]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
Add pattern to remove useless float casts in comparisons.
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 CONSTANT_CLASS_P
33 tree_expr_nonnegative_p
34 tree_expr_nonzero_p
35 integer_valued_real_p
36 integer_pow2p
37 HONOR_NANS)
38
39 /* Operator lists. */
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
50
51 #include "cfn-operators.pd"
52
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
56
57 Also define operand lists:
58
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
64 BUILT_IN_L##FN##F \
65 BUILT_IN_LL##FN##F) \
66 (define_operator_list X##FN BUILT_IN_I##FN \
67 BUILT_IN_L##FN \
68 BUILT_IN_LL##FN) \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
70 BUILT_IN_L##FN##L \
71 BUILT_IN_LL##FN##L)
72
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
77
78 /* Binary operations and their associated IFN_COND_* function. */
79 (define_operator_list UNCOND_BINARY
80 plus minus
81 mult trunc_div trunc_mod rdiv
82 min max
83 bit_and bit_ior bit_xor)
84 (define_operator_list COND_BINARY
85 IFN_COND_ADD IFN_COND_SUB
86 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
87 IFN_COND_MIN IFN_COND_MAX
88 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
89
90 /* Same for ternary operations. */
91 (define_operator_list UNCOND_TERNARY
92 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
93 (define_operator_list COND_TERNARY
94 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
95
96 /* As opposed to convert?, this still creates a single pattern, so
97 it is not a suitable replacement for convert? in all cases. */
98 (match (nop_convert @0)
99 (convert @0)
100 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
101 (match (nop_convert @0)
102 (view_convert @0)
103 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
104 && known_eq (TYPE_VECTOR_SUBPARTS (type),
105 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
106 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
107 /* This one has to be last, or it shadows the others. */
108 (match (nop_convert @0)
109 @0)
110
111 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
112 ABSU_EXPR returns unsigned absolute value of the operand and the operand
113 of the ABSU_EXPR will have the corresponding signed type. */
114 (simplify (abs (convert @0))
115 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
116 && !TYPE_UNSIGNED (TREE_TYPE (@0))
117 && element_precision (type) > element_precision (TREE_TYPE (@0)))
118 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
119 (convert (absu:utype @0)))))
120
121
122 /* Simplifications of operations with one constant operand and
123 simplifications to constants or single values. */
124
125 (for op (plus pointer_plus minus bit_ior bit_xor)
126 (simplify
127 (op @0 integer_zerop)
128 (non_lvalue @0)))
129
130 /* 0 +p index -> (type)index */
131 (simplify
132 (pointer_plus integer_zerop @1)
133 (non_lvalue (convert @1)))
134
135 /* ptr - 0 -> (type)ptr */
136 (simplify
137 (pointer_diff @0 integer_zerop)
138 (convert @0))
139
140 /* See if ARG1 is zero and X + ARG1 reduces to X.
141 Likewise if the operands are reversed. */
142 (simplify
143 (plus:c @0 real_zerop@1)
144 (if (fold_real_zero_addition_p (type, @1, 0))
145 (non_lvalue @0)))
146
147 /* See if ARG1 is zero and X - ARG1 reduces to X. */
148 (simplify
149 (minus @0 real_zerop@1)
150 (if (fold_real_zero_addition_p (type, @1, 1))
151 (non_lvalue @0)))
152
153 /* Simplify x - x.
154 This is unsafe for certain floats even in non-IEEE formats.
155 In IEEE, it is unsafe because it does wrong for NaNs.
156 Also note that operand_equal_p is always false if an operand
157 is volatile. */
158 (simplify
159 (minus @0 @0)
160 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
161 { build_zero_cst (type); }))
162 (simplify
163 (pointer_diff @@0 @0)
164 { build_zero_cst (type); })
165
166 (simplify
167 (mult @0 integer_zerop@1)
168 @1)
169
170 /* Maybe fold x * 0 to 0. The expressions aren't the same
171 when x is NaN, since x * 0 is also NaN. Nor are they the
172 same in modes with signed zeros, since multiplying a
173 negative value by 0 gives -0, not +0. */
174 (simplify
175 (mult @0 real_zerop@1)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
177 @1))
178
179 /* In IEEE floating point, x*1 is not equivalent to x for snans.
180 Likewise for complex arithmetic with signed zeros. */
181 (simplify
182 (mult @0 real_onep)
183 (if (!HONOR_SNANS (type)
184 && (!HONOR_SIGNED_ZEROS (type)
185 || !COMPLEX_FLOAT_TYPE_P (type)))
186 (non_lvalue @0)))
187
188 /* Transform x * -1.0 into -x. */
189 (simplify
190 (mult @0 real_minus_onep)
191 (if (!HONOR_SNANS (type)
192 && (!HONOR_SIGNED_ZEROS (type)
193 || !COMPLEX_FLOAT_TYPE_P (type)))
194 (negate @0)))
195
196 (for cmp (gt ge lt le)
197 outp (convert convert negate negate)
198 outn (negate negate convert convert)
199 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
200 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
201 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
202 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
203 (simplify
204 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
205 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
206 && types_match (type, TREE_TYPE (@0)))
207 (switch
208 (if (types_match (type, float_type_node))
209 (BUILT_IN_COPYSIGNF @1 (outp @0)))
210 (if (types_match (type, double_type_node))
211 (BUILT_IN_COPYSIGN @1 (outp @0)))
212 (if (types_match (type, long_double_type_node))
213 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
214 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
215 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
216 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
217 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
218 (simplify
219 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
220 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
221 && types_match (type, TREE_TYPE (@0)))
222 (switch
223 (if (types_match (type, float_type_node))
224 (BUILT_IN_COPYSIGNF @1 (outn @0)))
225 (if (types_match (type, double_type_node))
226 (BUILT_IN_COPYSIGN @1 (outn @0)))
227 (if (types_match (type, long_double_type_node))
228 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
229
230 /* Transform X * copysign (1.0, X) into abs(X). */
231 (simplify
232 (mult:c @0 (COPYSIGN_ALL real_onep @0))
233 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
234 (abs @0)))
235
236 /* Transform X * copysign (1.0, -X) into -abs(X). */
237 (simplify
238 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
239 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
240 (negate (abs @0))))
241
242 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
243 (simplify
244 (COPYSIGN_ALL REAL_CST@0 @1)
245 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
246 (COPYSIGN_ALL (negate @0) @1)))
247
248 /* X * 1, X / 1 -> X. */
249 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
250 (simplify
251 (op @0 integer_onep)
252 (non_lvalue @0)))
253
254 /* (A / (1 << B)) -> (A >> B).
255 Only for unsigned A. For signed A, this would not preserve rounding
256 toward zero.
257 For example: (-1 / ( 1 << B)) != -1 >> B. */
258 (simplify
259 (trunc_div @0 (lshift integer_onep@1 @2))
260 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
261 && (!VECTOR_TYPE_P (type)
262 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
263 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
264 (rshift @0 @2)))
265
266 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
267 undefined behavior in constexpr evaluation, and assuming that the division
268 traps enables better optimizations than these anyway. */
269 (for div (trunc_div ceil_div floor_div round_div exact_div)
270 /* 0 / X is always zero. */
271 (simplify
272 (div integer_zerop@0 @1)
273 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
274 (if (!integer_zerop (@1))
275 @0))
276 /* X / -1 is -X. */
277 (simplify
278 (div @0 integer_minus_onep@1)
279 (if (!TYPE_UNSIGNED (type))
280 (negate @0)))
281 /* X / X is one. */
282 (simplify
283 (div @0 @0)
284 /* But not for 0 / 0 so that we can get the proper warnings and errors.
285 And not for _Fract types where we can't build 1. */
286 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
287 { build_one_cst (type); }))
288 /* X / abs (X) is X < 0 ? -1 : 1. */
289 (simplify
290 (div:C @0 (abs @0))
291 (if (INTEGRAL_TYPE_P (type)
292 && TYPE_OVERFLOW_UNDEFINED (type))
293 (cond (lt @0 { build_zero_cst (type); })
294 { build_minus_one_cst (type); } { build_one_cst (type); })))
295 /* X / -X is -1. */
296 (simplify
297 (div:C @0 (negate @0))
298 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
299 && TYPE_OVERFLOW_UNDEFINED (type))
300 { build_minus_one_cst (type); })))
301
302 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
303 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
304 (simplify
305 (floor_div @0 @1)
306 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
307 && TYPE_UNSIGNED (type))
308 (trunc_div @0 @1)))
309
310 /* Combine two successive divisions. Note that combining ceil_div
311 and floor_div is trickier and combining round_div even more so. */
312 (for div (trunc_div exact_div)
313 (simplify
314 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
315 (with {
316 wi::overflow_type overflow;
317 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
318 TYPE_SIGN (type), &overflow);
319 }
320 (if (!overflow)
321 (div @0 { wide_int_to_tree (type, mul); })
322 (if (TYPE_UNSIGNED (type)
323 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
324 { build_zero_cst (type); })))))
325
326 /* Combine successive multiplications. Similar to above, but handling
327 overflow is different. */
328 (simplify
329 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
330 (with {
331 wi::overflow_type overflow;
332 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
333 TYPE_SIGN (type), &overflow);
334 }
335 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
336 otherwise undefined overflow implies that @0 must be zero. */
337 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
338 (mult @0 { wide_int_to_tree (type, mul); }))))
339
340 /* Optimize A / A to 1.0 if we don't care about
341 NaNs or Infinities. */
342 (simplify
343 (rdiv @0 @0)
344 (if (FLOAT_TYPE_P (type)
345 && ! HONOR_NANS (type)
346 && ! HONOR_INFINITIES (type))
347 { build_one_cst (type); }))
348
349 /* Optimize -A / A to -1.0 if we don't care about
350 NaNs or Infinities. */
351 (simplify
352 (rdiv:C @0 (negate @0))
353 (if (FLOAT_TYPE_P (type)
354 && ! HONOR_NANS (type)
355 && ! HONOR_INFINITIES (type))
356 { build_minus_one_cst (type); }))
357
358 /* PR71078: x / abs(x) -> copysign (1.0, x) */
359 (simplify
360 (rdiv:C (convert? @0) (convert? (abs @0)))
361 (if (SCALAR_FLOAT_TYPE_P (type)
362 && ! HONOR_NANS (type)
363 && ! HONOR_INFINITIES (type))
364 (switch
365 (if (types_match (type, float_type_node))
366 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
367 (if (types_match (type, double_type_node))
368 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
369 (if (types_match (type, long_double_type_node))
370 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
371
372 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
373 (simplify
374 (rdiv @0 real_onep)
375 (if (!HONOR_SNANS (type))
376 (non_lvalue @0)))
377
378 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
379 (simplify
380 (rdiv @0 real_minus_onep)
381 (if (!HONOR_SNANS (type))
382 (negate @0)))
383
384 (if (flag_reciprocal_math)
385 /* Convert (A/B)/C to A/(B*C). */
386 (simplify
387 (rdiv (rdiv:s @0 @1) @2)
388 (rdiv @0 (mult @1 @2)))
389
390 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
391 (simplify
392 (rdiv @0 (mult:s @1 REAL_CST@2))
393 (with
394 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
395 (if (tem)
396 (rdiv (mult @0 { tem; } ) @1))))
397
398 /* Convert A/(B/C) to (A/B)*C */
399 (simplify
400 (rdiv @0 (rdiv:s @1 @2))
401 (mult (rdiv @0 @1) @2)))
402
403 /* Simplify x / (- y) to -x / y. */
404 (simplify
405 (rdiv @0 (negate @1))
406 (rdiv (negate @0) @1))
407
408 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
409 (for div (trunc_div ceil_div floor_div round_div exact_div)
410 (simplify
411 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
412 (if (integer_pow2p (@2)
413 && tree_int_cst_sgn (@2) > 0
414 && tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
416 (rshift (convert @0)
417 { build_int_cst (integer_type_node,
418 wi::exact_log2 (wi::to_wide (@2))); }))))
419
420 /* If ARG1 is a constant, we can convert this to a multiply by the
421 reciprocal. This does not have the same rounding properties,
422 so only do this if -freciprocal-math. We can actually
423 always safely do it if ARG1 is a power of two, but it's hard to
424 tell if it is or not in a portable manner. */
425 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
426 (simplify
427 (rdiv @0 cst@1)
428 (if (optimize)
429 (if (flag_reciprocal_math
430 && !real_zerop (@1))
431 (with
432 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
433 (if (tem)
434 (mult @0 { tem; } )))
435 (if (cst != COMPLEX_CST)
436 (with { tree inverse = exact_inverse (type, @1); }
437 (if (inverse)
438 (mult @0 { inverse; } ))))))))
439
440 (for mod (ceil_mod floor_mod round_mod trunc_mod)
441 /* 0 % X is always zero. */
442 (simplify
443 (mod integer_zerop@0 @1)
444 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
445 (if (!integer_zerop (@1))
446 @0))
447 /* X % 1 is always zero. */
448 (simplify
449 (mod @0 integer_onep)
450 { build_zero_cst (type); })
451 /* X % -1 is zero. */
452 (simplify
453 (mod @0 integer_minus_onep@1)
454 (if (!TYPE_UNSIGNED (type))
455 { build_zero_cst (type); }))
456 /* X % X is zero. */
457 (simplify
458 (mod @0 @0)
459 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
460 (if (!integer_zerop (@0))
461 { build_zero_cst (type); }))
462 /* (X % Y) % Y is just X % Y. */
463 (simplify
464 (mod (mod@2 @0 @1) @1)
465 @2)
466 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
467 (simplify
468 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
469 (if (ANY_INTEGRAL_TYPE_P (type)
470 && TYPE_OVERFLOW_UNDEFINED (type)
471 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
472 TYPE_SIGN (type)))
473 { build_zero_cst (type); }))
474 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
475 modulo and comparison, since it is simpler and equivalent. */
476 (for cmp (eq ne)
477 (simplify
478 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
479 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
480 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
481 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
482
483 /* X % -C is the same as X % C. */
484 (simplify
485 (trunc_mod @0 INTEGER_CST@1)
486 (if (TYPE_SIGN (type) == SIGNED
487 && !TREE_OVERFLOW (@1)
488 && wi::neg_p (wi::to_wide (@1))
489 && !TYPE_OVERFLOW_TRAPS (type)
490 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
491 && !sign_bit_p (@1, @1))
492 (trunc_mod @0 (negate @1))))
493
494 /* X % -Y is the same as X % Y. */
495 (simplify
496 (trunc_mod @0 (convert? (negate @1)))
497 (if (INTEGRAL_TYPE_P (type)
498 && !TYPE_UNSIGNED (type)
499 && !TYPE_OVERFLOW_TRAPS (type)
500 && tree_nop_conversion_p (type, TREE_TYPE (@1))
501 /* Avoid this transformation if X might be INT_MIN or
502 Y might be -1, because we would then change valid
503 INT_MIN % -(-1) into invalid INT_MIN % -1. */
504 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
505 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
506 (TREE_TYPE (@1))))))
507 (trunc_mod @0 (convert @1))))
508
509 /* X - (X / Y) * Y is the same as X % Y. */
510 (simplify
511 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
512 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
513 (convert (trunc_mod @0 @1))))
514
515 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
516 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
517 Also optimize A % (C << N) where C is a power of 2,
518 to A & ((C << N) - 1). */
519 (match (power_of_two_cand @1)
520 INTEGER_CST@1)
521 (match (power_of_two_cand @1)
522 (lshift INTEGER_CST@1 @2))
523 (for mod (trunc_mod floor_mod)
524 (simplify
525 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
526 (if ((TYPE_UNSIGNED (type)
527 || tree_expr_nonnegative_p (@0))
528 && tree_nop_conversion_p (type, TREE_TYPE (@3))
529 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
530 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
531
532 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
533 (simplify
534 (trunc_div (mult @0 integer_pow2p@1) @1)
535 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
536 (bit_and @0 { wide_int_to_tree
537 (type, wi::mask (TYPE_PRECISION (type)
538 - wi::exact_log2 (wi::to_wide (@1)),
539 false, TYPE_PRECISION (type))); })))
540
541 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
542 (simplify
543 (mult (trunc_div @0 integer_pow2p@1) @1)
544 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
545 (bit_and @0 (negate @1))))
546
547 /* Simplify (t * 2) / 2) -> t. */
548 (for div (trunc_div ceil_div floor_div round_div exact_div)
549 (simplify
550 (div (mult:c @0 @1) @1)
551 (if (ANY_INTEGRAL_TYPE_P (type)
552 && TYPE_OVERFLOW_UNDEFINED (type))
553 @0)))
554
555 (for op (negate abs)
556 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
557 (for coss (COS COSH)
558 (simplify
559 (coss (op @0))
560 (coss @0)))
561 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
562 (for pows (POW)
563 (simplify
564 (pows (op @0) REAL_CST@1)
565 (with { HOST_WIDE_INT n; }
566 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
567 (pows @0 @1)))))
568 /* Likewise for powi. */
569 (for pows (POWI)
570 (simplify
571 (pows (op @0) INTEGER_CST@1)
572 (if ((wi::to_wide (@1) & 1) == 0)
573 (pows @0 @1))))
574 /* Strip negate and abs from both operands of hypot. */
575 (for hypots (HYPOT)
576 (simplify
577 (hypots (op @0) @1)
578 (hypots @0 @1))
579 (simplify
580 (hypots @0 (op @1))
581 (hypots @0 @1)))
582 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
583 (for copysigns (COPYSIGN_ALL)
584 (simplify
585 (copysigns (op @0) @1)
586 (copysigns @0 @1))))
587
588 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
589 (simplify
590 (mult (abs@1 @0) @1)
591 (mult @0 @0))
592
593 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
594 (for coss (COS COSH)
595 copysigns (COPYSIGN)
596 (simplify
597 (coss (copysigns @0 @1))
598 (coss @0)))
599
600 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
601 (for pows (POW)
602 copysigns (COPYSIGN)
603 (simplify
604 (pows (copysigns @0 @2) REAL_CST@1)
605 (with { HOST_WIDE_INT n; }
606 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
607 (pows @0 @1)))))
608 /* Likewise for powi. */
609 (for pows (POWI)
610 copysigns (COPYSIGN)
611 (simplify
612 (pows (copysigns @0 @2) INTEGER_CST@1)
613 (if ((wi::to_wide (@1) & 1) == 0)
614 (pows @0 @1))))
615
616 (for hypots (HYPOT)
617 copysigns (COPYSIGN)
618 /* hypot(copysign(x, y), z) -> hypot(x, z). */
619 (simplify
620 (hypots (copysigns @0 @1) @2)
621 (hypots @0 @2))
622 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
623 (simplify
624 (hypots @0 (copysigns @1 @2))
625 (hypots @0 @1)))
626
627 /* copysign(x, CST) -> [-]abs (x). */
628 (for copysigns (COPYSIGN_ALL)
629 (simplify
630 (copysigns @0 REAL_CST@1)
631 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
632 (negate (abs @0))
633 (abs @0))))
634
635 /* copysign(copysign(x, y), z) -> copysign(x, z). */
636 (for copysigns (COPYSIGN_ALL)
637 (simplify
638 (copysigns (copysigns @0 @1) @2)
639 (copysigns @0 @2)))
640
641 /* copysign(x,y)*copysign(x,y) -> x*x. */
642 (for copysigns (COPYSIGN_ALL)
643 (simplify
644 (mult (copysigns@2 @0 @1) @2)
645 (mult @0 @0)))
646
647 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
648 (for ccoss (CCOS CCOSH)
649 (simplify
650 (ccoss (negate @0))
651 (ccoss @0)))
652
653 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
654 (for ops (conj negate)
655 (for cabss (CABS)
656 (simplify
657 (cabss (ops @0))
658 (cabss @0))))
659
660 /* Fold (a * (1 << b)) into (a << b) */
661 (simplify
662 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
663 (if (! FLOAT_TYPE_P (type)
664 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
665 (lshift @0 @2)))
666
667 /* Fold (1 << (C - x)) where C = precision(type) - 1
668 into ((1 << C) >> x). */
669 (simplify
670 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
671 (if (INTEGRAL_TYPE_P (type)
672 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
673 && single_use (@1))
674 (if (TYPE_UNSIGNED (type))
675 (rshift (lshift @0 @2) @3)
676 (with
677 { tree utype = unsigned_type_for (type); }
678 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
679
680 /* Fold (C1/X)*C2 into (C1*C2)/X. */
681 (simplify
682 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
683 (if (flag_associative_math
684 && single_use (@3))
685 (with
686 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
687 (if (tem)
688 (rdiv { tem; } @1)))))
689
690 /* Simplify ~X & X as zero. */
691 (simplify
692 (bit_and:c (convert? @0) (convert? (bit_not @0)))
693 { build_zero_cst (type); })
694
695 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
696 (simplify
697 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
698 (if (TYPE_UNSIGNED (type))
699 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
700
701 (for bitop (bit_and bit_ior)
702 cmp (eq ne)
703 /* PR35691: Transform
704 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
705 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
706 (simplify
707 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
708 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
709 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
710 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
711 (cmp (bit_ior @0 (convert @1)) @2)))
712 /* Transform:
713 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
714 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
715 (simplify
716 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
717 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
718 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
719 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
720 (cmp (bit_and @0 (convert @1)) @2))))
721
722 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
723 (simplify
724 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
725 (minus (bit_xor @0 @1) @1))
726 (simplify
727 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
728 (if (~wi::to_wide (@2) == wi::to_wide (@1))
729 (minus (bit_xor @0 @1) @1)))
730
731 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
732 (simplify
733 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
734 (minus @1 (bit_xor @0 @1)))
735
736 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
737 (for op (bit_ior bit_xor plus)
738 (simplify
739 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
740 (bit_xor @0 @1))
741 (simplify
742 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
743 (if (~wi::to_wide (@2) == wi::to_wide (@1))
744 (bit_xor @0 @1))))
745
746 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
747 (simplify
748 (bit_ior:c (bit_xor:c @0 @1) @0)
749 (bit_ior @0 @1))
750
751 /* (a & ~b) | (a ^ b) --> a ^ b */
752 (simplify
753 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
754 @2)
755
756 /* (a & ~b) ^ ~a --> ~(a & b) */
757 (simplify
758 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
759 (bit_not (bit_and @0 @1)))
760
761 /* (a | b) & ~(a ^ b) --> a & b */
762 (simplify
763 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
764 (bit_and @0 @1))
765
766 /* a | ~(a ^ b) --> a | ~b */
767 (simplify
768 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
769 (bit_ior @0 (bit_not @1)))
770
771 /* (a | b) | (a &^ b) --> a | b */
772 (for op (bit_and bit_xor)
773 (simplify
774 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
775 @2))
776
777 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
778 (simplify
779 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
780 @2)
781
782 /* ~(~a & b) --> a | ~b */
783 (simplify
784 (bit_not (bit_and:cs (bit_not @0) @1))
785 (bit_ior @0 (bit_not @1)))
786
787 /* ~(~a | b) --> a & ~b */
788 (simplify
789 (bit_not (bit_ior:cs (bit_not @0) @1))
790 (bit_and @0 (bit_not @1)))
791
792 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
793 #if GIMPLE
794 (simplify
795 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
796 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
797 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
798 (bit_xor @0 @1)))
799 #endif
800
801 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
802 ((A & N) + B) & M -> (A + B) & M
803 Similarly if (N & M) == 0,
804 ((A | N) + B) & M -> (A + B) & M
805 and for - instead of + (or unary - instead of +)
806 and/or ^ instead of |.
