]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
PR tree-optimization/84687
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80 (match (nop_convert @0)
81 (convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83 (match (nop_convert @0)
84 (view_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && known_eq (TYPE_VECTOR_SUBPARTS (type),
87 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
88 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
89 /* This one has to be last, or it shadows the others. */
90 (match (nop_convert @0)
91 @0)
92
93 /* Simplifications of operations with one constant operand and
94 simplifications to constants or single values. */
95
96 (for op (plus pointer_plus minus bit_ior bit_xor)
97 (simplify
98 (op @0 integer_zerop)
99 (non_lvalue @0)))
100
101 /* 0 +p index -> (type)index */
102 (simplify
103 (pointer_plus integer_zerop @1)
104 (non_lvalue (convert @1)))
105
106 /* ptr - 0 -> (type)ptr */
107 (simplify
108 (pointer_diff @0 integer_zerop)
109 (convert @0))
110
111 /* See if ARG1 is zero and X + ARG1 reduces to X.
112 Likewise if the operands are reversed. */
113 (simplify
114 (plus:c @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 0))
116 (non_lvalue @0)))
117
118 /* See if ARG1 is zero and X - ARG1 reduces to X. */
119 (simplify
120 (minus @0 real_zerop@1)
121 (if (fold_real_zero_addition_p (type, @1, 1))
122 (non_lvalue @0)))
123
124 /* Simplify x - x.
125 This is unsafe for certain floats even in non-IEEE formats.
126 In IEEE, it is unsafe because it does wrong for NaNs.
127 Also note that operand_equal_p is always false if an operand
128 is volatile. */
129 (simplify
130 (minus @0 @0)
131 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
132 { build_zero_cst (type); }))
133 (simplify
134 (pointer_diff @@0 @0)
135 { build_zero_cst (type); })
136
137 (simplify
138 (mult @0 integer_zerop@1)
139 @1)
140
141 /* Maybe fold x * 0 to 0. The expressions aren't the same
142 when x is NaN, since x * 0 is also NaN. Nor are they the
143 same in modes with signed zeros, since multiplying a
144 negative value by 0 gives -0, not +0. */
145 (simplify
146 (mult @0 real_zerop@1)
147 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
148 @1))
149
150 /* In IEEE floating point, x*1 is not equivalent to x for snans.
151 Likewise for complex arithmetic with signed zeros. */
152 (simplify
153 (mult @0 real_onep)
154 (if (!HONOR_SNANS (type)
155 && (!HONOR_SIGNED_ZEROS (type)
156 || !COMPLEX_FLOAT_TYPE_P (type)))
157 (non_lvalue @0)))
158
159 /* Transform x * -1.0 into -x. */
160 (simplify
161 (mult @0 real_minus_onep)
162 (if (!HONOR_SNANS (type)
163 && (!HONOR_SIGNED_ZEROS (type)
164 || !COMPLEX_FLOAT_TYPE_P (type)))
165 (negate @0)))
166
167 (for cmp (gt ge lt le)
168 outp (convert convert negate negate)
169 outn (negate negate convert convert)
170 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
172 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
174 (simplify
175 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
177 && types_match (type, TREE_TYPE (@0)))
178 (switch
179 (if (types_match (type, float_type_node))
180 (BUILT_IN_COPYSIGNF @1 (outp @0)))
181 (if (types_match (type, double_type_node))
182 (BUILT_IN_COPYSIGN @1 (outp @0)))
183 (if (types_match (type, long_double_type_node))
184 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
185 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
187 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
189 (simplify
190 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
191 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
192 && types_match (type, TREE_TYPE (@0)))
193 (switch
194 (if (types_match (type, float_type_node))
195 (BUILT_IN_COPYSIGNF @1 (outn @0)))
196 (if (types_match (type, double_type_node))
197 (BUILT_IN_COPYSIGN @1 (outn @0)))
198 (if (types_match (type, long_double_type_node))
199 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
200
201 /* Transform X * copysign (1.0, X) into abs(X). */
202 (simplify
203 (mult:c @0 (COPYSIGN_ALL real_onep @0))
204 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
205 (abs @0)))
206
207 /* Transform X * copysign (1.0, -X) into -abs(X). */
208 (simplify
209 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
210 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
211 (negate (abs @0))))
212
213 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
214 (simplify
215 (COPYSIGN_ALL REAL_CST@0 @1)
216 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
217 (COPYSIGN_ALL (negate @0) @1)))
218
219 /* X * 1, X / 1 -> X. */
220 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
221 (simplify
222 (op @0 integer_onep)
223 (non_lvalue @0)))
224
225 /* (A / (1 << B)) -> (A >> B).
226 Only for unsigned A. For signed A, this would not preserve rounding
227 toward zero.
228 For example: (-1 / ( 1 << B)) != -1 >> B. */
229 (simplify
230 (trunc_div @0 (lshift integer_onep@1 @2))
231 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
232 && (!VECTOR_TYPE_P (type)
233 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
234 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
235 (rshift @0 @2)))
236
237 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
238 undefined behavior in constexpr evaluation, and assuming that the division
239 traps enables better optimizations than these anyway. */
240 (for div (trunc_div ceil_div floor_div round_div exact_div)
241 /* 0 / X is always zero. */
242 (simplify
243 (div integer_zerop@0 @1)
244 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
245 (if (!integer_zerop (@1))
246 @0))
247 /* X / -1 is -X. */
248 (simplify
249 (div @0 integer_minus_onep@1)
250 (if (!TYPE_UNSIGNED (type))
251 (negate @0)))
252 /* X / X is one. */
253 (simplify
254 (div @0 @0)
255 /* But not for 0 / 0 so that we can get the proper warnings and errors.
256 And not for _Fract types where we can't build 1. */
257 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
258 { build_one_cst (type); }))
259 /* X / abs (X) is X < 0 ? -1 : 1. */
260 (simplify
261 (div:C @0 (abs @0))
262 (if (INTEGRAL_TYPE_P (type)
263 && TYPE_OVERFLOW_UNDEFINED (type))
264 (cond (lt @0 { build_zero_cst (type); })
265 { build_minus_one_cst (type); } { build_one_cst (type); })))
266 /* X / -X is -1. */
267 (simplify
268 (div:C @0 (negate @0))
269 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
270 && TYPE_OVERFLOW_UNDEFINED (type))
271 { build_minus_one_cst (type); })))
272
273 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
274 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
275 (simplify
276 (floor_div @0 @1)
277 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
278 && TYPE_UNSIGNED (type))
279 (trunc_div @0 @1)))
280
281 /* Combine two successive divisions. Note that combining ceil_div
282 and floor_div is trickier and combining round_div even more so. */
283 (for div (trunc_div exact_div)
284 (simplify
285 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
286 (with {
287 bool overflow_p;
288 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
289 TYPE_SIGN (type), &overflow_p);
290 }
291 (if (!overflow_p)
292 (div @0 { wide_int_to_tree (type, mul); })
293 (if (TYPE_UNSIGNED (type)
294 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
295 { build_zero_cst (type); })))))
296
297 /* Combine successive multiplications. Similar to above, but handling
298 overflow is different. */
299 (simplify
300 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
301 (with {
302 bool overflow_p;
303 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
304 TYPE_SIGN (type), &overflow_p);
305 }
306 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
307 otherwise undefined overflow implies that @0 must be zero. */
308 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
309 (mult @0 { wide_int_to_tree (type, mul); }))))
310
311 /* Optimize A / A to 1.0 if we don't care about
312 NaNs or Infinities. */
313 (simplify
314 (rdiv @0 @0)
315 (if (FLOAT_TYPE_P (type)
316 && ! HONOR_NANS (type)
317 && ! HONOR_INFINITIES (type))
318 { build_one_cst (type); }))
319
320 /* Optimize -A / A to -1.0 if we don't care about
321 NaNs or Infinities. */
322 (simplify
323 (rdiv:C @0 (negate @0))
324 (if (FLOAT_TYPE_P (type)
325 && ! HONOR_NANS (type)
326 && ! HONOR_INFINITIES (type))
327 { build_minus_one_cst (type); }))
328
329 /* PR71078: x / abs(x) -> copysign (1.0, x) */
330 (simplify
331 (rdiv:C (convert? @0) (convert? (abs @0)))
332 (if (SCALAR_FLOAT_TYPE_P (type)
333 && ! HONOR_NANS (type)
334 && ! HONOR_INFINITIES (type))
335 (switch
336 (if (types_match (type, float_type_node))
337 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
338 (if (types_match (type, double_type_node))
339 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
340 (if (types_match (type, long_double_type_node))
341 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
342
343 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
344 (simplify
345 (rdiv @0 real_onep)
346 (if (!HONOR_SNANS (type))
347 (non_lvalue @0)))
348
349 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
350 (simplify
351 (rdiv @0 real_minus_onep)
352 (if (!HONOR_SNANS (type))
353 (negate @0)))
354
355 (if (flag_reciprocal_math)
356 /* Convert (A/B)/C to A/(B*C). */
357 (simplify
358 (rdiv (rdiv:s @0 @1) @2)
359 (rdiv @0 (mult @1 @2)))
360
361 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
362 (simplify
363 (rdiv @0 (mult:s @1 REAL_CST@2))
364 (with
365 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
366 (if (tem)
367 (rdiv (mult @0 { tem; } ) @1))))
368
369 /* Convert A/(B/C) to (A/B)*C */
370 (simplify
371 (rdiv @0 (rdiv:s @1 @2))
372 (mult (rdiv @0 @1) @2)))
373
374 /* Simplify x / (- y) to -x / y. */
375 (simplify
376 (rdiv @0 (negate @1))
377 (rdiv (negate @0) @1))
378
379 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
380 (for div (trunc_div ceil_div floor_div round_div exact_div)
381 (simplify
382 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
383 (if (integer_pow2p (@2)
384 && tree_int_cst_sgn (@2) > 0
385 && tree_nop_conversion_p (type, TREE_TYPE (@0))
386 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
387 (rshift (convert @0)
388 { build_int_cst (integer_type_node,
389 wi::exact_log2 (wi::to_wide (@2))); }))))
390
391 /* If ARG1 is a constant, we can convert this to a multiply by the
392 reciprocal. This does not have the same rounding properties,
393 so only do this if -freciprocal-math. We can actually
394 always safely do it if ARG1 is a power of two, but it's hard to
395 tell if it is or not in a portable manner. */
396 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
397 (simplify
398 (rdiv @0 cst@1)
399 (if (optimize)
400 (if (flag_reciprocal_math
401 && !real_zerop (@1))
402 (with
403 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
404 (if (tem)
405 (mult @0 { tem; } )))
406 (if (cst != COMPLEX_CST)
407 (with { tree inverse = exact_inverse (type, @1); }
408 (if (inverse)
409 (mult @0 { inverse; } ))))))))
410
411 (for mod (ceil_mod floor_mod round_mod trunc_mod)
412 /* 0 % X is always zero. */
413 (simplify
414 (mod integer_zerop@0 @1)
415 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
416 (if (!integer_zerop (@1))
417 @0))
418 /* X % 1 is always zero. */
419 (simplify
420 (mod @0 integer_onep)
421 { build_zero_cst (type); })
422 /* X % -1 is zero. */
423 (simplify
424 (mod @0 integer_minus_onep@1)
425 (if (!TYPE_UNSIGNED (type))
426 { build_zero_cst (type); }))
427 /* X % X is zero. */
428 (simplify
429 (mod @0 @0)
430 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
431 (if (!integer_zerop (@0))
432 { build_zero_cst (type); }))
433 /* (X % Y) % Y is just X % Y. */
434 (simplify
435 (mod (mod@2 @0 @1) @1)
436 @2)
437 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
438 (simplify
439 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
440 (if (ANY_INTEGRAL_TYPE_P (type)
441 && TYPE_OVERFLOW_UNDEFINED (type)
442 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
443 TYPE_SIGN (type)))
444 { build_zero_cst (type); })))
445
446 /* X % -C is the same as X % C. */
447 (simplify
448 (trunc_mod @0 INTEGER_CST@1)
449 (if (TYPE_SIGN (type) == SIGNED
450 && !TREE_OVERFLOW (@1)
451 && wi::neg_p (wi::to_wide (@1))
452 && !TYPE_OVERFLOW_TRAPS (type)
453 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
454 && !sign_bit_p (@1, @1))
455 (trunc_mod @0 (negate @1))))
456
457 /* X % -Y is the same as X % Y. */
458 (simplify
459 (trunc_mod @0 (convert? (negate @1)))
460 (if (INTEGRAL_TYPE_P (type)
461 && !TYPE_UNSIGNED (type)
462 && !TYPE_OVERFLOW_TRAPS (type)
463 && tree_nop_conversion_p (type, TREE_TYPE (@1))
464 /* Avoid this transformation if X might be INT_MIN or
465 Y might be -1, because we would then change valid
466 INT_MIN % -(-1) into invalid INT_MIN % -1. */
467 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
468 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
469 (TREE_TYPE (@1))))))
470 (trunc_mod @0 (convert @1))))
471
472 /* X - (X / Y) * Y is the same as X % Y. */
473 (simplify
474 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
475 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
476 (convert (trunc_mod @0 @1))))
477
478 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
479 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
480 Also optimize A % (C << N) where C is a power of 2,
481 to A & ((C << N) - 1). */
482 (match (power_of_two_cand @1)
483 INTEGER_CST@1)
484 (match (power_of_two_cand @1)
485 (lshift INTEGER_CST@1 @2))
486 (for mod (trunc_mod floor_mod)
487 (simplify
488 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
489 (if ((TYPE_UNSIGNED (type)
490 || tree_expr_nonnegative_p (@0))
491 && tree_nop_conversion_p (type, TREE_TYPE (@3))
492 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
493 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
494
495 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
496 (simplify
497 (trunc_div (mult @0 integer_pow2p@1) @1)
498 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499 (bit_and @0 { wide_int_to_tree
500 (type, wi::mask (TYPE_PRECISION (type)
501 - wi::exact_log2 (wi::to_wide (@1)),
502 false, TYPE_PRECISION (type))); })))
503
504 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
505 (simplify
506 (mult (trunc_div @0 integer_pow2p@1) @1)
507 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
508 (bit_and @0 (negate @1))))
509
510 /* Simplify (t * 2) / 2) -> t. */
511 (for div (trunc_div ceil_div floor_div round_div exact_div)
512 (simplify
513 (div (mult:c @0 @1) @1)
514 (if (ANY_INTEGRAL_TYPE_P (type)
515 && TYPE_OVERFLOW_UNDEFINED (type))
516 @0)))
517
518 (for op (negate abs)
519 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
520 (for coss (COS COSH)
521 (simplify
522 (coss (op @0))
523 (coss @0)))
524 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
525 (for pows (POW)
526 (simplify
527 (pows (op @0) REAL_CST@1)
528 (with { HOST_WIDE_INT n; }
529 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
530 (pows @0 @1)))))
531 /* Likewise for powi. */
532 (for pows (POWI)
533 (simplify
534 (pows (op @0) INTEGER_CST@1)
535 (if ((wi::to_wide (@1) & 1) == 0)
536 (pows @0 @1))))
537 /* Strip negate and abs from both operands of hypot. */
538 (for hypots (HYPOT)
539 (simplify
540 (hypots (op @0) @1)
541 (hypots @0 @1))
542 (simplify
543 (hypots @0 (op @1))
544 (hypots @0 @1)))
545 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
546 (for copysigns (COPYSIGN_ALL)
547 (simplify
548 (copysigns (op @0) @1)
549 (copysigns @0 @1))))
550
551 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
552 (simplify
553 (mult (abs@1 @0) @1)
554 (mult @0 @0))
555
556 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
557 (for coss (COS COSH)
558 copysigns (COPYSIGN)
559 (simplify
560 (coss (copysigns @0 @1))
561 (coss @0)))
562
563 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
564 (for pows (POW)
565 copysigns (COPYSIGN)
566 (simplify
567 (pows (copysigns @0 @2) REAL_CST@1)
568 (with { HOST_WIDE_INT n; }
569 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
570 (pows @0 @1)))))
571 /* Likewise for powi. */
572 (for pows (POWI)
573 copysigns (COPYSIGN)
574 (simplify
575 (pows (copysigns @0 @2) INTEGER_CST@1)
576 (if ((wi::to_wide (@1) & 1) == 0)
577 (pows @0 @1))))
578
579 (for hypots (HYPOT)
580 copysigns (COPYSIGN)
581 /* hypot(copysign(x, y), z) -> hypot(x, z). */
582 (simplify
583 (hypots (copysigns @0 @1) @2)
584 (hypots @0 @2))
585 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
586 (simplify
587 (hypots @0 (copysigns @1 @2))
588 (hypots @0 @1)))
589
590 /* copysign(x, CST) -> [-]abs (x). */
591 (for copysigns (COPYSIGN_ALL)
592 (simplify
593 (copysigns @0 REAL_CST@1)
594 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
595 (negate (abs @0))
596 (abs @0))))
597
598 /* copysign(copysign(x, y), z) -> copysign(x, z). */
599 (for copysigns (COPYSIGN_ALL)
600 (simplify
601 (copysigns (copysigns @0 @1) @2)
602 (copysigns @0 @2)))
603
604 /* copysign(x,y)*copysign(x,y) -> x*x. */
605 (for copysigns (COPYSIGN_ALL)
606 (simplify
607 (mult (copysigns@2 @0 @1) @2)
608 (mult @0 @0)))
609
610 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
611 (for ccoss (CCOS CCOSH)
612 (simplify
613 (ccoss (negate @0))
614 (ccoss @0)))
615
616 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
617 (for ops (conj negate)
618 (for cabss (CABS)
619 (simplify
620 (cabss (ops @0))
621 (cabss @0))))
622
623 /* Fold (a * (1 << b)) into (a << b) */
624 (simplify
625 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
626 (if (! FLOAT_TYPE_P (type)
627 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
628 (lshift @0 @2)))
629
630 /* Fold (1 << (C - x)) where C = precision(type) - 1
631 into ((1 << C) >> x). */
632 (simplify
633 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
634 (if (INTEGRAL_TYPE_P (type)
635 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
636 && single_use (@1))
637 (if (TYPE_UNSIGNED (type))
638 (rshift (lshift @0 @2) @3)
639 (with
640 { tree utype = unsigned_type_for (type); }
641 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
642
643 /* Fold (C1/X)*C2 into (C1*C2)/X. */
644 (simplify
645 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
646 (if (flag_associative_math
647 && single_use (@3))
648 (with
649 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
650 (if (tem)
651 (rdiv { tem; } @1)))))
652
653 /* Simplify ~X & X as zero. */
654 (simplify
655 (bit_and:c (convert? @0) (convert? (bit_not @0)))
656 { build_zero_cst (type); })
657
658 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
659 (simplify
660 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
661 (if (TYPE_UNSIGNED (type))
662 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
663
664 (for bitop (bit_and bit_ior)
665 cmp (eq ne)
666 /* PR35691: Transform
667 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
668 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
669 (simplify
670 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
671 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
672 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
673 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
674 (cmp (bit_ior @0 (convert @1)) @2)))
675 /* Transform:
676 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
677 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
678 (simplify
679 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
680 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
681 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
682 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683 (cmp (bit_and @0 (convert @1)) @2))))
684
685 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
686 (simplify
687 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
688 (minus (bit_xor @0 @1) @1))
689 (simplify
690 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
691 (if (~wi::to_wide (@2) == wi::to_wide (@1))
692 (minus (bit_xor @0 @1) @1)))
693
694 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
695 (simplify
696 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
697 (minus @1 (bit_xor @0 @1)))
698
699 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
700 (for op (bit_ior bit_xor plus)
701 (simplify
702 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
703 (bit_xor @0 @1))
704 (simplify
705 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
706 (if (~wi::to_wide (@2) == wi::to_wide (@1))
707 (bit_xor @0 @1))))
708
709 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
710 (simplify
711 (bit_ior:c (bit_xor:c @0 @1) @0)
712 (bit_ior @0 @1))
713
714 /* (a & ~b) | (a ^ b) --> a ^ b */
715 (simplify
716 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
717 @2)
718
719 /* (a & ~b) ^ ~a --> ~(a & b) */
720 (simplify
721 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
722 (bit_not (bit_and @0 @1)))
723
724 /* (a | b) & ~(a ^ b) --> a & b */
725 (simplify
726 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
727 (bit_and @0 @1))
728
729 /* a | ~(a ^ b) --> a | ~b */
730 (simplify
731 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
732 (bit_ior @0 (bit_not @1)))
733
734 /* (a | b) | (a &^ b) --> a | b */
735 (for op (bit_and bit_xor)
736 (simplify
737 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
738 @2))
739
740 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
741 (simplify
742 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
743 @2)
744
745 /* ~(~a & b) --> a | ~b */
746 (simplify
747 (bit_not (bit_and:cs (bit_not @0) @1))
748 (bit_ior @0 (bit_not @1)))
749
750 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
751 #if GIMPLE
752 (simplify
753 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
755 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
756 (bit_xor @0 @1)))
757 #endif
758
759 /* X % Y is smaller than Y. */
760 (for cmp (lt ge)
761 (simplify
762 (cmp (trunc_mod @0 @1) @1)
763 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
764 { constant_boolean_node (cmp == LT_EXPR, type); })))
765 (for cmp (gt le)
766 (simplify
767 (cmp @1 (trunc_mod @0 @1))
768 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
769 { constant_boolean_node (cmp == GT_EXPR, type); })))
770
771 /* x | ~0 -> ~0 */
772 (simplify
773 (bit_ior @0 integer_all_onesp@1)
774 @1)
775
776 /* x | 0 -> x */
777 (simplify
778 (bit_ior @0 integer_zerop)
779 @0)
780
781 /* x & 0 -> 0 */
782 (simplify
783 (bit_and @0 integer_zerop@1)
784 @1)
785
786 /* ~x | x -> -1 */
787 /* ~x ^ x -> -1 */
788 /* ~x + x -> -1 */
789 (for op (bit_ior bit_xor plus)
