could be a pessimization, the rule should go in the canonicalization
3875 section that follows this one.
3876
3877 Rules can generally go in this section if they satisfy one of
3878 the following:
3879
3880 - the rule describes an identity
3881
3882 - the rule replaces calls with something as simple as addition or
3883 multiplication
3884
3885 - the rule contains unary calls only and simplifies the surrounding
3886 arithmetic. (The idea here is to exclude non-unary calls in which
3887 one operand is constant and in which the call is known to be cheap
3888 when the operand has that value.) */
3889
3890 (if (flag_unsafe_math_optimizations)
3891 /* Simplify sqrt(x) * sqrt(x) -> x. */
3892 (simplify
3893 (mult (SQRT_ALL@1 @0) @1)
3894 (if (!HONOR_SNANS (type))
3895 @0))
3896
3897 (for op (plus minus)
3898 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3899 (simplify
3900 (op (rdiv @0 @1)
3901 (rdiv @2 @1))
3902 (rdiv (op @0 @2) @1)))
3903
3904 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3905 (for root (SQRT CBRT)
3906 (simplify
3907 (mult (root:s @0) (root:s @1))
3908 (root (mult @0 @1))))
3909
3910 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3911 (for exps (EXP EXP2 EXP10 POW10)
3912 (simplify
3913 (mult (exps:s @0) (exps:s @1))
3914 (exps (plus @0 @1))))
3915
3916 /* Simplify a/root(b/c) into a*root(c/b). */
3917 (for root (SQRT CBRT)
3918 (simplify
3919 (rdiv @0 (root:s (rdiv:s @1 @2)))
3920 (mult @0 (root (rdiv @2 @1)))))
3921
3922 /* Simplify x/expN(y) into x*expN(-y). */
3923 (for exps (EXP EXP2 EXP10 POW10)
3924 (simplify
3925 (rdiv @0 (exps:s @1))
3926 (mult @0 (exps (negate @1)))))
3927
3928 (for logs (LOG LOG2 LOG10 LOG10)
3929 exps (EXP EXP2 EXP10 POW10)
3930 /* logN(expN(x)) -> x. */
3931 (simplify
3932 (logs (exps @0))
3933 @0)
3934 /* expN(logN(x)) -> x. */
3935 (simplify
3936 (exps (logs @0))
3937 @0))
3938
3939 /* Optimize logN(func()) for various exponential functions. We
3940 want to determine the value "x" and the power "exponent" in
3941 order to transform logN(x**exponent) into exponent*logN(x). */
3942 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3943 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3944 (simplify
3945 (logs (exps @0))
3946 (if (SCALAR_FLOAT_TYPE_P (type))
3947 (with {
3948 tree x;
3949 switch (exps)
3950 {
3951 CASE_CFN_EXP:
3952 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3953 x = build_real_truncate (type, dconst_e ());
3954 break;
3955 CASE_CFN_EXP2:
3956 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3957 x = build_real (type, dconst2);
3958 break;
3959 CASE_CFN_EXP10:
3960 CASE_CFN_POW10:
3961 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3962 {
3963 REAL_VALUE_TYPE dconst10;
3964 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3965 x = build_real (type, dconst10);
3966 }
3967 break;
3968 default:
3969 gcc_unreachable ();
3970 }
3971 }
3972 (mult (logs { x; }) @0)))))
3973
3974 (for logs (LOG LOG
3975 LOG2 LOG2
3976 LOG10 LOG10)
3977 exps (SQRT CBRT)
3978 (simplify
3979 (logs (exps @0))
3980 (if (SCALAR_FLOAT_TYPE_P (type))
3981 (with {
3982 tree x;
3983 switch (exps)
3984 {
3985 CASE_CFN_SQRT:
3986 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3987 x = build_real (type, dconsthalf);
3988 break;
3989 CASE_CFN_CBRT:
3990 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3991 x = build_real_truncate (type, dconst_third ());
3992 break;
3993 default:
3994 gcc_unreachable ();
3995 }
3996 }
3997 (mult { x; } (logs @0))))))
3998
3999 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4000 (for logs (LOG LOG2 LOG10)
4001 pows (POW)