807 If B is constant and (B & M) == 0, fold into A & M. */
808 (for op (plus minus)
809 (for bitop (bit_and bit_ior bit_xor)
810 (simplify
811 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
812 (with
813 { tree pmop[2];
814 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
815 @3, @4, @1, ERROR_MARK, NULL_TREE,
816 NULL_TREE, pmop); }
817 (if (utype)
818 (convert (bit_and (op (convert:utype { pmop[0]; })
819 (convert:utype { pmop[1]; }))
820 (convert:utype @2))))))
821 (simplify
822 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
823 (with
824 { tree pmop[2];
825 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
826 NULL_TREE, NULL_TREE, @1, bitop, @3,
827 @4, pmop); }
828 (if (utype)
829 (convert (bit_and (op (convert:utype { pmop[0]; })
830 (convert:utype { pmop[1]; }))
831 (convert:utype @2)))))))
832 (simplify
833 (bit_and (op:s @0 @1) INTEGER_CST@2)
834 (with
835 { tree pmop[2];
836 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
837 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
838 NULL_TREE, NULL_TREE, pmop); }
839 (if (utype)
840 (convert (bit_and (op (convert:utype { pmop[0]; })
841 (convert:utype { pmop[1]; }))
842 (convert:utype @2)))))))
843 (for bitop (bit_and bit_ior bit_xor)
844 (simplify
845 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
846 (with
847 { tree pmop[2];
848 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
849 bitop, @2, @3, NULL_TREE, ERROR_MARK,
850 NULL_TREE, NULL_TREE, pmop); }
851 (if (utype)
852 (convert (bit_and (negate (convert:utype { pmop[0]; }))
853 (convert:utype @1)))))))
854
855 /* X % Y is smaller than Y. */
856 (for cmp (lt ge)
857 (simplify
858 (cmp (trunc_mod @0 @1) @1)
859 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
860 { constant_boolean_node (cmp == LT_EXPR, type); })))
861 (for cmp (gt le)
862 (simplify
863 (cmp @1 (trunc_mod @0 @1))
864 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
865 { constant_boolean_node (cmp == GT_EXPR, type); })))
866
867 /* x | ~0 -> ~0 */
868 (simplify
869 (bit_ior @0 integer_all_onesp@1)
870 @1)
871
872 /* x | 0 -> x */
873 (simplify
874 (bit_ior @0 integer_zerop)
875 @0)
876
877 /* x & 0 -> 0 */
878 (simplify
879 (bit_and @0 integer_zerop@1)
880 @1)
881
882 /* ~x | x -> -1 */
883 /* ~x ^ x -> -1 */
884 /* ~x + x -> -1 */
885 (for op (bit_ior bit_xor plus)
886 (simplify
887 (op:c (convert? @0) (convert? (bit_not @0)))
888 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
889
890 /* x ^ x -> 0 */
891 (simplify
892 (bit_xor @0 @0)
893 { build_zero_cst (type); })
894
895 /* Canonicalize X ^ ~0 to ~X. */
896 (simplify
897 (bit_xor @0 integer_all_onesp@1)
898 (bit_not @0))
899
900 /* x & ~0 -> x */
901 (simplify
902 (bit_and @0 integer_all_onesp)
903 (non_lvalue @0))
904
905 /* x & x -> x, x | x -> x */
906 (for bitop (bit_and bit_ior)
907 (simplify
908 (bitop @0 @0)
909 (non_lvalue @0)))
910
911 /* x & C -> x if we know that x & ~C == 0. */
912 #if GIMPLE
913 (simplify
914 (bit_and SSA_NAME@0 INTEGER_CST@1)
915 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
916 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
917 @0))
918 #endif
919
920 /* x + (x & 1) -> (x + 1) & ~1 */
921 (simplify
922 (plus:c @0 (bit_and:s @0 integer_onep@1))
923 (bit_and (plus @0 @1) (bit_not @1)))
924
925 /* x & ~(x & y) -> x & ~y */
926 /* x | ~(x | y) -> x | ~y */
927 (for bitop (bit_and bit_ior)
928 (simplify
929 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
930 (bitop @0 (bit_not @1))))
931
932 /* (~x & y) | ~(x | y) -> ~x */
933 (simplify
934 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
935 @2)
936
937 /* (x | y) ^ (x | ~y) -> ~x */
938 (simplify
939 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
940 (bit_not @0))
941
942 /* (x & y) | ~(x | y) -> ~(x ^ y) */
943 (simplify
944 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
945 (bit_not (bit_xor @0 @1)))
946
947 /* (~x | y) ^ (x ^ y) -> x | ~y */
948 (simplify
949 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
950 (bit_ior @0 (bit_not @1)))
951
952 /* (x ^ y) | ~(x | y) -> ~(x & y) */
953 (simplify
954 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
955 (bit_not (bit_and @0 @1)))
956
957 /* (x | y) & ~x -> y & ~x */
958 /* (x & y) | ~x -> y | ~x */
959 (for bitop (bit_and bit_ior)
960 rbitop (bit_ior bit_and)
961 (simplify
962 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
963 (bitop @1 @2)))
964
965 /* (x & y) ^ (x | y) -> x ^ y */
966 (simplify
967 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
968 (bit_xor @0 @1))
969
970 /* (x ^ y) ^ (x | y) -> x & y */
971 (simplify
972 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
973 (bit_and @0 @1))
974
975 /* (x & y) + (x ^ y) -> x | y */
976 /* (x & y) | (x ^ y) -> x | y */
977 /* (x & y) ^ (x ^ y) -> x | y */
978 (for op (plus bit_ior bit_xor)
979 (simplify
980 (op:c (bit_and @0 @1) (bit_xor @0 @1))
981 (bit_ior @0 @1)))
982
983 /* (x & y) + (x | y) -> x + y */
984 (simplify
985 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
986 (plus @0 @1))
987
988 /* (x + y) - (x | y) -> x & y */
989 (simplify
990 (minus (plus @0 @1) (bit_ior @0 @1))
991 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
992 && !TYPE_SATURATING (type))
993 (bit_and @0 @1)))
994
995 /* (x + y) - (x & y) -> x | y */
996 (simplify
997 (minus (plus @0 @1) (bit_and @0 @1))
998 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
999 && !TYPE_SATURATING (type))
1000 (bit_ior @0 @1)))
1001
1002 /* (x | y) - (x ^ y) -> x & y */
1003 (simplify
1004 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1005 (bit_and @0 @1))
1006
1007 /* (x | y) - (x & y) -> x ^ y */
1008 (simplify
1009 (minus (bit_ior @0 @1) (bit_and @0 @1))
1010 (bit_xor @0 @1))
1011
1012 /* (x | y) & ~(x & y) -> x ^ y */
1013 (simplify
1014 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1015 (bit_xor @0 @1))
1016
1017 /* (x | y) & (~x ^ y) -> x & y */
1018 (simplify
1019 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1020 (bit_and @0 @1))
1021
1022 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1023 (simplify
1024 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1025 (bit_not (bit_xor @0 @1)))
1026
1027 /* (~x | y) ^ (x | ~y) -> x ^ y */
1028 (simplify
1029 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1030 (bit_xor @0 @1))
1031
1032 /* ~x & ~y -> ~(x | y)
1033 ~x | ~y -> ~(x & y) */
1034 (for op (bit_and bit_ior)
1035 rop (bit_ior bit_and)
1036 (simplify
1037 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1038 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1039 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1040 (bit_not (rop (convert @0) (convert @1))))))
1041
1042 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1043 with a constant, and the two constants have no bits in common,
1044 we should treat this as a BIT_IOR_EXPR since this may produce more
1045 simplifications. */
1046 (for op (bit_xor plus)
1047 (simplify
1048 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1049 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1050 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1051 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1052 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1053 (bit_ior (convert @4) (convert @5)))))
1054
1055 /* (X | Y) ^ X -> Y & ~ X*/
1056 (simplify
1057 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1058 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1059 (convert (bit_and @1 (bit_not @0)))))
1060
1061 /* Convert ~X ^ ~Y to X ^ Y. */
1062 (simplify
1063 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1064 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1065 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1066 (bit_xor (convert @0) (convert @1))))
1067
1068 /* Convert ~X ^ C to X ^ ~C. */
1069 (simplify
1070 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1071 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1072 (bit_xor (convert @0) (bit_not @1))))
1073
1074 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1075 (for opo (bit_and bit_xor)
1076 opi (bit_xor bit_and)
1077 (simplify
1078 (opo:c (opi:cs @0 @1) @1)
1079 (bit_and (bit_not @0) @1)))
1080
1081 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1082 operands are another bit-wise operation with a common input. If so,
1083 distribute the bit operations to save an operation and possibly two if
1084 constants are involved. For example, convert
1085 (A | B) & (A | C) into A | (B & C)
1086 Further simplification will occur if B and C are constants. */
1087 (for op (bit_and bit_ior bit_xor)
1088 rop (bit_ior bit_and bit_and)
1089 (simplify
1090 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1091 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1092 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1093 (rop (convert @0) (op (convert @1) (convert @2))))))
1094
1095 /* Some simple reassociation for bit operations, also handled in reassoc. */
1096 /* (X & Y) & Y -> X & Y
1097 (X | Y) | Y -> X | Y */
1098 (for op (bit_and bit_ior)
1099 (simplify
1100 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1101 @2))
1102 /* (X ^ Y) ^ Y -> X */
1103 (simplify
1104 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1105 (convert @0))
1106 /* (X & Y) & (X & Z) -> (X & Y) & Z
1107 (X | Y) | (X | Z) -> (X | Y) | Z */
1108 (for op (bit_and bit_ior)
1109 (simplify
1110 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1111 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1112 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1113 (if (single_use (@5) && single_use (@6))
1114 (op @3 (convert @2))
1115 (if (single_use (@3) && single_use (@4))
1116 (op (convert @1) @5))))))
1117 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1118 (simplify
1119 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1120 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1121 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1122 (bit_xor (convert @1) (convert @2))))
1123
1124 (simplify
1125 (abs (abs@1 @0))
1126 @1)
1127 (simplify
1128 (abs (negate @0))
1129 (abs @0))
1130 (simplify
1131 (abs tree_expr_nonnegative_p@0)
1132 @0)
1133
1134 /* A few cases of fold-const.c negate_expr_p predicate. */
1135 (match negate_expr_p
1136 INTEGER_CST
1137 (if ((INTEGRAL_TYPE_P (type)
1138 && TYPE_UNSIGNED (type))
1139 || (!TYPE_OVERFLOW_SANITIZED (type)
1140 && may_negate_without_overflow_p (t)))))
1141 (match negate_expr_p
1142 FIXED_CST)
1143 (match negate_expr_p
1144 (negate @0)
1145 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1146 (match negate_expr_p
1147 REAL_CST
1148 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1149 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1150 ways. */
1151 (match negate_expr_p
1152 VECTOR_CST
1153 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1154 (match negate_expr_p
1155 (minus @0 @1)
1156 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1157 || (FLOAT_TYPE_P (type)
1158 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1159 && !HONOR_SIGNED_ZEROS (type)))))
1160
1161 /* (-A) * (-B) -> A * B */
1162 (simplify
1163 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1164 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1165 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1166 (mult (convert @0) (convert (negate @1)))))
1167
1168 /* -(A + B) -> (-B) - A. */
1169 (simplify
1170 (negate (plus:c @0 negate_expr_p@1))
1171 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1172 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1173 (minus (negate @1) @0)))
1174
1175 /* -(A - B) -> B - A. */
1176 (simplify
1177 (negate (minus @0 @1))
1178 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1179 || (FLOAT_TYPE_P (type)
1180 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1181 && !HONOR_SIGNED_ZEROS (type)))
1182 (minus @1 @0)))
1183 (simplify
1184 (negate (pointer_diff @0 @1))
1185 (if (TYPE_OVERFLOW_UNDEFINED (type))
1186 (pointer_diff @1 @0)))
1187
1188 /* A - B -> A + (-B) if B is easily negatable. */
1189 (simplify
1190 (minus @0 negate_expr_p@1)
1191 (if (!FIXED_POINT_TYPE_P (type))
1192 (plus @0 (negate @1))))
1193
1194 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1195 when profitable.
1196 For bitwise binary operations apply operand conversions to the
1197 binary operation result instead of to the operands. This allows
1198 to combine successive conversions and bitwise binary operations.
1199 We combine the above two cases by using a conditional convert. */
1200 (for bitop (bit_and bit_ior bit_xor)
1201 (simplify
1202 (bitop (convert @0) (convert? @1))
1203 (if (((TREE_CODE (@1) == INTEGER_CST
1204 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1205 && int_fits_type_p (@1, TREE_TYPE (@0)))
1206 || types_match (@0, @1))
1207 /* ??? This transform conflicts with fold-const.c doing
1208 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1209 constants (if x has signed type, the sign bit cannot be set
1210 in c). This folds extension into the BIT_AND_EXPR.
1211 Restrict it to GIMPLE to avoid endless recursions. */
1212 && (bitop != BIT_AND_EXPR || GIMPLE)
1213 && (/* That's a good idea if the conversion widens the operand, thus
1214 after hoisting the conversion the operation will be narrower. */
1215 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1216 /* It's also a good idea if the conversion is to a non-integer
1217 mode. */
1218 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1219 /* Or if the precision of TO is not the same as the precision
1220 of its mode. */
1221 || !type_has_mode_precision_p (type)))
1222 (convert (bitop @0 (convert @1))))))
1223
1224 (for bitop (bit_and bit_ior)
1225 rbitop (bit_ior bit_and)
1226 /* (x | y) & x -> x */
1227 /* (x & y) | x -> x */
1228 (simplify
1229 (bitop:c (rbitop:c @0 @1) @0)
1230 @0)
1231 /* (~x | y) & x -> x & y */
1232 /* (~x & y) | x -> x | y */
1233 (simplify
1234 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1235 (bitop @0 @1)))
1236
1237 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1238 (simplify
1239 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1240 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1241
1242 /* Combine successive equal operations with constants. */
1243 (for bitop (bit_and bit_ior bit_xor)
1244 (simplify
1245 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1246 (if (!CONSTANT_CLASS_P (@0))
1247 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1248 folded to a constant. */
1249 (bitop @0 (bitop @1 @2))
1250 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1251 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1252 the values involved are such that the operation can't be decided at
1253 compile time. Try folding one of @0 or @1 with @2 to see whether
1254 that combination can be decided at compile time.
