]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
re PR middle-end/91866 (Sign extend of an int is not recognized)
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p)
41
42 /* Operator lists. */
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53
54 #include "cfn-operators.pd"
55
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
59
60 Also define operand lists:
61
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67 BUILT_IN_L##FN##F \
68 BUILT_IN_LL##FN##F) \
69 (define_operator_list X##FN BUILT_IN_I##FN \
70 BUILT_IN_L##FN \
71 BUILT_IN_LL##FN) \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 BUILT_IN_L##FN##L \
74 BUILT_IN_LL##FN##L)
75
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
83 plus minus
84 mult trunc_div trunc_mod rdiv
85 min max
86 bit_and bit_ior bit_xor
87 lshift rshift)
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
94
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101 /* As opposed to convert?, this still creates a single pattern, so
102 it is not a suitable replacement for convert? in all cases. */
103 (match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112 /* This one has to be last, or it shadows the others. */
113 (match (nop_convert @0)
114 @0)
115
116 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
117 ABSU_EXPR returns unsigned absolute value of the operand and the operand
118 of the ABSU_EXPR will have the corresponding signed type. */
119 (simplify (abs (convert @0))
120 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
121 && !TYPE_UNSIGNED (TREE_TYPE (@0))
122 && element_precision (type) > element_precision (TREE_TYPE (@0)))
123 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
124 (convert (absu:utype @0)))))
125
126
127 /* Simplifications of operations with one constant operand and
128 simplifications to constants or single values. */
129
130 (for op (plus pointer_plus minus bit_ior bit_xor)
131 (simplify
132 (op @0 integer_zerop)
133 (non_lvalue @0)))
134
135 /* 0 +p index -> (type)index */
136 (simplify
137 (pointer_plus integer_zerop @1)
138 (non_lvalue (convert @1)))
139
140 /* ptr - 0 -> (type)ptr */
141 (simplify
142 (pointer_diff @0 integer_zerop)
143 (convert @0))
144
145 /* See if ARG1 is zero and X + ARG1 reduces to X.
146 Likewise if the operands are reversed. */
147 (simplify
148 (plus:c @0 real_zerop@1)
149 (if (fold_real_zero_addition_p (type, @1, 0))
150 (non_lvalue @0)))
151
152 /* See if ARG1 is zero and X - ARG1 reduces to X. */
153 (simplify
154 (minus @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 1))
156 (non_lvalue @0)))
157
158 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
159 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
160 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
161 if not -frounding-math. For sNaNs the first operation would raise
162 exceptions but turn the result into qNan, so the second operation
163 would not raise it. */
164 (for inner_op (plus minus)
165 (for outer_op (plus minus)
166 (simplify
167 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
168 (if (real_zerop (@1)
169 && real_zerop (@2)
170 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
171 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
173 bool outer_plus
174 = ((outer_op == PLUS_EXPR)
175 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
176 (if (outer_plus && !inner_plus)
177 (outer_op @0 @2)
178 @3))))))
179
180 /* Simplify x - x.
181 This is unsafe for certain floats even in non-IEEE formats.
182 In IEEE, it is unsafe because it does wrong for NaNs.
183 Also note that operand_equal_p is always false if an operand
184 is volatile. */
185 (simplify
186 (minus @0 @0)
187 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
188 { build_zero_cst (type); }))
189 (simplify
190 (pointer_diff @@0 @0)
191 { build_zero_cst (type); })
192
193 (simplify
194 (mult @0 integer_zerop@1)
195 @1)
196
197 /* Maybe fold x * 0 to 0. The expressions aren't the same
198 when x is NaN, since x * 0 is also NaN. Nor are they the
199 same in modes with signed zeros, since multiplying a
200 negative value by 0 gives -0, not +0. */
201 (simplify
202 (mult @0 real_zerop@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
204 @1))
205
206 /* In IEEE floating point, x*1 is not equivalent to x for snans.
207 Likewise for complex arithmetic with signed zeros. */
208 (simplify
209 (mult @0 real_onep)
210 (if (!HONOR_SNANS (type)
211 && (!HONOR_SIGNED_ZEROS (type)
212 || !COMPLEX_FLOAT_TYPE_P (type)))
213 (non_lvalue @0)))
214
215 /* Transform x * -1.0 into -x. */
216 (simplify
217 (mult @0 real_minus_onep)
218 (if (!HONOR_SNANS (type)
219 && (!HONOR_SIGNED_ZEROS (type)
220 || !COMPLEX_FLOAT_TYPE_P (type)))
221 (negate @0)))
222
223 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
224 (simplify
225 (mult SSA_NAME@1 SSA_NAME@2)
226 (if (INTEGRAL_TYPE_P (type)
227 && get_nonzero_bits (@1) == 1
228 && get_nonzero_bits (@2) == 1)
229 (bit_and @1 @2)))
230
231 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
232 unless the target has native support for the former but not the latter. */
233 (simplify
234 (mult @0 VECTOR_CST@1)
235 (if (initializer_each_zero_or_onep (@1)
236 && !HONOR_SNANS (type)
237 && !HONOR_SIGNED_ZEROS (type))
238 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
239 (if (itype
240 && (!VECTOR_MODE_P (TYPE_MODE (type))
241 || (VECTOR_MODE_P (TYPE_MODE (itype))
242 && optab_handler (and_optab,
243 TYPE_MODE (itype)) != CODE_FOR_nothing)))
244 (view_convert (bit_and:itype (view_convert @0)
245 (ne @1 { build_zero_cst (type); })))))))
246
247 (for cmp (gt ge lt le)
248 outp (convert convert negate negate)
249 outn (negate negate convert convert)
250 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
251 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
252 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
253 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
254 (simplify
255 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
256 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
257 && types_match (type, TREE_TYPE (@0)))
258 (switch
259 (if (types_match (type, float_type_node))
260 (BUILT_IN_COPYSIGNF @1 (outp @0)))
261 (if (types_match (type, double_type_node))
262 (BUILT_IN_COPYSIGN @1 (outp @0)))
263 (if (types_match (type, long_double_type_node))
264 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
265 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
266 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
267 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
268 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
269 (simplify
270 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
271 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
272 && types_match (type, TREE_TYPE (@0)))
273 (switch
274 (if (types_match (type, float_type_node))
275 (BUILT_IN_COPYSIGNF @1 (outn @0)))
276 (if (types_match (type, double_type_node))
277 (BUILT_IN_COPYSIGN @1 (outn @0)))
278 (if (types_match (type, long_double_type_node))
279 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
280
281 /* Transform X * copysign (1.0, X) into abs(X). */
282 (simplify
283 (mult:c @0 (COPYSIGN_ALL real_onep @0))
284 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
285 (abs @0)))
286
287 /* Transform X * copysign (1.0, -X) into -abs(X). */
288 (simplify
289 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
290 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
291 (negate (abs @0))))
292
293 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
294 (simplify
295 (COPYSIGN_ALL REAL_CST@0 @1)
296 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
297 (COPYSIGN_ALL (negate @0) @1)))
298
299 /* X * 1, X / 1 -> X. */
300 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
301 (simplify
302 (op @0 integer_onep)
303 (non_lvalue @0)))
304
305 /* (A / (1 << B)) -> (A >> B).
306 Only for unsigned A. For signed A, this would not preserve rounding
307 toward zero.
308 For example: (-1 / ( 1 << B)) != -1 >> B.
309 Also also widening conversions, like:
310 (A / (unsigned long long) (1U << B)) -> (A >> B)
311 or
312 (A / (unsigned long long) (1 << B)) -> (A >> B).
313 If the left shift is signed, it can be done only if the upper bits
314 of A starting from shift's type sign bit are zero, as
315 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
316 so it is valid only if A >> 31 is zero. */
317 (simplify
318 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
319 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
320 && (!VECTOR_TYPE_P (type)
321 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
322 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
323 && (useless_type_conversion_p (type, TREE_TYPE (@1))
324 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
325 && (TYPE_UNSIGNED (TREE_TYPE (@1))
326 || (element_precision (type)
327 == element_precision (TREE_TYPE (@1)))
328 || (INTEGRAL_TYPE_P (type)
329 && (tree_nonzero_bits (@0)
330 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
331 true,
332 element_precision (type))) == 0)))))
333 (rshift @0 @2)))
334
335 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
336 undefined behavior in constexpr evaluation, and assuming that the division
337 traps enables better optimizations than these anyway. */
338 (for div (trunc_div ceil_div floor_div round_div exact_div)
339 /* 0 / X is always zero. */
340 (simplify
341 (div integer_zerop@0 @1)
342 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
343 (if (!integer_zerop (@1))
344 @0))
345 /* X / -1 is -X. */
346 (simplify
347 (div @0 integer_minus_onep@1)
348 (if (!TYPE_UNSIGNED (type))
349 (negate @0)))
350 /* X / X is one. */
351 (simplify
352 (div @0 @0)
353 /* But not for 0 / 0 so that we can get the proper warnings and errors.
354 And not for _Fract types where we can't build 1. */
355 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
356 { build_one_cst (type); }))
357 /* X / abs (X) is X < 0 ? -1 : 1. */
358 (simplify
359 (div:C @0 (abs @0))
360 (if (INTEGRAL_TYPE_P (type)
361 && TYPE_OVERFLOW_UNDEFINED (type))
362 (cond (lt @0 { build_zero_cst (type); })
363 { build_minus_one_cst (type); } { build_one_cst (type); })))
364 /* X / -X is -1. */
365 (simplify
366 (div:C @0 (negate @0))
367 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
368 && TYPE_OVERFLOW_UNDEFINED (type))
369 { build_minus_one_cst (type); })))
370
371 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
372 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
373 (simplify
374 (floor_div @0 @1)
375 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
376 && TYPE_UNSIGNED (type))
377 (trunc_div @0 @1)))
378
379 /* Combine two successive divisions. Note that combining ceil_div
380 and floor_div is trickier and combining round_div even more so. */
381 (for div (trunc_div exact_div)
382 (simplify
383 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
384 (with {
385 wi::overflow_type overflow;
386 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
387 TYPE_SIGN (type), &overflow);
388 }
389 (if (div == EXACT_DIV_EXPR
390 || optimize_successive_divisions_p (@2, @3))
391 (if (!overflow)
392 (div @0 { wide_int_to_tree (type, mul); })
393 (if (TYPE_UNSIGNED (type)
394 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
395 { build_zero_cst (type); }))))))
396
397 /* Combine successive multiplications. Similar to above, but handling
398 overflow is different. */
399 (simplify
400 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
401 (with {
402 wi::overflow_type overflow;
403 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
404 TYPE_SIGN (type), &overflow);
405 }
406 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
407 otherwise undefined overflow implies that @0 must be zero. */
408 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
409 (mult @0 { wide_int_to_tree (type, mul); }))))
410
411 /* Optimize A / A to 1.0 if we don't care about
412 NaNs or Infinities. */
413 (simplify
414 (rdiv @0 @0)
415 (if (FLOAT_TYPE_P (type)
416 && ! HONOR_NANS (type)
417 && ! HONOR_INFINITIES (type))
418 { build_one_cst (type); }))
419
420 /* Optimize -A / A to -1.0 if we don't care about
421 NaNs or Infinities. */
422 (simplify
423 (rdiv:C @0 (negate @0))
424 (if (FLOAT_TYPE_P (type)
425 && ! HONOR_NANS (type)
426 && ! HONOR_INFINITIES (type))
427 { build_minus_one_cst (type); }))
428
429 /* PR71078: x / abs(x) -> copysign (1.0, x) */
430 (simplify
431 (rdiv:C (convert? @0) (convert? (abs @0)))
432 (if (SCALAR_FLOAT_TYPE_P (type)
433 && ! HONOR_NANS (type)
434 && ! HONOR_INFINITIES (type))
435 (switch
436 (if (types_match (type, float_type_node))
437 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
438 (if (types_match (type, double_type_node))
439 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
440 (if (types_match (type, long_double_type_node))
441 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
442
443 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
444 (simplify
445 (rdiv @0 real_onep)
446 (if (!HONOR_SNANS (type))
447 (non_lvalue @0)))
448
449 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
450 (simplify
451 (rdiv @0 real_minus_onep)
452 (if (!HONOR_SNANS (type))
453 (negate @0)))
454
455 (if (flag_reciprocal_math)
456 /* Convert (A/B)/C to A/(B*C). */
457 (simplify
458 (rdiv (rdiv:s @0 @1) @2)
459 (rdiv @0 (mult @1 @2)))
460
461 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
462 (simplify
463 (rdiv @0 (mult:s @1 REAL_CST@2))
464 (with
465 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
466 (if (tem)
467 (rdiv (mult @0 { tem; } ) @1))))
468
469 /* Convert A/(B/C) to (A/B)*C */
470 (simplify
471 (rdiv @0 (rdiv:s @1 @2))
472 (mult (rdiv @0 @1) @2)))
473
474 /* Simplify x / (- y) to -x / y. */
475 (simplify
476 (rdiv @0 (negate @1))
477 (rdiv (negate @0) @1))
478
479 (if (flag_unsafe_math_optimizations)
480 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
481 Since C / x may underflow to zero, do this only for unsafe math. */
482 (for op (lt le gt ge)
483 neg_op (gt ge lt le)
484 (simplify
485 (op (rdiv REAL_CST@0 @1) real_zerop@2)
486 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
487 (switch
488 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
489 (op @1 @2))
490 /* For C < 0, use the inverted operator. */
491 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
492 (neg_op @1 @2)))))))
493
494 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
495 (for div (trunc_div ceil_div floor_div round_div exact_div)
496 (simplify
497 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
498 (if (integer_pow2p (@2)
499 && tree_int_cst_sgn (@2) > 0
500 && tree_nop_conversion_p (type, TREE_TYPE (@0))
501 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
502 (rshift (convert @0)
503 { build_int_cst (integer_type_node,
504 wi::exact_log2 (wi::to_wide (@2))); }))))
505
506 /* If ARG1 is a constant, we can convert this to a multiply by the
507 reciprocal. This does not have the same rounding properties,
508 so only do this if -freciprocal-math. We can actually
509 always safely do it if ARG1 is a power of two, but it's hard to
510 tell if it is or not in a portable manner. */
511 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
512 (simplify
513 (rdiv @0 cst@1)
514 (if (optimize)
515 (if (flag_reciprocal_math
516 && !real_zerop (@1))
517 (with
518 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
519 (if (tem)
520 (mult @0 { tem; } )))
521 (if (cst != COMPLEX_CST)
522 (with { tree inverse = exact_inverse (type, @1); }
523 (if (inverse)
524 (mult @0 { inverse; } ))))))))
525
526 (for mod (ceil_mod floor_mod round_mod trunc_mod)
527 /* 0 % X is always zero. */
528 (simplify
529 (mod integer_zerop@0 @1)
530 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
531 (if (!integer_zerop (@1))
532 @0))
533 /* X % 1 is always zero. */
534 (simplify
535 (mod @0 integer_onep)
536 { build_zero_cst (type); })
537 /* X % -1 is zero. */
538 (simplify
539 (mod @0 integer_minus_onep@1)
540 (if (!TYPE_UNSIGNED (type))
541 { build_zero_cst (type); }))
542 /* X % X is zero. */
543 (simplify
544 (mod @0 @0)
545 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
546 (if (!integer_zerop (@0))
547 { build_zero_cst (type); }))
548 /* (X % Y) % Y is just X % Y. */
549 (simplify
550 (mod (mod@2 @0 @1) @1)
551 @2)
552 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
553 (simplify
554 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
555 (if (ANY_INTEGRAL_TYPE_P (type)
556 && TYPE_OVERFLOW_UNDEFINED (type)
557 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
558 TYPE_SIGN (type)))
559 { build_zero_cst (type); }))
560 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
561 modulo and comparison, since it is simpler and equivalent. */
562 (for cmp (eq ne)
563 (simplify
564 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
565 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
566 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
567 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
568
569 /* X % -C is the same as X % C. */
570 (simplify
571 (trunc_mod @0 INTEGER_CST@1)
572 (if (TYPE_SIGN (type) == SIGNED
573 && !TREE_OVERFLOW (@1)
574 && wi::neg_p (wi::to_wide (@1))
575 && !TYPE_OVERFLOW_TRAPS (type)
576 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
577 && !sign_bit_p (@1, @1))
578 (trunc_mod @0 (negate @1))))
579
580 /* X % -Y is the same as X % Y. */
581 (simplify
582 (trunc_mod @0 (convert? (negate @1)))
583 (if (INTEGRAL_TYPE_P (type)
584 && !TYPE_UNSIGNED (type)
585 && !TYPE_OVERFLOW_TRAPS (type)
586 && tree_nop_conversion_p (type, TREE_TYPE (@1))
587 /* Avoid this transformation if X might be INT_MIN or
588 Y might be -1, because we would then change valid
589 INT_MIN % -(-1) into invalid INT_MIN % -1. */
590 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
591 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
592 (TREE_TYPE (@1))))))
593 (trunc_mod @0 (convert @1))))
594
595 /* X - (X / Y) * Y is the same as X % Y. */
596 (simplify
597 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
598 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
599 (convert (trunc_mod @0 @1))))
600
601 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
602 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
603 Also optimize A % (C << N) where C is a power of 2,
604 to A & ((C << N) - 1). */
605 (match (power_of_two_cand @1)
606 INTEGER_CST@1)
607 (match (power_of_two_cand @1)
608 (lshift INTEGER_CST@1 @2))
609 (for mod (trunc_mod floor_mod)
610 (simplify
611 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
612 (if ((TYPE_UNSIGNED (type)
613 || tree_expr_nonnegative_p (@0))
614 && tree_nop_conversion_p (type, TREE_TYPE (@3))
615 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
616 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
617
618 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
619 (simplify
620 (trunc_div (mult @0 integer_pow2p@1) @1)
621 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
622 (bit_and @0 { wide_int_to_tree
623 (type, wi::mask (TYPE_PRECISION (type)
624 - wi::exact_log2 (wi::to_wide (@1)),
625 false, TYPE_PRECISION (type))); })))
626
627 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
628 (simplify
629 (mult (trunc_div @0 integer_pow2p@1) @1)
630 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
631 (bit_and @0 (negate @1))))
632
633 /* Simplify (t * 2) / 2) -> t. */
634 (for div (trunc_div ceil_div floor_div round_div exact_div)
635 (simplify
636 (div (mult:c @0 @1) @1)
637 (if (ANY_INTEGRAL_TYPE_P (type)
638 && TYPE_OVERFLOW_UNDEFINED (type))
639 @0)))
640
641 (for op (negate abs)
642 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
643 (for coss (COS COSH)
644 (simplify
645 (coss (op @0))
646 (coss @0)))
647 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
648 (for pows (POW)
649 (simplify
650 (pows (op @0) REAL_CST@1)
651 (with { HOST_WIDE_INT n; }
652 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
653 (pows @0 @1)))))
654 /* Likewise for powi. */
655 (for pows (POWI)
656 (simplify
657 (pows (op @0) INTEGER_CST@1)
658 (if ((wi::to_wide (@1) & 1) == 0)
659 (pows @0 @1))))
660 /* Strip negate and abs from both operands of hypot. */
661 (for hypots (HYPOT)
662 (simplify
663 (hypots (op @0) @1)
664 (hypots @0 @1))
665 (simplify
666 (hypots @0 (op @1))
667 (hypots @0 @1)))
668 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
669 (for copysigns (COPYSIGN_ALL)
670 (simplify
671 (copysigns (op @0) @1)
672 (copysigns @0 @1))))
673
674 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
675 (simplify
676 (mult (abs@1 @0) @1)
677 (mult @0 @0))
678
679 /* Convert absu(x)*absu(x) -> x*x. */
680 (simplify
681 (mult (absu@1 @0) @1)
682 (mult (convert@2 @0) @2))
683
684 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
685 (for coss (COS COSH)
686 copysigns (COPYSIGN)
687 (simplify
688 (coss (copysigns @0 @1))
689 (coss @0)))
690
691 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
692 (for pows (POW)
693 copysigns (COPYSIGN)
694 (simplify
695 (pows (copysigns @0 @2) REAL_CST@1)
696 (with { HOST_WIDE_INT n; }
697 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
698 (pows @0 @1)))))
699 /* Likewise for powi. */
700 (for pows (POWI)
701 copysigns (COPYSIGN)
702 (simplify
703 (pows (copysigns @0 @2) INTEGER_CST@1)
704 (if ((wi::to_wide (@1) & 1) == 0)
705 (pows @0 @1))))
706
707 (for hypots (HYPOT)
708 copysigns (COPYSIGN)
709 /* hypot(copysign(x, y), z) -> hypot(x, z). */
710 (simplify
711 (hypots (copysigns @0 @1) @2)
712 (hypots @0 @2))
713 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
714 (simplify
715 (hypots @0 (copysigns @1 @2))
716 (hypots @0 @1)))
717
718 /* copysign(x, CST) -> [-]abs (x). */
719 (for copysigns (COPYSIGN_ALL)
720 (simplify
721 (copysigns @0 REAL_CST@1)
722 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
723 (negate (abs @0))
724 (abs @0))))
725
726 /* copysign(copysign(x, y), z) -> copysign(x, z). */
727 (for copysigns (COPYSIGN_ALL)
728 (simplify
729 (copysigns (copysigns @0 @1) @2)
730 (copysigns @0 @2)))
731
732 /* copysign(x,y)*copysign(x,y) -> x*x. */
733 (for copysigns (COPYSIGN_ALL)
734 (simplify
735 (mult (copysigns@2 @0 @1) @2)
736 (mult @0 @0)))
737
738 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
739 (for ccoss (CCOS CCOSH)
740 (simplify
741 (ccoss (negate @0))
742 (ccoss @0)))
743
744 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
745 (for ops (conj negate)
746 (for cabss (CABS)
747 (simplify
748 (cabss (ops @0))
749 (cabss @0))))
750
751 /* Fold (a * (1 << b)) into (a << b) */
752 (simplify
753 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
754 (if (! FLOAT_TYPE_P (type)
755 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
756 (lshift @0 @2)))
757
758 /* Fold (1 << (C - x)) where C = precision(type) - 1
759 into ((1 << C) >> x). */
760 (simplify
761 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
762 (if (INTEGRAL_TYPE_P (type)
763 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
764 && single_use (@1))
765 (if (TYPE_UNSIGNED (type))
766 (rshift (lshift @0 @2) @3)
767 (with
768 { tree utype = unsigned_type_for (type); }
769 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
770
771 /* Fold (C1/X)*C2 into (C1*C2)/X. */
772 (simplify
773 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
774 (if (flag_associative_math
775 && single_use (@3))
776 (with
777 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
778 (if (tem)
779 (rdiv { tem; } @1)))))
780
781 /* Simplify ~X & X as zero. */
782 (simplify
783 (bit_and:c (convert? @0) (convert? (bit_not @0)))
784 { build_zero_cst (type); })
785
786 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
787 (simplify
788 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
789 (if (TYPE_UNSIGNED (type))
790 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
791
792 (for bitop (bit_and bit_ior)
793 cmp (eq ne)
794 /* PR35691: Transform
795 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
796 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
797 (simplify
798 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
799 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
800 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
801 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
802 (cmp (bit_ior @0 (convert @1)) @2)))
803 /* Transform:
804 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
805 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
806 (simplify
807 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
808 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
809 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
810 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
811 (cmp (bit_and @0 (convert @1)) @2))))
812
813 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
814 (simplify
815 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
816 (minus (bit_xor @0 @1) @1))
817 (simplify
818 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
819 (if (~wi::to_wide (@2) == wi::to_wide (@1))
820 (minus (bit_xor @0 @1) @1)))
821
822 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
823 (simplify
824 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
825 (minus @1 (bit_xor @0 @1)))
826
827 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
828 (for op (bit_ior bit_xor plus)
829 (simplify
830 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
831 (bit_xor @0 @1))
832 (simplify
833 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
834 (if (~wi::to_wide (@2) == wi::to_wide (@1))
835 (bit_xor @0 @1))))
836
837 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
838 (simplify
839 (bit_ior:c (bit_xor:c @0 @1) @0)
840 (bit_ior @0 @1))
841
842 /* (a & ~b) | (a ^ b) --> a ^ b */
843 (simplify
844 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
845 @2)
846
847 /* (a & ~b) ^ ~a --> ~(a & b) */
848 (simplify
849 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
850 (bit_not (bit_and @0 @1)))
851
852 /* (~a & b) ^ a --> (a | b) */
853 (simplify
854 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
855 (bit_ior @0 @1))
856
857 /* (a | b) & ~(a ^ b) --> a & b */
858 (simplify
859 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
860 (bit_and @0 @1))
861
862 /* a | ~(a ^ b) --> a | ~b */
863 (simplify
864 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
865 (bit_ior @0 (bit_not @1)))
866
867 /* (a | b) | (a &^ b) --> a | b */
868 (for op (bit_and bit_xor)
869 (simplify
870 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
871 @2))
872
873 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
874 (simplify
875 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
876 @2)
877
878 /* ~(~a & b) --> a | ~b */
879 (simplify
880 (bit_not (bit_and:cs (bit_not @0) @1))
881 (bit_ior @0 (bit_not @1)))
882
883 /* ~(~a | b) --> a & ~b */
884 (simplify
885 (bit_not (bit_ior:cs (bit_not @0) @1))
886 (bit_and @0 (bit_not @1)))
887
888 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
889 #if GIMPLE
890 (simplify
891 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
892 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
893 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
894 (bit_xor @0 @1)))
895 #endif
896
897 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
898 ((A & N) + B) & M -> (A + B) & M
899 Similarly if (N & M) == 0,
900 ((A | N) + B) & M -> (A + B) & M
901 and for - instead of + (or unary - instead of +)
902 and/or ^ instead of |.
