]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
re PR tree-optimization/89518 (missed optimisation for array address calculations)
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS)
40
41 /* Operator lists. */
42 (define_operator_list tcc_comparison
43 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
44 (define_operator_list inverted_tcc_comparison
45 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list inverted_tcc_comparison_with_nans
47 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
48 (define_operator_list swapped_tcc_comparison
49 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
50 (define_operator_list simple_comparison lt le eq ne ge gt)
51 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
52
53 #include "cfn-operators.pd"
54
55 /* Define operand lists for math rounding functions {,i,l,ll}FN,
56 where the versions prefixed with "i" return an int, those prefixed with
57 "l" return a long and those prefixed with "ll" return a long long.
58
59 Also define operand lists:
60
61 X<FN>F for all float functions, in the order i, l, ll
62 X<FN> for all double functions, in the same order
63 X<FN>L for all long double functions, in the same order. */
64 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
65 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 BUILT_IN_L##FN##F \
67 BUILT_IN_LL##FN##F) \
68 (define_operator_list X##FN BUILT_IN_I##FN \
69 BUILT_IN_L##FN \
70 BUILT_IN_LL##FN) \
71 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
72 BUILT_IN_L##FN##L \
73 BUILT_IN_LL##FN##L)
74
75 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
79
80 /* Binary operations and their associated IFN_COND_* function. */
81 (define_operator_list UNCOND_BINARY
82 plus minus
83 mult trunc_div trunc_mod rdiv
84 min max
85 bit_and bit_ior bit_xor)
86 (define_operator_list COND_BINARY
87 IFN_COND_ADD IFN_COND_SUB
88 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
89 IFN_COND_MIN IFN_COND_MAX
90 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
91
92 /* Same for ternary operations. */
93 (define_operator_list UNCOND_TERNARY
94 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
95 (define_operator_list COND_TERNARY
96 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
97
98 /* As opposed to convert?, this still creates a single pattern, so
99 it is not a suitable replacement for convert? in all cases. */
100 (match (nop_convert @0)
101 (convert @0)
102 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
103 (match (nop_convert @0)
104 (view_convert @0)
105 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
106 && known_eq (TYPE_VECTOR_SUBPARTS (type),
107 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
108 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
109 /* This one has to be last, or it shadows the others. */
110 (match (nop_convert @0)
111 @0)
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
126
127 (for op (plus pointer_plus minus bit_ior bit_xor)
128 (simplify
129 (op @0 integer_zerop)
130 (non_lvalue @0)))
131
132 /* 0 +p index -> (type)index */
133 (simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137 /* ptr - 0 -> (type)ptr */
138 (simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
144 (simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147 (non_lvalue @0)))
148
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
150 (simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153 (non_lvalue @0)))
154
155 /* Simplify x - x.
156 This is unsafe for certain floats even in non-IEEE formats.
157 In IEEE, it is unsafe because it does wrong for NaNs.
158 Also note that operand_equal_p is always false if an operand
159 is volatile. */
160 (simplify
161 (minus @0 @0)
162 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
163 { build_zero_cst (type); }))
164 (simplify
165 (pointer_diff @@0 @0)
166 { build_zero_cst (type); })
167
168 (simplify
169 (mult @0 integer_zerop@1)
170 @1)
171
172 /* Maybe fold x * 0 to 0. The expressions aren't the same
173 when x is NaN, since x * 0 is also NaN. Nor are they the
174 same in modes with signed zeros, since multiplying a
175 negative value by 0 gives -0, not +0. */
176 (simplify
177 (mult @0 real_zerop@1)
178 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
179 @1))
180
181 /* In IEEE floating point, x*1 is not equivalent to x for snans.
182 Likewise for complex arithmetic with signed zeros. */
183 (simplify
184 (mult @0 real_onep)
185 (if (!HONOR_SNANS (type)
186 && (!HONOR_SIGNED_ZEROS (type)
187 || !COMPLEX_FLOAT_TYPE_P (type)))
188 (non_lvalue @0)))
189
190 /* Transform x * -1.0 into -x. */
191 (simplify
192 (mult @0 real_minus_onep)
193 (if (!HONOR_SNANS (type)
194 && (!HONOR_SIGNED_ZEROS (type)
195 || !COMPLEX_FLOAT_TYPE_P (type)))
196 (negate @0)))
197
198 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
199 unless the target has native support for the former but not the latter. */
200 (simplify
201 (mult @0 VECTOR_CST@1)
202 (if (initializer_each_zero_or_onep (@1)
203 && !HONOR_SNANS (type)
204 && !HONOR_SIGNED_ZEROS (type))
205 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
206 (if (itype
207 && (!VECTOR_MODE_P (TYPE_MODE (type))
208 || (VECTOR_MODE_P (TYPE_MODE (itype))
209 && optab_handler (and_optab,
210 TYPE_MODE (itype)) != CODE_FOR_nothing)))
211 (view_convert (bit_and:itype (view_convert @0)
212 (ne @1 { build_zero_cst (type); })))))))
213
214 (for cmp (gt ge lt le)
215 outp (convert convert negate negate)
216 outn (negate negate convert convert)
217 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
218 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
219 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
220 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
221 (simplify
222 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
223 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
224 && types_match (type, TREE_TYPE (@0)))
225 (switch
226 (if (types_match (type, float_type_node))
227 (BUILT_IN_COPYSIGNF @1 (outp @0)))
228 (if (types_match (type, double_type_node))
229 (BUILT_IN_COPYSIGN @1 (outp @0)))
230 (if (types_match (type, long_double_type_node))
231 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
232 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
233 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
234 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
235 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
236 (simplify
237 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
238 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
239 && types_match (type, TREE_TYPE (@0)))
240 (switch
241 (if (types_match (type, float_type_node))
242 (BUILT_IN_COPYSIGNF @1 (outn @0)))
243 (if (types_match (type, double_type_node))
244 (BUILT_IN_COPYSIGN @1 (outn @0)))
245 (if (types_match (type, long_double_type_node))
246 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
247
248 /* Transform X * copysign (1.0, X) into abs(X). */
249 (simplify
250 (mult:c @0 (COPYSIGN_ALL real_onep @0))
251 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
252 (abs @0)))
253
254 /* Transform X * copysign (1.0, -X) into -abs(X). */
255 (simplify
256 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
257 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
258 (negate (abs @0))))
259
260 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
261 (simplify
262 (COPYSIGN_ALL REAL_CST@0 @1)
263 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
264 (COPYSIGN_ALL (negate @0) @1)))
265
266 /* X * 1, X / 1 -> X. */
267 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
268 (simplify
269 (op @0 integer_onep)
270 (non_lvalue @0)))
271
272 /* (A / (1 << B)) -> (A >> B).
273 Only for unsigned A. For signed A, this would not preserve rounding
274 toward zero.
275 For example: (-1 / ( 1 << B)) != -1 >> B. */
276 (simplify
277 (trunc_div @0 (lshift integer_onep@1 @2))
278 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
279 && (!VECTOR_TYPE_P (type)
280 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
281 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
282 (rshift @0 @2)))
283
284 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
285 undefined behavior in constexpr evaluation, and assuming that the division
286 traps enables better optimizations than these anyway. */
287 (for div (trunc_div ceil_div floor_div round_div exact_div)
288 /* 0 / X is always zero. */
289 (simplify
290 (div integer_zerop@0 @1)
291 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
292 (if (!integer_zerop (@1))
293 @0))
294 /* X / -1 is -X. */
295 (simplify
296 (div @0 integer_minus_onep@1)
297 (if (!TYPE_UNSIGNED (type))
298 (negate @0)))
299 /* X / X is one. */
300 (simplify
301 (div @0 @0)
302 /* But not for 0 / 0 so that we can get the proper warnings and errors.
303 And not for _Fract types where we can't build 1. */
304 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
305 { build_one_cst (type); }))
306 /* X / abs (X) is X < 0 ? -1 : 1. */
307 (simplify
308 (div:C @0 (abs @0))
309 (if (INTEGRAL_TYPE_P (type)
310 && TYPE_OVERFLOW_UNDEFINED (type))
311 (cond (lt @0 { build_zero_cst (type); })
312 { build_minus_one_cst (type); } { build_one_cst (type); })))
313 /* X / -X is -1. */
314 (simplify
315 (div:C @0 (negate @0))
316 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
317 && TYPE_OVERFLOW_UNDEFINED (type))
318 { build_minus_one_cst (type); })))
319
320 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
321 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
322 (simplify
323 (floor_div @0 @1)
324 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
325 && TYPE_UNSIGNED (type))
326 (trunc_div @0 @1)))
327
328 /* Combine two successive divisions. Note that combining ceil_div
329 and floor_div is trickier and combining round_div even more so. */
330 (for div (trunc_div exact_div)
331 (simplify
332 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
333 (with {
334 wi::overflow_type overflow;
335 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
336 TYPE_SIGN (type), &overflow);
337 }
338 (if (div == EXACT_DIV_EXPR
339 || optimize_successive_divisions_p (@2, @3))
340 (if (!overflow)
341 (div @0 { wide_int_to_tree (type, mul); })
342 (if (TYPE_UNSIGNED (type)
343 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
344 { build_zero_cst (type); }))))))
345
346 /* Combine successive multiplications. Similar to above, but handling
347 overflow is different. */
348 (simplify
349 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
350 (with {
351 wi::overflow_type overflow;
352 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
353 TYPE_SIGN (type), &overflow);
354 }
355 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
356 otherwise undefined overflow implies that @0 must be zero. */
357 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
358 (mult @0 { wide_int_to_tree (type, mul); }))))
359
360 /* Optimize A / A to 1.0 if we don't care about
361 NaNs or Infinities. */
362 (simplify
363 (rdiv @0 @0)
364 (if (FLOAT_TYPE_P (type)
365 && ! HONOR_NANS (type)
366 && ! HONOR_INFINITIES (type))
367 { build_one_cst (type); }))
368
369 /* Optimize -A / A to -1.0 if we don't care about
370 NaNs or Infinities. */
371 (simplify
372 (rdiv:C @0 (negate @0))
373 (if (FLOAT_TYPE_P (type)
374 && ! HONOR_NANS (type)
375 && ! HONOR_INFINITIES (type))
376 { build_minus_one_cst (type); }))
377
378 /* PR71078: x / abs(x) -> copysign (1.0, x) */
379 (simplify
380 (rdiv:C (convert? @0) (convert? (abs @0)))
381 (if (SCALAR_FLOAT_TYPE_P (type)
382 && ! HONOR_NANS (type)
383 && ! HONOR_INFINITIES (type))
384 (switch
385 (if (types_match (type, float_type_node))
386 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
387 (if (types_match (type, double_type_node))
388 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
389 (if (types_match (type, long_double_type_node))
390 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
391
392 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
393 (simplify
394 (rdiv @0 real_onep)
395 (if (!HONOR_SNANS (type))
396 (non_lvalue @0)))
397
398 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
399 (simplify
400 (rdiv @0 real_minus_onep)
401 (if (!HONOR_SNANS (type))
402 (negate @0)))
403
404 (if (flag_reciprocal_math)
405 /* Convert (A/B)/C to A/(B*C). */
406 (simplify
407 (rdiv (rdiv:s @0 @1) @2)
408 (rdiv @0 (mult @1 @2)))
409
410 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
411 (simplify
412 (rdiv @0 (mult:s @1 REAL_CST@2))
413 (with
414 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
415 (if (tem)
416 (rdiv (mult @0 { tem; } ) @1))))
417
418 /* Convert A/(B/C) to (A/B)*C */
419 (simplify
420 (rdiv @0 (rdiv:s @1 @2))
421 (mult (rdiv @0 @1) @2)))
422
423 /* Simplify x / (- y) to -x / y. */
424 (simplify
425 (rdiv @0 (negate @1))
426 (rdiv (negate @0) @1))
427
428 (if (flag_unsafe_math_optimizations)
429 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
430 Since C / x may underflow to zero, do this only for unsafe math. */
431 (for op (lt le gt ge)
432 neg_op (gt ge lt le)
433 (simplify
434 (op (rdiv REAL_CST@0 @1) real_zerop@2)
435 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
436 (switch
437 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
438 (op @1 @2))
439 /* For C < 0, use the inverted operator. */
440 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
441 (neg_op @1 @2)))))))
442
443 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
444 (for div (trunc_div ceil_div floor_div round_div exact_div)
445 (simplify
446 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
447 (if (integer_pow2p (@2)
448 && tree_int_cst_sgn (@2) > 0
449 && tree_nop_conversion_p (type, TREE_TYPE (@0))
450 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
451 (rshift (convert @0)
452 { build_int_cst (integer_type_node,
453 wi::exact_log2 (wi::to_wide (@2))); }))))
454
455 /* If ARG1 is a constant, we can convert this to a multiply by the
456 reciprocal. This does not have the same rounding properties,
457 so only do this if -freciprocal-math. We can actually
458 always safely do it if ARG1 is a power of two, but it's hard to
459 tell if it is or not in a portable manner. */
460 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
461 (simplify
462 (rdiv @0 cst@1)
463 (if (optimize)
464 (if (flag_reciprocal_math
465 && !real_zerop (@1))
466 (with
467 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
468 (if (tem)
469 (mult @0 { tem; } )))
470 (if (cst != COMPLEX_CST)
471 (with { tree inverse = exact_inverse (type, @1); }
472 (if (inverse)
473 (mult @0 { inverse; } ))))))))
474
475 (for mod (ceil_mod floor_mod round_mod trunc_mod)
476 /* 0 % X is always zero. */
477 (simplify
478 (mod integer_zerop@0 @1)
479 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
480 (if (!integer_zerop (@1))
481 @0))
482 /* X % 1 is always zero. */
483 (simplify
484 (mod @0 integer_onep)
485 { build_zero_cst (type); })
486 /* X % -1 is zero. */
487 (simplify
488 (mod @0 integer_minus_onep@1)
489 (if (!TYPE_UNSIGNED (type))
490 { build_zero_cst (type); }))
491 /* X % X is zero. */
492 (simplify
493 (mod @0 @0)
494 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
495 (if (!integer_zerop (@0))
496 { build_zero_cst (type); }))
497 /* (X % Y) % Y is just X % Y. */
498 (simplify
499 (mod (mod@2 @0 @1) @1)
500 @2)
501 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
502 (simplify
503 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
504 (if (ANY_INTEGRAL_TYPE_P (type)
505 && TYPE_OVERFLOW_UNDEFINED (type)
506 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
507 TYPE_SIGN (type)))
508 { build_zero_cst (type); }))
509 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
510 modulo and comparison, since it is simpler and equivalent. */
511 (for cmp (eq ne)
512 (simplify
513 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
514 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
515 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
516 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
517
518 /* X % -C is the same as X % C. */
519 (simplify
520 (trunc_mod @0 INTEGER_CST@1)
521 (if (TYPE_SIGN (type) == SIGNED
522 && !TREE_OVERFLOW (@1)
523 && wi::neg_p (wi::to_wide (@1))
524 && !TYPE_OVERFLOW_TRAPS (type)
525 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
526 && !sign_bit_p (@1, @1))
527 (trunc_mod @0 (negate @1))))
528
529 /* X % -Y is the same as X % Y. */
530 (simplify
531 (trunc_mod @0 (convert? (negate @1)))
532 (if (INTEGRAL_TYPE_P (type)
533 && !TYPE_UNSIGNED (type)
534 && !TYPE_OVERFLOW_TRAPS (type)
535 && tree_nop_conversion_p (type, TREE_TYPE (@1))
536 /* Avoid this transformation if X might be INT_MIN or
537 Y might be -1, because we would then change valid
538 INT_MIN % -(-1) into invalid INT_MIN % -1. */
539 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
540 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
541 (TREE_TYPE (@1))))))
542 (trunc_mod @0 (convert @1))))
543
544 /* X - (X / Y) * Y is the same as X % Y. */
545 (simplify
546 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
547 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
548 (convert (trunc_mod @0 @1))))
549
550 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
551 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
552 Also optimize A % (C << N) where C is a power of 2,
553 to A & ((C << N) - 1). */
554 (match (power_of_two_cand @1)
555 INTEGER_CST@1)
556 (match (power_of_two_cand @1)
557 (lshift INTEGER_CST@1 @2))
558 (for mod (trunc_mod floor_mod)
559 (simplify
560 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
561 (if ((TYPE_UNSIGNED (type)
562 || tree_expr_nonnegative_p (@0))
563 && tree_nop_conversion_p (type, TREE_TYPE (@3))
564 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
565 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
566
567 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
568 (simplify
569 (trunc_div (mult @0 integer_pow2p@1) @1)
570 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
571 (bit_and @0 { wide_int_to_tree
572 (type, wi::mask (TYPE_PRECISION (type)
573 - wi::exact_log2 (wi::to_wide (@1)),
574 false, TYPE_PRECISION (type))); })))
575
576 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
577 (simplify
578 (mult (trunc_div @0 integer_pow2p@1) @1)
579 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
580 (bit_and @0 (negate @1))))
581
582 /* Simplify (t * 2) / 2) -> t. */
583 (for div (trunc_div ceil_div floor_div round_div exact_div)
584 (simplify
585 (div (mult:c @0 @1) @1)
586 (if (ANY_INTEGRAL_TYPE_P (type)
587 && TYPE_OVERFLOW_UNDEFINED (type))
588 @0)))
589
590 (for op (negate abs)
591 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
592 (for coss (COS COSH)
593 (simplify
594 (coss (op @0))
595 (coss @0)))
596 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
597 (for pows (POW)
598 (simplify
599 (pows (op @0) REAL_CST@1)
600 (with { HOST_WIDE_INT n; }
601 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
602 (pows @0 @1)))))
603 /* Likewise for powi. */
604 (for pows (POWI)
605 (simplify
606 (pows (op @0) INTEGER_CST@1)
607 (if ((wi::to_wide (@1) & 1) == 0)
608 (pows @0 @1))))
609 /* Strip negate and abs from both operands of hypot. */
610 (for hypots (HYPOT)
611 (simplify
612 (hypots (op @0) @1)
613 (hypots @0 @1))
614 (simplify
615 (hypots @0 (op @1))
616 (hypots @0 @1)))
617 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
618 (for copysigns (COPYSIGN_ALL)
619 (simplify
620 (copysigns (op @0) @1)
621 (copysigns @0 @1))))
622
623 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
624 (simplify
625 (mult (abs@1 @0) @1)
626 (mult @0 @0))
627
628 /* Convert absu(x)*absu(x) -> x*x. */
629 (simplify
630 (mult (absu@1 @0) @1)
631 (mult (convert@2 @0) @2))
632
633 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
634 (for coss (COS COSH)
635 copysigns (COPYSIGN)
636 (simplify
637 (coss (copysigns @0 @1))
638 (coss @0)))
639
640 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
641 (for pows (POW)
642 copysigns (COPYSIGN)
643 (simplify
644 (pows (copysigns @0 @2) REAL_CST@1)
645 (with { HOST_WIDE_INT n; }
646 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
647 (pows @0 @1)))))
648 /* Likewise for powi. */
649 (for pows (POWI)
650 copysigns (COPYSIGN)
651 (simplify
652 (pows (copysigns @0 @2) INTEGER_CST@1)
653 (if ((wi::to_wide (@1) & 1) == 0)
654 (pows @0 @1))))
655
656 (for hypots (HYPOT)
657 copysigns (COPYSIGN)
658 /* hypot(copysign(x, y), z) -> hypot(x, z). */
659 (simplify
660 (hypots (copysigns @0 @1) @2)
661 (hypots @0 @2))
662 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
663 (simplify
664 (hypots @0 (copysigns @1 @2))
665 (hypots @0 @1)))
666
667 /* copysign(x, CST) -> [-]abs (x). */
668 (for copysigns (COPYSIGN_ALL)
669 (simplify
670 (copysigns @0 REAL_CST@1)
671 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
672 (negate (abs @0))
673 (abs @0))))
674
675 /* copysign(copysign(x, y), z) -> copysign(x, z). */
676 (for copysigns (COPYSIGN_ALL)
677 (simplify
678 (copysigns (copysigns @0 @1) @2)
679 (copysigns @0 @2)))
680
681 /* copysign(x,y)*copysign(x,y) -> x*x. */
682 (for copysigns (COPYSIGN_ALL)
683 (simplify
684 (mult (copysigns@2 @0 @1) @2)
685 (mult @0 @0)))
686
687 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
688 (for ccoss (CCOS CCOSH)
689 (simplify
690 (ccoss (negate @0))
691 (ccoss @0)))
692
693 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
694 (for ops (conj negate)
695 (for cabss (CABS)
696 (simplify
697 (cabss (ops @0))
698 (cabss @0))))
699
700 /* Fold (a * (1 << b)) into (a << b) */
701 (simplify
702 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
703 (if (! FLOAT_TYPE_P (type)
704 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
705 (lshift @0 @2)))
706
707 /* Fold (1 << (C - x)) where C = precision(type) - 1
708 into ((1 << C) >> x). */
709 (simplify
710 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
711 (if (INTEGRAL_TYPE_P (type)
712 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
713 && single_use (@1))
714 (if (TYPE_UNSIGNED (type))
715 (rshift (lshift @0 @2) @3)
716 (with
717 { tree utype = unsigned_type_for (type); }
718 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
719
720 /* Fold (C1/X)*C2 into (C1*C2)/X. */
721 (simplify
722 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
723 (if (flag_associative_math
724 && single_use (@3))
725 (with
726 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
727 (if (tem)
728 (rdiv { tem; } @1)))))
729
730 /* Simplify ~X & X as zero. */
731 (simplify
732 (bit_and:c (convert? @0) (convert? (bit_not @0)))
733 { build_zero_cst (type); })
734
735 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
736 (simplify
737 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
738 (if (TYPE_UNSIGNED (type))
739 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
740
741 (for bitop (bit_and bit_ior)
742 cmp (eq ne)
743 /* PR35691: Transform
744 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
745 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
746 (simplify
747 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
748 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
749 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
750 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
751 (cmp (bit_ior @0 (convert @1)) @2)))
752 /* Transform:
753 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
754 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
755 (simplify
756 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
757 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
758 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
759 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
760 (cmp (bit_and @0 (convert @1)) @2))))
761
762 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
763 (simplify
764 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
765 (minus (bit_xor @0 @1) @1))
766 (simplify
767 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
768 (if (~wi::to_wide (@2) == wi::to_wide (@1))
769 (minus (bit_xor @0 @1) @1)))
770
771 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
772 (simplify
773 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
774 (minus @1 (bit_xor @0 @1)))
775
776 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
777 (for op (bit_ior bit_xor plus)
778 (simplify
779 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
780 (bit_xor @0 @1))
781 (simplify
782 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
783 (if (~wi::to_wide (@2) == wi::to_wide (@1))
784 (bit_xor @0 @1))))
785
786 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
787 (simplify
788 (bit_ior:c (bit_xor:c @0 @1) @0)
789 (bit_ior @0 @1))
790
791 /* (a & ~b) | (a ^ b) --> a ^ b */
792 (simplify
793 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
794 @2)
795
796 /* (a & ~b) ^ ~a --> ~(a & b) */
797 (simplify
798 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
799 (bit_not (bit_and @0 @1)))
800
801 /* (a | b) & ~(a ^ b) --> a & b */
802 (simplify
803 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
804 (bit_and @0 @1))
805
806 /* a | ~(a ^ b) --> a | ~b */
807 (simplify
808 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
809 (bit_ior @0 (bit_not @1)))
810
811 /* (a | b) | (a &^ b) --> a | b */
812 (for op (bit_and bit_xor)
813 (simplify
814 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
815 @2))
816
817 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
818 (simplify
819 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
820 @2)
821
822 /* ~(~a & b) --> a | ~b */
823 (simplify
824 (bit_not (bit_and:cs (bit_not @0) @1))
825 (bit_ior @0 (bit_not @1)))
826
827 /* ~(~a | b) --> a & ~b */
828 (simplify
829 (bit_not (bit_ior:cs (bit_not @0) @1))
830 (bit_and @0 (bit_not @1)))
831
832 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
833 #if GIMPLE
834 (simplify
835 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
836 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
837 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
838 (bit_xor @0 @1)))
839 #endif
840
841 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
842 ((A & N) + B) & M -> (A + B) & M
843 Similarly if (N & M) == 0,
844 ((A | N) + B) & M -> (A + B) & M
845 and for - instead of + (or unary - instead of +)
846 and/or ^ instead of |.