1255
1256 Keep the existing form if both folds fail, to avoid endless
1257 oscillation. */
1258 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1259 (if (cst1)
1260 (bitop @1 { cst1; })
1261 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1262 (if (cst2)
1263 (bitop @0 { cst2; }))))))))
1264
1265 /* Try simple folding for X op !X, and X op X with the help
1266 of the truth_valued_p and logical_inverted_value predicates. */
1267 (match truth_valued_p
1268 @0
1269 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1270 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1271 (match truth_valued_p
1272 (op @0 @1)))
1273 (match truth_valued_p
1274 (truth_not @0))
1275
1276 (match (logical_inverted_value @0)
1277 (truth_not @0))
1278 (match (logical_inverted_value @0)
1279 (bit_not truth_valued_p@0))
1280 (match (logical_inverted_value @0)
1281 (eq @0 integer_zerop))
1282 (match (logical_inverted_value @0)
1283 (ne truth_valued_p@0 integer_truep))
1284 (match (logical_inverted_value @0)
1285 (bit_xor truth_valued_p@0 integer_truep))
1286
1287 /* X & !X -> 0. */
1288 (simplify
1289 (bit_and:c @0 (logical_inverted_value @0))
1290 { build_zero_cst (type); })
1291 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1292 (for op (bit_ior bit_xor)
1293 (simplify
1294 (op:c truth_valued_p@0 (logical_inverted_value @0))
1295 { constant_boolean_node (true, type); }))
1296 /* X ==/!= !X is false/true. */
1297 (for op (eq ne)
1298 (simplify
1299 (op:c truth_valued_p@0 (logical_inverted_value @0))
1300 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1301
1302 /* ~~x -> x */
1303 (simplify
1304 (bit_not (bit_not @0))
1305 @0)
1306
1307 /* Convert ~ (-A) to A - 1. */
1308 (simplify
1309 (bit_not (convert? (negate @0)))
1310 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1311 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1312 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1313
1314 /* Convert - (~A) to A + 1. */
1315 (simplify
1316 (negate (nop_convert (bit_not @0)))
1317 (plus (view_convert @0) { build_each_one_cst (type); }))
1318
1319 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1320 (simplify
1321 (bit_not (convert? (minus @0 integer_each_onep)))
1322 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1323 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1324 (convert (negate @0))))
1325 (simplify
1326 (bit_not (convert? (plus @0 integer_all_onesp)))
1327 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1328 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1329 (convert (negate @0))))
1330
1331 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1332 (simplify
1333 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1334 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1335 (convert (bit_xor @0 (bit_not @1)))))
1336 (simplify
1337 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1338 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1339 (convert (bit_xor @0 @1))))
1340
1341 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1342 (simplify
1343 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1344 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1345 (bit_not (bit_xor (view_convert @0) @1))))
1346
1347 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1348 (simplify
1349 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1350 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1351
1352 /* Fold A - (A & B) into ~B & A. */
1353 (simplify
1354 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1355 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1356 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1357 (convert (bit_and (bit_not @1) @0))))
1358
1359 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1360 (for cmp (gt lt ge le)
1361 (simplify
1362 (mult (convert (cmp @0 @1)) @2)
1363 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1364
1365 /* For integral types with undefined overflow and C != 0 fold
1366 x * C EQ/NE y * C into x EQ/NE y. */
1367 (for cmp (eq ne)
1368 (simplify
1369 (cmp (mult:c @0 @1) (mult:c @2 @1))
1370 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1371 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1372 && tree_expr_nonzero_p (@1))
1373 (cmp @0 @2))))
1374
1375 /* For integral types with wrapping overflow and C odd fold
1376 x * C EQ/NE y * C into x EQ/NE y. */
1377 (for cmp (eq ne)
1378 (simplify
1379 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1380 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1381 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1382 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1383 (cmp @0 @2))))
1384
1385 /* For integral types with undefined overflow and C != 0 fold
1386 x * C RELOP y * C into:
1387
1388 x RELOP y for nonnegative C
1389 y RELOP x for negative C */
1390 (for cmp (lt gt le ge)
1391 (simplify
1392 (cmp (mult:c @0 @1) (mult:c @2 @1))
1393 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1394 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1395 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1396 (cmp @0 @2)
1397 (if (TREE_CODE (@1) == INTEGER_CST
1398 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1399 (cmp @2 @0))))))
1400
1401 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1402 (for cmp (le gt)
1403 icmp (gt le)
1404 (simplify
1405 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1406 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1407 && TYPE_UNSIGNED (TREE_TYPE (@0))
1408 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1409 && (wi::to_wide (@2)
1410 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1411 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1412 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1413
1414 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1415 (for cmp (simple_comparison)
1416 (simplify
1417 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1418 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1419 (cmp @0 @1))))
1420
1421 /* X / C1 op C2 into a simple range test. */
1422 (for cmp (simple_comparison)
1423 (simplify
1424 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1425 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1426 && integer_nonzerop (@1)
1427 && !TREE_OVERFLOW (@1)
1428 && !TREE_OVERFLOW (@2))
1429 (with { tree lo, hi; bool neg_overflow;
1430 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1431 &neg_overflow); }
1432 (switch
1433 (if (code == LT_EXPR || code == GE_EXPR)
1434 (if (TREE_OVERFLOW (lo))
1435 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1436 (if (code == LT_EXPR)
1437 (lt @0 { lo; })
1438 (ge @0 { lo; }))))
1439 (if (code == LE_EXPR || code == GT_EXPR)
1440 (if (TREE_OVERFLOW (hi))
1441 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1442 (if (code == LE_EXPR)
1443 (le @0 { hi; })
1444 (gt @0 { hi; }))))
1445 (if (!lo && !hi)
1446 { build_int_cst (type, code == NE_EXPR); })
1447 (if (code == EQ_EXPR && !hi)
1448 (ge @0 { lo; }))
1449 (if (code == EQ_EXPR && !lo)
1450 (le @0 { hi; }))
1451 (if (code == NE_EXPR && !hi)
1452 (lt @0 { lo; }))
1453 (if (code == NE_EXPR && !lo)
1454 (gt @0 { hi; }))
1455 (if (GENERIC)
1456 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1457 lo, hi); })
1458 (with
1459 {
1460 tree etype = range_check_type (TREE_TYPE (@0));
1461 if (etype)
1462 {
1463 if (! TYPE_UNSIGNED (etype))
1464 etype = unsigned_type_for (etype);
1465 hi = fold_convert (etype, hi);
1466 lo = fold_convert (etype, lo);
1467 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1468 }
1469 }
1470 (if (etype && hi && !TREE_OVERFLOW (hi))
1471 (if (code == EQ_EXPR)
1472 (le (minus (convert:etype @0) { lo; }) { hi; })
1473 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1474
1475 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1476 (for op (lt le ge gt)
1477 (simplify
1478 (op (plus:c @0 @2) (plus:c @1 @2))
1479 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1480 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1481 (op @0 @1))))
1482 /* For equality and subtraction, this is also true with wrapping overflow. */
1483 (for op (eq ne minus)
1484 (simplify
1485 (op (plus:c @0 @2) (plus:c @1 @2))
1486 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1487 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1488 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1489 (op @0 @1))))
1490
1491 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1492 (for op (lt le ge gt)
1493 (simplify
1494 (op (minus @0 @2) (minus @1 @2))
1495 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1496 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1497 (op @0 @1))))
1498 /* For equality and subtraction, this is also true with wrapping overflow. */
1499 (for op (eq ne minus)
1500 (simplify
1501 (op (minus @0 @2) (minus @1 @2))
1502 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1503 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1504 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1505 (op @0 @1))))
1506 /* And for pointers... */
1507 (for op (simple_comparison)
1508 (simplify
1509 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1510 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1511 (op @0 @1))))
1512 (simplify
1513 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1514 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1515 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1516 (pointer_diff @0 @1)))
1517
1518 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1519 (for op (lt le ge gt)
1520 (simplify
1521 (op (minus @2 @0) (minus @2 @1))
1522 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1523 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1524 (op @1 @0))))
1525 /* For equality and subtraction, this is also true with wrapping overflow. */
1526 (for op (eq ne minus)
1527 (simplify
1528 (op (minus @2 @0) (minus @2 @1))
1529 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1530 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1531 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1532 (op @1 @0))))
1533 /* And for pointers... */
1534 (for op (simple_comparison)
1535 (simplify
1536 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1537 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1538 (op @1 @0))))
1539 (simplify
1540 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1541 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1542 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1543 (pointer_diff @1 @0)))
1544
1545 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1546 (for op (lt le gt ge)
1547 (simplify
1548 (op:c (plus:c@2 @0 @1) @1)
1549 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1550 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1551 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1552 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1553 /* For equality, this is also true with wrapping overflow. */
1554 (for op (eq ne)
1555 (simplify
1556 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1557 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1558 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1559 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1560 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1561 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1562 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1563 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1564 (simplify
1565 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1566 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1567 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1568 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1569 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1570
1571 /* X - Y < X is the same as Y > 0 when there is no overflow.
1572 For equality, this is also true with wrapping overflow. */
1573 (for op (simple_comparison)
1574 (simplify
1575 (op:c @0 (minus@2 @0 @1))
1576 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1577 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1578 || ((op == EQ_EXPR || op == NE_EXPR)
1579 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1580 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1581 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1582
1583 /* Transform:
1584 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1585 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1586 (for cmp (eq ne)
1587 ocmp (lt ge)
1588 (simplify
1589 (cmp (trunc_div @0 @1) integer_zerop)
1590 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1591 /* Complex ==/!= is allowed, but not </>=. */
1592 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1593 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1594 (ocmp @0 @1))))
1595
1596 /* X == C - X can never be true if C is odd. */
1597 (for cmp (eq ne)
1598 (simplify
1599 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1600 (if (TREE_INT_CST_LOW (@1) & 1)
1601 { constant_boolean_node (cmp == NE_EXPR, type); })))
1602
1603 /* Arguments on which one can call get_nonzero_bits to get the bits
1604 possibly set. */
1605 (match with_possible_nonzero_bits
1606 INTEGER_CST@0)
1607 (match with_possible_nonzero_bits
1608 SSA_NAME@0
1609 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1610 /* Slightly extended version, do not make it recursive to keep it cheap. */
1611 (match (with_possible_nonzero_bits2 @0)
1612 with_possible_nonzero_bits@0)
1613 (match (with_possible_nonzero_bits2 @0)
1614 (bit_and:c with_possible_nonzero_bits@0 @2))
1615
1616 /* Same for bits that are known to be set, but we do not have
1617 an equivalent to get_nonzero_bits yet. */
1618 (match (with_certain_nonzero_bits2 @0)
1619 INTEGER_CST@0)
1620 (match (with_certain_nonzero_bits2 @0)
1621 (bit_ior @1 INTEGER_CST@0))
1622
1623 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1624 (for cmp (eq ne)
1625 (simplify
1626 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1627 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1628 { constant_boolean_node (cmp == NE_EXPR, type); })))
1629
1630 /* ((X inner_op C0) outer_op C1)
1631 With X being a tree where value_range has reasoned certain bits to always be
1632 zero throughout its computed value range,
1633 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1634 where zero_mask has 1's for all bits that are sure to be 0 in
1635 and 0's otherwise.
1636 if (inner_op == '^') C0 &= ~C1;
1637 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1638 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1639 */
1640 (for inner_op (bit_ior bit_xor)
1641 outer_op (bit_xor bit_ior)
1642 (simplify
1643 (outer_op
1644 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1645 (with
1646 {
1647 bool fail = false;
1648 wide_int zero_mask_not;
1649 wide_int C0;
1650 wide_int cst_emit;
1651
1652 if (TREE_CODE (@2) == SSA_NAME)
1653 zero_mask_not = get_nonzero_bits (@2);
1654 else
1655 fail = true;
1656
1657 if (inner_op == BIT_XOR_EXPR)
1658 {
1659 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1660 cst_emit = C0 | wi::to_wide (@1);
1661 }
1662 else
1663 {
1664 C0 = wi::to_wide (@0);
1665 cst_emit = C0 ^ wi::to_wide (@1);
1666 }
1667 }
1668 (if (!fail && (C0 & zero_mask_not) == 0)
1669 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1670 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1671 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1672
1673 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1674 (simplify
1675 (pointer_plus (pointer_plus:s @0 @1) @3)
1676 (pointer_plus @0 (plus @1 @3)))
1677
1678 /* Pattern match
1679 tem1 = (long) ptr1;
1680 tem2 = (long) ptr2;
1681 tem3 = tem2 - tem1;
1682 tem4 = (unsigned long) tem3;
1683 tem5 = ptr1 + tem4;
1684 and produce
1685 tem5 = ptr2; */
1686 (simplify
1687 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1688 /* Conditionally look through a sign-changing conversion. */
1689 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1690 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1691 || (GENERIC && type == TREE_TYPE (@1))))
1692 @1))
1693 (simplify
1694 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1695 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1696 (convert @1)))
1697
1698 /* Pattern match
1699 tem = (sizetype) ptr;
1700 tem = tem & algn;
1701 tem = -tem;
1702 ... = ptr p+ tem;
1703 and produce the simpler and easier to analyze with respect to alignment
1704 ... = ptr & ~algn; */
1705 (simplify
1706 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1707 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1708 (bit_and @0 { algn; })))
1709
1710 /* Try folding difference of addresses. */
1711 (simplify
1712 (minus (convert ADDR_EXPR@0) (convert @1))
1713 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1714 (with { poly_int64 diff; }
1715 (if (ptr_difference_const (@0, @1, &diff))
1716 { build_int_cst_type (type, diff); }))))
1717 (simplify
1718 (minus (convert @0) (convert ADDR_EXPR@1))
1719 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1720 (with { poly_int64 diff; }
1721 (if (ptr_difference_const (@0, @1, &diff))
1722 { build_int_cst_type (type, diff); }))))
1723 (simplify
1724 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1725 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1726 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1727 (with { poly_int64 diff; }
1728 (if (ptr_difference_const (@0, @1, &diff))
1729 { build_int_cst_type (type, diff); }))))
1730 (simplify
1731 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1732 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1733 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1734 (with { poly_int64 diff; }
1735 (if (ptr_difference_const (@0, @1, &diff))
1736 { build_int_cst_type (type, diff); }))))
1737
1738 /* If arg0 is derived from the address of an object or function, we may
1739 be able to fold this expression using the object or function's
1740 alignment. */
1741 (simplify
1742 (bit_and (convert? @0) INTEGER_CST@1)
1743 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1744 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1745 (with
1746 {
1747 unsigned int align;
1748 unsigned HOST_WIDE_INT bitpos;
1749 get_pointer_alignment_1 (@0, &align, &bitpos);
1750 }
1751 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1752 { wide_int_to_tree (type, (wi::to_wide (@1)
1753 & (bitpos / BITS_PER_UNIT))); }))))
1754
1755
1756 /* We can't reassociate at all for saturating types. */
1757 (if (!TYPE_SATURATING (type))
1758
1759 /* Contract negates. */
1760 /* A + (-B) -> A - B */
1761 (simplify
1762 (plus:c @0 (convert? (negate @1)))
1763 /* Apply STRIP_NOPS on the negate. */
1764 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1765 && !TYPE_OVERFLOW_SANITIZED (type))
1766 (with
1767 {
1768 tree t1 = type;
1769 if (INTEGRAL_TYPE_P (type)
1770 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1771 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1772 }
1773 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1774 /* A - (-B) -> A + B */
1775 (simplify
1776 (minus @0 (convert? (negate @1)))
1777 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1778 && !TYPE_OVERFLOW_SANITIZED (type))
1779 (with
1780 {
1781 tree t1 = type;
1782 if (INTEGRAL_TYPE_P (type)
1783 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1784 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1785 }
1786 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1787 /* -(T)(-A) -> (T)A
1788 Sign-extension is ok except for INT_MIN, which thankfully cannot
1789 happen without overflow. */
1790 (simplify
1791 (negate (convert (negate @1)))
1792 (if (INTEGRAL_TYPE_P (type)
1793 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1794 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1795 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1796 && !TYPE_OVERFLOW_SANITIZED (type)
1797 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1798 (convert @1)))
1799 (simplify
1800 (negate (convert negate_expr_p@1))
1801 (if (SCALAR_FLOAT_TYPE_P (type)
1802 && ((DECIMAL_FLOAT_TYPE_P (type)
1803 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1804 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1805 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1806 (convert (negate @1))))
1807 (simplify
1808 (negate (nop_convert (negate @1)))
1809 (if (!TYPE_OVERFLOW_SANITIZED (type)
1810 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1811 (view_convert @1)))
1812
1813 /* We can't reassociate floating-point unless -fassociative-math
1814 or fixed-point plus or minus because of saturation to +-Inf. */
1815 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1816 && !FIXED_POINT_TYPE_P (type))
1817
1818 /* Match patterns that allow contracting a plus-minus pair
1819 irrespective of overflow issues. */
1820 /* (A +- B) - A -> +- B */
1821 /* (A +- B) -+ B -> A */
1822 /* A - (A +- B) -> -+ B */
1823 /* A +- (B -+ A) -> +- B */
1824 (simplify
1825 (minus (plus:c @0 @1) @0)
1826 @1)
1827 (simplify
1828 (minus (minus @0 @1) @0)
1829 (negate @1))
1830 (simplify
1831 (plus:c (minus @0 @1) @1)
1832 @0)
1833 (simplify
1834 (minus @0 (plus:c @0 @1))
1835 (negate @1))
1836 (simplify
1837 (minus @0 (minus @0 @1))
1838 @1)
1839 /* (A +- B) + (C - A) -> C +- B */
1840 /* (A + B) - (A - C) -> B + C */
1841 /* More cases are handled with comparisons. */
1842 (simplify
1843 (plus:c (plus:c @0 @1) (minus @2 @0))
1844 (plus @2 @1))
1845 (simplify
1846 (plus:c (minus @0 @1) (minus @2 @0))
1847 (minus @2 @1))
1848 (simplify
1849 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1850 (if (TYPE_OVERFLOW_UNDEFINED (type)
1851 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1852 (pointer_diff @2 @1)))
1853 (simplify
1854 (minus (plus:c @0 @1) (minus @0 @2))
1855 (plus @1 @2))
1856
1857 /* (A +- CST1) +- CST2 -> A + CST3
1858 Use view_convert because it is safe for vectors and equivalent for
1859 scalars. */
1860 (for outer_op (plus minus)
1861 (for inner_op (plus minus)
1862 neg_inner_op (minus plus)
1863 (simplify
1864 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1865 CONSTANT_CLASS_P@2)
1866 /* If one of the types wraps, use that one. */
1867 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1868 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1869 forever if something doesn't simplify into a constant. */
1870 (if (!CONSTANT_CLASS_P (@0))
1871 (if (outer_op == PLUS_EXPR)
1872 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1873 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1874 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1875 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1876 (if (outer_op == PLUS_EXPR)
1877 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1878 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1879 /* If the constant operation overflows we cannot do the transform
1880 directly as we would introduce undefined overflow, for example
1881 with (a - 1) + INT_MIN. */
1882 (if (types_match (type, @0))
1883 (with { tree cst = const_binop (outer_op == inner_op
1884 ? PLUS_EXPR : MINUS_EXPR,
1885 type, @1, @2); }
1886 (if (cst && !TREE_OVERFLOW (cst))
1887 (inner_op @0 { cst; } )
1888 /* X+INT_MAX+1 is X-INT_MIN. */
1889 (if (INTEGRAL_TYPE_P (type) && cst
1890 && wi::to_wide (cst) == wi::min_value (type))
1891 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1892 /* Last resort, use some unsigned type. */
1893 (with { tree utype = unsigned_type_for (type); }
1894 (if (utype)
1895 (view_convert (inner_op
1896 (view_convert:utype @0)
1897 (view_convert:utype
1898 { drop_tree_overflow (cst); }))))))))))))))
1899
1900 /* (CST1 - A) +- CST2 -> CST3 - A */
1901 (for outer_op (plus minus)
1902 (simplify
1903 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1904 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1905 (if (cst && !TREE_OVERFLOW (cst))
1906 (minus { cst; } @0)))))
1907
1908 /* CST1 - (CST2 - A) -> CST3 + A */
1909 (simplify
1910 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1911 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1912 (if (cst && !TREE_OVERFLOW (cst))
1913 (plus { cst; } @0))))
1914
1915 /* ~A + A -> -1 */
1916 (simplify
1917 (plus:c (bit_not @0) @0)
1918 (if (!TYPE_OVERFLOW_TRAPS (type))
1919 { build_all_ones_cst (type); }))
1920
1921 /* ~A + 1 -> -A */
1922 (simplify
1923 (plus (convert? (bit_not @0)) integer_each_onep)
1924 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1925 (negate (convert @0))))
1926
1927 /* -A - 1 -> ~A */
1928 (simplify
1929 (minus (convert? (negate @0)) integer_each_onep)
1930 (if (!TYPE_OVERFLOW_TRAPS (type)
1931 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1932 (bit_not (convert @0))))
1933
1934 /* -1 - A -> ~A */
1935 (simplify
1936 (minus integer_all_onesp @0)
1937 (bit_not @0))
1938
1939 /* (T)(P + A) - (T)P -> (T) A */
1940 (simplify
1941 (minus (convert (plus:c @@0 @1))
1942 (convert? @0))
1943 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1944 /* For integer types, if A has a smaller type
1945 than T the result depends on the possible
1946 overflow in P + A.
1947 E.g. T=size_t, A=(unsigned)429497295, P>0.
1948 However, if an overflow in P + A would cause
1949 undefined behavior, we can assume that there
1950 is no overflow. */
1951 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1952 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1953 (convert @1)))
1954 (simplify
1955 (minus (convert (pointer_plus @@0 @1))
1956 (convert @0))
1957 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1958 /* For pointer types, if the conversion of A to the
1959 final type requires a sign- or zero-extension,
1960 then we have to punt - it is not defined which
1961 one is correct. */
1962 || (POINTER_TYPE_P (TREE_TYPE (@0))
1963 && TREE_CODE (@1) == INTEGER_CST
1964 && tree_int_cst_sign_bit (@1) == 0))
1965 (convert @1)))
1966 (simplify
1967 (pointer_diff (pointer_plus @@0 @1) @0)
1968 /* The second argument of pointer_plus must be interpreted as signed, and
1969 thus sign-extended if necessary. */
1970 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1971 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1972 second arg is unsigned even when we need to consider it as signed,
1973 we don't want to diagnose overflow here. */
1974 (convert (view_convert:stype @1))))
1975
1976 /* (T)P - (T)(P + A) -> -(T) A */
1977 (simplify
1978 (minus (convert? @0)
1979 (convert (plus:c @@0 @1)))
1980 (if (INTEGRAL_TYPE_P (type)
1981 && TYPE_OVERFLOW_UNDEFINED (type)
1982 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1983 (with { tree utype = unsigned_type_for (type); }
1984 (convert (negate (convert:utype @1))))
1985 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1986 /* For integer types, if A has a smaller type
1987 than T the result depends on the possible
1988 overflow in P + A.