903 If B is constant and (B & M) == 0, fold into A & M. */
904 (for op (plus minus)
905 (for bitop (bit_and bit_ior bit_xor)
906 (simplify
907 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
908 (with
909 { tree pmop[2];
910 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
911 @3, @4, @1, ERROR_MARK, NULL_TREE,
912 NULL_TREE, pmop); }
913 (if (utype)
914 (convert (bit_and (op (convert:utype { pmop[0]; })
915 (convert:utype { pmop[1]; }))
916 (convert:utype @2))))))
917 (simplify
918 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
919 (with
920 { tree pmop[2];
921 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
922 NULL_TREE, NULL_TREE, @1, bitop, @3,
923 @4, pmop); }
924 (if (utype)
925 (convert (bit_and (op (convert:utype { pmop[0]; })
926 (convert:utype { pmop[1]; }))
927 (convert:utype @2)))))))
928 (simplify
929 (bit_and (op:s @0 @1) INTEGER_CST@2)
930 (with
931 { tree pmop[2];
932 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
933 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
934 NULL_TREE, NULL_TREE, pmop); }
935 (if (utype)
936 (convert (bit_and (op (convert:utype { pmop[0]; })
937 (convert:utype { pmop[1]; }))
938 (convert:utype @2)))))))
939 (for bitop (bit_and bit_ior bit_xor)
940 (simplify
941 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
942 (with
943 { tree pmop[2];
944 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
945 bitop, @2, @3, NULL_TREE, ERROR_MARK,
946 NULL_TREE, NULL_TREE, pmop); }
947 (if (utype)
948 (convert (bit_and (negate (convert:utype { pmop[0]; }))
949 (convert:utype @1)))))))
950
951 /* X % Y is smaller than Y. */
952 (for cmp (lt ge)
953 (simplify
954 (cmp (trunc_mod @0 @1) @1)
955 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
956 { constant_boolean_node (cmp == LT_EXPR, type); })))
957 (for cmp (gt le)
958 (simplify
959 (cmp @1 (trunc_mod @0 @1))
960 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
961 { constant_boolean_node (cmp == GT_EXPR, type); })))
962
963 /* x | ~0 -> ~0 */
964 (simplify
965 (bit_ior @0 integer_all_onesp@1)
966 @1)
967
968 /* x | 0 -> x */
969 (simplify
970 (bit_ior @0 integer_zerop)
971 @0)
972
973 /* x & 0 -> 0 */
974 (simplify
975 (bit_and @0 integer_zerop@1)
976 @1)
977
978 /* ~x | x -> -1 */
979 /* ~x ^ x -> -1 */
980 /* ~x + x -> -1 */
981 (for op (bit_ior bit_xor plus)
982 (simplify
983 (op:c (convert? @0) (convert? (bit_not @0)))
984 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
985
986 /* x ^ x -> 0 */
987 (simplify
988 (bit_xor @0 @0)
989 { build_zero_cst (type); })
990
991 /* Canonicalize X ^ ~0 to ~X. */
992 (simplify
993 (bit_xor @0 integer_all_onesp@1)
994 (bit_not @0))
995
996 /* x & ~0 -> x */
997 (simplify
998 (bit_and @0 integer_all_onesp)
999 (non_lvalue @0))
1000
1001 /* x & x -> x, x | x -> x */
1002 (for bitop (bit_and bit_ior)
1003 (simplify
1004 (bitop @0 @0)
1005 (non_lvalue @0)))
1006
1007 /* x & C -> x if we know that x & ~C == 0. */
1008 #if GIMPLE
1009 (simplify
1010 (bit_and SSA_NAME@0 INTEGER_CST@1)
1011 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1012 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1013 @0))
1014 #endif
1015
1016 /* x + (x & 1) -> (x + 1) & ~1 */
1017 (simplify
1018 (plus:c @0 (bit_and:s @0 integer_onep@1))
1019 (bit_and (plus @0 @1) (bit_not @1)))
1020
1021 /* x & ~(x & y) -> x & ~y */
1022 /* x | ~(x | y) -> x | ~y */
1023 (for bitop (bit_and bit_ior)
1024 (simplify
1025 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1026 (bitop @0 (bit_not @1))))
1027
1028 /* (~x & y) | ~(x | y) -> ~x */
1029 (simplify
1030 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1031 @2)
1032
1033 /* (x | y) ^ (x | ~y) -> ~x */
1034 (simplify
1035 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1036 (bit_not @0))
1037
1038 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1039 (simplify
1040 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1041 (bit_not (bit_xor @0 @1)))
1042
1043 /* (~x | y) ^ (x ^ y) -> x | ~y */
1044 (simplify
1045 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1046 (bit_ior @0 (bit_not @1)))
1047
1048 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1049 (simplify
1050 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1051 (bit_not (bit_and @0 @1)))
1052
1053 /* (x | y) & ~x -> y & ~x */
1054 /* (x & y) | ~x -> y | ~x */
1055 (for bitop (bit_and bit_ior)
1056 rbitop (bit_ior bit_and)
1057 (simplify
1058 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1059 (bitop @1 @2)))
1060
1061 /* (x & y) ^ (x | y) -> x ^ y */
1062 (simplify
1063 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1064 (bit_xor @0 @1))
1065
1066 /* (x ^ y) ^ (x | y) -> x & y */
1067 (simplify
1068 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1069 (bit_and @0 @1))
1070
1071 /* (x & y) + (x ^ y) -> x | y */
1072 /* (x & y) | (x ^ y) -> x | y */
1073 /* (x & y) ^ (x ^ y) -> x | y */
1074 (for op (plus bit_ior bit_xor)
1075 (simplify
1076 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1077 (bit_ior @0 @1)))
1078
1079 /* (x & y) + (x | y) -> x + y */
1080 (simplify
1081 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1082 (plus @0 @1))
1083
1084 /* (x + y) - (x | y) -> x & y */
1085 (simplify
1086 (minus (plus @0 @1) (bit_ior @0 @1))
1087 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1088 && !TYPE_SATURATING (type))
1089 (bit_and @0 @1)))
1090
1091 /* (x + y) - (x & y) -> x | y */
1092 (simplify
1093 (minus (plus @0 @1) (bit_and @0 @1))
1094 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1095 && !TYPE_SATURATING (type))
1096 (bit_ior @0 @1)))
1097
1098 /* (x | y) - (x ^ y) -> x & y */
1099 (simplify
1100 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1101 (bit_and @0 @1))
1102
1103 /* (x | y) - (x & y) -> x ^ y */
1104 (simplify
1105 (minus (bit_ior @0 @1) (bit_and @0 @1))
1106 (bit_xor @0 @1))
1107
1108 /* (x | y) & ~(x & y) -> x ^ y */
1109 (simplify
1110 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1111 (bit_xor @0 @1))
1112
1113 /* (x | y) & (~x ^ y) -> x & y */
1114 (simplify
1115 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1116 (bit_and @0 @1))
1117
1118 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1119 (simplify
1120 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1121 (bit_not (bit_xor @0 @1)))
1122
1123 /* (~x | y) ^ (x | ~y) -> x ^ y */
1124 (simplify
1125 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1126 (bit_xor @0 @1))
1127
1128 /* ~x & ~y -> ~(x | y)
1129 ~x | ~y -> ~(x & y) */
1130 (for op (bit_and bit_ior)
1131 rop (bit_ior bit_and)
1132 (simplify
1133 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1134 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1135 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1136 (bit_not (rop (convert @0) (convert @1))))))
1137
1138 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1139 with a constant, and the two constants have no bits in common,
1140 we should treat this as a BIT_IOR_EXPR since this may produce more
1141 simplifications. */
1142 (for op (bit_xor plus)
1143 (simplify
1144 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1145 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1146 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1147 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1148 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1149 (bit_ior (convert @4) (convert @5)))))
1150
1151 /* (X | Y) ^ X -> Y & ~ X*/
1152 (simplify
1153 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1154 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1155 (convert (bit_and @1 (bit_not @0)))))
1156
1157 /* Convert ~X ^ ~Y to X ^ Y. */
1158 (simplify
1159 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1160 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1161 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1162 (bit_xor (convert @0) (convert @1))))
1163
1164 /* Convert ~X ^ C to X ^ ~C. */
1165 (simplify
1166 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1167 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1168 (bit_xor (convert @0) (bit_not @1))))
1169
1170 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1171 (for opo (bit_and bit_xor)
1172 opi (bit_xor bit_and)
1173 (simplify
1174 (opo:c (opi:cs @0 @1) @1)
1175 (bit_and (bit_not @0) @1)))
1176
1177 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1178 operands are another bit-wise operation with a common input. If so,
1179 distribute the bit operations to save an operation and possibly two if
1180 constants are involved. For example, convert
1181 (A | B) & (A | C) into A | (B & C)
1182 Further simplification will occur if B and C are constants. */
1183 (for op (bit_and bit_ior bit_xor)
1184 rop (bit_ior bit_and bit_and)
1185 (simplify
1186 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1187 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1188 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1189 (rop (convert @0) (op (convert @1) (convert @2))))))
1190
1191 /* Some simple reassociation for bit operations, also handled in reassoc. */
1192 /* (X & Y) & Y -> X & Y
1193 (X | Y) | Y -> X | Y */
1194 (for op (bit_and bit_ior)
1195 (simplify
1196 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1197 @2))
1198 /* (X ^ Y) ^ Y -> X */
1199 (simplify
1200 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1201 (convert @0))
1202 /* (X & Y) & (X & Z) -> (X & Y) & Z
1203 (X | Y) | (X | Z) -> (X | Y) | Z */
1204 (for op (bit_and bit_ior)
1205 (simplify
1206 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1208 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1209 (if (single_use (@5) && single_use (@6))
1210 (op @3 (convert @2))
1211 (if (single_use (@3) && single_use (@4))
1212 (op (convert @1) @5))))))
1213 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1214 (simplify
1215 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1216 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1217 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1218 (bit_xor (convert @1) (convert @2))))
1219
1220 /* Convert abs (abs (X)) into abs (X).
1221 also absu (absu (X)) into absu (X). */
1222 (simplify
1223 (abs (abs@1 @0))
1224 @1)
1225
1226 (simplify
1227 (absu (convert@2 (absu@1 @0)))
1228 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1229 @1))
1230
1231 /* Convert abs[u] (-X) -> abs[u] (X). */
1232 (simplify
1233 (abs (negate @0))
1234 (abs @0))
1235
1236 (simplify
1237 (absu (negate @0))
1238 (absu @0))
1239
1240 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1241 (simplify
1242 (abs tree_expr_nonnegative_p@0)
1243 @0)
1244
1245 (simplify
1246 (absu tree_expr_nonnegative_p@0)
1247 (convert @0))
1248
1249 /* A few cases of fold-const.c negate_expr_p predicate. */
1250 (match negate_expr_p
1251 INTEGER_CST
1252 (if ((INTEGRAL_TYPE_P (type)
1253 && TYPE_UNSIGNED (type))
1254 || (!TYPE_OVERFLOW_SANITIZED (type)
1255 && may_negate_without_overflow_p (t)))))
1256 (match negate_expr_p
1257 FIXED_CST)
1258 (match negate_expr_p
1259 (negate @0)
1260 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1261 (match negate_expr_p
1262 REAL_CST
1263 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1264 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1265 ways. */
1266 (match negate_expr_p
1267 VECTOR_CST
1268 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1269 (match negate_expr_p
1270 (minus @0 @1)
1271 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1272 || (FLOAT_TYPE_P (type)
1273 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1274 && !HONOR_SIGNED_ZEROS (type)))))
1275
1276 /* (-A) * (-B) -> A * B */
1277 (simplify
1278 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1279 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1280 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1281 (mult (convert @0) (convert (negate @1)))))
1282
1283 /* -(A + B) -> (-B) - A. */
1284 (simplify
1285 (negate (plus:c @0 negate_expr_p@1))
1286 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1287 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1288 (minus (negate @1) @0)))
1289
1290 /* -(A - B) -> B - A. */
1291 (simplify
1292 (negate (minus @0 @1))
1293 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1294 || (FLOAT_TYPE_P (type)
1295 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1296 && !HONOR_SIGNED_ZEROS (type)))
1297 (minus @1 @0)))
1298 (simplify
1299 (negate (pointer_diff @0 @1))
1300 (if (TYPE_OVERFLOW_UNDEFINED (type))
1301 (pointer_diff @1 @0)))
1302
1303 /* A - B -> A + (-B) if B is easily negatable. */
1304 (simplify
1305 (minus @0 negate_expr_p@1)
1306 (if (!FIXED_POINT_TYPE_P (type))
1307 (plus @0 (negate @1))))
1308
1309 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1310 when profitable.
1311 For bitwise binary operations apply operand conversions to the
1312 binary operation result instead of to the operands. This allows
1313 to combine successive conversions and bitwise binary operations.
1314 We combine the above two cases by using a conditional convert. */
1315 (for bitop (bit_and bit_ior bit_xor)
1316 (simplify
1317 (bitop (convert @0) (convert? @1))
1318 (if (((TREE_CODE (@1) == INTEGER_CST
1319 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1320 && int_fits_type_p (@1, TREE_TYPE (@0)))
1321 || types_match (@0, @1))
1322 /* ??? This transform conflicts with fold-const.c doing
1323 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1324 constants (if x has signed type, the sign bit cannot be set
1325 in c). This folds extension into the BIT_AND_EXPR.
1326 Restrict it to GIMPLE to avoid endless recursions. */
1327 && (bitop != BIT_AND_EXPR || GIMPLE)
1328 && (/* That's a good idea if the conversion widens the operand, thus
1329 after hoisting the conversion the operation will be narrower. */
1330 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1331 /* It's also a good idea if the conversion is to a non-integer
1332 mode. */
1333 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1334 /* Or if the precision of TO is not the same as the precision
1335 of its mode. */
1336 || !type_has_mode_precision_p (type)))
1337 (convert (bitop @0 (convert @1))))))
1338
1339 (for bitop (bit_and bit_ior)
1340 rbitop (bit_ior bit_and)
1341 /* (x | y) & x -> x */
1342 /* (x & y) | x -> x */
1343 (simplify
1344 (bitop:c (rbitop:c @0 @1) @0)
1345 @0)
1346 /* (~x | y) & x -> x & y */
1347 /* (~x & y) | x -> x | y */
1348 (simplify
1349 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1350 (bitop @0 @1)))
1351
1352 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1353 (simplify
1354 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1355 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1356
1357 /* Combine successive equal operations with constants. */
1358 (for bitop (bit_and bit_ior bit_xor)
1359 (simplify
1360 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1361 (if (!CONSTANT_CLASS_P (@0))
1362 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1363 folded to a constant. */
1364 (bitop @0 (bitop @1 @2))
1365 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1366 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1367 the values involved are such that the operation can't be decided at
1368 compile time. Try folding one of @0 or @1 with @2 to see whether
1369 that combination can be decided at compile time.
1370
1371 Keep the existing form if both folds fail, to avoid endless
1372 oscillation. */
1373 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1374 (if (cst1)
1375 (bitop @1 { cst1; })
1376 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1377 (if (cst2)
1378 (bitop @0 { cst2; }))))))))
1379
1380 /* Try simple folding for X op !X, and X op X with the help
1381 of the truth_valued_p and logical_inverted_value predicates. */
1382 (match truth_valued_p
1383 @0
1384 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1385 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1386 (match truth_valued_p
1387 (op @0 @1)))
1388 (match truth_valued_p
1389 (truth_not @0))
1390
1391 (match (logical_inverted_value @0)
1392 (truth_not @0))
1393 (match (logical_inverted_value @0)
1394 (bit_not truth_valued_p@0))
1395 (match (logical_inverted_value @0)
1396 (eq @0 integer_zerop))
1397 (match (logical_inverted_value @0)
1398 (ne truth_valued_p@0 integer_truep))
1399 (match (logical_inverted_value @0)
1400 (bit_xor truth_valued_p@0 integer_truep))
1401
1402 /* X & !X -> 0. */
1403 (simplify
1404 (bit_and:c @0 (logical_inverted_value @0))
1405 { build_zero_cst (type); })
1406 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1407 (for op (bit_ior bit_xor)
1408 (simplify
1409 (op:c truth_valued_p@0 (logical_inverted_value @0))
1410 { constant_boolean_node (true, type); }))
1411 /* X ==/!= !X is false/true. */
1412 (for op (eq ne)
1413 (simplify
1414 (op:c truth_valued_p@0 (logical_inverted_value @0))
1415 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1416
1417 /* ~~x -> x */
1418 (simplify
1419 (bit_not (bit_not @0))
1420 @0)
1421
1422 /* Convert ~ (-A) to A - 1. */
1423 (simplify
1424 (bit_not (convert? (negate @0)))
1425 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1426 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1427 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1428
1429 /* Convert - (~A) to A + 1. */
1430 (simplify
1431 (negate (nop_convert (bit_not @0)))
1432 (plus (view_convert @0) { build_each_one_cst (type); }))
1433
1434 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1435 (simplify
1436 (bit_not (convert? (minus @0 integer_each_onep)))
1437 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1438 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1439 (convert (negate @0))))
1440 (simplify
1441 (bit_not (convert? (plus @0 integer_all_onesp)))
1442 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1443 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1444 (convert (negate @0))))
1445
1446 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1447 (simplify
1448 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1449 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1450 (convert (bit_xor @0 (bit_not @1)))))
1451 (simplify
1452 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1453 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1454 (convert (bit_xor @0 @1))))
1455
1456 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1457 (simplify
1458 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1459 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1460 (bit_not (bit_xor (view_convert @0) @1))))
1461
1462 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1463 (simplify
1464 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1465 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1466
1467 /* Fold A - (A & B) into ~B & A. */
1468 (simplify
1469 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1470 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1471 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1472 (convert (bit_and (bit_not @1) @0))))
1473
1474 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1475 (for cmp (gt lt ge le)
1476 (simplify
1477 (mult (convert (cmp @0 @1)) @2)
1478 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1479
1480 /* For integral types with undefined overflow and C != 0 fold
1481 x * C EQ/NE y * C into x EQ/NE y. */
1482 (for cmp (eq ne)
1483 (simplify
1484 (cmp (mult:c @0 @1) (mult:c @2 @1))
1485 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1486 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1487 && tree_expr_nonzero_p (@1))
1488 (cmp @0 @2))))
1489
1490 /* For integral types with wrapping overflow and C odd fold
1491 x * C EQ/NE y * C into x EQ/NE y. */
1492 (for cmp (eq ne)
1493 (simplify
1494 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1495 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1496 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1497 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1498 (cmp @0 @2))))
1499
1500 /* For integral types with undefined overflow and C != 0 fold
1501 x * C RELOP y * C into:
1502
1503 x RELOP y for nonnegative C
1504 y RELOP x for negative C */
1505 (for cmp (lt gt le ge)
1506 (simplify
1507 (cmp (mult:c @0 @1) (mult:c @2 @1))
1508 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1509 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1510 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1511 (cmp @0 @2)
1512 (if (TREE_CODE (@1) == INTEGER_CST
1513 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1514 (cmp @2 @0))))))
1515
1516 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1517 (for cmp (le gt)
1518 icmp (gt le)
1519 (simplify
1520 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1521 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1522 && TYPE_UNSIGNED (TREE_TYPE (@0))
1523 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1524 && (wi::to_wide (@2)
1525 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1526 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1527 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1528
1529 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1530 (for cmp (simple_comparison)
1531 (simplify
1532 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1533 (if (element_precision (@3) >= element_precision (@0)
1534 && types_match (@0, @1))
1535 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1536 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1537 (cmp @1 @0)
1538 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1539 (with
1540 {
1541 tree utype = unsigned_type_for (TREE_TYPE (@0));
1542 }
1543 (cmp (convert:utype @1) (convert:utype @0)))))
1544 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1545 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1546 (cmp @0 @1)
1547 (with
1548 {
1549 tree utype = unsigned_type_for (TREE_TYPE (@0));
1550 }
1551 (cmp (convert:utype @0) (convert:utype @1)))))))))
1552
1553 /* X / C1 op C2 into a simple range test. */
1554 (for cmp (simple_comparison)
1555 (simplify
1556 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1557 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1558 && integer_nonzerop (@1)
1559 && !TREE_OVERFLOW (@1)
1560 && !TREE_OVERFLOW (@2))
1561 (with { tree lo, hi; bool neg_overflow;
1562 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1563 &neg_overflow); }
1564 (switch
1565 (if (code == LT_EXPR || code == GE_EXPR)
1566 (if (TREE_OVERFLOW (lo))
1567 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1568 (if (code == LT_EXPR)
1569 (lt @0 { lo; })
1570 (ge @0 { lo; }))))
1571 (if (code == LE_EXPR || code == GT_EXPR)
1572 (if (TREE_OVERFLOW (hi))
1573 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1574 (if (code == LE_EXPR)
1575 (le @0 { hi; })
1576 (gt @0 { hi; }))))
1577 (if (!lo && !hi)
1578 { build_int_cst (type, code == NE_EXPR); })
1579 (if (code == EQ_EXPR && !hi)
1580 (ge @0 { lo; }))
1581 (if (code == EQ_EXPR && !lo)
1582 (le @0 { hi; }))
1583 (if (code == NE_EXPR && !hi)
1584 (lt @0 { lo; }))
1585 (if (code == NE_EXPR && !lo)
1586 (gt @0 { hi; }))
1587 (if (GENERIC)
1588 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1589 lo, hi); })
1590 (with
1591 {
1592 tree etype = range_check_type (TREE_TYPE (@0));
1593 if (etype)
1594 {
1595 hi = fold_convert (etype, hi);
1596 lo = fold_convert (etype, lo);
1597 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1598 }
1599 }
1600 (if (etype && hi && !TREE_OVERFLOW (hi))
1601 (if (code == EQ_EXPR)
1602 (le (minus (convert:etype @0) { lo; }) { hi; })
1603 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1604
1605 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1606 (for op (lt le ge gt)
1607 (simplify
1608 (op (plus:c @0 @2) (plus:c @1 @2))
1609 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1610 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1611 (op @0 @1))))
1612 /* For equality and subtraction, this is also true with wrapping overflow. */
1613 (for op (eq ne minus)
1614 (simplify
1615 (op (plus:c @0 @2) (plus:c @1 @2))
1616 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1617 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1618 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1619 (op @0 @1))))
1620
1621 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1622 (for op (lt le ge gt)
1623 (simplify
1624 (op (minus @0 @2) (minus @1 @2))
1625 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1626 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1627 (op @0 @1))))
1628 /* For equality and subtraction, this is also true with wrapping overflow. */
1629 (for op (eq ne minus)
1630 (simplify
1631 (op (minus @0 @2) (minus @1 @2))
1632 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1633 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1634 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1635 (op @0 @1))))
1636 /* And for pointers... */
1637 (for op (simple_comparison)
1638 (simplify
1639 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1640 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1641 (op @0 @1))))
1642 (simplify
1643 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1644 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1645 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1646 (pointer_diff @0 @1)))
1647
1648 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1649 (for op (lt le ge gt)
1650 (simplify
1651 (op (minus @2 @0) (minus @2 @1))
1652 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1653 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1654 (op @1 @0))))
1655 /* For equality and subtraction, this is also true with wrapping overflow. */
1656 (for op (eq ne minus)
1657 (simplify
1658 (op (minus @2 @0) (minus @2 @1))
1659 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1660 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1661 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1662 (op @1 @0))))
1663 /* And for pointers... */
1664 (for op (simple_comparison)
1665 (simplify
1666 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1667 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1668 (op @1 @0))))
1669 (simplify
1670 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1671 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1672 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1673 (pointer_diff @1 @0)))
1674
1675 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1676 (for op (lt le gt ge)
1677 (simplify
1678 (op:c (plus:c@2 @0 @1) @1)
1679 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1680 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1681 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1682 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1683 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1684 /* For equality, this is also true with wrapping overflow. */
1685 (for op (eq ne)
1686 (simplify
1687 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1688 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1689 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1690 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1691 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1692 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1693 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1694 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1695 (simplify
1696 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1697 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1698 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1699 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1700 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1701
1702 /* X - Y < X is the same as Y > 0 when there is no overflow.