4002 (simplify
4003 (logs (pows @0 @1))
4004 (mult @1 (logs @0))))
4005
4006 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4007 or if C is a positive power of 2,
4008 pow(C,x) -> exp2(log2(C)*x). */
4009 #if GIMPLE
4010 (for pows (POW)
4011 exps (EXP)
4012 logs (LOG)
4013 exp2s (EXP2)
4014 log2s (LOG2)
4015 (simplify
4016 (pows REAL_CST@0 @1)
4017 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4018 && real_isfinite (TREE_REAL_CST_PTR (@0))
4019 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4020 the use_exp2 case until after vectorization. It seems actually
4021 beneficial for all constants to postpone this until later,
4022 because exp(log(C)*x), while faster, will have worse precision
4023 and if x folds into a constant too, that is unnecessary
4024 pessimization. */
4025 && canonicalize_math_after_vectorization_p ())
4026 (with {
4027 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4028 bool use_exp2 = false;
4029 if (targetm.libc_has_function (function_c99_misc)
4030 && value->cl == rvc_normal)
4031 {
4032 REAL_VALUE_TYPE frac_rvt = *value;
4033 SET_REAL_EXP (&frac_rvt, 1);
4034 if (real_equal (&frac_rvt, &dconst1))
4035 use_exp2 = true;
4036 }
4037 }
4038 (if (!use_exp2)
4039 (if (optimize_pow_to_exp (@0, @1))
4040 (exps (mult (logs @0) @1)))
4041 (exp2s (mult (log2s @0) @1)))))))
4042 #endif
4043
4044 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4045 (for pows (POW)
4046 exps (EXP EXP2 EXP10 POW10)
4047 logs (LOG LOG2 LOG10 LOG10)
4048 (simplify
4049 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4050 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4051 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4052 (exps (plus (mult (logs @0) @1) @2)))))
4053
4054 (for sqrts (SQRT)
4055 cbrts (CBRT)
4056 pows (POW)
4057 exps (EXP EXP2 EXP10 POW10)
4058 /* sqrt(expN(x)) -> expN(x*0.5). */
4059 (simplify
4060 (sqrts (exps @0))
4061 (exps (mult @0 { build_real (type, dconsthalf); })))
4062 /* cbrt(expN(x)) -> expN(x/3). */
4063 (simplify
4064 (cbrts (exps @0))
4065 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4066 /* pow(expN(x), y) -> expN(x*y). */
4067 (simplify
4068 (pows (exps @0) @1)
4069 (exps (mult @0 @1))))
4070
4071 /* tan(atan(x)) -> x. */
4072 (for tans (TAN)
4073 atans (ATAN)
4074 (simplify
4075 (tans (atans @0))
4076 @0)))
4077
4078 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4079 (simplify
4080 (CABS (complex:C @0 real_zerop@1))
4081 (abs @0))
4082
4083 /* trunc(trunc(x)) -> trunc(x), etc. */
4084 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4085 (simplify
4086 (fns (fns @0))
4087 (fns @0)))
4088 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4089 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4090 (simplify
4091 (fns integer_valued_real_p@0)
4092 @0))
4093
4094 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4095 (simplify
4096 (HYPOT:c @0 real_zerop@1)
4097 (abs @0))
4098
4099 /* pow(1,x) -> 1. */
4100 (simplify
4101 (POW real_onep@0 @1)
4102 @0)
4103
4104 (simplify
4105 /* copysign(x,x) -> x. */
4106 (COPYSIGN_ALL @0 @0)
4107 @0)
4108
4109 (simplify
4110 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4111 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4112 (abs @0))
4113
4114 (for scale (LDEXP SCALBN SCALBLN)
4115 /* ldexp(0, x) -> 0. */
4116 (simplify
4117 (scale real_zerop@0 @1)
4118 @0)
4119 /* ldexp(x, 0) -> x. */
4120 (simplify
4121 (scale @0 integer_zerop@1)
4122 @0)
4123 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4124 (simplify
4125 (scale REAL_CST@0 @1)
4126 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4127 @0)))