1989 E.g. T=size_t, A=(unsigned)429497295, P>0.
1990 However, if an overflow in P + A would cause
1991 undefined behavior, we can assume that there
1992 is no overflow. */
1993 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1994 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1995 (negate (convert @1)))))
1996 (simplify
1997 (minus (convert @0)
1998 (convert (pointer_plus @@0 @1)))
1999 (if (INTEGRAL_TYPE_P (type)
2000 && TYPE_OVERFLOW_UNDEFINED (type)
2001 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2002 (with { tree utype = unsigned_type_for (type); }
2003 (convert (negate (convert:utype @1))))
2004 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2005 /* For pointer types, if the conversion of A to the
2006 final type requires a sign- or zero-extension,
2007 then we have to punt - it is not defined which
2008 one is correct. */
2009 || (POINTER_TYPE_P (TREE_TYPE (@0))
2010 && TREE_CODE (@1) == INTEGER_CST
2011 && tree_int_cst_sign_bit (@1) == 0))
2012 (negate (convert @1)))))
2013 (simplify
2014 (pointer_diff @0 (pointer_plus @@0 @1))
2015 /* The second argument of pointer_plus must be interpreted as signed, and
2016 thus sign-extended if necessary. */
2017 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2018 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2019 second arg is unsigned even when we need to consider it as signed,
2020 we don't want to diagnose overflow here. */
2021 (negate (convert (view_convert:stype @1)))))
2022
2023 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2024 (simplify
2025 (minus (convert (plus:c @@0 @1))
2026 (convert (plus:c @0 @2)))
2027 (if (INTEGRAL_TYPE_P (type)
2028 && TYPE_OVERFLOW_UNDEFINED (type)
2029 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2030 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2031 (with { tree utype = unsigned_type_for (type); }
2032 (convert (minus (convert:utype @1) (convert:utype @2))))
2033 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2034 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2035 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2036 /* For integer types, if A has a smaller type
2037 than T the result depends on the possible
2038 overflow in P + A.
2039 E.g. T=size_t, A=(unsigned)429497295, P>0.
2040 However, if an overflow in P + A would cause
2041 undefined behavior, we can assume that there
2042 is no overflow. */
2043 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2044 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2045 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2046 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2047 (minus (convert @1) (convert @2)))))
2048 (simplify
2049 (minus (convert (pointer_plus @@0 @1))
2050 (convert (pointer_plus @0 @2)))
2051 (if (INTEGRAL_TYPE_P (type)
2052 && TYPE_OVERFLOW_UNDEFINED (type)
2053 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2054 (with { tree utype = unsigned_type_for (type); }
2055 (convert (minus (convert:utype @1) (convert:utype @2))))
2056 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2057 /* For pointer types, if the conversion of A to the
2058 final type requires a sign- or zero-extension,
2059 then we have to punt - it is not defined which
2060 one is correct. */
2061 || (POINTER_TYPE_P (TREE_TYPE (@0))
2062 && TREE_CODE (@1) == INTEGER_CST
2063 && tree_int_cst_sign_bit (@1) == 0
2064 && TREE_CODE (@2) == INTEGER_CST
2065 && tree_int_cst_sign_bit (@2) == 0))
2066 (minus (convert @1) (convert @2)))))
2067 (simplify
2068 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2069 /* The second argument of pointer_plus must be interpreted as signed, and
2070 thus sign-extended if necessary. */
2071 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2072 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2073 second arg is unsigned even when we need to consider it as signed,
2074 we don't want to diagnose overflow here. */
2075 (minus (convert (view_convert:stype @1))
2076 (convert (view_convert:stype @2)))))))
2077
2078 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2079 Modeled after fold_plusminus_mult_expr. */
2080 (if (!TYPE_SATURATING (type)
2081 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2082 (for plusminus (plus minus)
2083 (simplify
2084 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2085 (if ((!ANY_INTEGRAL_TYPE_P (type)
2086 || TYPE_OVERFLOW_WRAPS (type)
2087 || (INTEGRAL_TYPE_P (type)
2088 && tree_expr_nonzero_p (@0)
2089 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2090 /* If @1 +- @2 is constant require a hard single-use on either
2091 original operand (but not on both). */
2092 && (single_use (@3) || single_use (@4)))
2093 (mult (plusminus @1 @2) @0)))
2094 /* We cannot generate constant 1 for fract. */
2095 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2096 (simplify
2097 (plusminus @0 (mult:c@3 @0 @2))
2098 (if ((!ANY_INTEGRAL_TYPE_P (type)
2099 || TYPE_OVERFLOW_WRAPS (type)
2100 || (INTEGRAL_TYPE_P (type)
2101 && tree_expr_nonzero_p (@0)
2102 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2103 && single_use (@3))
2104 (mult (plusminus { build_one_cst (type); } @2) @0)))
2105 (simplify
2106 (plusminus (mult:c@3 @0 @2) @0)
2107 (if ((!ANY_INTEGRAL_TYPE_P (type)
2108 || TYPE_OVERFLOW_WRAPS (type)
2109 || (INTEGRAL_TYPE_P (type)
2110 && tree_expr_nonzero_p (@0)
2111 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2112 && single_use (@3))
2113 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2114
2115 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2116
2117 (for minmax (min max FMIN_ALL FMAX_ALL)
2118 (simplify
2119 (minmax @0 @0)
2120 @0))
2121 /* min(max(x,y),y) -> y. */
2122 (simplify
2123 (min:c (max:c @0 @1) @1)
2124 @1)
2125 /* max(min(x,y),y) -> y. */
2126 (simplify
2127 (max:c (min:c @0 @1) @1)
2128 @1)
2129 /* max(a,-a) -> abs(a). */
2130 (simplify
2131 (max:c @0 (negate @0))
2132 (if (TREE_CODE (type) != COMPLEX_TYPE
2133 && (! ANY_INTEGRAL_TYPE_P (type)
2134 || TYPE_OVERFLOW_UNDEFINED (type)))
2135 (abs @0)))
2136 /* min(a,-a) -> -abs(a). */
2137 (simplify
2138 (min:c @0 (negate @0))
2139 (if (TREE_CODE (type) != COMPLEX_TYPE
2140 && (! ANY_INTEGRAL_TYPE_P (type)
2141 || TYPE_OVERFLOW_UNDEFINED (type)))
2142 (negate (abs @0))))
2143 (simplify
2144 (min @0 @1)
2145 (switch
2146 (if (INTEGRAL_TYPE_P (type)
2147 && TYPE_MIN_VALUE (type)
2148 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2149 @1)
2150 (if (INTEGRAL_TYPE_P (type)
2151 && TYPE_MAX_VALUE (type)
2152 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2153 @0)))
2154 (simplify
2155 (max @0 @1)
2156 (switch
2157 (if (INTEGRAL_TYPE_P (type)
2158 && TYPE_MAX_VALUE (type)
2159 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2160 @1)
2161 (if (INTEGRAL_TYPE_P (type)
2162 && TYPE_MIN_VALUE (type)
2163 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2164 @0)))
2165
2166 /* max (a, a + CST) -> a + CST where CST is positive. */
2167 /* max (a, a + CST) -> a where CST is negative. */
2168 (simplify
2169 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2170 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2171 (if (tree_int_cst_sgn (@1) > 0)
2172 @2
2173 @0)))
2174
2175 /* min (a, a + CST) -> a where CST is positive. */
2176 /* min (a, a + CST) -> a + CST where CST is negative. */
2177 (simplify
2178 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2179 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2180 (if (tree_int_cst_sgn (@1) > 0)
2181 @0
2182 @2)))
2183
2184 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2185 and the outer convert demotes the expression back to x's type. */
2186 (for minmax (min max)
2187 (simplify
2188 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2189 (if (INTEGRAL_TYPE_P (type)
2190 && types_match (@1, type) && int_fits_type_p (@2, type)
2191 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2192 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2193 (minmax @1 (convert @2)))))
2194
2195 (for minmax (FMIN_ALL FMAX_ALL)
2196 /* If either argument is NaN, return the other one. Avoid the
2197 transformation if we get (and honor) a signalling NaN. */
2198 (simplify
2199 (minmax:c @0 REAL_CST@1)
2200 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2201 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2202 @0)))
2203 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2204 functions to return the numeric arg if the other one is NaN.
2205 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2206 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2207 worry about it either. */
2208 (if (flag_finite_math_only)
2209 (simplify
2210 (FMIN_ALL @0 @1)
2211 (min @0 @1))
2212 (simplify
2213 (FMAX_ALL @0 @1)
2214 (max @0 @1)))
2215 /* min (-A, -B) -> -max (A, B) */
2216 (for minmax (min max FMIN_ALL FMAX_ALL)
2217 maxmin (max min FMAX_ALL FMIN_ALL)
2218 (simplify
2219 (minmax (negate:s@2 @0) (negate:s@3 @1))
2220 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2221 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2222 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2223 (negate (maxmin @0 @1)))))
2224 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2225 MAX (~X, ~Y) -> ~MIN (X, Y) */
2226 (for minmax (min max)
2227 maxmin (max min)
2228 (simplify
2229 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2230 (bit_not (maxmin @0 @1))))
2231
2232 /* MIN (X, Y) == X -> X <= Y */
2233 (for minmax (min min max max)
2234 cmp (eq ne eq ne )
2235 out (le gt ge lt )
2236 (simplify
2237 (cmp:c (minmax:c @0 @1) @0)
2238 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2239 (out @0 @1))))
2240 /* MIN (X, 5) == 0 -> X == 0
2241 MIN (X, 5) == 7 -> false */
2242 (for cmp (eq ne)
2243 (simplify
2244 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2245 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2246 TYPE_SIGN (TREE_TYPE (@0))))
2247 { constant_boolean_node (cmp == NE_EXPR, type); }
2248 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2249 TYPE_SIGN (TREE_TYPE (@0))))
2250 (cmp @0 @2)))))
2251 (for cmp (eq ne)
2252 (simplify
2253 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2254 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2255 TYPE_SIGN (TREE_TYPE (@0))))
2256 { constant_boolean_node (cmp == NE_EXPR, type); }
2257 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2258 TYPE_SIGN (TREE_TYPE (@0))))
2259 (cmp @0 @2)))))
2260 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2261 (for minmax (min min max max min min max max )
2262 cmp (lt le gt ge gt ge lt le )
2263 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2264 (simplify
2265 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2266 (comb (cmp @0 @2) (cmp @1 @2))))
2267
2268 /* Simplifications of shift and rotates. */
2269
2270 (for rotate (lrotate rrotate)
2271 (simplify
2272 (rotate integer_all_onesp@0 @1)
2273 @0))
2274
2275 /* Optimize -1 >> x for arithmetic right shifts. */
2276 (simplify
2277 (rshift integer_all_onesp@0 @1)
2278 (if (!TYPE_UNSIGNED (type)
2279 && tree_expr_nonnegative_p (@1))
2280 @0))
2281
2282 /* Optimize (x >> c) << c into x & (-1<<c). */
2283 (simplify
2284 (lshift (rshift @0 INTEGER_CST@1) @1)
2285 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2286 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2287
2288 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2289 types. */
2290 (simplify
2291 (rshift (lshift @0 INTEGER_CST@1) @1)
2292 (if (TYPE_UNSIGNED (type)
2293 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2294 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2295
2296 (for shiftrotate (lrotate rrotate lshift rshift)
2297 (simplify
2298 (shiftrotate @0 integer_zerop)
2299 (non_lvalue @0))
2300 (simplify
2301 (shiftrotate integer_zerop@0 @1)
2302 @0)
2303 /* Prefer vector1 << scalar to vector1 << vector2
2304 if vector2 is uniform. */
2305 (for vec (VECTOR_CST CONSTRUCTOR)
2306 (simplify
2307 (shiftrotate @0 vec@1)
2308 (with { tree tem = uniform_vector_p (@1); }
2309 (if (tem)
2310 (shiftrotate @0 { tem; }))))))
2311
2312 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2313 Y is 0. Similarly for X >> Y. */
2314 #if GIMPLE
2315 (for shift (lshift rshift)
2316 (simplify
2317 (shift @0 SSA_NAME@1)
2318 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2319 (with {
2320 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2321 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2322 }
2323 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2324 @0)))))
2325 #endif
2326
2327 /* Rewrite an LROTATE_EXPR by a constant into an
2328 RROTATE_EXPR by a new constant. */
2329 (simplify
2330 (lrotate @0 INTEGER_CST@1)
2331 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2332 build_int_cst (TREE_TYPE (@1),
2333 element_precision (type)), @1); }))
2334
2335 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2336 (for op (lrotate rrotate rshift lshift)
2337 (simplify
2338 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2339 (with { unsigned int prec = element_precision (type); }
2340 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2341 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2342 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2343 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2344 (with { unsigned int low = (tree_to_uhwi (@1)
2345 + tree_to_uhwi (@2)); }
2346 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2347 being well defined. */
2348 (if (low >= prec)
2349 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2350 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2351 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2352 { build_zero_cst (type); }
2353 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2354 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2355
2356
2357 /* ((1 << A) & 1) != 0 -> A == 0
2358 ((1 << A) & 1) == 0 -> A != 0 */
2359 (for cmp (ne eq)
2360 icmp (eq ne)
2361 (simplify
2362 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2363 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2364
2365 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2366 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2367 if CST2 != 0. */
2368 (for cmp (ne eq)
2369 (simplify
2370 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2371 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2372 (if (cand < 0
2373 || (!integer_zerop (@2)
2374 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2375 { constant_boolean_node (cmp == NE_EXPR, type); }
2376 (if (!integer_zerop (@2)
2377 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2378 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2379
2380 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2381 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2382 if the new mask might be further optimized. */
2383 (for shift (lshift rshift)
2384 (simplify
2385 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2386 INTEGER_CST@2)
2387 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2388 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2389 && tree_fits_uhwi_p (@1)
2390 && tree_to_uhwi (@1) > 0
2391 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2392 (with
2393 {
2394 unsigned int shiftc = tree_to_uhwi (@1);
2395 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2396 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2397 tree shift_type = TREE_TYPE (@3);
2398 unsigned int prec;
2399
2400 if (shift == LSHIFT_EXPR)
2401 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2402 else if (shift == RSHIFT_EXPR
2403 && type_has_mode_precision_p (shift_type))
2404 {
2405 prec = TYPE_PRECISION (TREE_TYPE (@3));
2406 tree arg00 = @0;
2407 /* See if more bits can be proven as zero because of
2408 zero extension. */
2409 if (@3 != @0
2410 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2411 {
2412 tree inner_type = TREE_TYPE (@0);
2413 if (type_has_mode_precision_p (inner_type)
2414 && TYPE_PRECISION (inner_type) < prec)
2415 {
2416 prec = TYPE_PRECISION (inner_type);
2417 /* See if we can shorten the right shift. */
2418 if (shiftc < prec)
2419 shift_type = inner_type;
2420 /* Otherwise X >> C1 is all zeros, so we'll optimize
2421 it into (X, 0) later on by making sure zerobits
2422 is all ones. */
2423 }
2424 }
2425 zerobits = HOST_WIDE_INT_M1U;
2426 if (shiftc < prec)
2427 {
2428 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2429 zerobits <<= prec - shiftc;
2430 }
2431 /* For arithmetic shift if sign bit could be set, zerobits
2432 can contain actually sign bits, so no transformation is
2433 possible, unless MASK masks them all away. In that
2434 case the shift needs to be converted into logical shift. */
2435 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2436 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2437 {
2438 if ((mask & zerobits) == 0)
2439 shift_type = unsigned_type_for (TREE_TYPE (@3));
2440 else
2441 zerobits = 0;
2442 }
2443 }
2444 }
2445 /* ((X << 16) & 0xff00) is (X, 0). */
2446 (if ((mask & zerobits) == mask)
2447 { build_int_cst (type, 0); }
2448 (with { newmask = mask | zerobits; }
2449 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2450 (with
2451 {
2452 /* Only do the transformation if NEWMASK is some integer
2453 mode's mask. */
2454 for (prec = BITS_PER_UNIT;
2455 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2456 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2457 break;
2458 }
2459 (if (prec < HOST_BITS_PER_WIDE_INT
2460 || newmask == HOST_WIDE_INT_M1U)
2461 (with
2462 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2463 (if (!tree_int_cst_equal (newmaskt, @2))
2464 (if (shift_type != TREE_TYPE (@3))
2465 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2466 (bit_and @4 { newmaskt; })))))))))))))
2467
2468 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2469 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2470 (for shift (lshift rshift)
2471 (for bit_op (bit_and bit_xor bit_ior)
2472 (simplify
2473 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2474 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2475 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2476 (bit_op (shift (convert @0) @1) { mask; }))))))
2477
2478 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2479 (simplify
2480 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2481 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2482 && (element_precision (TREE_TYPE (@0))
2483 <= element_precision (TREE_TYPE (@1))
2484 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2485 (with
2486 { tree shift_type = TREE_TYPE (@0); }
2487 (convert (rshift (convert:shift_type @1) @2)))))
2488
2489 /* ~(~X >>r Y) -> X >>r Y
2490 ~(~X <<r Y) -> X <<r Y */
2491 (for rotate (lrotate rrotate)
2492 (simplify
2493 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2494 (if ((element_precision (TREE_TYPE (@0))
2495 <= element_precision (TREE_TYPE (@1))
2496 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2497 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2498 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2499 (with
2500 { tree rotate_type = TREE_TYPE (@0); }
2501 (convert (rotate (convert:rotate_type @1) @2))))))
2502
2503 /* Simplifications of conversions. */
2504
2505 /* Basic strip-useless-type-conversions / strip_nops. */
2506 (for cvt (convert view_convert float fix_trunc)
2507 (simplify
2508 (cvt @0)
2509 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2510 || (GENERIC && type == TREE_TYPE (@0)))
2511 @0)))
2512
2513 /* Contract view-conversions. */
2514 (simplify
2515 (view_convert (view_convert @0))
2516 (view_convert @0))
2517
2518 /* For integral conversions with the same precision or pointer
2519 conversions use a NOP_EXPR instead. */
2520 (simplify
2521 (view_convert @0)
2522 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2523 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2524 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2525 (convert @0)))
2526
2527 /* Strip inner integral conversions that do not change precision or size, or
2528 zero-extend while keeping the same size (for bool-to-char). */
2529 (simplify
2530 (view_convert (convert@0 @1))