1703 For equality, this is also true with wrapping overflow. */
1704 (for op (simple_comparison)
1705 (simplify
1706 (op:c @0 (minus@2 @0 @1))
1707 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1708 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1709 || ((op == EQ_EXPR || op == NE_EXPR)
1710 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1711 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1712 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1713
1714 /* Transform:
1715 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1716 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1717 (for cmp (eq ne)
1718 ocmp (lt ge)
1719 (simplify
1720 (cmp (trunc_div @0 @1) integer_zerop)
1721 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1722 /* Complex ==/!= is allowed, but not </>=. */
1723 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1724 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1725 (ocmp @0 @1))))
1726
1727 /* X == C - X can never be true if C is odd. */
1728 (for cmp (eq ne)
1729 (simplify
1730 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1731 (if (TREE_INT_CST_LOW (@1) & 1)
1732 { constant_boolean_node (cmp == NE_EXPR, type); })))
1733
1734 /* Arguments on which one can call get_nonzero_bits to get the bits
1735 possibly set. */
1736 (match with_possible_nonzero_bits
1737 INTEGER_CST@0)
1738 (match with_possible_nonzero_bits
1739 SSA_NAME@0
1740 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1741 /* Slightly extended version, do not make it recursive to keep it cheap. */
1742 (match (with_possible_nonzero_bits2 @0)
1743 with_possible_nonzero_bits@0)
1744 (match (with_possible_nonzero_bits2 @0)
1745 (bit_and:c with_possible_nonzero_bits@0 @2))
1746
1747 /* Same for bits that are known to be set, but we do not have
1748 an equivalent to get_nonzero_bits yet. */
1749 (match (with_certain_nonzero_bits2 @0)
1750 INTEGER_CST@0)
1751 (match (with_certain_nonzero_bits2 @0)
1752 (bit_ior @1 INTEGER_CST@0))
1753
1754 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1755 (for cmp (eq ne)
1756 (simplify
1757 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1758 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1759 { constant_boolean_node (cmp == NE_EXPR, type); })))
1760
1761 /* ((X inner_op C0) outer_op C1)
1762 With X being a tree where value_range has reasoned certain bits to always be
1763 zero throughout its computed value range,
1764 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1765 where zero_mask has 1's for all bits that are sure to be 0 in
1766 and 0's otherwise.
1767 if (inner_op == '^') C0 &= ~C1;
1768 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1769 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1770 */
1771 (for inner_op (bit_ior bit_xor)
1772 outer_op (bit_xor bit_ior)
1773 (simplify
1774 (outer_op
1775 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1776 (with
1777 {
1778 bool fail = false;
1779 wide_int zero_mask_not;
1780 wide_int C0;
1781 wide_int cst_emit;
1782
1783 if (TREE_CODE (@2) == SSA_NAME)
1784 zero_mask_not = get_nonzero_bits (@2);
1785 else
1786 fail = true;
1787
1788 if (inner_op == BIT_XOR_EXPR)
1789 {
1790 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1791 cst_emit = C0 | wi::to_wide (@1);
1792 }
1793 else
1794 {
1795 C0 = wi::to_wide (@0);
1796 cst_emit = C0 ^ wi::to_wide (@1);
1797 }
1798 }
1799 (if (!fail && (C0 & zero_mask_not) == 0)
1800 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1801 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1802 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1803
1804 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1805 (simplify
1806 (pointer_plus (pointer_plus:s @0 @1) @3)
1807 (pointer_plus @0 (plus @1 @3)))
1808
1809 /* Pattern match
1810 tem1 = (long) ptr1;
1811 tem2 = (long) ptr2;
1812 tem3 = tem2 - tem1;
1813 tem4 = (unsigned long) tem3;
1814 tem5 = ptr1 + tem4;
1815 and produce
1816 tem5 = ptr2; */
1817 (simplify
1818 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1819 /* Conditionally look through a sign-changing conversion. */
1820 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1821 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1822 || (GENERIC && type == TREE_TYPE (@1))))
1823 @1))
1824 (simplify
1825 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1826 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1827 (convert @1)))
1828
1829 /* Pattern match
1830 tem = (sizetype) ptr;
1831 tem = tem & algn;
1832 tem = -tem;
1833 ... = ptr p+ tem;
1834 and produce the simpler and easier to analyze with respect to alignment
1835 ... = ptr & ~algn; */
1836 (simplify
1837 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1838 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1839 (bit_and @0 { algn; })))
1840
1841 /* Try folding difference of addresses. */
1842 (simplify
1843 (minus (convert ADDR_EXPR@0) (convert @1))
1844 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1845 (with { poly_int64 diff; }
1846 (if (ptr_difference_const (@0, @1, &diff))
1847 { build_int_cst_type (type, diff); }))))
1848 (simplify
1849 (minus (convert @0) (convert ADDR_EXPR@1))
1850 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1851 (with { poly_int64 diff; }
1852 (if (ptr_difference_const (@0, @1, &diff))
1853 { build_int_cst_type (type, diff); }))))
1854 (simplify
1855 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1856 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1857 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1858 (with { poly_int64 diff; }
1859 (if (ptr_difference_const (@0, @1, &diff))
1860 { build_int_cst_type (type, diff); }))))
1861 (simplify
1862 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1863 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1864 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1865 (with { poly_int64 diff; }
1866 (if (ptr_difference_const (@0, @1, &diff))
1867 { build_int_cst_type (type, diff); }))))
1868
1869 /* If arg0 is derived from the address of an object or function, we may
1870 be able to fold this expression using the object or function's
1871 alignment. */
1872 (simplify
1873 (bit_and (convert? @0) INTEGER_CST@1)
1874 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1875 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1876 (with
1877 {
1878 unsigned int align;
1879 unsigned HOST_WIDE_INT bitpos;
1880 get_pointer_alignment_1 (@0, &align, &bitpos);
1881 }
1882 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1883 { wide_int_to_tree (type, (wi::to_wide (@1)
1884 & (bitpos / BITS_PER_UNIT))); }))))
1885
1886 (match min_value
1887 INTEGER_CST
1888 (if (INTEGRAL_TYPE_P (type)
1889 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1890
1891 (match max_value
1892 INTEGER_CST
1893 (if (INTEGRAL_TYPE_P (type)
1894 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1895
1896 /* x > y && x != XXX_MIN --> x > y
1897 x > y && x == XXX_MIN --> false . */
1898 (for eqne (eq ne)
1899 (simplify
1900 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1901 (switch
1902 (if (eqne == EQ_EXPR)
1903 { constant_boolean_node (false, type); })
1904 (if (eqne == NE_EXPR)
1905 @2)
1906 )))
1907
1908 /* x < y && x != XXX_MAX --> x < y
1909 x < y && x == XXX_MAX --> false. */
1910 (for eqne (eq ne)
1911 (simplify
1912 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1913 (switch
1914 (if (eqne == EQ_EXPR)
1915 { constant_boolean_node (false, type); })
1916 (if (eqne == NE_EXPR)
1917 @2)
1918 )))
1919
1920 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1921 (simplify
1922 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1923 @2)
1924
1925 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
1926 (simplify
1927 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1928 @2)
1929
1930 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
1931 (simplify
1932 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1933 @2)
1934
1935 /* x <= y || x != XXX_MIN --> true. */
1936 (simplify
1937 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1938 { constant_boolean_node (true, type); })
1939
1940 /* x <= y || x == XXX_MIN --> x <= y. */
1941 (simplify
1942 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1943 @2)
1944
1945 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
1946 (simplify
1947 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1948 @2)
1949
1950 /* x >= y || x != XXX_MAX --> true
1951 x >= y || x == XXX_MAX --> x >= y. */
1952 (for eqne (eq ne)
1953 (simplify
1954 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1955 (switch
1956 (if (eqne == EQ_EXPR)
1957 @2)
1958 (if (eqne == NE_EXPR)
1959 { constant_boolean_node (true, type); }))))
1960
1961 /* Convert (X == CST1) && (X OP2 CST2) to a known value
1962 based on CST1 OP2 CST2. Similarly for (X != CST1). */
1963
1964 (for code1 (eq ne)
1965 (for code2 (eq ne lt gt le ge)
1966 (simplify
1967 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1968 (with
1969 {
1970 int cmp = tree_int_cst_compare (@1, @2);
1971 bool val;
1972 switch (code2)
1973 {
1974 case EQ_EXPR: val = (cmp == 0); break;
1975 case NE_EXPR: val = (cmp != 0); break;
1976 case LT_EXPR: val = (cmp < 0); break;
1977 case GT_EXPR: val = (cmp > 0); break;
1978 case LE_EXPR: val = (cmp <= 0); break;
1979 case GE_EXPR: val = (cmp >= 0); break;
1980 default: gcc_unreachable ();
1981 }
1982 }
1983 (switch
1984 (if (code1 == EQ_EXPR && val) @3)
1985 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
1986 (if (code1 == NE_EXPR && !val) @4))))))
1987
1988 /* Convert (X OP1 CST1) && (X OP2 CST2). */
1989
1990 (for code1 (lt le gt ge)
1991 (for code2 (lt le gt ge)
1992 (simplify
1993 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
1994 (with
1995 {
1996 int cmp = tree_int_cst_compare (@1, @2);
1997 }
1998 (switch
1999 /* Choose the more restrictive of two < or <= comparisons. */
2000 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2001 && (code2 == LT_EXPR || code2 == LE_EXPR))
2002 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2003 @3
2004 @4))
2005 /* Likewise chose the more restrictive of two > or >= comparisons. */
2006 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2007 && (code2 == GT_EXPR || code2 == GE_EXPR))
2008 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2009 @3
2010 @4))
2011 /* Check for singleton ranges. */
2012 (if (cmp == 0
2013 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2014 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2015 (eq @0 @1))
2016 /* Check for disjoint ranges. */
2017 (if (cmp <= 0
2018 && (code1 == LT_EXPR || code1 == LE_EXPR)
2019 && (code2 == GT_EXPR || code2 == GE_EXPR))
2020 { constant_boolean_node (false, type); })
2021 (if (cmp >= 0
2022 && (code1 == GT_EXPR || code1 == GE_EXPR)
2023 && (code2 == LT_EXPR || code2 == LE_EXPR))
2024 { constant_boolean_node (false, type); })
2025 )))))
2026
2027 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2028 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2029
2030 (for code1 (eq ne)
2031 (for code2 (eq ne lt gt le ge)
2032 (simplify
2033 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2034 (with
2035 {
2036 int cmp = tree_int_cst_compare (@1, @2);
2037 bool val;
2038 switch (code2)
2039 {
2040 case EQ_EXPR: val = (cmp == 0); break;
2041 case NE_EXPR: val = (cmp != 0); break;
2042 case LT_EXPR: val = (cmp < 0); break;
2043 case GT_EXPR: val = (cmp > 0); break;
2044 case LE_EXPR: val = (cmp <= 0); break;
2045 case GE_EXPR: val = (cmp >= 0); break;
2046 default: gcc_unreachable ();
2047 }
2048 }
2049 (switch
2050 (if (code1 == EQ_EXPR && val) @4)
2051 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2052 (if (code1 == NE_EXPR && !val) @3))))))
2053
2054 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2055
2056 (for code1 (lt le gt ge)
2057 (for code2 (lt le gt ge)
2058 (simplify
2059 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2060 (with
2061 {
2062 int cmp = tree_int_cst_compare (@1, @2);
2063 }
2064 (switch
2065 /* Choose the more restrictive of two < or <= comparisons. */
2066 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2067 && (code2 == LT_EXPR || code2 == LE_EXPR))
2068 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2069 @4
2070 @3))
2071 /* Likewise chose the more restrictive of two > or >= comparisons. */
2072 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2073 && (code2 == GT_EXPR || code2 == GE_EXPR))
2074 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2075 @4
2076 @3))
2077 /* Check for singleton ranges. */
2078 (if (cmp == 0
2079 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2080 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2081 (ne @0 @2))
2082 /* Check for disjoint ranges. */
2083 (if (cmp >= 0
2084 && (code1 == LT_EXPR || code1 == LE_EXPR)
2085 && (code2 == GT_EXPR || code2 == GE_EXPR))
2086 { constant_boolean_node (true, type); })
2087 (if (cmp <= 0
2088 && (code1 == GT_EXPR || code1 == GE_EXPR)
2089 && (code2 == LT_EXPR || code2 == LE_EXPR))
2090 { constant_boolean_node (true, type); })
2091 )))))
2092
2093 /* We can't reassociate at all for saturating types. */
2094 (if (!TYPE_SATURATING (type))
2095
2096 /* Contract negates. */
2097 /* A + (-B) -> A - B */
2098 (simplify
2099 (plus:c @0 (convert? (negate @1)))
2100 /* Apply STRIP_NOPS on the negate. */
2101 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2102 && !TYPE_OVERFLOW_SANITIZED (type))
2103 (with
2104 {
2105 tree t1 = type;
2106 if (INTEGRAL_TYPE_P (type)
2107 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2108 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2109 }
2110 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2111 /* A - (-B) -> A + B */
2112 (simplify
2113 (minus @0 (convert? (negate @1)))
2114 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2115 && !TYPE_OVERFLOW_SANITIZED (type))
2116 (with
2117 {
2118 tree t1 = type;
2119 if (INTEGRAL_TYPE_P (type)
2120 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2121 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2122 }
2123 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2124 /* -(T)(-A) -> (T)A
2125 Sign-extension is ok except for INT_MIN, which thankfully cannot
2126 happen without overflow. */
2127 (simplify
2128 (negate (convert (negate @1)))
2129 (if (INTEGRAL_TYPE_P (type)
2130 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2131 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2132 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2133 && !TYPE_OVERFLOW_SANITIZED (type)
2134 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2135 (convert @1)))
2136 (simplify
2137 (negate (convert negate_expr_p@1))
2138 (if (SCALAR_FLOAT_TYPE_P (type)
2139 && ((DECIMAL_FLOAT_TYPE_P (type)
2140 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2141 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2142 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2143 (convert (negate @1))))
2144 (simplify
2145 (negate (nop_convert (negate @1)))
2146 (if (!TYPE_OVERFLOW_SANITIZED (type)
2147 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2148 (view_convert @1)))
2149
2150 /* We can't reassociate floating-point unless -fassociative-math
2151 or fixed-point plus or minus because of saturation to +-Inf. */
2152 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2153 && !FIXED_POINT_TYPE_P (type))
2154
2155 /* Match patterns that allow contracting a plus-minus pair
2156 irrespective of overflow issues. */
2157 /* (A +- B) - A -> +- B */
2158 /* (A +- B) -+ B -> A */
2159 /* A - (A +- B) -> -+ B */
2160 /* A +- (B -+ A) -> +- B */
2161 (simplify
2162 (minus (plus:c @0 @1) @0)
2163 @1)
2164 (simplify
2165 (minus (minus @0 @1) @0)
2166 (negate @1))
2167 (simplify
2168 (plus:c (minus @0 @1) @1)
2169 @0)
2170 (simplify
2171 (minus @0 (plus:c @0 @1))
2172 (negate @1))
2173 (simplify
2174 (minus @0 (minus @0 @1))
2175 @1)
2176 /* (A +- B) + (C - A) -> C +- B */
2177 /* (A + B) - (A - C) -> B + C */
2178 /* More cases are handled with comparisons. */
2179 (simplify
2180 (plus:c (plus:c @0 @1) (minus @2 @0))
2181 (plus @2 @1))
2182 (simplify
2183 (plus:c (minus @0 @1) (minus @2 @0))
2184 (minus @2 @1))
2185 (simplify
2186 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2187 (if (TYPE_OVERFLOW_UNDEFINED (type)
2188 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2189 (pointer_diff @2 @1)))
2190 (simplify
2191 (minus (plus:c @0 @1) (minus @0 @2))
2192 (plus @1 @2))
2193
2194 /* (A +- CST1) +- CST2 -> A + CST3
2195 Use view_convert because it is safe for vectors and equivalent for
2196 scalars. */
2197 (for outer_op (plus minus)
2198 (for inner_op (plus minus)
2199 neg_inner_op (minus plus)
2200 (simplify
2201 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
2202 CONSTANT_CLASS_P@2)
2203 /* If one of the types wraps, use that one. */
2204 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2205 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2206 forever if something doesn't simplify into a constant. */
2207 (if (!CONSTANT_CLASS_P (@0))
2208 (if (outer_op == PLUS_EXPR)
2209 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2210 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2211 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2212 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2213 (if (outer_op == PLUS_EXPR)
2214 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2215 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2216 /* If the constant operation overflows we cannot do the transform
2217 directly as we would introduce undefined overflow, for example
2218 with (a - 1) + INT_MIN. */
2219 (if (types_match (type, @0))
2220 (with { tree cst = const_binop (outer_op == inner_op
2221 ? PLUS_EXPR : MINUS_EXPR,
2222 type, @1, @2); }
2223 (if (cst && !TREE_OVERFLOW (cst))
2224 (inner_op @0 { cst; } )
2225 /* X+INT_MAX+1 is X-INT_MIN. */
2226 (if (INTEGRAL_TYPE_P (type) && cst
2227 && wi::to_wide (cst) == wi::min_value (type))
2228 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2229 /* Last resort, use some unsigned type. */
2230 (with { tree utype = unsigned_type_for (type); }
2231 (if (utype)
2232 (view_convert (inner_op
2233 (view_convert:utype @0)
2234 (view_convert:utype
2235 { drop_tree_overflow (cst); }))))))))))))))
2236
2237 /* (CST1 - A) +- CST2 -> CST3 - A */
2238 (for outer_op (plus minus)
2239 (simplify
2240 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
2241 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2242 (if (cst && !TREE_OVERFLOW (cst))
2243 (minus { cst; } @0)))))
2244
2245 /* CST1 - (CST2 - A) -> CST3 + A */
2246 (simplify
2247 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
2248 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2249 (if (cst && !TREE_OVERFLOW (cst))
2250 (plus { cst; } @0))))
2251
2252 /* ((T)(A)) + CST -> (T)(A + CST) */
2253 #if GIMPLE
2254 (simplify
2255 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2256 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2257 && TREE_CODE (type) == INTEGER_TYPE
2258 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2259 && int_fits_type_p (@1, TREE_TYPE (@0)))
2260 /* Perform binary operation inside the cast if the constant fits
2261 and (A + CST)'s range does not overflow. */
2262 (with
2263 {
2264 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2265 max_ovf = wi::OVF_OVERFLOW;
2266 tree inner_type = TREE_TYPE (@0);
2267
2268 wide_int w1
2269 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2270 TYPE_SIGN (inner_type));
2271
2272 wide_int wmin0, wmax0;
2273 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2274 {
2275 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2276 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2277 }
2278 }
2279 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2280 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2281 )))
2282 #endif
2283
2284 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2285 #if GIMPLE
2286 (for op (plus minus)
2287 (simplify
2288 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2289 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2290 && TREE_CODE (type) == INTEGER_TYPE
2291 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2292 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2293 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2294 && TYPE_OVERFLOW_WRAPS (type))
2295 (plus (convert @0) (op @2 (convert @1))))))
2296 #endif
2297
2298 /* ~A + A -> -1 */
2299 (simplify
2300 (plus:c (bit_not @0) @0)
2301 (if (!TYPE_OVERFLOW_TRAPS (type))
2302 { build_all_ones_cst (type); }))
2303
2304 /* ~A + 1 -> -A */
2305 (simplify
2306 (plus (convert? (bit_not @0)) integer_each_onep)
2307 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2308 (negate (convert @0))))
2309
2310 /* -A - 1 -> ~A */
2311 (simplify
2312 (minus (convert? (negate @0)) integer_each_onep)
2313 (if (!TYPE_OVERFLOW_TRAPS (type)
2314 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2315 (bit_not (convert @0))))
2316
2317 /* -1 - A -> ~A */
2318 (simplify
2319 (minus integer_all_onesp @0)
2320 (bit_not @0))
2321
2322 /* (T)(P + A) - (T)P -> (T) A */
2323 (simplify
2324 (minus (convert (plus:c @@0 @1))
2325 (convert? @0))
2326 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2327 /* For integer types, if A has a smaller type
2328 than T the result depends on the possible
2329 overflow in P + A.
2330 E.g. T=size_t, A=(unsigned)429497295, P>0.
2331 However, if an overflow in P + A would cause
2332 undefined behavior, we can assume that there
2333 is no overflow. */
2334 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2335 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2336 (convert @1)))
2337 (simplify
2338 (minus (convert (pointer_plus @@0 @1))
2339 (convert @0))
2340 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2341 /* For pointer types, if the conversion of A to the
2342 final type requires a sign- or zero-extension,
2343 then we have to punt - it is not defined which
2344 one is correct. */
2345 || (POINTER_TYPE_P (TREE_TYPE (@0))
2346 && TREE_CODE (@1) == INTEGER_CST
2347 && tree_int_cst_sign_bit (@1) == 0))
2348 (convert @1)))
2349 (simplify
2350 (pointer_diff (pointer_plus @@0 @1) @0)
2351 /* The second argument of pointer_plus must be interpreted as signed, and
2352 thus sign-extended if necessary. */
2353 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2354 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2355 second arg is unsigned even when we need to consider it as signed,
2356 we don't want to diagnose overflow here. */
2357 (convert (view_convert:stype @1))))
2358
2359 /* (T)P - (T)(P + A) -> -(T) A */
2360 (simplify
2361 (minus (convert? @0)
2362 (convert (plus:c @@0 @1)))
2363 (if (INTEGRAL_TYPE_P (type)
2364 && TYPE_OVERFLOW_UNDEFINED (type)
2365 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2366 (with { tree utype = unsigned_type_for (type); }
2367 (convert (negate (convert:utype @1))))
2368 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2369 /* For integer types, if A has a smaller type
2370 than T the result depends on the possible
2371 overflow in P + A.