790 (simplify
791 (op:c (convert? @0) (convert? (bit_not @0)))
792 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
793
794 /* x ^ x -> 0 */
795 (simplify
796 (bit_xor @0 @0)
797 { build_zero_cst (type); })
798
799 /* Canonicalize X ^ ~0 to ~X. */
800 (simplify
801 (bit_xor @0 integer_all_onesp@1)
802 (bit_not @0))
803
804 /* x & ~0 -> x */
805 (simplify
806 (bit_and @0 integer_all_onesp)
807 (non_lvalue @0))
808
809 /* x & x -> x, x | x -> x */
810 (for bitop (bit_and bit_ior)
811 (simplify
812 (bitop @0 @0)
813 (non_lvalue @0)))
814
815 /* x & C -> x if we know that x & ~C == 0. */
816 #if GIMPLE
817 (simplify
818 (bit_and SSA_NAME@0 INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
820 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
821 @0))
822 #endif
823
824 /* x + (x & 1) -> (x + 1) & ~1 */
825 (simplify
826 (plus:c @0 (bit_and:s @0 integer_onep@1))
827 (bit_and (plus @0 @1) (bit_not @1)))
828
829 /* x & ~(x & y) -> x & ~y */
830 /* x | ~(x | y) -> x | ~y */
831 (for bitop (bit_and bit_ior)
832 (simplify
833 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
834 (bitop @0 (bit_not @1))))
835
836 /* (x | y) & ~x -> y & ~x */
837 /* (x & y) | ~x -> y | ~x */
838 (for bitop (bit_and bit_ior)
839 rbitop (bit_ior bit_and)
840 (simplify
841 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
842 (bitop @1 @2)))
843
844 /* (x & y) ^ (x | y) -> x ^ y */
845 (simplify
846 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
847 (bit_xor @0 @1))
848
849 /* (x ^ y) ^ (x | y) -> x & y */
850 (simplify
851 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
852 (bit_and @0 @1))
853
854 /* (x & y) + (x ^ y) -> x | y */
855 /* (x & y) | (x ^ y) -> x | y */
856 /* (x & y) ^ (x ^ y) -> x | y */
857 (for op (plus bit_ior bit_xor)
858 (simplify
859 (op:c (bit_and @0 @1) (bit_xor @0 @1))
860 (bit_ior @0 @1)))
861
862 /* (x & y) + (x | y) -> x + y */
863 (simplify
864 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
865 (plus @0 @1))
866
867 /* (x + y) - (x | y) -> x & y */
868 (simplify
869 (minus (plus @0 @1) (bit_ior @0 @1))
870 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
871 && !TYPE_SATURATING (type))
872 (bit_and @0 @1)))
873
874 /* (x + y) - (x & y) -> x | y */
875 (simplify
876 (minus (plus @0 @1) (bit_and @0 @1))
877 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
878 && !TYPE_SATURATING (type))
879 (bit_ior @0 @1)))
880
881 /* (x | y) - (x ^ y) -> x & y */
882 (simplify
883 (minus (bit_ior @0 @1) (bit_xor @0 @1))
884 (bit_and @0 @1))
885
886 /* (x | y) - (x & y) -> x ^ y */
887 (simplify
888 (minus (bit_ior @0 @1) (bit_and @0 @1))
889 (bit_xor @0 @1))
890
891 /* (x | y) & ~(x & y) -> x ^ y */
892 (simplify
893 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
894 (bit_xor @0 @1))
895
896 /* (x | y) & (~x ^ y) -> x & y */
897 (simplify
898 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
899 (bit_and @0 @1))
900
901 /* ~x & ~y -> ~(x | y)
902 ~x | ~y -> ~(x & y) */
903 (for op (bit_and bit_ior)
904 rop (bit_ior bit_and)
905 (simplify
906 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
907 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
908 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
909 (bit_not (rop (convert @0) (convert @1))))))
910
911 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
912 with a constant, and the two constants have no bits in common,
913 we should treat this as a BIT_IOR_EXPR since this may produce more
914 simplifications. */
915 (for op (bit_xor plus)
916 (simplify
917 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
918 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
919 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
920 && tree_nop_conversion_p (type, TREE_TYPE (@2))
921 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
922 (bit_ior (convert @4) (convert @5)))))
923
924 /* (X | Y) ^ X -> Y & ~ X*/
925 (simplify
926 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928 (convert (bit_and @1 (bit_not @0)))))
929
930 /* Convert ~X ^ ~Y to X ^ Y. */
931 (simplify
932 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
933 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
935 (bit_xor (convert @0) (convert @1))))
936
937 /* Convert ~X ^ C to X ^ ~C. */
938 (simplify
939 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
940 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
941 (bit_xor (convert @0) (bit_not @1))))
942
943 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
944 (for opo (bit_and bit_xor)
945 opi (bit_xor bit_and)
946 (simplify
947 (opo:c (opi:c @0 @1) @1)
948 (bit_and (bit_not @0) @1)))
949
950 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
951 operands are another bit-wise operation with a common input. If so,
952 distribute the bit operations to save an operation and possibly two if
953 constants are involved. For example, convert
954 (A | B) & (A | C) into A | (B & C)
955 Further simplification will occur if B and C are constants. */
956 (for op (bit_and bit_ior bit_xor)
957 rop (bit_ior bit_and bit_and)
958 (simplify
959 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
960 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
961 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
962 (rop (convert @0) (op (convert @1) (convert @2))))))
963
964 /* Some simple reassociation for bit operations, also handled in reassoc. */
965 /* (X & Y) & Y -> X & Y
966 (X | Y) | Y -> X | Y */
967 (for op (bit_and bit_ior)
968 (simplify
969 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
970 @2))
971 /* (X ^ Y) ^ Y -> X */
972 (simplify
973 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
974 (convert @0))
975 /* (X & Y) & (X & Z) -> (X & Y) & Z
976 (X | Y) | (X | Z) -> (X | Y) | Z */
977 (for op (bit_and bit_ior)
978 (simplify
979 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
980 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
981 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
982 (if (single_use (@5) && single_use (@6))
983 (op @3 (convert @2))
984 (if (single_use (@3) && single_use (@4))
985 (op (convert @1) @5))))))
986 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
987 (simplify
988 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
989 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
990 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
991 (bit_xor (convert @1) (convert @2))))
992
993 (simplify
994 (abs (abs@1 @0))
995 @1)
996 (simplify
997 (abs (negate @0))
998 (abs @0))
999 (simplify
1000 (abs tree_expr_nonnegative_p@0)
1001 @0)
1002
1003 /* A few cases of fold-const.c negate_expr_p predicate. */
1004 (match negate_expr_p
1005 INTEGER_CST
1006 (if ((INTEGRAL_TYPE_P (type)
1007 && TYPE_UNSIGNED (type))
1008 || (!TYPE_OVERFLOW_SANITIZED (type)
1009 && may_negate_without_overflow_p (t)))))
1010 (match negate_expr_p
1011 FIXED_CST)
1012 (match negate_expr_p
1013 (negate @0)
1014 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1015 (match negate_expr_p
1016 REAL_CST
1017 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1018 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1019 ways. */
1020 (match negate_expr_p
1021 VECTOR_CST
1022 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1023 (match negate_expr_p
1024 (minus @0 @1)
1025 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1026 || (FLOAT_TYPE_P (type)
1027 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1028 && !HONOR_SIGNED_ZEROS (type)))))
1029
1030 /* (-A) * (-B) -> A * B */
1031 (simplify
1032 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1034 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1035 (mult (convert @0) (convert (negate @1)))))
1036
1037 /* -(A + B) -> (-B) - A. */
1038 (simplify
1039 (negate (plus:c @0 negate_expr_p@1))
1040 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1041 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1042 (minus (negate @1) @0)))
1043
1044 /* -(A - B) -> B - A. */
1045 (simplify
1046 (negate (minus @0 @1))
1047 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1048 || (FLOAT_TYPE_P (type)
1049 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1050 && !HONOR_SIGNED_ZEROS (type)))
1051 (minus @1 @0)))
1052 (simplify
1053 (negate (pointer_diff @0 @1))
1054 (if (TYPE_OVERFLOW_UNDEFINED (type))
1055 (pointer_diff @1 @0)))
1056
1057 /* A - B -> A + (-B) if B is easily negatable. */
1058 (simplify
1059 (minus @0 negate_expr_p@1)
1060 (if (!FIXED_POINT_TYPE_P (type))
1061 (plus @0 (negate @1))))
1062
1063 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1064 when profitable.
1065 For bitwise binary operations apply operand conversions to the
1066 binary operation result instead of to the operands. This allows
1067 to combine successive conversions and bitwise binary operations.
1068 We combine the above two cases by using a conditional convert. */
1069 (for bitop (bit_and bit_ior bit_xor)
1070 (simplify
1071 (bitop (convert @0) (convert? @1))
1072 (if (((TREE_CODE (@1) == INTEGER_CST
1073 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1074 && int_fits_type_p (@1, TREE_TYPE (@0)))
1075 || types_match (@0, @1))
1076 /* ??? This transform conflicts with fold-const.c doing
1077 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1078 constants (if x has signed type, the sign bit cannot be set
1079 in c). This folds extension into the BIT_AND_EXPR.
1080 Restrict it to GIMPLE to avoid endless recursions. */
1081 && (bitop != BIT_AND_EXPR || GIMPLE)
1082 && (/* That's a good idea if the conversion widens the operand, thus
1083 after hoisting the conversion the operation will be narrower. */
1084 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1085 /* It's also a good idea if the conversion is to a non-integer
1086 mode. */
1087 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1088 /* Or if the precision of TO is not the same as the precision
1089 of its mode. */
1090 || !type_has_mode_precision_p (type)))
1091 (convert (bitop @0 (convert @1))))))
1092
1093 (for bitop (bit_and bit_ior)
1094 rbitop (bit_ior bit_and)
1095 /* (x | y) & x -> x */
1096 /* (x & y) | x -> x */
1097 (simplify
1098 (bitop:c (rbitop:c @0 @1) @0)
1099 @0)
1100 /* (~x | y) & x -> x & y */
1101 /* (~x & y) | x -> x | y */
1102 (simplify
1103 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1104 (bitop @0 @1)))
1105
1106 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1107 (simplify
1108 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1109 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1110
1111 /* Combine successive equal operations with constants. */
1112 (for bitop (bit_and bit_ior bit_xor)
1113 (simplify
1114 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1115 (if (!CONSTANT_CLASS_P (@0))
1116 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1117 folded to a constant. */
1118 (bitop @0 (bitop @1 @2))
1119 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1120 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1121 the values involved are such that the operation can't be decided at
1122 compile time. Try folding one of @0 or @1 with @2 to see whether
1123 that combination can be decided at compile time.
1124
1125 Keep the existing form if both folds fail, to avoid endless
1126 oscillation. */
1127 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1128 (if (cst1)
1129 (bitop @1 { cst1; })
1130 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1131 (if (cst2)
1132 (bitop @0 { cst2; }))))))))
1133
1134 /* Try simple folding for X op !X, and X op X with the help
1135 of the truth_valued_p and logical_inverted_value predicates. */
1136 (match truth_valued_p
1137 @0
1138 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1139 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1140 (match truth_valued_p
1141 (op @0 @1)))
1142 (match truth_valued_p
1143 (truth_not @0))
1144
1145 (match (logical_inverted_value @0)
1146 (truth_not @0))
1147 (match (logical_inverted_value @0)
1148 (bit_not truth_valued_p@0))
1149 (match (logical_inverted_value @0)
1150 (eq @0 integer_zerop))
1151 (match (logical_inverted_value @0)
1152 (ne truth_valued_p@0 integer_truep))
1153 (match (logical_inverted_value @0)
1154 (bit_xor truth_valued_p@0 integer_truep))
1155
1156 /* X & !X -> 0. */
1157 (simplify
1158 (bit_and:c @0 (logical_inverted_value @0))
1159 { build_zero_cst (type); })
1160 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1161 (for op (bit_ior bit_xor)
1162 (simplify
1163 (op:c truth_valued_p@0 (logical_inverted_value @0))
1164 { constant_boolean_node (true, type); }))
1165 /* X ==/!= !X is false/true. */
1166 (for op (eq ne)
1167 (simplify
1168 (op:c truth_valued_p@0 (logical_inverted_value @0))
1169 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1170
1171 /* ~~x -> x */
1172 (simplify
1173 (bit_not (bit_not @0))
1174 @0)
1175
1176 /* Convert ~ (-A) to A - 1. */
1177 (simplify
1178 (bit_not (convert? (negate @0)))
1179 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1180 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1181 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1182
1183 /* Convert - (~A) to A + 1. */
1184 (simplify
1185 (negate (nop_convert (bit_not @0)))
1186 (plus (view_convert @0) { build_each_one_cst (type); }))
1187
1188 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1189 (simplify
1190 (bit_not (convert? (minus @0 integer_each_onep)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (negate @0))))
1194 (simplify
1195 (bit_not (convert? (plus @0 integer_all_onesp)))
1196 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1197 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1198 (convert (negate @0))))
1199
1200 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1201 (simplify
1202 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1203 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1204 (convert (bit_xor @0 (bit_not @1)))))
1205 (simplify
1206 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1208 (convert (bit_xor @0 @1))))
1209
1210 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1211 (simplify
1212 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1214 (bit_not (bit_xor (view_convert @0) @1))))
1215
1216 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1217 (simplify
1218 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1219 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1220
1221 /* Fold A - (A & B) into ~B & A. */
1222 (simplify
1223 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1224 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1225 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1226 (convert (bit_and (bit_not @1) @0))))
1227
1228 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1229 (for cmp (gt lt ge le)
1230 (simplify
1231 (mult (convert (cmp @0 @1)) @2)
1232 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1233
1234 /* For integral types with undefined overflow and C != 0 fold
1235 x * C EQ/NE y * C into x EQ/NE y. */
1236 (for cmp (eq ne)
1237 (simplify
1238 (cmp (mult:c @0 @1) (mult:c @2 @1))
1239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1241 && tree_expr_nonzero_p (@1))
1242 (cmp @0 @2))))
1243
1244 /* For integral types with wrapping overflow and C odd fold
1245 x * C EQ/NE y * C into x EQ/NE y. */
1246 (for cmp (eq ne)
1247 (simplify
1248 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1249 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1250 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1251 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1252 (cmp @0 @2))))
1253
1254 /* For integral types with undefined overflow and C != 0 fold
1255 x * C RELOP y * C into:
1256
1257 x RELOP y for nonnegative C
1258 y RELOP x for negative C */
1259 (for cmp (lt gt le ge)
1260 (simplify
1261 (cmp (mult:c @0 @1) (mult:c @2 @1))
1262 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1264 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1265 (cmp @0 @2)
1266 (if (TREE_CODE (@1) == INTEGER_CST
1267 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1268 (cmp @2 @0))))))
1269
1270 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1271 (for cmp (le gt)
1272 icmp (gt le)
1273 (simplify
1274 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1275 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1276 && TYPE_UNSIGNED (TREE_TYPE (@0))
1277 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1278 && (wi::to_wide (@2)
1279 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1280 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1281 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1282
1283 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1284 (for cmp (simple_comparison)
1285 (simplify
1286 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1287 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1288 (cmp @0 @1))))
1289
1290 /* X / C1 op C2 into a simple range test. */
1291 (for cmp (simple_comparison)
1292 (simplify
1293 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295 && integer_nonzerop (@1)
1296 && !TREE_OVERFLOW (@1)
1297 && !TREE_OVERFLOW (@2))
1298 (with { tree lo, hi; bool neg_overflow;
1299 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1300 &neg_overflow); }
1301 (switch
1302 (if (code == LT_EXPR || code == GE_EXPR)
1303 (if (TREE_OVERFLOW (lo))
1304 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1305 (if (code == LT_EXPR)
1306 (lt @0 { lo; })
1307 (ge @0 { lo; }))))
1308 (if (code == LE_EXPR || code == GT_EXPR)
1309 (if (TREE_OVERFLOW (hi))
1310 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1311 (if (code == LE_EXPR)
1312 (le @0 { hi; })
1313 (gt @0 { hi; }))))
1314 (if (!lo && !hi)
1315 { build_int_cst (type, code == NE_EXPR); })
1316 (if (code == EQ_EXPR && !hi)
1317 (ge @0 { lo; }))
1318 (if (code == EQ_EXPR && !lo)
1319 (le @0 { hi; }))
1320 (if (code == NE_EXPR && !hi)
1321 (lt @0 { lo; }))
1322 (if (code == NE_EXPR && !lo)
1323 (gt @0 { hi; }))
1324 (if (GENERIC)
1325 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1326 lo, hi); })
1327 (with
1328 {
1329 tree etype = range_check_type (TREE_TYPE (@0));
1330 if (etype)
1331 {
1332 if (! TYPE_UNSIGNED (etype))
1333 etype = unsigned_type_for (etype);
1334 hi = fold_convert (etype, hi);
1335 lo = fold_convert (etype, lo);
1336 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1337 }
1338 }
1339 (if (etype && hi && !TREE_OVERFLOW (hi))
1340 (if (code == EQ_EXPR)
1341 (le (minus (convert:etype @0) { lo; }) { hi; })
1342 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1343
1344 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1345 (for op (lt le ge gt)
1346 (simplify
1347 (op (plus:c @0 @2) (plus:c @1 @2))
1348 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1349 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1350 (op @0 @1))))
1351 /* For equality and subtraction, this is also true with wrapping overflow. */
1352 (for op (eq ne minus)
1353 (simplify
1354 (op (plus:c @0 @2) (plus:c @1 @2))
1355 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1356 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1357 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1358 (op @0 @1))))
1359
1360 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1361 (for op (lt le ge gt)
1362 (simplify
1363 (op (minus @0 @2) (minus @1 @2))
1364 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1366 (op @0 @1))))
1367 /* For equality and subtraction, this is also true with wrapping overflow. */
1368 (for op (eq ne minus)
1369 (simplify
1370 (op (minus @0 @2) (minus @1 @2))
1371 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1372 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1373 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1374 (op @0 @1))))
1375 /* And for pointers... */
1376 (for op (simple_comparison)
1377 (simplify
1378 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1379 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1380 (op @0 @1))))
1381 (simplify
1382 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1383 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1384 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1385 (pointer_diff @0 @1)))
1386
1387 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1388 (for op (lt le ge gt)
1389 (simplify
1390 (op (minus @2 @0) (minus @2 @1))
1391 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1392 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1393 (op @1 @0))))
1394 /* For equality and subtraction, this is also true with wrapping overflow. */
1395 (for op (eq ne minus)
1396 (simplify
1397 (op (minus @2 @0) (minus @2 @1))
1398 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1399 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1400 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1401 (op @1 @0))))
1402 /* And for pointers... */
1403 (for op (simple_comparison)
1404 (simplify
1405 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1406 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1407 (op @1 @0))))
1408 (simplify
1409 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1410 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1411 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1412 (pointer_diff @1 @0)))
1413
1414 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1415 (for op (lt le gt ge)
1416 (simplify
1417 (op:c (plus:c@2 @0 @1) @1)
1418 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1419 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1420 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1421 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1422 /* For equality, this is also true with wrapping overflow. */
1423 (for op (eq ne)
1424 (simplify
1425 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1426 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1427 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1428 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1429 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1430 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1431 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1432 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1433 (simplify
1434 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1435 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1436 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1437 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1438 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1439
1440 /* X - Y < X is the same as Y > 0 when there is no overflow.