847 If B is constant and (B & M) == 0, fold into A & M. */
848 (for op (plus minus)
849 (for bitop (bit_and bit_ior bit_xor)
850 (simplify
851 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
852 (with
853 { tree pmop[2];
854 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
855 @3, @4, @1, ERROR_MARK, NULL_TREE,
856 NULL_TREE, pmop); }
857 (if (utype)
858 (convert (bit_and (op (convert:utype { pmop[0]; })
859 (convert:utype { pmop[1]; }))
860 (convert:utype @2))))))
861 (simplify
862 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
863 (with
864 { tree pmop[2];
865 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
866 NULL_TREE, NULL_TREE, @1, bitop, @3,
867 @4, pmop); }
868 (if (utype)
869 (convert (bit_and (op (convert:utype { pmop[0]; })
870 (convert:utype { pmop[1]; }))
871 (convert:utype @2)))))))
872 (simplify
873 (bit_and (op:s @0 @1) INTEGER_CST@2)
874 (with
875 { tree pmop[2];
876 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
877 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
878 NULL_TREE, NULL_TREE, pmop); }
879 (if (utype)
880 (convert (bit_and (op (convert:utype { pmop[0]; })
881 (convert:utype { pmop[1]; }))
882 (convert:utype @2)))))))
883 (for bitop (bit_and bit_ior bit_xor)
884 (simplify
885 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
886 (with
887 { tree pmop[2];
888 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
889 bitop, @2, @3, NULL_TREE, ERROR_MARK,
890 NULL_TREE, NULL_TREE, pmop); }
891 (if (utype)
892 (convert (bit_and (negate (convert:utype { pmop[0]; }))
893 (convert:utype @1)))))))
894
895 /* X % Y is smaller than Y. */
896 (for cmp (lt ge)
897 (simplify
898 (cmp (trunc_mod @0 @1) @1)
899 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
900 { constant_boolean_node (cmp == LT_EXPR, type); })))
901 (for cmp (gt le)
902 (simplify
903 (cmp @1 (trunc_mod @0 @1))
904 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
905 { constant_boolean_node (cmp == GT_EXPR, type); })))
906
907 /* x | ~0 -> ~0 */
908 (simplify
909 (bit_ior @0 integer_all_onesp@1)
910 @1)
911
912 /* x | 0 -> x */
913 (simplify
914 (bit_ior @0 integer_zerop)
915 @0)
916
917 /* x & 0 -> 0 */
918 (simplify
919 (bit_and @0 integer_zerop@1)
920 @1)
921
922 /* ~x | x -> -1 */
923 /* ~x ^ x -> -1 */
924 /* ~x + x -> -1 */
925 (for op (bit_ior bit_xor plus)
926 (simplify
927 (op:c (convert? @0) (convert? (bit_not @0)))
928 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
929
930 /* x ^ x -> 0 */
931 (simplify
932 (bit_xor @0 @0)
933 { build_zero_cst (type); })
934
935 /* Canonicalize X ^ ~0 to ~X. */
936 (simplify
937 (bit_xor @0 integer_all_onesp@1)
938 (bit_not @0))
939
940 /* x & ~0 -> x */
941 (simplify
942 (bit_and @0 integer_all_onesp)
943 (non_lvalue @0))
944
945 /* x & x -> x, x | x -> x */
946 (for bitop (bit_and bit_ior)
947 (simplify
948 (bitop @0 @0)
949 (non_lvalue @0)))
950
951 /* x & C -> x if we know that x & ~C == 0. */
952 #if GIMPLE
953 (simplify
954 (bit_and SSA_NAME@0 INTEGER_CST@1)
955 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
956 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
957 @0))
958 #endif
959
960 /* x + (x & 1) -> (x + 1) & ~1 */
961 (simplify
962 (plus:c @0 (bit_and:s @0 integer_onep@1))
963 (bit_and (plus @0 @1) (bit_not @1)))
964
965 /* x & ~(x & y) -> x & ~y */
966 /* x | ~(x | y) -> x | ~y */
967 (for bitop (bit_and bit_ior)
968 (simplify
969 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
970 (bitop @0 (bit_not @1))))
971
972 /* (~x & y) | ~(x | y) -> ~x */
973 (simplify
974 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
975 @2)
976
977 /* (x | y) ^ (x | ~y) -> ~x */
978 (simplify
979 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
980 (bit_not @0))
981
982 /* (x & y) | ~(x | y) -> ~(x ^ y) */
983 (simplify
984 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
985 (bit_not (bit_xor @0 @1)))
986
987 /* (~x | y) ^ (x ^ y) -> x | ~y */
988 (simplify
989 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
990 (bit_ior @0 (bit_not @1)))
991
992 /* (x ^ y) | ~(x | y) -> ~(x & y) */
993 (simplify
994 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
995 (bit_not (bit_and @0 @1)))
996
997 /* (x | y) & ~x -> y & ~x */
998 /* (x & y) | ~x -> y | ~x */
999 (for bitop (bit_and bit_ior)
1000 rbitop (bit_ior bit_and)
1001 (simplify
1002 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1003 (bitop @1 @2)))
1004
1005 /* (x & y) ^ (x | y) -> x ^ y */
1006 (simplify
1007 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1008 (bit_xor @0 @1))
1009
1010 /* (x ^ y) ^ (x | y) -> x & y */
1011 (simplify
1012 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1013 (bit_and @0 @1))
1014
1015 /* (x & y) + (x ^ y) -> x | y */
1016 /* (x & y) | (x ^ y) -> x | y */
1017 /* (x & y) ^ (x ^ y) -> x | y */
1018 (for op (plus bit_ior bit_xor)
1019 (simplify
1020 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1021 (bit_ior @0 @1)))
1022
1023 /* (x & y) + (x | y) -> x + y */
1024 (simplify
1025 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1026 (plus @0 @1))
1027
1028 /* (x + y) - (x | y) -> x & y */
1029 (simplify
1030 (minus (plus @0 @1) (bit_ior @0 @1))
1031 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1032 && !TYPE_SATURATING (type))
1033 (bit_and @0 @1)))
1034
1035 /* (x + y) - (x & y) -> x | y */
1036 (simplify
1037 (minus (plus @0 @1) (bit_and @0 @1))
1038 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1039 && !TYPE_SATURATING (type))
1040 (bit_ior @0 @1)))
1041
1042 /* (x | y) - (x ^ y) -> x & y */
1043 (simplify
1044 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1045 (bit_and @0 @1))
1046
1047 /* (x | y) - (x & y) -> x ^ y */
1048 (simplify
1049 (minus (bit_ior @0 @1) (bit_and @0 @1))
1050 (bit_xor @0 @1))
1051
1052 /* (x | y) & ~(x & y) -> x ^ y */
1053 (simplify
1054 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1055 (bit_xor @0 @1))
1056
1057 /* (x | y) & (~x ^ y) -> x & y */
1058 (simplify
1059 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1060 (bit_and @0 @1))
1061
1062 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1063 (simplify
1064 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1065 (bit_not (bit_xor @0 @1)))
1066
1067 /* (~x | y) ^ (x | ~y) -> x ^ y */
1068 (simplify
1069 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1070 (bit_xor @0 @1))
1071
1072 /* ~x & ~y -> ~(x | y)
1073 ~x | ~y -> ~(x & y) */
1074 (for op (bit_and bit_ior)
1075 rop (bit_ior bit_and)
1076 (simplify
1077 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1078 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1079 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1080 (bit_not (rop (convert @0) (convert @1))))))
1081
1082 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1083 with a constant, and the two constants have no bits in common,
1084 we should treat this as a BIT_IOR_EXPR since this may produce more
1085 simplifications. */
1086 (for op (bit_xor plus)
1087 (simplify
1088 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1089 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1090 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1091 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1092 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1093 (bit_ior (convert @4) (convert @5)))))
1094
1095 /* (X | Y) ^ X -> Y & ~ X*/
1096 (simplify
1097 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1098 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1099 (convert (bit_and @1 (bit_not @0)))))
1100
1101 /* Convert ~X ^ ~Y to X ^ Y. */
1102 (simplify
1103 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1104 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1105 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1106 (bit_xor (convert @0) (convert @1))))
1107
1108 /* Convert ~X ^ C to X ^ ~C. */
1109 (simplify
1110 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1111 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1112 (bit_xor (convert @0) (bit_not @1))))
1113
1114 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1115 (for opo (bit_and bit_xor)
1116 opi (bit_xor bit_and)
1117 (simplify
1118 (opo:c (opi:cs @0 @1) @1)
1119 (bit_and (bit_not @0) @1)))
1120
1121 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1122 operands are another bit-wise operation with a common input. If so,
1123 distribute the bit operations to save an operation and possibly two if
1124 constants are involved. For example, convert
1125 (A | B) & (A | C) into A | (B & C)
1126 Further simplification will occur if B and C are constants. */
1127 (for op (bit_and bit_ior bit_xor)
1128 rop (bit_ior bit_and bit_and)
1129 (simplify
1130 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1131 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1132 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1133 (rop (convert @0) (op (convert @1) (convert @2))))))
1134
1135 /* Some simple reassociation for bit operations, also handled in reassoc. */
1136 /* (X & Y) & Y -> X & Y
1137 (X | Y) | Y -> X | Y */
1138 (for op (bit_and bit_ior)
1139 (simplify
1140 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1141 @2))
1142 /* (X ^ Y) ^ Y -> X */
1143 (simplify
1144 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1145 (convert @0))
1146 /* (X & Y) & (X & Z) -> (X & Y) & Z
1147 (X | Y) | (X | Z) -> (X | Y) | Z */
1148 (for op (bit_and bit_ior)
1149 (simplify
1150 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1152 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1153 (if (single_use (@5) && single_use (@6))
1154 (op @3 (convert @2))
1155 (if (single_use (@3) && single_use (@4))
1156 (op (convert @1) @5))))))
1157 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1158 (simplify
1159 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1160 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1161 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1162 (bit_xor (convert @1) (convert @2))))
1163
1164 /* Convert abs (abs (X)) into abs (X).
1165 also absu (absu (X)) into absu (X). */
1166 (simplify
1167 (abs (abs@1 @0))
1168 @1)
1169
1170 (simplify
1171 (absu (convert@2 (absu@1 @0)))
1172 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1173 @1))
1174
1175 /* Convert abs[u] (-X) -> abs[u] (X). */
1176 (simplify
1177 (abs (negate @0))
1178 (abs @0))
1179
1180 (simplify
1181 (absu (negate @0))
1182 (absu @0))
1183
1184 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1185 (simplify
1186 (abs tree_expr_nonnegative_p@0)
1187 @0)
1188
1189 (simplify
1190 (absu tree_expr_nonnegative_p@0)
1191 (convert @0))
1192
1193 /* A few cases of fold-const.c negate_expr_p predicate. */
1194 (match negate_expr_p
1195 INTEGER_CST
1196 (if ((INTEGRAL_TYPE_P (type)
1197 && TYPE_UNSIGNED (type))
1198 || (!TYPE_OVERFLOW_SANITIZED (type)
1199 && may_negate_without_overflow_p (t)))))
1200 (match negate_expr_p
1201 FIXED_CST)
1202 (match negate_expr_p
1203 (negate @0)
1204 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1205 (match negate_expr_p
1206 REAL_CST
1207 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1208 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1209 ways. */
1210 (match negate_expr_p
1211 VECTOR_CST
1212 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1213 (match negate_expr_p
1214 (minus @0 @1)
1215 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1216 || (FLOAT_TYPE_P (type)
1217 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1218 && !HONOR_SIGNED_ZEROS (type)))))
1219
1220 /* (-A) * (-B) -> A * B */
1221 (simplify
1222 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1223 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1224 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1225 (mult (convert @0) (convert (negate @1)))))
1226
1227 /* -(A + B) -> (-B) - A. */
1228 (simplify
1229 (negate (plus:c @0 negate_expr_p@1))
1230 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1231 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1232 (minus (negate @1) @0)))
1233
1234 /* -(A - B) -> B - A. */
1235 (simplify
1236 (negate (minus @0 @1))
1237 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1238 || (FLOAT_TYPE_P (type)
1239 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1240 && !HONOR_SIGNED_ZEROS (type)))
1241 (minus @1 @0)))
1242 (simplify
1243 (negate (pointer_diff @0 @1))
1244 (if (TYPE_OVERFLOW_UNDEFINED (type))
1245 (pointer_diff @1 @0)))
1246
1247 /* A - B -> A + (-B) if B is easily negatable. */
1248 (simplify
1249 (minus @0 negate_expr_p@1)
1250 (if (!FIXED_POINT_TYPE_P (type))
1251 (plus @0 (negate @1))))
1252
1253 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1254 when profitable.
1255 For bitwise binary operations apply operand conversions to the
1256 binary operation result instead of to the operands. This allows
1257 to combine successive conversions and bitwise binary operations.
1258 We combine the above two cases by using a conditional convert. */
1259 (for bitop (bit_and bit_ior bit_xor)
1260 (simplify
1261 (bitop (convert @0) (convert? @1))
1262 (if (((TREE_CODE (@1) == INTEGER_CST
1263 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1264 && int_fits_type_p (@1, TREE_TYPE (@0)))
1265 || types_match (@0, @1))
1266 /* ??? This transform conflicts with fold-const.c doing
1267 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1268 constants (if x has signed type, the sign bit cannot be set
1269 in c). This folds extension into the BIT_AND_EXPR.
1270 Restrict it to GIMPLE to avoid endless recursions. */
1271 && (bitop != BIT_AND_EXPR || GIMPLE)
1272 && (/* That's a good idea if the conversion widens the operand, thus
1273 after hoisting the conversion the operation will be narrower. */
1274 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1275 /* It's also a good idea if the conversion is to a non-integer
1276 mode. */
1277 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1278 /* Or if the precision of TO is not the same as the precision
1279 of its mode. */
1280 || !type_has_mode_precision_p (type)))
1281 (convert (bitop @0 (convert @1))))))
1282
1283 (for bitop (bit_and bit_ior)
1284 rbitop (bit_ior bit_and)
1285 /* (x | y) & x -> x */
1286 /* (x & y) | x -> x */
1287 (simplify
1288 (bitop:c (rbitop:c @0 @1) @0)
1289 @0)
1290 /* (~x | y) & x -> x & y */
1291 /* (~x & y) | x -> x | y */
1292 (simplify
1293 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1294 (bitop @0 @1)))
1295
1296 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1297 (simplify
1298 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1299 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1300
1301 /* Combine successive equal operations with constants. */
1302 (for bitop (bit_and bit_ior bit_xor)
1303 (simplify
1304 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1305 (if (!CONSTANT_CLASS_P (@0))
1306 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1307 folded to a constant. */
1308 (bitop @0 (bitop @1 @2))
1309 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1310 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1311 the values involved are such that the operation can't be decided at
1312 compile time. Try folding one of @0 or @1 with @2 to see whether
1313 that combination can be decided at compile time.