2372 E.g. T=size_t, A=(unsigned)429497295, P>0.
2373 However, if an overflow in P + A would cause
2374 undefined behavior, we can assume that there
2375 is no overflow. */
2376 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2377 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2378 (negate (convert @1)))))
2379 (simplify
2380 (minus (convert @0)
2381 (convert (pointer_plus @@0 @1)))
2382 (if (INTEGRAL_TYPE_P (type)
2383 && TYPE_OVERFLOW_UNDEFINED (type)
2384 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2385 (with { tree utype = unsigned_type_for (type); }
2386 (convert (negate (convert:utype @1))))
2387 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2388 /* For pointer types, if the conversion of A to the
2389 final type requires a sign- or zero-extension,
2390 then we have to punt - it is not defined which
2391 one is correct. */
2392 || (POINTER_TYPE_P (TREE_TYPE (@0))
2393 && TREE_CODE (@1) == INTEGER_CST
2394 && tree_int_cst_sign_bit (@1) == 0))
2395 (negate (convert @1)))))
2396 (simplify
2397 (pointer_diff @0 (pointer_plus @@0 @1))
2398 /* The second argument of pointer_plus must be interpreted as signed, and
2399 thus sign-extended if necessary. */
2400 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2401 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2402 second arg is unsigned even when we need to consider it as signed,
2403 we don't want to diagnose overflow here. */
2404 (negate (convert (view_convert:stype @1)))))
2405
2406 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2407 (simplify
2408 (minus (convert (plus:c @@0 @1))
2409 (convert (plus:c @0 @2)))
2410 (if (INTEGRAL_TYPE_P (type)
2411 && TYPE_OVERFLOW_UNDEFINED (type)
2412 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2413 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2414 (with { tree utype = unsigned_type_for (type); }
2415 (convert (minus (convert:utype @1) (convert:utype @2))))
2416 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2417 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2418 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2419 /* For integer types, if A has a smaller type
2420 than T the result depends on the possible
2421 overflow in P + A.
2422 E.g. T=size_t, A=(unsigned)429497295, P>0.
2423 However, if an overflow in P + A would cause
2424 undefined behavior, we can assume that there
2425 is no overflow. */
2426 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2427 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2428 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2429 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2430 (minus (convert @1) (convert @2)))))
2431 (simplify
2432 (minus (convert (pointer_plus @@0 @1))
2433 (convert (pointer_plus @0 @2)))
2434 (if (INTEGRAL_TYPE_P (type)
2435 && TYPE_OVERFLOW_UNDEFINED (type)
2436 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2437 (with { tree utype = unsigned_type_for (type); }
2438 (convert (minus (convert:utype @1) (convert:utype @2))))
2439 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2440 /* For pointer types, if the conversion of A to the
2441 final type requires a sign- or zero-extension,
2442 then we have to punt - it is not defined which
2443 one is correct. */
2444 || (POINTER_TYPE_P (TREE_TYPE (@0))
2445 && TREE_CODE (@1) == INTEGER_CST
2446 && tree_int_cst_sign_bit (@1) == 0
2447 && TREE_CODE (@2) == INTEGER_CST
2448 && tree_int_cst_sign_bit (@2) == 0))
2449 (minus (convert @1) (convert @2)))))
2450 (simplify
2451 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2452 /* The second argument of pointer_plus must be interpreted as signed, and
2453 thus sign-extended if necessary. */
2454 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2455 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2456 second arg is unsigned even when we need to consider it as signed,
2457 we don't want to diagnose overflow here. */
2458 (minus (convert (view_convert:stype @1))
2459 (convert (view_convert:stype @2)))))))
2460
2461 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2462 Modeled after fold_plusminus_mult_expr. */
2463 (if (!TYPE_SATURATING (type)
2464 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2465 (for plusminus (plus minus)
2466 (simplify
2467 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2468 (if ((!ANY_INTEGRAL_TYPE_P (type)
2469 || TYPE_OVERFLOW_WRAPS (type)
2470 || (INTEGRAL_TYPE_P (type)
2471 && tree_expr_nonzero_p (@0)
2472 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2473 /* If @1 +- @2 is constant require a hard single-use on either
2474 original operand (but not on both). */
2475 && (single_use (@3) || single_use (@4)))
2476 (mult (plusminus @1 @2) @0)))
2477 /* We cannot generate constant 1 for fract. */
2478 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2479 (simplify
2480 (plusminus @0 (mult:c@3 @0 @2))
2481 (if ((!ANY_INTEGRAL_TYPE_P (type)
2482 || TYPE_OVERFLOW_WRAPS (type)
2483 || (INTEGRAL_TYPE_P (type)
2484 && tree_expr_nonzero_p (@0)
2485 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2486 && single_use (@3))
2487 (mult (plusminus { build_one_cst (type); } @2) @0)))
2488 (simplify
2489 (plusminus (mult:c@3 @0 @2) @0)
2490 (if ((!ANY_INTEGRAL_TYPE_P (type)
2491 || TYPE_OVERFLOW_WRAPS (type)
2492 || (INTEGRAL_TYPE_P (type)
2493 && tree_expr_nonzero_p (@0)
2494 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2495 && single_use (@3))
2496 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2497
2498 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2499
2500 (for minmax (min max FMIN_ALL FMAX_ALL)
2501 (simplify
2502 (minmax @0 @0)
2503 @0))
2504 /* min(max(x,y),y) -> y. */
2505 (simplify
2506 (min:c (max:c @0 @1) @1)
2507 @1)
2508 /* max(min(x,y),y) -> y. */
2509 (simplify
2510 (max:c (min:c @0 @1) @1)
2511 @1)
2512 /* max(a,-a) -> abs(a). */
2513 (simplify
2514 (max:c @0 (negate @0))
2515 (if (TREE_CODE (type) != COMPLEX_TYPE
2516 && (! ANY_INTEGRAL_TYPE_P (type)
2517 || TYPE_OVERFLOW_UNDEFINED (type)))
2518 (abs @0)))
2519 /* min(a,-a) -> -abs(a). */
2520 (simplify
2521 (min:c @0 (negate @0))
2522 (if (TREE_CODE (type) != COMPLEX_TYPE
2523 && (! ANY_INTEGRAL_TYPE_P (type)
2524 || TYPE_OVERFLOW_UNDEFINED (type)))
2525 (negate (abs @0))))
2526 (simplify
2527 (min @0 @1)
2528 (switch
2529 (if (INTEGRAL_TYPE_P (type)
2530 && TYPE_MIN_VALUE (type)
2531 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2532 @1)
2533 (if (INTEGRAL_TYPE_P (type)
2534 && TYPE_MAX_VALUE (type)
2535 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2536 @0)))
2537 (simplify
2538 (max @0 @1)
2539 (switch
2540 (if (INTEGRAL_TYPE_P (type)
2541 && TYPE_MAX_VALUE (type)
2542 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2543 @1)
2544 (if (INTEGRAL_TYPE_P (type)
2545 && TYPE_MIN_VALUE (type)
2546 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2547 @0)))
2548
2549 /* max (a, a + CST) -> a + CST where CST is positive. */
2550 /* max (a, a + CST) -> a where CST is negative. */
2551 (simplify
2552 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2553 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2554 (if (tree_int_cst_sgn (@1) > 0)
2555 @2
2556 @0)))
2557
2558 /* min (a, a + CST) -> a where CST is positive. */
2559 /* min (a, a + CST) -> a + CST where CST is negative. */
2560 (simplify
2561 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2562 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2563 (if (tree_int_cst_sgn (@1) > 0)
2564 @0
2565 @2)))
2566
2567 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2568 and the outer convert demotes the expression back to x's type. */
2569 (for minmax (min max)
2570 (simplify
2571 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2572 (if (INTEGRAL_TYPE_P (type)
2573 && types_match (@1, type) && int_fits_type_p (@2, type)
2574 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2575 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2576 (minmax @1 (convert @2)))))
2577
2578 (for minmax (FMIN_ALL FMAX_ALL)
2579 /* If either argument is NaN, return the other one. Avoid the
2580 transformation if we get (and honor) a signalling NaN. */
2581 (simplify
2582 (minmax:c @0 REAL_CST@1)
2583 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2584 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2585 @0)))
2586 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2587 functions to return the numeric arg if the other one is NaN.
2588 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2589 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2590 worry about it either. */
2591 (if (flag_finite_math_only)
2592 (simplify
2593 (FMIN_ALL @0 @1)
2594 (min @0 @1))
2595 (simplify
2596 (FMAX_ALL @0 @1)
2597 (max @0 @1)))
2598 /* min (-A, -B) -> -max (A, B) */
2599 (for minmax (min max FMIN_ALL FMAX_ALL)
2600 maxmin (max min FMAX_ALL FMIN_ALL)
2601 (simplify
2602 (minmax (negate:s@2 @0) (negate:s@3 @1))
2603 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2604 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2605 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2606 (negate (maxmin @0 @1)))))
2607 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2608 MAX (~X, ~Y) -> ~MIN (X, Y) */
2609 (for minmax (min max)
2610 maxmin (max min)
2611 (simplify
2612 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2613 (bit_not (maxmin @0 @1))))
2614
2615 /* MIN (X, Y) == X -> X <= Y */
2616 (for minmax (min min max max)
2617 cmp (eq ne eq ne )
2618 out (le gt ge lt )
2619 (simplify
2620 (cmp:c (minmax:c @0 @1) @0)
2621 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2622 (out @0 @1))))
2623 /* MIN (X, 5) == 0 -> X == 0
2624 MIN (X, 5) == 7 -> false */
2625 (for cmp (eq ne)
2626 (simplify
2627 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2628 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2629 TYPE_SIGN (TREE_TYPE (@0))))
2630 { constant_boolean_node (cmp == NE_EXPR, type); }
2631 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2632 TYPE_SIGN (TREE_TYPE (@0))))
2633 (cmp @0 @2)))))
2634 (for cmp (eq ne)
2635 (simplify
2636 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2637 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2638 TYPE_SIGN (TREE_TYPE (@0))))
2639 { constant_boolean_node (cmp == NE_EXPR, type); }
2640 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2641 TYPE_SIGN (TREE_TYPE (@0))))
2642 (cmp @0 @2)))))
2643 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2644 (for minmax (min min max max min min max max )
2645 cmp (lt le gt ge gt ge lt le )
2646 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2647 (simplify
2648 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2649 (comb (cmp @0 @2) (cmp @1 @2))))
2650
2651 /* Simplifications of shift and rotates. */
2652
2653 (for rotate (lrotate rrotate)
2654 (simplify
2655 (rotate integer_all_onesp@0 @1)
2656 @0))
2657
2658 /* Optimize -1 >> x for arithmetic right shifts. */
2659 (simplify
2660 (rshift integer_all_onesp@0 @1)
2661 (if (!TYPE_UNSIGNED (type)
2662 && tree_expr_nonnegative_p (@1))
2663 @0))
2664
2665 /* Optimize (x >> c) << c into x & (-1<<c). */
2666 (simplify
2667 (lshift (rshift @0 INTEGER_CST@1) @1)
2668 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2669 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2670
2671 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2672 types. */
2673 (simplify
2674 (rshift (lshift @0 INTEGER_CST@1) @1)
2675 (if (TYPE_UNSIGNED (type)
2676 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2677 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2678
2679 (for shiftrotate (lrotate rrotate lshift rshift)
2680 (simplify
2681 (shiftrotate @0 integer_zerop)
2682 (non_lvalue @0))
2683 (simplify
2684 (shiftrotate integer_zerop@0 @1)
2685 @0)
2686 /* Prefer vector1 << scalar to vector1 << vector2
2687 if vector2 is uniform. */
2688 (for vec (VECTOR_CST CONSTRUCTOR)
2689 (simplify
2690 (shiftrotate @0 vec@1)
2691 (with { tree tem = uniform_vector_p (@1); }
2692 (if (tem)
2693 (shiftrotate @0 { tem; }))))))
2694
2695 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2696 Y is 0. Similarly for X >> Y. */
2697 #if GIMPLE
2698 (for shift (lshift rshift)
2699 (simplify
2700 (shift @0 SSA_NAME@1)
2701 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2702 (with {
2703 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2704 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2705 }
2706 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2707 @0)))))
2708 #endif
2709
2710 /* Rewrite an LROTATE_EXPR by a constant into an
2711 RROTATE_EXPR by a new constant. */
2712 (simplify
2713 (lrotate @0 INTEGER_CST@1)
2714 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2715 build_int_cst (TREE_TYPE (@1),
2716 element_precision (type)), @1); }))
2717
2718 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2719 (for op (lrotate rrotate rshift lshift)
2720 (simplify
2721 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2722 (with { unsigned int prec = element_precision (type); }
2723 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2724 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2725 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2726 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2727 (with { unsigned int low = (tree_to_uhwi (@1)
2728 + tree_to_uhwi (@2)); }
2729 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2730 being well defined. */
2731 (if (low >= prec)
2732 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2733 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2734 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2735 { build_zero_cst (type); }
2736 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2737 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2738
2739
2740 /* ((1 << A) & 1) != 0 -> A == 0
2741 ((1 << A) & 1) == 0 -> A != 0 */
2742 (for cmp (ne eq)
2743 icmp (eq ne)
2744 (simplify
2745 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2746 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2747
2748 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2749 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2750 if CST2 != 0. */
2751 (for cmp (ne eq)
2752 (simplify
2753 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2754 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2755 (if (cand < 0
2756 || (!integer_zerop (@2)
2757 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2758 { constant_boolean_node (cmp == NE_EXPR, type); }
2759 (if (!integer_zerop (@2)
2760 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2761 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2762
2763 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2764 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2765 if the new mask might be further optimized. */
2766 (for shift (lshift rshift)
2767 (simplify
2768 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2769 INTEGER_CST@2)
2770 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2771 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2772 && tree_fits_uhwi_p (@1)
2773 && tree_to_uhwi (@1) > 0
2774 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2775 (with
2776 {
2777 unsigned int shiftc = tree_to_uhwi (@1);
2778 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2779 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2780 tree shift_type = TREE_TYPE (@3);
2781 unsigned int prec;
2782
2783 if (shift == LSHIFT_EXPR)
2784 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2785 else if (shift == RSHIFT_EXPR
2786 && type_has_mode_precision_p (shift_type))
2787 {
2788 prec = TYPE_PRECISION (TREE_TYPE (@3));
2789 tree arg00 = @0;
2790 /* See if more bits can be proven as zero because of
2791 zero extension. */
2792 if (@3 != @0
2793 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2794 {
2795 tree inner_type = TREE_TYPE (@0);
2796 if (type_has_mode_precision_p (inner_type)
2797 && TYPE_PRECISION (inner_type) < prec)
2798 {
2799 prec = TYPE_PRECISION (inner_type);
2800 /* See if we can shorten the right shift. */
2801 if (shiftc < prec)
2802 shift_type = inner_type;
2803 /* Otherwise X >> C1 is all zeros, so we'll optimize
2804 it into (X, 0) later on by making sure zerobits
2805 is all ones. */
2806 }
2807 }
2808 zerobits = HOST_WIDE_INT_M1U;
2809 if (shiftc < prec)
2810 {
2811 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2812 zerobits <<= prec - shiftc;
2813 }
2814 /* For arithmetic shift if sign bit could be set, zerobits
2815 can contain actually sign bits, so no transformation is
2816 possible, unless MASK masks them all away. In that
2817 case the shift needs to be converted into logical shift. */
2818 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2819 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2820 {
2821 if ((mask & zerobits) == 0)
2822 shift_type = unsigned_type_for (TREE_TYPE (@3));
2823 else
2824 zerobits = 0;
2825 }
2826 }
2827 }
2828 /* ((X << 16) & 0xff00) is (X, 0). */
2829 (if ((mask & zerobits) == mask)
2830 { build_int_cst (type, 0); }
2831 (with { newmask = mask | zerobits; }
2832 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2833 (with
2834 {
2835 /* Only do the transformation if NEWMASK is some integer
2836 mode's mask. */
2837 for (prec = BITS_PER_UNIT;
2838 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2839 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2840 break;
2841 }
2842 (if (prec < HOST_BITS_PER_WIDE_INT
2843 || newmask == HOST_WIDE_INT_M1U)
2844 (with
2845 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2846 (if (!tree_int_cst_equal (newmaskt, @2))
2847 (if (shift_type != TREE_TYPE (@3))
2848 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2849 (bit_and @4 { newmaskt; })))))))))))))
2850
2851 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2852 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2853 (for shift (lshift rshift)
2854 (for bit_op (bit_and bit_xor bit_ior)
2855 (simplify
2856 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2857 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2858 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2859 (bit_op (shift (convert @0) @1) { mask; }))))))
2860
2861 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2862 (simplify
2863 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2864 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2865 && (element_precision (TREE_TYPE (@0))
2866 <= element_precision (TREE_TYPE (@1))
2867 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2868 (with
2869 { tree shift_type = TREE_TYPE (@0); }
2870 (convert (rshift (convert:shift_type @1) @2)))))
2871
2872 /* ~(~X >>r Y) -> X >>r Y
2873 ~(~X <<r Y) -> X <<r Y */
2874 (for rotate (lrotate rrotate)
2875 (simplify
2876 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2877 (if ((element_precision (TREE_TYPE (@0))
2878 <= element_precision (TREE_TYPE (@1))
2879 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2880 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2881 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2882 (with
2883 { tree rotate_type = TREE_TYPE (@0); }
2884 (convert (rotate (convert:rotate_type @1) @2))))))
2885
2886 /* Simplifications of conversions. */
2887
2888 /* Basic strip-useless-type-conversions / strip_nops. */
2889 (for cvt (convert view_convert float fix_trunc)
2890 (simplify
2891 (cvt @0)
2892 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2893 || (GENERIC && type == TREE_TYPE (@0)))
2894 @0)))
2895
2896 /* Contract view-conversions. */
2897 (simplify
2898 (view_convert (view_convert @0))
2899 (view_convert @0))
2900
2901 /* For integral conversions with the same precision or pointer
2902 conversions use a NOP_EXPR instead. */
2903 (simplify
2904 (view_convert @0)
2905 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2906 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2907 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2908 (convert @0)))
2909
2910 /* Strip inner integral conversions that do not change precision or size, or
2911 zero-extend while keeping the same size (for bool-to-char). */
2912 (simplify
2913 (view_convert (convert@0 @1))
2914 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2915 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2916 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2917 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2918 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2919 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2920 (view_convert @1)))
2921
2922 /* Simplify a view-converted empty constructor. */
2923 (simplify
2924 (view_convert CONSTRUCTOR@0)
2925 (if (TREE_CODE (@0) != SSA_NAME
2926 && CONSTRUCTOR_NELTS (@0) == 0)
2927 { build_zero_cst (type); }))
2928
2929 /* Re-association barriers around constants and other re-association
2930 barriers can be removed. */
2931 (simplify
2932 (paren CONSTANT_CLASS_P@0)
2933 @0)
2934 (simplify
2935 (paren (paren@1 @0))
2936 @1)
2937
2938 /* Handle cases of two conversions in a row. */
2939 (for ocvt (convert float fix_trunc)
2940 (for icvt (convert float)
2941 (simplify
2942 (ocvt (icvt@1 @0))
2943 (with
2944 {
2945 tree inside_type = TREE_TYPE (@0);
2946 tree inter_type = TREE_TYPE (@1);
2947 int inside_int = INTEGRAL_TYPE_P (inside_type);
2948 int inside_ptr = POINTER_TYPE_P (inside_type);
2949 int inside_float = FLOAT_TYPE_P (inside_type);
2950 int inside_vec = VECTOR_TYPE_P (inside_type);
2951 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2952 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2953 int inter_int = INTEGRAL_TYPE_P (inter_type);
2954 int inter_ptr = POINTER_TYPE_P (inter_type);
2955 int inter_float = FLOAT_TYPE_P (inter_type);
2956 int inter_vec = VECTOR_TYPE_P (inter_type);
2957 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2958 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2959 int final_int = INTEGRAL_TYPE_P (type);
2960 int final_ptr = POINTER_TYPE_P (type);
2961 int final_float = FLOAT_TYPE_P (type);
2962 int final_vec = VECTOR_TYPE_P (type);
2963 unsigned int final_prec = TYPE_PRECISION (type);
2964 int final_unsignedp = TYPE_UNSIGNED (type);
2965 }
2966 (switch
2967 /* In addition to the cases of two conversions in a row
2968 handled below, if we are converting something to its own
2969 type via an object of identical or wider precision, neither
2970 conversion is needed. */
2971 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2972 || (GENERIC
2973 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2974 && (((inter_int || inter_ptr) && final_int)
2975 || (inter_float && final_float))
2976 && inter_prec >= final_prec)
2977 (ocvt @0))
2978
2979 /* Likewise, if the intermediate and initial types are either both
2980 float or both integer, we don't need the middle conversion if the
2981 former is wider than the latter and doesn't change the signedness
2982 (for integers). Avoid this if the final type is a pointer since
2983 then we sometimes need the middle conversion. */
2984 (if (((inter_int && inside_int) || (inter_float && inside_float))
2985 && (final_int || final_float)
2986 && inter_prec >= inside_prec
2987 && (inter_float || inter_unsignedp == inside_unsignedp))
2988 (ocvt @0))
2989
2990 /* If we have a sign-extension of a zero-extended value, we can
2991 replace that by a single zero-extension. Likewise if the
2992 final conversion does not change precision we can drop the
2993 intermediate conversion. */
2994 (if (inside_int && inter_int && final_int
2995 && ((inside_prec < inter_prec && inter_prec < final_prec
2996 && inside_unsignedp && !inter_unsignedp)
2997 || final_prec == inter_prec))
2998 (ocvt @0))
2999
3000 /* Two conversions in a row are not needed unless:
3001 - some conversion is floating-point (overstrict for now), or
3002 - some conversion is a vector (overstrict for now), or
3003 - the intermediate type is narrower than both initial and
3004 final, or
3005 - the intermediate type and innermost type differ in signedness,
3006 and the outermost type is wider than the intermediate, or
3007 - the initial type is a pointer type and the precisions of the
3008 intermediate and final types differ, or
3009 - the final type is a pointer type and the precisions of the
3010 initial and intermediate types differ. */
3011 (if (! inside_float && ! inter_float && ! final_float
3012 && ! inside_vec && ! inter_vec && ! final_vec
3013 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3014 && ! (inside_int && inter_int
3015 && inter_unsignedp != inside_unsignedp
3016 && inter_prec < final_prec)
3017 && ((inter_unsignedp && inter_prec > inside_prec)
3018 == (final_unsignedp && final_prec > inter_prec))
3019 && ! (inside_ptr && inter_prec != final_prec)
3020 && ! (final_ptr && inside_prec != inter_prec))
3021 (ocvt @0))
3022
3023 /* A truncation to an unsigned type (a zero-extension) should be
3024 canonicalized as bitwise and of a mask. */
3025 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3026 && final_int && inter_int && inside_int
3027 && final_prec == inside_prec
3028 && final_prec > inter_prec
3029 && inter_unsignedp)
3030 (convert (bit_and @0 { wide_int_to_tree
3031 (inside_type,
3032 wi::mask (inter_prec, false,
3033 TYPE_PRECISION (inside_type))); })))
3034
3035 /* If we are converting an integer to a floating-point that can
3036 represent it exactly and back to an integer, we can skip the
3037 floating-point conversion. */
3038 (if (GIMPLE /* PR66211 */
3039 && inside_int && inter_float && final_int &&
3040 (unsigned) significand_size (TYPE_MODE (inter_type))
3041 >= inside_prec - !inside_unsignedp)
3042 (convert @0)))))))
3043
3044 /* If we have a narrowing conversion to an integral type that is fed by a
3045 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3046 masks off bits outside the final type (and nothing else). */
3047 (simplify
3048 (convert (bit_and @0 INTEGER_CST@1))
3049 (if (INTEGRAL_TYPE_P (type)
3050 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3051 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3052 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3053 TYPE_PRECISION (type)), 0))
3054 (convert @0)))
3055
3056
3057 /* (X /[ex] A) * A -> X. */
3058 (simplify
3059 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3060 (convert @0))
3061
3062 /* Simplify (A / B) * B + (A % B) -> A. */
3063 (for div (trunc_div ceil_div floor_div round_div)
3064 mod (trunc_mod ceil_mod floor_mod round_mod)
3065 (simplify
3066 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3067 @0))
3068
3069 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3070 (for op (plus minus)
3071 (simplify
3072 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3073 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3074 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3075 (with
3076 {
3077 wi::overflow_type overflow;
3078 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3079 TYPE_SIGN (type), &overflow);
3080 }
3081 (if (types_match (type, TREE_TYPE (@2))
3082 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3083 (op @0 { wide_int_to_tree (type, mul); })
3084 (with { tree utype = unsigned_type_for (type); }
3085 (convert (op (convert:utype @0)
3086 (mult (convert:utype @1) (convert:utype @2))))))))))
3087
3088 /* Canonicalization of binary operations. */
3089
3090 /* Convert X + -C into X - C. */
3091 (simplify
3092 (plus @0 REAL_CST@1)
3093 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3094 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3095 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3096 (minus @0 { tem; })))))
3097
3098 /* Convert x+x into x*2. */
3099 (simplify
3100 (plus @0 @0)
3101 (if (SCALAR_FLOAT_TYPE_P (type))
3102 (mult @0 { build_real (type, dconst2); })
3103 (if (INTEGRAL_TYPE_P (type))
3104 (mult @0 { build_int_cst (type, 2); }))))
3105
3106 /* 0 - X -> -X. */
3107 (simplify
3108 (minus integer_zerop @1)
3109 (negate @1))
3110 (simplify
3111 (pointer_diff integer_zerop @1)
3112 (negate (convert @1)))
3113
3114 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3115 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3116 (-ARG1 + ARG0) reduces to -ARG1. */
3117 (simplify
3118 (minus real_zerop@0 @1)
3119 (if (fold_real_zero_addition_p (type, @0, 0))
3120 (negate @1)))
3121
3122 /* Transform x * -1 into -x. */
3123 (simplify
3124 (mult @0 integer_minus_onep)
3125 (negate @0))
3126
3127 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3128 signed overflow for CST != 0 && CST != -1. */
3129 (simplify
3130 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3131 (if (TREE_CODE (@2) != INTEGER_CST
3132 && single_use (@3)
3133 && !integer_zerop (@1) && !integer_minus_onep (@1))
3134 (mult (mult @0 @2) @1)))
3135
3136 /* True if we can easily extract the real and imaginary parts of a complex
3137 number. */
3138 (match compositional_complex
3139 (convert? (complex @0 @1)))
3140
3141 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3142 (simplify
3143 (complex (realpart @0) (imagpart @0))
3144 @0)
3145 (simplify
3146 (realpart (complex @0 @1))
3147 @0)
3148 (simplify
3149 (imagpart (complex @0 @1))
3150 @1)
3151
3152 /* Sometimes we only care about half of a complex expression. */
3153 (simplify
3154 (realpart (convert?:s (conj:s @0)))
3155 (convert (realpart @0)))
3156 (simplify
3157 (imagpart (convert?:s (conj:s @0)))
3158 (convert (negate (imagpart @0))))
3159 (for part (realpart imagpart)
3160 (for op (plus minus)
3161 (simplify
3162 (part (convert?:s@2 (op:s @0 @1)))
3163 (convert (op (part @0) (part @1))))))
3164 (simplify
3165 (realpart (convert?:s (CEXPI:s @0)))
3166 (convert (COS @0)))
3167 (simplify
3168 (imagpart (convert?:s (CEXPI:s @0)))
3169 (convert (SIN @0)))
3170
3171 /* conj(conj(x)) -> x */
3172 (simplify
3173 (conj (convert? (conj @0)))
3174 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3175 (convert @0)))
3176
3177 /* conj({x,y}) -> {x,-y} */
3178 (simplify
3179 (conj (convert?:s (complex:s @0 @1)))
3180 (with { tree itype = TREE_TYPE (type); }
3181 (complex (convert:itype @0) (negate (convert:itype @1)))))
3182
3183 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3184 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3185 (simplify
3186 (bswap (bswap @0))
3187 @0)
3188 (simplify
3189 (bswap (bit_not (bswap @0)))
3190 (bit_not @0))
3191 (for bitop (bit_xor bit_ior bit_and)
3192 (simplify
3193 (bswap (bitop:c (bswap @0) @1))
3194 (bitop @0 (bswap @1)))))
3195
3196
3197 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3198
3199 /* Simplify constant conditions.