1441 For equality, this is also true with wrapping overflow. */
1442 (for op (simple_comparison)
1443 (simplify
1444 (op:c @0 (minus@2 @0 @1))
1445 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1446 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1447 || ((op == EQ_EXPR || op == NE_EXPR)
1448 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1449 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1451
1452 /* Transform:
1453 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1454 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1455 */
1456 (for cmp (eq ne)
1457 ocmp (lt ge)
1458 (simplify
1459 (cmp (trunc_div @0 @1) integer_zerop)
1460 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1461 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1462 (ocmp @0 @1))))
1463
1464 /* X == C - X can never be true if C is odd. */
1465 (for cmp (eq ne)
1466 (simplify
1467 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1468 (if (TREE_INT_CST_LOW (@1) & 1)
1469 { constant_boolean_node (cmp == NE_EXPR, type); })))
1470
1471 /* Arguments on which one can call get_nonzero_bits to get the bits
1472 possibly set. */
1473 (match with_possible_nonzero_bits
1474 INTEGER_CST@0)
1475 (match with_possible_nonzero_bits
1476 SSA_NAME@0
1477 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1478 /* Slightly extended version, do not make it recursive to keep it cheap. */
1479 (match (with_possible_nonzero_bits2 @0)
1480 with_possible_nonzero_bits@0)
1481 (match (with_possible_nonzero_bits2 @0)
1482 (bit_and:c with_possible_nonzero_bits@0 @2))
1483
1484 /* Same for bits that are known to be set, but we do not have
1485 an equivalent to get_nonzero_bits yet. */
1486 (match (with_certain_nonzero_bits2 @0)
1487 INTEGER_CST@0)
1488 (match (with_certain_nonzero_bits2 @0)
1489 (bit_ior @1 INTEGER_CST@0))
1490
1491 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1492 (for cmp (eq ne)
1493 (simplify
1494 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1495 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1496 { constant_boolean_node (cmp == NE_EXPR, type); })))
1497
1498 /* ((X inner_op C0) outer_op C1)
1499 With X being a tree where value_range has reasoned certain bits to always be
1500 zero throughout its computed value range,
1501 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1502 where zero_mask has 1's for all bits that are sure to be 0 in
1503 and 0's otherwise.
1504 if (inner_op == '^') C0 &= ~C1;
1505 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1506 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1507 */
1508 (for inner_op (bit_ior bit_xor)
1509 outer_op (bit_xor bit_ior)
1510 (simplify
1511 (outer_op
1512 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1513 (with
1514 {
1515 bool fail = false;
1516 wide_int zero_mask_not;
1517 wide_int C0;
1518 wide_int cst_emit;
1519
1520 if (TREE_CODE (@2) == SSA_NAME)
1521 zero_mask_not = get_nonzero_bits (@2);
1522 else
1523 fail = true;
1524
1525 if (inner_op == BIT_XOR_EXPR)
1526 {
1527 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1528 cst_emit = C0 | wi::to_wide (@1);
1529 }
1530 else
1531 {
1532 C0 = wi::to_wide (@0);
1533 cst_emit = C0 ^ wi::to_wide (@1);
1534 }
1535 }
1536 (if (!fail && (C0 & zero_mask_not) == 0)
1537 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1538 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1539 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1540
1541 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1542 (simplify
1543 (pointer_plus (pointer_plus:s @0 @1) @3)
1544 (pointer_plus @0 (plus @1 @3)))
1545
1546 /* Pattern match
1547 tem1 = (long) ptr1;
1548 tem2 = (long) ptr2;
1549 tem3 = tem2 - tem1;
1550 tem4 = (unsigned long) tem3;
1551 tem5 = ptr1 + tem4;
1552 and produce
1553 tem5 = ptr2; */
1554 (simplify
1555 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1556 /* Conditionally look through a sign-changing conversion. */
1557 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1558 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1559 || (GENERIC && type == TREE_TYPE (@1))))
1560 @1))
1561 (simplify
1562 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1563 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1564 (convert @1)))
1565
1566 /* Pattern match
1567 tem = (sizetype) ptr;
1568 tem = tem & algn;
1569 tem = -tem;
1570 ... = ptr p+ tem;
1571 and produce the simpler and easier to analyze with respect to alignment
1572 ... = ptr & ~algn; */
1573 (simplify
1574 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1575 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1576 (bit_and @0 { algn; })))
1577
1578 /* Try folding difference of addresses. */
1579 (simplify
1580 (minus (convert ADDR_EXPR@0) (convert @1))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1582 (with { poly_int64 diff; }
1583 (if (ptr_difference_const (@0, @1, &diff))
1584 { build_int_cst_type (type, diff); }))))
1585 (simplify
1586 (minus (convert @0) (convert ADDR_EXPR@1))
1587 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1588 (with { poly_int64 diff; }
1589 (if (ptr_difference_const (@0, @1, &diff))
1590 { build_int_cst_type (type, diff); }))))
1591 (simplify
1592 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1593 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1594 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1595 (with { poly_int64 diff; }
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1598 (simplify
1599 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1601 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1602 (with { poly_int64 diff; }
1603 (if (ptr_difference_const (@0, @1, &diff))
1604 { build_int_cst_type (type, diff); }))))
1605
1606 /* If arg0 is derived from the address of an object or function, we may
1607 be able to fold this expression using the object or function's
1608 alignment. */
1609 (simplify
1610 (bit_and (convert? @0) INTEGER_CST@1)
1611 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1612 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1613 (with
1614 {
1615 unsigned int align;
1616 unsigned HOST_WIDE_INT bitpos;
1617 get_pointer_alignment_1 (@0, &align, &bitpos);
1618 }
1619 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1620 { wide_int_to_tree (type, (wi::to_wide (@1)
1621 & (bitpos / BITS_PER_UNIT))); }))))
1622
1623
1624 /* We can't reassociate at all for saturating types. */
1625 (if (!TYPE_SATURATING (type))
1626
1627 /* Contract negates. */
1628 /* A + (-B) -> A - B */
1629 (simplify
1630 (plus:c @0 (convert? (negate @1)))
1631 /* Apply STRIP_NOPS on the negate. */
1632 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1633 && !TYPE_OVERFLOW_SANITIZED (type))
1634 (with
1635 {
1636 tree t1 = type;
1637 if (INTEGRAL_TYPE_P (type)
1638 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1639 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1640 }
1641 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1642 /* A - (-B) -> A + B */
1643 (simplify
1644 (minus @0 (convert? (negate @1)))
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1646 && !TYPE_OVERFLOW_SANITIZED (type))
1647 (with
1648 {
1649 tree t1 = type;
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1653 }
1654 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1655 /* -(T)(-A) -> (T)A
1656 Sign-extension is ok except for INT_MIN, which thankfully cannot
1657 happen without overflow. */
1658 (simplify
1659 (negate (convert (negate @1)))
1660 (if (INTEGRAL_TYPE_P (type)
1661 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1662 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1663 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1664 && !TYPE_OVERFLOW_SANITIZED (type)
1665 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1666 (convert @1)))
1667 (simplify
1668 (negate (convert negate_expr_p@1))
1669 (if (SCALAR_FLOAT_TYPE_P (type)
1670 && ((DECIMAL_FLOAT_TYPE_P (type)
1671 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1672 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1673 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1674 (convert (negate @1))))
1675 (simplify
1676 (negate (nop_convert (negate @1)))
1677 (if (!TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1679 (view_convert @1)))
1680
1681 /* We can't reassociate floating-point unless -fassociative-math
1682 or fixed-point plus or minus because of saturation to +-Inf. */
1683 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1684 && !FIXED_POINT_TYPE_P (type))
1685
1686 /* Match patterns that allow contracting a plus-minus pair
1687 irrespective of overflow issues. */
1688 /* (A +- B) - A -> +- B */
1689 /* (A +- B) -+ B -> A */
1690 /* A - (A +- B) -> -+ B */
1691 /* A +- (B -+ A) -> +- B */
1692 (simplify
1693 (minus (plus:c @0 @1) @0)
1694 @1)
1695 (simplify
1696 (minus (minus @0 @1) @0)
1697 (negate @1))
1698 (simplify
1699 (plus:c (minus @0 @1) @1)
1700 @0)
1701 (simplify
1702 (minus @0 (plus:c @0 @1))
1703 (negate @1))
1704 (simplify
1705 (minus @0 (minus @0 @1))
1706 @1)
1707 /* (A +- B) + (C - A) -> C +- B */
1708 /* (A + B) - (A - C) -> B + C */
1709 /* More cases are handled with comparisons. */
1710 (simplify
1711 (plus:c (plus:c @0 @1) (minus @2 @0))
1712 (plus @2 @1))
1713 (simplify
1714 (plus:c (minus @0 @1) (minus @2 @0))
1715 (minus @2 @1))
1716 (simplify
1717 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1718 (if (TYPE_OVERFLOW_UNDEFINED (type)
1719 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1720 (pointer_diff @2 @1)))
1721 (simplify
1722 (minus (plus:c @0 @1) (minus @0 @2))
1723 (plus @1 @2))
1724
1725 /* (A +- CST1) +- CST2 -> A + CST3
1726 Use view_convert because it is safe for vectors and equivalent for
1727 scalars. */
1728 (for outer_op (plus minus)
1729 (for inner_op (plus minus)
1730 neg_inner_op (minus plus)
1731 (simplify
1732 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1733 CONSTANT_CLASS_P@2)
1734 /* If one of the types wraps, use that one. */
1735 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1736 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1737 forever if something doesn't simplify into a constant. */
1738 (if (!CONSTANT_CLASS_P (@0))
1739 (if (outer_op == PLUS_EXPR)
1740 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1741 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1742 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1743 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1744 (if (outer_op == PLUS_EXPR)
1745 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1746 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1747 /* If the constant operation overflows we cannot do the transform
1748 directly as we would introduce undefined overflow, for example
1749 with (a - 1) + INT_MIN. */
1750 (if (types_match (type, @0))
1751 (with { tree cst = const_binop (outer_op == inner_op
1752 ? PLUS_EXPR : MINUS_EXPR,
1753 type, @1, @2); }
1754 (if (cst && !TREE_OVERFLOW (cst))
1755 (inner_op @0 { cst; } )
1756 /* X+INT_MAX+1 is X-INT_MIN. */
1757 (if (INTEGRAL_TYPE_P (type) && cst
1758 && wi::to_wide (cst) == wi::min_value (type))
1759 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1760 /* Last resort, use some unsigned type. */
1761 (with { tree utype = unsigned_type_for (type); }
1762 (view_convert (inner_op
1763 (view_convert:utype @0)
1764 (view_convert:utype
1765 { drop_tree_overflow (cst); })))))))))))))
1766
1767 /* (CST1 - A) +- CST2 -> CST3 - A */
1768 (for outer_op (plus minus)
1769 (simplify
1770 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1771 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1772 (if (cst && !TREE_OVERFLOW (cst))
1773 (minus { cst; } @0)))))
1774
1775 /* CST1 - (CST2 - A) -> CST3 + A */
1776 (simplify
1777 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1778 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1779 (if (cst && !TREE_OVERFLOW (cst))
1780 (plus { cst; } @0))))
1781
1782 /* ~A + A -> -1 */
1783 (simplify
1784 (plus:c (bit_not @0) @0)
1785 (if (!TYPE_OVERFLOW_TRAPS (type))
1786 { build_all_ones_cst (type); }))
1787
1788 /* ~A + 1 -> -A */
1789 (simplify
1790 (plus (convert? (bit_not @0)) integer_each_onep)
1791 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1792 (negate (convert @0))))
1793
1794 /* -A - 1 -> ~A */
1795 (simplify
1796 (minus (convert? (negate @0)) integer_each_onep)
1797 (if (!TYPE_OVERFLOW_TRAPS (type)
1798 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1799 (bit_not (convert @0))))
1800
1801 /* -1 - A -> ~A */
1802 (simplify
1803 (minus integer_all_onesp @0)
1804 (bit_not @0))
1805
1806 /* (T)(P + A) - (T)P -> (T) A */
1807 (simplify
1808 (minus (convert (plus:c @@0 @1))
1809 (convert? @0))
1810 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1811 /* For integer types, if A has a smaller type
1812 than T the result depends on the possible
1813 overflow in P + A.
1814 E.g. T=size_t, A=(unsigned)429497295, P>0.
1815 However, if an overflow in P + A would cause
1816 undefined behavior, we can assume that there
1817 is no overflow. */
1818 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1820 (convert @1)))
1821 (simplify
1822 (minus (convert (pointer_plus @@0 @1))
1823 (convert @0))
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For pointer types, if the conversion of A to the
1826 final type requires a sign- or zero-extension,
1827 then we have to punt - it is not defined which
1828 one is correct. */
1829 || (POINTER_TYPE_P (TREE_TYPE (@0))
1830 && TREE_CODE (@1) == INTEGER_CST
1831 && tree_int_cst_sign_bit (@1) == 0))
1832 (convert @1)))
1833 (simplify
1834 (pointer_diff (pointer_plus @@0 @1) @0)
1835 /* The second argument of pointer_plus must be interpreted as signed, and
1836 thus sign-extended if necessary. */
1837 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1838 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1839 second arg is unsigned even when we need to consider it as signed,
1840 we don't want to diagnose overflow here. */
1841 (convert (view_convert:stype @1))))
1842
1843 /* (T)P - (T)(P + A) -> -(T) A */
1844 (simplify
1845 (minus (convert? @0)
1846 (convert (plus:c @@0 @1)))
1847 (if (INTEGRAL_TYPE_P (type)
1848 && TYPE_OVERFLOW_UNDEFINED (type)
1849 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1850 (with { tree utype = unsigned_type_for (type); }
1851 (convert (negate (convert:utype @1))))
1852 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1853 /* For integer types, if A has a smaller type
1854 than T the result depends on the possible
1855 overflow in P + A.