2531 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2532 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2533 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2534 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2535 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2536 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2537 (view_convert @1)))
2538
2539 /* Re-association barriers around constants and other re-association
2540 barriers can be removed. */
2541 (simplify
2542 (paren CONSTANT_CLASS_P@0)
2543 @0)
2544 (simplify
2545 (paren (paren@1 @0))
2546 @1)
2547
2548 /* Handle cases of two conversions in a row. */
2549 (for ocvt (convert float fix_trunc)
2550 (for icvt (convert float)
2551 (simplify
2552 (ocvt (icvt@1 @0))
2553 (with
2554 {
2555 tree inside_type = TREE_TYPE (@0);
2556 tree inter_type = TREE_TYPE (@1);
2557 int inside_int = INTEGRAL_TYPE_P (inside_type);
2558 int inside_ptr = POINTER_TYPE_P (inside_type);
2559 int inside_float = FLOAT_TYPE_P (inside_type);
2560 int inside_vec = VECTOR_TYPE_P (inside_type);
2561 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2562 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2563 int inter_int = INTEGRAL_TYPE_P (inter_type);
2564 int inter_ptr = POINTER_TYPE_P (inter_type);
2565 int inter_float = FLOAT_TYPE_P (inter_type);
2566 int inter_vec = VECTOR_TYPE_P (inter_type);
2567 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2568 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2569 int final_int = INTEGRAL_TYPE_P (type);
2570 int final_ptr = POINTER_TYPE_P (type);
2571 int final_float = FLOAT_TYPE_P (type);
2572 int final_vec = VECTOR_TYPE_P (type);
2573 unsigned int final_prec = TYPE_PRECISION (type);
2574 int final_unsignedp = TYPE_UNSIGNED (type);
2575 }
2576 (switch
2577 /* In addition to the cases of two conversions in a row
2578 handled below, if we are converting something to its own
2579 type via an object of identical or wider precision, neither
2580 conversion is needed. */
2581 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2582 || (GENERIC
2583 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2584 && (((inter_int || inter_ptr) && final_int)
2585 || (inter_float && final_float))
2586 && inter_prec >= final_prec)
2587 (ocvt @0))
2588
2589 /* Likewise, if the intermediate and initial types are either both
2590 float or both integer, we don't need the middle conversion if the
2591 former is wider than the latter and doesn't change the signedness
2592 (for integers). Avoid this if the final type is a pointer since
2593 then we sometimes need the middle conversion. */
2594 (if (((inter_int && inside_int) || (inter_float && inside_float))
2595 && (final_int || final_float)
2596 && inter_prec >= inside_prec
2597 && (inter_float || inter_unsignedp == inside_unsignedp))
2598 (ocvt @0))
2599
2600 /* If we have a sign-extension of a zero-extended value, we can
2601 replace that by a single zero-extension. Likewise if the
2602 final conversion does not change precision we can drop the
2603 intermediate conversion. */
2604 (if (inside_int && inter_int && final_int
2605 && ((inside_prec < inter_prec && inter_prec < final_prec
2606 && inside_unsignedp && !inter_unsignedp)
2607 || final_prec == inter_prec))
2608 (ocvt @0))
2609
2610 /* Two conversions in a row are not needed unless:
2611 - some conversion is floating-point (overstrict for now), or
2612 - some conversion is a vector (overstrict for now), or
2613 - the intermediate type is narrower than both initial and
2614 final, or
2615 - the intermediate type and innermost type differ in signedness,
2616 and the outermost type is wider than the intermediate, or
2617 - the initial type is a pointer type and the precisions of the
2618 intermediate and final types differ, or
2619 - the final type is a pointer type and the precisions of the
2620 initial and intermediate types differ. */
2621 (if (! inside_float && ! inter_float && ! final_float
2622 && ! inside_vec && ! inter_vec && ! final_vec
2623 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2624 && ! (inside_int && inter_int
2625 && inter_unsignedp != inside_unsignedp
2626 && inter_prec < final_prec)
2627 && ((inter_unsignedp && inter_prec > inside_prec)
2628 == (final_unsignedp && final_prec > inter_prec))
2629 && ! (inside_ptr && inter_prec != final_prec)
2630 && ! (final_ptr && inside_prec != inter_prec))
2631 (ocvt @0))
2632
2633 /* A truncation to an unsigned type (a zero-extension) should be
2634 canonicalized as bitwise and of a mask. */
2635 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2636 && final_int && inter_int && inside_int
2637 && final_prec == inside_prec
2638 && final_prec > inter_prec
2639 && inter_unsignedp)
2640 (convert (bit_and @0 { wide_int_to_tree
2641 (inside_type,
2642 wi::mask (inter_prec, false,
2643 TYPE_PRECISION (inside_type))); })))
2644
2645 /* If we are converting an integer to a floating-point that can
2646 represent it exactly and back to an integer, we can skip the
2647 floating-point conversion. */
2648 (if (GIMPLE /* PR66211 */
2649 && inside_int && inter_float && final_int &&
2650 (unsigned) significand_size (TYPE_MODE (inter_type))
2651 >= inside_prec - !inside_unsignedp)
2652 (convert @0)))))))
2653
2654 /* If we have a narrowing conversion to an integral type that is fed by a
2655 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2656 masks off bits outside the final type (and nothing else). */
2657 (simplify
2658 (convert (bit_and @0 INTEGER_CST@1))
2659 (if (INTEGRAL_TYPE_P (type)
2660 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2661 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2662 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2663 TYPE_PRECISION (type)), 0))
2664 (convert @0)))
2665
2666
2667 /* (X /[ex] A) * A -> X. */
2668 (simplify
2669 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2670 (convert @0))
2671
2672 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2673 (for op (plus minus)
2674 (simplify
2675 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2676 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2677 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2678 (with
2679 {
2680 wi::overflow_type overflow;
2681 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2682 TYPE_SIGN (type), &overflow);
2683 }
2684 (if (types_match (type, TREE_TYPE (@2))
2685 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2686 (op @0 { wide_int_to_tree (type, mul); })
2687 (with { tree utype = unsigned_type_for (type); }
2688 (convert (op (convert:utype @0)
2689 (mult (convert:utype @1) (convert:utype @2))))))))))
2690
2691 /* Canonicalization of binary operations. */
2692
2693 /* Convert X + -C into X - C. */
2694 (simplify
2695 (plus @0 REAL_CST@1)
2696 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2697 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2698 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2699 (minus @0 { tem; })))))
2700
2701 /* Convert x+x into x*2. */
2702 (simplify
2703 (plus @0 @0)
2704 (if (SCALAR_FLOAT_TYPE_P (type))
2705 (mult @0 { build_real (type, dconst2); })
2706 (if (INTEGRAL_TYPE_P (type))
2707 (mult @0 { build_int_cst (type, 2); }))))
2708
2709 /* 0 - X -> -X. */
2710 (simplify
2711 (minus integer_zerop @1)
2712 (negate @1))
2713 (simplify
2714 (pointer_diff integer_zerop @1)
2715 (negate (convert @1)))
2716
2717 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2718 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2719 (-ARG1 + ARG0) reduces to -ARG1. */
2720 (simplify
2721 (minus real_zerop@0 @1)
2722 (if (fold_real_zero_addition_p (type, @0, 0))
2723 (negate @1)))
2724
2725 /* Transform x * -1 into -x. */
2726 (simplify
2727 (mult @0 integer_minus_onep)
2728 (negate @0))
2729
2730 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2731 signed overflow for CST != 0 && CST != -1. */
2732 (simplify
2733 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2734 (if (TREE_CODE (@2) != INTEGER_CST
2735 && single_use (@3)
2736 && !integer_zerop (@1) && !integer_minus_onep (@1))
2737 (mult (mult @0 @2) @1)))
2738
2739 /* True if we can easily extract the real and imaginary parts of a complex
2740 number. */
2741 (match compositional_complex
2742 (convert? (complex @0 @1)))
2743
2744 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2745 (simplify
2746 (complex (realpart @0) (imagpart @0))
2747 @0)
2748 (simplify
2749 (realpart (complex @0 @1))
2750 @0)
2751 (simplify
2752 (imagpart (complex @0 @1))
2753 @1)
2754
2755 /* Sometimes we only care about half of a complex expression. */
2756 (simplify
2757 (realpart (convert?:s (conj:s @0)))
2758 (convert (realpart @0)))
2759 (simplify
2760 (imagpart (convert?:s (conj:s @0)))
2761 (convert (negate (imagpart @0))))
2762 (for part (realpart imagpart)
2763 (for op (plus minus)
2764 (simplify
2765 (part (convert?:s@2 (op:s @0 @1)))
2766 (convert (op (part @0) (part @1))))))
2767 (simplify
2768 (realpart (convert?:s (CEXPI:s @0)))
2769 (convert (COS @0)))
2770 (simplify
2771 (imagpart (convert?:s (CEXPI:s @0)))
2772 (convert (SIN @0)))
2773
2774 /* conj(conj(x)) -> x */
2775 (simplify
2776 (conj (convert? (conj @0)))
2777 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2778 (convert @0)))
2779
2780 /* conj({x,y}) -> {x,-y} */
2781 (simplify
2782 (conj (convert?:s (complex:s @0 @1)))
2783 (with { tree itype = TREE_TYPE (type); }
2784 (complex (convert:itype @0) (negate (convert:itype @1)))))
2785
2786 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2787 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2788 (simplify
2789 (bswap (bswap @0))
2790 @0)
2791 (simplify
2792 (bswap (bit_not (bswap @0)))
2793 (bit_not @0))
2794 (for bitop (bit_xor bit_ior bit_and)
2795 (simplify
2796 (bswap (bitop:c (bswap @0) @1))
2797 (bitop @0 (bswap @1)))))
2798
2799
2800 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2801
2802 /* Simplify constant conditions.
2803 Only optimize constant conditions when the selected branch
2804 has the same type as the COND_EXPR. This avoids optimizing
2805 away "c ? x : throw", where the throw has a void type.
2806 Note that we cannot throw away the fold-const.c variant nor
2807 this one as we depend on doing this transform before possibly
2808 A ? B : B -> B triggers and the fold-const.c one can optimize
2809 0 ? A : B to B even if A has side-effects. Something
2810 genmatch cannot handle. */
2811 (simplify
2812 (cond INTEGER_CST@0 @1 @2)
2813 (if (integer_zerop (@0))
2814 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2815 @2)
2816 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2817 @1)))
2818 (simplify
2819 (vec_cond VECTOR_CST@0 @1 @2)
2820 (if (integer_all_onesp (@0))
2821 @1
2822 (if (integer_zerop (@0))
2823 @2)))
2824
2825 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2826 be extended. */
2827 /* This pattern implements two kinds simplification:
2828
2829 Case 1)
2830 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2831 1) Conversions are type widening from smaller type.
2832 2) Const c1 equals to c2 after canonicalizing comparison.
2833 3) Comparison has tree code LT, LE, GT or GE.
2834 This specific pattern is needed when (cmp (convert x) c) may not
2835 be simplified by comparison patterns because of multiple uses of
2836 x. It also makes sense here because simplifying across multiple
2837 referred var is always benefitial for complicated cases.
2838
2839 Case 2)
2840 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2841 (for cmp (lt le gt ge eq)
2842 (simplify
2843 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2844 (with
2845 {
2846 tree from_type = TREE_TYPE (@1);
2847 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2848 enum tree_code code = ERROR_MARK;
2849
2850 if (INTEGRAL_TYPE_P (from_type)
2851 && int_fits_type_p (@2, from_type)
2852 && (types_match (c1_type, from_type)
2853 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2854 && (TYPE_UNSIGNED (from_type)
2855 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2856 && (types_match (c2_type, from_type)
2857 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2858 && (TYPE_UNSIGNED (from_type)
2859 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2860 {
2861 if (cmp != EQ_EXPR)
2862 {
2863 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2864 {
2865 /* X <= Y - 1 equals to X < Y. */
2866 if (cmp == LE_EXPR)
2867 code = LT_EXPR;
2868 /* X > Y - 1 equals to X >= Y. */
2869 if (cmp == GT_EXPR)
2870 code = GE_EXPR;
2871 }
2872 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2873 {
2874 /* X < Y + 1 equals to X <= Y. */
2875 if (cmp == LT_EXPR)
2876 code = LE_EXPR;
2877 /* X >= Y + 1 equals to X > Y. */
2878 if (cmp == GE_EXPR)
2879 code = GT_EXPR;
2880 }
2881 if (code != ERROR_MARK
2882 || wi::to_widest (@2) == wi::to_widest (@3))
2883 {
2884 if (cmp == LT_EXPR || cmp == LE_EXPR)
2885 code = MIN_EXPR;
2886 if (cmp == GT_EXPR || cmp == GE_EXPR)
2887 code = MAX_EXPR;
2888 }
2889 }
2890 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2891 else if (int_fits_type_p (@3, from_type))
2892 code = EQ_EXPR;
2893 }
2894 }
2895 (if (code == MAX_EXPR)
2896 (convert (max @1 (convert @2)))
2897 (if (code == MIN_EXPR)
2898 (convert (min @1 (convert @2)))
2899 (if (code == EQ_EXPR)
2900 (convert (cond (eq @1 (convert @3))
2901 (convert:from_type @3) (convert:from_type @2)))))))))
2902
2903 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2904
2905 1) OP is PLUS or MINUS.
2906 2) CMP is LT, LE, GT or GE.
2907 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2908
2909 This pattern also handles special cases like:
2910
2911 A) Operand x is a unsigned to signed type conversion and c1 is
2912 integer zero. In this case,
2913 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2914 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2915 B) Const c1 may not equal to (C3 op' C2). In this case we also
2916 check equality for (c1+1) and (c1-1) by adjusting comparison
2917 code.
2918
2919 TODO: Though signed type is handled by this pattern, it cannot be
2920 simplified at the moment because C standard requires additional
2921 type promotion. In order to match&simplify it here, the IR needs
2922 to be cleaned up by other optimizers, i.e, VRP. */
2923 (for op (plus minus)
2924 (for cmp (lt le gt ge)
2925 (simplify
2926 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2927 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2928 (if (types_match (from_type, to_type)
2929 /* Check if it is special case A). */
2930 || (TYPE_UNSIGNED (from_type)
2931 && !TYPE_UNSIGNED (to_type)
2932 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2933 && integer_zerop (@1)
2934 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2935 (with
2936 {
2937 wi::overflow_type overflow = wi::OVF_NONE;
2938 enum tree_code code, cmp_code = cmp;
2939 wide_int real_c1;
2940 wide_int c1 = wi::to_wide (@1);
2941 wide_int c2 = wi::to_wide (@2);
2942 wide_int c3 = wi::to_wide (@3);
2943 signop sgn = TYPE_SIGN (from_type);
2944
2945 /* Handle special case A), given x of unsigned type:
2946 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2947 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2948 if (!types_match (from_type, to_type))
2949 {
2950 if (cmp_code == LT_EXPR)
2951 cmp_code = GT_EXPR;
2952 if (cmp_code == GE_EXPR)
2953 cmp_code = LE_EXPR;
2954 c1 = wi::max_value (to_type);
2955 }
2956 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2957 compute (c3 op' c2) and check if it equals to c1 with op' being
2958 the inverted operator of op. Make sure overflow doesn't happen
2959 if it is undefined. */
2960 if (op == PLUS_EXPR)
2961 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2962 else
2963 real_c1 = wi::add (c3, c2, sgn, &overflow);
2964
2965 code = cmp_code;
2966 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2967 {
2968 /* Check if c1 equals to real_c1. Boundary condition is handled
2969 by adjusting comparison operation if necessary. */
2970 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2971 && !overflow)
2972 {
2973 /* X <= Y - 1 equals to X < Y. */
2974 if (cmp_code == LE_EXPR)
2975 code = LT_EXPR;
2976 /* X > Y - 1 equals to X >= Y. */
2977 if (cmp_code == GT_EXPR)
2978 code = GE_EXPR;
2979 }
2980 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2981 && !overflow)
2982 {
2983 /* X < Y + 1 equals to X <= Y. */
2984 if (cmp_code == LT_EXPR)
2985 code = LE_EXPR;
2986 /* X >= Y + 1 equals to X > Y. */
2987 if (cmp_code == GE_EXPR)
2988 code = GT_EXPR;
2989 }
2990 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2991 {
2992 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2993 code = MIN_EXPR;
2994 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2995 code = MAX_EXPR;
2996 }
2997 }
2998 }
2999 (if (code == MAX_EXPR)
3000 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3001 { wide_int_to_tree (from_type, c2); })
3002 (if (code == MIN_EXPR)
3003 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3004 { wide_int_to_tree (from_type, c2); })))))))))
3005
3006 (for cnd (cond vec_cond)
3007 /* A ? B : (A ? X : C) -> A ? B : C. */
3008 (simplify
3009 (cnd @0 (cnd @0 @1 @2) @3)
3010 (cnd @0 @1 @3))
3011 (simplify
3012 (cnd @0 @1 (cnd @0 @2 @3))
3013 (cnd @0 @1 @3))
3014 /* A ? B : (!A ? C : X) -> A ? B : C. */
3015 /* ??? This matches embedded conditions open-coded because genmatch
3016 would generate matching code for conditions in separate stmts only.
3017 The following is still important to merge then and else arm cases
3018 from if-conversion. */
3019 (simplify
3020 (cnd @0 @1 (cnd @2 @3 @4))
3021 (if (inverse_conditions_p (@0, @2))
3022 (cnd @0 @1 @3)))
3023 (simplify
3024 (cnd @0 (cnd @1 @2 @3) @4)
3025 (if (inverse_conditions_p (@0, @1))
3026 (cnd @0 @3 @4)))
3027
3028 /* A ? B : B -> B. */
3029 (simplify
3030 (cnd @0 @1 @1)
3031 @1)
3032
3033 /* !A ? B : C -> A ? C : B. */
3034 (simplify
3035 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3036 (cnd @0 @2 @1)))
3037
3038 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3039 return all -1 or all 0 results. */
3040 /* ??? We could instead convert all instances of the vec_cond to negate,
3041 but that isn't necessarily a win on its own. */
3042 (simplify
3043 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3044 (if (VECTOR_TYPE_P (type)
3045 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3046 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3047 && (TYPE_MODE (TREE_TYPE (type))
3048 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3049 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3050
3051 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3052 (simplify
3053 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3054 (if (VECTOR_TYPE_P (type)
3055 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3056 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3057 && (TYPE_MODE (TREE_TYPE (type))
3058 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3059 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3060
3061
3062 /* Simplifications of comparisons. */
3063
3064 /* See if we can reduce the magnitude of a constant involved in a
3065 comparison by changing the comparison code. This is a canonicalization
3066 formerly done by maybe_canonicalize_comparison_1. */
3067 (for cmp (le gt)
3068 acmp (lt ge)
3069 (simplify
3070 (cmp @0 INTEGER_CST@1)
3071 (if (tree_int_cst_sgn (@1) == -1)
3072 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3073 (for cmp (ge lt)
3074 acmp (gt le)
3075 (simplify
3076 (cmp @0 INTEGER_CST@1)
3077 (if (tree_int_cst_sgn (@1) == 1)
3078 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3079
3080
3081 /* We can simplify a logical negation of a comparison to the
3082 inverted comparison. As we cannot compute an expression
3083 operator using invert_tree_comparison we have to simulate
3084 that with expression code iteration. */
3085 (for cmp (tcc_comparison)
3086 icmp (inverted_tcc_comparison)
3087 ncmp (inverted_tcc_comparison_with_nans)
3088 /* Ideally we'd like to combine the following two patterns
3089 and handle some more cases by using
3090 (logical_inverted_value (cmp @0 @1))
3091 here but for that genmatch would need to "inline" that.