3200 Only optimize constant conditions when the selected branch
3201 has the same type as the COND_EXPR. This avoids optimizing
3202 away "c ? x : throw", where the throw has a void type.
3203 Note that we cannot throw away the fold-const.c variant nor
3204 this one as we depend on doing this transform before possibly
3205 A ? B : B -> B triggers and the fold-const.c one can optimize
3206 0 ? A : B to B even if A has side-effects. Something
3207 genmatch cannot handle. */
3208 (simplify
3209 (cond INTEGER_CST@0 @1 @2)
3210 (if (integer_zerop (@0))
3211 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3212 @2)
3213 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3214 @1)))
3215 (simplify
3216 (vec_cond VECTOR_CST@0 @1 @2)
3217 (if (integer_all_onesp (@0))
3218 @1
3219 (if (integer_zerop (@0))
3220 @2)))
3221
3222 /* Sink unary operations to constant branches, but only if we do fold it to
3223 constants. */
3224 (for op (negate bit_not abs absu)
3225 (simplify
3226 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3227 (with
3228 {
3229 tree cst1, cst2;
3230 cst1 = const_unop (op, type, @1);
3231 if (cst1)
3232 cst2 = const_unop (op, type, @2);
3233 }
3234 (if (cst1 && cst2)
3235 (vec_cond @0 { cst1; } { cst2; })))))
3236
3237 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3238 be extended. */
3239 /* This pattern implements two kinds simplification:
3240
3241 Case 1)
3242 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3243 1) Conversions are type widening from smaller type.
3244 2) Const c1 equals to c2 after canonicalizing comparison.
3245 3) Comparison has tree code LT, LE, GT or GE.
3246 This specific pattern is needed when (cmp (convert x) c) may not
3247 be simplified by comparison patterns because of multiple uses of
3248 x. It also makes sense here because simplifying across multiple
3249 referred var is always benefitial for complicated cases.
3250
3251 Case 2)
3252 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3253 (for cmp (lt le gt ge eq)
3254 (simplify
3255 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3256 (with
3257 {
3258 tree from_type = TREE_TYPE (@1);
3259 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3260 enum tree_code code = ERROR_MARK;
3261
3262 if (INTEGRAL_TYPE_P (from_type)
3263 && int_fits_type_p (@2, from_type)
3264 && (types_match (c1_type, from_type)
3265 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3266 && (TYPE_UNSIGNED (from_type)
3267 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3268 && (types_match (c2_type, from_type)
3269 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3270 && (TYPE_UNSIGNED (from_type)
3271 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3272 {
3273 if (cmp != EQ_EXPR)
3274 {
3275 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3276 {
3277 /* X <= Y - 1 equals to X < Y. */
3278 if (cmp == LE_EXPR)
3279 code = LT_EXPR;
3280 /* X > Y - 1 equals to X >= Y. */
3281 if (cmp == GT_EXPR)
3282 code = GE_EXPR;
3283 }
3284 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3285 {
3286 /* X < Y + 1 equals to X <= Y. */
3287 if (cmp == LT_EXPR)
3288 code = LE_EXPR;
3289 /* X >= Y + 1 equals to X > Y. */
3290 if (cmp == GE_EXPR)
3291 code = GT_EXPR;
3292 }
3293 if (code != ERROR_MARK
3294 || wi::to_widest (@2) == wi::to_widest (@3))
3295 {
3296 if (cmp == LT_EXPR || cmp == LE_EXPR)
3297 code = MIN_EXPR;
3298 if (cmp == GT_EXPR || cmp == GE_EXPR)
3299 code = MAX_EXPR;
3300 }
3301 }
3302 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3303 else if (int_fits_type_p (@3, from_type))
3304 code = EQ_EXPR;
3305 }
3306 }
3307 (if (code == MAX_EXPR)
3308 (convert (max @1 (convert @2)))
3309 (if (code == MIN_EXPR)
3310 (convert (min @1 (convert @2)))
3311 (if (code == EQ_EXPR)
3312 (convert (cond (eq @1 (convert @3))
3313 (convert:from_type @3) (convert:from_type @2)))))))))
3314
3315 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3316
3317 1) OP is PLUS or MINUS.
3318 2) CMP is LT, LE, GT or GE.
3319 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3320
3321 This pattern also handles special cases like:
3322
3323 A) Operand x is a unsigned to signed type conversion and c1 is
3324 integer zero. In this case,
3325 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3326 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3327 B) Const c1 may not equal to (C3 op' C2). In this case we also
3328 check equality for (c1+1) and (c1-1) by adjusting comparison
3329 code.
3330
3331 TODO: Though signed type is handled by this pattern, it cannot be
3332 simplified at the moment because C standard requires additional
3333 type promotion. In order to match&simplify it here, the IR needs
3334 to be cleaned up by other optimizers, i.e, VRP. */
3335 (for op (plus minus)
3336 (for cmp (lt le gt ge)
3337 (simplify
3338 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3339 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3340 (if (types_match (from_type, to_type)
3341 /* Check if it is special case A). */
3342 || (TYPE_UNSIGNED (from_type)
3343 && !TYPE_UNSIGNED (to_type)
3344 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3345 && integer_zerop (@1)
3346 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3347 (with
3348 {
3349 wi::overflow_type overflow = wi::OVF_NONE;
3350 enum tree_code code, cmp_code = cmp;
3351 wide_int real_c1;
3352 wide_int c1 = wi::to_wide (@1);
3353 wide_int c2 = wi::to_wide (@2);
3354 wide_int c3 = wi::to_wide (@3);
3355 signop sgn = TYPE_SIGN (from_type);
3356
3357 /* Handle special case A), given x of unsigned type:
3358 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3359 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3360 if (!types_match (from_type, to_type))
3361 {
3362 if (cmp_code == LT_EXPR)
3363 cmp_code = GT_EXPR;
3364 if (cmp_code == GE_EXPR)
3365 cmp_code = LE_EXPR;
3366 c1 = wi::max_value (to_type);
3367 }
3368 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3369 compute (c3 op' c2) and check if it equals to c1 with op' being
3370 the inverted operator of op. Make sure overflow doesn't happen
3371 if it is undefined. */
3372 if (op == PLUS_EXPR)
3373 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3374 else
3375 real_c1 = wi::add (c3, c2, sgn, &overflow);
3376
3377 code = cmp_code;
3378 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3379 {
3380 /* Check if c1 equals to real_c1. Boundary condition is handled
3381 by adjusting comparison operation if necessary. */
3382 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3383 && !overflow)
3384 {
3385 /* X <= Y - 1 equals to X < Y. */
3386 if (cmp_code == LE_EXPR)
3387 code = LT_EXPR;
3388 /* X > Y - 1 equals to X >= Y. */
3389 if (cmp_code == GT_EXPR)
3390 code = GE_EXPR;
3391 }
3392 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3393 && !overflow)
3394 {
3395 /* X < Y + 1 equals to X <= Y. */
3396 if (cmp_code == LT_EXPR)
3397 code = LE_EXPR;
3398 /* X >= Y + 1 equals to X > Y. */
3399 if (cmp_code == GE_EXPR)
3400 code = GT_EXPR;
3401 }
3402 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3403 {
3404 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3405 code = MIN_EXPR;
3406 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3407 code = MAX_EXPR;
3408 }
3409 }
3410 }
3411 (if (code == MAX_EXPR)
3412 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3413 { wide_int_to_tree (from_type, c2); })
3414 (if (code == MIN_EXPR)
3415 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3416 { wide_int_to_tree (from_type, c2); })))))))))
3417
3418 (for cnd (cond vec_cond)
3419 /* A ? B : (A ? X : C) -> A ? B : C. */
3420 (simplify
3421 (cnd @0 (cnd @0 @1 @2) @3)
3422 (cnd @0 @1 @3))
3423 (simplify
3424 (cnd @0 @1 (cnd @0 @2 @3))
3425 (cnd @0 @1 @3))
3426 /* A ? B : (!A ? C : X) -> A ? B : C. */
3427 /* ??? This matches embedded conditions open-coded because genmatch
3428 would generate matching code for conditions in separate stmts only.
3429 The following is still important to merge then and else arm cases
3430 from if-conversion. */
3431 (simplify
3432 (cnd @0 @1 (cnd @2 @3 @4))
3433 (if (inverse_conditions_p (@0, @2))
3434 (cnd @0 @1 @3)))
3435 (simplify
3436 (cnd @0 (cnd @1 @2 @3) @4)
3437 (if (inverse_conditions_p (@0, @1))
3438 (cnd @0 @3 @4)))
3439
3440 /* A ? B : B -> B. */
3441 (simplify
3442 (cnd @0 @1 @1)
3443 @1)
3444
3445 /* !A ? B : C -> A ? C : B. */
3446 (simplify
3447 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3448 (cnd @0 @2 @1)))
3449
3450 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3451 return all -1 or all 0 results. */
3452 /* ??? We could instead convert all instances of the vec_cond to negate,
3453 but that isn't necessarily a win on its own. */
3454 (simplify
3455 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3456 (if (VECTOR_TYPE_P (type)
3457 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3458 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3459 && (TYPE_MODE (TREE_TYPE (type))
3460 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3461 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3462
3463 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3464 (simplify
3465 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3466 (if (VECTOR_TYPE_P (type)
3467 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3468 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3469 && (TYPE_MODE (TREE_TYPE (type))
3470 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3471 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3472
3473
3474 /* Simplifications of comparisons. */
3475
3476 /* See if we can reduce the magnitude of a constant involved in a
3477 comparison by changing the comparison code. This is a canonicalization
3478 formerly done by maybe_canonicalize_comparison_1. */
3479 (for cmp (le gt)
3480 acmp (lt ge)
3481 (simplify
3482 (cmp @0 uniform_integer_cst_p@1)
3483 (with { tree cst = uniform_integer_cst_p (@1); }
3484 (if (tree_int_cst_sgn (cst) == -1)
3485 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3486 wide_int_to_tree (TREE_TYPE (cst),
3487 wi::to_wide (cst)
3488 + 1)); })))))
3489 (for cmp (ge lt)
3490 acmp (gt le)
3491 (simplify
3492 (cmp @0 uniform_integer_cst_p@1)
3493 (with { tree cst = uniform_integer_cst_p (@1); }
3494 (if (tree_int_cst_sgn (cst) == 1)
3495 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3496 wide_int_to_tree (TREE_TYPE (cst),
3497 wi::to_wide (cst) - 1)); })))))
3498
3499 /* We can simplify a logical negation of a comparison to the
3500 inverted comparison. As we cannot compute an expression
3501 operator using invert_tree_comparison we have to simulate
3502 that with expression code iteration. */
3503 (for cmp (tcc_comparison)
3504 icmp (inverted_tcc_comparison)
3505 ncmp (inverted_tcc_comparison_with_nans)
3506 /* Ideally we'd like to combine the following two patterns
3507 and handle some more cases by using
3508 (logical_inverted_value (cmp @0 @1))
3509 here but for that genmatch would need to "inline" that.
3510 For now implement what forward_propagate_comparison did. */
3511 (simplify
3512 (bit_not (cmp @0 @1))
3513 (if (VECTOR_TYPE_P (type)
3514 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3515 /* Comparison inversion may be impossible for trapping math,
3516 invert_tree_comparison will tell us. But we can't use
3517 a computed operator in the replacement tree thus we have
3518 to play the trick below. */
3519 (with { enum tree_code ic = invert_tree_comparison
3520 (cmp, HONOR_NANS (@0)); }
3521 (if (ic == icmp)
3522 (icmp @0 @1)
3523 (if (ic == ncmp)
3524 (ncmp @0 @1))))))
3525 (simplify
3526 (bit_xor (cmp @0 @1) integer_truep)
3527 (with { enum tree_code ic = invert_tree_comparison
3528 (cmp, HONOR_NANS (@0)); }
3529 (if (ic == icmp)
3530 (icmp @0 @1)
3531 (if (ic == ncmp)
3532 (ncmp @0 @1))))))
3533
3534 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3535 ??? The transformation is valid for the other operators if overflow
3536 is undefined for the type, but performing it here badly interacts
3537 with the transformation in fold_cond_expr_with_comparison which
3538 attempts to synthetize ABS_EXPR. */
3539 (for cmp (eq ne)
3540 (for sub (minus pointer_diff)
3541 (simplify
3542 (cmp (sub@2 @0 @1) integer_zerop)
3543 (if (single_use (@2))
3544 (cmp @0 @1)))))
3545
3546 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3547 signed arithmetic case. That form is created by the compiler
3548 often enough for folding it to be of value. One example is in
3549 computing loop trip counts after Operator Strength Reduction. */
3550 (for cmp (simple_comparison)
3551 scmp (swapped_simple_comparison)
3552 (simplify
3553 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3554 /* Handle unfolded multiplication by zero. */
3555 (if (integer_zerop (@1))
3556 (cmp @1 @2)
3557 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3558 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3559 && single_use (@3))
3560 /* If @1 is negative we swap the sense of the comparison. */
3561 (if (tree_int_cst_sgn (@1) < 0)
3562 (scmp @0 @2)
3563 (cmp @0 @2))))))
3564
3565 /* Simplify comparison of something with itself. For IEEE
3566 floating-point, we can only do some of these simplifications. */
3567 (for cmp (eq ge le)
3568 (simplify
3569 (cmp @0 @0)
3570 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3571 || ! HONOR_NANS (@0))
3572 { constant_boolean_node (true, type); }
3573 (if (cmp != EQ_EXPR)
3574 (eq @0 @0)))))
3575 (for cmp (ne gt lt)
3576 (simplify
3577 (cmp @0 @0)
3578 (if (cmp != NE_EXPR
3579 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3580 || ! HONOR_NANS (@0))
3581 { constant_boolean_node (false, type); })))
3582 (for cmp (unle unge uneq)
3583 (simplify
3584 (cmp @0 @0)
3585 { constant_boolean_node (true, type); }))
3586 (for cmp (unlt ungt)
3587 (simplify
3588 (cmp @0 @0)
3589 (unordered @0 @0)))
3590 (simplify
3591 (ltgt @0 @0)
3592 (if (!flag_trapping_math)
3593 { constant_boolean_node (false, type); }))
3594
3595 /* Fold ~X op ~Y as Y op X. */
3596 (for cmp (simple_comparison)
3597 (simplify
3598 (cmp (bit_not@2 @0) (bit_not@3 @1))
3599 (if (single_use (@2) && single_use (@3))
3600 (cmp @1 @0))))
3601
3602 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3603 (for cmp (simple_comparison)
3604 scmp (swapped_simple_comparison)
3605 (simplify
3606 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3607 (if (single_use (@2)
3608 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3609 (scmp @0 (bit_not @1)))))
3610
3611 (for cmp (simple_comparison)
3612 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3613 (simplify
3614 (cmp (convert@2 @0) (convert? @1))
3615 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3616 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3617 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3618 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3619 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3620 (with
3621 {
3622 tree type1 = TREE_TYPE (@1);
3623 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3624 {
3625 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3626 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3627 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3628 type1 = float_type_node;
3629 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3630 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3631 type1 = double_type_node;
3632 }
3633 tree newtype
3634 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3635 ? TREE_TYPE (@0) : type1);
3636 }
3637 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3638 (cmp (convert:newtype @0) (convert:newtype @1))))))
3639
3640 (simplify
3641 (cmp @0 REAL_CST@1)
3642 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3643 (switch
3644 /* a CMP (-0) -> a CMP 0 */
3645 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3646 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3647 /* x != NaN is always true, other ops are always false. */
3648 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3649 && ! HONOR_SNANS (@1))
3650 { constant_boolean_node (cmp == NE_EXPR, type); })
3651 /* Fold comparisons against infinity. */
3652 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3653 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3654 (with
3655 {
3656 REAL_VALUE_TYPE max;
3657 enum tree_code code = cmp;
3658 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3659 if (neg)
3660 code = swap_tree_comparison (code);
3661 }
3662 (switch
3663 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3664 (if (code == GT_EXPR
3665 && !(HONOR_NANS (@0) && flag_trapping_math))
3666 { constant_boolean_node (false, type); })
3667 (if (code == LE_EXPR)
3668 /* x <= +Inf is always true, if we don't care about NaNs. */
3669 (if (! HONOR_NANS (@0))
3670 { constant_boolean_node (true, type); }
3671 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3672 an "invalid" exception. */
3673 (if (!flag_trapping_math)
3674 (eq @0 @0))))
3675 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3676 for == this introduces an exception for x a NaN. */
3677 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3678 || code == GE_EXPR)
3679 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3680 (if (neg)
3681 (lt @0 { build_real (TREE_TYPE (@0), max); })
3682 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3683 /* x < +Inf is always equal to x <= DBL_MAX. */
3684 (if (code == LT_EXPR)
3685 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3686 (if (neg)
3687 (ge @0 { build_real (TREE_TYPE (@0), max); })
3688 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3689 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3690 an exception for x a NaN so use an unordered comparison. */
3691 (if (code == NE_EXPR)
3692 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3693 (if (! HONOR_NANS (@0))
3694 (if (neg)
3695 (ge @0 { build_real (TREE_TYPE (@0), max); })
3696 (le @0 { build_real (TREE_TYPE (@0), max); }))
3697 (if (neg)
3698 (unge @0 { build_real (TREE_TYPE (@0), max); })
3699 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3700
3701 /* If this is a comparison of a real constant with a PLUS_EXPR
3702 or a MINUS_EXPR of a real constant, we can convert it into a
3703 comparison with a revised real constant as long as no overflow
3704 occurs when unsafe_math_optimizations are enabled. */
3705 (if (flag_unsafe_math_optimizations)
3706 (for op (plus minus)
3707 (simplify
3708 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3709 (with
3710 {
3711 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3712 TREE_TYPE (@1), @2, @1);
3713 }
3714 (if (tem && !TREE_OVERFLOW (tem))
3715 (cmp @0 { tem; }))))))
3716
3717 /* Likewise, we can simplify a comparison of a real constant with
3718 a MINUS_EXPR whose first operand is also a real constant, i.e.