4128
4129 /* Canonicalization of sequences of math builtins. These rules represent
4130 IL simplifications but are not necessarily optimizations.
4131
4132 The sincos pass is responsible for picking "optimal" implementations
4133 of math builtins, which may be more complicated and can sometimes go
4134 the other way, e.g. converting pow into a sequence of sqrts.
4135 We only want to do these canonicalizations before the pass has run. */
4136
4137 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4138 /* Simplify tan(x) * cos(x) -> sin(x). */
4139 (simplify
4140 (mult:c (TAN:s @0) (COS:s @0))
4141 (SIN @0))
4142
4143 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4144 (simplify
4145 (mult:c @0 (POW:s @0 REAL_CST@1))
4146 (if (!TREE_OVERFLOW (@1))
4147 (POW @0 (plus @1 { build_one_cst (type); }))))
4148
4149 /* Simplify sin(x) / cos(x) -> tan(x). */
4150 (simplify
4151 (rdiv (SIN:s @0) (COS:s @0))
4152 (TAN @0))
4153
4154 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4155 (simplify
4156 (rdiv (COS:s @0) (SIN:s @0))
4157 (rdiv { build_one_cst (type); } (TAN @0)))
4158
4159 /* Simplify sin(x) / tan(x) -> cos(x). */
4160 (simplify
4161 (rdiv (SIN:s @0) (TAN:s @0))
4162 (if (! HONOR_NANS (@0)
4163 && ! HONOR_INFINITIES (@0))
4164 (COS @0)))
4165
4166 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4167 (simplify
4168 (rdiv (TAN:s @0) (SIN:s @0))
4169 (if (! HONOR_NANS (@0)
4170 && ! HONOR_INFINITIES (@0))
4171 (rdiv { build_one_cst (type); } (COS @0))))
4172
4173 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4174 (simplify
4175 (mult (POW:s @0 @1) (POW:s @0 @2))
4176 (POW @0 (plus @1 @2)))
4177
4178 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4179 (simplify
4180 (mult (POW:s @0 @1) (POW:s @2 @1))
4181 (POW (mult @0 @2) @1))
4182
4183 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4184 (simplify
4185 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4186 (POWI (mult @0 @2) @1))
4187
4188 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4189 (simplify
4190 (rdiv (POW:s @0 REAL_CST@1) @0)
4191 (if (!TREE_OVERFLOW (@1))
4192 (POW @0 (minus @1 { build_one_cst (type); }))))
4193
4194 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4195 (simplify
4196 (rdiv @0 (POW:s @1 @2))
4197 (mult @0 (POW @1 (negate @2))))
4198
4199 (for sqrts (SQRT)
4200 cbrts (CBRT)
4201 pows (POW)
4202 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4203 (simplify
4204 (sqrts (sqrts @0))
4205 (pows @0 { build_real (type, dconst_quarter ()); }))
4206 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4207 (simplify
4208 (sqrts (cbrts @0))
4209 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4210 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4211 (simplify
4212 (cbrts (sqrts @0))
4213 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4214 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4215 (simplify
4216 (cbrts (cbrts tree_expr_nonnegative_p@0))
4217 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4218 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4219 (simplify
4220 (sqrts (pows @0 @1))
4221 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4222 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4223 (simplify
4224 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4225 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4226 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4227 (simplify