1314
1315 Keep the existing form if both folds fail, to avoid endless
1316 oscillation. */
1317 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1318 (if (cst1)
1319 (bitop @1 { cst1; })
1320 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1321 (if (cst2)
1322 (bitop @0 { cst2; }))))))))
1323
1324 /* Try simple folding for X op !X, and X op X with the help
1325 of the truth_valued_p and logical_inverted_value predicates. */
1326 (match truth_valued_p
1327 @0
1328 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1329 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1330 (match truth_valued_p
1331 (op @0 @1)))
1332 (match truth_valued_p
1333 (truth_not @0))
1334
1335 (match (logical_inverted_value @0)
1336 (truth_not @0))
1337 (match (logical_inverted_value @0)
1338 (bit_not truth_valued_p@0))
1339 (match (logical_inverted_value @0)
1340 (eq @0 integer_zerop))
1341 (match (logical_inverted_value @0)
1342 (ne truth_valued_p@0 integer_truep))
1343 (match (logical_inverted_value @0)
1344 (bit_xor truth_valued_p@0 integer_truep))
1345
1346 /* X & !X -> 0. */
1347 (simplify
1348 (bit_and:c @0 (logical_inverted_value @0))
1349 { build_zero_cst (type); })
1350 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1351 (for op (bit_ior bit_xor)
1352 (simplify
1353 (op:c truth_valued_p@0 (logical_inverted_value @0))
1354 { constant_boolean_node (true, type); }))
1355 /* X ==/!= !X is false/true. */
1356 (for op (eq ne)
1357 (simplify
1358 (op:c truth_valued_p@0 (logical_inverted_value @0))
1359 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1360
1361 /* ~~x -> x */
1362 (simplify
1363 (bit_not (bit_not @0))
1364 @0)
1365
1366 /* Convert ~ (-A) to A - 1. */
1367 (simplify
1368 (bit_not (convert? (negate @0)))
1369 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1370 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1371 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1372
1373 /* Convert - (~A) to A + 1. */
1374 (simplify
1375 (negate (nop_convert (bit_not @0)))
1376 (plus (view_convert @0) { build_each_one_cst (type); }))
1377
1378 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1379 (simplify
1380 (bit_not (convert? (minus @0 integer_each_onep)))
1381 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1382 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1383 (convert (negate @0))))
1384 (simplify
1385 (bit_not (convert? (plus @0 integer_all_onesp)))
1386 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1387 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1388 (convert (negate @0))))
1389
1390 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1391 (simplify
1392 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1393 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1394 (convert (bit_xor @0 (bit_not @1)))))
1395 (simplify
1396 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1397 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1398 (convert (bit_xor @0 @1))))
1399
1400 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1401 (simplify
1402 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1403 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1404 (bit_not (bit_xor (view_convert @0) @1))))
1405
1406 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1407 (simplify
1408 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1409 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1410
1411 /* Fold A - (A & B) into ~B & A. */
1412 (simplify
1413 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1414 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1415 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1416 (convert (bit_and (bit_not @1) @0))))
1417
1418 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1419 (for cmp (gt lt ge le)
1420 (simplify
1421 (mult (convert (cmp @0 @1)) @2)
1422 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1423
1424 /* For integral types with undefined overflow and C != 0 fold
1425 x * C EQ/NE y * C into x EQ/NE y. */
1426 (for cmp (eq ne)
1427 (simplify
1428 (cmp (mult:c @0 @1) (mult:c @2 @1))
1429 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1430 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1431 && tree_expr_nonzero_p (@1))
1432 (cmp @0 @2))))
1433
1434 /* For integral types with wrapping overflow and C odd fold
1435 x * C EQ/NE y * C into x EQ/NE y. */
1436 (for cmp (eq ne)
1437 (simplify
1438 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1439 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1440 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1441 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1442 (cmp @0 @2))))
1443
1444 /* For integral types with undefined overflow and C != 0 fold
1445 x * C RELOP y * C into:
1446
1447 x RELOP y for nonnegative C
1448 y RELOP x for negative C */
1449 (for cmp (lt gt le ge)
1450 (simplify
1451 (cmp (mult:c @0 @1) (mult:c @2 @1))
1452 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1453 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1454 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1455 (cmp @0 @2)
1456 (if (TREE_CODE (@1) == INTEGER_CST
1457 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1458 (cmp @2 @0))))))
1459
1460 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1461 (for cmp (le gt)
1462 icmp (gt le)
1463 (simplify
1464 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1465 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1466 && TYPE_UNSIGNED (TREE_TYPE (@0))
1467 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1468 && (wi::to_wide (@2)
1469 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1470 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1471 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1472
1473 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1474 (for cmp (simple_comparison)
1475 (simplify
1476 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1477 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1478 (cmp @0 @1))))
1479
1480 /* X / C1 op C2 into a simple range test. */
1481 (for cmp (simple_comparison)
1482 (simplify
1483 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1484 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1485 && integer_nonzerop (@1)
1486 && !TREE_OVERFLOW (@1)
1487 && !TREE_OVERFLOW (@2))
1488 (with { tree lo, hi; bool neg_overflow;
1489 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1490 &neg_overflow); }
1491 (switch
1492 (if (code == LT_EXPR || code == GE_EXPR)
1493 (if (TREE_OVERFLOW (lo))
1494 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1495 (if (code == LT_EXPR)
1496 (lt @0 { lo; })
1497 (ge @0 { lo; }))))
1498 (if (code == LE_EXPR || code == GT_EXPR)
1499 (if (TREE_OVERFLOW (hi))
1500 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1501 (if (code == LE_EXPR)
1502 (le @0 { hi; })
1503 (gt @0 { hi; }))))
1504 (if (!lo && !hi)
1505 { build_int_cst (type, code == NE_EXPR); })
1506 (if (code == EQ_EXPR && !hi)
1507 (ge @0 { lo; }))
1508 (if (code == EQ_EXPR && !lo)
1509 (le @0 { hi; }))
1510 (if (code == NE_EXPR && !hi)
1511 (lt @0 { lo; }))
1512 (if (code == NE_EXPR && !lo)
1513 (gt @0 { hi; }))
1514 (if (GENERIC)
1515 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1516 lo, hi); })
1517 (with
1518 {
1519 tree etype = range_check_type (TREE_TYPE (@0));
1520 if (etype)
1521 {
1522 if (! TYPE_UNSIGNED (etype))
1523 etype = unsigned_type_for (etype);
1524 hi = fold_convert (etype, hi);
1525 lo = fold_convert (etype, lo);
1526 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1527 }
1528 }
1529 (if (etype && hi && !TREE_OVERFLOW (hi))
1530 (if (code == EQ_EXPR)
1531 (le (minus (convert:etype @0) { lo; }) { hi; })
1532 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1533
1534 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1535 (for op (lt le ge gt)
1536 (simplify
1537 (op (plus:c @0 @2) (plus:c @1 @2))
1538 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1539 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1540 (op @0 @1))))
1541 /* For equality and subtraction, this is also true with wrapping overflow. */
1542 (for op (eq ne minus)
1543 (simplify
1544 (op (plus:c @0 @2) (plus:c @1 @2))
1545 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1546 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1547 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1548 (op @0 @1))))
1549
1550 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1551 (for op (lt le ge gt)
1552 (simplify
1553 (op (minus @0 @2) (minus @1 @2))
1554 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1556 (op @0 @1))))
1557 /* For equality and subtraction, this is also true with wrapping overflow. */
1558 (for op (eq ne minus)
1559 (simplify
1560 (op (minus @0 @2) (minus @1 @2))
1561 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1562 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1563 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1564 (op @0 @1))))
1565 /* And for pointers... */
1566 (for op (simple_comparison)
1567 (simplify
1568 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1569 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1570 (op @0 @1))))
1571 (simplify
1572 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1573 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1574 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1575 (pointer_diff @0 @1)))
1576
1577 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1578 (for op (lt le ge gt)
1579 (simplify
1580 (op (minus @2 @0) (minus @2 @1))
1581 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1582 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1583 (op @1 @0))))
1584 /* For equality and subtraction, this is also true with wrapping overflow. */
1585 (for op (eq ne minus)
1586 (simplify
1587 (op (minus @2 @0) (minus @2 @1))
1588 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1589 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1590 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1591 (op @1 @0))))
1592 /* And for pointers... */
1593 (for op (simple_comparison)
1594 (simplify
1595 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1596 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1597 (op @1 @0))))
1598 (simplify
1599 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1600 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1601 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1602 (pointer_diff @1 @0)))
1603
1604 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1605 (for op (lt le gt ge)
1606 (simplify
1607 (op:c (plus:c@2 @0 @1) @1)
1608 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1609 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1610 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1611 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1612 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1613 /* For equality, this is also true with wrapping overflow. */
1614 (for op (eq ne)
1615 (simplify
1616 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1617 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1618 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1619 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1620 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1621 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1622 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1623 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1624 (simplify
1625 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1626 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1627 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1628 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1629 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1630
1631 /* X - Y < X is the same as Y > 0 when there is no overflow.
1632 For equality, this is also true with wrapping overflow. */
1633 (for op (simple_comparison)
1634 (simplify
1635 (op:c @0 (minus@2 @0 @1))
1636 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1637 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1638 || ((op == EQ_EXPR || op == NE_EXPR)
1639 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1640 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1641 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1642
1643 /* Transform:
1644 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1645 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1646 (for cmp (eq ne)
1647 ocmp (lt ge)
1648 (simplify
1649 (cmp (trunc_div @0 @1) integer_zerop)
1650 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1651 /* Complex ==/!= is allowed, but not </>=. */
1652 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1653 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1654 (ocmp @0 @1))))
1655
1656 /* X == C - X can never be true if C is odd. */
1657 (for cmp (eq ne)
1658 (simplify
1659 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1660 (if (TREE_INT_CST_LOW (@1) & 1)
1661 { constant_boolean_node (cmp == NE_EXPR, type); })))
1662
1663 /* Arguments on which one can call get_nonzero_bits to get the bits
1664 possibly set. */
1665 (match with_possible_nonzero_bits
1666 INTEGER_CST@0)
1667 (match with_possible_nonzero_bits
1668 SSA_NAME@0
1669 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1670 /* Slightly extended version, do not make it recursive to keep it cheap. */
1671 (match (with_possible_nonzero_bits2 @0)
1672 with_possible_nonzero_bits@0)
1673 (match (with_possible_nonzero_bits2 @0)
1674 (bit_and:c with_possible_nonzero_bits@0 @2))
1675
1676 /* Same for bits that are known to be set, but we do not have
1677 an equivalent to get_nonzero_bits yet. */
1678 (match (with_certain_nonzero_bits2 @0)
1679 INTEGER_CST@0)
1680 (match (with_certain_nonzero_bits2 @0)
1681 (bit_ior @1 INTEGER_CST@0))
1682
1683 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1684 (for cmp (eq ne)
1685 (simplify
1686 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1687 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1688 { constant_boolean_node (cmp == NE_EXPR, type); })))
1689
1690 /* ((X inner_op C0) outer_op C1)
1691 With X being a tree where value_range has reasoned certain bits to always be
1692 zero throughout its computed value range,
1693 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1694 where zero_mask has 1's for all bits that are sure to be 0 in
1695 and 0's otherwise.
1696 if (inner_op == '^') C0 &= ~C1;
1697 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1698 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1699 */
1700 (for inner_op (bit_ior bit_xor)
1701 outer_op (bit_xor bit_ior)
1702 (simplify
1703 (outer_op
1704 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1705 (with
1706 {
1707 bool fail = false;
1708 wide_int zero_mask_not;
1709 wide_int C0;
1710 wide_int cst_emit;
1711
1712 if (TREE_CODE (@2) == SSA_NAME)
1713 zero_mask_not = get_nonzero_bits (@2);
1714 else
1715 fail = true;
1716
1717 if (inner_op == BIT_XOR_EXPR)
1718 {
1719 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1720 cst_emit = C0 | wi::to_wide (@1);
1721 }
1722 else
1723 {
1724 C0 = wi::to_wide (@0);
1725 cst_emit = C0 ^ wi::to_wide (@1);
1726 }
1727 }
1728 (if (!fail && (C0 & zero_mask_not) == 0)
1729 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1730 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1731 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1732
1733 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1734 (simplify
1735 (pointer_plus (pointer_plus:s @0 @1) @3)
1736 (pointer_plus @0 (plus @1 @3)))
1737
1738 /* Pattern match
1739 tem1 = (long) ptr1;
1740 tem2 = (long) ptr2;
1741 tem3 = tem2 - tem1;
1742 tem4 = (unsigned long) tem3;
1743 tem5 = ptr1 + tem4;
1744 and produce
1745 tem5 = ptr2; */
1746 (simplify
1747 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1748 /* Conditionally look through a sign-changing conversion. */
1749 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1750 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1751 || (GENERIC && type == TREE_TYPE (@1))))
1752 @1))
1753 (simplify
1754 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1755 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1756 (convert @1)))
1757
1758 /* Pattern match
1759 tem = (sizetype) ptr;
1760 tem = tem & algn;
1761 tem = -tem;
1762 ... = ptr p+ tem;
1763 and produce the simpler and easier to analyze with respect to alignment
1764 ... = ptr & ~algn; */
1765 (simplify
1766 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1767 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1768 (bit_and @0 { algn; })))
1769
1770 /* Try folding difference of addresses. */
1771 (simplify
1772 (minus (convert ADDR_EXPR@0) (convert @1))
1773 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1774 (with { poly_int64 diff; }
1775 (if (ptr_difference_const (@0, @1, &diff))
1776 { build_int_cst_type (type, diff); }))))
1777 (simplify
1778 (minus (convert @0) (convert ADDR_EXPR@1))
1779 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1780 (with { poly_int64 diff; }
1781 (if (ptr_difference_const (@0, @1, &diff))
1782 { build_int_cst_type (type, diff); }))))
1783 (simplify
1784 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1785 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1786 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1787 (with { poly_int64 diff; }
1788 (if (ptr_difference_const (@0, @1, &diff))
1789 { build_int_cst_type (type, diff); }))))
1790 (simplify
1791 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1792 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1793 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1794 (with { poly_int64 diff; }
1795 (if (ptr_difference_const (@0, @1, &diff))
1796 { build_int_cst_type (type, diff); }))))
1797
1798 /* If arg0 is derived from the address of an object or function, we may
1799 be able to fold this expression using the object or function's
1800 alignment. */
1801 (simplify
1802 (bit_and (convert? @0) INTEGER_CST@1)
1803 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1804 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1805 (with
1806 {
1807 unsigned int align;
1808 unsigned HOST_WIDE_INT bitpos;
1809 get_pointer_alignment_1 (@0, &align, &bitpos);
1810 }
1811 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1812 { wide_int_to_tree (type, (wi::to_wide (@1)
1813 & (bitpos / BITS_PER_UNIT))); }))))
1814
1815
1816 /* We can't reassociate at all for saturating types. */
1817 (if (!TYPE_SATURATING (type))
1818
1819 /* Contract negates. */
1820 /* A + (-B) -> A - B */
1821 (simplify
1822 (plus:c @0 (convert? (negate @1)))
1823 /* Apply STRIP_NOPS on the negate. */
1824 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1825 && !TYPE_OVERFLOW_SANITIZED (type))
1826 (with
1827 {
1828 tree t1 = type;
1829 if (INTEGRAL_TYPE_P (type)
1830 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1831 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1832 }
1833 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1834 /* A - (-B) -> A + B */
1835 (simplify
1836 (minus @0 (convert? (negate @1)))
1837 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1838 && !TYPE_OVERFLOW_SANITIZED (type))
1839 (with
1840 {
1841 tree t1 = type;
1842 if (INTEGRAL_TYPE_P (type)
1843 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1844 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1845 }
1846 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1847 /* -(T)(-A) -> (T)A
1848 Sign-extension is ok except for INT_MIN, which thankfully cannot
1849 happen without overflow. */
1850 (simplify
1851 (negate (convert (negate @1)))
1852 (if (INTEGRAL_TYPE_P (type)
1853 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1854 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1855 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1856 && !TYPE_OVERFLOW_SANITIZED (type)
1857 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1858 (convert @1)))
1859 (simplify
1860 (negate (convert negate_expr_p@1))
1861 (if (SCALAR_FLOAT_TYPE_P (type)
1862 && ((DECIMAL_FLOAT_TYPE_P (type)
1863 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1864 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1865 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1866 (convert (negate @1))))
1867 (simplify
1868 (negate (nop_convert (negate @1)))
1869 (if (!TYPE_OVERFLOW_SANITIZED (type)
1870 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1871 (view_convert @1)))
1872
1873 /* We can't reassociate floating-point unless -fassociative-math
1874 or fixed-point plus or minus because of saturation to +-Inf. */
1875 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1876 && !FIXED_POINT_TYPE_P (type))
1877
1878 /* Match patterns that allow contracting a plus-minus pair
1879 irrespective of overflow issues. */
1880 /* (A +- B) - A -> +- B */
1881 /* (A +- B) -+ B -> A */
1882 /* A - (A +- B) -> -+ B */
1883 /* A +- (B -+ A) -> +- B */
1884 (simplify
1885 (minus (plus:c @0 @1) @0)
1886 @1)
1887 (simplify
1888 (minus (minus @0 @1) @0)
1889 (negate @1))
1890 (simplify
1891 (plus:c (minus @0 @1) @1)
1892 @0)
1893 (simplify
1894 (minus @0 (plus:c @0 @1))
1895 (negate @1))
1896 (simplify
1897 (minus @0 (minus @0 @1))
1898 @1)
1899 /* (A +- B) + (C - A) -> C +- B */
1900 /* (A + B) - (A - C) -> B + C */
1901 /* More cases are handled with comparisons. */
1902 (simplify
1903 (plus:c (plus:c @0 @1) (minus @2 @0))
1904 (plus @2 @1))
1905 (simplify
1906 (plus:c (minus @0 @1) (minus @2 @0))
1907 (minus @2 @1))
1908 (simplify
1909 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1910 (if (TYPE_OVERFLOW_UNDEFINED (type)
1911 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1912 (pointer_diff @2 @1)))
1913 (simplify
1914 (minus (plus:c @0 @1) (minus @0 @2))
1915 (plus @1 @2))
1916
1917 /* (A +- CST1) +- CST2 -> A + CST3
1918 Use view_convert because it is safe for vectors and equivalent for
1919 scalars. */
1920 (for outer_op (plus minus)
1921 (for inner_op (plus minus)
1922 neg_inner_op (minus plus)
1923 (simplify
1924 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1925 CONSTANT_CLASS_P@2)
1926 /* If one of the types wraps, use that one. */
1927 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1928 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1929 forever if something doesn't simplify into a constant. */
1930 (if (!CONSTANT_CLASS_P (@0))
1931 (if (outer_op == PLUS_EXPR)
1932 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1933 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1934 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1935 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1936 (if (outer_op == PLUS_EXPR)
1937 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1938 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1939 /* If the constant operation overflows we cannot do the transform
1940 directly as we would introduce undefined overflow, for example
1941 with (a - 1) + INT_MIN. */
1942 (if (types_match (type, @0))
1943 (with { tree cst = const_binop (outer_op == inner_op
1944 ? PLUS_EXPR : MINUS_EXPR,
1945 type, @1, @2); }
1946 (if (cst && !TREE_OVERFLOW (cst))
1947 (inner_op @0 { cst; } )
1948 /* X+INT_MAX+1 is X-INT_MIN. */
1949 (if (INTEGRAL_TYPE_P (type) && cst
1950 && wi::to_wide (cst) == wi::min_value (type))
1951 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1952 /* Last resort, use some unsigned type. */
1953 (with { tree utype = unsigned_type_for (type); }
1954 (if (utype)
1955 (view_convert (inner_op
1956 (view_convert:utype @0)
1957 (view_convert:utype
1958 { drop_tree_overflow (cst); }))))))))))))))
1959
1960 /* (CST1 - A) +- CST2 -> CST3 - A */
1961 (for outer_op (plus minus)
1962 (simplify
1963 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1964 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1965 (if (cst && !TREE_OVERFLOW (cst))
1966 (minus { cst; } @0)))))
1967
1968 /* CST1 - (CST2 - A) -> CST3 + A */
1969 (simplify
1970 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1971 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1972 (if (cst && !TREE_OVERFLOW (cst))
1973 (plus { cst; } @0))))
1974
1975 /* ~A + A -> -1 */
1976 (simplify
1977 (plus:c (bit_not @0) @0)
1978 (if (!TYPE_OVERFLOW_TRAPS (type))
1979 { build_all_ones_cst (type); }))
1980
1981 /* ~A + 1 -> -A */
1982 (simplify
1983 (plus (convert? (bit_not @0)) integer_each_onep)
1984 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1985 (negate (convert @0))))
1986
1987 /* -A - 1 -> ~A */
1988 (simplify
1989 (minus (convert? (negate @0)) integer_each_onep)
1990 (if (!TYPE_OVERFLOW_TRAPS (type)
1991 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1992 (bit_not (convert @0))))
1993
1994 /* -1 - A -> ~A */
1995 (simplify
1996 (minus integer_all_onesp @0)
1997 (bit_not @0))
1998
1999 /* (T)(P + A) - (T)P -> (T) A */
2000 (simplify
2001 (minus (convert (plus:c @@0 @1))
2002 (convert? @0))
2003 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2004 /* For integer types, if A has a smaller type
2005 than T the result depends on the possible
2006 overflow in P + A.
2007 E.g. T=size_t, A=(unsigned)429497295, P>0.
2008 However, if an overflow in P + A would cause
2009 undefined behavior, we can assume that there
2010 is no overflow. */
2011 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2013 (convert @1)))
2014 (simplify
2015 (minus (convert (pointer_plus @@0 @1))
2016 (convert @0))
2017 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2018 /* For pointer types, if the conversion of A to the
2019 final type requires a sign- or zero-extension,
2020 then we have to punt - it is not defined which
2021 one is correct. */
2022 || (POINTER_TYPE_P (TREE_TYPE (@0))
2023 && TREE_CODE (@1) == INTEGER_CST
2024 && tree_int_cst_sign_bit (@1) == 0))
2025 (convert @1)))
2026 (simplify
2027 (pointer_diff (pointer_plus @@0 @1) @0)
2028 /* The second argument of pointer_plus must be interpreted as signed, and
2029 thus sign-extended if necessary. */
2030 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2031 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2032 second arg is unsigned even when we need to consider it as signed,
2033 we don't want to diagnose overflow here. */
2034 (convert (view_convert:stype @1))))
2035
2036 /* (T)P - (T)(P + A) -> -(T) A */
2037 (simplify
2038 (minus (convert? @0)
2039 (convert (plus:c @@0 @1)))
2040 (if (INTEGRAL_TYPE_P (type)
2041 && TYPE_OVERFLOW_UNDEFINED (type)
2042 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2043 (with { tree utype = unsigned_type_for (type); }
2044 (convert (negate (convert:utype @1))))
2045 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2046 /* For integer types, if A has a smaller type
2047 than T the result depends on the possible
2048 overflow in P + A.
2049 E.g. T=size_t, A=(unsigned)429497295, P>0.
2050 However, if an overflow in P + A would cause
2051 undefined behavior, we can assume that there
2052 is no overflow. */
2053 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2054 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2055 (negate (convert @1)))))
2056 (simplify
2057 (minus (convert @0)
2058 (convert (pointer_plus @@0 @1)))
2059 (if (INTEGRAL_TYPE_P (type)
2060 && TYPE_OVERFLOW_UNDEFINED (type)
2061 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2062 (with { tree utype = unsigned_type_for (type); }
2063 (convert (negate (convert:utype @1))))
2064 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2065 /* For pointer types, if the conversion of A to the
2066 final type requires a sign- or zero-extension,
2067 then we have to punt - it is not defined which
2068 one is correct. */
2069 || (POINTER_TYPE_P (TREE_TYPE (@0))
2070 && TREE_CODE (@1) == INTEGER_CST
2071 && tree_int_cst_sign_bit (@1) == 0))
2072 (negate (convert @1)))))
2073 (simplify
2074 (pointer_diff @0 (pointer_plus @@0 @1))
2075 /* The second argument of pointer_plus must be interpreted as signed, and
2076 thus sign-extended if necessary. */
2077 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2078 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2079 second arg is unsigned even when we need to consider it as signed,
2080 we don't want to diagnose overflow here. */
2081 (negate (convert (view_convert:stype @1)))))
2082
2083 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2084 (simplify
2085 (minus (convert (plus:c @@0 @1))
2086 (convert (plus:c @0 @2)))
2087 (if (INTEGRAL_TYPE_P (type)
2088 && TYPE_OVERFLOW_UNDEFINED (type)
2089 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2090 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2091 (with { tree utype = unsigned_type_for (type); }
2092 (convert (minus (convert:utype @1) (convert:utype @2))))
2093 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2094 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2095 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2096 /* For integer types, if A has a smaller type
2097 than T the result depends on the possible
2098 overflow in P + A.