1856 E.g. T=size_t, A=(unsigned)429497295, P>0.
1857 However, if an overflow in P + A would cause
1858 undefined behavior, we can assume that there
1859 is no overflow. */
1860 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1861 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1862 (negate (convert @1)))))
1863 (simplify
1864 (minus (convert @0)
1865 (convert (pointer_plus @@0 @1)))
1866 (if (INTEGRAL_TYPE_P (type)
1867 && TYPE_OVERFLOW_UNDEFINED (type)
1868 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1869 (with { tree utype = unsigned_type_for (type); }
1870 (convert (negate (convert:utype @1))))
1871 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1872 /* For pointer types, if the conversion of A to the
1873 final type requires a sign- or zero-extension,
1874 then we have to punt - it is not defined which
1875 one is correct. */
1876 || (POINTER_TYPE_P (TREE_TYPE (@0))
1877 && TREE_CODE (@1) == INTEGER_CST
1878 && tree_int_cst_sign_bit (@1) == 0))
1879 (negate (convert @1)))))
1880 (simplify
1881 (pointer_diff @0 (pointer_plus @@0 @1))
1882 /* The second argument of pointer_plus must be interpreted as signed, and
1883 thus sign-extended if necessary. */
1884 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1885 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1886 second arg is unsigned even when we need to consider it as signed,
1887 we don't want to diagnose overflow here. */
1888 (negate (convert (view_convert:stype @1)))))
1889
1890 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1891 (simplify
1892 (minus (convert (plus:c @@0 @1))
1893 (convert (plus:c @0 @2)))
1894 (if (INTEGRAL_TYPE_P (type)
1895 && TYPE_OVERFLOW_UNDEFINED (type)
1896 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1897 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1898 (with { tree utype = unsigned_type_for (type); }
1899 (convert (minus (convert:utype @1) (convert:utype @2))))
1900 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1901 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1902 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1903 /* For integer types, if A has a smaller type
1904 than T the result depends on the possible
1905 overflow in P + A.
1906 E.g. T=size_t, A=(unsigned)429497295, P>0.
1907 However, if an overflow in P + A would cause
1908 undefined behavior, we can assume that there
1909 is no overflow. */
1910 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1911 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1912 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1913 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1914 (minus (convert @1) (convert @2)))))
1915 (simplify
1916 (minus (convert (pointer_plus @@0 @1))
1917 (convert (pointer_plus @0 @2)))
1918 (if (INTEGRAL_TYPE_P (type)
1919 && TYPE_OVERFLOW_UNDEFINED (type)
1920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1921 (with { tree utype = unsigned_type_for (type); }
1922 (convert (minus (convert:utype @1) (convert:utype @2))))
1923 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1924 /* For pointer types, if the conversion of A to the
1925 final type requires a sign- or zero-extension,
1926 then we have to punt - it is not defined which
1927 one is correct. */
1928 || (POINTER_TYPE_P (TREE_TYPE (@0))
1929 && TREE_CODE (@1) == INTEGER_CST
1930 && tree_int_cst_sign_bit (@1) == 0
1931 && TREE_CODE (@2) == INTEGER_CST
1932 && tree_int_cst_sign_bit (@2) == 0))
1933 (minus (convert @1) (convert @2)))))
1934 (simplify
1935 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1936 /* The second argument of pointer_plus must be interpreted as signed, and
1937 thus sign-extended if necessary. */
1938 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1939 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1940 second arg is unsigned even when we need to consider it as signed,
1941 we don't want to diagnose overflow here. */
1942 (minus (convert (view_convert:stype @1))
1943 (convert (view_convert:stype @2)))))))
1944
1945 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1946 Modeled after fold_plusminus_mult_expr. */
1947 (if (!TYPE_SATURATING (type)
1948 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1949 (for plusminus (plus minus)
1950 (simplify
1951 (plusminus (mult:cs @0 @1) (mult:cs @0 @2))
1952 (if (!ANY_INTEGRAL_TYPE_P (type)
1953 || TYPE_OVERFLOW_WRAPS (type)
1954 || (INTEGRAL_TYPE_P (type)
1955 && tree_expr_nonzero_p (@0)
1956 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1957 (mult (plusminus @1 @2) @0)))
1958 /* We cannot generate constant 1 for fract. */
1959 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1960 (simplify
1961 (plusminus @0 (mult:cs @0 @2))
1962 (if (!ANY_INTEGRAL_TYPE_P (type)
1963 || TYPE_OVERFLOW_WRAPS (type)
1964 || (INTEGRAL_TYPE_P (type)
1965 && tree_expr_nonzero_p (@0)
1966 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1967 (mult (plusminus { build_one_cst (type); } @2) @0)))
1968 (simplify
1969 (plusminus (mult:cs @0 @2) @0)
1970 (if (!ANY_INTEGRAL_TYPE_P (type)
1971 || TYPE_OVERFLOW_WRAPS (type)
1972 || (INTEGRAL_TYPE_P (type)
1973 && tree_expr_nonzero_p (@0)
1974 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1975 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1976
1977 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1978
1979 (for minmax (min max FMIN_ALL FMAX_ALL)
1980 (simplify
1981 (minmax @0 @0)
1982 @0))
1983 /* min(max(x,y),y) -> y. */
1984 (simplify
1985 (min:c (max:c @0 @1) @1)
1986 @1)
1987 /* max(min(x,y),y) -> y. */
1988 (simplify
1989 (max:c (min:c @0 @1) @1)
1990 @1)
1991 /* max(a,-a) -> abs(a). */
1992 (simplify
1993 (max:c @0 (negate @0))
1994 (if (TREE_CODE (type) != COMPLEX_TYPE
1995 && (! ANY_INTEGRAL_TYPE_P (type)
1996 || TYPE_OVERFLOW_UNDEFINED (type)))
1997 (abs @0)))
1998 /* min(a,-a) -> -abs(a). */
1999 (simplify
2000 (min:c @0 (negate @0))
2001 (if (TREE_CODE (type) != COMPLEX_TYPE
2002 && (! ANY_INTEGRAL_TYPE_P (type)
2003 || TYPE_OVERFLOW_UNDEFINED (type)))
2004 (negate (abs @0))))
2005 (simplify
2006 (min @0 @1)
2007 (switch
2008 (if (INTEGRAL_TYPE_P (type)
2009 && TYPE_MIN_VALUE (type)
2010 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2011 @1)
2012 (if (INTEGRAL_TYPE_P (type)
2013 && TYPE_MAX_VALUE (type)
2014 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2015 @0)))
2016 (simplify
2017 (max @0 @1)
2018 (switch
2019 (if (INTEGRAL_TYPE_P (type)
2020 && TYPE_MAX_VALUE (type)
2021 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2022 @1)
2023 (if (INTEGRAL_TYPE_P (type)
2024 && TYPE_MIN_VALUE (type)
2025 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2026 @0)))
2027
2028 /* max (a, a + CST) -> a + CST where CST is positive. */
2029 /* max (a, a + CST) -> a where CST is negative. */
2030 (simplify
2031 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2032 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2033 (if (tree_int_cst_sgn (@1) > 0)
2034 @2
2035 @0)))
2036
2037 /* min (a, a + CST) -> a where CST is positive. */
2038 /* min (a, a + CST) -> a + CST where CST is negative. */
2039 (simplify
2040 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2041 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2042 (if (tree_int_cst_sgn (@1) > 0)
2043 @0
2044 @2)))
2045
2046 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2047 and the outer convert demotes the expression back to x's type. */
2048 (for minmax (min max)
2049 (simplify
2050 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2051 (if (INTEGRAL_TYPE_P (type)
2052 && types_match (@1, type) && int_fits_type_p (@2, type)
2053 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2054 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2055 (minmax @1 (convert @2)))))
2056
2057 (for minmax (FMIN_ALL FMAX_ALL)
2058 /* If either argument is NaN, return the other one. Avoid the
2059 transformation if we get (and honor) a signalling NaN. */
2060 (simplify
2061 (minmax:c @0 REAL_CST@1)
2062 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2063 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2064 @0)))
2065 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2066 functions to return the numeric arg if the other one is NaN.
2067 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2068 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2069 worry about it either. */
2070 (if (flag_finite_math_only)
2071 (simplify
2072 (FMIN_ALL @0 @1)
2073 (min @0 @1))
2074 (simplify
2075 (FMAX_ALL @0 @1)
2076 (max @0 @1)))
2077 /* min (-A, -B) -> -max (A, B) */
2078 (for minmax (min max FMIN_ALL FMAX_ALL)
2079 maxmin (max min FMAX_ALL FMIN_ALL)
2080 (simplify
2081 (minmax (negate:s@2 @0) (negate:s@3 @1))
2082 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2083 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2084 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2085 (negate (maxmin @0 @1)))))
2086 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2087 MAX (~X, ~Y) -> ~MIN (X, Y) */
2088 (for minmax (min max)
2089 maxmin (max min)
2090 (simplify
2091 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2092 (bit_not (maxmin @0 @1))))
2093
2094 /* MIN (X, Y) == X -> X <= Y */
2095 (for minmax (min min max max)
2096 cmp (eq ne eq ne )
2097 out (le gt ge lt )
2098 (simplify
2099 (cmp:c (minmax:c @0 @1) @0)
2100 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2101 (out @0 @1))))
2102 /* MIN (X, 5) == 0 -> X == 0
2103 MIN (X, 5) == 7 -> false */
2104 (for cmp (eq ne)
2105 (simplify
2106 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2107 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2108 TYPE_SIGN (TREE_TYPE (@0))))
2109 { constant_boolean_node (cmp == NE_EXPR, type); }
2110 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2111 TYPE_SIGN (TREE_TYPE (@0))))
2112 (cmp @0 @2)))))
2113 (for cmp (eq ne)
2114 (simplify
2115 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2116 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2117 TYPE_SIGN (TREE_TYPE (@0))))
2118 { constant_boolean_node (cmp == NE_EXPR, type); }
2119 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2120 TYPE_SIGN (TREE_TYPE (@0))))
2121 (cmp @0 @2)))))
2122 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2123 (for minmax (min min max max min min max max )
2124 cmp (lt le gt ge gt ge lt le )
2125 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2126 (simplify
2127 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2128 (comb (cmp @0 @2) (cmp @1 @2))))
2129
2130 /* Simplifications of shift and rotates. */
2131
2132 (for rotate (lrotate rrotate)
2133 (simplify
2134 (rotate integer_all_onesp@0 @1)
2135 @0))
2136
2137 /* Optimize -1 >> x for arithmetic right shifts. */
2138 (simplify
2139 (rshift integer_all_onesp@0 @1)
2140 (if (!TYPE_UNSIGNED (type)
2141 && tree_expr_nonnegative_p (@1))
2142 @0))
2143
2144 /* Optimize (x >> c) << c into x & (-1<<c). */
2145 (simplify
2146 (lshift (rshift @0 INTEGER_CST@1) @1)
2147 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2148 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2149
2150 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2151 types. */
2152 (simplify
2153 (rshift (lshift @0 INTEGER_CST@1) @1)
2154 (if (TYPE_UNSIGNED (type)
2155 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2156 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2157
2158 (for shiftrotate (lrotate rrotate lshift rshift)
2159 (simplify
2160 (shiftrotate @0 integer_zerop)
2161 (non_lvalue @0))
2162 (simplify
2163 (shiftrotate integer_zerop@0 @1)
2164 @0)
2165 /* Prefer vector1 << scalar to vector1 << vector2
2166 if vector2 is uniform. */
2167 (for vec (VECTOR_CST CONSTRUCTOR)
2168 (simplify
2169 (shiftrotate @0 vec@1)
2170 (with { tree tem = uniform_vector_p (@1); }
2171 (if (tem)
2172 (shiftrotate @0 { tem; }))))))
2173
2174 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2175 Y is 0. Similarly for X >> Y. */
2176 #if GIMPLE
2177 (for shift (lshift rshift)
2178 (simplify
2179 (shift @0 SSA_NAME@1)
2180 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2181 (with {
2182 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2183 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2184 }
2185 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2186 @0)))))
2187 #endif
2188
2189 /* Rewrite an LROTATE_EXPR by a constant into an
2190 RROTATE_EXPR by a new constant. */
2191 (simplify
2192 (lrotate @0 INTEGER_CST@1)
2193 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2194 build_int_cst (TREE_TYPE (@1),
2195 element_precision (type)), @1); }))
2196
2197 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2198 (for op (lrotate rrotate rshift lshift)
2199 (simplify
2200 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2201 (with { unsigned int prec = element_precision (type); }
2202 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2203 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2204 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2205 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2206 (with { unsigned int low = (tree_to_uhwi (@1)
2207 + tree_to_uhwi (@2)); }
2208 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2209 being well defined. */
2210 (if (low >= prec)
2211 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2212 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2213 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2214 { build_zero_cst (type); }
2215 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2216 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2217
2218
2219 /* ((1 << A) & 1) != 0 -> A == 0
2220 ((1 << A) & 1) == 0 -> A != 0 */
2221 (for cmp (ne eq)
2222 icmp (eq ne)
2223 (simplify
2224 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2225 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2226
2227 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2228 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2229 if CST2 != 0. */
2230 (for cmp (ne eq)
2231 (simplify
2232 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2233 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2234 (if (cand < 0
2235 || (!integer_zerop (@2)
2236 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2237 { constant_boolean_node (cmp == NE_EXPR, type); }
2238 (if (!integer_zerop (@2)
2239 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2240 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2241
2242 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2243 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2244 if the new mask might be further optimized. */
2245 (for shift (lshift rshift)
2246 (simplify
2247 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2248 INTEGER_CST@2)
2249 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2250 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2251 && tree_fits_uhwi_p (@1)
2252 && tree_to_uhwi (@1) > 0
2253 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2254 (with
2255 {
2256 unsigned int shiftc = tree_to_uhwi (@1);
2257 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2258 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2259 tree shift_type = TREE_TYPE (@3);
2260 unsigned int prec;
2261
2262 if (shift == LSHIFT_EXPR)
2263 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2264 else if (shift == RSHIFT_EXPR
2265 && type_has_mode_precision_p (shift_type))
2266 {
2267 prec = TYPE_PRECISION (TREE_TYPE (@3));
2268 tree arg00 = @0;
2269 /* See if more bits can be proven as zero because of
2270 zero extension. */
2271 if (@3 != @0
2272 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2273 {
2274 tree inner_type = TREE_TYPE (@0);
2275 if (type_has_mode_precision_p (inner_type)
2276 && TYPE_PRECISION (inner_type) < prec)
2277 {
2278 prec = TYPE_PRECISION (inner_type);
2279 /* See if we can shorten the right shift. */
2280 if (shiftc < prec)
2281 shift_type = inner_type;
2282 /* Otherwise X >> C1 is all zeros, so we'll optimize
2283 it into (X, 0) later on by making sure zerobits
2284 is all ones. */
2285 }
2286 }
2287 zerobits = HOST_WIDE_INT_M1U;
2288 if (shiftc < prec)
2289 {
2290 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2291 zerobits <<= prec - shiftc;
2292 }
2293 /* For arithmetic shift if sign bit could be set, zerobits
2294 can contain actually sign bits, so no transformation is
2295 possible, unless MASK masks them all away. In that
2296 case the shift needs to be converted into logical shift. */
2297 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2298 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2299 {
2300 if ((mask & zerobits) == 0)
2301 shift_type = unsigned_type_for (TREE_TYPE (@3));
2302 else
2303 zerobits = 0;
2304 }
2305 }
2306 }
2307 /* ((X << 16) & 0xff00) is (X, 0). */
2308 (if ((mask & zerobits) == mask)
2309 { build_int_cst (type, 0); }
2310 (with { newmask = mask | zerobits; }
2311 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2312 (with
2313 {
2314 /* Only do the transformation if NEWMASK is some integer
2315 mode's mask. */
2316 for (prec = BITS_PER_UNIT;
2317 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2318 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2319 break;
2320 }
2321 (if (prec < HOST_BITS_PER_WIDE_INT
2322 || newmask == HOST_WIDE_INT_M1U)
2323 (with
2324 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2325 (if (!tree_int_cst_equal (newmaskt, @2))
2326 (if (shift_type != TREE_TYPE (@3))
2327 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2328 (bit_and @4 { newmaskt; })))))))))))))
2329
2330 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2331 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2332 (for shift (lshift rshift)
2333 (for bit_op (bit_and bit_xor bit_ior)
2334 (simplify
2335 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2336 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2337 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2338 (bit_op (shift (convert @0) @1) { mask; }))))))
2339
2340 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2341 (simplify
2342 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2343 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2344 && (element_precision (TREE_TYPE (@0))
2345 <= element_precision (TREE_TYPE (@1))
2346 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2347 (with
2348 { tree shift_type = TREE_TYPE (@0); }
2349 (convert (rshift (convert:shift_type @1) @2)))))
2350
2351 /* ~(~X >>r Y) -> X >>r Y
2352 ~(~X <<r Y) -> X <<r Y */
2353 (for rotate (lrotate rrotate)
2354 (simplify
2355 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2356 (if ((element_precision (TREE_TYPE (@0))
2357 <= element_precision (TREE_TYPE (@1))
2358 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2359 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2360 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2361 (with
2362 { tree rotate_type = TREE_TYPE (@0); }
2363 (convert (rotate (convert:rotate_type @1) @2))))))
2364
2365 /* Simplifications of conversions. */
2366
2367 /* Basic strip-useless-type-conversions / strip_nops. */
2368 (for cvt (convert view_convert float fix_trunc)
2369 (simplify
2370 (cvt @0)
2371 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2372 || (GENERIC && type == TREE_TYPE (@0)))
2373 @0)))
2374
2375 /* Contract view-conversions. */
2376 (simplify
2377 (view_convert (view_convert @0))
2378 (view_convert @0))
2379
2380 /* For integral conversions with the same precision or pointer
2381 conversions use a NOP_EXPR instead. */
2382 (simplify
2383 (view_convert @0)
2384 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2385 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2386 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2387 (convert @0)))
2388
2389 /* Strip inner integral conversions that do not change precision or size, or
2390 zero-extend while keeping the same size (for bool-to-char). */
2391 (simplify