4228 (pows (sqrts @0) @1)
4229 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4230 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4231 (simplify
4232 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4233 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4234 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4235 (simplify
4236 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4237 (pows @0 (mult @1 @2))))
4238
4239 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4240 (simplify
4241 (CABS (complex @0 @0))
4242 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4243
4244 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4245 (simplify
4246 (HYPOT @0 @0)
4247 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4248
4249 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4250 (for cexps (CEXP)
4251 exps (EXP)
4252 cexpis (CEXPI)
4253 (simplify
4254 (cexps compositional_complex@0)
4255 (if (targetm.libc_has_function (function_c99_math_complex))
4256 (complex
4257 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4258 (mult @1 (imagpart @2)))))))
4259
4260 (if (canonicalize_math_p ())
4261 /* floor(x) -> trunc(x) if x is nonnegative. */
4262 (for floors (FLOOR_ALL)
4263 truncs (TRUNC_ALL)
4264 (simplify
4265 (floors tree_expr_nonnegative_p@0)
4266 (truncs @0))))
4267
4268 (match double_value_p
4269 @0
4270 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4271 (for froms (BUILT_IN_TRUNCL
4272 BUILT_IN_FLOORL
4273 BUILT_IN_CEILL
4274 BUILT_IN_ROUNDL
4275 BUILT_IN_NEARBYINTL
4276 BUILT_IN_RINTL)
4277 tos (BUILT_IN_TRUNC
4278 BUILT_IN_FLOOR
4279 BUILT_IN_CEIL
4280 BUILT_IN_ROUND
4281 BUILT_IN_NEARBYINT
4282 BUILT_IN_RINT)
4283 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4284 (if (optimize && canonicalize_math_p ())
4285 (simplify
4286 (froms (convert double_value_p@0))
4287 (convert (tos @0)))))
4288
4289 (match float_value_p
4290 @0
4291 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4292 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4293 BUILT_IN_FLOORL BUILT_IN_FLOOR
4294 BUILT_IN_CEILL BUILT_IN_CEIL
4295 BUILT_IN_ROUNDL BUILT_IN_ROUND
4296 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4297 BUILT_IN_RINTL BUILT_IN_RINT)
4298 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4299 BUILT_IN_FLOORF BUILT_IN_FLOORF
4300 BUILT_IN_CEILF BUILT_IN_CEILF
4301 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4302 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4303 BUILT_IN_RINTF BUILT_IN_RINTF)
4304 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4305 if x is a float. */
4306 (if (optimize && canonicalize_math_p ()
4307 && targetm.libc_has_function (function_c99_misc))
4308 (simplify
4309 (froms (convert float_value_p@0))
4310 (convert (tos @0)))))
4311
4312 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4313 tos (XFLOOR XCEIL XROUND XRINT)
4314 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4315 (if (optimize && canonicalize_math_p ())
4316 (simplify
4317 (froms (convert double_value_p@0))
4318 (tos @0))))
4319
4320 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4321 XFLOOR XCEIL XROUND XRINT)
4322 tos (XFLOORF XCEILF XROUNDF XRINTF)
4323 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4324 if x is a float. */
4325 (if (optimize && canonicalize_math_p ())
4326 (simplify
4327 (froms (convert float_value_p@0))
4328 (tos @0))))
4329