2099 E.g. T=size_t, A=(unsigned)429497295, P>0.
2100 However, if an overflow in P + A would cause
2101 undefined behavior, we can assume that there
2102 is no overflow. */
2103 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2104 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2105 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2106 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2107 (minus (convert @1) (convert @2)))))
2108 (simplify
2109 (minus (convert (pointer_plus @@0 @1))
2110 (convert (pointer_plus @0 @2)))
2111 (if (INTEGRAL_TYPE_P (type)
2112 && TYPE_OVERFLOW_UNDEFINED (type)
2113 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2114 (with { tree utype = unsigned_type_for (type); }
2115 (convert (minus (convert:utype @1) (convert:utype @2))))
2116 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2117 /* For pointer types, if the conversion of A to the
2118 final type requires a sign- or zero-extension,
2119 then we have to punt - it is not defined which
2120 one is correct. */
2121 || (POINTER_TYPE_P (TREE_TYPE (@0))
2122 && TREE_CODE (@1) == INTEGER_CST
2123 && tree_int_cst_sign_bit (@1) == 0
2124 && TREE_CODE (@2) == INTEGER_CST
2125 && tree_int_cst_sign_bit (@2) == 0))
2126 (minus (convert @1) (convert @2)))))
2127 (simplify
2128 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2129 /* The second argument of pointer_plus must be interpreted as signed, and
2130 thus sign-extended if necessary. */
2131 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2132 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2133 second arg is unsigned even when we need to consider it as signed,
2134 we don't want to diagnose overflow here. */
2135 (minus (convert (view_convert:stype @1))
2136 (convert (view_convert:stype @2)))))))
2137
2138 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2139 Modeled after fold_plusminus_mult_expr. */
2140 (if (!TYPE_SATURATING (type)
2141 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2142 (for plusminus (plus minus)
2143 (simplify
2144 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2145 (if ((!ANY_INTEGRAL_TYPE_P (type)
2146 || TYPE_OVERFLOW_WRAPS (type)
2147 || (INTEGRAL_TYPE_P (type)
2148 && tree_expr_nonzero_p (@0)
2149 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2150 /* If @1 +- @2 is constant require a hard single-use on either
2151 original operand (but not on both). */
2152 && (single_use (@3) || single_use (@4)))
2153 (mult (plusminus @1 @2) @0)))
2154 /* We cannot generate constant 1 for fract. */
2155 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2156 (simplify
2157 (plusminus @0 (mult:c@3 @0 @2))
2158 (if ((!ANY_INTEGRAL_TYPE_P (type)
2159 || TYPE_OVERFLOW_WRAPS (type)
2160 || (INTEGRAL_TYPE_P (type)
2161 && tree_expr_nonzero_p (@0)
2162 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2163 && single_use (@3))
2164 (mult (plusminus { build_one_cst (type); } @2) @0)))
2165 (simplify
2166 (plusminus (mult:c@3 @0 @2) @0)
2167 (if ((!ANY_INTEGRAL_TYPE_P (type)
2168 || TYPE_OVERFLOW_WRAPS (type)
2169 || (INTEGRAL_TYPE_P (type)
2170 && tree_expr_nonzero_p (@0)
2171 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2172 && single_use (@3))
2173 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2174
2175 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2176
2177 (for minmax (min max FMIN_ALL FMAX_ALL)
2178 (simplify
2179 (minmax @0 @0)
2180 @0))
2181 /* min(max(x,y),y) -> y. */
2182 (simplify
2183 (min:c (max:c @0 @1) @1)
2184 @1)
2185 /* max(min(x,y),y) -> y. */
2186 (simplify
2187 (max:c (min:c @0 @1) @1)
2188 @1)
2189 /* max(a,-a) -> abs(a). */
2190 (simplify
2191 (max:c @0 (negate @0))
2192 (if (TREE_CODE (type) != COMPLEX_TYPE
2193 && (! ANY_INTEGRAL_TYPE_P (type)
2194 || TYPE_OVERFLOW_UNDEFINED (type)))
2195 (abs @0)))
2196 /* min(a,-a) -> -abs(a). */
2197 (simplify
2198 (min:c @0 (negate @0))
2199 (if (TREE_CODE (type) != COMPLEX_TYPE
2200 && (! ANY_INTEGRAL_TYPE_P (type)
2201 || TYPE_OVERFLOW_UNDEFINED (type)))
2202 (negate (abs @0))))
2203 (simplify
2204 (min @0 @1)
2205 (switch
2206 (if (INTEGRAL_TYPE_P (type)
2207 && TYPE_MIN_VALUE (type)
2208 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2209 @1)
2210 (if (INTEGRAL_TYPE_P (type)
2211 && TYPE_MAX_VALUE (type)
2212 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2213 @0)))
2214 (simplify
2215 (max @0 @1)
2216 (switch
2217 (if (INTEGRAL_TYPE_P (type)
2218 && TYPE_MAX_VALUE (type)
2219 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2220 @1)
2221 (if (INTEGRAL_TYPE_P (type)
2222 && TYPE_MIN_VALUE (type)
2223 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2224 @0)))
2225
2226 /* max (a, a + CST) -> a + CST where CST is positive. */
2227 /* max (a, a + CST) -> a where CST is negative. */
2228 (simplify
2229 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2230 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2231 (if (tree_int_cst_sgn (@1) > 0)
2232 @2
2233 @0)))
2234
2235 /* min (a, a + CST) -> a where CST is positive. */
2236 /* min (a, a + CST) -> a + CST where CST is negative. */
2237 (simplify
2238 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2239 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2240 (if (tree_int_cst_sgn (@1) > 0)
2241 @0
2242 @2)))
2243
2244 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2245 and the outer convert demotes the expression back to x's type. */
2246 (for minmax (min max)
2247 (simplify
2248 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2249 (if (INTEGRAL_TYPE_P (type)
2250 && types_match (@1, type) && int_fits_type_p (@2, type)
2251 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2252 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2253 (minmax @1 (convert @2)))))
2254
2255 (for minmax (FMIN_ALL FMAX_ALL)
2256 /* If either argument is NaN, return the other one. Avoid the
2257 transformation if we get (and honor) a signalling NaN. */
2258 (simplify
2259 (minmax:c @0 REAL_CST@1)
2260 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2261 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2262 @0)))
2263 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2264 functions to return the numeric arg if the other one is NaN.
2265 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2266 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2267 worry about it either. */
2268 (if (flag_finite_math_only)
2269 (simplify
2270 (FMIN_ALL @0 @1)
2271 (min @0 @1))
2272 (simplify
2273 (FMAX_ALL @0 @1)
2274 (max @0 @1)))
2275 /* min (-A, -B) -> -max (A, B) */
2276 (for minmax (min max FMIN_ALL FMAX_ALL)
2277 maxmin (max min FMAX_ALL FMIN_ALL)
2278 (simplify
2279 (minmax (negate:s@2 @0) (negate:s@3 @1))
2280 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2281 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2282 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2283 (negate (maxmin @0 @1)))))
2284 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2285 MAX (~X, ~Y) -> ~MIN (X, Y) */
2286 (for minmax (min max)
2287 maxmin (max min)
2288 (simplify
2289 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2290 (bit_not (maxmin @0 @1))))
2291
2292 /* MIN (X, Y) == X -> X <= Y */
2293 (for minmax (min min max max)
2294 cmp (eq ne eq ne )
2295 out (le gt ge lt )
2296 (simplify
2297 (cmp:c (minmax:c @0 @1) @0)
2298 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2299 (out @0 @1))))
2300 /* MIN (X, 5) == 0 -> X == 0
2301 MIN (X, 5) == 7 -> false */
2302 (for cmp (eq ne)
2303 (simplify
2304 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2305 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2306 TYPE_SIGN (TREE_TYPE (@0))))
2307 { constant_boolean_node (cmp == NE_EXPR, type); }
2308 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2309 TYPE_SIGN (TREE_TYPE (@0))))
2310 (cmp @0 @2)))))
2311 (for cmp (eq ne)
2312 (simplify
2313 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2314 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2315 TYPE_SIGN (TREE_TYPE (@0))))
2316 { constant_boolean_node (cmp == NE_EXPR, type); }
2317 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2318 TYPE_SIGN (TREE_TYPE (@0))))
2319 (cmp @0 @2)))))
2320 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2321 (for minmax (min min max max min min max max )
2322 cmp (lt le gt ge gt ge lt le )
2323 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2324 (simplify
2325 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2326 (comb (cmp @0 @2) (cmp @1 @2))))
2327
2328 /* Simplifications of shift and rotates. */
2329
2330 (for rotate (lrotate rrotate)
2331 (simplify
2332 (rotate integer_all_onesp@0 @1)
2333 @0))
2334
2335 /* Optimize -1 >> x for arithmetic right shifts. */
2336 (simplify
2337 (rshift integer_all_onesp@0 @1)
2338 (if (!TYPE_UNSIGNED (type)
2339 && tree_expr_nonnegative_p (@1))
2340 @0))
2341
2342 /* Optimize (x >> c) << c into x & (-1<<c). */
2343 (simplify
2344 (lshift (rshift @0 INTEGER_CST@1) @1)
2345 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2346 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2347
2348 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2349 types. */
2350 (simplify
2351 (rshift (lshift @0 INTEGER_CST@1) @1)
2352 (if (TYPE_UNSIGNED (type)
2353 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2354 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2355
2356 (for shiftrotate (lrotate rrotate lshift rshift)
2357 (simplify
2358 (shiftrotate @0 integer_zerop)
2359 (non_lvalue @0))
2360 (simplify
2361 (shiftrotate integer_zerop@0 @1)
2362 @0)
2363 /* Prefer vector1 << scalar to vector1 << vector2
2364 if vector2 is uniform. */
2365 (for vec (VECTOR_CST CONSTRUCTOR)
2366 (simplify
2367 (shiftrotate @0 vec@1)
2368 (with { tree tem = uniform_vector_p (@1); }
2369 (if (tem)
2370 (shiftrotate @0 { tem; }))))))
2371
2372 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2373 Y is 0. Similarly for X >> Y. */
2374 #if GIMPLE
2375 (for shift (lshift rshift)
2376 (simplify
2377 (shift @0 SSA_NAME@1)
2378 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2379 (with {
2380 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2381 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2382 }
2383 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2384 @0)))))
2385 #endif
2386
2387 /* Rewrite an LROTATE_EXPR by a constant into an
2388 RROTATE_EXPR by a new constant. */
2389 (simplify
2390 (lrotate @0 INTEGER_CST@1)
2391 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2392 build_int_cst (TREE_TYPE (@1),
2393 element_precision (type)), @1); }))
2394
2395 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2396 (for op (lrotate rrotate rshift lshift)
2397 (simplify
2398 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2399 (with { unsigned int prec = element_precision (type); }
2400 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2401 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2402 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2403 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2404 (with { unsigned int low = (tree_to_uhwi (@1)
2405 + tree_to_uhwi (@2)); }
2406 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2407 being well defined. */
2408 (if (low >= prec)
2409 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2410 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2411 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2412 { build_zero_cst (type); }
2413 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2414 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2415
2416
2417 /* ((1 << A) & 1) != 0 -> A == 0
2418 ((1 << A) & 1) == 0 -> A != 0 */
2419 (for cmp (ne eq)
2420 icmp (eq ne)
2421 (simplify
2422 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2423 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2424
2425 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2426 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2427 if CST2 != 0. */
2428 (for cmp (ne eq)
2429 (simplify
2430 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2431 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2432 (if (cand < 0
2433 || (!integer_zerop (@2)
2434 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2435 { constant_boolean_node (cmp == NE_EXPR, type); }
2436 (if (!integer_zerop (@2)
2437 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2438 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2439
2440 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2441 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2442 if the new mask might be further optimized. */
2443 (for shift (lshift rshift)
2444 (simplify
2445 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2446 INTEGER_CST@2)
2447 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2448 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2449 && tree_fits_uhwi_p (@1)
2450 && tree_to_uhwi (@1) > 0
2451 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2452 (with
2453 {
2454 unsigned int shiftc = tree_to_uhwi (@1);
2455 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2456 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2457 tree shift_type = TREE_TYPE (@3);
2458 unsigned int prec;
2459
2460 if (shift == LSHIFT_EXPR)
2461 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2462 else if (shift == RSHIFT_EXPR
2463 && type_has_mode_precision_p (shift_type))
2464 {
2465 prec = TYPE_PRECISION (TREE_TYPE (@3));
2466 tree arg00 = @0;
2467 /* See if more bits can be proven as zero because of
2468 zero extension. */
2469 if (@3 != @0
2470 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2471 {
2472 tree inner_type = TREE_TYPE (@0);
2473 if (type_has_mode_precision_p (inner_type)
2474 && TYPE_PRECISION (inner_type) < prec)
2475 {
2476 prec = TYPE_PRECISION (inner_type);
2477 /* See if we can shorten the right shift. */
2478 if (shiftc < prec)
2479 shift_type = inner_type;
2480 /* Otherwise X >> C1 is all zeros, so we'll optimize
2481 it into (X, 0) later on by making sure zerobits
2482 is all ones. */
2483 }
2484 }
2485 zerobits = HOST_WIDE_INT_M1U;
2486 if (shiftc < prec)
2487 {
2488 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2489 zerobits <<= prec - shiftc;
2490 }
2491 /* For arithmetic shift if sign bit could be set, zerobits
2492 can contain actually sign bits, so no transformation is
2493 possible, unless MASK masks them all away. In that
2494 case the shift needs to be converted into logical shift. */
2495 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2496 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2497 {
2498 if ((mask & zerobits) == 0)
2499 shift_type = unsigned_type_for (TREE_TYPE (@3));
2500 else
2501 zerobits = 0;
2502 }
2503 }
2504 }
2505 /* ((X << 16) & 0xff00) is (X, 0). */
2506 (if ((mask & zerobits) == mask)
2507 { build_int_cst (type, 0); }
2508 (with { newmask = mask | zerobits; }
2509 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2510 (with
2511 {
2512 /* Only do the transformation if NEWMASK is some integer
2513 mode's mask. */
2514 for (prec = BITS_PER_UNIT;
2515 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2516 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2517 break;
2518 }
2519 (if (prec < HOST_BITS_PER_WIDE_INT
2520 || newmask == HOST_WIDE_INT_M1U)
2521 (with
2522 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2523 (if (!tree_int_cst_equal (newmaskt, @2))
2524 (if (shift_type != TREE_TYPE (@3))
2525 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2526 (bit_and @4 { newmaskt; })))))))))))))
2527
2528 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2529 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2530 (for shift (lshift rshift)
2531 (for bit_op (bit_and bit_xor bit_ior)
2532 (simplify
2533 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2534 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2535 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2536 (bit_op (shift (convert @0) @1) { mask; }))))))
2537
2538 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2539 (simplify
2540 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2541 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2542 && (element_precision (TREE_TYPE (@0))
2543 <= element_precision (TREE_TYPE (@1))
2544 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2545 (with
2546 { tree shift_type = TREE_TYPE (@0); }
2547 (convert (rshift (convert:shift_type @1) @2)))))
2548
2549 /* ~(~X >>r Y) -> X >>r Y
2550 ~(~X <<r Y) -> X <<r Y */
2551 (for rotate (lrotate rrotate)
2552 (simplify
2553 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2554 (if ((element_precision (TREE_TYPE (@0))
2555 <= element_precision (TREE_TYPE (@1))
2556 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2557 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2558 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2559 (with
2560 { tree rotate_type = TREE_TYPE (@0); }
2561 (convert (rotate (convert:rotate_type @1) @2))))))
2562
2563 /* Simplifications of conversions. */
2564
2565 /* Basic strip-useless-type-conversions / strip_nops. */
2566 (for cvt (convert view_convert float fix_trunc)
2567 (simplify
2568 (cvt @0)
2569 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2570 || (GENERIC && type == TREE_TYPE (@0)))
2571 @0)))
2572
2573 /* Contract view-conversions. */
2574 (simplify
2575 (view_convert (view_convert @0))
2576 (view_convert @0))
2577
2578 /* For integral conversions with the same precision or pointer
2579 conversions use a NOP_EXPR instead. */
2580 (simplify
2581 (view_convert @0)
2582 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2583 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2584 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2585 (convert @0)))
2586
2587 /* Strip inner integral conversions that do not change precision or size, or
2588 zero-extend while keeping the same size (for bool-to-char). */
2589 (simplify
2590 (view_convert (convert@0 @1))
2591 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2592 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2593 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2594 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2595 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2596 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2597 (view_convert @1)))
2598
2599 /* Simplify a view-converted empty constructor. */
2600 (simplify
2601 (view_convert CONSTRUCTOR@0)
2602 (if (TREE_CODE (@0) != SSA_NAME
2603 && CONSTRUCTOR_NELTS (@0) == 0)
2604 { build_zero_cst (type); }))
2605
2606 /* Re-association barriers around constants and other re-association
2607 barriers can be removed. */
2608 (simplify
2609 (paren CONSTANT_CLASS_P@0)
2610 @0)
2611 (simplify
2612 (paren (paren@1 @0))
2613 @1)
2614
2615 /* Handle cases of two conversions in a row. */
2616 (for ocvt (convert float fix_trunc)
2617 (for icvt (convert float)
2618 (simplify
2619 (ocvt (icvt@1 @0))
2620 (with
2621 {
2622 tree inside_type = TREE_TYPE (@0);
2623 tree inter_type = TREE_TYPE (@1);
2624 int inside_int = INTEGRAL_TYPE_P (inside_type);
2625 int inside_ptr = POINTER_TYPE_P (inside_type);
2626 int inside_float = FLOAT_TYPE_P (inside_type);
2627 int inside_vec = VECTOR_TYPE_P (inside_type);
2628 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2629 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2630 int inter_int = INTEGRAL_TYPE_P (inter_type);
2631 int inter_ptr = POINTER_TYPE_P (inter_type);
2632 int inter_float = FLOAT_TYPE_P (inter_type);
2633 int inter_vec = VECTOR_TYPE_P (inter_type);
2634 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2635 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2636 int final_int = INTEGRAL_TYPE_P (type);
2637 int final_ptr = POINTER_TYPE_P (type);
2638 int final_float = FLOAT_TYPE_P (type);
2639 int final_vec = VECTOR_TYPE_P (type);
2640 unsigned int final_prec = TYPE_PRECISION (type);
2641 int final_unsignedp = TYPE_UNSIGNED (type);
2642 }
2643 (switch
2644 /* In addition to the cases of two conversions in a row
2645 handled below, if we are converting something to its own
2646 type via an object of identical or wider precision, neither
2647 conversion is needed. */
2648 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2649 || (GENERIC
2650 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2651 && (((inter_int || inter_ptr) && final_int)
2652 || (inter_float && final_float))
2653 && inter_prec >= final_prec)
2654 (ocvt @0))
2655
2656 /* Likewise, if the intermediate and initial types are either both
2657 float or both integer, we don't need the middle conversion if the
2658 former is wider than the latter and doesn't change the signedness
2659 (for integers). Avoid this if the final type is a pointer since
2660 then we sometimes need the middle conversion. */
2661 (if (((inter_int && inside_int) || (inter_float && inside_float))
2662 && (final_int || final_float)
2663 && inter_prec >= inside_prec
2664 && (inter_float || inter_unsignedp == inside_unsignedp))
2665 (ocvt @0))
2666
2667 /* If we have a sign-extension of a zero-extended value, we can
2668 replace that by a single zero-extension. Likewise if the
2669 final conversion does not change precision we can drop the
2670 intermediate conversion. */
2671 (if (inside_int && inter_int && final_int
2672 && ((inside_prec < inter_prec && inter_prec < final_prec
2673 && inside_unsignedp && !inter_unsignedp)
2674 || final_prec == inter_prec))
2675 (ocvt @0))
2676
2677 /* Two conversions in a row are not needed unless:
2678 - some conversion is floating-point (overstrict for now), or
2679 - some conversion is a vector (overstrict for now), or
2680 - the intermediate type is narrower than both initial and
2681 final, or
2682 - the intermediate type and innermost type differ in signedness,
2683 and the outermost type is wider than the intermediate, or
2684 - the initial type is a pointer type and the precisions of the
2685 intermediate and final types differ, or
2686 - the final type is a pointer type and the precisions of the
2687 initial and intermediate types differ. */
2688 (if (! inside_float && ! inter_float && ! final_float
2689 && ! inside_vec && ! inter_vec && ! final_vec
2690 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2691 && ! (inside_int && inter_int
2692 && inter_unsignedp != inside_unsignedp
2693 && inter_prec < final_prec)
2694 && ((inter_unsignedp && inter_prec > inside_prec)
2695 == (final_unsignedp && final_prec > inter_prec))
2696 && ! (inside_ptr && inter_prec != final_prec)
2697 && ! (final_ptr && inside_prec != inter_prec))
2698 (ocvt @0))
2699
2700 /* A truncation to an unsigned type (a zero-extension) should be
2701 canonicalized as bitwise and of a mask. */
2702 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2703 && final_int && inter_int && inside_int
2704 && final_prec == inside_prec
2705 && final_prec > inter_prec
2706 && inter_unsignedp)
2707 (convert (bit_and @0 { wide_int_to_tree
2708 (inside_type,
2709 wi::mask (inter_prec, false,
2710 TYPE_PRECISION (inside_type))); })))
2711
2712 /* If we are converting an integer to a floating-point that can
2713 represent it exactly and back to an integer, we can skip the
2714 floating-point conversion. */
2715 (if (GIMPLE /* PR66211 */
2716 && inside_int && inter_float && final_int &&
2717 (unsigned) significand_size (TYPE_MODE (inter_type))
2718 >= inside_prec - !inside_unsignedp)
2719 (convert @0)))))))
2720
2721 /* If we have a narrowing conversion to an integral type that is fed by a
2722 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2723 masks off bits outside the final type (and nothing else). */
2724 (simplify
2725 (convert (bit_and @0 INTEGER_CST@1))
2726 (if (INTEGRAL_TYPE_P (type)
2727 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2728 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2729 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2730 TYPE_PRECISION (type)), 0))
2731 (convert @0)))
2732
2733
2734 /* (X /[ex] A) * A -> X. */
2735 (simplify
2736 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2737 (convert @0))
2738
2739 /* Simplify (A / B) * B + (A % B) -> A. */
2740 (for div (trunc_div ceil_div floor_div round_div)
2741 mod (trunc_mod ceil_mod floor_mod round_mod)
2742 (simplify
2743 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
2744 @0))
2745
2746 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2747 (for op (plus minus)
2748 (simplify
2749 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2750 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2751 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2752 (with
2753 {
2754 wi::overflow_type overflow;
2755 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2756 TYPE_SIGN (type), &overflow);
2757 }
2758 (if (types_match (type, TREE_TYPE (@2))
2759 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2760 (op @0 { wide_int_to_tree (type, mul); })
2761 (with { tree utype = unsigned_type_for (type); }
2762 (convert (op (convert:utype @0)
2763 (mult (convert:utype @1) (convert:utype @2))))))))))
2764
2765 /* Canonicalization of binary operations. */
2766
2767 /* Convert X + -C into X - C. */
2768 (simplify
2769 (plus @0 REAL_CST@1)
2770 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2771 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2772 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2773 (minus @0 { tem; })))))
2774
2775 /* Convert x+x into x*2. */
2776 (simplify
2777 (plus @0 @0)
2778 (if (SCALAR_FLOAT_TYPE_P (type))
2779 (mult @0 { build_real (type, dconst2); })
2780 (if (INTEGRAL_TYPE_P (type))
2781 (mult @0 { build_int_cst (type, 2); }))))
2782
2783 /* 0 - X -> -X. */
2784 (simplify
2785 (minus integer_zerop @1)
2786 (negate @1))
2787 (simplify
2788 (pointer_diff integer_zerop @1)
2789 (negate (convert @1)))
2790
2791 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2792 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2793 (-ARG1 + ARG0) reduces to -ARG1. */
2794 (simplify
2795 (minus real_zerop@0 @1)
2796 (if (fold_real_zero_addition_p (type, @0, 0))
2797 (negate @1)))
2798
2799 /* Transform x * -1 into -x. */
2800 (simplify
2801 (mult @0 integer_minus_onep)
2802 (negate @0))
2803
2804 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2805 signed overflow for CST != 0 && CST != -1. */
2806 (simplify
2807 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2808 (if (TREE_CODE (@2) != INTEGER_CST
2809 && single_use (@3)
2810 && !integer_zerop (@1) && !integer_minus_onep (@1))
2811 (mult (mult @0 @2) @1)))
2812
2813 /* True if we can easily extract the real and imaginary parts of a complex
2814 number. */
2815 (match compositional_complex
2816 (convert? (complex @0 @1)))
2817
2818 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2819 (simplify
2820 (complex (realpart @0) (imagpart @0))
2821 @0)
2822 (simplify
2823 (realpart (complex @0 @1))
2824 @0)
2825 (simplify
2826 (imagpart (complex @0 @1))
2827 @1)
2828
2829 /* Sometimes we only care about half of a complex expression. */
2830 (simplify
2831 (realpart (convert?:s (conj:s @0)))
2832 (convert (realpart @0)))
2833 (simplify
2834 (imagpart (convert?:s (conj:s @0)))
2835 (convert (negate (imagpart @0))))
2836 (for part (realpart imagpart)
2837 (for op (plus minus)
2838 (simplify
2839 (part (convert?:s@2 (op:s @0 @1)))
2840 (convert (op (part @0) (part @1))))))
2841 (simplify
2842 (realpart (convert?:s (CEXPI:s @0)))
2843 (convert (COS @0)))
2844 (simplify
2845 (imagpart (convert?:s (CEXPI:s @0)))
2846 (convert (SIN @0)))
2847
2848 /* conj(conj(x)) -> x */
2849 (simplify
2850 (conj (convert? (conj @0)))
2851 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2852 (convert @0)))
2853
2854 /* conj({x,y}) -> {x,-y} */
2855 (simplify
2856 (conj (convert?:s (complex:s @0 @1)))
2857 (with { tree itype = TREE_TYPE (type); }
2858 (complex (convert:itype @0) (negate (convert:itype @1)))))
2859
2860 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2861 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2862 (simplify
2863 (bswap (bswap @0))
2864 @0)
2865 (simplify
2866 (bswap (bit_not (bswap @0)))
2867 (bit_not @0))
2868 (for bitop (bit_xor bit_ior bit_and)
2869 (simplify
2870 (bswap (bitop:c (bswap @0) @1))
2871 (bitop @0 (bswap @1)))))
2872
2873
2874 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2875
2876 /* Simplify constant conditions.