3092 For now implement what forward_propagate_comparison did. */
3093 (simplify
3094 (bit_not (cmp @0 @1))
3095 (if (VECTOR_TYPE_P (type)
3096 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3097 /* Comparison inversion may be impossible for trapping math,
3098 invert_tree_comparison will tell us. But we can't use
3099 a computed operator in the replacement tree thus we have
3100 to play the trick below. */
3101 (with { enum tree_code ic = invert_tree_comparison
3102 (cmp, HONOR_NANS (@0)); }
3103 (if (ic == icmp)
3104 (icmp @0 @1)
3105 (if (ic == ncmp)
3106 (ncmp @0 @1))))))
3107 (simplify
3108 (bit_xor (cmp @0 @1) integer_truep)
3109 (with { enum tree_code ic = invert_tree_comparison
3110 (cmp, HONOR_NANS (@0)); }
3111 (if (ic == icmp)
3112 (icmp @0 @1)
3113 (if (ic == ncmp)
3114 (ncmp @0 @1))))))
3115
3116 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3117 ??? The transformation is valid for the other operators if overflow
3118 is undefined for the type, but performing it here badly interacts
3119 with the transformation in fold_cond_expr_with_comparison which
3120 attempts to synthetize ABS_EXPR. */
3121 (for cmp (eq ne)
3122 (for sub (minus pointer_diff)
3123 (simplify
3124 (cmp (sub@2 @0 @1) integer_zerop)
3125 (if (single_use (@2))
3126 (cmp @0 @1)))))
3127
3128 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3129 signed arithmetic case. That form is created by the compiler
3130 often enough for folding it to be of value. One example is in
3131 computing loop trip counts after Operator Strength Reduction. */
3132 (for cmp (simple_comparison)
3133 scmp (swapped_simple_comparison)
3134 (simplify
3135 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3136 /* Handle unfolded multiplication by zero. */
3137 (if (integer_zerop (@1))
3138 (cmp @1 @2)
3139 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3140 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3141 && single_use (@3))
3142 /* If @1 is negative we swap the sense of the comparison. */
3143 (if (tree_int_cst_sgn (@1) < 0)
3144 (scmp @0 @2)
3145 (cmp @0 @2))))))
3146
3147 /* Simplify comparison of something with itself. For IEEE
3148 floating-point, we can only do some of these simplifications. */
3149 (for cmp (eq ge le)
3150 (simplify
3151 (cmp @0 @0)
3152 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3153 || ! HONOR_NANS (@0))
3154 { constant_boolean_node (true, type); }
3155 (if (cmp != EQ_EXPR)
3156 (eq @0 @0)))))
3157 (for cmp (ne gt lt)
3158 (simplify
3159 (cmp @0 @0)
3160 (if (cmp != NE_EXPR
3161 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3162 || ! HONOR_NANS (@0))
3163 { constant_boolean_node (false, type); })))
3164 (for cmp (unle unge uneq)
3165 (simplify
3166 (cmp @0 @0)
3167 { constant_boolean_node (true, type); }))
3168 (for cmp (unlt ungt)
3169 (simplify
3170 (cmp @0 @0)
3171 (unordered @0 @0)))
3172 (simplify
3173 (ltgt @0 @0)
3174 (if (!flag_trapping_math)
3175 { constant_boolean_node (false, type); }))
3176
3177 /* Fold ~X op ~Y as Y op X. */
3178 (for cmp (simple_comparison)
3179 (simplify
3180 (cmp (bit_not@2 @0) (bit_not@3 @1))
3181 (if (single_use (@2) && single_use (@3))
3182 (cmp @1 @0))))
3183
3184 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3185 (for cmp (simple_comparison)
3186 scmp (swapped_simple_comparison)
3187 (simplify
3188 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3189 (if (single_use (@2)
3190 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3191 (scmp @0 (bit_not @1)))))
3192
3193 (for cmp (simple_comparison)
3194 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3195 (simplify
3196 (cmp (convert@2 @0) (convert? @1))
3197 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3198 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3199 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3200 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3201 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3202 (with
3203 {
3204 tree type1 = TREE_TYPE (@1);
3205 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3206 {
3207 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3208 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3209 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3210 type1 = float_type_node;
3211 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3212 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3213 type1 = double_type_node;
3214 }
3215 tree newtype
3216 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3217 ? TREE_TYPE (@0) : type1);
3218 }
3219 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3220 (cmp (convert:newtype @0) (convert:newtype @1))))))
3221
3222 (simplify
3223 (cmp @0 REAL_CST@1)
3224 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3225 (switch
3226 /* a CMP (-0) -> a CMP 0 */
3227 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3228 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3229 /* x != NaN is always true, other ops are always false. */
3230 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3231 && ! HONOR_SNANS (@1))
3232 { constant_boolean_node (cmp == NE_EXPR, type); })
3233 /* Fold comparisons against infinity. */
3234 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3235 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3236 (with
3237 {
3238 REAL_VALUE_TYPE max;
3239 enum tree_code code = cmp;
3240 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3241 if (neg)
3242 code = swap_tree_comparison (code);
3243 }
3244 (switch
3245 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3246 (if (code == GT_EXPR
3247 && !(HONOR_NANS (@0) && flag_trapping_math))
3248 { constant_boolean_node (false, type); })
3249 (if (code == LE_EXPR)
3250 /* x <= +Inf is always true, if we don't care about NaNs. */
3251 (if (! HONOR_NANS (@0))
3252 { constant_boolean_node (true, type); }
3253 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3254 an "invalid" exception. */
3255 (if (!flag_trapping_math)
3256 (eq @0 @0))))
3257 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3258 for == this introduces an exception for x a NaN. */
3259 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3260 || code == GE_EXPR)
3261 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3262 (if (neg)
3263 (lt @0 { build_real (TREE_TYPE (@0), max); })
3264 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3265 /* x < +Inf is always equal to x <= DBL_MAX. */
3266 (if (code == LT_EXPR)
3267 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3268 (if (neg)
3269 (ge @0 { build_real (TREE_TYPE (@0), max); })
3270 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3271 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3272 an exception for x a NaN so use an unordered comparison. */
3273 (if (code == NE_EXPR)
3274 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3275 (if (! HONOR_NANS (@0))
3276 (if (neg)
3277 (ge @0 { build_real (TREE_TYPE (@0), max); })
3278 (le @0 { build_real (TREE_TYPE (@0), max); }))
3279 (if (neg)
3280 (unge @0 { build_real (TREE_TYPE (@0), max); })
3281 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3282
3283 /* If this is a comparison of a real constant with a PLUS_EXPR
3284 or a MINUS_EXPR of a real constant, we can convert it into a
3285 comparison with a revised real constant as long as no overflow
3286 occurs when unsafe_math_optimizations are enabled. */
3287 (if (flag_unsafe_math_optimizations)
3288 (for op (plus minus)
3289 (simplify
3290 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3291 (with
3292 {
3293 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3294 TREE_TYPE (@1), @2, @1);
3295 }
3296 (if (tem && !TREE_OVERFLOW (tem))
3297 (cmp @0 { tem; }))))))
3298
3299 /* Likewise, we can simplify a comparison of a real constant with
3300 a MINUS_EXPR whose first operand is also a real constant, i.e.
3301 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3302 floating-point types only if -fassociative-math is set. */
3303 (if (flag_associative_math)
3304 (simplify
3305 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3306 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3307 (if (tem && !TREE_OVERFLOW (tem))
3308 (cmp { tem; } @1)))))
3309
3310 /* Fold comparisons against built-in math functions. */
3311 (if (flag_unsafe_math_optimizations
3312 && ! flag_errno_math)
3313 (for sq (SQRT)
3314 (simplify
3315 (cmp (sq @0) REAL_CST@1)
3316 (switch
3317 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3318 (switch
3319 /* sqrt(x) < y is always false, if y is negative. */
3320 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3321 { constant_boolean_node (false, type); })
3322 /* sqrt(x) > y is always true, if y is negative and we
3323 don't care about NaNs, i.e. negative values of x. */
3324 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3325 { constant_boolean_node (true, type); })
3326 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3327 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3328 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3329 (switch
3330 /* sqrt(x) < 0 is always false. */
3331 (if (cmp == LT_EXPR)
3332 { constant_boolean_node (false, type); })
3333 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3334 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3335 { constant_boolean_node (true, type); })
3336 /* sqrt(x) <= 0 -> x == 0. */
3337 (if (cmp == LE_EXPR)
3338 (eq @0 @1))
3339 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3340 == or !=. In the last case:
3341
3342 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3343
3344 if x is negative or NaN. Due to -funsafe-math-optimizations,
3345 the results for other x follow from natural arithmetic. */
3346 (cmp @0 @1)))
3347 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3348 (with
3349 {
3350 REAL_VALUE_TYPE c2;
3351 real_arithmetic (&c2, MULT_EXPR,
3352 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3353 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3354 }
3355 (if (REAL_VALUE_ISINF (c2))
3356 /* sqrt(x) > y is x == +Inf, when y is very large. */
3357 (if (HONOR_INFINITIES (@0))
3358 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3359 { constant_boolean_node (false, type); })
3360 /* sqrt(x) > c is the same as x > c*c. */
3361 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3362 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3363 (with
3364 {
3365 REAL_VALUE_TYPE c2;
3366 real_arithmetic (&c2, MULT_EXPR,
3367 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3368 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3369 }
3370 (if (REAL_VALUE_ISINF (c2))
3371 (switch
3372 /* sqrt(x) < y is always true, when y is a very large
3373 value and we don't care about NaNs or Infinities. */
3374 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3375 { constant_boolean_node (true, type); })
3376 /* sqrt(x) < y is x != +Inf when y is very large and we
3377 don't care about NaNs. */
3378 (if (! HONOR_NANS (@0))
3379 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3380 /* sqrt(x) < y is x >= 0 when y is very large and we
3381 don't care about Infinities. */
3382 (if (! HONOR_INFINITIES (@0))
3383 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3384 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3385 (if (GENERIC)
3386 (truth_andif
3387 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3388 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3389 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3390 (if (! HONOR_NANS (@0))
3391 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3392 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3393 (if (GENERIC)
3394 (truth_andif
3395 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3396 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3397 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3398 (simplify
3399 (cmp (sq @0) (sq @1))
3400 (if (! HONOR_NANS (@0))
3401 (cmp @0 @1))))))
3402
3403 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3404 (for cmp (tcc_comparison)
3405 (simplify
3406 (cmp (float@0 @1) (float @2))
3407 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3408 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3409 (with
3410 {
3411 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3412 tree type1 = TREE_TYPE (@1);
3413 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3414 tree type2 = TREE_TYPE (@2);
3415 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3416 }
3417 (if (fmt.can_represent_integral_type_p (type1)
3418 && fmt.can_represent_integral_type_p (type2))
3419 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3420 && type1_signed_p >= type2_signed_p)
3421 (cmp @1 (convert @2))
3422 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3423 && type1_signed_p <= type2_signed_p)
3424 (cmp (convert:type2 @1) @2)
3425 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3426 && type1_signed_p == type2_signed_p)
3427 (cmp @1 @2)))))))))
3428
3429 /* Optimize various special cases of (FTYPE) N CMP CST. */
3430 (for cmp (lt le eq ne ge gt)
3431 icmp (le le eq ne ge ge)
3432 (simplify
3433 (cmp (float @0) REAL_CST@1)
3434 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3435 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3436 (with
3437 {
3438 tree itype = TREE_TYPE (@0);
3439 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3440 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3441 /* Be careful to preserve any potential exceptions due to
3442 NaNs. qNaNs are ok in == or != context.
3443 TODO: relax under -fno-trapping-math or
3444 -fno-signaling-nans. */
3445 bool exception_p
3446 = real_isnan (cst) && (cst->signalling
3447 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3448 }
3449 /* TODO: allow non-fitting itype and SNaNs when
3450 -fno-trapping-math. */
3451 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3452 (with
3453 {
3454 signop isign = TYPE_SIGN (itype);
3455 REAL_VALUE_TYPE imin, imax;
3456 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3457 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3458
3459 REAL_VALUE_TYPE icst;
3460 if (cmp == GT_EXPR || cmp == GE_EXPR)
3461 real_ceil (&icst, fmt, cst);
3462 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3463 real_floor (&icst, fmt, cst);
3464 else
3465 real_trunc (&icst, fmt, cst);
3466
3467 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3468
3469 bool overflow_p = false;
3470 wide_int icst_val
3471 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3472 }
3473 (switch
3474 /* Optimize cases when CST is outside of ITYPE's range. */
3475 (if (real_compare (LT_EXPR, cst, &imin))
3476 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3477 type); })
3478 (if (real_compare (GT_EXPR, cst, &imax))
3479 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3480 type); })
3481 /* Remove cast if CST is an integer representable by ITYPE. */
3482 (if (cst_int_p)
3483 (cmp @0 { gcc_assert (!overflow_p);
3484 wide_int_to_tree (itype, icst_val); })
3485 )
3486 /* When CST is fractional, optimize
3487 (FTYPE) N == CST -> 0
3488 (FTYPE) N != CST -> 1. */
3489 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3490 { constant_boolean_node (cmp == NE_EXPR, type); })
3491 /* Otherwise replace with sensible integer constant. */
3492 (with
3493 {
3494 gcc_checking_assert (!overflow_p);
3495 }
3496 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3497
3498 /* Fold A /[ex] B CMP C to A CMP B * C. */
3499 (for cmp (eq ne)
3500 (simplify
3501 (cmp (exact_div @0 @1) INTEGER_CST@2)
3502 (if (!integer_zerop (@1))
3503 (if (wi::to_wide (@2) == 0)
3504 (cmp @0 @2)
3505 (if (TREE_CODE (@1) == INTEGER_CST)
3506 (with
3507 {
3508 wi::overflow_type ovf;
3509 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3510 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3511 }
3512 (if (ovf)
3513 { constant_boolean_node (cmp == NE_EXPR, type); }
3514 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3515 (for cmp (lt le gt ge)
3516 (simplify
3517 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3518 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3519 (with
3520 {
3521 wi::overflow_type ovf;
3522 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3523 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3524 }
3525 (if (ovf)
3526 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3527 TYPE_SIGN (TREE_TYPE (@2)))
3528 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3529 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3530
3531 /* Unordered tests if either argument is a NaN. */
3532 (simplify
3533 (bit_ior (unordered @0 @0) (unordered @1 @1))
3534 (if (types_match (@0, @1))
3535 (unordered @0 @1)))
3536 (simplify
3537 (bit_and (ordered @0 @0) (ordered @1 @1))
3538 (if (types_match (@0, @1))
3539 (ordered @0 @1)))
3540 (simplify
3541 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3542 @2)
3543 (simplify
3544 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3545 @2)
3546
3547 /* Simple range test simplifications. */
3548 /* A < B || A >= B -> true. */
3549 (for test1 (lt le le le ne ge)
3550 test2 (ge gt ge ne eq ne)
3551 (simplify
3552 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3553 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3554 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3555 { constant_boolean_node (true, type); })))
3556 /* A < B && A >= B -> false. */
3557 (for test1 (lt lt lt le ne eq)
3558 test2 (ge gt eq gt eq gt)
3559 (simplify
3560 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3561 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3562 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3563 { constant_boolean_node (false, type); })))
3564
3565 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3566 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3567
3568 Note that comparisons
3569 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3570 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3571 will be canonicalized to above so there's no need to
3572 consider them here.
3573 */
3574
3575 (for cmp (le gt)
3576 eqcmp (eq ne)
3577 (simplify
3578 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3579 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3580 (with
3581 {
3582 tree ty = TREE_TYPE (@0);
3583 unsigned prec = TYPE_PRECISION (ty);
3584 wide_int mask = wi::to_wide (@2, prec);
3585 wide_int rhs = wi::to_wide (@3, prec);
3586 signop sgn = TYPE_SIGN (ty);
3587 }
3588 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3589 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3590 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3591 { build_zero_cst (ty); }))))))
3592
3593 /* -A CMP -B -> B CMP A. */
3594 (for cmp (tcc_comparison)
3595 scmp (swapped_tcc_comparison)
3596 (simplify
3597 (cmp (negate @0) (negate @1))
3598 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3599 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3600 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3601 (scmp @0 @1)))
3602 (simplify
3603 (cmp (negate @0) CONSTANT_CLASS_P@1)
3604 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3605 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3606 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3607 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3608 (if (tem && !TREE_OVERFLOW (tem))
3609 (scmp @0 { tem; }))))))
3610
3611 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3612 (for op (eq ne)
3613 (simplify
3614 (op (abs @0) zerop@1)
3615 (op @0 @1)))
3616
3617 /* From fold_sign_changed_comparison and fold_widened_comparison.
3618 FIXME: the lack of symmetry is disturbing. */
3619 (for cmp (simple_comparison)
3620 (simplify
3621 (cmp (convert@0 @00) (convert?@1 @10))
3622 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3623 /* Disable this optimization if we're casting a function pointer
3624 type on targets that require function pointer canonicalization. */
3625 && !(targetm.have_canonicalize_funcptr_for_compare ()
3626 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3627 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3628 || (POINTER_TYPE_P (TREE_TYPE (@10))
3629 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3630 && single_use (@0))
3631 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3632 && (TREE_CODE (@10) == INTEGER_CST
3633 || @1 != @10)
3634 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3635 || cmp == NE_EXPR
3636 || cmp == EQ_EXPR)
3637 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3638 /* ??? The special-casing of INTEGER_CST conversion was in the original
3639 code and here to avoid a spurious overflow flag on the resulting
3640 constant which fold_convert produces. */
3641 (if (TREE_CODE (@1) == INTEGER_CST)
3642 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3643 TREE_OVERFLOW (@1)); })
3644 (cmp @00 (convert @1)))
3645
3646 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3647 /* If possible, express the comparison in the shorter mode. */
3648 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3649 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3650 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3651 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3652 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3653 || ((TYPE_PRECISION (TREE_TYPE (@00))
3654 >= TYPE_PRECISION (TREE_TYPE (@10)))
3655 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3656 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3657 || (TREE_CODE (@10) == INTEGER_CST
3658 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3659 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3660 (cmp @00 (convert @10))
3661 (if (TREE_CODE (@10) == INTEGER_CST
3662 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3663 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3664 (with
3665 {
3666 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3667 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3668 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3669 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3670 }
3671 (if (above || below)
3672 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3673 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3674 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3675 { constant_boolean_node (above ? true : false, type); }
3676 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3677 { constant_boolean_node (above ? false : true, type); }))))))))))))
3678
3679 (for cmp (eq ne)
3680 /* A local variable can never be pointed to by
3681 the default SSA name of an incoming parameter.
3682 SSA names are canonicalized to 2nd place. */
3683 (simplify
3684 (cmp addr@0 SSA_NAME@1)
3685 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3686 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3687 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3688 (if (TREE_CODE (base) == VAR_DECL
3689 && auto_var_in_fn_p (base, current_function_decl))
3690 (if (cmp == NE_EXPR)
3691 { constant_boolean_node (true, type); }
3692 { constant_boolean_node (false, type); }))))))
3693
3694 /* Equality compare simplifications from fold_binary */
3695 (for cmp (eq ne)
3696
3697 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3698 Similarly for NE_EXPR. */
3699 (simplify
3700 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3701 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3702 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3703 { constant_boolean_node (cmp == NE_EXPR, type); }))
3704
3705 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3706 (simplify
3707 (cmp (bit_xor @0 @1) integer_zerop)
3708 (cmp @0 @1))
3709
3710 /* (X ^ Y) == Y becomes X == 0.
3711 Likewise (X ^ Y) == X becomes Y == 0. */
3712 (simplify
3713 (cmp:c (bit_xor:c @0 @1) @0)
3714 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3715
3716 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3717 (simplify
3718 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3719 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3720 (cmp @0 (bit_xor @1 (convert @2)))))
3721
3722 (simplify
3723 (cmp (convert? addr@0) integer_zerop)
3724 (if (tree_single_nonzero_warnv_p (@0, NULL))
3725 { constant_boolean_node (cmp == NE_EXPR, type); })))
3726
3727 /* If we have (A & C) == C where C is a power of 2, convert this into
3728 (A & C) != 0. Similarly for NE_EXPR. */
3729 (for cmp (eq ne)
3730 icmp (ne eq)
3731 (simplify
3732 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3733 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3734
3735 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3736 convert this into a shift followed by ANDing with D. */
3737 (simplify
3738 (cond
3739 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3740 INTEGER_CST@2 integer_zerop)
3741 (if (integer_pow2p (@2))
3742 (with {
3743 int shift = (wi::exact_log2 (wi::to_wide (@2))
3744 - wi::exact_log2 (wi::to_wide (@1)));
3745 }
3746 (if (shift > 0)
3747 (bit_and
3748 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3749 (bit_and
3750 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3751 @2)))))
3752
3753 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3754 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3755 (for cmp (eq ne)
3756 ncmp (ge lt)
3757 (simplify
3758 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3759 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3760 && type_has_mode_precision_p (TREE_TYPE (@0))
3761 && element_precision (@2) >= element_precision (@0)
3762 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3763 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3764 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3765
3766 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3767 this into a right shift or sign extension followed by ANDing with C. */
3768 (simplify
3769 (cond
3770 (lt @0 integer_zerop)
3771 INTEGER_CST@1 integer_zerop)
3772 (if (integer_pow2p (@1)
3773 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3774 (with {
3775 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3776 }
3777 (if (shift >= 0)
3778 (bit_and
3779 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3780 @1)
3781 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3782 sign extension followed by AND with C will achieve the effect. */
3783 (bit_and (convert @0) @1)))))
3784
3785 /* When the addresses are not directly of decls compare base and offset.