4330 (if (canonicalize_math_p ())
4331 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4332 (for floors (IFLOOR LFLOOR LLFLOOR)
4333 (simplify
4334 (floors tree_expr_nonnegative_p@0)
4335 (fix_trunc @0))))
4336
4337 (if (canonicalize_math_p ())
4338 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4339 (for fns (IFLOOR LFLOOR LLFLOOR
4340 ICEIL LCEIL LLCEIL
4341 IROUND LROUND LLROUND)
4342 (simplify
4343 (fns integer_valued_real_p@0)
4344 (fix_trunc @0)))
4345 (if (!flag_errno_math)
4346 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4347 (for rints (IRINT LRINT LLRINT)
4348 (simplify
4349 (rints integer_valued_real_p@0)
4350 (fix_trunc @0)))))
4351
4352 (if (canonicalize_math_p ())
4353 (for ifn (IFLOOR ICEIL IROUND IRINT)
4354 lfn (LFLOOR LCEIL LROUND LRINT)
4355 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4356 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4357 sizeof (int) == sizeof (long). */
4358 (if (TYPE_PRECISION (integer_type_node)
4359 == TYPE_PRECISION (long_integer_type_node))
4360 (simplify
4361 (ifn @0)
4362 (lfn:long_integer_type_node @0)))
4363 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4364 sizeof (long long) == sizeof (long). */
4365 (if (TYPE_PRECISION (long_long_integer_type_node)
4366 == TYPE_PRECISION (long_integer_type_node))
4367 (simplify
4368 (llfn @0)
4369 (lfn:long_integer_type_node @0)))))
4370
4371 /* cproj(x) -> x if we're ignoring infinities. */
4372 (simplify
4373 (CPROJ @0)
4374 (if (!HONOR_INFINITIES (type))
4375 @0))
4376
4377 /* If the real part is inf and the imag part is known to be
4378 nonnegative, return (inf + 0i). */
4379 (simplify
4380 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4381 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4382 { build_complex_inf (type, false); }))
4383
4384 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4385 (simplify
4386 (CPROJ (complex @0 REAL_CST@1))
4387 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4388 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4389
4390 (for pows (POW)
4391 sqrts (SQRT)
4392 cbrts (CBRT)
4393 (simplify
4394 (pows @0 REAL_CST@1)
4395 (with {
4396 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4397 REAL_VALUE_TYPE tmp;
4398 }
4399 (switch
4400 /* pow(x,0) -> 1. */
4401 (if (real_equal (value, &dconst0))
4402 { build_real (type, dconst1); })
4403 /* pow(x,1) -> x. */
4404 (if (real_equal (value, &dconst1))
4405 @0)
4406 /* pow(x,-1) -> 1/x. */
4407 (if (real_equal (value, &dconstm1))
4408 (rdiv { build_real (type, dconst1); } @0))
4409 /* pow(x,0.5) -> sqrt(x). */
4410 (if (flag_unsafe_math_optimizations
4411 && canonicalize_math_p ()
4412 && real_equal (value, &dconsthalf))
4413 (sqrts @0))
4414 /* pow(x,1/3) -> cbrt(x). */
4415 (if (flag_unsafe_math_optimizations
4416 && canonicalize_math_p ()
4417 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4418 real_equal (value, &tmp)))
4419 (cbrts @0))))))
4420
4421 /* powi(1,x) -> 1. */
4422 (simplify
4423 (POWI real_onep@0 @1)
4424 @0)
4425
4426 (simplify
4427 (POWI @0 INTEGER_CST@1)
4428 (switch
4429 /* powi(x,0) -> 1. */
4430 (if (wi::to_wide (@1) == 0)
4431 { build_real (type, dconst1); })
4432 /* powi(x,1) -> x. */
4433 (if (wi::to_wide (@1) == 1)
4434 @0)
4435 /* powi(x,-1) -> 1/x. */
4436 (if (wi::to_wide (@1) == -1)
4437 (rdiv { build_real (type, dconst1); } @0))))
4438
4439 /* Narrowing of arithmetic and logical operations.