3719 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3720 floating-point types only if -fassociative-math is set. */
3721 (if (flag_associative_math)
3722 (simplify
3723 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3724 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3725 (if (tem && !TREE_OVERFLOW (tem))
3726 (cmp { tem; } @1)))))
3727
3728 /* Fold comparisons against built-in math functions. */
3729 (if (flag_unsafe_math_optimizations
3730 && ! flag_errno_math)
3731 (for sq (SQRT)
3732 (simplify
3733 (cmp (sq @0) REAL_CST@1)
3734 (switch
3735 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3736 (switch
3737 /* sqrt(x) < y is always false, if y is negative. */
3738 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3739 { constant_boolean_node (false, type); })
3740 /* sqrt(x) > y is always true, if y is negative and we
3741 don't care about NaNs, i.e. negative values of x. */
3742 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3743 { constant_boolean_node (true, type); })
3744 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3745 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3746 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3747 (switch
3748 /* sqrt(x) < 0 is always false. */
3749 (if (cmp == LT_EXPR)
3750 { constant_boolean_node (false, type); })
3751 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3752 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3753 { constant_boolean_node (true, type); })
3754 /* sqrt(x) <= 0 -> x == 0. */
3755 (if (cmp == LE_EXPR)
3756 (eq @0 @1))
3757 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3758 == or !=. In the last case:
3759
3760 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3761
3762 if x is negative or NaN. Due to -funsafe-math-optimizations,
3763 the results for other x follow from natural arithmetic. */
3764 (cmp @0 @1)))
3765 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3766 (with
3767 {
3768 REAL_VALUE_TYPE c2;
3769 real_arithmetic (&c2, MULT_EXPR,
3770 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3771 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3772 }
3773 (if (REAL_VALUE_ISINF (c2))
3774 /* sqrt(x) > y is x == +Inf, when y is very large. */
3775 (if (HONOR_INFINITIES (@0))
3776 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3777 { constant_boolean_node (false, type); })
3778 /* sqrt(x) > c is the same as x > c*c. */
3779 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3780 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3781 (with
3782 {
3783 REAL_VALUE_TYPE c2;
3784 real_arithmetic (&c2, MULT_EXPR,
3785 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3786 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3787 }
3788 (if (REAL_VALUE_ISINF (c2))
3789 (switch
3790 /* sqrt(x) < y is always true, when y is a very large
3791 value and we don't care about NaNs or Infinities. */
3792 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3793 { constant_boolean_node (true, type); })
3794 /* sqrt(x) < y is x != +Inf when y is very large and we
3795 don't care about NaNs. */
3796 (if (! HONOR_NANS (@0))
3797 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3798 /* sqrt(x) < y is x >= 0 when y is very large and we
3799 don't care about Infinities. */
3800 (if (! HONOR_INFINITIES (@0))
3801 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3802 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3803 (if (GENERIC)
3804 (truth_andif
3805 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3806 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3807 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3808 (if (! HONOR_NANS (@0))
3809 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3810 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3811 (if (GENERIC)
3812 (truth_andif
3813 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3814 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3815 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3816 (simplify
3817 (cmp (sq @0) (sq @1))
3818 (if (! HONOR_NANS (@0))
3819 (cmp @0 @1))))))
3820
3821 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3822 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3823 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3824 (simplify
3825 (cmp (float@0 @1) (float @2))
3826 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3827 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3828 (with
3829 {
3830 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3831 tree type1 = TREE_TYPE (@1);
3832 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3833 tree type2 = TREE_TYPE (@2);
3834 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3835 }
3836 (if (fmt.can_represent_integral_type_p (type1)
3837 && fmt.can_represent_integral_type_p (type2))
3838 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3839 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3840 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3841 && type1_signed_p >= type2_signed_p)
3842 (icmp @1 (convert @2))
3843 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3844 && type1_signed_p <= type2_signed_p)
3845 (icmp (convert:type2 @1) @2)
3846 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3847 && type1_signed_p == type2_signed_p)
3848 (icmp @1 @2))))))))))
3849
3850 /* Optimize various special cases of (FTYPE) N CMP CST. */
3851 (for cmp (lt le eq ne ge gt)
3852 icmp (le le eq ne ge ge)
3853 (simplify
3854 (cmp (float @0) REAL_CST@1)
3855 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3856 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3857 (with
3858 {
3859 tree itype = TREE_TYPE (@0);
3860 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3861 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3862 /* Be careful to preserve any potential exceptions due to
3863 NaNs. qNaNs are ok in == or != context.
3864 TODO: relax under -fno-trapping-math or
3865 -fno-signaling-nans. */
3866 bool exception_p
3867 = real_isnan (cst) && (cst->signalling
3868 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3869 }
3870 /* TODO: allow non-fitting itype and SNaNs when
3871 -fno-trapping-math. */
3872 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3873 (with
3874 {
3875 signop isign = TYPE_SIGN (itype);
3876 REAL_VALUE_TYPE imin, imax;
3877 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3878 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3879
3880 REAL_VALUE_TYPE icst;
3881 if (cmp == GT_EXPR || cmp == GE_EXPR)
3882 real_ceil (&icst, fmt, cst);
3883 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3884 real_floor (&icst, fmt, cst);
3885 else
3886 real_trunc (&icst, fmt, cst);
3887
3888 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3889
3890 bool overflow_p = false;
3891 wide_int icst_val
3892 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3893 }
3894 (switch
3895 /* Optimize cases when CST is outside of ITYPE's range. */
3896 (if (real_compare (LT_EXPR, cst, &imin))
3897 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3898 type); })
3899 (if (real_compare (GT_EXPR, cst, &imax))
3900 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3901 type); })
3902 /* Remove cast if CST is an integer representable by ITYPE. */
3903 (if (cst_int_p)
3904 (cmp @0 { gcc_assert (!overflow_p);
3905 wide_int_to_tree (itype, icst_val); })
3906 )
3907 /* When CST is fractional, optimize
3908 (FTYPE) N == CST -> 0
3909 (FTYPE) N != CST -> 1. */
3910 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3911 { constant_boolean_node (cmp == NE_EXPR, type); })
3912 /* Otherwise replace with sensible integer constant. */
3913 (with
3914 {
3915 gcc_checking_assert (!overflow_p);
3916 }
3917 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3918
3919 /* Fold A /[ex] B CMP C to A CMP B * C. */
3920 (for cmp (eq ne)
3921 (simplify
3922 (cmp (exact_div @0 @1) INTEGER_CST@2)
3923 (if (!integer_zerop (@1))
3924 (if (wi::to_wide (@2) == 0)
3925 (cmp @0 @2)
3926 (if (TREE_CODE (@1) == INTEGER_CST)
3927 (with
3928 {
3929 wi::overflow_type ovf;
3930 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3931 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3932 }
3933 (if (ovf)
3934 { constant_boolean_node (cmp == NE_EXPR, type); }
3935 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3936 (for cmp (lt le gt ge)
3937 (simplify
3938 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3939 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3940 (with
3941 {
3942 wi::overflow_type ovf;
3943 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3944 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3945 }
3946 (if (ovf)
3947 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3948 TYPE_SIGN (TREE_TYPE (@2)))
3949 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3950 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3951
3952 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
3953
3954 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
3955 For large C (more than min/B+2^size), this is also true, with the
3956 multiplication computed modulo 2^size.
3957 For intermediate C, this just tests the sign of A. */
3958 (for cmp (lt le gt ge)
3959 cmp2 (ge ge lt lt)
3960 (simplify
3961 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
3962 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
3963 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
3964 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3965 (with
3966 {
3967 tree utype = TREE_TYPE (@2);
3968 wide_int denom = wi::to_wide (@1);
3969 wide_int right = wi::to_wide (@2);
3970 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
3971 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
3972 bool small = wi::leu_p (right, smax);
3973 bool large = wi::geu_p (right, smin);
3974 }
3975 (if (small || large)
3976 (cmp (convert:utype @0) (mult @2 (convert @1)))
3977 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
3978
3979 /* Unordered tests if either argument is a NaN. */
3980 (simplify
3981 (bit_ior (unordered @0 @0) (unordered @1 @1))
3982 (if (types_match (@0, @1))
3983 (unordered @0 @1)))
3984 (simplify
3985 (bit_and (ordered @0 @0) (ordered @1 @1))
3986 (if (types_match (@0, @1))
3987 (ordered @0 @1)))
3988 (simplify
3989 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3990 @2)
3991 (simplify
3992 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3993 @2)
3994
3995 /* Simple range test simplifications. */
3996 /* A < B || A >= B -> true. */
3997 (for test1 (lt le le le ne ge)
3998 test2 (ge gt ge ne eq ne)
3999 (simplify
4000 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4001 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4002 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4003 { constant_boolean_node (true, type); })))
4004 /* A < B && A >= B -> false. */
4005 (for test1 (lt lt lt le ne eq)
4006 test2 (ge gt eq gt eq gt)
4007 (simplify
4008 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4009 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4010 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4011 { constant_boolean_node (false, type); })))
4012
4013 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4014 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4015
4016 Note that comparisons
4017 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4018 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4019 will be canonicalized to above so there's no need to
4020 consider them here.
4021 */
4022
4023 (for cmp (le gt)
4024 eqcmp (eq ne)
4025 (simplify
4026 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4027 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4028 (with
4029 {
4030 tree ty = TREE_TYPE (@0);
4031 unsigned prec = TYPE_PRECISION (ty);
4032 wide_int mask = wi::to_wide (@2, prec);
4033 wide_int rhs = wi::to_wide (@3, prec);
4034 signop sgn = TYPE_SIGN (ty);
4035 }
4036 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4037 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4038 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4039 { build_zero_cst (ty); }))))))
4040
4041 /* -A CMP -B -> B CMP A. */
4042 (for cmp (tcc_comparison)
4043 scmp (swapped_tcc_comparison)
4044 (simplify
4045 (cmp (negate @0) (negate @1))
4046 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4047 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4048 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4049 (scmp @0 @1)))
4050 (simplify
4051 (cmp (negate @0) CONSTANT_CLASS_P@1)
4052 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4053 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4054 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4055 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4056 (if (tem && !TREE_OVERFLOW (tem))
4057 (scmp @0 { tem; }))))))
4058
4059 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4060 (for op (eq ne)
4061 (simplify
4062 (op (abs @0) zerop@1)
4063 (op @0 @1)))
4064
4065 /* From fold_sign_changed_comparison and fold_widened_comparison.
4066 FIXME: the lack of symmetry is disturbing. */
4067 (for cmp (simple_comparison)
4068 (simplify
4069 (cmp (convert@0 @00) (convert?@1 @10))
4070 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4071 /* Disable this optimization if we're casting a function pointer
4072 type on targets that require function pointer canonicalization. */
4073 && !(targetm.have_canonicalize_funcptr_for_compare ()
4074 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4075 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4076 || (POINTER_TYPE_P (TREE_TYPE (@10))
4077 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4078 && single_use (@0))
4079 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4080 && (TREE_CODE (@10) == INTEGER_CST
4081 || @1 != @10)
4082 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4083 || cmp == NE_EXPR
4084 || cmp == EQ_EXPR)
4085 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4086 /* ??? The special-casing of INTEGER_CST conversion was in the original
4087 code and here to avoid a spurious overflow flag on the resulting
4088 constant which fold_convert produces. */
4089 (if (TREE_CODE (@1) == INTEGER_CST)
4090 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4091 TREE_OVERFLOW (@1)); })
4092 (cmp @00 (convert @1)))
4093
4094 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4095 /* If possible, express the comparison in the shorter mode. */
4096 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4097 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4098 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4099 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4100 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4101 || ((TYPE_PRECISION (TREE_TYPE (@00))
4102 >= TYPE_PRECISION (TREE_TYPE (@10)))
4103 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4104 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4105 || (TREE_CODE (@10) == INTEGER_CST
4106 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4107 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4108 (cmp @00 (convert @10))
4109 (if (TREE_CODE (@10) == INTEGER_CST
4110 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4111 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4112 (with
4113 {
4114 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4115 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4116 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4117 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4118 }
4119 (if (above || below)
4120 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4121 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4122 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4123 { constant_boolean_node (above ? true : false, type); }
4124 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4125 { constant_boolean_node (above ? false : true, type); }))))))))))))
4126
4127 (for cmp (eq ne)
4128 /* A local variable can never be pointed to by
4129 the default SSA name of an incoming parameter.
4130 SSA names are canonicalized to 2nd place. */
4131 (simplify
4132 (cmp addr@0 SSA_NAME@1)
4133 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4134 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
4135 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
4136 (if (TREE_CODE (base) == VAR_DECL
4137 && auto_var_in_fn_p (base, current_function_decl))
4138 (if (cmp == NE_EXPR)
4139 { constant_boolean_node (true, type); }
4140 { constant_boolean_node (false, type); }))))))
4141
4142 /* Equality compare simplifications from fold_binary */
4143 (for cmp (eq ne)
4144
4145 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4146 Similarly for NE_EXPR. */
4147 (simplify
4148 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4149 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4150 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4151 { constant_boolean_node (cmp == NE_EXPR, type); }))
4152
4153 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4154 (simplify
4155 (cmp (bit_xor @0 @1) integer_zerop)
4156 (cmp @0 @1))
4157
4158 /* (X ^ Y) == Y becomes X == 0.
4159 Likewise (X ^ Y) == X becomes Y == 0. */
4160 (simplify
4161 (cmp:c (bit_xor:c @0 @1) @0)
4162 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4163
4164 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4165 (simplify
4166 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4167 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4168 (cmp @0 (bit_xor @1 (convert @2)))))
4169
4170 (simplify
4171 (cmp (convert? addr@0) integer_zerop)
4172 (if (tree_single_nonzero_warnv_p (@0, NULL))
4173 { constant_boolean_node (cmp == NE_EXPR, type); })))
4174
4175 /* If we have (A & C) == C where C is a power of 2, convert this into
4176 (A & C) != 0. Similarly for NE_EXPR. */
4177 (for cmp (eq ne)
4178 icmp (ne eq)
4179 (simplify
4180 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4181 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4182
4183 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4184 convert this into a shift followed by ANDing with D. */
4185 (simplify
4186 (cond
4187 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4188 INTEGER_CST@2 integer_zerop)
4189 (if (integer_pow2p (@2))
4190 (with {
4191 int shift = (wi::exact_log2 (wi::to_wide (@2))
4192 - wi::exact_log2 (wi::to_wide (@1)));
4193 }
4194 (if (shift > 0)
4195 (bit_and
4196 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4197 (bit_and
4198 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4199 @2)))))
4200
4201 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4202 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4203 (for cmp (eq ne)
4204 ncmp (ge lt)
4205 (simplify
4206 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4207 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4208 && type_has_mode_precision_p (TREE_TYPE (@0))
4209 && element_precision (@2) >= element_precision (@0)
4210 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4211 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4212 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4213
4214 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4215 this into a right shift or sign extension followed by ANDing with C. */
4216 (simplify
4217 (cond
4218 (lt @0 integer_zerop)
4219 INTEGER_CST@1 integer_zerop)
4220 (if (integer_pow2p (@1)
4221 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4222 (with {
4223 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4224 }
4225 (if (shift >= 0)
4226 (bit_and
4227 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4228 @1)
4229 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4230 sign extension followed by AND with C will achieve the effect. */
4231 (bit_and (convert @0) @1)))))
4232
4233 /* When the addresses are not directly of decls compare base and offset.
4234 This implements some remaining parts of fold_comparison address
4235 comparisons but still no complete part of it. Still it is good
4236 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4237 (for cmp (simple_comparison)
4238 (simplify
4239 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4240 (with
4241 {
4242 poly_int64 off0, off1;
4243 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4244 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4245 if (base0 && TREE_CODE (base0) == MEM_REF)
4246 {
4247 off0 += mem_ref_offset (base0).force_shwi ();
4248 base0 = TREE_OPERAND (base0, 0);
4249 }
4250 if (base1 && TREE_CODE (base1) == MEM_REF)
4251 {
4252 off1 += mem_ref_offset (base1).force_shwi ();
4253 base1 = TREE_OPERAND (base1, 0);
4254 }
4255 }
4256 (if (base0 && base1)
4257 (with
4258 {
4259 int equal = 2;
4260 /* Punt in GENERIC on variables with value expressions;
4261 the value expressions might point to fields/elements
4262 of other vars etc. */
4263 if (GENERIC
4264 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4265 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4266 ;
4267 else if (decl_in_symtab_p (base0)
4268 && decl_in_symtab_p (base1))
4269 equal = symtab_node::get_create (base0)
4270 ->equal_address_to (symtab_node::get_create (base1));
4271 else if ((DECL_P (base0)
4272 || TREE_CODE (base0) == SSA_NAME
4273 || TREE_CODE (base0) == STRING_CST)
4274 && (DECL_P (base1)
4275 || TREE_CODE (base1) == SSA_NAME
4276 || TREE_CODE (base1) == STRING_CST))
4277 equal = (base0 == base1);
4278 if (equal == 0)
4279 {
4280 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4281 off0.is_constant (&ioff0);
4282 off1.is_constant (&ioff1);
4283 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4284 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4285 || (TREE_CODE (base0) == STRING_CST
4286 && TREE_CODE (base1) == STRING_CST
4287 && ioff0 >= 0 && ioff1 >= 0
4288 && ioff0 < TREE_STRING_LENGTH (base0)
4289 && ioff1 < TREE_STRING_LENGTH (base1)
4290 /* This is a too conservative test that the STRING_CSTs
4291 will not end up being string-merged. */
4292 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4293 TREE_STRING_POINTER (base1) + ioff1,
4294 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4295 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4296 ;
4297 else if (!DECL_P (base0) || !DECL_P (base1))
4298 equal = 2;
4299 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4300 equal = 2;
4301 /* If this is a pointer comparison, ignore for now even
4302 valid equalities where one pointer is the offset zero
4303 of one object and the other to one past end of another one. */
4304 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4305 ;
4306 /* Assume that automatic variables can't be adjacent to global
4307 variables. */
4308 else if (is_global_var (base0) != is_global_var (base1))
4309 ;
4310 else
4311 {
4312 tree sz0 = DECL_SIZE_UNIT (base0);
4313 tree sz1 = DECL_SIZE_UNIT (base1);
4314 /* If sizes are unknown, e.g. VLA or not representable,
4315 punt. */
4316 if (!tree_fits_poly_int64_p (sz0)
4317 || !tree_fits_poly_int64_p (sz1))
4318 equal = 2;
4319 else
4320 {
4321 poly_int64 size0 = tree_to_poly_int64 (sz0);
4322 poly_int64 size1 = tree_to_poly_int64 (sz1);
4323 /* If one offset is pointing (or could be) to the beginning
4324 of one object and the other is pointing to one past the
4325 last byte of the other object, punt. */
4326 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4327 equal = 2;
4328 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4329 equal = 2;
4330 /* If both offsets are the same, there are some cases
4331 we know that are ok. Either if we know they aren't
4332 zero, or if we know both sizes are no zero. */
4333 if (equal == 2
4334 && known_eq (off0, off1)
4335 && (known_ne (off0, 0)
4336 || (known_ne (size0, 0) && known_ne (size1, 0))))
4337 equal = 0;
4338 }
4339 }
4340 }
4341 }
4342 (if (equal == 1
4343 && (cmp == EQ_EXPR || cmp == NE_EXPR
4344 /* If the offsets are equal we can ignore overflow. */
4345 || known_eq (off0, off1)
4346 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4347 /* Or if we compare using pointers to decls or strings. */
4348 || (POINTER_TYPE_P (TREE_TYPE (@2))
4349 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4350 (switch
4351 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4352 { constant_boolean_node (known_eq (off0, off1), type); })
4353 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4354 { constant_boolean_node (known_ne (off0, off1), type); })
4355 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4356 { constant_boolean_node (known_lt (off0, off1), type); })
4357 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4358 { constant_boolean_node (known_le (off0, off1), type); })
4359 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4360 { constant_boolean_node (known_ge (off0, off1), type); })
4361 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4362 { constant_boolean_node (known_gt (off0, off1), type); }))
4363 (if (equal == 0)
4364 (switch
4365 (if (cmp == EQ_EXPR)
4366 { constant_boolean_node (false, type); })
4367 (if (cmp == NE_EXPR)
4368 { constant_boolean_node (true, type); })))))))))
4369
4370 /* Simplify pointer equality compares using PTA. */
4371 (for neeq (ne eq)
4372 (simplify
4373 (neeq @0 @1)
4374 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4375 && ptrs_compare_unequal (@0, @1))
4376 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4377
4378 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4379 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4380 Disable the transform if either operand is pointer to function.
4381 This broke pr22051-2.c for arm where function pointer
4382 canonicalizaion is not wanted. */
4383
4384 (for cmp (ne eq)
4385 (simplify
4386 (cmp (convert @0) INTEGER_CST@1)
4387 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4388 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4389 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4390 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4391 && POINTER_TYPE_P (TREE_TYPE (@1))
4392 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4393 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4394 (cmp @0 (convert @1)))))
4395
4396 /* Non-equality compare simplifications from fold_binary */
4397 (for cmp (lt gt le ge)
4398 /* Comparisons with the highest or lowest possible integer of
4399 the specified precision will have known values. */
4400 (simplify
4401 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4402 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4403 || POINTER_TYPE_P (TREE_TYPE (@1))
4404 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4405 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4406 (with
4407 {
4408 tree cst = uniform_integer_cst_p (@1);
4409 tree arg1_type = TREE_TYPE (cst);
4410 unsigned int prec = TYPE_PRECISION (arg1_type);
4411 wide_int max = wi::max_value (arg1_type);
4412 wide_int signed_max = wi::max_value (prec, SIGNED);
4413 wide_int min = wi::min_value (arg1_type);
4414 }
4415 (switch
4416 (if (wi::to_wide (cst) == max)
4417 (switch
4418 (if (cmp == GT_EXPR)
4419 { constant_boolean_node (false, type); })
4420 (if (cmp == GE_EXPR)
4421 (eq @2 @1))
4422 (if (cmp == LE_EXPR)
4423 { constant_boolean_node (true, type); })
4424 (if (cmp == LT_EXPR)
4425 (ne @2 @1))))
4426 (if (wi::to_wide (cst) == min)
4427 (switch
4428 (if (cmp == LT_EXPR)
4429 { constant_boolean_node (false, type); })
4430 (if (cmp == LE_EXPR)
4431 (eq @2 @1))
4432 (if (cmp == GE_EXPR)
4433 { constant_boolean_node (true, type); })
4434 (if (cmp == GT_EXPR)
4435 (ne @2 @1))))
4436 (if (wi::to_wide (cst) == max - 1)
4437 (switch
4438 (if (cmp == GT_EXPR)
4439 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4440 wide_int_to_tree (TREE_TYPE (cst),
4441 wi::to_wide (cst)
4442 + 1)); }))
4443 (if (cmp == LE_EXPR)
4444 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4445 wide_int_to_tree (TREE_TYPE (cst),
4446 wi::to_wide (cst)
4447 + 1)); }))))
4448 (if (wi::to_wide (cst) == min + 1)
4449 (switch
4450 (if (cmp == GE_EXPR)
4451 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4452 wide_int_to_tree (TREE_TYPE (cst),
4453 wi::to_wide (cst)
4454 - 1)); }))
4455 (if (cmp == LT_EXPR)
4456 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4457 wide_int_to_tree (TREE_TYPE (cst),
4458 wi::to_wide (cst)
4459 - 1)); }))))
4460 (if (wi::to_wide (cst) == signed_max
4461 && TYPE_UNSIGNED (arg1_type)
4462 /* We will flip the signedness of the comparison operator
4463 associated with the mode of @1, so the sign bit is
4464 specified by this mode. Check that @1 is the signed
4465 max associated with this sign bit. */
4466 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4467 /* signed_type does not work on pointer types. */
4468 && INTEGRAL_TYPE_P (arg1_type))
4469 /* The following case also applies to X < signed_max+1
4470 and X >= signed_max+1 because previous transformations. */
4471 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4472 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4473 (switch
4474 (if (cst == @1 && cmp == LE_EXPR)
4475 (ge (convert:st @0) { build_zero_cst (st); }))
4476 (if (cst == @1 && cmp == GT_EXPR)
4477 (lt (convert:st @0) { build_zero_cst (st); }))
4478 (if (cmp == LE_EXPR)
4479 (ge (view_convert:st @0) { build_zero_cst (st); }))
4480 (if (cmp == GT_EXPR)
4481 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4482
4483 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4484 /* If the second operand is NaN, the result is constant. */
4485 (simplify
4486 (cmp @0 REAL_CST@1)
4487 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4488 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4489 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4490 ? false : true, type); })))
4491
4492 /* bool_var != 0 becomes bool_var. */
4493 (simplify
4494 (ne @0 integer_zerop)
4495 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4496 && types_match (type, TREE_TYPE (@0)))
4497 (non_lvalue @0)))
4498 /* bool_var == 1 becomes bool_var. */
4499 (simplify
4500 (eq @0 integer_onep)
4501 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4502 && types_match (type, TREE_TYPE (@0)))
4503 (non_lvalue @0)))
4504 /* Do not handle
4505 bool_var == 0 becomes !bool_var or
4506 bool_var != 1 becomes !bool_var
4507 here because that only is good in assignment context as long
4508 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4509 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4510 clearly less optimal and which we'll transform again in forwprop. */
4511
4512 /* When one argument is a constant, overflow detection can be simplified.