3786 This implements some remaining parts of fold_comparison address
3787 comparisons but still no complete part of it. Still it is good
3788 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3789 (for cmp (simple_comparison)
3790 (simplify
3791 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3792 (with
3793 {
3794 poly_int64 off0, off1;
3795 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3796 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3797 if (base0 && TREE_CODE (base0) == MEM_REF)
3798 {
3799 off0 += mem_ref_offset (base0).force_shwi ();
3800 base0 = TREE_OPERAND (base0, 0);
3801 }
3802 if (base1 && TREE_CODE (base1) == MEM_REF)
3803 {
3804 off1 += mem_ref_offset (base1).force_shwi ();
3805 base1 = TREE_OPERAND (base1, 0);
3806 }
3807 }
3808 (if (base0 && base1)
3809 (with
3810 {
3811 int equal = 2;
3812 /* Punt in GENERIC on variables with value expressions;
3813 the value expressions might point to fields/elements
3814 of other vars etc. */
3815 if (GENERIC
3816 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3817 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3818 ;
3819 else if (decl_in_symtab_p (base0)
3820 && decl_in_symtab_p (base1))
3821 equal = symtab_node::get_create (base0)
3822 ->equal_address_to (symtab_node::get_create (base1));
3823 else if ((DECL_P (base0)
3824 || TREE_CODE (base0) == SSA_NAME
3825 || TREE_CODE (base0) == STRING_CST)
3826 && (DECL_P (base1)
3827 || TREE_CODE (base1) == SSA_NAME
3828 || TREE_CODE (base1) == STRING_CST))
3829 equal = (base0 == base1);
3830 }
3831 (if (equal == 1
3832 && (cmp == EQ_EXPR || cmp == NE_EXPR
3833 /* If the offsets are equal we can ignore overflow. */
3834 || known_eq (off0, off1)
3835 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3836 /* Or if we compare using pointers to decls or strings. */
3837 || (POINTER_TYPE_P (TREE_TYPE (@2))
3838 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3839 (switch
3840 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3841 { constant_boolean_node (known_eq (off0, off1), type); })
3842 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3843 { constant_boolean_node (known_ne (off0, off1), type); })
3844 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3845 { constant_boolean_node (known_lt (off0, off1), type); })
3846 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3847 { constant_boolean_node (known_le (off0, off1), type); })
3848 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3849 { constant_boolean_node (known_ge (off0, off1), type); })
3850 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3851 { constant_boolean_node (known_gt (off0, off1), type); }))
3852 (if (equal == 0
3853 && DECL_P (base0) && DECL_P (base1)
3854 /* If we compare this as integers require equal offset. */
3855 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3856 || known_eq (off0, off1)))
3857 (switch
3858 (if (cmp == EQ_EXPR)
3859 { constant_boolean_node (false, type); })
3860 (if (cmp == NE_EXPR)
3861 { constant_boolean_node (true, type); })))))))))
3862
3863 /* Simplify pointer equality compares using PTA. */
3864 (for neeq (ne eq)
3865 (simplify
3866 (neeq @0 @1)
3867 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3868 && ptrs_compare_unequal (@0, @1))
3869 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3870
3871 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3872 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3873 Disable the transform if either operand is pointer to function.
3874 This broke pr22051-2.c for arm where function pointer
3875 canonicalizaion is not wanted. */
3876
3877 (for cmp (ne eq)
3878 (simplify
3879 (cmp (convert @0) INTEGER_CST@1)
3880 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3881 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3882 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3883 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3884 && POINTER_TYPE_P (TREE_TYPE (@1))
3885 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3886 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3887 (cmp @0 (convert @1)))))
3888
3889 /* Non-equality compare simplifications from fold_binary */
3890 (for cmp (lt gt le ge)
3891 /* Comparisons with the highest or lowest possible integer of
3892 the specified precision will have known values. */
3893 (simplify
3894 (cmp (convert?@2 @0) INTEGER_CST@1)
3895 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3896 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3897 (with
3898 {
3899 tree arg1_type = TREE_TYPE (@1);
3900 unsigned int prec = TYPE_PRECISION (arg1_type);
3901 wide_int max = wi::max_value (arg1_type);
3902 wide_int signed_max = wi::max_value (prec, SIGNED);
3903 wide_int min = wi::min_value (arg1_type);
3904 }
3905 (switch
3906 (if (wi::to_wide (@1) == max)
3907 (switch
3908 (if (cmp == GT_EXPR)
3909 { constant_boolean_node (false, type); })
3910 (if (cmp == GE_EXPR)
3911 (eq @2 @1))
3912 (if (cmp == LE_EXPR)
3913 { constant_boolean_node (true, type); })
3914 (if (cmp == LT_EXPR)
3915 (ne @2 @1))))
3916 (if (wi::to_wide (@1) == min)
3917 (switch
3918 (if (cmp == LT_EXPR)
3919 { constant_boolean_node (false, type); })
3920 (if (cmp == LE_EXPR)
3921 (eq @2 @1))
3922 (if (cmp == GE_EXPR)
3923 { constant_boolean_node (true, type); })
3924 (if (cmp == GT_EXPR)
3925 (ne @2 @1))))
3926 (if (wi::to_wide (@1) == max - 1)
3927 (switch
3928 (if (cmp == GT_EXPR)
3929 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3930 (if (cmp == LE_EXPR)
3931 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3932 (if (wi::to_wide (@1) == min + 1)
3933 (switch
3934 (if (cmp == GE_EXPR)
3935 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3936 (if (cmp == LT_EXPR)
3937 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3938 (if (wi::to_wide (@1) == signed_max
3939 && TYPE_UNSIGNED (arg1_type)
3940 /* We will flip the signedness of the comparison operator
3941 associated with the mode of @1, so the sign bit is
3942 specified by this mode. Check that @1 is the signed
3943 max associated with this sign bit. */
3944 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3945 /* signed_type does not work on pointer types. */
3946 && INTEGRAL_TYPE_P (arg1_type))
3947 /* The following case also applies to X < signed_max+1
3948 and X >= signed_max+1 because previous transformations. */
3949 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3950 (with { tree st = signed_type_for (arg1_type); }
3951 (if (cmp == LE_EXPR)
3952 (ge (convert:st @0) { build_zero_cst (st); })
3953 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3954
3955 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3956 /* If the second operand is NaN, the result is constant. */
3957 (simplify
3958 (cmp @0 REAL_CST@1)
3959 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3960 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3961 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3962 ? false : true, type); })))
3963
3964 /* bool_var != 0 becomes bool_var. */
3965 (simplify
3966 (ne @0 integer_zerop)
3967 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3968 && types_match (type, TREE_TYPE (@0)))
3969 (non_lvalue @0)))
3970 /* bool_var == 1 becomes bool_var. */
3971 (simplify
3972 (eq @0 integer_onep)
3973 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3974 && types_match (type, TREE_TYPE (@0)))
3975 (non_lvalue @0)))
3976 /* Do not handle
3977 bool_var == 0 becomes !bool_var or
3978 bool_var != 1 becomes !bool_var
3979 here because that only is good in assignment context as long
3980 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3981 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3982 clearly less optimal and which we'll transform again in forwprop. */
3983
3984 /* When one argument is a constant, overflow detection can be simplified.
3985 Currently restricted to single use so as not to interfere too much with
3986 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3987 A + CST CMP A -> A CMP' CST' */
3988 (for cmp (lt le ge gt)
3989 out (gt gt le le)
3990 (simplify
3991 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3992 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3993 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3994 && wi::to_wide (@1) != 0
3995 && single_use (@2))
3996 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3997 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3998 wi::max_value (prec, UNSIGNED)
3999 - wi::to_wide (@1)); })))))
4000
4001 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4002 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4003 expects the long form, so we restrict the transformation for now. */
4004 (for cmp (gt le)
4005 (simplify
4006 (cmp:c (minus@2 @0 @1) @0)
4007 (if (single_use (@2)
4008 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4009 && TYPE_UNSIGNED (TREE_TYPE (@0))
4010 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4011 (cmp @1 @0))))
4012
4013 /* Testing for overflow is unnecessary if we already know the result. */
4014 /* A - B > A */
4015 (for cmp (gt le)
4016 out (ne eq)
4017 (simplify
4018 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4019 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4020 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4021 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4022 /* A + B < A */
4023 (for cmp (lt ge)
4024 out (ne eq)
4025 (simplify
4026 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4027 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4028 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4029 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4030
4031 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4032 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4033 (for cmp (lt ge)
4034 out (ne eq)
4035 (simplify
4036 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4037 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4038 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4039 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4040
4041 /* Simplification of math builtins. These rules must all be optimizations
4042 as well as IL simplifications. If there is a possibility that the new
4043 form could be a pessimization, the rule should go in the canonicalization
4044 section that follows this one.
4045
4046 Rules can generally go in this section if they satisfy one of
4047 the following:
4048
4049 - the rule describes an identity
4050
4051 - the rule replaces calls with something as simple as addition or
4052 multiplication
4053
4054 - the rule contains unary calls only and simplifies the surrounding
4055 arithmetic. (The idea here is to exclude non-unary calls in which
4056 one operand is constant and in which the call is known to be cheap
4057 when the operand has that value.) */
4058
4059 (if (flag_unsafe_math_optimizations)
4060 /* Simplify sqrt(x) * sqrt(x) -> x. */
4061 (simplify
4062 (mult (SQRT_ALL@1 @0) @1)
4063 (if (!HONOR_SNANS (type))
4064 @0))
4065
4066 (for op (plus minus)
4067 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4068 (simplify
4069 (op (rdiv @0 @1)
4070 (rdiv @2 @1))
4071 (rdiv (op @0 @2) @1)))
4072
4073 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4074 (for root (SQRT CBRT)
4075 (simplify
4076 (mult (root:s @0) (root:s @1))
4077 (root (mult @0 @1))))
4078
4079 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4080 (for exps (EXP EXP2 EXP10 POW10)
4081 (simplify
4082 (mult (exps:s @0) (exps:s @1))
4083 (exps (plus @0 @1))))
4084
4085 /* Simplify a/root(b/c) into a*root(c/b). */
4086 (for root (SQRT CBRT)
4087 (simplify
4088 (rdiv @0 (root:s (rdiv:s @1 @2)))
4089 (mult @0 (root (rdiv @2 @1)))))
4090
4091 /* Simplify x/expN(y) into x*expN(-y). */
4092 (for exps (EXP EXP2 EXP10 POW10)
4093 (simplify
4094 (rdiv @0 (exps:s @1))
4095 (mult @0 (exps (negate @1)))))
4096
4097 (for logs (LOG LOG2 LOG10 LOG10)
4098 exps (EXP EXP2 EXP10 POW10)
4099 /* logN(expN(x)) -> x. */
4100 (simplify
4101 (logs (exps @0))
4102 @0)
4103 /* expN(logN(x)) -> x. */
4104 (simplify
4105 (exps (logs @0))
4106 @0))
4107
4108 /* Optimize logN(func()) for various exponential functions. We
4109 want to determine the value "x" and the power "exponent" in
4110 order to transform logN(x**exponent) into exponent*logN(x). */
4111 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4112 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4113 (simplify
4114 (logs (exps @0))
4115 (if (SCALAR_FLOAT_TYPE_P (type))
4116 (with {
4117 tree x;
4118 switch (exps)
4119 {
4120 CASE_CFN_EXP:
4121 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4122 x = build_real_truncate (type, dconst_e ());
4123 break;
4124 CASE_CFN_EXP2:
4125 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4126 x = build_real (type, dconst2);
4127 break;
4128 CASE_CFN_EXP10:
4129 CASE_CFN_POW10:
4130 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4131 {
4132 REAL_VALUE_TYPE dconst10;
4133 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4134 x = build_real (type, dconst10);
4135 }
4136 break;
4137 default:
4138 gcc_unreachable ();
4139 }
4140 }
4141 (mult (logs { x; }) @0)))))
4142
4143 (for logs (LOG LOG
4144 LOG2 LOG2
4145 LOG10 LOG10)
4146 exps (SQRT CBRT)
4147 (simplify
4148 (logs (exps @0))
4149 (if (SCALAR_FLOAT_TYPE_P (type))
4150 (with {
4151 tree x;
4152 switch (exps)
4153 {
4154 CASE_CFN_SQRT:
4155 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4156 x = build_real (type, dconsthalf);
4157 break;
4158 CASE_CFN_CBRT:
4159 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4160 x = build_real_truncate (type, dconst_third ());
4161 break;
4162 default:
4163 gcc_unreachable ();
4164 }
4165 }
4166 (mult { x; } (logs @0))))))
4167
4168 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4169 (for logs (LOG LOG2 LOG10)
4170 pows (POW)
4171 (simplify
4172 (logs (pows @0 @1))
4173 (mult @1 (logs @0))))
4174
4175 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4176 or if C is a positive power of 2,
4177 pow(C,x) -> exp2(log2(C)*x). */
4178 #if GIMPLE
4179 (for pows (POW)
4180 exps (EXP)
4181 logs (LOG)
4182 exp2s (EXP2)
4183 log2s (LOG2)
4184 (simplify
4185 (pows REAL_CST@0 @1)
4186 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4187 && real_isfinite (TREE_REAL_CST_PTR (@0))
4188 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4189 the use_exp2 case until after vectorization. It seems actually
4190 beneficial for all constants to postpone this until later,
4191 because exp(log(C)*x), while faster, will have worse precision
4192 and if x folds into a constant too, that is unnecessary
4193 pessimization. */
4194 && canonicalize_math_after_vectorization_p ())
4195 (with {
4196 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4197 bool use_exp2 = false;
4198 if (targetm.libc_has_function (function_c99_misc)
4199 && value->cl == rvc_normal)
4200 {
4201 REAL_VALUE_TYPE frac_rvt = *value;
4202 SET_REAL_EXP (&frac_rvt, 1);
4203 if (real_equal (&frac_rvt, &dconst1))
4204 use_exp2 = true;
4205 }
4206 }
4207 (if (!use_exp2)
4208 (if (optimize_pow_to_exp (@0, @1))
4209 (exps (mult (logs @0) @1)))
4210 (exp2s (mult (log2s @0) @1)))))))
4211 #endif
4212
4213 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4214 (for pows (POW)
4215 exps (EXP EXP2 EXP10 POW10)
4216 logs (LOG LOG2 LOG10 LOG10)
4217 (simplify
4218 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4219 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4220 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4221 (exps (plus (mult (logs @0) @1) @2)))))
4222
4223 (for sqrts (SQRT)
4224 cbrts (CBRT)
4225 pows (POW)
4226 exps (EXP EXP2 EXP10 POW10)
4227 /* sqrt(expN(x)) -> expN(x*0.5). */
4228 (simplify
4229 (sqrts (exps @0))
4230 (exps (mult @0 { build_real (type, dconsthalf); })))
4231 /* cbrt(expN(x)) -> expN(x/3). */
4232 (simplify
4233 (cbrts (exps @0))
4234 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4235 /* pow(expN(x), y) -> expN(x*y). */
4236 (simplify
4237 (pows (exps @0) @1)
4238 (exps (mult @0 @1))))
4239
4240 /* tan(atan(x)) -> x. */
4241 (for tans (TAN)
4242 atans (ATAN)
4243 (simplify
4244 (tans (atans @0))
4245 @0)))
4246
4247 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4248 (for sins (SIN)
4249 atans (ATAN)
4250 sqrts (SQRT)
4251 copysigns (COPYSIGN)
4252 (simplify
4253 (sins (atans:s @0))
4254 (with
4255 {
4256 REAL_VALUE_TYPE r_cst;
4257 build_sinatan_real (&r_cst, type);
4258 tree t_cst = build_real (type, r_cst);
4259 tree t_one = build_one_cst (type);
4260 }
4261 (if (SCALAR_FLOAT_TYPE_P (type))
4262 (cond (le (abs @0) { t_cst; })
4263 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4264 (copysigns { t_one; } @0))))))
4265
4266 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4267 (for coss (COS)
4268 atans (ATAN)
4269 sqrts (SQRT)
4270 copysigns (COPYSIGN)
4271 (simplify
4272 (coss (atans:s @0))
4273 (with
4274 {
4275 REAL_VALUE_TYPE r_cst;
4276 build_sinatan_real (&r_cst, type);
4277 tree t_cst = build_real (type, r_cst);
4278 tree t_one = build_one_cst (type);
4279 tree t_zero = build_zero_cst (type);
4280 }
4281 (if (SCALAR_FLOAT_TYPE_P (type))
4282 (cond (le (abs @0) { t_cst; })
4283 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4284 (copysigns { t_zero; } @0))))))
4285
4286 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4287 (simplify
4288 (CABS (complex:C @0 real_zerop@1))
4289 (abs @0))
4290
4291 /* trunc(trunc(x)) -> trunc(x), etc. */
4292 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4293 (simplify
4294 (fns (fns @0))
4295 (fns @0)))
4296 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4297 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4298 (simplify
4299 (fns integer_valued_real_p@0)
4300 @0))
4301
4302 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4303 (simplify
4304 (HYPOT:c @0 real_zerop@1)
4305 (abs @0))
4306
4307 /* pow(1,x) -> 1. */
4308 (simplify
4309 (POW real_onep@0 @1)
4310 @0)
4311
4312 (simplify
4313 /* copysign(x,x) -> x. */
4314 (COPYSIGN_ALL @0 @0)
4315 @0)
4316
4317 (simplify
4318 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4319 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4320 (abs @0))
4321
4322 (for scale (LDEXP SCALBN SCALBLN)
4323 /* ldexp(0, x) -> 0. */
4324 (simplify
4325 (scale real_zerop@0 @1)
4326 @0)
4327 /* ldexp(x, 0) -> x. */
4328 (simplify
4329 (scale @0 integer_zerop@1)
4330 @0)
4331 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4332 (simplify
4333 (scale REAL_CST@0 @1)
4334 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4335 @0)))
4336
4337 /* Canonicalization of sequences of math builtins. These rules represent
4338 IL simplifications but are not necessarily optimizations.
4339
4340 The sincos pass is responsible for picking "optimal" implementations
4341 of math builtins, which may be more complicated and can sometimes go
4342 the other way, e.g. converting pow into a sequence of sqrts.