4440
4441 These are conceptually similar to the transformations performed for
4442 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4443 term we want to move all that code out of the front-ends into here. */
4444
4445 /* If we have a narrowing conversion of an arithmetic operation where
4446 both operands are widening conversions from the same type as the outer
4447 narrowing conversion. Then convert the innermost operands to a suitable
4448 unsigned type (to avoid introducing undefined behavior), perform the
4449 operation and convert the result to the desired type. */
4450 (for op (plus minus)
4451 (simplify
4452 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4453 (if (INTEGRAL_TYPE_P (type)
4454 /* We check for type compatibility between @0 and @1 below,
4455 so there's no need to check that @1/@3 are integral types. */
4456 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4457 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4458 /* The precision of the type of each operand must match the
4459 precision of the mode of each operand, similarly for the
4460 result. */
4461 && type_has_mode_precision_p (TREE_TYPE (@0))
4462 && type_has_mode_precision_p (TREE_TYPE (@1))
4463 && type_has_mode_precision_p (type)
4464 /* The inner conversion must be a widening conversion. */
4465 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4466 && types_match (@0, type)
4467 && (types_match (@0, @1)
4468 /* Or the second operand is const integer or converted const
4469 integer from valueize. */
4470 || TREE_CODE (@1) == INTEGER_CST))
4471 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4472 (op @0 (convert @1))
4473 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4474 (convert (op (convert:utype @0)
4475 (convert:utype @1))))))))
4476
4477 /* This is another case of narrowing, specifically when there's an outer
4478 BIT_AND_EXPR which masks off bits outside the type of the innermost
4479 operands. Like the previous case we have to convert the operands
4480 to unsigned types to avoid introducing undefined behavior for the
4481 arithmetic operation. */
4482 (for op (minus plus)
4483 (simplify
4484 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4485 (if (INTEGRAL_TYPE_P (type)
4486 /* We check for type compatibility between @0 and @1 below,
4487 so there's no need to check that @1/@3 are integral types. */
4488 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4489 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4490 /* The precision of the type of each operand must match the
4491 precision of the mode of each operand, similarly for the
4492 result. */
4493 && type_has_mode_precision_p (TREE_TYPE (@0))
4494 && type_has_mode_precision_p (TREE_TYPE (@1))
4495 && type_has_mode_precision_p (type)
4496 /* The inner conversion must be a widening conversion. */
4497 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4498 && types_match (@0, @1)
4499 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4500 <= TYPE_PRECISION (TREE_TYPE (@0)))
4501 && (wi::to_wide (@4)
4502 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4503 true, TYPE_PRECISION (type))) == 0)
4504 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4505 (with { tree ntype = TREE_TYPE (@0); }
4506 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4507 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4508 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4509 (convert:utype @4))))))))
4510
4511 /* Transform (@0 < @1 and @0 < @2) to use min,
4512 (@0 > @1 and @0 > @2) to use max */
4513 (for op (lt le gt ge)
4514 ext (min min max max)
4515 (simplify
4516 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4517 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4518 && TREE_CODE (@0) != INTEGER_CST)
4519 (op @0 (ext @1 @2)))))
4520
4521 (simplify
4522 /* signbit(x) -> 0 if x is nonnegative. */
4523 (SIGNBIT tree_expr_nonnegative_p@0)
4524 { integer_zero_node; })
4525
4526 (simplify
4527 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4528 (SIGNBIT @0)
4529 (if (!HONOR_SIGNED_ZEROS (@0))
4530 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4531
4532 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4533 (for cmp (eq ne)
4534 (for op (plus minus)
4535 rop (minus plus)
4536 (simplify
4537 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4538 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4539 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4540 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4541 && !TYPE_SATURATING (TREE_TYPE (@0)))
4542 (with { tree res = int_const_binop (rop, @2, @1); }
4543 (if (TREE_OVERFLOW (res)
4544 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4545 { constant_boolean_node (cmp == NE_EXPR, type); }
4546 (if (single_use (@3))
4547 (cmp @0 { TREE_OVERFLOW (res)
4548 ? drop_tree_overflow (res) : res; }))))))))
4549 (for cmp (lt le gt ge)
4550 (for op (plus minus)
4551 rop (minus plus)
4552 (simplify
4553 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4554 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4556 (with { tree res = int_const_binop (rop, @2, @1); }
4557 (if (TREE_OVERFLOW (res))
4558 {
4559 fold_overflow_warning (("assuming signed overflow does not occur "
4560 "when simplifying conditional to constant"),
4561 WARN_STRICT_OVERFLOW_CONDITIONAL);
4562 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4563 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4564 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4565 TYPE_SIGN (TREE_TYPE (@1)))
4566 != (op == MINUS_EXPR);
4567 constant_boolean_node (less == ovf_high, type);
4568 }
4569 (if (single_use (@3))
4570 (with
4571 {
4572 fold_overflow_warning (("assuming signed overflow does not occur "
4573 "when changing X +- C1 cmp C2 to "
4574 "X cmp C2 -+ C1"),
4575 WARN_STRICT_OVERFLOW_COMPARISON);
4576 }
4577 (cmp @0 { res; })))))))))
4578
4579 /* Canonicalizations of BIT_FIELD_REFs. */
4580
4581 (simplify
4582 (BIT_FIELD_REF @0 @1 @2)
4583 (switch
4584 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4585 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4586 (switch
4587 (if (integer_zerop (@2))
4588 (view_convert (realpart @0)))
4589 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4590 (view_convert (imagpart @0)))))
4591 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4592 && INTEGRAL_TYPE_P (type)
4593 /* On GIMPLE this should only apply to register arguments. */
4594 && (! GIMPLE || is_gimple_reg (@0))
4595 /* A bit-field-ref that referenced the full argument can be stripped. */
4596 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4597 && integer_zerop (@2))
4598 /* Low-parts can be reduced to integral conversions.