2877 Only optimize constant conditions when the selected branch
2878 has the same type as the COND_EXPR. This avoids optimizing
2879 away "c ? x : throw", where the throw has a void type.
2880 Note that we cannot throw away the fold-const.c variant nor
2881 this one as we depend on doing this transform before possibly
2882 A ? B : B -> B triggers and the fold-const.c one can optimize
2883 0 ? A : B to B even if A has side-effects. Something
2884 genmatch cannot handle. */
2885 (simplify
2886 (cond INTEGER_CST@0 @1 @2)
2887 (if (integer_zerop (@0))
2888 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2889 @2)
2890 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2891 @1)))
2892 (simplify
2893 (vec_cond VECTOR_CST@0 @1 @2)
2894 (if (integer_all_onesp (@0))
2895 @1
2896 (if (integer_zerop (@0))
2897 @2)))
2898
2899 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2900 be extended. */
2901 /* This pattern implements two kinds simplification:
2902
2903 Case 1)
2904 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2905 1) Conversions are type widening from smaller type.
2906 2) Const c1 equals to c2 after canonicalizing comparison.
2907 3) Comparison has tree code LT, LE, GT or GE.
2908 This specific pattern is needed when (cmp (convert x) c) may not
2909 be simplified by comparison patterns because of multiple uses of
2910 x. It also makes sense here because simplifying across multiple
2911 referred var is always benefitial for complicated cases.
2912
2913 Case 2)
2914 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2915 (for cmp (lt le gt ge eq)
2916 (simplify
2917 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2918 (with
2919 {
2920 tree from_type = TREE_TYPE (@1);
2921 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2922 enum tree_code code = ERROR_MARK;
2923
2924 if (INTEGRAL_TYPE_P (from_type)
2925 && int_fits_type_p (@2, from_type)
2926 && (types_match (c1_type, from_type)
2927 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2928 && (TYPE_UNSIGNED (from_type)
2929 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2930 && (types_match (c2_type, from_type)
2931 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2932 && (TYPE_UNSIGNED (from_type)
2933 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2934 {
2935 if (cmp != EQ_EXPR)
2936 {
2937 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2938 {
2939 /* X <= Y - 1 equals to X < Y. */
2940 if (cmp == LE_EXPR)
2941 code = LT_EXPR;
2942 /* X > Y - 1 equals to X >= Y. */
2943 if (cmp == GT_EXPR)
2944 code = GE_EXPR;
2945 }
2946 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2947 {
2948 /* X < Y + 1 equals to X <= Y. */
2949 if (cmp == LT_EXPR)
2950 code = LE_EXPR;
2951 /* X >= Y + 1 equals to X > Y. */
2952 if (cmp == GE_EXPR)
2953 code = GT_EXPR;
2954 }
2955 if (code != ERROR_MARK
2956 || wi::to_widest (@2) == wi::to_widest (@3))
2957 {
2958 if (cmp == LT_EXPR || cmp == LE_EXPR)
2959 code = MIN_EXPR;
2960 if (cmp == GT_EXPR || cmp == GE_EXPR)
2961 code = MAX_EXPR;
2962 }
2963 }
2964 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2965 else if (int_fits_type_p (@3, from_type))
2966 code = EQ_EXPR;
2967 }
2968 }
2969 (if (code == MAX_EXPR)
2970 (convert (max @1 (convert @2)))
2971 (if (code == MIN_EXPR)
2972 (convert (min @1 (convert @2)))
2973 (if (code == EQ_EXPR)
2974 (convert (cond (eq @1 (convert @3))
2975 (convert:from_type @3) (convert:from_type @2)))))))))
2976
2977 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2978
2979 1) OP is PLUS or MINUS.
2980 2) CMP is LT, LE, GT or GE.
2981 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2982
2983 This pattern also handles special cases like:
2984
2985 A) Operand x is a unsigned to signed type conversion and c1 is
2986 integer zero. In this case,
2987 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2988 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2989 B) Const c1 may not equal to (C3 op' C2). In this case we also
2990 check equality for (c1+1) and (c1-1) by adjusting comparison
2991 code.
2992
2993 TODO: Though signed type is handled by this pattern, it cannot be
2994 simplified at the moment because C standard requires additional
2995 type promotion. In order to match&simplify it here, the IR needs
2996 to be cleaned up by other optimizers, i.e, VRP. */
2997 (for op (plus minus)
2998 (for cmp (lt le gt ge)
2999 (simplify
3000 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3001 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3002 (if (types_match (from_type, to_type)
3003 /* Check if it is special case A). */
3004 || (TYPE_UNSIGNED (from_type)
3005 && !TYPE_UNSIGNED (to_type)
3006 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3007 && integer_zerop (@1)
3008 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3009 (with
3010 {
3011 wi::overflow_type overflow = wi::OVF_NONE;
3012 enum tree_code code, cmp_code = cmp;
3013 wide_int real_c1;
3014 wide_int c1 = wi::to_wide (@1);
3015 wide_int c2 = wi::to_wide (@2);
3016 wide_int c3 = wi::to_wide (@3);
3017 signop sgn = TYPE_SIGN (from_type);
3018
3019 /* Handle special case A), given x of unsigned type:
3020 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3021 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3022 if (!types_match (from_type, to_type))
3023 {
3024 if (cmp_code == LT_EXPR)
3025 cmp_code = GT_EXPR;
3026 if (cmp_code == GE_EXPR)
3027 cmp_code = LE_EXPR;
3028 c1 = wi::max_value (to_type);
3029 }
3030 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3031 compute (c3 op' c2) and check if it equals to c1 with op' being
3032 the inverted operator of op. Make sure overflow doesn't happen
3033 if it is undefined. */
3034 if (op == PLUS_EXPR)
3035 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3036 else
3037 real_c1 = wi::add (c3, c2, sgn, &overflow);
3038
3039 code = cmp_code;
3040 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3041 {
3042 /* Check if c1 equals to real_c1. Boundary condition is handled
3043 by adjusting comparison operation if necessary. */
3044 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3045 && !overflow)
3046 {
3047 /* X <= Y - 1 equals to X < Y. */
3048 if (cmp_code == LE_EXPR)
3049 code = LT_EXPR;
3050 /* X > Y - 1 equals to X >= Y. */
3051 if (cmp_code == GT_EXPR)
3052 code = GE_EXPR;
3053 }
3054 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3055 && !overflow)
3056 {
3057 /* X < Y + 1 equals to X <= Y. */
3058 if (cmp_code == LT_EXPR)
3059 code = LE_EXPR;
3060 /* X >= Y + 1 equals to X > Y. */
3061 if (cmp_code == GE_EXPR)
3062 code = GT_EXPR;
3063 }
3064 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3065 {
3066 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3067 code = MIN_EXPR;
3068 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3069 code = MAX_EXPR;
3070 }
3071 }
3072 }
3073 (if (code == MAX_EXPR)
3074 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3075 { wide_int_to_tree (from_type, c2); })
3076 (if (code == MIN_EXPR)
3077 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3078 { wide_int_to_tree (from_type, c2); })))))))))
3079
3080 (for cnd (cond vec_cond)
3081 /* A ? B : (A ? X : C) -> A ? B : C. */
3082 (simplify
3083 (cnd @0 (cnd @0 @1 @2) @3)
3084 (cnd @0 @1 @3))
3085 (simplify
3086 (cnd @0 @1 (cnd @0 @2 @3))
3087 (cnd @0 @1 @3))
3088 /* A ? B : (!A ? C : X) -> A ? B : C. */
3089 /* ??? This matches embedded conditions open-coded because genmatch
3090 would generate matching code for conditions in separate stmts only.
3091 The following is still important to merge then and else arm cases
3092 from if-conversion. */
3093 (simplify
3094 (cnd @0 @1 (cnd @2 @3 @4))
3095 (if (inverse_conditions_p (@0, @2))
3096 (cnd @0 @1 @3)))
3097 (simplify
3098 (cnd @0 (cnd @1 @2 @3) @4)
3099 (if (inverse_conditions_p (@0, @1))
3100 (cnd @0 @3 @4)))
3101
3102 /* A ? B : B -> B. */
3103 (simplify
3104 (cnd @0 @1 @1)
3105 @1)
3106
3107 /* !A ? B : C -> A ? C : B. */
3108 (simplify
3109 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3110 (cnd @0 @2 @1)))
3111
3112 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3113 return all -1 or all 0 results. */
3114 /* ??? We could instead convert all instances of the vec_cond to negate,
3115 but that isn't necessarily a win on its own. */
3116 (simplify
3117 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3118 (if (VECTOR_TYPE_P (type)
3119 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3120 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3121 && (TYPE_MODE (TREE_TYPE (type))
3122 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3123 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3124
3125 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3126 (simplify
3127 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3128 (if (VECTOR_TYPE_P (type)
3129 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3130 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3131 && (TYPE_MODE (TREE_TYPE (type))
3132 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3133 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3134
3135
3136 /* Simplifications of comparisons. */
3137
3138 /* See if we can reduce the magnitude of a constant involved in a
3139 comparison by changing the comparison code. This is a canonicalization
3140 formerly done by maybe_canonicalize_comparison_1. */
3141 (for cmp (le gt)
3142 acmp (lt ge)
3143 (simplify
3144 (cmp @0 uniform_integer_cst_p@1)
3145 (with { tree cst = uniform_integer_cst_p (@1); }
3146 (if (tree_int_cst_sgn (cst) == -1)
3147 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3148 wide_int_to_tree (TREE_TYPE (cst),
3149 wi::to_wide (cst)
3150 + 1)); })))))
3151 (for cmp (ge lt)
3152 acmp (gt le)
3153 (simplify
3154 (cmp @0 uniform_integer_cst_p@1)
3155 (with { tree cst = uniform_integer_cst_p (@1); }
3156 (if (tree_int_cst_sgn (cst) == 1)
3157 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3158 wide_int_to_tree (TREE_TYPE (cst),
3159 wi::to_wide (cst) - 1)); })))))
3160
3161 /* We can simplify a logical negation of a comparison to the
3162 inverted comparison. As we cannot compute an expression
3163 operator using invert_tree_comparison we have to simulate
3164 that with expression code iteration. */
3165 (for cmp (tcc_comparison)
3166 icmp (inverted_tcc_comparison)
3167 ncmp (inverted_tcc_comparison_with_nans)
3168 /* Ideally we'd like to combine the following two patterns
3169 and handle some more cases by using
3170 (logical_inverted_value (cmp @0 @1))
3171 here but for that genmatch would need to "inline" that.
3172 For now implement what forward_propagate_comparison did. */
3173 (simplify
3174 (bit_not (cmp @0 @1))
3175 (if (VECTOR_TYPE_P (type)
3176 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3177 /* Comparison inversion may be impossible for trapping math,
3178 invert_tree_comparison will tell us. But we can't use
3179 a computed operator in the replacement tree thus we have
3180 to play the trick below. */
3181 (with { enum tree_code ic = invert_tree_comparison
3182 (cmp, HONOR_NANS (@0)); }
3183 (if (ic == icmp)
3184 (icmp @0 @1)
3185 (if (ic == ncmp)
3186 (ncmp @0 @1))))))
3187 (simplify
3188 (bit_xor (cmp @0 @1) integer_truep)
3189 (with { enum tree_code ic = invert_tree_comparison
3190 (cmp, HONOR_NANS (@0)); }
3191 (if (ic == icmp)
3192 (icmp @0 @1)
3193 (if (ic == ncmp)
3194 (ncmp @0 @1))))))
3195
3196 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3197 ??? The transformation is valid for the other operators if overflow
3198 is undefined for the type, but performing it here badly interacts
3199 with the transformation in fold_cond_expr_with_comparison which
3200 attempts to synthetize ABS_EXPR. */
3201 (for cmp (eq ne)
3202 (for sub (minus pointer_diff)
3203 (simplify
3204 (cmp (sub@2 @0 @1) integer_zerop)
3205 (if (single_use (@2))
3206 (cmp @0 @1)))))
3207
3208 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3209 signed arithmetic case. That form is created by the compiler
3210 often enough for folding it to be of value. One example is in
3211 computing loop trip counts after Operator Strength Reduction. */
3212 (for cmp (simple_comparison)
3213 scmp (swapped_simple_comparison)
3214 (simplify
3215 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3216 /* Handle unfolded multiplication by zero. */
3217 (if (integer_zerop (@1))
3218 (cmp @1 @2)
3219 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3220 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3221 && single_use (@3))
3222 /* If @1 is negative we swap the sense of the comparison. */
3223 (if (tree_int_cst_sgn (@1) < 0)
3224 (scmp @0 @2)
3225 (cmp @0 @2))))))
3226
3227 /* Simplify comparison of something with itself. For IEEE
3228 floating-point, we can only do some of these simplifications. */
3229 (for cmp (eq ge le)
3230 (simplify
3231 (cmp @0 @0)
3232 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3233 || ! HONOR_NANS (@0))
3234 { constant_boolean_node (true, type); }
3235 (if (cmp != EQ_EXPR)
3236 (eq @0 @0)))))
3237 (for cmp (ne gt lt)
3238 (simplify
3239 (cmp @0 @0)
3240 (if (cmp != NE_EXPR
3241 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3242 || ! HONOR_NANS (@0))
3243 { constant_boolean_node (false, type); })))
3244 (for cmp (unle unge uneq)
3245 (simplify
3246 (cmp @0 @0)
3247 { constant_boolean_node (true, type); }))
3248 (for cmp (unlt ungt)
3249 (simplify
3250 (cmp @0 @0)
3251 (unordered @0 @0)))
3252 (simplify
3253 (ltgt @0 @0)
3254 (if (!flag_trapping_math)
3255 { constant_boolean_node (false, type); }))
3256
3257 /* Fold ~X op ~Y as Y op X. */
3258 (for cmp (simple_comparison)
3259 (simplify
3260 (cmp (bit_not@2 @0) (bit_not@3 @1))
3261 (if (single_use (@2) && single_use (@3))
3262 (cmp @1 @0))))
3263
3264 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3265 (for cmp (simple_comparison)
3266 scmp (swapped_simple_comparison)
3267 (simplify
3268 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3269 (if (single_use (@2)
3270 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3271 (scmp @0 (bit_not @1)))))
3272
3273 (for cmp (simple_comparison)
3274 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3275 (simplify
3276 (cmp (convert@2 @0) (convert? @1))
3277 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3278 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3279 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3280 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3281 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3282 (with
3283 {
3284 tree type1 = TREE_TYPE (@1);
3285 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3286 {
3287 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3288 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3289 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3290 type1 = float_type_node;
3291 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3292 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3293 type1 = double_type_node;
3294 }
3295 tree newtype
3296 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3297 ? TREE_TYPE (@0) : type1);
3298 }
3299 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3300 (cmp (convert:newtype @0) (convert:newtype @1))))))
3301
3302 (simplify
3303 (cmp @0 REAL_CST@1)
3304 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3305 (switch
3306 /* a CMP (-0) -> a CMP 0 */
3307 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3308 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3309 /* x != NaN is always true, other ops are always false. */
3310 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3311 && ! HONOR_SNANS (@1))
3312 { constant_boolean_node (cmp == NE_EXPR, type); })
3313 /* Fold comparisons against infinity. */
3314 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3315 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3316 (with
3317 {
3318 REAL_VALUE_TYPE max;
3319 enum tree_code code = cmp;
3320 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3321 if (neg)
3322 code = swap_tree_comparison (code);
3323 }
3324 (switch
3325 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3326 (if (code == GT_EXPR
3327 && !(HONOR_NANS (@0) && flag_trapping_math))
3328 { constant_boolean_node (false, type); })
3329 (if (code == LE_EXPR)
3330 /* x <= +Inf is always true, if we don't care about NaNs. */
3331 (if (! HONOR_NANS (@0))
3332 { constant_boolean_node (true, type); }
3333 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3334 an "invalid" exception. */
3335 (if (!flag_trapping_math)
3336 (eq @0 @0))))
3337 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3338 for == this introduces an exception for x a NaN. */
3339 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3340 || code == GE_EXPR)
3341 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3342 (if (neg)
3343 (lt @0 { build_real (TREE_TYPE (@0), max); })
3344 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3345 /* x < +Inf is always equal to x <= DBL_MAX. */
3346 (if (code == LT_EXPR)
3347 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3348 (if (neg)
3349 (ge @0 { build_real (TREE_TYPE (@0), max); })
3350 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3351 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3352 an exception for x a NaN so use an unordered comparison. */
3353 (if (code == NE_EXPR)
3354 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3355 (if (! HONOR_NANS (@0))
3356 (if (neg)
3357 (ge @0 { build_real (TREE_TYPE (@0), max); })
3358 (le @0 { build_real (TREE_TYPE (@0), max); }))
3359 (if (neg)
3360 (unge @0 { build_real (TREE_TYPE (@0), max); })
3361 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3362
3363 /* If this is a comparison of a real constant with a PLUS_EXPR
3364 or a MINUS_EXPR of a real constant, we can convert it into a
3365 comparison with a revised real constant as long as no overflow
3366 occurs when unsafe_math_optimizations are enabled. */
3367 (if (flag_unsafe_math_optimizations)
3368 (for op (plus minus)
3369 (simplify
3370 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3371 (with
3372 {
3373 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3374 TREE_TYPE (@1), @2, @1);
3375 }
3376 (if (tem && !TREE_OVERFLOW (tem))
3377 (cmp @0 { tem; }))))))
3378
3379 /* Likewise, we can simplify a comparison of a real constant with
3380 a MINUS_EXPR whose first operand is also a real constant, i.e.