2392 (view_convert (convert@0 @1))
2393 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2394 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2395 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2396 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2397 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2398 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2399 (view_convert @1)))
2400
2401 /* Re-association barriers around constants and other re-association
2402 barriers can be removed. */
2403 (simplify
2404 (paren CONSTANT_CLASS_P@0)
2405 @0)
2406 (simplify
2407 (paren (paren@1 @0))
2408 @1)
2409
2410 /* Handle cases of two conversions in a row. */
2411 (for ocvt (convert float fix_trunc)
2412 (for icvt (convert float)
2413 (simplify
2414 (ocvt (icvt@1 @0))
2415 (with
2416 {
2417 tree inside_type = TREE_TYPE (@0);
2418 tree inter_type = TREE_TYPE (@1);
2419 int inside_int = INTEGRAL_TYPE_P (inside_type);
2420 int inside_ptr = POINTER_TYPE_P (inside_type);
2421 int inside_float = FLOAT_TYPE_P (inside_type);
2422 int inside_vec = VECTOR_TYPE_P (inside_type);
2423 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2424 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2425 int inter_int = INTEGRAL_TYPE_P (inter_type);
2426 int inter_ptr = POINTER_TYPE_P (inter_type);
2427 int inter_float = FLOAT_TYPE_P (inter_type);
2428 int inter_vec = VECTOR_TYPE_P (inter_type);
2429 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2430 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2431 int final_int = INTEGRAL_TYPE_P (type);
2432 int final_ptr = POINTER_TYPE_P (type);
2433 int final_float = FLOAT_TYPE_P (type);
2434 int final_vec = VECTOR_TYPE_P (type);
2435 unsigned int final_prec = TYPE_PRECISION (type);
2436 int final_unsignedp = TYPE_UNSIGNED (type);
2437 }
2438 (switch
2439 /* In addition to the cases of two conversions in a row
2440 handled below, if we are converting something to its own
2441 type via an object of identical or wider precision, neither
2442 conversion is needed. */
2443 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2444 || (GENERIC
2445 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2446 && (((inter_int || inter_ptr) && final_int)
2447 || (inter_float && final_float))
2448 && inter_prec >= final_prec)
2449 (ocvt @0))
2450
2451 /* Likewise, if the intermediate and initial types are either both
2452 float or both integer, we don't need the middle conversion if the
2453 former is wider than the latter and doesn't change the signedness
2454 (for integers). Avoid this if the final type is a pointer since
2455 then we sometimes need the middle conversion. */
2456 (if (((inter_int && inside_int) || (inter_float && inside_float))
2457 && (final_int || final_float)
2458 && inter_prec >= inside_prec
2459 && (inter_float || inter_unsignedp == inside_unsignedp))
2460 (ocvt @0))
2461
2462 /* If we have a sign-extension of a zero-extended value, we can
2463 replace that by a single zero-extension. Likewise if the
2464 final conversion does not change precision we can drop the
2465 intermediate conversion. */
2466 (if (inside_int && inter_int && final_int
2467 && ((inside_prec < inter_prec && inter_prec < final_prec
2468 && inside_unsignedp && !inter_unsignedp)
2469 || final_prec == inter_prec))
2470 (ocvt @0))
2471
2472 /* Two conversions in a row are not needed unless:
2473 - some conversion is floating-point (overstrict for now), or
2474 - some conversion is a vector (overstrict for now), or
2475 - the intermediate type is narrower than both initial and
2476 final, or
2477 - the intermediate type and innermost type differ in signedness,
2478 and the outermost type is wider than the intermediate, or
2479 - the initial type is a pointer type and the precisions of the
2480 intermediate and final types differ, or
2481 - the final type is a pointer type and the precisions of the
2482 initial and intermediate types differ. */
2483 (if (! inside_float && ! inter_float && ! final_float
2484 && ! inside_vec && ! inter_vec && ! final_vec
2485 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2486 && ! (inside_int && inter_int
2487 && inter_unsignedp != inside_unsignedp
2488 && inter_prec < final_prec)
2489 && ((inter_unsignedp && inter_prec > inside_prec)
2490 == (final_unsignedp && final_prec > inter_prec))
2491 && ! (inside_ptr && inter_prec != final_prec)
2492 && ! (final_ptr && inside_prec != inter_prec))
2493 (ocvt @0))
2494
2495 /* A truncation to an unsigned type (a zero-extension) should be
2496 canonicalized as bitwise and of a mask. */
2497 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2498 && final_int && inter_int && inside_int
2499 && final_prec == inside_prec
2500 && final_prec > inter_prec
2501 && inter_unsignedp)
2502 (convert (bit_and @0 { wide_int_to_tree
2503 (inside_type,
2504 wi::mask (inter_prec, false,
2505 TYPE_PRECISION (inside_type))); })))
2506
2507 /* If we are converting an integer to a floating-point that can
2508 represent it exactly and back to an integer, we can skip the
2509 floating-point conversion. */
2510 (if (GIMPLE /* PR66211 */
2511 && inside_int && inter_float && final_int &&
2512 (unsigned) significand_size (TYPE_MODE (inter_type))
2513 >= inside_prec - !inside_unsignedp)
2514 (convert @0)))))))
2515
2516 /* If we have a narrowing conversion to an integral type that is fed by a
2517 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2518 masks off bits outside the final type (and nothing else). */
2519 (simplify
2520 (convert (bit_and @0 INTEGER_CST@1))
2521 (if (INTEGRAL_TYPE_P (type)
2522 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2523 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2524 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2525 TYPE_PRECISION (type)), 0))
2526 (convert @0)))
2527
2528
2529 /* (X /[ex] A) * A -> X. */
2530 (simplify
2531 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2532 (convert @0))
2533
2534 /* Canonicalization of binary operations. */
2535
2536 /* Convert X + -C into X - C. */
2537 (simplify
2538 (plus @0 REAL_CST@1)
2539 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2540 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2541 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2542 (minus @0 { tem; })))))
2543
2544 /* Convert x+x into x*2. */
2545 (simplify
2546 (plus @0 @0)
2547 (if (SCALAR_FLOAT_TYPE_P (type))
2548 (mult @0 { build_real (type, dconst2); })
2549 (if (INTEGRAL_TYPE_P (type))
2550 (mult @0 { build_int_cst (type, 2); }))))
2551
2552 /* 0 - X -> -X. */
2553 (simplify
2554 (minus integer_zerop @1)
2555 (negate @1))
2556 (simplify
2557 (pointer_diff integer_zerop @1)
2558 (negate (convert @1)))
2559
2560 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2561 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2562 (-ARG1 + ARG0) reduces to -ARG1. */
2563 (simplify
2564 (minus real_zerop@0 @1)
2565 (if (fold_real_zero_addition_p (type, @0, 0))
2566 (negate @1)))
2567
2568 /* Transform x * -1 into -x. */
2569 (simplify
2570 (mult @0 integer_minus_onep)
2571 (negate @0))
2572
2573 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2574 signed overflow for CST != 0 && CST != -1. */
2575 (simplify
2576 (mult:c (mult:s @0 INTEGER_CST@1) @2)
2577 (if (TREE_CODE (@2) != INTEGER_CST
2578 && !integer_zerop (@1) && !integer_minus_onep (@1))
2579 (mult (mult @0 @2) @1)))
2580
2581 /* True if we can easily extract the real and imaginary parts of a complex
2582 number. */
2583 (match compositional_complex
2584 (convert? (complex @0 @1)))
2585
2586 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2587 (simplify
2588 (complex (realpart @0) (imagpart @0))
2589 @0)
2590 (simplify
2591 (realpart (complex @0 @1))
2592 @0)
2593 (simplify
2594 (imagpart (complex @0 @1))
2595 @1)
2596
2597 /* Sometimes we only care about half of a complex expression. */
2598 (simplify
2599 (realpart (convert?:s (conj:s @0)))
2600 (convert (realpart @0)))
2601 (simplify
2602 (imagpart (convert?:s (conj:s @0)))
2603 (convert (negate (imagpart @0))))
2604 (for part (realpart imagpart)
2605 (for op (plus minus)
2606 (simplify
2607 (part (convert?:s@2 (op:s @0 @1)))
2608 (convert (op (part @0) (part @1))))))
2609 (simplify
2610 (realpart (convert?:s (CEXPI:s @0)))
2611 (convert (COS @0)))
2612 (simplify
2613 (imagpart (convert?:s (CEXPI:s @0)))
2614 (convert (SIN @0)))
2615
2616 /* conj(conj(x)) -> x */
2617 (simplify
2618 (conj (convert? (conj @0)))
2619 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2620 (convert @0)))
2621
2622 /* conj({x,y}) -> {x,-y} */
2623 (simplify
2624 (conj (convert?:s (complex:s @0 @1)))
2625 (with { tree itype = TREE_TYPE (type); }
2626 (complex (convert:itype @0) (negate (convert:itype @1)))))
2627
2628 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2629 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2630 (simplify
2631 (bswap (bswap @0))
2632 @0)
2633 (simplify
2634 (bswap (bit_not (bswap @0)))
2635 (bit_not @0))
2636 (for bitop (bit_xor bit_ior bit_and)
2637 (simplify
2638 (bswap (bitop:c (bswap @0) @1))
2639 (bitop @0 (bswap @1)))))
2640
2641
2642 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2643
2644 /* Simplify constant conditions.
2645 Only optimize constant conditions when the selected branch
2646 has the same type as the COND_EXPR. This avoids optimizing
2647 away "c ? x : throw", where the throw has a void type.
2648 Note that we cannot throw away the fold-const.c variant nor
2649 this one as we depend on doing this transform before possibly
2650 A ? B : B -> B triggers and the fold-const.c one can optimize
2651 0 ? A : B to B even if A has side-effects. Something
2652 genmatch cannot handle. */
2653 (simplify
2654 (cond INTEGER_CST@0 @1 @2)
2655 (if (integer_zerop (@0))
2656 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2657 @2)
2658 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2659 @1)))
2660 (simplify
2661 (vec_cond VECTOR_CST@0 @1 @2)
2662 (if (integer_all_onesp (@0))
2663 @1
2664 (if (integer_zerop (@0))
2665 @2)))
2666
2667 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2668 be extended. */
2669 /* This pattern implements two kinds simplification:
2670
2671 Case 1)
2672 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2673 1) Conversions are type widening from smaller type.
2674 2) Const c1 equals to c2 after canonicalizing comparison.
2675 3) Comparison has tree code LT, LE, GT or GE.
2676 This specific pattern is needed when (cmp (convert x) c) may not
2677 be simplified by comparison patterns because of multiple uses of
2678 x. It also makes sense here because simplifying across multiple
2679 referred var is always benefitial for complicated cases.
2680
2681 Case 2)
2682 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2683 (for cmp (lt le gt ge eq)
2684 (simplify
2685 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2686 (with
2687 {
2688 tree from_type = TREE_TYPE (@1);
2689 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2690 enum tree_code code = ERROR_MARK;
2691
2692 if (INTEGRAL_TYPE_P (from_type)
2693 && int_fits_type_p (@2, from_type)
2694 && (types_match (c1_type, from_type)
2695 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2696 && (TYPE_UNSIGNED (from_type)
2697 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2698 && (types_match (c2_type, from_type)
2699 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2700 && (TYPE_UNSIGNED (from_type)
2701 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2702 {
2703 if (cmp != EQ_EXPR)
2704 {
2705 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2706 {
2707 /* X <= Y - 1 equals to X < Y. */
2708 if (cmp == LE_EXPR)
2709 code = LT_EXPR;
2710 /* X > Y - 1 equals to X >= Y. */
2711 if (cmp == GT_EXPR)
2712 code = GE_EXPR;
2713 }
2714 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2715 {
2716 /* X < Y + 1 equals to X <= Y. */
2717 if (cmp == LT_EXPR)
2718 code = LE_EXPR;
2719 /* X >= Y + 1 equals to X > Y. */
2720 if (cmp == GE_EXPR)
2721 code = GT_EXPR;
2722 }
2723 if (code != ERROR_MARK
2724 || wi::to_widest (@2) == wi::to_widest (@3))
2725 {
2726 if (cmp == LT_EXPR || cmp == LE_EXPR)
2727 code = MIN_EXPR;
2728 if (cmp == GT_EXPR || cmp == GE_EXPR)
2729 code = MAX_EXPR;
2730 }
2731 }
2732 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2733 else if (int_fits_type_p (@3, from_type))
2734 code = EQ_EXPR;
2735 }
2736 }
2737 (if (code == MAX_EXPR)
2738 (convert (max @1 (convert @2)))
2739 (if (code == MIN_EXPR)
2740 (convert (min @1 (convert @2)))
2741 (if (code == EQ_EXPR)
2742 (convert (cond (eq @1 (convert @3))
2743 (convert:from_type @3) (convert:from_type @2)))))))))
2744
2745 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2746
2747 1) OP is PLUS or MINUS.
2748 2) CMP is LT, LE, GT or GE.
2749 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2750
2751 This pattern also handles special cases like:
2752
2753 A) Operand x is a unsigned to signed type conversion and c1 is
2754 integer zero. In this case,
2755 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2756 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2757 B) Const c1 may not equal to (C3 op' C2). In this case we also
2758 check equality for (c1+1) and (c1-1) by adjusting comparison
2759 code.
2760
2761 TODO: Though signed type is handled by this pattern, it cannot be
2762 simplified at the moment because C standard requires additional
2763 type promotion. In order to match&simplify it here, the IR needs
2764 to be cleaned up by other optimizers, i.e, VRP. */
2765 (for op (plus minus)
2766 (for cmp (lt le gt ge)
2767 (simplify
2768 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2769 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2770 (if (types_match (from_type, to_type)
2771 /* Check if it is special case A). */
2772 || (TYPE_UNSIGNED (from_type)
2773 && !TYPE_UNSIGNED (to_type)
2774 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2775 && integer_zerop (@1)
2776 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2777 (with
2778 {
2779 bool overflow = false;
2780 enum tree_code code, cmp_code = cmp;
2781 wide_int real_c1;
2782 wide_int c1 = wi::to_wide (@1);
2783 wide_int c2 = wi::to_wide (@2);
2784 wide_int c3 = wi::to_wide (@3);
2785 signop sgn = TYPE_SIGN (from_type);
2786
2787 /* Handle special case A), given x of unsigned type:
2788 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2789 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2790 if (!types_match (from_type, to_type))
2791 {
2792 if (cmp_code == LT_EXPR)
2793 cmp_code = GT_EXPR;
2794 if (cmp_code == GE_EXPR)
2795 cmp_code = LE_EXPR;
2796 c1 = wi::max_value (to_type);
2797 }
2798 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2799 compute (c3 op' c2) and check if it equals to c1 with op' being
2800 the inverted operator of op. Make sure overflow doesn't happen
2801 if it is undefined. */
2802 if (op == PLUS_EXPR)
2803 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2804 else
2805 real_c1 = wi::add (c3, c2, sgn, &overflow);
2806
2807 code = cmp_code;
2808 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2809 {
2810 /* Check if c1 equals to real_c1. Boundary condition is handled
2811 by adjusting comparison operation if necessary. */
2812 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2813 && !overflow)
2814 {
2815 /* X <= Y - 1 equals to X < Y. */
2816 if (cmp_code == LE_EXPR)
2817 code = LT_EXPR;
2818 /* X > Y - 1 equals to X >= Y. */
2819 if (cmp_code == GT_EXPR)
2820 code = GE_EXPR;
2821 }
2822 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2823 && !overflow)
2824 {
2825 /* X < Y + 1 equals to X <= Y. */
2826 if (cmp_code == LT_EXPR)
2827 code = LE_EXPR;
2828 /* X >= Y + 1 equals to X > Y. */
2829 if (cmp_code == GE_EXPR)
2830 code = GT_EXPR;
2831 }
2832 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2833 {
2834 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2835 code = MIN_EXPR;
2836 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2837 code = MAX_EXPR;
2838 }
2839 }
2840 }
2841 (if (code == MAX_EXPR)
2842 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2843 { wide_int_to_tree (from_type, c2); })
2844 (if (code == MIN_EXPR)
2845 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2846 { wide_int_to_tree (from_type, c2); })))))))))
2847
2848 (for cnd (cond vec_cond)
2849 /* A ? B : (A ? X : C) -> A ? B : C. */
2850 (simplify
2851 (cnd @0 (cnd @0 @1 @2) @3)
2852 (cnd @0 @1 @3))
2853 (simplify
2854 (cnd @0 @1 (cnd @0 @2 @3))
2855 (cnd @0 @1 @3))
2856 /* A ? B : (!A ? C : X) -> A ? B : C. */
2857 /* ??? This matches embedded conditions open-coded because genmatch
2858 would generate matching code for conditions in separate stmts only.
2859 The following is still important to merge then and else arm cases
2860 from if-conversion. */
2861 (simplify
2862 (cnd @0 @1 (cnd @2 @3 @4))
2863 (if (COMPARISON_CLASS_P (@0)
2864 && COMPARISON_CLASS_P (@2)
2865 && invert_tree_comparison
2866 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2867 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2868 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2869 (cnd @0 @1 @3)))
2870 (simplify
2871 (cnd @0 (cnd @1 @2 @3) @4)
2872 (if (COMPARISON_CLASS_P (@0)
2873 && COMPARISON_CLASS_P (@1)
2874 && invert_tree_comparison
2875 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2876 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2877 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2878 (cnd @0 @3 @4)))
2879
2880 /* A ? B : B -> B. */
2881 (simplify
2882 (cnd @0 @1 @1)
2883 @1)
2884
2885 /* !A ? B : C -> A ? C : B. */
2886 (simplify
2887 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2888 (cnd @0 @2 @1)))
2889
2890 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2891 return all -1 or all 0 results. */
2892 /* ??? We could instead convert all instances of the vec_cond to negate,
2893 but that isn't necessarily a win on its own. */
2894 (simplify
2895 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2896 (if (VECTOR_TYPE_P (type)
2897 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2898 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2899 && (TYPE_MODE (TREE_TYPE (type))
2900 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2901 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2902
2903 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2904 (simplify
2905 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2906 (if (VECTOR_TYPE_P (type)
2907 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2908 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2909 && (TYPE_MODE (TREE_TYPE (type))
2910 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2911 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2912
2913
2914 /* Simplifications of comparisons. */
2915
2916 /* See if we can reduce the magnitude of a constant involved in a
2917 comparison by changing the comparison code. This is a canonicalization
2918 formerly done by maybe_canonicalize_comparison_1. */
2919 (for cmp (le gt)
2920 acmp (lt ge)
2921 (simplify
2922 (cmp @0 INTEGER_CST@1)
2923 (if (tree_int_cst_sgn (@1) == -1)
2924 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2925 (for cmp (ge lt)
2926 acmp (gt le)
2927 (simplify
2928 (cmp @0 INTEGER_CST@1)
2929 (if (tree_int_cst_sgn (@1) == 1)
2930 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2931
2932
2933 /* We can simplify a logical negation of a comparison to the
2934 inverted comparison. As we cannot compute an expression
2935 operator using invert_tree_comparison we have to simulate
2936 that with expression code iteration. */
2937 (for cmp (tcc_comparison)
2938 icmp (inverted_tcc_comparison)
2939 ncmp (inverted_tcc_comparison_with_nans)
2940 /* Ideally we'd like to combine the following two patterns
2941 and handle some more cases by using
2942 (logical_inverted_value (cmp @0 @1))
2943 here but for that genmatch would need to "inline" that.