4513 Currently restricted to single use so as not to interfere too much with
4514 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4515 A + CST CMP A -> A CMP' CST' */
4516 (for cmp (lt le ge gt)
4517 out (gt gt le le)
4518 (simplify
4519 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4520 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4521 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4522 && wi::to_wide (@1) != 0
4523 && single_use (@2))
4524 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4525 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4526 wi::max_value (prec, UNSIGNED)
4527 - wi::to_wide (@1)); })))))
4528
4529 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4530 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4531 expects the long form, so we restrict the transformation for now. */
4532 (for cmp (gt le)
4533 (simplify
4534 (cmp:c (minus@2 @0 @1) @0)
4535 (if (single_use (@2)
4536 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4537 && TYPE_UNSIGNED (TREE_TYPE (@0))
4538 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4539 (cmp @1 @0))))
4540
4541 /* Testing for overflow is unnecessary if we already know the result. */
4542 /* A - B > A */
4543 (for cmp (gt le)
4544 out (ne eq)
4545 (simplify
4546 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4547 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4548 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4549 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4550 /* A + B < A */
4551 (for cmp (lt ge)
4552 out (ne eq)
4553 (simplify
4554 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4555 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4556 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4557 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4558
4559 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4560 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4561 (for cmp (lt ge)
4562 out (ne eq)
4563 (simplify
4564 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4565 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4566 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4567 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4568
4569 /* Simplification of math builtins. These rules must all be optimizations
4570 as well as IL simplifications. If there is a possibility that the new
4571 form could be a pessimization, the rule should go in the canonicalization
4572 section that follows this one.
4573
4574 Rules can generally go in this section if they satisfy one of
4575 the following:
4576
4577 - the rule describes an identity
4578
4579 - the rule replaces calls with something as simple as addition or
4580 multiplication
4581
4582 - the rule contains unary calls only and simplifies the surrounding
4583 arithmetic. (The idea here is to exclude non-unary calls in which
4584 one operand is constant and in which the call is known to be cheap
4585 when the operand has that value.) */
4586
4587 (if (flag_unsafe_math_optimizations)
4588 /* Simplify sqrt(x) * sqrt(x) -> x. */
4589 (simplify
4590 (mult (SQRT_ALL@1 @0) @1)
4591 (if (!HONOR_SNANS (type))
4592 @0))
4593
4594 (for op (plus minus)
4595 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4596 (simplify
4597 (op (rdiv @0 @1)
4598 (rdiv @2 @1))
4599 (rdiv (op @0 @2) @1)))
4600
4601 (for cmp (lt le gt ge)
4602 neg_cmp (gt ge lt le)
4603 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4604 (simplify
4605 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4606 (with
4607 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4608 (if (tem
4609 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4610 || (real_zerop (tem) && !real_zerop (@1))))
4611 (switch
4612 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4613 (cmp @0 { tem; }))
4614 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4615 (neg_cmp @0 { tem; })))))))
4616
4617 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4618 (for root (SQRT CBRT)
4619 (simplify
4620 (mult (root:s @0) (root:s @1))
4621 (root (mult @0 @1))))
4622
4623 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4624 (for exps (EXP EXP2 EXP10 POW10)
4625 (simplify
4626 (mult (exps:s @0) (exps:s @1))
4627 (exps (plus @0 @1))))
4628
4629 /* Simplify a/root(b/c) into a*root(c/b). */
4630 (for root (SQRT CBRT)
4631 (simplify
4632 (rdiv @0 (root:s (rdiv:s @1 @2)))
4633 (mult @0 (root (rdiv @2 @1)))))
4634
4635 /* Simplify x/expN(y) into x*expN(-y). */
4636 (for exps (EXP EXP2 EXP10 POW10)
4637 (simplify
4638 (rdiv @0 (exps:s @1))
4639 (mult @0 (exps (negate @1)))))
4640
4641 (for logs (LOG LOG2 LOG10 LOG10)
4642 exps (EXP EXP2 EXP10 POW10)
4643 /* logN(expN(x)) -> x. */
4644 (simplify
4645 (logs (exps @0))
4646 @0)
4647 /* expN(logN(x)) -> x. */
4648 (simplify
4649 (exps (logs @0))
4650 @0))
4651
4652 /* Optimize logN(func()) for various exponential functions. We
4653 want to determine the value "x" and the power "exponent" in
4654 order to transform logN(x**exponent) into exponent*logN(x). */
4655 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4656 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4657 (simplify
4658 (logs (exps @0))
4659 (if (SCALAR_FLOAT_TYPE_P (type))
4660 (with {
4661 tree x;
4662 switch (exps)
4663 {
4664 CASE_CFN_EXP:
4665 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4666 x = build_real_truncate (type, dconst_e ());
4667 break;
4668 CASE_CFN_EXP2:
4669 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4670 x = build_real (type, dconst2);
4671 break;
4672 CASE_CFN_EXP10:
4673 CASE_CFN_POW10:
4674 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4675 {
4676 REAL_VALUE_TYPE dconst10;
4677 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4678 x = build_real (type, dconst10);
4679 }
4680 break;
4681 default:
4682 gcc_unreachable ();
4683 }
4684 }
4685 (mult (logs { x; }) @0)))))
4686
4687 (for logs (LOG LOG
4688 LOG2 LOG2
4689 LOG10 LOG10)
4690 exps (SQRT CBRT)
4691 (simplify
4692 (logs (exps @0))
4693 (if (SCALAR_FLOAT_TYPE_P (type))
4694 (with {
4695 tree x;
4696 switch (exps)
4697 {
4698 CASE_CFN_SQRT:
4699 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4700 x = build_real (type, dconsthalf);
4701 break;
4702 CASE_CFN_CBRT:
4703 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4704 x = build_real_truncate (type, dconst_third ());
4705 break;
4706 default:
4707 gcc_unreachable ();
4708 }
4709 }
4710 (mult { x; } (logs @0))))))
4711
4712 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4713 (for logs (LOG LOG2 LOG10)
4714 pows (POW)
4715 (simplify
4716 (logs (pows @0 @1))
4717 (mult @1 (logs @0))))
4718
4719 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4720 or if C is a positive power of 2,
4721 pow(C,x) -> exp2(log2(C)*x). */
4722 #if GIMPLE
4723 (for pows (POW)
4724 exps (EXP)
4725 logs (LOG)
4726 exp2s (EXP2)
4727 log2s (LOG2)
4728 (simplify
4729 (pows REAL_CST@0 @1)
4730 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4731 && real_isfinite (TREE_REAL_CST_PTR (@0))
4732 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4733 the use_exp2 case until after vectorization. It seems actually
4734 beneficial for all constants to postpone this until later,
4735 because exp(log(C)*x), while faster, will have worse precision
4736 and if x folds into a constant too, that is unnecessary
4737 pessimization. */
4738 && canonicalize_math_after_vectorization_p ())
4739 (with {
4740 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4741 bool use_exp2 = false;
4742 if (targetm.libc_has_function (function_c99_misc)
4743 && value->cl == rvc_normal)
4744 {
4745 REAL_VALUE_TYPE frac_rvt = *value;
4746 SET_REAL_EXP (&frac_rvt, 1);
4747 if (real_equal (&frac_rvt, &dconst1))
4748 use_exp2 = true;
4749 }
4750 }
4751 (if (!use_exp2)
4752 (if (optimize_pow_to_exp (@0, @1))
4753 (exps (mult (logs @0) @1)))
4754 (exp2s (mult (log2s @0) @1)))))))
4755 #endif
4756
4757 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4758 (for pows (POW)
4759 exps (EXP EXP2 EXP10 POW10)
4760 logs (LOG LOG2 LOG10 LOG10)
4761 (simplify
4762 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4763 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4764 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4765 (exps (plus (mult (logs @0) @1) @2)))))
4766
4767 (for sqrts (SQRT)
4768 cbrts (CBRT)
4769 pows (POW)
4770 exps (EXP EXP2 EXP10 POW10)
4771 /* sqrt(expN(x)) -> expN(x*0.5). */
4772 (simplify
4773 (sqrts (exps @0))
4774 (exps (mult @0 { build_real (type, dconsthalf); })))
4775 /* cbrt(expN(x)) -> expN(x/3). */
4776 (simplify
4777 (cbrts (exps @0))
4778 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4779 /* pow(expN(x), y) -> expN(x*y). */
4780 (simplify
4781 (pows (exps @0) @1)
4782 (exps (mult @0 @1))))
4783
4784 /* tan(atan(x)) -> x. */
4785 (for tans (TAN)
4786 atans (ATAN)
4787 (simplify
4788 (tans (atans @0))
4789 @0)))
4790
4791 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4792 (for sins (SIN)
4793 atans (ATAN)
4794 sqrts (SQRT)
4795 copysigns (COPYSIGN)
4796 (simplify
4797 (sins (atans:s @0))
4798 (with
4799 {
4800 REAL_VALUE_TYPE r_cst;
4801 build_sinatan_real (&r_cst, type);
4802 tree t_cst = build_real (type, r_cst);
4803 tree t_one = build_one_cst (type);
4804 }
4805 (if (SCALAR_FLOAT_TYPE_P (type))
4806 (cond (lt (abs @0) { t_cst; })
4807 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4808 (copysigns { t_one; } @0))))))
4809
4810 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4811 (for coss (COS)
4812 atans (ATAN)
4813 sqrts (SQRT)
4814 copysigns (COPYSIGN)
4815 (simplify
4816 (coss (atans:s @0))
4817 (with
4818 {
4819 REAL_VALUE_TYPE r_cst;
4820 build_sinatan_real (&r_cst, type);
4821 tree t_cst = build_real (type, r_cst);
4822 tree t_one = build_one_cst (type);
4823 tree t_zero = build_zero_cst (type);
4824 }
4825 (if (SCALAR_FLOAT_TYPE_P (type))
4826 (cond (lt (abs @0) { t_cst; })
4827 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4828 (copysigns { t_zero; } @0))))))
4829
4830 (if (!flag_errno_math)
4831 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4832 (for sinhs (SINH)
4833 atanhs (ATANH)
4834 sqrts (SQRT)
4835 (simplify
4836 (sinhs (atanhs:s @0))
4837 (with { tree t_one = build_one_cst (type); }
4838 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4839
4840 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4841 (for coshs (COSH)
4842 atanhs (ATANH)
4843 sqrts (SQRT)
4844 (simplify
4845 (coshs (atanhs:s @0))
4846 (with { tree t_one = build_one_cst (type); }
4847 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4848
4849 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4850 (simplify
4851 (CABS (complex:C @0 real_zerop@1))
4852 (abs @0))
4853
4854 /* trunc(trunc(x)) -> trunc(x), etc. */
4855 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4856 (simplify
4857 (fns (fns @0))
4858 (fns @0)))
4859 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4860 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4861 (simplify
4862 (fns integer_valued_real_p@0)
4863 @0))
4864
4865 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4866 (simplify
4867 (HYPOT:c @0 real_zerop@1)
4868 (abs @0))
4869
4870 /* pow(1,x) -> 1. */
4871 (simplify
4872 (POW real_onep@0 @1)
4873 @0)
4874
4875 (simplify
4876 /* copysign(x,x) -> x. */
4877 (COPYSIGN_ALL @0 @0)
4878 @0)
4879
4880 (simplify
4881 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4882 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4883 (abs @0))
4884
4885 (for scale (LDEXP SCALBN SCALBLN)
4886 /* ldexp(0, x) -> 0. */
4887 (simplify
4888 (scale real_zerop@0 @1)
4889 @0)
4890 /* ldexp(x, 0) -> x. */
4891 (simplify
4892 (scale @0 integer_zerop@1)
4893 @0)
4894 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4895 (simplify
4896 (scale REAL_CST@0 @1)
4897 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4898 @0)))
4899
4900 /* Canonicalization of sequences of math builtins. These rules represent
4901 IL simplifications but are not necessarily optimizations.
4902
4903 The sincos pass is responsible for picking "optimal" implementations
4904 of math builtins, which may be more complicated and can sometimes go
4905 the other way, e.g. converting pow into a sequence of sqrts.
4906 We only want to do these canonicalizations before the pass has run. */
4907
4908 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4909 /* Simplify tan(x) * cos(x) -> sin(x). */
4910 (simplify
4911 (mult:c (TAN:s @0) (COS:s @0))
4912 (SIN @0))
4913
4914 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4915 (simplify
4916 (mult:c @0 (POW:s @0 REAL_CST@1))
4917 (if (!TREE_OVERFLOW (@1))
4918 (POW @0 (plus @1 { build_one_cst (type); }))))
4919
4920 /* Simplify sin(x) / cos(x) -> tan(x). */
4921 (simplify
4922 (rdiv (SIN:s @0) (COS:s @0))
4923 (TAN @0))
4924
4925 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4926 (simplify
4927 (rdiv (COS:s @0) (SIN:s @0))
4928 (rdiv { build_one_cst (type); } (TAN @0)))
4929
4930 /* Simplify sin(x) / tan(x) -> cos(x). */
4931 (simplify
4932 (rdiv (SIN:s @0) (TAN:s @0))
4933 (if (! HONOR_NANS (@0)
4934 && ! HONOR_INFINITIES (@0))
4935 (COS @0)))
4936
4937 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4938 (simplify
4939 (rdiv (TAN:s @0) (SIN:s @0))
4940 (if (! HONOR_NANS (@0)
4941 && ! HONOR_INFINITIES (@0))
4942 (rdiv { build_one_cst (type); } (COS @0))))
4943
4944 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4945 (simplify
4946 (mult (POW:s @0 @1) (POW:s @0 @2))
4947 (POW @0 (plus @1 @2)))
4948
4949 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4950 (simplify
4951 (mult (POW:s @0 @1) (POW:s @2 @1))
4952 (POW (mult @0 @2) @1))
4953
4954 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4955 (simplify
4956 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4957 (POWI (mult @0 @2) @1))
4958
4959 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4960 (simplify
4961 (rdiv (POW:s @0 REAL_CST@1) @0)
4962 (if (!TREE_OVERFLOW (@1))
4963 (POW @0 (minus @1 { build_one_cst (type); }))))
4964
4965 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4966 (simplify
4967 (rdiv @0 (POW:s @1 @2))
4968 (mult @0 (POW @1 (negate @2))))
4969
4970 (for sqrts (SQRT)
4971 cbrts (CBRT)
4972 pows (POW)
4973 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4974 (simplify
4975 (sqrts (sqrts @0))
4976 (pows @0 { build_real (type, dconst_quarter ()); }))
4977 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4978 (simplify
4979 (sqrts (cbrts @0))
4980 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4981 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4982 (simplify
4983 (cbrts (sqrts @0))
4984 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4985 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4986 (simplify
4987 (cbrts (cbrts tree_expr_nonnegative_p@0))
4988 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4989 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4990 (simplify
4991 (sqrts (pows @0 @1))
4992 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4993 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4994 (simplify
4995 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4996 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4997 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4998 (simplify
4999 (pows (sqrts @0) @1)
5000 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5001 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5002 (simplify
5003 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5004 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5005 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5006 (simplify
5007 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5008 (pows @0 (mult @1 @2))))
5009
5010 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5011 (simplify
5012 (CABS (complex @0 @0))
5013 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5014
5015 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5016 (simplify
5017 (HYPOT @0 @0)
5018 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5019
5020 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5021 (for cexps (CEXP)
5022 exps (EXP)
5023 cexpis (CEXPI)
5024 (simplify
5025 (cexps compositional_complex@0)
5026 (if (targetm.libc_has_function (function_c99_math_complex))
5027 (complex
5028 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5029 (mult @1 (imagpart @2)))))))
5030
5031 (if (canonicalize_math_p ())
5032 /* floor(x) -> trunc(x) if x is nonnegative. */
5033 (for floors (FLOOR_ALL)
5034 truncs (TRUNC_ALL)
5035 (simplify
5036 (floors tree_expr_nonnegative_p@0)
5037 (truncs @0))))
5038
5039 (match double_value_p
5040 @0
5041 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5042 (for froms (BUILT_IN_TRUNCL
5043 BUILT_IN_FLOORL
5044 BUILT_IN_CEILL
5045 BUILT_IN_ROUNDL
5046 BUILT_IN_NEARBYINTL
5047 BUILT_IN_RINTL)
5048 tos (BUILT_IN_TRUNC
5049 BUILT_IN_FLOOR
5050 BUILT_IN_CEIL
5051 BUILT_IN_ROUND
5052 BUILT_IN_NEARBYINT
5053 BUILT_IN_RINT)
5054 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5055 (if (optimize && canonicalize_math_p ())
5056 (simplify
5057 (froms (convert double_value_p@0))
5058 (convert (tos @0)))))
5059
5060 (match float_value_p
5061 @0
5062 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5063 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5064 BUILT_IN_FLOORL BUILT_IN_FLOOR
5065 BUILT_IN_CEILL BUILT_IN_CEIL
5066 BUILT_IN_ROUNDL BUILT_IN_ROUND
5067 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5068 BUILT_IN_RINTL BUILT_IN_RINT)
5069 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5070 BUILT_IN_FLOORF BUILT_IN_FLOORF
5071 BUILT_IN_CEILF BUILT_IN_CEILF
5072 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5073 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5074 BUILT_IN_RINTF BUILT_IN_RINTF)
5075 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5076 if x is a float. */
5077 (if (optimize && canonicalize_math_p ()
5078 && targetm.libc_has_function (function_c99_misc))
5079 (simplify
5080 (froms (convert float_value_p@0))
5081 (convert (tos @0)))))
5082
5083 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5084 tos (XFLOOR XCEIL XROUND XRINT)
5085 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5086 (if (optimize && canonicalize_math_p ())
5087 (simplify
5088 (froms (convert double_value_p@0))
5089 (tos @0))))
5090
5091 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5092 XFLOOR XCEIL XROUND XRINT)
5093 tos (XFLOORF XCEILF XROUNDF XRINTF)
5094 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5095 if x is a float. */
5096 (if (optimize && canonicalize_math_p ())
5097 (simplify
5098 (froms (convert float_value_p@0))
5099 (tos @0))))
5100
5101 (if (canonicalize_math_p ())
5102 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5103 (for floors (IFLOOR LFLOOR LLFLOOR)
5104 (simplify
5105 (floors tree_expr_nonnegative_p@0)
5106 (fix_trunc @0))))
5107
5108 (if (canonicalize_math_p ())
5109 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5110 (for fns (IFLOOR LFLOOR LLFLOOR
5111 ICEIL LCEIL LLCEIL
5112 IROUND LROUND LLROUND)
5113 (simplify
5114 (fns integer_valued_real_p@0)
5115 (fix_trunc @0)))
5116 (if (!flag_errno_math)
5117 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5118 (for rints (IRINT LRINT LLRINT)
5119 (simplify
5120 (rints integer_valued_real_p@0)
5121 (fix_trunc @0)))))
5122
5123 (if (canonicalize_math_p ())
5124 (for ifn (IFLOOR ICEIL IROUND IRINT)
5125 lfn (LFLOOR LCEIL LROUND LRINT)
5126 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5127 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5128 sizeof (int) == sizeof (long). */
5129 (if (TYPE_PRECISION (integer_type_node)
5130 == TYPE_PRECISION (long_integer_type_node))
5131 (simplify
5132 (ifn @0)
5133 (lfn:long_integer_type_node @0)))
5134 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5135 sizeof (long long) == sizeof (long). */
5136 (if (TYPE_PRECISION (long_long_integer_type_node)
5137 == TYPE_PRECISION (long_integer_type_node))
5138 (simplify
5139 (llfn @0)
5140 (lfn:long_integer_type_node @0)))))
5141
5142 /* cproj(x) -> x if we're ignoring infinities. */
5143 (simplify
5144 (CPROJ @0)
5145 (if (!HONOR_INFINITIES (type))
5146 @0))
5147
5148 /* If the real part is inf and the imag part is known to be
5149 nonnegative, return (inf + 0i). */
5150 (simplify
5151 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5152 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5153 { build_complex_inf (type, false); }))
5154
5155 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5156 (simplify
5157 (CPROJ (complex @0 REAL_CST@1))
5158 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5159 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5160
5161 (for pows (POW)
5162 sqrts (SQRT)
5163 cbrts (CBRT)
5164 (simplify
5165 (pows @0 REAL_CST@1)
5166 (with {
5167 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5168 REAL_VALUE_TYPE tmp;
5169 }
5170 (switch
5171 /* pow(x,0) -> 1. */
5172 (if (real_equal (value, &dconst0))
5173 { build_real (type, dconst1); })
5174 /* pow(x,1) -> x. */
5175 (if (real_equal (value, &dconst1))
5176 @0)
5177 /* pow(x,-1) -> 1/x. */
5178 (if (real_equal (value, &dconstm1))
5179 (rdiv { build_real (type, dconst1); } @0))
5180 /* pow(x,0.5) -> sqrt(x). */
5181 (if (flag_unsafe_math_optimizations
5182 && canonicalize_math_p ()
5183 && real_equal (value, &dconsthalf))
5184 (sqrts @0))
5185 /* pow(x,1/3) -> cbrt(x). */
5186 (if (flag_unsafe_math_optimizations
5187 && canonicalize_math_p ()
5188 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5189 real_equal (value, &tmp)))
5190 (cbrts @0))))))
5191
5192 /* powi(1,x) -> 1. */
5193 (simplify
5194 (POWI real_onep@0 @1)
5195 @0)
5196
5197 (simplify
5198 (POWI @0 INTEGER_CST@1)
5199 (switch
5200 /* powi(x,0) -> 1. */
5201 (if (wi::to_wide (@1) == 0)
5202 { build_real (type, dconst1); })
5203 /* powi(x,1) -> x. */
5204 (if (wi::to_wide (@1) == 1)
5205 @0)
5206 /* powi(x,-1) -> 1/x. */
5207 (if (wi::to_wide (@1) == -1)
5208 (rdiv { build_real (type, dconst1); } @0))))
5209
5210 /* Narrowing of arithmetic and logical operations.