3381 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3382 floating-point types only if -fassociative-math is set. */
3383 (if (flag_associative_math)
3384 (simplify
3385 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3386 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3387 (if (tem && !TREE_OVERFLOW (tem))
3388 (cmp { tem; } @1)))))
3389
3390 /* Fold comparisons against built-in math functions. */
3391 (if (flag_unsafe_math_optimizations
3392 && ! flag_errno_math)
3393 (for sq (SQRT)
3394 (simplify
3395 (cmp (sq @0) REAL_CST@1)
3396 (switch
3397 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3398 (switch
3399 /* sqrt(x) < y is always false, if y is negative. */
3400 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3401 { constant_boolean_node (false, type); })
3402 /* sqrt(x) > y is always true, if y is negative and we
3403 don't care about NaNs, i.e. negative values of x. */
3404 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3405 { constant_boolean_node (true, type); })
3406 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3407 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3408 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3409 (switch
3410 /* sqrt(x) < 0 is always false. */
3411 (if (cmp == LT_EXPR)
3412 { constant_boolean_node (false, type); })
3413 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3414 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3415 { constant_boolean_node (true, type); })
3416 /* sqrt(x) <= 0 -> x == 0. */
3417 (if (cmp == LE_EXPR)
3418 (eq @0 @1))
3419 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3420 == or !=. In the last case:
3421
3422 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3423
3424 if x is negative or NaN. Due to -funsafe-math-optimizations,
3425 the results for other x follow from natural arithmetic. */
3426 (cmp @0 @1)))
3427 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3428 (with
3429 {
3430 REAL_VALUE_TYPE c2;
3431 real_arithmetic (&c2, MULT_EXPR,
3432 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3433 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3434 }
3435 (if (REAL_VALUE_ISINF (c2))
3436 /* sqrt(x) > y is x == +Inf, when y is very large. */
3437 (if (HONOR_INFINITIES (@0))
3438 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3439 { constant_boolean_node (false, type); })
3440 /* sqrt(x) > c is the same as x > c*c. */
3441 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3442 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3443 (with
3444 {
3445 REAL_VALUE_TYPE c2;
3446 real_arithmetic (&c2, MULT_EXPR,
3447 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3448 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3449 }
3450 (if (REAL_VALUE_ISINF (c2))
3451 (switch
3452 /* sqrt(x) < y is always true, when y is a very large
3453 value and we don't care about NaNs or Infinities. */
3454 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3455 { constant_boolean_node (true, type); })
3456 /* sqrt(x) < y is x != +Inf when y is very large and we
3457 don't care about NaNs. */
3458 (if (! HONOR_NANS (@0))
3459 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3460 /* sqrt(x) < y is x >= 0 when y is very large and we
3461 don't care about Infinities. */
3462 (if (! HONOR_INFINITIES (@0))
3463 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3464 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3465 (if (GENERIC)
3466 (truth_andif
3467 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3468 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3469 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3470 (if (! HONOR_NANS (@0))
3471 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3472 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3473 (if (GENERIC)
3474 (truth_andif
3475 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3476 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3477 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3478 (simplify
3479 (cmp (sq @0) (sq @1))
3480 (if (! HONOR_NANS (@0))
3481 (cmp @0 @1))))))
3482
3483 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3484 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3485 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3486 (simplify
3487 (cmp (float@0 @1) (float @2))
3488 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3489 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3490 (with
3491 {
3492 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3493 tree type1 = TREE_TYPE (@1);
3494 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3495 tree type2 = TREE_TYPE (@2);
3496 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3497 }
3498 (if (fmt.can_represent_integral_type_p (type1)
3499 && fmt.can_represent_integral_type_p (type2))
3500 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3501 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3502 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3503 && type1_signed_p >= type2_signed_p)
3504 (icmp @1 (convert @2))
3505 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3506 && type1_signed_p <= type2_signed_p)
3507 (icmp (convert:type2 @1) @2)
3508 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3509 && type1_signed_p == type2_signed_p)
3510 (icmp @1 @2))))))))))
3511
3512 /* Optimize various special cases of (FTYPE) N CMP CST. */
3513 (for cmp (lt le eq ne ge gt)
3514 icmp (le le eq ne ge ge)
3515 (simplify
3516 (cmp (float @0) REAL_CST@1)
3517 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3518 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3519 (with
3520 {
3521 tree itype = TREE_TYPE (@0);
3522 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3523 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3524 /* Be careful to preserve any potential exceptions due to
3525 NaNs. qNaNs are ok in == or != context.
3526 TODO: relax under -fno-trapping-math or
3527 -fno-signaling-nans. */
3528 bool exception_p
3529 = real_isnan (cst) && (cst->signalling
3530 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3531 }
3532 /* TODO: allow non-fitting itype and SNaNs when
3533 -fno-trapping-math. */
3534 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3535 (with
3536 {
3537 signop isign = TYPE_SIGN (itype);
3538 REAL_VALUE_TYPE imin, imax;
3539 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3540 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3541
3542 REAL_VALUE_TYPE icst;
3543 if (cmp == GT_EXPR || cmp == GE_EXPR)
3544 real_ceil (&icst, fmt, cst);
3545 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3546 real_floor (&icst, fmt, cst);
3547 else
3548 real_trunc (&icst, fmt, cst);
3549
3550 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3551
3552 bool overflow_p = false;
3553 wide_int icst_val
3554 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3555 }
3556 (switch
3557 /* Optimize cases when CST is outside of ITYPE's range. */
3558 (if (real_compare (LT_EXPR, cst, &imin))
3559 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3560 type); })
3561 (if (real_compare (GT_EXPR, cst, &imax))
3562 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3563 type); })
3564 /* Remove cast if CST is an integer representable by ITYPE. */
3565 (if (cst_int_p)
3566 (cmp @0 { gcc_assert (!overflow_p);
3567 wide_int_to_tree (itype, icst_val); })
3568 )
3569 /* When CST is fractional, optimize
3570 (FTYPE) N == CST -> 0
3571 (FTYPE) N != CST -> 1. */
3572 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3573 { constant_boolean_node (cmp == NE_EXPR, type); })
3574 /* Otherwise replace with sensible integer constant. */
3575 (with
3576 {
3577 gcc_checking_assert (!overflow_p);
3578 }
3579 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3580
3581 /* Fold A /[ex] B CMP C to A CMP B * C. */
3582 (for cmp (eq ne)
3583 (simplify
3584 (cmp (exact_div @0 @1) INTEGER_CST@2)
3585 (if (!integer_zerop (@1))
3586 (if (wi::to_wide (@2) == 0)
3587 (cmp @0 @2)
3588 (if (TREE_CODE (@1) == INTEGER_CST)
3589 (with
3590 {
3591 wi::overflow_type ovf;
3592 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3593 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3594 }
3595 (if (ovf)
3596 { constant_boolean_node (cmp == NE_EXPR, type); }
3597 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3598 (for cmp (lt le gt ge)
3599 (simplify
3600 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3601 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3602 (with
3603 {
3604 wi::overflow_type ovf;
3605 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3606 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3607 }
3608 (if (ovf)
3609 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3610 TYPE_SIGN (TREE_TYPE (@2)))
3611 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3612 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3613
3614 /* Unordered tests if either argument is a NaN. */
3615 (simplify
3616 (bit_ior (unordered @0 @0) (unordered @1 @1))
3617 (if (types_match (@0, @1))
3618 (unordered @0 @1)))
3619 (simplify
3620 (bit_and (ordered @0 @0) (ordered @1 @1))
3621 (if (types_match (@0, @1))
3622 (ordered @0 @1)))
3623 (simplify
3624 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3625 @2)
3626 (simplify
3627 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3628 @2)
3629
3630 /* Simple range test simplifications. */
3631 /* A < B || A >= B -> true. */
3632 (for test1 (lt le le le ne ge)
3633 test2 (ge gt ge ne eq ne)
3634 (simplify
3635 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3636 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3637 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3638 { constant_boolean_node (true, type); })))
3639 /* A < B && A >= B -> false. */
3640 (for test1 (lt lt lt le ne eq)
3641 test2 (ge gt eq gt eq gt)
3642 (simplify
3643 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3644 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3645 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3646 { constant_boolean_node (false, type); })))
3647
3648 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3649 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3650
3651 Note that comparisons
3652 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3653 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3654 will be canonicalized to above so there's no need to
3655 consider them here.
3656 */
3657
3658 (for cmp (le gt)
3659 eqcmp (eq ne)
3660 (simplify
3661 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3662 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3663 (with
3664 {
3665 tree ty = TREE_TYPE (@0);
3666 unsigned prec = TYPE_PRECISION (ty);
3667 wide_int mask = wi::to_wide (@2, prec);
3668 wide_int rhs = wi::to_wide (@3, prec);
3669 signop sgn = TYPE_SIGN (ty);
3670 }
3671 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3672 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3673 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3674 { build_zero_cst (ty); }))))))
3675
3676 /* -A CMP -B -> B CMP A. */
3677 (for cmp (tcc_comparison)
3678 scmp (swapped_tcc_comparison)
3679 (simplify
3680 (cmp (negate @0) (negate @1))
3681 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3682 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3683 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3684 (scmp @0 @1)))
3685 (simplify
3686 (cmp (negate @0) CONSTANT_CLASS_P@1)
3687 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3688 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3689 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3690 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3691 (if (tem && !TREE_OVERFLOW (tem))
3692 (scmp @0 { tem; }))))))
3693
3694 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3695 (for op (eq ne)
3696 (simplify
3697 (op (abs @0) zerop@1)
3698 (op @0 @1)))
3699
3700 /* From fold_sign_changed_comparison and fold_widened_comparison.
3701 FIXME: the lack of symmetry is disturbing. */
3702 (for cmp (simple_comparison)
3703 (simplify
3704 (cmp (convert@0 @00) (convert?@1 @10))
3705 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3706 /* Disable this optimization if we're casting a function pointer
3707 type on targets that require function pointer canonicalization. */
3708 && !(targetm.have_canonicalize_funcptr_for_compare ()
3709 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3710 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3711 || (POINTER_TYPE_P (TREE_TYPE (@10))
3712 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3713 && single_use (@0))
3714 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3715 && (TREE_CODE (@10) == INTEGER_CST
3716 || @1 != @10)
3717 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3718 || cmp == NE_EXPR
3719 || cmp == EQ_EXPR)
3720 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3721 /* ??? The special-casing of INTEGER_CST conversion was in the original
3722 code and here to avoid a spurious overflow flag on the resulting
3723 constant which fold_convert produces. */
3724 (if (TREE_CODE (@1) == INTEGER_CST)
3725 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3726 TREE_OVERFLOW (@1)); })
3727 (cmp @00 (convert @1)))
3728
3729 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3730 /* If possible, express the comparison in the shorter mode. */
3731 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3732 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3733 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3734 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3735 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3736 || ((TYPE_PRECISION (TREE_TYPE (@00))
3737 >= TYPE_PRECISION (TREE_TYPE (@10)))
3738 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3739 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3740 || (TREE_CODE (@10) == INTEGER_CST
3741 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3742 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3743 (cmp @00 (convert @10))
3744 (if (TREE_CODE (@10) == INTEGER_CST
3745 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3746 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3747 (with
3748 {
3749 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3750 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3751 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3752 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3753 }
3754 (if (above || below)
3755 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3756 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3757 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3758 { constant_boolean_node (above ? true : false, type); }
3759 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3760 { constant_boolean_node (above ? false : true, type); }))))))))))))
3761
3762 (for cmp (eq ne)
3763 /* A local variable can never be pointed to by
3764 the default SSA name of an incoming parameter.
3765 SSA names are canonicalized to 2nd place. */
3766 (simplify
3767 (cmp addr@0 SSA_NAME@1)
3768 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3769 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3770 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3771 (if (TREE_CODE (base) == VAR_DECL
3772 && auto_var_in_fn_p (base, current_function_decl))
3773 (if (cmp == NE_EXPR)
3774 { constant_boolean_node (true, type); }
3775 { constant_boolean_node (false, type); }))))))
3776
3777 /* Equality compare simplifications from fold_binary */
3778 (for cmp (eq ne)
3779
3780 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3781 Similarly for NE_EXPR. */
3782 (simplify
3783 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3784 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3785 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3786 { constant_boolean_node (cmp == NE_EXPR, type); }))
3787
3788 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3789 (simplify
3790 (cmp (bit_xor @0 @1) integer_zerop)
3791 (cmp @0 @1))
3792
3793 /* (X ^ Y) == Y becomes X == 0.
3794 Likewise (X ^ Y) == X becomes Y == 0. */
3795 (simplify
3796 (cmp:c (bit_xor:c @0 @1) @0)
3797 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3798
3799 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3800 (simplify
3801 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3802 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3803 (cmp @0 (bit_xor @1 (convert @2)))))
3804
3805 (simplify
3806 (cmp (convert? addr@0) integer_zerop)
3807 (if (tree_single_nonzero_warnv_p (@0, NULL))
3808 { constant_boolean_node (cmp == NE_EXPR, type); })))
3809
3810 /* If we have (A & C) == C where C is a power of 2, convert this into
3811 (A & C) != 0. Similarly for NE_EXPR. */
3812 (for cmp (eq ne)
3813 icmp (ne eq)
3814 (simplify
3815 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3816 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3817
3818 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3819 convert this into a shift followed by ANDing with D. */
3820 (simplify
3821 (cond
3822 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3823 INTEGER_CST@2 integer_zerop)
3824 (if (integer_pow2p (@2))
3825 (with {
3826 int shift = (wi::exact_log2 (wi::to_wide (@2))
3827 - wi::exact_log2 (wi::to_wide (@1)));
3828 }
3829 (if (shift > 0)
3830 (bit_and
3831 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3832 (bit_and
3833 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3834 @2)))))
3835
3836 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3837 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3838 (for cmp (eq ne)
3839 ncmp (ge lt)
3840 (simplify
3841 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3842 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3843 && type_has_mode_precision_p (TREE_TYPE (@0))
3844 && element_precision (@2) >= element_precision (@0)
3845 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3846 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3847 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3848
3849 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3850 this into a right shift or sign extension followed by ANDing with C. */
3851 (simplify
3852 (cond
3853 (lt @0 integer_zerop)
3854 INTEGER_CST@1 integer_zerop)
3855 (if (integer_pow2p (@1)
3856 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3857 (with {
3858 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3859 }
3860 (if (shift >= 0)
3861 (bit_and
3862 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3863 @1)
3864 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3865 sign extension followed by AND with C will achieve the effect. */
3866 (bit_and (convert @0) @1)))))
3867
3868 /* When the addresses are not directly of decls compare base and offset.
3869 This implements some remaining parts of fold_comparison address
3870 comparisons but still no complete part of it. Still it is good
3871 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3872 (for cmp (simple_comparison)
3873 (simplify
3874 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3875 (with
3876 {
3877 poly_int64 off0, off1;
3878 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3879 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3880 if (base0 && TREE_CODE (base0) == MEM_REF)
3881 {
3882 off0 += mem_ref_offset (base0).force_shwi ();
3883 base0 = TREE_OPERAND (base0, 0);
3884 }
3885 if (base1 && TREE_CODE (base1) == MEM_REF)
3886 {
3887 off1 += mem_ref_offset (base1).force_shwi ();
3888 base1 = TREE_OPERAND (base1, 0);
3889 }
3890 }
3891 (if (base0 && base1)
3892 (with
3893 {
3894 int equal = 2;
3895 /* Punt in GENERIC on variables with value expressions;
3896 the value expressions might point to fields/elements
3897 of other vars etc. */
3898 if (GENERIC
3899 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3900 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3901 ;
3902 else if (decl_in_symtab_p (base0)
3903 && decl_in_symtab_p (base1))
3904 equal = symtab_node::get_create (base0)
3905 ->equal_address_to (symtab_node::get_create (base1));
3906 else if ((DECL_P (base0)
3907 || TREE_CODE (base0) == SSA_NAME
3908 || TREE_CODE (base0) == STRING_CST)
3909 && (DECL_P (base1)
3910 || TREE_CODE (base1) == SSA_NAME
3911 || TREE_CODE (base1) == STRING_CST))
3912 equal = (base0 == base1);
3913 if (equal == 0)
3914 {
3915 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
3916 off0.is_constant (&ioff0);
3917 off1.is_constant (&ioff1);
3918 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
3919 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
3920 || (TREE_CODE (base0) == STRING_CST
3921 && TREE_CODE (base1) == STRING_CST
3922 && ioff0 >= 0 && ioff1 >= 0
3923 && ioff0 < TREE_STRING_LENGTH (base0)
3924 && ioff1 < TREE_STRING_LENGTH (base1)
3925 /* This is a too conservative test that the STRING_CSTs
3926 will not end up being string-merged. */
3927 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
3928 TREE_STRING_POINTER (base1) + ioff1,
3929 MIN (TREE_STRING_LENGTH (base0) - ioff0,
3930 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
3931 ;
3932 else if (!DECL_P (base0) || !DECL_P (base1))
3933 equal = 2;
3934 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
3935 equal = 2;
3936 /* If this is a pointer comparison, ignore for now even
3937 valid equalities where one pointer is the offset zero
3938 of one object and the other to one past end of another one. */
3939 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
3940 ;
3941 /* Assume that automatic variables can't be adjacent to global
3942 variables. */
3943 else if (is_global_var (base0) != is_global_var (base1))
3944 ;
3945 else
3946 {
3947 tree sz0 = DECL_SIZE_UNIT (base0);
3948 tree sz1 = DECL_SIZE_UNIT (base1);
3949 /* If sizes are unknown, e.g. VLA or not representable,
3950 punt. */
3951 if (!tree_fits_poly_int64_p (sz0)
3952 || !tree_fits_poly_int64_p (sz1))
3953 equal = 2;
3954 else
3955 {
3956 poly_int64 size0 = tree_to_poly_int64 (sz0);
3957 poly_int64 size1 = tree_to_poly_int64 (sz1);
3958 /* If one offset is pointing (or could be) to the beginning
3959 of one object and the other is pointing to one past the
3960 last byte of the other object, punt. */
3961 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
3962 equal = 2;
3963 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
3964 equal = 2;
3965 /* If both offsets are the same, there are some cases
3966 we know that are ok. Either if we know they aren't
3967 zero, or if we know both sizes are no zero. */
3968 if (equal == 2
3969 && known_eq (off0, off1)
3970 && (known_ne (off0, 0)
3971 || (known_ne (size0, 0) && known_ne (size1, 0))))
3972 equal = 0;
3973 }
3974 }
3975 }
3976 }
3977 (if (equal == 1
3978 && (cmp == EQ_EXPR || cmp == NE_EXPR
3979 /* If the offsets are equal we can ignore overflow. */
3980 || known_eq (off0, off1)
3981 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3982 /* Or if we compare using pointers to decls or strings. */
3983 || (POINTER_TYPE_P (TREE_TYPE (@2))
3984 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3985 (switch
3986 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3987 { constant_boolean_node (known_eq (off0, off1), type); })
3988 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3989 { constant_boolean_node (known_ne (off0, off1), type); })
3990 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3991 { constant_boolean_node (known_lt (off0, off1), type); })
3992 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3993 { constant_boolean_node (known_le (off0, off1), type); })
3994 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3995 { constant_boolean_node (known_ge (off0, off1), type); })
3996 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3997 { constant_boolean_node (known_gt (off0, off1), type); }))
3998 (if (equal == 0)
3999 (switch
4000 (if (cmp == EQ_EXPR)
4001 { constant_boolean_node (false, type); })
4002 (if (cmp == NE_EXPR)
4003 { constant_boolean_node (true, type); })))))))))
4004
4005 /* Simplify pointer equality compares using PTA. */
4006 (for neeq (ne eq)
4007 (simplify
4008 (neeq @0 @1)
4009 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4010 && ptrs_compare_unequal (@0, @1))
4011 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4012
4013 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4014 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4015 Disable the transform if either operand is pointer to function.