4599 ??? The following doesn't work for PDP endian. */
4600 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4601 /* Don't even think about BITS_BIG_ENDIAN. */
4602 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4603 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4604 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4605 ? (TYPE_PRECISION (TREE_TYPE (@0))
4606 - TYPE_PRECISION (type))
4607 : 0)) == 0)))
4608 (convert @0))))
4609
4610 /* Simplify vector extracts. */
4611
4612 (simplify
4613 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4614 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4615 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4616 || (VECTOR_TYPE_P (type)
4617 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4618 (with
4619 {
4620 tree ctor = (TREE_CODE (@0) == SSA_NAME
4621 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4622 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4623 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4624 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4625 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4626 }
4627 (if (n != 0
4628 && (idx % width) == 0
4629 && (n % width) == 0
4630 && known_le ((idx + n) / width,
4631 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4632 (with
4633 {
4634 idx = idx / width;
4635 n = n / width;
4636 /* Constructor elements can be subvectors. */
4637 poly_uint64 k = 1;
4638 if (CONSTRUCTOR_NELTS (ctor) != 0)
4639 {
4640 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4641 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4642 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4643 }
4644 unsigned HOST_WIDE_INT elt, count, const_k;
4645 }
4646 (switch
4647 /* We keep an exact subset of the constructor elements. */
4648 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4649 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4650 { build_constructor (type, NULL); }
4651 (if (count == 1)
4652 (if (elt < CONSTRUCTOR_NELTS (ctor))
4653 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4654 { build_zero_cst (type); })
4655 {
4656 vec<constructor_elt, va_gc> *vals;
4657 vec_alloc (vals, count);
4658 for (unsigned i = 0;
4659 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4660 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4661 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4662 build_constructor (type, vals);
4663 })))
4664 /* The bitfield references a single constructor element. */
4665 (if (k.is_constant (&const_k)
4666 && idx + n <= (idx / const_k + 1) * const_k)
4667 (switch
4668 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4669 { build_zero_cst (type); })
4670 (if (n == const_k)
4671 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4672 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4673 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4674
4675 /* Simplify a bit extraction from a bit insertion for the cases with
4676 the inserted element fully covering the extraction or the insertion
4677 not touching the extraction. */
4678 (simplify
4679 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4680 (with
4681 {
4682 unsigned HOST_WIDE_INT isize;
4683 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4684 isize = TYPE_PRECISION (TREE_TYPE (@1));
4685 else
4686 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4687 }
4688 (switch
4689 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4690 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4691 wi::to_wide (@ipos) + isize))
4692 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4693 wi::to_wide (@rpos)
4694 - wi::to_wide (@ipos)); }))
4695 (if (wi::geu_p (wi::to_wide (@ipos),
4696 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4697 || wi::geu_p (wi::to_wide (@rpos),
4698 wi::to_wide (@ipos) + isize))
4699 (BIT_FIELD_REF @0 @rsize @rpos)))))