5211
5212 These are conceptually similar to the transformations performed for
5213 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5214 term we want to move all that code out of the front-ends into here. */
5215
5216 /* Convert (outertype)((innertype0)a+(innertype1)b)
5217 into ((newtype)a+(newtype)b) where newtype
5218 is the widest mode from all of these. */
5219 (for op (plus minus mult rdiv)
5220 (simplify
5221 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5222 /* If we have a narrowing conversion of an arithmetic operation where
5223 both operands are widening conversions from the same type as the outer
5224 narrowing conversion. Then convert the innermost operands to a
5225 suitable unsigned type (to avoid introducing undefined behavior),
5226 perform the operation and convert the result to the desired type. */
5227 (if (INTEGRAL_TYPE_P (type)
5228 && op != MULT_EXPR
5229 && op != RDIV_EXPR
5230 /* We check for type compatibility between @0 and @1 below,
5231 so there's no need to check that @2/@4 are integral types. */
5232 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5233 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5234 /* The precision of the type of each operand must match the
5235 precision of the mode of each operand, similarly for the
5236 result. */
5237 && type_has_mode_precision_p (TREE_TYPE (@1))
5238 && type_has_mode_precision_p (TREE_TYPE (@2))
5239 && type_has_mode_precision_p (type)
5240 /* The inner conversion must be a widening conversion. */
5241 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5242 && types_match (@1, type)
5243 && (types_match (@1, @2)
5244 /* Or the second operand is const integer or converted const
5245 integer from valueize. */
5246 || TREE_CODE (@2) == INTEGER_CST))
5247 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5248 (op @1 (convert @2))
5249 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5250 (convert (op (convert:utype @1)
5251 (convert:utype @2)))))
5252 (if (FLOAT_TYPE_P (type)
5253 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5254 == DECIMAL_FLOAT_TYPE_P (type))
5255 (with { tree arg0 = strip_float_extensions (@1);
5256 tree arg1 = strip_float_extensions (@2);
5257 tree itype = TREE_TYPE (@0);
5258 tree ty1 = TREE_TYPE (arg0);
5259 tree ty2 = TREE_TYPE (arg1);
5260 enum tree_code code = TREE_CODE (itype); }
5261 (if (FLOAT_TYPE_P (ty1)
5262 && FLOAT_TYPE_P (ty2))
5263 (with { tree newtype = type;
5264 if (TYPE_MODE (ty1) == SDmode
5265 || TYPE_MODE (ty2) == SDmode
5266 || TYPE_MODE (type) == SDmode)
5267 newtype = dfloat32_type_node;
5268 if (TYPE_MODE (ty1) == DDmode
5269 || TYPE_MODE (ty2) == DDmode
5270 || TYPE_MODE (type) == DDmode)
5271 newtype = dfloat64_type_node;
5272 if (TYPE_MODE (ty1) == TDmode
5273 || TYPE_MODE (ty2) == TDmode
5274 || TYPE_MODE (type) == TDmode)
5275 newtype = dfloat128_type_node; }
5276 (if ((newtype == dfloat32_type_node
5277 || newtype == dfloat64_type_node
5278 || newtype == dfloat128_type_node)
5279 && newtype == type
5280 && types_match (newtype, type))
5281 (op (convert:newtype @1) (convert:newtype @2))
5282 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5283 newtype = ty1;
5284 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5285 newtype = ty2; }
5286 /* Sometimes this transformation is safe (cannot
5287 change results through affecting double rounding
5288 cases) and sometimes it is not. If NEWTYPE is
5289 wider than TYPE, e.g. (float)((long double)double
5290 + (long double)double) converted to
5291 (float)(double + double), the transformation is
5292 unsafe regardless of the details of the types
5293 involved; double rounding can arise if the result
5294 of NEWTYPE arithmetic is a NEWTYPE value half way
5295 between two representable TYPE values but the
5296 exact value is sufficiently different (in the
5297 right direction) for this difference to be
5298 visible in ITYPE arithmetic. If NEWTYPE is the
5299 same as TYPE, however, the transformation may be
5300 safe depending on the types involved: it is safe
5301 if the ITYPE has strictly more than twice as many
5302 mantissa bits as TYPE, can represent infinities
5303 and NaNs if the TYPE can, and has sufficient
5304 exponent range for the product or ratio of two
5305 values representable in the TYPE to be within the
5306 range of normal values of ITYPE. */
5307 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5308 && (flag_unsafe_math_optimizations
5309 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5310 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5311 TYPE_MODE (type))
5312 && !excess_precision_type (newtype)))
5313 && !types_match (itype, newtype))
5314 (convert:type (op (convert:newtype @1)
5315 (convert:newtype @2)))
5316 )))) )
5317 ))
5318 )))
5319
5320 /* This is another case of narrowing, specifically when there's an outer
5321 BIT_AND_EXPR which masks off bits outside the type of the innermost
5322 operands. Like the previous case we have to convert the operands
5323 to unsigned types to avoid introducing undefined behavior for the
5324 arithmetic operation. */
5325 (for op (minus plus)
5326 (simplify
5327 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5328 (if (INTEGRAL_TYPE_P (type)
5329 /* We check for type compatibility between @0 and @1 below,
5330 so there's no need to check that @1/@3 are integral types. */
5331 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5332 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5333 /* The precision of the type of each operand must match the
5334 precision of the mode of each operand, similarly for the
5335 result. */
5336 && type_has_mode_precision_p (TREE_TYPE (@0))
5337 && type_has_mode_precision_p (TREE_TYPE (@1))
5338 && type_has_mode_precision_p (type)
5339 /* The inner conversion must be a widening conversion. */
5340 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5341 && types_match (@0, @1)
5342 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5343 <= TYPE_PRECISION (TREE_TYPE (@0)))
5344 && (wi::to_wide (@4)
5345 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5346 true, TYPE_PRECISION (type))) == 0)
5347 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5348 (with { tree ntype = TREE_TYPE (@0); }
5349 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5350 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5351 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5352 (convert:utype @4))))))))
5353
5354 /* Transform (@0 < @1 and @0 < @2) to use min,
5355 (@0 > @1 and @0 > @2) to use max */
5356 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5357 op (lt le gt ge lt le gt ge )
5358 ext (min min max max max max min min )
5359 (simplify
5360 (logic (op:cs @0 @1) (op:cs @0 @2))
5361 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5362 && TREE_CODE (@0) != INTEGER_CST)
5363 (op @0 (ext @1 @2)))))
5364
5365 (simplify
5366 /* signbit(x) -> 0 if x is nonnegative. */
5367 (SIGNBIT tree_expr_nonnegative_p@0)
5368 { integer_zero_node; })
5369
5370 (simplify
5371 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5372 (SIGNBIT @0)
5373 (if (!HONOR_SIGNED_ZEROS (@0))
5374 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5375
5376 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5377 (for cmp (eq ne)
5378 (for op (plus minus)
5379 rop (minus plus)
5380 (simplify
5381 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5382 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5383 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5384 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5385 && !TYPE_SATURATING (TREE_TYPE (@0)))
5386 (with { tree res = int_const_binop (rop, @2, @1); }
5387 (if (TREE_OVERFLOW (res)
5388 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5389 { constant_boolean_node (cmp == NE_EXPR, type); }
5390 (if (single_use (@3))
5391 (cmp @0 { TREE_OVERFLOW (res)
5392 ? drop_tree_overflow (res) : res; }))))))))
5393 (for cmp (lt le gt ge)
5394 (for op (plus minus)
5395 rop (minus plus)
5396 (simplify
5397 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5398 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5399 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5400 (with { tree res = int_const_binop (rop, @2, @1); }
5401 (if (TREE_OVERFLOW (res))
5402 {
5403 fold_overflow_warning (("assuming signed overflow does not occur "
5404 "when simplifying conditional to constant"),
5405 WARN_STRICT_OVERFLOW_CONDITIONAL);
5406 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5407 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5408 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5409 TYPE_SIGN (TREE_TYPE (@1)))
5410 != (op == MINUS_EXPR);
5411 constant_boolean_node (less == ovf_high, type);
5412 }
5413 (if (single_use (@3))
5414 (with
5415 {
5416 fold_overflow_warning (("assuming signed overflow does not occur "
5417 "when changing X +- C1 cmp C2 to "
5418 "X cmp C2 -+ C1"),
5419 WARN_STRICT_OVERFLOW_COMPARISON);
5420 }
5421 (cmp @0 { res; })))))))))
5422
5423 /* Canonicalizations of BIT_FIELD_REFs. */
5424
5425 (simplify
5426 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5427 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5428
5429 (simplify
5430 (BIT_FIELD_REF (view_convert @0) @1 @2)
5431 (BIT_FIELD_REF @0 @1 @2))
5432
5433 (simplify
5434 (BIT_FIELD_REF @0 @1 integer_zerop)
5435 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5436 (view_convert @0)))
5437
5438 (simplify
5439 (BIT_FIELD_REF @0 @1 @2)
5440 (switch
5441 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5442 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5443 (switch
5444 (if (integer_zerop (@2))
5445 (view_convert (realpart @0)))
5446 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5447 (view_convert (imagpart @0)))))
5448 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5449 && INTEGRAL_TYPE_P (type)
5450 /* On GIMPLE this should only apply to register arguments. */
5451 && (! GIMPLE || is_gimple_reg (@0))
5452 /* A bit-field-ref that referenced the full argument can be stripped. */
5453 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5454 && integer_zerop (@2))
5455 /* Low-parts can be reduced to integral conversions.
5456 ??? The following doesn't work for PDP endian. */
5457 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5458 /* Don't even think about BITS_BIG_ENDIAN. */
5459 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5460 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5461 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5462 ? (TYPE_PRECISION (TREE_TYPE (@0))
5463 - TYPE_PRECISION (type))
5464 : 0)) == 0)))
5465 (convert @0))))
5466
5467 /* Simplify vector extracts. */
5468
5469 (simplify
5470 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5471 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5472 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5473 || (VECTOR_TYPE_P (type)
5474 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5475 (with
5476 {
5477 tree ctor = (TREE_CODE (@0) == SSA_NAME
5478 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5479 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5480 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5481 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5482 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5483 }
5484 (if (n != 0
5485 && (idx % width) == 0
5486 && (n % width) == 0
5487 && known_le ((idx + n) / width,
5488 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5489 (with
5490 {
5491 idx = idx / width;
5492 n = n / width;
5493 /* Constructor elements can be subvectors. */
5494 poly_uint64 k = 1;
5495 if (CONSTRUCTOR_NELTS (ctor) != 0)
5496 {
5497 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5498 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5499 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5500 }
5501 unsigned HOST_WIDE_INT elt, count, const_k;
5502 }
5503 (switch
5504 /* We keep an exact subset of the constructor elements. */
5505 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5506 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5507 { build_constructor (type, NULL); }
5508 (if (count == 1)
5509 (if (elt < CONSTRUCTOR_NELTS (ctor))
5510 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5511 { build_zero_cst (type); })
5512 {
5513 vec<constructor_elt, va_gc> *vals;
5514 vec_alloc (vals, count);
5515 for (unsigned i = 0;
5516 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5517 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5518 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5519 build_constructor (type, vals);
5520 })))
5521 /* The bitfield references a single constructor element. */
5522 (if (k.is_constant (&const_k)
5523 && idx + n <= (idx / const_k + 1) * const_k)
5524 (switch
5525 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5526 { build_zero_cst (type); })
5527 (if (n == const_k)
5528 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5529 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5530 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5531
5532 /* Simplify a bit extraction from a bit insertion for the cases with
5533 the inserted element fully covering the extraction or the insertion
5534 not touching the extraction. */
5535 (simplify
5536 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5537 (with
5538 {
5539 unsigned HOST_WIDE_INT isize;
5540 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5541 isize = TYPE_PRECISION (TREE_TYPE (@1));
5542 else
5543 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5544 }
5545 (switch
5546 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5547 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5548 wi::to_wide (@ipos) + isize))
5549 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5550 wi::to_wide (@rpos)
5551 - wi::to_wide (@ipos)); }))
5552 (if (wi::geu_p (wi::to_wide (@ipos),
5553 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5554 || wi::geu_p (wi::to_wide (@rpos),
5555 wi::to_wide (@ipos) + isize))
5556 (BIT_FIELD_REF @0 @rsize @rpos)))))
5557
5558 (if (canonicalize_math_after_vectorization_p ())
5559 (for fmas (FMA)
5560 (simplify
5561 (fmas:c (negate @0) @1 @2)
5562 (IFN_FNMA @0 @1 @2))
5563 (simplify
5564 (fmas @0 @1 (negate @2))
5565 (IFN_FMS @0 @1 @2))
5566 (simplify
5567 (fmas:c (negate @0) @1 (negate @2))
5568 (IFN_FNMS @0 @1 @2))
5569 (simplify
5570 (negate (fmas@3 @0 @1 @2))
5571 (if (single_use (@3))
5572 (IFN_FNMS @0 @1 @2))))
5573
5574 (simplify
5575 (IFN_FMS:c (negate @0) @1 @2)
5576 (IFN_FNMS @0 @1 @2))
5577 (simplify
5578 (IFN_FMS @0 @1 (negate @2))
5579 (IFN_FMA @0 @1 @2))
5580 (simplify
5581 (IFN_FMS:c (negate @0) @1 (negate @2))
5582 (IFN_FNMA @0 @1 @2))
5583 (simplify
5584 (negate (IFN_FMS@3 @0 @1 @2))
5585 (if (single_use (@3))
5586 (IFN_FNMA @0 @1 @2)))
5587
5588 (simplify
5589 (IFN_FNMA:c (negate @0) @1 @2)
5590 (IFN_FMA @0 @1 @2))
5591 (simplify
5592 (IFN_FNMA @0 @1 (negate @2))
5593 (IFN_FNMS @0 @1 @2))
5594 (simplify
5595 (IFN_FNMA:c (negate @0) @1 (negate @2))
5596 (IFN_FMS @0 @1 @2))
5597 (simplify
5598 (negate (IFN_FNMA@3 @0 @1 @2))
5599 (if (single_use (@3))
5600 (IFN_FMS @0 @1 @2)))
5601
5602 (simplify
5603 (IFN_FNMS:c (negate @0) @1 @2)
5604 (IFN_FMS @0 @1 @2))
5605 (simplify
5606 (IFN_FNMS @0 @1 (negate @2))
5607 (IFN_FNMA @0 @1 @2))
5608 (simplify
5609 (IFN_FNMS:c (negate @0) @1 (negate @2))
5610 (IFN_FMA @0 @1 @2))
5611 (simplify
5612 (negate (IFN_FNMS@3 @0 @1 @2))
5613 (if (single_use (@3))
5614 (IFN_FMA @0 @1 @2))))
5615
5616 /* POPCOUNT simplifications. */
5617 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5618 BUILT_IN_POPCOUNTIMAX)
5619 /* popcount(X&1) is nop_expr(X&1). */
5620 (simplify
5621 (popcount @0)
5622 (if (tree_nonzero_bits (@0) == 1)
5623 (convert @0)))
5624 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5625 (simplify
5626 (plus (popcount:s @0) (popcount:s @1))
5627 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5628 (popcount (bit_ior @0 @1))))
5629 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5630 (for cmp (le eq ne gt)
5631 rep (eq eq ne ne)
5632 (simplify
5633 (cmp (popcount @0) integer_zerop)
5634 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5635
5636 /* Simplify:
5637
5638 a = a1 op a2
5639 r = c ? a : b;
5640
5641 to:
5642
5643 r = c ? a1 op a2 : b;
5644
5645 if the target can do it in one go. This makes the operation conditional
5646 on c, so could drop potentially-trapping arithmetic, but that's a valid
5647 simplification if the result of the operation isn't needed.
5648
5649 Avoid speculatively generating a stand-alone vector comparison
5650 on targets that might not support them. Any target implementing
5651 conditional internal functions must support the same comparisons
5652 inside and outside a VEC_COND_EXPR. */
5653
5654 #if GIMPLE
5655 (for uncond_op (UNCOND_BINARY)
5656 cond_op (COND_BINARY)
5657 (simplify
5658 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5659 (with { tree op_type = TREE_TYPE (@4); }
5660 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5661 && element_precision (type) == element_precision (op_type))
5662 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5663 (simplify
5664 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5665 (with { tree op_type = TREE_TYPE (@4); }
5666 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5667 && element_precision (type) == element_precision (op_type))
5668 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5669
5670 /* Same for ternary operations. */
5671 (for uncond_op (UNCOND_TERNARY)
5672 cond_op (COND_TERNARY)
5673 (simplify
5674 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5675 (with { tree op_type = TREE_TYPE (@5); }
5676 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5677 && element_precision (type) == element_precision (op_type))
5678 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5679 (simplify
5680 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5681 (with { tree op_type = TREE_TYPE (@5); }
5682 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5683 && element_precision (type) == element_precision (op_type))
5684 (view_convert (cond_op (bit_not @0) @2 @3 @4
5685 (view_convert:op_type @1)))))))
5686 #endif
5687
5688 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5689 "else" value of an IFN_COND_*. */
5690 (for cond_op (COND_BINARY)
5691 (simplify
5692 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5693 (with { tree op_type = TREE_TYPE (@3); }
5694 (if (element_precision (type) == element_precision (op_type))
5695 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5696 (simplify
5697 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5698 (with { tree op_type = TREE_TYPE (@5); }
5699 (if (inverse_conditions_p (@0, @2)
5700 && element_precision (type) == element_precision (op_type))
5701 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5702
5703 /* Same for ternary operations. */
5704 (for cond_op (COND_TERNARY)
5705 (simplify
5706 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5707 (with { tree op_type = TREE_TYPE (@4); }
5708 (if (element_precision (type) == element_precision (op_type))
5709 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5710 (simplify
5711 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5712 (with { tree op_type = TREE_TYPE (@6); }
5713 (if (inverse_conditions_p (@0, @2)
5714 && element_precision (type) == element_precision (op_type))
5715 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5716
5717 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5718 expressions like:
5719
5720 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5721 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5722
5723 If pointers are known not to wrap, B checks whether @1 bytes starting
5724 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5725 bytes. A is more efficiently tested as:
5726
5727 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5728
5729 The equivalent expression for B is given by replacing @1 with @1 - 1:
5730
5731 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5732
5733 @0 and @2 can be swapped in both expressions without changing the result.
5734
5735 The folds rely on sizetype's being unsigned (which is always true)
5736 and on its being the same width as the pointer (which we have to check).
5737
5738 The fold replaces two pointer_plus expressions, two comparisons and
5739 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5740 the best case it's a saving of two operations. The A fold retains one
5741 of the original pointer_pluses, so is a win even if both pointer_pluses
5742 are used elsewhere. The B fold is a wash if both pointer_pluses are
5743 used elsewhere, since all we end up doing is replacing a comparison with
5744 a pointer_plus. We do still apply the fold under those circumstances
5745 though, in case applying it to other conditions eventually makes one of the
5746 pointer_pluses dead. */
5747 (for ior (truth_orif truth_or bit_ior)
5748 (for cmp (le lt)
5749 (simplify
5750 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5751 (cmp:cs (pointer_plus@4 @2 @1) @0))
5752 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5753 && TYPE_OVERFLOW_WRAPS (sizetype)
5754 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5755 /* Calculate the rhs constant. */
5756 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5757 offset_int rhs = off * 2; }
5758 /* Always fails for negative values. */
5759 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5760 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5761 pick a canonical order. This increases the chances of using the
5762 same pointer_plus in multiple checks. */
5763 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5764 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5765 (if (cmp == LT_EXPR)
5766 (gt (convert:sizetype
5767 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5768 { swap_p ? @0 : @2; }))
5769 { rhs_tree; })
5770 (gt (convert:sizetype
5771 (pointer_diff:ssizetype
5772 (pointer_plus { swap_p ? @2 : @0; }
5773 { wide_int_to_tree (sizetype, off); })
5774 { swap_p ? @0 : @2; }))
5775 { rhs_tree; })))))))))
5776
5777 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5778 element of @1. */
5779 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5780 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5781 (with { int i = single_nonzero_element (@1); }
5782 (if (i >= 0)
5783 (with { tree elt = vector_cst_elt (@1, i);
5784 tree elt_type = TREE_TYPE (elt);
5785 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5786 tree size = bitsize_int (elt_bits);
5787 tree pos = bitsize_int (elt_bits * i); }
5788 (view_convert
5789 (bit_and:elt_type
5790 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5791 { elt; })))))))
5792
5793 (simplify
5794 (vec_perm @0 @1 VECTOR_CST@2)
5795 (with
5796 {
5797 tree op0 = @0, op1 = @1, op2 = @2;
5798
5799 /* Build a vector of integers from the tree mask. */
5800 vec_perm_builder builder;
5801 if (!tree_to_vec_perm_builder (&builder, op2))
5802 return NULL_TREE;
5803
5804 /* Create a vec_perm_indices for the integer vector. */
5805 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
5806 bool single_arg = (op0 == op1);
5807 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
5808 }
5809 (if (sel.series_p (0, 1, 0, 1))
5810 { op0; }
5811 (if (sel.series_p (0, 1, nelts, 1))
5812 { op1; }
5813 (with
5814 {
5815 if (!single_arg)
5816 {
5817 if (sel.all_from_input_p (0))
5818 op1 = op0;
5819 else if (sel.all_from_input_p (1))
5820 {
5821 op0 = op1;
5822 sel.rotate_inputs (1);
5823 }
5824 else if (known_ge (poly_uint64 (sel[0]), nelts))
5825 {
5826 std::swap (op0, op1);
5827 sel.rotate_inputs (1);
5828 }
5829 }
5830 gassign *def;
5831 tree cop0 = op0, cop1 = op1;
5832 if (TREE_CODE (op0) == SSA_NAME
5833 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
5834 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5835 cop0 = gimple_assign_rhs1 (def);
5836 if (TREE_CODE (op1) == SSA_NAME
5837 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
5838 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5839 cop1 = gimple_assign_rhs1 (def);
5840
5841 tree t;
5842 }
5843 (if ((TREE_CODE (cop0) == VECTOR_CST
5844 || TREE_CODE (cop0) == CONSTRUCTOR)
5845 && (TREE_CODE (cop1) == VECTOR_CST
5846 || TREE_CODE (cop1) == CONSTRUCTOR)
5847 && (t = fold_vec_perm (type, cop0, cop1, sel)))
5848 { t; }
5849 (with
5850 {
5851 bool changed = (op0 == op1 && !single_arg);
5852 tree ins = NULL_TREE;
5853 unsigned at = 0;
5854
5855 /* See if the permutation is performing a single element
5856 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
5857 in that case. But only if the vector mode is supported,
5858 otherwise this is invalid GIMPLE. */
5859 if (TYPE_MODE (type) != BLKmode
5860 && (TREE_CODE (cop0) == VECTOR_CST
5861 || TREE_CODE (cop0) == CONSTRUCTOR
5862 || TREE_CODE (cop1) == VECTOR_CST
5863 || TREE_CODE (cop1) == CONSTRUCTOR))
5864 {
5865 if (sel.series_p (1, 1, nelts + 1, 1))
5866 {
5867 /* After canonicalizing the first elt to come from the
5868 first vector we only can insert the first elt from
5869 the first vector. */
5870 at = 0;
5871 if ((ins = fold_read_from_vector (cop0, sel[0])))
5872 op0 = op1;
5873 }
5874 else
5875 {
5876 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
5877 for (at = 0; at < encoded_nelts; ++at)
5878 if (maybe_ne (sel[at], at))
5879 break;
5880 if (at < encoded_nelts && sel.series_p (at + 1, 1, at + 1, 1))
5881 {
5882 if (known_lt (at, nelts))
5883 ins = fold_read_from_vector (cop0, sel[at]);
5884 else
5885 ins = fold_read_from_vector (cop1, sel[at] - nelts);
5886 }
5887 }
5888 }
5889
5890 /* Generate a canonical form of the selector. */
5891 if (!ins && sel.encoding () != builder)
5892 {
5893 /* Some targets are deficient and fail to expand a single
5894 argument permutation while still allowing an equivalent
5895 2-argument version. */
5896 tree oldop2 = op2;
5897 if (sel.ninputs () == 2
5898 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
5899 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5900 else
5901 {
5902 vec_perm_indices sel2 (builder, 2, nelts);
5903 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
5904 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
5905 else
5906 /* Not directly supported with either encoding,
5907 so use the preferred form. */
5908 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5909 }
5910 if (!operand_equal_p (op2, oldop2, 0))
5911 changed = true;
5912 }
5913 }
5914 (if (ins)
5915 (bit_insert { op0; } { ins; }
5916 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
5917 (if (changed)
5918 (vec_perm { op0; } { op1; } { op2; }))))))))))
5919
5920 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
5921
5922 (match vec_same_elem_p
5923 @0
5924 (if (uniform_vector_p (@0))))
5925
5926 (match vec_same_elem_p
5927 (vec_duplicate @0))
5928
5929 (simplify
5930 (vec_perm vec_same_elem_p@0 @0 @1)
5931 @0)