2944 For now implement what forward_propagate_comparison did. */
2945 (simplify
2946 (bit_not (cmp @0 @1))
2947 (if (VECTOR_TYPE_P (type)
2948 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2949 /* Comparison inversion may be impossible for trapping math,
2950 invert_tree_comparison will tell us. But we can't use
2951 a computed operator in the replacement tree thus we have
2952 to play the trick below. */
2953 (with { enum tree_code ic = invert_tree_comparison
2954 (cmp, HONOR_NANS (@0)); }
2955 (if (ic == icmp)
2956 (icmp @0 @1)
2957 (if (ic == ncmp)
2958 (ncmp @0 @1))))))
2959 (simplify
2960 (bit_xor (cmp @0 @1) integer_truep)
2961 (with { enum tree_code ic = invert_tree_comparison
2962 (cmp, HONOR_NANS (@0)); }
2963 (if (ic == icmp)
2964 (icmp @0 @1)
2965 (if (ic == ncmp)
2966 (ncmp @0 @1))))))
2967
2968 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2969 ??? The transformation is valid for the other operators if overflow
2970 is undefined for the type, but performing it here badly interacts
2971 with the transformation in fold_cond_expr_with_comparison which
2972 attempts to synthetize ABS_EXPR. */
2973 (for cmp (eq ne)
2974 (for sub (minus pointer_diff)
2975 (simplify
2976 (cmp (sub@2 @0 @1) integer_zerop)
2977 (if (single_use (@2))
2978 (cmp @0 @1)))))
2979
2980 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2981 signed arithmetic case. That form is created by the compiler
2982 often enough for folding it to be of value. One example is in
2983 computing loop trip counts after Operator Strength Reduction. */
2984 (for cmp (simple_comparison)
2985 scmp (swapped_simple_comparison)
2986 (simplify
2987 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2988 /* Handle unfolded multiplication by zero. */
2989 (if (integer_zerop (@1))
2990 (cmp @1 @2)
2991 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2992 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2993 && single_use (@3))
2994 /* If @1 is negative we swap the sense of the comparison. */
2995 (if (tree_int_cst_sgn (@1) < 0)
2996 (scmp @0 @2)
2997 (cmp @0 @2))))))
2998
2999 /* Simplify comparison of something with itself. For IEEE
3000 floating-point, we can only do some of these simplifications. */
3001 (for cmp (eq ge le)
3002 (simplify
3003 (cmp @0 @0)
3004 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3005 || ! HONOR_NANS (@0))
3006 { constant_boolean_node (true, type); }
3007 (if (cmp != EQ_EXPR)
3008 (eq @0 @0)))))
3009 (for cmp (ne gt lt)
3010 (simplify
3011 (cmp @0 @0)
3012 (if (cmp != NE_EXPR
3013 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3014 || ! HONOR_NANS (@0))
3015 { constant_boolean_node (false, type); })))
3016 (for cmp (unle unge uneq)
3017 (simplify
3018 (cmp @0 @0)
3019 { constant_boolean_node (true, type); }))
3020 (for cmp (unlt ungt)
3021 (simplify
3022 (cmp @0 @0)
3023 (unordered @0 @0)))
3024 (simplify
3025 (ltgt @0 @0)
3026 (if (!flag_trapping_math)
3027 { constant_boolean_node (false, type); }))
3028
3029 /* Fold ~X op ~Y as Y op X. */
3030 (for cmp (simple_comparison)
3031 (simplify
3032 (cmp (bit_not@2 @0) (bit_not@3 @1))
3033 (if (single_use (@2) && single_use (@3))
3034 (cmp @1 @0))))
3035
3036 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3037 (for cmp (simple_comparison)
3038 scmp (swapped_simple_comparison)
3039 (simplify
3040 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3041 (if (single_use (@2)
3042 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3043 (scmp @0 (bit_not @1)))))
3044
3045 (for cmp (simple_comparison)
3046 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3047 (simplify
3048 (cmp (convert@2 @0) (convert? @1))
3049 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3050 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3051 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3052 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3053 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3054 (with
3055 {
3056 tree type1 = TREE_TYPE (@1);
3057 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3058 {
3059 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3060 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3061 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3062 type1 = float_type_node;
3063 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3064 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3065 type1 = double_type_node;
3066 }
3067 tree newtype
3068 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3069 ? TREE_TYPE (@0) : type1);
3070 }
3071 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3072 (cmp (convert:newtype @0) (convert:newtype @1))))))
3073
3074 (simplify
3075 (cmp @0 REAL_CST@1)
3076 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3077 (switch
3078 /* a CMP (-0) -> a CMP 0 */
3079 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3080 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3081 /* x != NaN is always true, other ops are always false. */
3082 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3083 && ! HONOR_SNANS (@1))
3084 { constant_boolean_node (cmp == NE_EXPR, type); })
3085 /* Fold comparisons against infinity. */
3086 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3087 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3088 (with
3089 {
3090 REAL_VALUE_TYPE max;
3091 enum tree_code code = cmp;
3092 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3093 if (neg)
3094 code = swap_tree_comparison (code);
3095 }
3096 (switch
3097 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3098 (if (code == GT_EXPR
3099 && !(HONOR_NANS (@0) && flag_trapping_math))
3100 { constant_boolean_node (false, type); })
3101 (if (code == LE_EXPR)
3102 /* x <= +Inf is always true, if we don't care about NaNs. */
3103 (if (! HONOR_NANS (@0))
3104 { constant_boolean_node (true, type); }
3105 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3106 an "invalid" exception. */
3107 (if (!flag_trapping_math)
3108 (eq @0 @0))))
3109 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3110 for == this introduces an exception for x a NaN. */
3111 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3112 || code == GE_EXPR)
3113 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3114 (if (neg)
3115 (lt @0 { build_real (TREE_TYPE (@0), max); })
3116 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3117 /* x < +Inf is always equal to x <= DBL_MAX. */
3118 (if (code == LT_EXPR)
3119 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3120 (if (neg)
3121 (ge @0 { build_real (TREE_TYPE (@0), max); })
3122 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3123 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3124 an exception for x a NaN so use an unordered comparison. */
3125 (if (code == NE_EXPR)
3126 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3127 (if (! HONOR_NANS (@0))
3128 (if (neg)
3129 (ge @0 { build_real (TREE_TYPE (@0), max); })
3130 (le @0 { build_real (TREE_TYPE (@0), max); }))
3131 (if (neg)
3132 (unge @0 { build_real (TREE_TYPE (@0), max); })
3133 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3134
3135 /* If this is a comparison of a real constant with a PLUS_EXPR
3136 or a MINUS_EXPR of a real constant, we can convert it into a
3137 comparison with a revised real constant as long as no overflow
3138 occurs when unsafe_math_optimizations are enabled. */
3139 (if (flag_unsafe_math_optimizations)
3140 (for op (plus minus)
3141 (simplify
3142 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3143 (with
3144 {
3145 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3146 TREE_TYPE (@1), @2, @1);
3147 }
3148 (if (tem && !TREE_OVERFLOW (tem))
3149 (cmp @0 { tem; }))))))
3150
3151 /* Likewise, we can simplify a comparison of a real constant with
3152 a MINUS_EXPR whose first operand is also a real constant, i.e.
3153 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3154 floating-point types only if -fassociative-math is set. */
3155 (if (flag_associative_math)
3156 (simplify
3157 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3158 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3159 (if (tem && !TREE_OVERFLOW (tem))
3160 (cmp { tem; } @1)))))
3161
3162 /* Fold comparisons against built-in math functions. */
3163 (if (flag_unsafe_math_optimizations
3164 && ! flag_errno_math)
3165 (for sq (SQRT)
3166 (simplify
3167 (cmp (sq @0) REAL_CST@1)
3168 (switch
3169 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3170 (switch
3171 /* sqrt(x) < y is always false, if y is negative. */
3172 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3173 { constant_boolean_node (false, type); })
3174 /* sqrt(x) > y is always true, if y is negative and we
3175 don't care about NaNs, i.e. negative values of x. */
3176 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3177 { constant_boolean_node (true, type); })
3178 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3179 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3180 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3181 (switch
3182 /* sqrt(x) < 0 is always false. */
3183 (if (cmp == LT_EXPR)
3184 { constant_boolean_node (false, type); })
3185 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3186 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3187 { constant_boolean_node (true, type); })
3188 /* sqrt(x) <= 0 -> x == 0. */
3189 (if (cmp == LE_EXPR)
3190 (eq @0 @1))
3191 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3192 == or !=. In the last case:
3193
3194 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3195
3196 if x is negative or NaN. Due to -funsafe-math-optimizations,
3197 the results for other x follow from natural arithmetic. */
3198 (cmp @0 @1)))
3199 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3200 (with
3201 {
3202 REAL_VALUE_TYPE c2;
3203 real_arithmetic (&c2, MULT_EXPR,
3204 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3205 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3206 }
3207 (if (REAL_VALUE_ISINF (c2))
3208 /* sqrt(x) > y is x == +Inf, when y is very large. */
3209 (if (HONOR_INFINITIES (@0))
3210 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3211 { constant_boolean_node (false, type); })
3212 /* sqrt(x) > c is the same as x > c*c. */
3213 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3214 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3215 (with
3216 {
3217 REAL_VALUE_TYPE c2;
3218 real_arithmetic (&c2, MULT_EXPR,
3219 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3220 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3221 }
3222 (if (REAL_VALUE_ISINF (c2))
3223 (switch
3224 /* sqrt(x) < y is always true, when y is a very large
3225 value and we don't care about NaNs or Infinities. */
3226 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3227 { constant_boolean_node (true, type); })
3228 /* sqrt(x) < y is x != +Inf when y is very large and we
3229 don't care about NaNs. */
3230 (if (! HONOR_NANS (@0))
3231 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3232 /* sqrt(x) < y is x >= 0 when y is very large and we
3233 don't care about Infinities. */
3234 (if (! HONOR_INFINITIES (@0))
3235 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3236 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3237 (if (GENERIC)
3238 (truth_andif
3239 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3240 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3241 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3242 (if (! HONOR_NANS (@0))
3243 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3244 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3245 (if (GENERIC)
3246 (truth_andif
3247 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3248 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3249 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3250 (simplify
3251 (cmp (sq @0) (sq @1))
3252 (if (! HONOR_NANS (@0))
3253 (cmp @0 @1))))))
3254
3255 /* Optimize various special cases of (FTYPE) N CMP CST. */
3256 (for cmp (lt le eq ne ge gt)
3257 icmp (le le eq ne ge ge)
3258 (simplify
3259 (cmp (float @0) REAL_CST@1)
3260 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3261 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3262 (with
3263 {
3264 tree itype = TREE_TYPE (@0);
3265 signop isign = TYPE_SIGN (itype);
3266 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3267 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3268 /* Be careful to preserve any potential exceptions due to
3269 NaNs. qNaNs are ok in == or != context.
3270 TODO: relax under -fno-trapping-math or
3271 -fno-signaling-nans. */
3272 bool exception_p
3273 = real_isnan (cst) && (cst->signalling
3274 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3275 /* INT?_MIN is power-of-two so it takes
3276 only one mantissa bit. */
3277 bool signed_p = isign == SIGNED;
3278 bool itype_fits_ftype_p
3279 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3280 }
3281 /* TODO: allow non-fitting itype and SNaNs when
3282 -fno-trapping-math. */
3283 (if (itype_fits_ftype_p && ! exception_p)
3284 (with
3285 {
3286 REAL_VALUE_TYPE imin, imax;
3287 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3288 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3289
3290 REAL_VALUE_TYPE icst;
3291 if (cmp == GT_EXPR || cmp == GE_EXPR)
3292 real_ceil (&icst, fmt, cst);
3293 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3294 real_floor (&icst, fmt, cst);
3295 else
3296 real_trunc (&icst, fmt, cst);
3297
3298 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3299
3300 bool overflow_p = false;
3301 wide_int icst_val
3302 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3303 }
3304 (switch
3305 /* Optimize cases when CST is outside of ITYPE's range. */
3306 (if (real_compare (LT_EXPR, cst, &imin))
3307 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3308 type); })
3309 (if (real_compare (GT_EXPR, cst, &imax))
3310 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3311 type); })
3312 /* Remove cast if CST is an integer representable by ITYPE. */
3313 (if (cst_int_p)
3314 (cmp @0 { gcc_assert (!overflow_p);
3315 wide_int_to_tree (itype, icst_val); })
3316 )
3317 /* When CST is fractional, optimize
3318 (FTYPE) N == CST -> 0
3319 (FTYPE) N != CST -> 1. */
3320 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3321 { constant_boolean_node (cmp == NE_EXPR, type); })
3322 /* Otherwise replace with sensible integer constant. */
3323 (with
3324 {
3325 gcc_checking_assert (!overflow_p);
3326 }
3327 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3328
3329 /* Fold A /[ex] B CMP C to A CMP B * C. */
3330 (for cmp (eq ne)
3331 (simplify
3332 (cmp (exact_div @0 @1) INTEGER_CST@2)
3333 (if (!integer_zerop (@1))
3334 (if (wi::to_wide (@2) == 0)
3335 (cmp @0 @2)
3336 (if (TREE_CODE (@1) == INTEGER_CST)
3337 (with
3338 {
3339 bool ovf;
3340 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3341 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3342 }
3343 (if (ovf)
3344 { constant_boolean_node (cmp == NE_EXPR, type); }
3345 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3346 (for cmp (lt le gt ge)
3347 (simplify
3348 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3349 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3350 (with
3351 {
3352 bool ovf;
3353 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3354 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3355 }
3356 (if (ovf)
3357 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3358 TYPE_SIGN (TREE_TYPE (@2)))
3359 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3360 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3361
3362 /* Unordered tests if either argument is a NaN. */
3363 (simplify
3364 (bit_ior (unordered @0 @0) (unordered @1 @1))
3365 (if (types_match (@0, @1))
3366 (unordered @0 @1)))
3367 (simplify
3368 (bit_and (ordered @0 @0) (ordered @1 @1))
3369 (if (types_match (@0, @1))
3370 (ordered @0 @1)))
3371 (simplify
3372 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3373 @2)
3374 (simplify
3375 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3376 @2)
3377
3378 /* Simple range test simplifications. */
3379 /* A < B || A >= B -> true. */
3380 (for test1 (lt le le le ne ge)
3381 test2 (ge gt ge ne eq ne)
3382 (simplify
3383 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3384 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3385 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3386 { constant_boolean_node (true, type); })))
3387 /* A < B && A >= B -> false. */
3388 (for test1 (lt lt lt le ne eq)
3389 test2 (ge gt eq gt eq gt)
3390 (simplify
3391 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3392 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3393 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3394 { constant_boolean_node (false, type); })))
3395
3396 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3397 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3398
3399 Note that comparisons
3400 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3401 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3402 will be canonicalized to above so there's no need to
3403 consider them here.
3404 */
3405
3406 (for cmp (le gt)
3407 eqcmp (eq ne)
3408 (simplify
3409 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3410 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3411 (with
3412 {
3413 tree ty = TREE_TYPE (@0);
3414 unsigned prec = TYPE_PRECISION (ty);
3415 wide_int mask = wi::to_wide (@2, prec);
3416 wide_int rhs = wi::to_wide (@3, prec);
3417 signop sgn = TYPE_SIGN (ty);
3418 }
3419 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3420 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3421 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3422 { build_zero_cst (ty); }))))))
3423
3424 /* -A CMP -B -> B CMP A. */
3425 (for cmp (tcc_comparison)
3426 scmp (swapped_tcc_comparison)
3427 (simplify
3428 (cmp (negate @0) (negate @1))
3429 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3430 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3431 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3432 (scmp @0 @1)))
3433 (simplify
3434 (cmp (negate @0) CONSTANT_CLASS_P@1)
3435 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3436 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3437 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3438 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3439 (if (tem && !TREE_OVERFLOW (tem))
3440 (scmp @0 { tem; }))))))
3441
3442 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3443 (for op (eq ne)
3444 (simplify
3445 (op (abs @0) zerop@1)
3446 (op @0 @1)))
3447
3448 /* From fold_sign_changed_comparison and fold_widened_comparison.
3449 FIXME: the lack of symmetry is disturbing. */
3450 (for cmp (simple_comparison)
3451 (simplify
3452 (cmp (convert@0 @00) (convert?@1 @10))
3453 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3454 /* Disable this optimization if we're casting a function pointer
3455 type on targets that require function pointer canonicalization. */
3456 && !(targetm.have_canonicalize_funcptr_for_compare ()
3457 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3458 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3459 && single_use (@0))
3460 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3461 && (TREE_CODE (@10) == INTEGER_CST
3462 || @1 != @10)
3463 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3464 || cmp == NE_EXPR
3465 || cmp == EQ_EXPR)
3466 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3467 /* ??? The special-casing of INTEGER_CST conversion was in the original
3468 code and here to avoid a spurious overflow flag on the resulting
3469 constant which fold_convert produces. */
3470 (if (TREE_CODE (@1) == INTEGER_CST)
3471 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3472 TREE_OVERFLOW (@1)); })
3473 (cmp @00 (convert @1)))
3474
3475 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3476 /* If possible, express the comparison in the shorter mode. */
3477 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3478 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3479 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3480 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3481 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3482 || ((TYPE_PRECISION (TREE_TYPE (@00))
3483 >= TYPE_PRECISION (TREE_TYPE (@10)))
3484 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3485 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3486 || (TREE_CODE (@10) == INTEGER_CST
3487 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3488 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3489 (cmp @00 (convert @10))
3490 (if (TREE_CODE (@10) == INTEGER_CST
3491 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3492 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3493 (with
3494 {
3495 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3496 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3497 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3498 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3499 }
3500 (if (above || below)
3501 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3502 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3503 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3504 { constant_boolean_node (above ? true : false, type); }
3505 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3506 { constant_boolean_node (above ? false : true, type); }))))))))))))
3507
3508 (for cmp (eq ne)
3509 /* A local variable can never be pointed to by
3510 the default SSA name of an incoming parameter.
3511 SSA names are canonicalized to 2nd place. */
3512 (simplify
3513 (cmp addr@0 SSA_NAME@1)
3514 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3515 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3516 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3517 (if (TREE_CODE (base) == VAR_DECL
3518 && auto_var_in_fn_p (base, current_function_decl))
3519 (if (cmp == NE_EXPR)
3520 { constant_boolean_node (true, type); }
3521 { constant_boolean_node (false, type); }))))))
3522
3523 /* Equality compare simplifications from fold_binary */
3524 (for cmp (eq ne)
3525
3526 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3527 Similarly for NE_EXPR. */
3528 (simplify
3529 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3530 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3531 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3532 { constant_boolean_node (cmp == NE_EXPR, type); }))
3533
3534 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3535 (simplify
3536 (cmp (bit_xor @0 @1) integer_zerop)
3537 (cmp @0 @1))
3538
3539 /* (X ^ Y) == Y becomes X == 0.