4016 This broke pr22051-2.c for arm where function pointer
4017 canonicalizaion is not wanted. */
4018
4019 (for cmp (ne eq)
4020 (simplify
4021 (cmp (convert @0) INTEGER_CST@1)
4022 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4023 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4024 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4025 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4026 && POINTER_TYPE_P (TREE_TYPE (@1))
4027 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4028 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4029 (cmp @0 (convert @1)))))
4030
4031 /* Non-equality compare simplifications from fold_binary */
4032 (for cmp (lt gt le ge)
4033 /* Comparisons with the highest or lowest possible integer of
4034 the specified precision will have known values. */
4035 (simplify
4036 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4037 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4038 || POINTER_TYPE_P (TREE_TYPE (@1))
4039 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4040 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4041 (with
4042 {
4043 tree cst = uniform_integer_cst_p (@1);
4044 tree arg1_type = TREE_TYPE (cst);
4045 unsigned int prec = TYPE_PRECISION (arg1_type);
4046 wide_int max = wi::max_value (arg1_type);
4047 wide_int signed_max = wi::max_value (prec, SIGNED);
4048 wide_int min = wi::min_value (arg1_type);
4049 }
4050 (switch
4051 (if (wi::to_wide (cst) == max)
4052 (switch
4053 (if (cmp == GT_EXPR)
4054 { constant_boolean_node (false, type); })
4055 (if (cmp == GE_EXPR)
4056 (eq @2 @1))
4057 (if (cmp == LE_EXPR)
4058 { constant_boolean_node (true, type); })
4059 (if (cmp == LT_EXPR)
4060 (ne @2 @1))))
4061 (if (wi::to_wide (cst) == min)
4062 (switch
4063 (if (cmp == LT_EXPR)
4064 { constant_boolean_node (false, type); })
4065 (if (cmp == LE_EXPR)
4066 (eq @2 @1))
4067 (if (cmp == GE_EXPR)
4068 { constant_boolean_node (true, type); })
4069 (if (cmp == GT_EXPR)
4070 (ne @2 @1))))
4071 (if (wi::to_wide (cst) == max - 1)
4072 (switch
4073 (if (cmp == GT_EXPR)
4074 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4075 wide_int_to_tree (TREE_TYPE (cst),
4076 wi::to_wide (cst)
4077 + 1)); }))
4078 (if (cmp == LE_EXPR)
4079 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4080 wide_int_to_tree (TREE_TYPE (cst),
4081 wi::to_wide (cst)
4082 + 1)); }))))
4083 (if (wi::to_wide (cst) == min + 1)
4084 (switch
4085 (if (cmp == GE_EXPR)
4086 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4087 wide_int_to_tree (TREE_TYPE (cst),
4088 wi::to_wide (cst)
4089 - 1)); }))
4090 (if (cmp == LT_EXPR)
4091 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4092 wide_int_to_tree (TREE_TYPE (cst),
4093 wi::to_wide (cst)
4094 - 1)); }))))
4095 (if (wi::to_wide (cst) == signed_max
4096 && TYPE_UNSIGNED (arg1_type)
4097 /* We will flip the signedness of the comparison operator
4098 associated with the mode of @1, so the sign bit is
4099 specified by this mode. Check that @1 is the signed
4100 max associated with this sign bit. */
4101 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4102 /* signed_type does not work on pointer types. */
4103 && INTEGRAL_TYPE_P (arg1_type))
4104 /* The following case also applies to X < signed_max+1
4105 and X >= signed_max+1 because previous transformations. */
4106 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4107 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4108 (switch
4109 (if (cst == @1 && cmp == LE_EXPR)
4110 (ge (convert:st @0) { build_zero_cst (st); }))
4111 (if (cst == @1 && cmp == GT_EXPR)
4112 (lt (convert:st @0) { build_zero_cst (st); }))
4113 (if (cmp == LE_EXPR)
4114 (ge (view_convert:st @0) { build_zero_cst (st); }))
4115 (if (cmp == GT_EXPR)
4116 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4117
4118 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4119 /* If the second operand is NaN, the result is constant. */
4120 (simplify
4121 (cmp @0 REAL_CST@1)
4122 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4123 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4124 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4125 ? false : true, type); })))
4126
4127 /* bool_var != 0 becomes bool_var. */
4128 (simplify
4129 (ne @0 integer_zerop)
4130 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4131 && types_match (type, TREE_TYPE (@0)))
4132 (non_lvalue @0)))
4133 /* bool_var == 1 becomes bool_var. */
4134 (simplify
4135 (eq @0 integer_onep)
4136 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4137 && types_match (type, TREE_TYPE (@0)))
4138 (non_lvalue @0)))
4139 /* Do not handle
4140 bool_var == 0 becomes !bool_var or
4141 bool_var != 1 becomes !bool_var
4142 here because that only is good in assignment context as long
4143 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4144 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4145 clearly less optimal and which we'll transform again in forwprop. */
4146
4147 /* When one argument is a constant, overflow detection can be simplified.
4148 Currently restricted to single use so as not to interfere too much with
4149 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4150 A + CST CMP A -> A CMP' CST' */
4151 (for cmp (lt le ge gt)
4152 out (gt gt le le)
4153 (simplify
4154 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4155 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4156 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4157 && wi::to_wide (@1) != 0
4158 && single_use (@2))
4159 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4160 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4161 wi::max_value (prec, UNSIGNED)
4162 - wi::to_wide (@1)); })))))
4163
4164 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4165 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4166 expects the long form, so we restrict the transformation for now. */
4167 (for cmp (gt le)
4168 (simplify
4169 (cmp:c (minus@2 @0 @1) @0)
4170 (if (single_use (@2)
4171 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4172 && TYPE_UNSIGNED (TREE_TYPE (@0))
4173 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4174 (cmp @1 @0))))
4175
4176 /* Testing for overflow is unnecessary if we already know the result. */
4177 /* A - B > A */
4178 (for cmp (gt le)
4179 out (ne eq)
4180 (simplify
4181 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4182 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4183 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4184 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4185 /* A + B < A */
4186 (for cmp (lt ge)
4187 out (ne eq)
4188 (simplify
4189 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4190 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4191 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4192 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4193
4194 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4195 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4196 (for cmp (lt ge)
4197 out (ne eq)
4198 (simplify
4199 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4200 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4201 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4202 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4203
4204 /* Simplification of math builtins. These rules must all be optimizations
4205 as well as IL simplifications. If there is a possibility that the new
4206 form could be a pessimization, the rule should go in the canonicalization
4207 section that follows this one.
4208
4209 Rules can generally go in this section if they satisfy one of
4210 the following:
4211
4212 - the rule describes an identity
4213
4214 - the rule replaces calls with something as simple as addition or
4215 multiplication
4216
4217 - the rule contains unary calls only and simplifies the surrounding
4218 arithmetic. (The idea here is to exclude non-unary calls in which
4219 one operand is constant and in which the call is known to be cheap
4220 when the operand has that value.) */
4221
4222 (if (flag_unsafe_math_optimizations)
4223 /* Simplify sqrt(x) * sqrt(x) -> x. */
4224 (simplify
4225 (mult (SQRT_ALL@1 @0) @1)
4226 (if (!HONOR_SNANS (type))
4227 @0))
4228
4229 (for op (plus minus)
4230 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4231 (simplify
4232 (op (rdiv @0 @1)
4233 (rdiv @2 @1))
4234 (rdiv (op @0 @2) @1)))
4235
4236 (for cmp (lt le gt ge)
4237 neg_cmp (gt ge lt le)
4238 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4239 (simplify
4240 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4241 (with
4242 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4243 (if (tem
4244 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4245 || (real_zerop (tem) && !real_zerop (@1))))
4246 (switch
4247 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4248 (cmp @0 { tem; }))
4249 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4250 (neg_cmp @0 { tem; })))))))
4251
4252 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4253 (for root (SQRT CBRT)
4254 (simplify
4255 (mult (root:s @0) (root:s @1))
4256 (root (mult @0 @1))))
4257
4258 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4259 (for exps (EXP EXP2 EXP10 POW10)
4260 (simplify
4261 (mult (exps:s @0) (exps:s @1))
4262 (exps (plus @0 @1))))
4263
4264 /* Simplify a/root(b/c) into a*root(c/b). */
4265 (for root (SQRT CBRT)
4266 (simplify
4267 (rdiv @0 (root:s (rdiv:s @1 @2)))
4268 (mult @0 (root (rdiv @2 @1)))))
4269
4270 /* Simplify x/expN(y) into x*expN(-y). */
4271 (for exps (EXP EXP2 EXP10 POW10)
4272 (simplify
4273 (rdiv @0 (exps:s @1))
4274 (mult @0 (exps (negate @1)))))
4275
4276 (for logs (LOG LOG2 LOG10 LOG10)
4277 exps (EXP EXP2 EXP10 POW10)
4278 /* logN(expN(x)) -> x. */
4279 (simplify
4280 (logs (exps @0))
4281 @0)
4282 /* expN(logN(x)) -> x. */
4283 (simplify
4284 (exps (logs @0))
4285 @0))
4286
4287 /* Optimize logN(func()) for various exponential functions. We
4288 want to determine the value "x" and the power "exponent" in
4289 order to transform logN(x**exponent) into exponent*logN(x). */
4290 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4291 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4292 (simplify
4293 (logs (exps @0))
4294 (if (SCALAR_FLOAT_TYPE_P (type))
4295 (with {
4296 tree x;
4297 switch (exps)
4298 {
4299 CASE_CFN_EXP:
4300 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4301 x = build_real_truncate (type, dconst_e ());
4302 break;
4303 CASE_CFN_EXP2:
4304 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4305 x = build_real (type, dconst2);
4306 break;
4307 CASE_CFN_EXP10:
4308 CASE_CFN_POW10:
4309 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4310 {
4311 REAL_VALUE_TYPE dconst10;
4312 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4313 x = build_real (type, dconst10);
4314 }
4315 break;
4316 default:
4317 gcc_unreachable ();
4318 }
4319 }
4320 (mult (logs { x; }) @0)))))
4321
4322 (for logs (LOG LOG
4323 LOG2 LOG2
4324 LOG10 LOG10)
4325 exps (SQRT CBRT)
4326 (simplify
4327 (logs (exps @0))
4328 (if (SCALAR_FLOAT_TYPE_P (type))
4329 (with {
4330 tree x;
4331 switch (exps)
4332 {
4333 CASE_CFN_SQRT:
4334 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4335 x = build_real (type, dconsthalf);
4336 break;
4337 CASE_CFN_CBRT:
4338 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4339 x = build_real_truncate (type, dconst_third ());
4340 break;
4341 default:
4342 gcc_unreachable ();
4343 }
4344 }
4345 (mult { x; } (logs @0))))))
4346
4347 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4348 (for logs (LOG LOG2 LOG10)
4349 pows (POW)
4350 (simplify
4351 (logs (pows @0 @1))
4352 (mult @1 (logs @0))))
4353
4354 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4355 or if C is a positive power of 2,
4356 pow(C,x) -> exp2(log2(C)*x). */
4357 #if GIMPLE
4358 (for pows (POW)
4359 exps (EXP)
4360 logs (LOG)
4361 exp2s (EXP2)
4362 log2s (LOG2)
4363 (simplify
4364 (pows REAL_CST@0 @1)
4365 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4366 && real_isfinite (TREE_REAL_CST_PTR (@0))
4367 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4368 the use_exp2 case until after vectorization. It seems actually
4369 beneficial for all constants to postpone this until later,
4370 because exp(log(C)*x), while faster, will have worse precision
4371 and if x folds into a constant too, that is unnecessary
4372 pessimization. */
4373 && canonicalize_math_after_vectorization_p ())
4374 (with {
4375 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4376 bool use_exp2 = false;
4377 if (targetm.libc_has_function (function_c99_misc)
4378 && value->cl == rvc_normal)
4379 {
4380 REAL_VALUE_TYPE frac_rvt = *value;
4381 SET_REAL_EXP (&frac_rvt, 1);
4382 if (real_equal (&frac_rvt, &dconst1))
4383 use_exp2 = true;
4384 }
4385 }
4386 (if (!use_exp2)
4387 (if (optimize_pow_to_exp (@0, @1))
4388 (exps (mult (logs @0) @1)))
4389 (exp2s (mult (log2s @0) @1)))))))
4390 #endif
4391
4392 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4393 (for pows (POW)
4394 exps (EXP EXP2 EXP10 POW10)
4395 logs (LOG LOG2 LOG10 LOG10)
4396 (simplify
4397 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4398 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4399 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4400 (exps (plus (mult (logs @0) @1) @2)))))
4401
4402 (for sqrts (SQRT)
4403 cbrts (CBRT)
4404 pows (POW)
4405 exps (EXP EXP2 EXP10 POW10)
4406 /* sqrt(expN(x)) -> expN(x*0.5). */
4407 (simplify
4408 (sqrts (exps @0))
4409 (exps (mult @0 { build_real (type, dconsthalf); })))
4410 /* cbrt(expN(x)) -> expN(x/3). */
4411 (simplify
4412 (cbrts (exps @0))
4413 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4414 /* pow(expN(x), y) -> expN(x*y). */
4415 (simplify
4416 (pows (exps @0) @1)
4417 (exps (mult @0 @1))))
4418
4419 /* tan(atan(x)) -> x. */
4420 (for tans (TAN)
4421 atans (ATAN)
4422 (simplify
4423 (tans (atans @0))
4424 @0)))
4425
4426 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4427 (for sins (SIN)
4428 atans (ATAN)
4429 sqrts (SQRT)
4430 copysigns (COPYSIGN)
4431 (simplify
4432 (sins (atans:s @0))
4433 (with
4434 {
4435 REAL_VALUE_TYPE r_cst;
4436 build_sinatan_real (&r_cst, type);
4437 tree t_cst = build_real (type, r_cst);
4438 tree t_one = build_one_cst (type);
4439 }
4440 (if (SCALAR_FLOAT_TYPE_P (type))
4441 (cond (lt (abs @0) { t_cst; })
4442 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4443 (copysigns { t_one; } @0))))))
4444
4445 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4446 (for coss (COS)
4447 atans (ATAN)
4448 sqrts (SQRT)
4449 copysigns (COPYSIGN)
4450 (simplify
4451 (coss (atans:s @0))
4452 (with
4453 {
4454 REAL_VALUE_TYPE r_cst;
4455 build_sinatan_real (&r_cst, type);
4456 tree t_cst = build_real (type, r_cst);
4457 tree t_one = build_one_cst (type);
4458 tree t_zero = build_zero_cst (type);
4459 }
4460 (if (SCALAR_FLOAT_TYPE_P (type))
4461 (cond (lt (abs @0) { t_cst; })
4462 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4463 (copysigns { t_zero; } @0))))))
4464
4465 (if (!flag_errno_math)
4466 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4467 (for sinhs (SINH)
4468 atanhs (ATANH)
4469 sqrts (SQRT)
4470 (simplify
4471 (sinhs (atanhs:s @0))
4472 (with { tree t_one = build_one_cst (type); }
4473 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4474
4475 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4476 (for coshs (COSH)
4477 atanhs (ATANH)
4478 sqrts (SQRT)
4479 (simplify
4480 (coshs (atanhs:s @0))
4481 (with { tree t_one = build_one_cst (type); }
4482 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4483
4484 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4485 (simplify
4486 (CABS (complex:C @0 real_zerop@1))
4487 (abs @0))
4488
4489 /* trunc(trunc(x)) -> trunc(x), etc. */
4490 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4491 (simplify
4492 (fns (fns @0))
4493 (fns @0)))
4494 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4495 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4496 (simplify
4497 (fns integer_valued_real_p@0)
4498 @0))
4499
4500 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4501 (simplify
4502 (HYPOT:c @0 real_zerop@1)
4503 (abs @0))
4504
4505 /* pow(1,x) -> 1. */
4506 (simplify
4507 (POW real_onep@0 @1)
4508 @0)
4509
4510 (simplify
4511 /* copysign(x,x) -> x. */
4512 (COPYSIGN_ALL @0 @0)
4513 @0)
4514
4515 (simplify
4516 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4517 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4518 (abs @0))
4519
4520 (for scale (LDEXP SCALBN SCALBLN)
4521 /* ldexp(0, x) -> 0. */
4522 (simplify
4523 (scale real_zerop@0 @1)
4524 @0)
4525 /* ldexp(x, 0) -> x. */
4526 (simplify
4527 (scale @0 integer_zerop@1)
4528 @0)
4529 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4530 (simplify
4531 (scale REAL_CST@0 @1)
4532 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4533 @0)))
4534
4535 /* Canonicalization of sequences of math builtins. These rules represent
4536 IL simplifications but are not necessarily optimizations.
4537
4538 The sincos pass is responsible for picking "optimal" implementations
4539 of math builtins, which may be more complicated and can sometimes go
4540 the other way, e.g. converting pow into a sequence of sqrts.
4541 We only want to do these canonicalizations before the pass has run. */
4542
4543 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4544 /* Simplify tan(x) * cos(x) -> sin(x). */
4545 (simplify
4546 (mult:c (TAN:s @0) (COS:s @0))
4547 (SIN @0))
4548
4549 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4550 (simplify
4551 (mult:c @0 (POW:s @0 REAL_CST@1))
4552 (if (!TREE_OVERFLOW (@1))
4553 (POW @0 (plus @1 { build_one_cst (type); }))))
4554
4555 /* Simplify sin(x) / cos(x) -> tan(x). */
4556 (simplify
4557 (rdiv (SIN:s @0) (COS:s @0))
4558 (TAN @0))
4559
4560 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4561 (simplify
4562 (rdiv (COS:s @0) (SIN:s @0))
4563 (rdiv { build_one_cst (type); } (TAN @0)))
4564
4565 /* Simplify sin(x) / tan(x) -> cos(x). */
4566 (simplify
4567 (rdiv (SIN:s @0) (TAN:s @0))
4568 (if (! HONOR_NANS (@0)
4569 && ! HONOR_INFINITIES (@0))
4570 (COS @0)))
4571
4572 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4573 (simplify
4574 (rdiv (TAN:s @0) (SIN:s @0))
4575 (if (! HONOR_NANS (@0)
4576 && ! HONOR_INFINITIES (@0))
4577 (rdiv { build_one_cst (type); } (COS @0))))
4578
4579 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4580 (simplify
4581 (mult (POW:s @0 @1) (POW:s @0 @2))
4582 (POW @0 (plus @1 @2)))
4583
4584 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4585 (simplify
4586 (mult (POW:s @0 @1) (POW:s @2 @1))
4587 (POW (mult @0 @2) @1))
4588
4589 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4590 (simplify
4591 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4592 (POWI (mult @0 @2) @1))
4593
4594 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4595 (simplify
4596 (rdiv (POW:s @0 REAL_CST@1) @0)
4597 (if (!TREE_OVERFLOW (@1))
4598 (POW @0 (minus @1 { build_one_cst (type); }))))
4599
4600 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4601 (simplify
4602 (rdiv @0 (POW:s @1 @2))
4603 (mult @0 (POW @1 (negate @2))))
4604
4605 (for sqrts (SQRT)
4606 cbrts (CBRT)
4607 pows (POW)
4608 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4609 (simplify
4610 (sqrts (sqrts @0))
4611 (pows @0 { build_real (type, dconst_quarter ()); }))
4612 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4613 (simplify
4614 (sqrts (cbrts @0))
4615 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4616 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4617 (simplify
4618 (cbrts (sqrts @0))
4619 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4620 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4621 (simplify
4622 (cbrts (cbrts tree_expr_nonnegative_p@0))
4623 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4624 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4625 (simplify
4626 (sqrts (pows @0 @1))
4627 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4628 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4629 (simplify
4630 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4631 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4632 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4633 (simplify
4634 (pows (sqrts @0) @1)
4635 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4636 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4637 (simplify
4638 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4639 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4640 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4641 (simplify
4642 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4643 (pows @0 (mult @1 @2))))
4644
4645 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4646 (simplify
4647 (CABS (complex @0 @0))
4648 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4649
4650 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4651 (simplify
4652 (HYPOT @0 @0)
4653 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4654
4655 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4656 (for cexps (CEXP)
4657 exps (EXP)
4658 cexpis (CEXPI)
4659 (simplify
4660 (cexps compositional_complex@0)
4661 (if (targetm.libc_has_function (function_c99_math_complex))
4662 (complex
4663 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4664 (mult @1 (imagpart @2)))))))
4665
4666 (if (canonicalize_math_p ())
4667 /* floor(x) -> trunc(x) if x is nonnegative. */
4668 (for floors (FLOOR_ALL)
4669 truncs (TRUNC_ALL)
4670 (simplify
4671 (floors tree_expr_nonnegative_p@0)
4672 (truncs @0))))
4673
4674 (match double_value_p
4675 @0
4676 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4677 (for froms (BUILT_IN_TRUNCL
4678 BUILT_IN_FLOORL
4679 BUILT_IN_CEILL
4680 BUILT_IN_ROUNDL
4681 BUILT_IN_NEARBYINTL
4682 BUILT_IN_RINTL)
4683 tos (BUILT_IN_TRUNC
4684 BUILT_IN_FLOOR
4685 BUILT_IN_CEIL
4686 BUILT_IN_ROUND
4687 BUILT_IN_NEARBYINT
4688 BUILT_IN_RINT)
4689 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4690 (if (optimize && canonicalize_math_p ())
4691 (simplify
4692 (froms (convert double_value_p@0))
4693 (convert (tos @0)))))
4694
4695 (match float_value_p
4696 @0
4697 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4698 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4699 BUILT_IN_FLOORL BUILT_IN_FLOOR
4700 BUILT_IN_CEILL BUILT_IN_CEIL
4701 BUILT_IN_ROUNDL BUILT_IN_ROUND
4702 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4703 BUILT_IN_RINTL BUILT_IN_RINT)
4704 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4705 BUILT_IN_FLOORF BUILT_IN_FLOORF
4706 BUILT_IN_CEILF BUILT_IN_CEILF
4707 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4708 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4709 BUILT_IN_RINTF BUILT_IN_RINTF)
4710 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4711 if x is a float. */
4712 (if (optimize && canonicalize_math_p ()
4713 && targetm.libc_has_function (function_c99_misc))
4714 (simplify
4715 (froms (convert float_value_p@0))
4716 (convert (tos @0)))))
4717
4718 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4719 tos (XFLOOR XCEIL XROUND XRINT)
4720 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4721 (if (optimize && canonicalize_math_p ())
4722 (simplify
4723 (froms (convert double_value_p@0))
4724 (tos @0))))
4725
4726 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4727 XFLOOR XCEIL XROUND XRINT)
4728 tos (XFLOORF XCEILF XROUNDF XRINTF)
4729 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4730 if x is a float. */
4731 (if (optimize && canonicalize_math_p ())
4732 (simplify
4733 (froms (convert float_value_p@0))
4734 (tos @0))))
4735
4736 (if (canonicalize_math_p ())
4737 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4738 (for floors (IFLOOR LFLOOR LLFLOOR)
4739 (simplify
4740 (floors tree_expr_nonnegative_p@0)
4741 (fix_trunc @0))))
4742
4743 (if (canonicalize_math_p ())
4744 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4745 (for fns (IFLOOR LFLOOR LLFLOOR
4746 ICEIL LCEIL LLCEIL
4747 IROUND LROUND LLROUND)
4748 (simplify
4749 (fns integer_valued_real_p@0)
4750 (fix_trunc @0)))
4751 (if (!flag_errno_math)
4752 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4753 (for rints (IRINT LRINT LLRINT)
4754 (simplify
4755 (rints integer_valued_real_p@0)
4756 (fix_trunc @0)))))
4757
4758 (if (canonicalize_math_p ())
4759 (for ifn (IFLOOR ICEIL IROUND IRINT)
4760 lfn (LFLOOR LCEIL LROUND LRINT)
4761 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4762 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4763 sizeof (int) == sizeof (long). */
4764 (if (TYPE_PRECISION (integer_type_node)
4765 == TYPE_PRECISION (long_integer_type_node))
4766 (simplify
4767 (ifn @0)
4768 (lfn:long_integer_type_node @0)))
4769 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4770 sizeof (long long) == sizeof (long). */
4771 (if (TYPE_PRECISION (long_long_integer_type_node)
4772 == TYPE_PRECISION (long_integer_type_node))
4773 (simplify
4774 (llfn @0)
4775 (lfn:long_integer_type_node @0)))))
4776
4777 /* cproj(x) -> x if we're ignoring infinities. */
4778 (simplify
4779 (CPROJ @0)
4780 (if (!HONOR_INFINITIES (type))
4781 @0))
4782
4783 /* If the real part is inf and the imag part is known to be
4784 nonnegative, return (inf + 0i). */
4785 (simplify
4786 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4787 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4788 { build_complex_inf (type, false); }))
4789
4790 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4791 (simplify
4792 (CPROJ (complex @0 REAL_CST@1))
4793 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4794 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4795
4796 (for pows (POW)
4797 sqrts (SQRT)
4798 cbrts (CBRT)
4799 (simplify
4800 (pows @0 REAL_CST@1)
4801 (with {
4802 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4803 REAL_VALUE_TYPE tmp;
4804 }
4805 (switch
4806 /* pow(x,0) -> 1. */
4807 (if (real_equal (value, &dconst0))
4808 { build_real (type, dconst1); })
4809 /* pow(x,1) -> x. */
4810 (if (real_equal (value, &dconst1))
4811 @0)
4812 /* pow(x,-1) -> 1/x. */
4813 (if (real_equal (value, &dconstm1))
4814 (rdiv { build_real (type, dconst1); } @0))
4815 /* pow(x,0.5) -> sqrt(x). */
4816 (if (flag_unsafe_math_optimizations
4817 && canonicalize_math_p ()
4818 && real_equal (value, &dconsthalf))
4819 (sqrts @0))
4820 /* pow(x,1/3) -> cbrt(x). */
4821 (if (flag_unsafe_math_optimizations
4822 && canonicalize_math_p ()
4823 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4824 real_equal (value, &tmp)))
4825 (cbrts @0))))))
4826
4827 /* powi(1,x) -> 1. */
4828 (simplify
4829 (POWI real_onep@0 @1)
4830 @0)
4831
4832 (simplify
4833 (POWI @0 INTEGER_CST@1)
4834 (switch
4835 /* powi(x,0) -> 1. */
4836 (if (wi::to_wide (@1) == 0)
4837 { build_real (type, dconst1); })
4838 /* powi(x,1) -> x. */
4839 (if (wi::to_wide (@1) == 1)
4840 @0)
4841 /* powi(x,-1) -> 1/x. */
4842 (if (wi::to_wide (@1) == -1)
4843 (rdiv { build_real (type, dconst1); } @0))))
4844
4845 /* Narrowing of arithmetic and logical operations.
4846
4847 These are conceptually similar to the transformations performed for
4848 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4849 term we want to move all that code out of the front-ends into here. */
4850
4851 /* If we have a narrowing conversion of an arithmetic operation where
4852 both operands are widening conversions from the same type as the outer
4853 narrowing conversion. Then convert the innermost operands to a suitable
4854 unsigned type (to avoid introducing undefined behavior), perform the
4855 operation and convert the result to the desired type. */
4856 (for op (plus minus)
4857 (simplify
4858 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4859 (if (INTEGRAL_TYPE_P (type)
4860 /* We check for type compatibility between @0 and @1 below,
4861 so there's no need to check that @1/@3 are integral types. */
4862 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4863 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4864 /* The precision of the type of each operand must match the
4865 precision of the mode of each operand, similarly for the
4866 result. */
4867 && type_has_mode_precision_p (TREE_TYPE (@0))
4868 && type_has_mode_precision_p (TREE_TYPE (@1))
4869 && type_has_mode_precision_p (type)
4870 /* The inner conversion must be a widening conversion. */
4871 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4872 && types_match (@0, type)
4873 && (types_match (@0, @1)
4874 /* Or the second operand is const integer or converted const
4875 integer from valueize. */
4876 || TREE_CODE (@1) == INTEGER_CST))
4877 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4878 (op @0 (convert @1))
4879 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4880 (convert (op (convert:utype @0)
4881 (convert:utype @1))))))))
4882
4883 /* This is another case of narrowing, specifically when there's an outer
4884 BIT_AND_EXPR which masks off bits outside the type of the innermost
4885 operands. Like the previous case we have to convert the operands
4886 to unsigned types to avoid introducing undefined behavior for the
4887 arithmetic operation. */
4888 (for op (minus plus)
4889 (simplify
4890 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4891 (if (INTEGRAL_TYPE_P (type)
4892 /* We check for type compatibility between @0 and @1 below,
4893 so there's no need to check that @1/@3 are integral types. */
4894 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4895 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4896 /* The precision of the type of each operand must match the
4897 precision of the mode of each operand, similarly for the
4898 result. */
4899 && type_has_mode_precision_p (TREE_TYPE (@0))
4900 && type_has_mode_precision_p (TREE_TYPE (@1))
4901 && type_has_mode_precision_p (type)
4902 /* The inner conversion must be a widening conversion. */
4903 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4904 && types_match (@0, @1)
4905 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4906 <= TYPE_PRECISION (TREE_TYPE (@0)))
4907 && (wi::to_wide (@4)
4908 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4909 true, TYPE_PRECISION (type))) == 0)
4910 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4911 (with { tree ntype = TREE_TYPE (@0); }
4912 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4913 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4914 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4915 (convert:utype @4))))))))
4916
4917 /* Transform (@0 < @1 and @0 < @2) to use min,
4918 (@0 > @1 and @0 > @2) to use max */
4919 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4920 op (lt le gt ge lt le gt ge )
4921 ext (min min max max max max min min )
4922 (simplify
4923 (logic (op:cs @0 @1) (op:cs @0 @2))
4924 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4925 && TREE_CODE (@0) != INTEGER_CST)
4926 (op @0 (ext @1 @2)))))
4927
4928 (simplify
4929 /* signbit(x) -> 0 if x is nonnegative. */
4930 (SIGNBIT tree_expr_nonnegative_p@0)
4931 { integer_zero_node; })
4932
4933 (simplify
4934 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4935 (SIGNBIT @0)
4936 (if (!HONOR_SIGNED_ZEROS (@0))
4937 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4938
4939 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4940 (for cmp (eq ne)
4941 (for op (plus minus)
4942 rop (minus plus)
4943 (simplify
4944 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4945 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4946 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4947 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4948 && !TYPE_SATURATING (TREE_TYPE (@0)))
4949 (with { tree res = int_const_binop (rop, @2, @1); }
4950 (if (TREE_OVERFLOW (res)
4951 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4952 { constant_boolean_node (cmp == NE_EXPR, type); }
4953 (if (single_use (@3))
4954 (cmp @0 { TREE_OVERFLOW (res)
4955 ? drop_tree_overflow (res) : res; }))))))))
4956 (for cmp (lt le gt ge)
4957 (for op (plus minus)
4958 rop (minus plus)
4959 (simplify
4960 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4961 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4962 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4963 (with { tree res = int_const_binop (rop, @2, @1); }
4964 (if (TREE_OVERFLOW (res))
4965 {
4966 fold_overflow_warning (("assuming signed overflow does not occur "
4967 "when simplifying conditional to constant"),
4968 WARN_STRICT_OVERFLOW_CONDITIONAL);
4969 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4970 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4971 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4972 TYPE_SIGN (TREE_TYPE (@1)))
4973 != (op == MINUS_EXPR);
4974 constant_boolean_node (less == ovf_high, type);
4975 }
4976 (if (single_use (@3))
4977 (with
4978 {
4979 fold_overflow_warning (("assuming signed overflow does not occur "
4980 "when changing X +- C1 cmp C2 to "
4981 "X cmp C2 -+ C1"),
4982 WARN_STRICT_OVERFLOW_COMPARISON);
4983 }
4984 (cmp @0 { res; })))))))))
4985
4986 /* Canonicalizations of BIT_FIELD_REFs. */
4987
4988 (simplify
4989 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4990 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4991
4992 (simplify
4993 (BIT_FIELD_REF (view_convert @0) @1 @2)
4994 (BIT_FIELD_REF @0 @1 @2))
4995
4996 (simplify
4997 (BIT_FIELD_REF @0 @1 integer_zerop)
4998 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4999 (view_convert @0)))
5000
5001 (simplify
5002 (BIT_FIELD_REF @0 @1 @2)
5003 (switch
5004 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5005 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5006 (switch
5007 (if (integer_zerop (@2))
5008 (view_convert (realpart @0)))
5009 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5010 (view_convert (imagpart @0)))))
5011 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5012 && INTEGRAL_TYPE_P (type)
5013 /* On GIMPLE this should only apply to register arguments. */
5014 && (! GIMPLE || is_gimple_reg (@0))
5015 /* A bit-field-ref that referenced the full argument can be stripped. */
5016 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5017 && integer_zerop (@2))
5018 /* Low-parts can be reduced to integral conversions.
5019 ??? The following doesn't work for PDP endian. */
5020 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5021 /* Don't even think about BITS_BIG_ENDIAN. */
5022 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5023 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5024 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5025 ? (TYPE_PRECISION (TREE_TYPE (@0))
5026 - TYPE_PRECISION (type))
5027 : 0)) == 0)))
5028 (convert @0))))
5029
5030 /* Simplify vector extracts. */
5031
5032 (simplify
5033 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5034 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5035 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5036 || (VECTOR_TYPE_P (type)
5037 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5038 (with
5039 {
5040 tree ctor = (TREE_CODE (@0) == SSA_NAME
5041 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5042 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5043 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5044 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5045 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5046 }
5047 (if (n != 0
5048 && (idx % width) == 0
5049 && (n % width) == 0
5050 && known_le ((idx + n) / width,
5051 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5052 (with
5053 {
5054 idx = idx / width;
5055 n = n / width;
5056 /* Constructor elements can be subvectors. */
5057 poly_uint64 k = 1;
5058 if (CONSTRUCTOR_NELTS (ctor) != 0)
5059 {
5060 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5061 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5062 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5063 }
5064 unsigned HOST_WIDE_INT elt, count, const_k;
5065 }
5066 (switch
5067 /* We keep an exact subset of the constructor elements. */
5068 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5069 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5070 { build_constructor (type, NULL); }
5071 (if (count == 1)
5072 (if (elt < CONSTRUCTOR_NELTS (ctor))
5073 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5074 { build_zero_cst (type); })
5075 {
5076 vec<constructor_elt, va_gc> *vals;
5077 vec_alloc (vals, count);
5078 for (unsigned i = 0;
5079 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5080 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5081 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5082 build_constructor (type, vals);
5083 })))
5084 /* The bitfield references a single constructor element. */
5085 (if (k.is_constant (&const_k)
5086 && idx + n <= (idx / const_k + 1) * const_k)
5087 (switch
5088 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5089 { build_zero_cst (type); })
5090 (if (n == const_k)
5091 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5092 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5093 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5094
5095 /* Simplify a bit extraction from a bit insertion for the cases with
5096 the inserted element fully covering the extraction or the insertion
5097 not touching the extraction. */
5098 (simplify
5099 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5100 (with
5101 {
5102 unsigned HOST_WIDE_INT isize;
5103 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5104 isize = TYPE_PRECISION (TREE_TYPE (@1));
5105 else
5106 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5107 }
5108 (switch
5109 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5110 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5111 wi::to_wide (@ipos) + isize))
5112 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5113 wi::to_wide (@rpos)
5114 - wi::to_wide (@ipos)); }))
5115 (if (wi::geu_p (wi::to_wide (@ipos),
5116 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5117 || wi::geu_p (wi::to_wide (@rpos),
5118 wi::to_wide (@ipos) + isize))
5119 (BIT_FIELD_REF @0 @rsize @rpos)))))
5120
5121 (if (canonicalize_math_after_vectorization_p ())
5122 (for fmas (FMA)
5123 (simplify
5124 (fmas:c (negate @0) @1 @2)
5125 (IFN_FNMA @0 @1 @2))
5126 (simplify
5127 (fmas @0 @1 (negate @2))
5128 (IFN_FMS @0 @1 @2))
5129 (simplify
5130 (fmas:c (negate @0) @1 (negate @2))
5131 (IFN_FNMS @0 @1 @2))
5132 (simplify
5133 (negate (fmas@3 @0 @1 @2))
5134 (if (single_use (@3))
5135 (IFN_FNMS @0 @1 @2))))
5136
5137 (simplify
5138 (IFN_FMS:c (negate @0) @1 @2)
5139 (IFN_FNMS @0 @1 @2))
5140 (simplify
5141 (IFN_FMS @0 @1 (negate @2))
5142 (IFN_FMA @0 @1 @2))
5143 (simplify
5144 (IFN_FMS:c (negate @0) @1 (negate @2))
5145 (IFN_FNMA @0 @1 @2))
5146 (simplify
5147 (negate (IFN_FMS@3 @0 @1 @2))
5148 (if (single_use (@3))
5149 (IFN_FNMA @0 @1 @2)))
5150
5151 (simplify
5152 (IFN_FNMA:c (negate @0) @1 @2)
5153 (IFN_FMA @0 @1 @2))
5154 (simplify
5155 (IFN_FNMA @0 @1 (negate @2))
5156 (IFN_FNMS @0 @1 @2))
5157 (simplify
5158 (IFN_FNMA:c (negate @0) @1 (negate @2))
5159 (IFN_FMS @0 @1 @2))
5160 (simplify
5161 (negate (IFN_FNMA@3 @0 @1 @2))
5162 (if (single_use (@3))
5163 (IFN_FMS @0 @1 @2)))
5164
5165 (simplify
5166 (IFN_FNMS:c (negate @0) @1 @2)
5167 (IFN_FMS @0 @1 @2))
5168 (simplify
5169 (IFN_FNMS @0 @1 (negate @2))
5170 (IFN_FNMA @0 @1 @2))
5171 (simplify
5172 (IFN_FNMS:c (negate @0) @1 (negate @2))
5173 (IFN_FMA @0 @1 @2))
5174 (simplify
5175 (negate (IFN_FNMS@3 @0 @1 @2))
5176 (if (single_use (@3))
5177 (IFN_FMA @0 @1 @2))))
5178
5179 /* POPCOUNT simplifications. */
5180 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5181 BUILT_IN_POPCOUNTIMAX)
5182 /* popcount(X&1) is nop_expr(X&1). */
5183 (simplify
5184 (popcount @0)
5185 (if (tree_nonzero_bits (@0) == 1)
5186 (convert @0)))
5187 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5188 (simplify
5189 (plus (popcount:s @0) (popcount:s @1))
5190 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5191 (popcount (bit_ior @0 @1))))
5192 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5193 (for cmp (le eq ne gt)
5194 rep (eq eq ne ne)
5195 (simplify
5196 (cmp (popcount @0) integer_zerop)
5197 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5198
5199 /* Simplify:
5200
5201 a = a1 op a2
5202 r = c ? a : b;
5203
5204 to:
5205
5206 r = c ? a1 op a2 : b;
5207
5208 if the target can do it in one go. This makes the operation conditional
5209 on c, so could drop potentially-trapping arithmetic, but that's a valid
5210 simplification if the result of the operation isn't needed.
5211
5212 Avoid speculatively generating a stand-alone vector comparison
5213 on targets that might not support them. Any target implementing
5214 conditional internal functions must support the same comparisons
5215 inside and outside a VEC_COND_EXPR. */
5216
5217 #if GIMPLE
5218 (for uncond_op (UNCOND_BINARY)
5219 cond_op (COND_BINARY)
5220 (simplify
5221 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5222 (with { tree op_type = TREE_TYPE (@4); }
5223 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5224 && element_precision (type) == element_precision (op_type))
5225 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5226 (simplify
5227 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5228 (with { tree op_type = TREE_TYPE (@4); }
5229 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5230 && element_precision (type) == element_precision (op_type))
5231 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5232
5233 /* Same for ternary operations. */
5234 (for uncond_op (UNCOND_TERNARY)
5235 cond_op (COND_TERNARY)
5236 (simplify
5237 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5238 (with { tree op_type = TREE_TYPE (@5); }
5239 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5240 && element_precision (type) == element_precision (op_type))
5241 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5242 (simplify
5243 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5244 (with { tree op_type = TREE_TYPE (@5); }
5245 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5246 && element_precision (type) == element_precision (op_type))
5247 (view_convert (cond_op (bit_not @0) @2 @3 @4
5248 (view_convert:op_type @1)))))))
5249 #endif
5250
5251 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5252 "else" value of an IFN_COND_*. */
5253 (for cond_op (COND_BINARY)
5254 (simplify
5255 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5256 (with { tree op_type = TREE_TYPE (@3); }
5257 (if (element_precision (type) == element_precision (op_type))
5258 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5259 (simplify
5260 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5261 (with { tree op_type = TREE_TYPE (@5); }
5262 (if (inverse_conditions_p (@0, @2)
5263 && element_precision (type) == element_precision (op_type))
5264 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5265
5266 /* Same for ternary operations. */
5267 (for cond_op (COND_TERNARY)
5268 (simplify
5269 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5270 (with { tree op_type = TREE_TYPE (@4); }
5271 (if (element_precision (type) == element_precision (op_type))
5272 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5273 (simplify
5274 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5275 (with { tree op_type = TREE_TYPE (@6); }
5276 (if (inverse_conditions_p (@0, @2)
5277 && element_precision (type) == element_precision (op_type))
5278 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5279
5280 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5281 expressions like:
5282
5283 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5284 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5285
5286 If pointers are known not to wrap, B checks whether @1 bytes starting
5287 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5288 bytes. A is more efficiently tested as:
5289
5290 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5291
5292 The equivalent expression for B is given by replacing @1 with @1 - 1:
5293
5294 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5295
5296 @0 and @2 can be swapped in both expressions without changing the result.
5297
5298 The folds rely on sizetype's being unsigned (which is always true)
5299 and on its being the same width as the pointer (which we have to check).
5300
5301 The fold replaces two pointer_plus expressions, two comparisons and
5302 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5303 the best case it's a saving of two operations. The A fold retains one
5304 of the original pointer_pluses, so is a win even if both pointer_pluses
5305 are used elsewhere. The B fold is a wash if both pointer_pluses are
5306 used elsewhere, since all we end up doing is replacing a comparison with
5307 a pointer_plus. We do still apply the fold under those circumstances
5308 though, in case applying it to other conditions eventually makes one of the
5309 pointer_pluses dead. */
5310 (for ior (truth_orif truth_or bit_ior)
5311 (for cmp (le lt)
5312 (simplify
5313 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5314 (cmp:cs (pointer_plus@4 @2 @1) @0))
5315 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5316 && TYPE_OVERFLOW_WRAPS (sizetype)
5317 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5318 /* Calculate the rhs constant. */
5319 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5320 offset_int rhs = off * 2; }
5321 /* Always fails for negative values. */
5322 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5323 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5324 pick a canonical order. This increases the chances of using the
5325 same pointer_plus in multiple checks. */
5326 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5327 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5328 (if (cmp == LT_EXPR)
5329 (gt (convert:sizetype
5330 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5331 { swap_p ? @0 : @2; }))
5332 { rhs_tree; })
5333 (gt (convert:sizetype
5334 (pointer_diff:ssizetype
5335 (pointer_plus { swap_p ? @2 : @0; }
5336 { wide_int_to_tree (sizetype, off); })
5337 { swap_p ? @0 : @2; }))
5338 { rhs_tree; })))))))))
5339
5340 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5341 element of @1. */
5342 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5343 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5344 (with { int i = single_nonzero_element (@1); }
5345 (if (i >= 0)
5346 (with { tree elt = vector_cst_elt (@1, i);
5347 tree elt_type = TREE_TYPE (elt);
5348 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5349 tree size = bitsize_int (elt_bits);
5350 tree pos = bitsize_int (elt_bits * i); }
5351 (view_convert
5352 (bit_and:elt_type
5353 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5354 { elt; })))))))