3540 Likewise (X ^ Y) == X becomes Y == 0. */
3541 (simplify
3542 (cmp:c (bit_xor:c @0 @1) @0)
3543 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3544
3545 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3546 (simplify
3547 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3548 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3549 (cmp @0 (bit_xor @1 (convert @2)))))
3550
3551 (simplify
3552 (cmp (convert? addr@0) integer_zerop)
3553 (if (tree_single_nonzero_warnv_p (@0, NULL))
3554 { constant_boolean_node (cmp == NE_EXPR, type); })))
3555
3556 /* If we have (A & C) == C where C is a power of 2, convert this into
3557 (A & C) != 0. Similarly for NE_EXPR. */
3558 (for cmp (eq ne)
3559 icmp (ne eq)
3560 (simplify
3561 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3562 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3563
3564 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3565 convert this into a shift followed by ANDing with D. */
3566 (simplify
3567 (cond
3568 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3569 integer_pow2p@2 integer_zerop)
3570 (with {
3571 int shift = (wi::exact_log2 (wi::to_wide (@2))
3572 - wi::exact_log2 (wi::to_wide (@1)));
3573 }
3574 (if (shift > 0)
3575 (bit_and
3576 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3577 (bit_and
3578 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); })) @2))))
3579
3580 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3581 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3582 (for cmp (eq ne)
3583 ncmp (ge lt)
3584 (simplify
3585 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3586 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3587 && type_has_mode_precision_p (TREE_TYPE (@0))
3588 && element_precision (@2) >= element_precision (@0)
3589 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3590 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3591 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3592
3593 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3594 this into a right shift or sign extension followed by ANDing with C. */
3595 (simplify
3596 (cond
3597 (lt @0 integer_zerop)
3598 integer_pow2p@1 integer_zerop)
3599 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
3600 (with {
3601 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3602 }
3603 (if (shift >= 0)
3604 (bit_and
3605 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3606 @1)
3607 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3608 sign extension followed by AND with C will achieve the effect. */
3609 (bit_and (convert @0) @1)))))
3610
3611 /* When the addresses are not directly of decls compare base and offset.
3612 This implements some remaining parts of fold_comparison address
3613 comparisons but still no complete part of it. Still it is good
3614 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3615 (for cmp (simple_comparison)
3616 (simplify
3617 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3618 (with
3619 {
3620 poly_int64 off0, off1;
3621 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3622 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3623 if (base0 && TREE_CODE (base0) == MEM_REF)
3624 {
3625 off0 += mem_ref_offset (base0).force_shwi ();
3626 base0 = TREE_OPERAND (base0, 0);
3627 }
3628 if (base1 && TREE_CODE (base1) == MEM_REF)
3629 {
3630 off1 += mem_ref_offset (base1).force_shwi ();
3631 base1 = TREE_OPERAND (base1, 0);
3632 }
3633 }
3634 (if (base0 && base1)
3635 (with
3636 {
3637 int equal = 2;
3638 /* Punt in GENERIC on variables with value expressions;
3639 the value expressions might point to fields/elements
3640 of other vars etc. */
3641 if (GENERIC
3642 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3643 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3644 ;
3645 else if (decl_in_symtab_p (base0)
3646 && decl_in_symtab_p (base1))
3647 equal = symtab_node::get_create (base0)
3648 ->equal_address_to (symtab_node::get_create (base1));
3649 else if ((DECL_P (base0)
3650 || TREE_CODE (base0) == SSA_NAME
3651 || TREE_CODE (base0) == STRING_CST)
3652 && (DECL_P (base1)
3653 || TREE_CODE (base1) == SSA_NAME
3654 || TREE_CODE (base1) == STRING_CST))
3655 equal = (base0 == base1);
3656 }
3657 (if (equal == 1
3658 && (cmp == EQ_EXPR || cmp == NE_EXPR
3659 /* If the offsets are equal we can ignore overflow. */
3660 || known_eq (off0, off1)
3661 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3662 /* Or if we compare using pointers to decls or strings. */
3663 || (POINTER_TYPE_P (TREE_TYPE (@2))
3664 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3665 (switch
3666 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3667 { constant_boolean_node (known_eq (off0, off1), type); })
3668 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3669 { constant_boolean_node (known_ne (off0, off1), type); })
3670 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3671 { constant_boolean_node (known_lt (off0, off1), type); })
3672 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3673 { constant_boolean_node (known_le (off0, off1), type); })
3674 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3675 { constant_boolean_node (known_ge (off0, off1), type); })
3676 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3677 { constant_boolean_node (known_gt (off0, off1), type); }))
3678 (if (equal == 0
3679 && DECL_P (base0) && DECL_P (base1)
3680 /* If we compare this as integers require equal offset. */
3681 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3682 || known_eq (off0, off1)))
3683 (switch
3684 (if (cmp == EQ_EXPR)
3685 { constant_boolean_node (false, type); })
3686 (if (cmp == NE_EXPR)
3687 { constant_boolean_node (true, type); })))))))))
3688
3689 /* Simplify pointer equality compares using PTA. */
3690 (for neeq (ne eq)
3691 (simplify
3692 (neeq @0 @1)
3693 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3694 && ptrs_compare_unequal (@0, @1))
3695 { neeq == EQ_EXPR ? boolean_false_node : boolean_true_node; })))
3696
3697 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3698 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3699 Disable the transform if either operand is pointer to function.
3700 This broke pr22051-2.c for arm where function pointer
3701 canonicalizaion is not wanted. */
3702
3703 (for cmp (ne eq)
3704 (simplify
3705 (cmp (convert @0) INTEGER_CST@1)
3706 (if ((POINTER_TYPE_P (TREE_TYPE (@0)) && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3707 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3708 || (INTEGRAL_TYPE_P (TREE_TYPE (@0)) && POINTER_TYPE_P (TREE_TYPE (@1))
3709 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3710 (cmp @0 (convert @1)))))
3711
3712 /* Non-equality compare simplifications from fold_binary */
3713 (for cmp (lt gt le ge)
3714 /* Comparisons with the highest or lowest possible integer of
3715 the specified precision will have known values. */
3716 (simplify
3717 (cmp (convert?@2 @0) INTEGER_CST@1)
3718 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3719 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3720 (with
3721 {
3722 tree arg1_type = TREE_TYPE (@1);
3723 unsigned int prec = TYPE_PRECISION (arg1_type);
3724 wide_int max = wi::max_value (arg1_type);
3725 wide_int signed_max = wi::max_value (prec, SIGNED);
3726 wide_int min = wi::min_value (arg1_type);
3727 }
3728 (switch
3729 (if (wi::to_wide (@1) == max)
3730 (switch
3731 (if (cmp == GT_EXPR)
3732 { constant_boolean_node (false, type); })
3733 (if (cmp == GE_EXPR)
3734 (eq @2 @1))
3735 (if (cmp == LE_EXPR)
3736 { constant_boolean_node (true, type); })
3737 (if (cmp == LT_EXPR)
3738 (ne @2 @1))))
3739 (if (wi::to_wide (@1) == min)
3740 (switch
3741 (if (cmp == LT_EXPR)
3742 { constant_boolean_node (false, type); })
3743 (if (cmp == LE_EXPR)
3744 (eq @2 @1))
3745 (if (cmp == GE_EXPR)
3746 { constant_boolean_node (true, type); })
3747 (if (cmp == GT_EXPR)
3748 (ne @2 @1))))
3749 (if (wi::to_wide (@1) == max - 1)
3750 (switch
3751 (if (cmp == GT_EXPR)
3752 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3753 (if (cmp == LE_EXPR)
3754 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3755 (if (wi::to_wide (@1) == min + 1)
3756 (switch
3757 (if (cmp == GE_EXPR)
3758 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3759 (if (cmp == LT_EXPR)
3760 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3761 (if (wi::to_wide (@1) == signed_max
3762 && TYPE_UNSIGNED (arg1_type)
3763 /* We will flip the signedness of the comparison operator
3764 associated with the mode of @1, so the sign bit is
3765 specified by this mode. Check that @1 is the signed
3766 max associated with this sign bit. */
3767 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3768 /* signed_type does not work on pointer types. */
3769 && INTEGRAL_TYPE_P (arg1_type))
3770 /* The following case also applies to X < signed_max+1
3771 and X >= signed_max+1 because previous transformations. */
3772 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3773 (with { tree st = signed_type_for (arg1_type); }
3774 (if (cmp == LE_EXPR)
3775 (ge (convert:st @0) { build_zero_cst (st); })
3776 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3777
3778 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3779 /* If the second operand is NaN, the result is constant. */
3780 (simplify
3781 (cmp @0 REAL_CST@1)
3782 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3783 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3784 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3785 ? false : true, type); })))
3786
3787 /* bool_var != 0 becomes bool_var. */
3788 (simplify
3789 (ne @0 integer_zerop)
3790 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3791 && types_match (type, TREE_TYPE (@0)))
3792 (non_lvalue @0)))
3793 /* bool_var == 1 becomes bool_var. */
3794 (simplify
3795 (eq @0 integer_onep)
3796 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3797 && types_match (type, TREE_TYPE (@0)))
3798 (non_lvalue @0)))
3799 /* Do not handle
3800 bool_var == 0 becomes !bool_var or
3801 bool_var != 1 becomes !bool_var
3802 here because that only is good in assignment context as long
3803 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3804 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3805 clearly less optimal and which we'll transform again in forwprop. */
3806
3807 /* When one argument is a constant, overflow detection can be simplified.
3808 Currently restricted to single use so as not to interfere too much with
3809 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3810 A + CST CMP A -> A CMP' CST' */
3811 (for cmp (lt le ge gt)
3812 out (gt gt le le)
3813 (simplify
3814 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3815 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3816 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3817 && wi::to_wide (@1) != 0
3818 && single_use (@2))
3819 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3820 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3821 wi::max_value (prec, UNSIGNED)
3822 - wi::to_wide (@1)); })))))
3823
3824 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3825 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3826 expects the long form, so we restrict the transformation for now. */
3827 (for cmp (gt le)
3828 (simplify
3829 (cmp:c (minus@2 @0 @1) @0)
3830 (if (single_use (@2)
3831 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3832 && TYPE_UNSIGNED (TREE_TYPE (@0))
3833 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3834 (cmp @1 @0))))
3835
3836 /* Testing for overflow is unnecessary if we already know the result. */
3837 /* A - B > A */
3838 (for cmp (gt le)
3839 out (ne eq)
3840 (simplify
3841 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3842 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3843 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3844 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3845 /* A + B < A */
3846 (for cmp (lt ge)
3847 out (ne eq)
3848 (simplify
3849 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3850 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3851 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3852 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3853
3854 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3855 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3856 (for cmp (lt ge)
3857 out (ne eq)
3858 (simplify
3859 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3860 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3861 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3862 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3863
3864 /* Simplification of math builtins. These rules must all be optimizations
3865 as well as IL simplifications. If there is a possibility that the new
3866 form could be a pessimization, the rule should go in the canonicalization
3867 section that follows this one.
3868
3869 Rules can generally go in this section if they satisfy one of
3870 the following:
3871
3872 - the rule describes an identity
3873
3874 - the rule replaces calls with something as simple as addition or
3875 multiplication
3876
3877 - the rule contains unary calls only and simplifies the surrounding
3878 arithmetic. (The idea here is to exclude non-unary calls in which
3879 one operand is constant and in which the call is known to be cheap
3880 when the operand has that value.) */
3881
3882 (if (flag_unsafe_math_optimizations)
3883 /* Simplify sqrt(x) * sqrt(x) -> x. */
3884 (simplify
3885 (mult (SQRT_ALL@1 @0) @1)
3886 (if (!HONOR_SNANS (type))
3887 @0))
3888
3889 (for op (plus minus)
3890 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3891 (simplify
3892 (op (rdiv @0 @1)
3893 (rdiv @2 @1))
3894 (rdiv (op @0 @2) @1)))
3895
3896 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3897 (for root (SQRT CBRT)
3898 (simplify
3899 (mult (root:s @0) (root:s @1))
3900 (root (mult @0 @1))))
3901
3902 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3903 (for exps (EXP EXP2 EXP10 POW10)
3904 (simplify
3905 (mult (exps:s @0) (exps:s @1))
3906 (exps (plus @0 @1))))
3907
3908 /* Simplify a/root(b/c) into a*root(c/b). */
3909 (for root (SQRT CBRT)
3910 (simplify
3911 (rdiv @0 (root:s (rdiv:s @1 @2)))
3912 (mult @0 (root (rdiv @2 @1)))))
3913
3914 /* Simplify x/expN(y) into x*expN(-y). */
3915 (for exps (EXP EXP2 EXP10 POW10)
3916 (simplify
3917 (rdiv @0 (exps:s @1))
3918 (mult @0 (exps (negate @1)))))
3919
3920 (for logs (LOG LOG2 LOG10 LOG10)
3921 exps (EXP EXP2 EXP10 POW10)
3922 /* logN(expN(x)) -> x. */
3923 (simplify
3924 (logs (exps @0))
3925 @0)
3926 /* expN(logN(x)) -> x. */
3927 (simplify
3928 (exps (logs @0))
3929 @0))
3930
3931 /* Optimize logN(func()) for various exponential functions. We
3932 want to determine the value "x" and the power "exponent" in
3933 order to transform logN(x**exponent) into exponent*logN(x). */
3934 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3935 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3936 (simplify
3937 (logs (exps @0))
3938 (if (SCALAR_FLOAT_TYPE_P (type))
3939 (with {
3940 tree x;
3941 switch (exps)
3942 {
3943 CASE_CFN_EXP:
3944 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3945 x = build_real_truncate (type, dconst_e ());
3946 break;
3947 CASE_CFN_EXP2:
3948 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3949 x = build_real (type, dconst2);
3950 break;
3951 CASE_CFN_EXP10:
3952 CASE_CFN_POW10:
3953 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3954 {
3955 REAL_VALUE_TYPE dconst10;
3956 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3957 x = build_real (type, dconst10);
3958 }
3959 break;
3960 default:
3961 gcc_unreachable ();
3962 }
3963 }
3964 (mult (logs { x; }) @0)))))
3965
3966 (for logs (LOG LOG
3967 LOG2 LOG2
3968 LOG10 LOG10)
3969 exps (SQRT CBRT)
3970 (simplify
3971 (logs (exps @0))
3972 (if (SCALAR_FLOAT_TYPE_P (type))
3973 (with {
3974 tree x;
3975 switch (exps)
3976 {
3977 CASE_CFN_SQRT:
3978 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3979 x = build_real (type, dconsthalf);
3980 break;
3981 CASE_CFN_CBRT:
3982 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3983 x = build_real_truncate (type, dconst_third ());
3984 break;
3985 default:
3986 gcc_unreachable ();
3987 }
3988 }
3989 (mult { x; } (logs @0))))))
3990
3991 /* logN(pow(x,exponent)) -> exponent*logN(x). */
3992 (for logs (LOG LOG2 LOG10)
3993 pows (POW)
3994 (simplify
3995 (logs (pows @0 @1))
3996 (mult @1 (logs @0))))
3997
3998 /* pow(C,x) -> exp(log(C)*x) if C > 0,
3999 or if C is a positive power of 2,
4000 pow(C,x) -> exp2(log2(C)*x). */
4001 (for pows (POW)
4002 exps (EXP)
4003 logs (LOG)
4004 exp2s (EXP2)
4005 log2s (LOG2)
4006 (simplify
4007 (pows REAL_CST@0 @1)
4008 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4009 && real_isfinite (TREE_REAL_CST_PTR (@0))
4010 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4011 the use_exp2 case until after vectorization. It seems actually
4012 beneficial for all constants to postpone this until later,
4013 because exp(log(C)*x), while faster, will have worse precision
4014 and if x folds into a constant too, that is unnecessary
4015 pessimization. */
4016 && canonicalize_math_after_vectorization_p ())
4017 (with {
4018 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4019 bool use_exp2 = false;
4020 if (targetm.libc_has_function (function_c99_misc)
4021 && value->cl == rvc_normal)
4022 {
4023 REAL_VALUE_TYPE frac_rvt = *value;
4024 SET_REAL_EXP (&frac_rvt, 1);
4025 if (real_equal (&frac_rvt, &dconst1))
4026 use_exp2 = true;
4027 }
4028 }
4029 (if (!use_exp2)
4030 (exps (mult (logs @0) @1))
4031 (exp2s (mult (log2s @0) @1)))))))
4032
4033 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4034 (for pows (POW)
4035 exps (EXP EXP2 EXP10 POW10)
4036 logs (LOG LOG2 LOG10 LOG10)
4037 (simplify
4038 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4039 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4040 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4041 (exps (plus (mult (logs @0) @1) @2)))))
4042
4043 (for sqrts (SQRT)
4044 cbrts (CBRT)
4045 pows (POW)
4046 exps (EXP EXP2 EXP10 POW10)
4047 /* sqrt(expN(x)) -> expN(x*0.5). */
4048 (simplify
4049 (sqrts (exps @0))
4050 (exps (mult @0 { build_real (type, dconsthalf); })))
4051 /* cbrt(expN(x)) -> expN(x/3). */
4052 (simplify
4053 (cbrts (exps @0))
4054 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4055 /* pow(expN(x), y) -> expN(x*y). */
4056 (simplify
4057 (pows (exps @0) @1)
4058 (exps (mult @0 @1))))
4059
4060 /* tan(atan(x)) -> x. */
4061 (for tans (TAN)
4062 atans (ATAN)
4063 (simplify
4064 (tans (atans @0))
4065 @0)))
4066
4067 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4068 (simplify
4069 (CABS (complex:C @0 real_zerop@1))
4070 (abs @0))
4071
4072 /* trunc(trunc(x)) -> trunc(x), etc. */
4073 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4074 (simplify
4075 (fns (fns @0))
4076 (fns @0)))
4077 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4078 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4079 (simplify
4080 (fns integer_valued_real_p@0)
4081 @0))
4082
4083 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4084 (simplify
4085 (HYPOT:c @0 real_zerop@1)
4086 (abs @0))
4087
4088 /* pow(1,x) -> 1. */
4089 (simplify
4090 (POW real_onep@0 @1)
4091 @0)
4092
4093 (simplify
4094 /* copysign(x,x) -> x. */
4095 (COPYSIGN_ALL @0 @0)
4096 @0)
4097
4098 (simplify
4099 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4100 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4101 (abs @0))
4102
4103 (for scale (LDEXP SCALBN SCALBLN)
4104 /* ldexp(0, x) -> 0. */
4105 (simplify
4106 (scale real_zerop@0 @1)
4107 @0)
4108 /* ldexp(x, 0) -> x. */
4109 (simplify
4110 (scale @0 integer_zerop@1)
4111 @0)
4112 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4113 (simplify
4114 (scale REAL_CST@0 @1)
4115 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4116 @0)))
4117
4118 /* Canonicalization of sequences of math builtins. These rules represent
4119 IL simplifications but are not necessarily optimizations.
4120
4121 The sincos pass is responsible for picking "optimal" implementations
4122 of math builtins, which may be more complicated and can sometimes go
4123 the other way, e.g. converting pow into a sequence of sqrts.
4124 We only want to do these canonicalizations before the pass has run. */
4125
4126 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4127 /* Simplify tan(x) * cos(x) -> sin(x). */
4128 (simplify
4129 (mult:c (TAN:s @0) (COS:s @0))
4130 (SIN @0))
4131
4132 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4133 (simplify
4134 (mult:c @0 (POW:s @0 REAL_CST@1))
4135 (if (!TREE_OVERFLOW (@1))
4136 (POW @0 (plus @1 { build_one_cst (type); }))))
4137
4138 /* Simplify sin(x) / cos(x) -> tan(x). */
4139 (simplify
4140 (rdiv (SIN:s @0) (COS:s @0))
4141 (TAN @0))
4142
4143 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4144 (simplify
4145 (rdiv (COS:s @0) (SIN:s @0))
4146 (rdiv { build_one_cst (type); } (TAN @0)))
4147
4148 /* Simplify sin(x) / tan(x) -> cos(x). */
4149 (simplify
4150 (rdiv (SIN:s @0) (TAN:s @0))
4151 (if (! HONOR_NANS (@0)
4152 && ! HONOR_INFINITIES (@0))
4153 (COS @0)))
4154
4155 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4156 (simplify
4157 (rdiv (TAN:s @0) (SIN:s @0))
4158 (if (! HONOR_NANS (@0)
4159 && ! HONOR_INFINITIES (@0))
4160 (rdiv { build_one_cst (type); } (COS @0))))
4161
4162 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4163 (simplify
4164 (mult (POW:s @0 @1) (POW:s @0 @2))
4165 (POW @0 (plus @1 @2)))
4166
4167 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4168 (simplify
4169 (mult (POW:s @0 @1) (POW:s @2 @1))
4170 (POW (mult @0 @2) @1))
4171
4172 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4173 (simplify
4174 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4175 (POWI (mult @0 @2) @1))
4176
4177 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4178 (simplify
4179 (rdiv (POW:s @0 REAL_CST@1) @0)
4180 (if (!TREE_OVERFLOW (@1))
4181 (POW @0 (minus @1 { build_one_cst (type); }))))
4182
4183 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4184 (simplify
4185 (rdiv @0 (POW:s @1 @2))
4186 (mult @0 (POW @1 (negate @2))))
4187
4188 (for sqrts (SQRT)
4189 cbrts (CBRT)
4190 pows (POW)
4191 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4192 (simplify
4193 (sqrts (sqrts @0))
4194 (pows @0 { build_real (type, dconst_quarter ()); }))
4195 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4196 (simplify
4197 (sqrts (cbrts @0))
4198 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4199 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4200 (simplify
4201 (cbrts (sqrts @0))
4202 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4203 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4204 (simplify
4205 (cbrts (cbrts tree_expr_nonnegative_p@0))
4206 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4207 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4208 (simplify
4209 (sqrts (pows @0 @1))
4210 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4211 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4212 (simplify
4213 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4214 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4215 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4216 (simplify
4217 (pows (sqrts @0) @1)
4218 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4219 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4220 (simplify
4221 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4222 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4223 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4224 (simplify
4225 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4226 (pows @0 (mult @1 @2))))
4227
4228 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4229 (simplify
4230 (CABS (complex @0 @0))
4231 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4232
4233 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4234 (simplify
4235 (HYPOT @0 @0)
4236 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4237
4238 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4239 (for cexps (CEXP)
4240 exps (EXP)
4241 cexpis (CEXPI)
4242 (simplify
4243 (cexps compositional_complex@0)
4244 (if (targetm.libc_has_function (function_c99_math_complex))
4245 (complex
4246 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4247 (mult @1 (imagpart @2)))))))
4248
4249 (if (canonicalize_math_p ())
4250 /* floor(x) -> trunc(x) if x is nonnegative. */
4251 (for floors (FLOOR_ALL)
4252 truncs (TRUNC_ALL)
4253 (simplify
4254 (floors tree_expr_nonnegative_p@0)
4255 (truncs @0))))
4256
4257 (match double_value_p
4258 @0
4259 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4260 (for froms (BUILT_IN_TRUNCL
4261 BUILT_IN_FLOORL
4262 BUILT_IN_CEILL
4263 BUILT_IN_ROUNDL
4264 BUILT_IN_NEARBYINTL
4265 BUILT_IN_RINTL)
4266 tos (BUILT_IN_TRUNC
4267 BUILT_IN_FLOOR
4268 BUILT_IN_CEIL
4269 BUILT_IN_ROUND
4270 BUILT_IN_NEARBYINT
4271 BUILT_IN_RINT)
4272 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4273 (if (optimize && canonicalize_math_p ())
4274 (simplify
4275 (froms (convert double_value_p@0))
4276 (convert (tos @0)))))
4277
4278 (match float_value_p
4279 @0
4280 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4281 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4282 BUILT_IN_FLOORL BUILT_IN_FLOOR
4283 BUILT_IN_CEILL BUILT_IN_CEIL
4284 BUILT_IN_ROUNDL BUILT_IN_ROUND
4285 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4286 BUILT_IN_RINTL BUILT_IN_RINT)
4287 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4288 BUILT_IN_FLOORF BUILT_IN_FLOORF
4289 BUILT_IN_CEILF BUILT_IN_CEILF
4290 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4291 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4292 BUILT_IN_RINTF BUILT_IN_RINTF)
4293 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4294 if x is a float. */
4295 (if (optimize && canonicalize_math_p ()
4296 && targetm.libc_has_function (function_c99_misc))
4297 (simplify
4298 (froms (convert float_value_p@0))
4299 (convert (tos @0)))))
4300
4301 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4302 tos (XFLOOR XCEIL XROUND XRINT)
4303 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4304 (if (optimize && canonicalize_math_p ())
4305 (simplify
4306 (froms (convert double_value_p@0))
4307 (tos @0))))
4308
4309 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4310 XFLOOR XCEIL XROUND XRINT)
4311 tos (XFLOORF XCEILF XROUNDF XRINTF)
4312 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4313 if x is a float. */
4314 (if (optimize && canonicalize_math_p ())
4315 (simplify
4316 (froms (convert float_value_p@0))
4317 (tos @0))))
4318
4319 (if (canonicalize_math_p ())
4320 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4321 (for floors (IFLOOR LFLOOR LLFLOOR)
4322 (simplify
4323 (floors tree_expr_nonnegative_p@0)
4324 (fix_trunc @0))))
4325
4326 (if (canonicalize_math_p ())
4327 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4328 (for fns (IFLOOR LFLOOR LLFLOOR
4329 ICEIL LCEIL LLCEIL
4330 IROUND LROUND LLROUND)
4331 (simplify
4332 (fns integer_valued_real_p@0)
4333 (fix_trunc @0)))
4334 (if (!flag_errno_math)
4335 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4336 (for rints (IRINT LRINT LLRINT)
4337 (simplify
4338 (rints integer_valued_real_p@0)
4339 (fix_trunc @0)))))
4340
4341 (if (canonicalize_math_p ())
4342 (for ifn (IFLOOR ICEIL IROUND IRINT)
4343 lfn (LFLOOR LCEIL LROUND LRINT)
4344 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4345 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4346 sizeof (int) == sizeof (long). */
4347 (if (TYPE_PRECISION (integer_type_node)
4348 == TYPE_PRECISION (long_integer_type_node))
4349 (simplify
4350 (ifn @0)
4351 (lfn:long_integer_type_node @0)))
4352 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4353 sizeof (long long) == sizeof (long). */
4354 (if (TYPE_PRECISION (long_long_integer_type_node)
4355 == TYPE_PRECISION (long_integer_type_node))
4356 (simplify
4357 (llfn @0)
4358 (lfn:long_integer_type_node @0)))))
4359
4360 /* cproj(x) -> x if we're ignoring infinities. */
4361 (simplify
4362 (CPROJ @0)
4363 (if (!HONOR_INFINITIES (type))
4364 @0))
4365
4366 /* If the real part is inf and the imag part is known to be
4367 nonnegative, return (inf + 0i). */
4368 (simplify
4369 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4370 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4371 { build_complex_inf (type, false); }))
4372
4373 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4374 (simplify
4375 (CPROJ (complex @0 REAL_CST@1))
4376 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4377 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4378
4379 (for pows (POW)
4380 sqrts (SQRT)
4381 cbrts (CBRT)
4382 (simplify
4383 (pows @0 REAL_CST@1)
4384 (with {
4385 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4386 REAL_VALUE_TYPE tmp;
4387 }
4388 (switch
4389 /* pow(x,0) -> 1. */
4390 (if (real_equal (value, &dconst0))
4391 { build_real (type, dconst1); })
4392 /* pow(x,1) -> x. */
4393 (if (real_equal (value, &dconst1))
4394 @0)
4395 /* pow(x,-1) -> 1/x. */
4396 (if (real_equal (value, &dconstm1))
4397 (rdiv { build_real (type, dconst1); } @0))
4398 /* pow(x,0.5) -> sqrt(x). */
4399 (if (flag_unsafe_math_optimizations
4400 && canonicalize_math_p ()
4401 && real_equal (value, &dconsthalf))
4402 (sqrts @0))
4403 /* pow(x,1/3) -> cbrt(x). */
4404 (if (flag_unsafe_math_optimizations
4405 && canonicalize_math_p ()
4406 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4407 real_equal (value, &tmp)))
4408 (cbrts @0))))))
4409
4410 /* powi(1,x) -> 1. */
4411 (simplify
4412 (POWI real_onep@0 @1)
4413 @0)
4414
4415 (simplify
4416 (POWI @0 INTEGER_CST@1)
4417 (switch
4418 /* powi(x,0) -> 1. */
4419 (if (wi::to_wide (@1) == 0)
4420 { build_real (type, dconst1); })
4421 /* powi(x,1) -> x. */
4422 (if (wi::to_wide (@1) == 1)
4423 @0)
4424 /* powi(x,-1) -> 1/x. */
4425 (if (wi::to_wide (@1) == -1)
4426 (rdiv { build_real (type, dconst1); } @0))))
4427
4428 /* Narrowing of arithmetic and logical operations.
4429
4430 These are conceptually similar to the transformations performed for
4431 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4432 term we want to move all that code out of the front-ends into here. */
4433
4434 /* If we have a narrowing conversion of an arithmetic operation where
4435 both operands are widening conversions from the same type as the outer
4436 narrowing conversion. Then convert the innermost operands to a suitable
4437 unsigned type (to avoid introducing undefined behavior), perform the
4438 operation and convert the result to the desired type. */
4439 (for op (plus minus)
4440 (simplify
4441 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4442 (if (INTEGRAL_TYPE_P (type)
4443 /* We check for type compatibility between @0 and @1 below,
4444 so there's no need to check that @1/@3 are integral types. */
4445 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4446 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4447 /* The precision of the type of each operand must match the
4448 precision of the mode of each operand, similarly for the
4449 result. */
4450 && type_has_mode_precision_p (TREE_TYPE (@0))
4451 && type_has_mode_precision_p (TREE_TYPE (@1))
4452 && type_has_mode_precision_p (type)
4453 /* The inner conversion must be a widening conversion. */
4454 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4455 && types_match (@0, type)
4456 && (types_match (@0, @1)
4457 /* Or the second operand is const integer or converted const
4458 integer from valueize. */
4459 || TREE_CODE (@1) == INTEGER_CST))
4460 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4461 (op @0 (convert @1))
4462 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4463 (convert (op (convert:utype @0)
4464 (convert:utype @1))))))))
4465
4466 /* This is another case of narrowing, specifically when there's an outer
4467 BIT_AND_EXPR which masks off bits outside the type of the innermost
4468 operands. Like the previous case we have to convert the operands
4469 to unsigned types to avoid introducing undefined behavior for the
4470 arithmetic operation. */
4471 (for op (minus plus)
4472 (simplify
4473 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4474 (if (INTEGRAL_TYPE_P (type)
4475 /* We check for type compatibility between @0 and @1 below,
4476 so there's no need to check that @1/@3 are integral types. */
4477 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4478 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4479 /* The precision of the type of each operand must match the
4480 precision of the mode of each operand, similarly for the
4481 result. */
4482 && type_has_mode_precision_p (TREE_TYPE (@0))
4483 && type_has_mode_precision_p (TREE_TYPE (@1))
4484 && type_has_mode_precision_p (type)
4485 /* The inner conversion must be a widening conversion. */
4486 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4487 && types_match (@0, @1)
4488 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4489 <= TYPE_PRECISION (TREE_TYPE (@0)))
4490 && (wi::to_wide (@4)
4491 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4492 true, TYPE_PRECISION (type))) == 0)
4493 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4494 (with { tree ntype = TREE_TYPE (@0); }
4495 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4496 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4497 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4498 (convert:utype @4))))))))
4499
4500 /* Transform (@0 < @1 and @0 < @2) to use min,
4501 (@0 > @1 and @0 > @2) to use max */
4502 (for op (lt le gt ge)
4503 ext (min min max max)
4504 (simplify
4505 (bit_and (op:cs @0 @1) (op:cs @0 @2))
4506 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4507 && TREE_CODE (@0) != INTEGER_CST)
4508 (op @0 (ext @1 @2)))))
4509
4510 (simplify
4511 /* signbit(x) -> 0 if x is nonnegative. */
4512 (SIGNBIT tree_expr_nonnegative_p@0)
4513 { integer_zero_node; })
4514
4515 (simplify
4516 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4517 (SIGNBIT @0)
4518 (if (!HONOR_SIGNED_ZEROS (@0))
4519 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4520
4521 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4522 (for cmp (eq ne)
4523 (for op (plus minus)
4524 rop (minus plus)
4525 (simplify
4526 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4527 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4528 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4529 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4530 && !TYPE_SATURATING (TREE_TYPE (@0)))
4531 (with { tree res = int_const_binop (rop, @2, @1); }
4532 (if (TREE_OVERFLOW (res)
4533 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4534 { constant_boolean_node (cmp == NE_EXPR, type); }
4535 (if (single_use (@3))
4536 (cmp @0 { TREE_OVERFLOW (res)
4537 ? drop_tree_overflow (res) : res; }))))))))
4538 (for cmp (lt le gt ge)
4539 (for op (plus minus)
4540 rop (minus plus)
4541 (simplify
4542 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4543 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4544 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4545 (with { tree res = int_const_binop (rop, @2, @1); }
4546 (if (TREE_OVERFLOW (res))
4547 {
4548 fold_overflow_warning (("assuming signed overflow does not occur "
4549 "when simplifying conditional to constant"),
4550 WARN_STRICT_OVERFLOW_CONDITIONAL);
4551 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4552 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4553 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4554 TYPE_SIGN (TREE_TYPE (@1)))
4555 != (op == MINUS_EXPR);
4556 constant_boolean_node (less == ovf_high, type);
4557 }
4558 (if (single_use (@3))
4559 (with
4560 {
4561 fold_overflow_warning (("assuming signed overflow does not occur "
4562 "when changing X +- C1 cmp C2 to "
4563 "X cmp C2 -+ C1"),
4564 WARN_STRICT_OVERFLOW_COMPARISON);
4565 }
4566 (cmp @0 { res; })))))))))
4567
4568 /* Canonicalizations of BIT_FIELD_REFs. */
4569
4570 (simplify
4571 (BIT_FIELD_REF @0 @1 @2)
4572 (switch
4573 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4574 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4575 (switch
4576 (if (integer_zerop (@2))
4577 (view_convert (realpart @0)))
4578 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4579 (view_convert (imagpart @0)))))
4580 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4581 && INTEGRAL_TYPE_P (type)
4582 /* On GIMPLE this should only apply to register arguments. */
4583 && (! GIMPLE || is_gimple_reg (@0))
4584 /* A bit-field-ref that referenced the full argument can be stripped. */
4585 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4586 && integer_zerop (@2))
4587 /* Low-parts can be reduced to integral conversions.
4588 ??? The following doesn't work for PDP endian. */
4589 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4590 /* Don't even think about BITS_BIG_ENDIAN. */
4591 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4592 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4593 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4594 ? (TYPE_PRECISION (TREE_TYPE (@0))
4595 - TYPE_PRECISION (type))
4596 : 0)) == 0)))
4597 (convert @0))))
4598
4599 /* Simplify vector extracts. */
4600
4601 (simplify
4602 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4603 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4604 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4605 || (VECTOR_TYPE_P (type)
4606 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4607 (with
4608 {
4609 tree ctor = (TREE_CODE (@0) == SSA_NAME
4610 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4611 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4612 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4613 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4614 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4615 }
4616 (if (n != 0
4617 && (idx % width) == 0
4618 && (n % width) == 0
4619 && known_le ((idx + n) / width,
4620 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4621 (with
4622 {
4623 idx = idx / width;
4624 n = n / width;
4625 /* Constructor elements can be subvectors. */
4626 poly_uint64 k = 1;
4627 if (CONSTRUCTOR_NELTS (ctor) != 0)
4628 {
4629 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4630 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4631 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4632 }
4633 unsigned HOST_WIDE_INT elt, count, const_k;
4634 }
4635 (switch
4636 /* We keep an exact subset of the constructor elements. */
4637 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4638 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4639 { build_constructor (type, NULL); }
4640 (if (count == 1)
4641 (if (elt < CONSTRUCTOR_NELTS (ctor))
4642 { CONSTRUCTOR_ELT (ctor, elt)->value; }
4643 { build_zero_cst (type); })
4644 {
4645 vec<constructor_elt, va_gc> *vals;
4646 vec_alloc (vals, count);
4647 for (unsigned i = 0;
4648 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4649 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4650 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4651 build_constructor (type, vals);
4652 })))
4653 /* The bitfield references a single constructor element. */
4654 (if (k.is_constant (&const_k)
4655 && idx + n <= (idx / const_k + 1) * const_k)
4656 (switch
4657 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4658 { build_zero_cst (type); })
4659 (if (n == const_k)
4660 { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; })
4661 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4662 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4663
4664 /* Simplify a bit extraction from a bit insertion for the cases with
4665 the inserted element fully covering the extraction or the insertion
4666 not touching the extraction. */
4667 (simplify
4668 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4669 (with
4670 {
4671 unsigned HOST_WIDE_INT isize;
4672 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4673 isize = TYPE_PRECISION (TREE_TYPE (@1));
4674 else
4675 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4676 }
4677 (switch
4678 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4679 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4680 wi::to_wide (@ipos) + isize))
4681 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4682 wi::to_wide (@rpos)
4683 - wi::to_wide (@ipos)); }))
4684 (if (wi::geu_p (wi::to_wide (@ipos),
4685 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4686 || wi::geu_p (wi::to_wide (@rpos),
4687 wi::to_wide (@ipos) + isize))
4688 (BIT_FIELD_REF @0 @rsize @rpos)))))