4343 We only want to do these canonicalizations before the pass has run. */
4344
4345 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4346 /* Simplify tan(x) * cos(x) -> sin(x). */
4347 (simplify
4348 (mult:c (TAN:s @0) (COS:s @0))
4349 (SIN @0))
4350
4351 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4352 (simplify
4353 (mult:c @0 (POW:s @0 REAL_CST@1))
4354 (if (!TREE_OVERFLOW (@1))
4355 (POW @0 (plus @1 { build_one_cst (type); }))))
4356
4357 /* Simplify sin(x) / cos(x) -> tan(x). */
4358 (simplify
4359 (rdiv (SIN:s @0) (COS:s @0))
4360 (TAN @0))
4361
4362 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4363 (simplify
4364 (rdiv (COS:s @0) (SIN:s @0))
4365 (rdiv { build_one_cst (type); } (TAN @0)))
4366
4367 /* Simplify sin(x) / tan(x) -> cos(x). */
4368 (simplify
4369 (rdiv (SIN:s @0) (TAN:s @0))
4370 (if (! HONOR_NANS (@0)
4371 && ! HONOR_INFINITIES (@0))
4372 (COS @0)))
4373
4374 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4375 (simplify
4376 (rdiv (TAN:s @0) (SIN:s @0))
4377 (if (! HONOR_NANS (@0)
4378 && ! HONOR_INFINITIES (@0))
4379 (rdiv { build_one_cst (type); } (COS @0))))
4380
4381 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4382 (simplify
4383 (mult (POW:s @0 @1) (POW:s @0 @2))
4384 (POW @0 (plus @1 @2)))
4385
4386 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4387 (simplify
4388 (mult (POW:s @0 @1) (POW:s @2 @1))
4389 (POW (mult @0 @2) @1))
4390
4391 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4392 (simplify
4393 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4394 (POWI (mult @0 @2) @1))
4395
4396 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4397 (simplify
4398 (rdiv (POW:s @0 REAL_CST@1) @0)
4399 (if (!TREE_OVERFLOW (@1))
4400 (POW @0 (minus @1 { build_one_cst (type); }))))
4401
4402 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4403 (simplify
4404 (rdiv @0 (POW:s @1 @2))
4405 (mult @0 (POW @1 (negate @2))))
4406
4407 (for sqrts (SQRT)
4408 cbrts (CBRT)
4409 pows (POW)
4410 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4411 (simplify
4412 (sqrts (sqrts @0))
4413 (pows @0 { build_real (type, dconst_quarter ()); }))
4414 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4415 (simplify
4416 (sqrts (cbrts @0))
4417 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4418 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4419 (simplify
4420 (cbrts (sqrts @0))
4421 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4422 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4423 (simplify
4424 (cbrts (cbrts tree_expr_nonnegative_p@0))
4425 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4426 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4427 (simplify
4428 (sqrts (pows @0 @1))
4429 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4430 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4431 (simplify
4432 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4433 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4434 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4435 (simplify
4436 (pows (sqrts @0) @1)
4437 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4438 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4439 (simplify
4440 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4441 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4442 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4443 (simplify
4444 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4445 (pows @0 (mult @1 @2))))
4446
4447 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4448 (simplify
4449 (CABS (complex @0 @0))
4450 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4451
4452 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4453 (simplify
4454 (HYPOT @0 @0)
4455 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4456
4457 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4458 (for cexps (CEXP)
4459 exps (EXP)
4460 cexpis (CEXPI)
4461 (simplify
4462 (cexps compositional_complex@0)
4463 (if (targetm.libc_has_function (function_c99_math_complex))
4464 (complex
4465 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4466 (mult @1 (imagpart @2)))))))
4467
4468 (if (canonicalize_math_p ())
4469 /* floor(x) -> trunc(x) if x is nonnegative. */
4470 (for floors (FLOOR_ALL)
4471 truncs (TRUNC_ALL)
4472 (simplify
4473 (floors tree_expr_nonnegative_p@0)
4474 (truncs @0))))
4475
4476 (match double_value_p
4477 @0
4478 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4479 (for froms (BUILT_IN_TRUNCL
4480 BUILT_IN_FLOORL
4481 BUILT_IN_CEILL
4482 BUILT_IN_ROUNDL
4483 BUILT_IN_NEARBYINTL
4484 BUILT_IN_RINTL)
4485 tos (BUILT_IN_TRUNC
4486 BUILT_IN_FLOOR
4487 BUILT_IN_CEIL
4488 BUILT_IN_ROUND
4489 BUILT_IN_NEARBYINT
4490 BUILT_IN_RINT)
4491 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4492 (if (optimize && canonicalize_math_p ())
4493 (simplify
4494 (froms (convert double_value_p@0))
4495 (convert (tos @0)))))
4496
4497 (match float_value_p
4498 @0
4499 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4500 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4501 BUILT_IN_FLOORL BUILT_IN_FLOOR
4502 BUILT_IN_CEILL BUILT_IN_CEIL
4503 BUILT_IN_ROUNDL BUILT_IN_ROUND
4504 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4505 BUILT_IN_RINTL BUILT_IN_RINT)
4506 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4507 BUILT_IN_FLOORF BUILT_IN_FLOORF
4508 BUILT_IN_CEILF BUILT_IN_CEILF
4509 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4510 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4511 BUILT_IN_RINTF BUILT_IN_RINTF)
4512 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4513 if x is a float. */
4514 (if (optimize && canonicalize_math_p ()
4515 && targetm.libc_has_function (function_c99_misc))
4516 (simplify
4517 (froms (convert float_value_p@0))
4518 (convert (tos @0)))))
4519
4520 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4521 tos (XFLOOR XCEIL XROUND XRINT)
4522 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4523 (if (optimize && canonicalize_math_p ())
4524 (simplify
4525 (froms (convert double_value_p@0))
4526 (tos @0))))
4527
4528 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4529 XFLOOR XCEIL XROUND XRINT)
4530 tos (XFLOORF XCEILF XROUNDF XRINTF)
4531 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4532 if x is a float. */
4533 (if (optimize && canonicalize_math_p ())
4534 (simplify
4535 (froms (convert float_value_p@0))
4536 (tos @0))))
4537
4538 (if (canonicalize_math_p ())
4539 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4540 (for floors (IFLOOR LFLOOR LLFLOOR)
4541 (simplify
4542 (floors tree_expr_nonnegative_p@0)
4543 (fix_trunc @0))))
4544
4545 (if (canonicalize_math_p ())
4546 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4547 (for fns (IFLOOR LFLOOR LLFLOOR
4548 ICEIL LCEIL LLCEIL
4549 IROUND LROUND LLROUND)
4550 (simplify
4551 (fns integer_valued_real_p@0)
4552 (fix_trunc @0)))
4553 (if (!flag_errno_math)
4554 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4555 (for rints (IRINT LRINT LLRINT)
4556 (simplify
4557 (rints integer_valued_real_p@0)
4558 (fix_trunc @0)))))
4559
4560 (if (canonicalize_math_p ())
4561 (for ifn (IFLOOR ICEIL IROUND IRINT)
4562 lfn (LFLOOR LCEIL LROUND LRINT)
4563 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4564 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4565 sizeof (int) == sizeof (long). */
4566 (if (TYPE_PRECISION (integer_type_node)
4567 == TYPE_PRECISION (long_integer_type_node))
4568 (simplify
4569 (ifn @0)
4570 (lfn:long_integer_type_node @0)))
4571 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4572 sizeof (long long) == sizeof (long). */
4573 (if (TYPE_PRECISION (long_long_integer_type_node)
4574 == TYPE_PRECISION (long_integer_type_node))
4575 (simplify
4576 (llfn @0)
4577 (lfn:long_integer_type_node @0)))))
4578
4579 /* cproj(x) -> x if we're ignoring infinities. */
4580 (simplify
4581 (CPROJ @0)
4582 (if (!HONOR_INFINITIES (type))
4583 @0))
4584
4585 /* If the real part is inf and the imag part is known to be
4586 nonnegative, return (inf + 0i). */
4587 (simplify
4588 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4589 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4590 { build_complex_inf (type, false); }))
4591
4592 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4593 (simplify
4594 (CPROJ (complex @0 REAL_CST@1))
4595 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4596 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4597
4598 (for pows (POW)
4599 sqrts (SQRT)
4600 cbrts (CBRT)
4601 (simplify
4602 (pows @0 REAL_CST@1)
4603 (with {
4604 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4605 REAL_VALUE_TYPE tmp;
4606 }
4607 (switch
4608 /* pow(x,0) -> 1. */
4609 (if (real_equal (value, &dconst0))
4610 { build_real (type, dconst1); })
4611 /* pow(x,1) -> x. */
4612 (if (real_equal (value, &dconst1))
4613 @0)
4614 /* pow(x,-1) -> 1/x. */
4615 (if (real_equal (value, &dconstm1))
4616 (rdiv { build_real (type, dconst1); } @0))
4617 /* pow(x,0.5) -> sqrt(x). */
4618 (if (flag_unsafe_math_optimizations
4619 && canonicalize_math_p ()
4620 && real_equal (value, &dconsthalf))
4621 (sqrts @0))
4622 /* pow(x,1/3) -> cbrt(x). */
4623 (if (flag_unsafe_math_optimizations
4624 && canonicalize_math_p ()
4625 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4626 real_equal (value, &tmp)))
4627 (cbrts @0))))))
4628
4629 /* powi(1,x) -> 1. */
4630 (simplify
4631 (POWI real_onep@0 @1)
4632 @0)
4633
4634 (simplify
4635 (POWI @0 INTEGER_CST@1)
4636 (switch
4637 /* powi(x,0) -> 1. */
4638 (if (wi::to_wide (@1) == 0)
4639 { build_real (type, dconst1); })
4640 /* powi(x,1) -> x. */
4641 (if (wi::to_wide (@1) == 1)
4642 @0)
4643 /* powi(x,-1) -> 1/x. */
4644 (if (wi::to_wide (@1) == -1)
4645 (rdiv { build_real (type, dconst1); } @0))))
4646
4647 /* Narrowing of arithmetic and logical operations.
4648
4649 These are conceptually similar to the transformations performed for
4650 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4651 term we want to move all that code out of the front-ends into here. */
4652
4653 /* If we have a narrowing conversion of an arithmetic operation where
4654 both operands are widening conversions from the same type as the outer
4655 narrowing conversion. Then convert the innermost operands to a suitable
4656 unsigned type (to avoid introducing undefined behavior), perform the
4657 operation and convert the result to the desired type. */
4658 (for op (plus minus)
4659 (simplify
4660 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4661 (if (INTEGRAL_TYPE_P (type)
4662 /* We check for type compatibility between @0 and @1 below,
4663 so there's no need to check that @1/@3 are integral types. */
4664 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4665 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4666 /* The precision of the type of each operand must match the
4667 precision of the mode of each operand, similarly for the
4668 result. */
4669 && type_has_mode_precision_p (TREE_TYPE (@0))
4670 && type_has_mode_precision_p (TREE_TYPE (@1))
4671 && type_has_mode_precision_p (type)
4672 /* The inner conversion must be a widening conversion. */
4673 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4674 && types_match (@0, type)
4675 && (types_match (@0, @1)
4676 /* Or the second operand is const integer or converted const
4677 integer from valueize. */
4678 || TREE_CODE (@1) == INTEGER_CST))
4679 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4680 (op @0 (convert @1))
4681 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4682 (convert (op (convert:utype @0)
4683 (convert:utype @1))))))))
4684
4685 /* This is another case of narrowing, specifically when there's an outer
4686 BIT_AND_EXPR which masks off bits outside the type of the innermost
4687 operands. Like the previous case we have to convert the operands
4688 to unsigned types to avoid introducing undefined behavior for the
4689 arithmetic operation. */
4690 (for op (minus plus)
4691 (simplify
4692 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4693 (if (INTEGRAL_TYPE_P (type)
4694 /* We check for type compatibility between @0 and @1 below,
4695 so there's no need to check that @1/@3 are integral types. */
4696 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4697 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4698 /* The precision of the type of each operand must match the
4699 precision of the mode of each operand, similarly for the
4700 result. */
4701 && type_has_mode_precision_p (TREE_TYPE (@0))
4702 && type_has_mode_precision_p (TREE_TYPE (@1))
4703 && type_has_mode_precision_p (type)
4704 /* The inner conversion must be a widening conversion. */
4705 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4706 && types_match (@0, @1)
4707 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4708 <= TYPE_PRECISION (TREE_TYPE (@0)))
4709 && (wi::to_wide (@4)
4710 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4711 true, TYPE_PRECISION (type))) == 0)
4712 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4713 (with { tree ntype = TREE_TYPE (@0); }
4714 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4715 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4716 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4717 (convert:utype @4))))))))
4718
4719 /* Transform (@0 < @1 and @0 < @2) to use min,
4720 (@0 > @1 and @0 > @2) to use max */
4721 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4722 op (lt le gt ge lt le gt ge )
4723 ext (min min max max max max min min )
4724 (simplify
4725 (logic (op:cs @0 @1) (op:cs @0 @2))
4726 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4727 && TREE_CODE (@0) != INTEGER_CST)
4728 (op @0 (ext @1 @2)))))
4729
4730 (simplify
4731 /* signbit(x) -> 0 if x is nonnegative. */
4732 (SIGNBIT tree_expr_nonnegative_p@0)
4733 { integer_zero_node; })
4734
4735 (simplify
4736 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4737 (SIGNBIT @0)
4738 (if (!HONOR_SIGNED_ZEROS (@0))
4739 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4740
4741 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4742 (for cmp (eq ne)
4743 (for op (plus minus)
4744 rop (minus plus)
4745 (simplify
4746 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4747 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4748 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4749 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4750 && !TYPE_SATURATING (TREE_TYPE (@0)))
4751 (with { tree res = int_const_binop (rop, @2, @1); }
4752 (if (TREE_OVERFLOW (res)
4753 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4754 { constant_boolean_node (cmp == NE_EXPR, type); }
4755 (if (single_use (@3))
4756 (cmp @0 { TREE_OVERFLOW (res)
4757 ? drop_tree_overflow (res) : res; }))))))))
4758 (for cmp (lt le gt ge)
4759 (for op (plus minus)
4760 rop (minus plus)
4761 (simplify
4762 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4763 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4764 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4765 (with { tree res = int_const_binop (rop, @2, @1); }
4766 (if (TREE_OVERFLOW (res))
4767 {
4768 fold_overflow_warning (("assuming signed overflow does not occur "
4769 "when simplifying conditional to constant"),
4770 WARN_STRICT_OVERFLOW_CONDITIONAL);
4771 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4772 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4773 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4774 TYPE_SIGN (TREE_TYPE (@1)))
4775 != (op == MINUS_EXPR);
4776 constant_boolean_node (less == ovf_high, type);
4777 }
4778 (if (single_use (@3))
4779 (with
4780 {
4781 fold_overflow_warning (("assuming signed overflow does not occur "
4782 "when changing X +- C1 cmp C2 to "
4783 "X cmp C2 -+ C1"),
4784 WARN_STRICT_OVERFLOW_COMPARISON);
4785 }
4786 (cmp @0 { res; })))))))))
4787
4788 /* Canonicalizations of BIT_FIELD_REFs. */
4789
4790 (simplify
4791 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4792 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4793
4794 (simplify
4795 (BIT_FIELD_REF (view_convert @0) @1 @2)
4796 (BIT_FIELD_REF @0 @1 @2))
4797
4798 (simplify
4799 (BIT_FIELD_REF @0 @1 integer_zerop)
4800 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4801 (view_convert @0)))
4802
4803 (simplify
4804 (BIT_FIELD_REF @0 @1 @2)
4805 (switch
4806 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4807 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4808 (switch
4809 (if (integer_zerop (@2))
4810 (view_convert (realpart @0)))
4811 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4812 (view_convert (imagpart @0)))))
4813 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4814 && INTEGRAL_TYPE_P (type)
4815 /* On GIMPLE this should only apply to register arguments. */
4816 && (! GIMPLE || is_gimple_reg (@0))
4817 /* A bit-field-ref that referenced the full argument can be stripped. */
4818 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4819 && integer_zerop (@2))
4820 /* Low-parts can be reduced to integral conversions.
4821 ??? The following doesn't work for PDP endian. */
4822 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4823 /* Don't even think about BITS_BIG_ENDIAN. */
4824 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4825 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4826 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4827 ? (TYPE_PRECISION (TREE_TYPE (@0))
4828 - TYPE_PRECISION (type))
4829 : 0)) == 0)))
4830 (convert @0))))
4831
4832 /* Simplify vector extracts. */
4833
4834 (simplify
4835 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4836 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4837 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4838 || (VECTOR_TYPE_P (type)
4839 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4840 (with
4841 {
4842 tree ctor = (TREE_CODE (@0) == SSA_NAME
4843 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4844 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4845 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4846 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4847 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4848 }
4849 (if (n != 0
4850 && (idx % width) == 0
4851 && (n % width) == 0
4852 && known_le ((idx + n) / width,
4853 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4854 (with
4855 {
4856 idx = idx / width;
4857 n = n / width;
4858 /* Constructor elements can be subvectors. */
4859 poly_uint64 k = 1;
4860 if (CONSTRUCTOR_NELTS (ctor) != 0)
4861 {
4862 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4863 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4864 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4865 }
4866 unsigned HOST_WIDE_INT elt, count, const_k;
4867 }
4868 (switch
4869 /* We keep an exact subset of the constructor elements. */
4870 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4871 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4872 { build_constructor (type, NULL); }
4873 (if (count == 1)
4874 (if (elt < CONSTRUCTOR_NELTS (ctor))
4875 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4876 { build_zero_cst (type); })
4877 {
4878 vec<constructor_elt, va_gc> *vals;
4879 vec_alloc (vals, count);
4880 for (unsigned i = 0;
4881 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4882 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4883 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4884 build_constructor (type, vals);
4885 })))
4886 /* The bitfield references a single constructor element. */
4887 (if (k.is_constant (&const_k)
4888 && idx + n <= (idx / const_k + 1) * const_k)
4889 (switch
4890 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4891 { build_zero_cst (type); })
4892 (if (n == const_k)
4893 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4894 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4895 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4896
4897 /* Simplify a bit extraction from a bit insertion for the cases with
4898 the inserted element fully covering the extraction or the insertion
4899 not touching the extraction. */
4900 (simplify
4901 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4902 (with
4903 {
4904 unsigned HOST_WIDE_INT isize;
4905 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4906 isize = TYPE_PRECISION (TREE_TYPE (@1));
4907 else
4908 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4909 }
4910 (switch
4911 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4912 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4913 wi::to_wide (@ipos) + isize))
4914 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4915 wi::to_wide (@rpos)
4916 - wi::to_wide (@ipos)); }))
4917 (if (wi::geu_p (wi::to_wide (@ipos),
4918 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4919 || wi::geu_p (wi::to_wide (@rpos),
4920 wi::to_wide (@ipos) + isize))
4921 (BIT_FIELD_REF @0 @rsize @rpos)))))
4922
4923 (if (canonicalize_math_after_vectorization_p ())
4924 (for fmas (FMA)
4925 (simplify
4926 (fmas:c (negate @0) @1 @2)
4927 (IFN_FNMA @0 @1 @2))
4928 (simplify
4929 (fmas @0 @1 (negate @2))
4930 (IFN_FMS @0 @1 @2))
4931 (simplify
4932 (fmas:c (negate @0) @1 (negate @2))
4933 (IFN_FNMS @0 @1 @2))
4934 (simplify
4935 (negate (fmas@3 @0 @1 @2))
4936 (if (single_use (@3))
4937 (IFN_FNMS @0 @1 @2))))
4938
4939 (simplify
4940 (IFN_FMS:c (negate @0) @1 @2)
4941 (IFN_FNMS @0 @1 @2))
4942 (simplify
4943 (IFN_FMS @0 @1 (negate @2))
4944 (IFN_FMA @0 @1 @2))
4945 (simplify
4946 (IFN_FMS:c (negate @0) @1 (negate @2))
4947 (IFN_FNMA @0 @1 @2))
4948 (simplify
4949 (negate (IFN_FMS@3 @0 @1 @2))
4950 (if (single_use (@3))
4951 (IFN_FNMA @0 @1 @2)))
4952
4953 (simplify
4954 (IFN_FNMA:c (negate @0) @1 @2)
4955 (IFN_FMA @0 @1 @2))
4956 (simplify
4957 (IFN_FNMA @0 @1 (negate @2))
4958 (IFN_FNMS @0 @1 @2))
4959 (simplify
4960 (IFN_FNMA:c (negate @0) @1 (negate @2))
4961 (IFN_FMS @0 @1 @2))
4962 (simplify
4963 (negate (IFN_FNMA@3 @0 @1 @2))
4964 (if (single_use (@3))
4965 (IFN_FMS @0 @1 @2)))
4966
4967 (simplify
4968 (IFN_FNMS:c (negate @0) @1 @2)
4969 (IFN_FMS @0 @1 @2))
4970 (simplify
4971 (IFN_FNMS @0 @1 (negate @2))
4972 (IFN_FNMA @0 @1 @2))
4973 (simplify
4974 (IFN_FNMS:c (negate @0) @1 (negate @2))
4975 (IFN_FMA @0 @1 @2))
4976 (simplify
4977 (negate (IFN_FNMS@3 @0 @1 @2))
4978 (if (single_use (@3))
4979 (IFN_FMA @0 @1 @2))))
4980
4981 /* POPCOUNT simplifications. */
4982 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
4983 BUILT_IN_POPCOUNTIMAX)
4984 /* popcount(X&1) is nop_expr(X&1). */
4985 (simplify
4986 (popcount @0)
4987 (if (tree_nonzero_bits (@0) == 1)
4988 (convert @0)))
4989 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
4990 (simplify
4991 (plus (popcount:s @0) (popcount:s @1))
4992 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
4993 (popcount (bit_ior @0 @1))))
4994 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
4995 (for cmp (le eq ne gt)
4996 rep (eq eq ne ne)
4997 (simplify
4998 (cmp (popcount @0) integer_zerop)
4999 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5000
5001 /* Simplify:
5002
5003 a = a1 op a2
5004 r = c ? a : b;
5005
5006 to:
5007
5008 r = c ? a1 op a2 : b;
5009
5010 if the target can do it in one go. This makes the operation conditional
5011 on c, so could drop potentially-trapping arithmetic, but that's a valid
5012 simplification if the result of the operation isn't needed. */
5013 (for uncond_op (UNCOND_BINARY)
5014 cond_op (COND_BINARY)
5015 (simplify
5016 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5017 (with { tree op_type = TREE_TYPE (@4); }
5018 (if (element_precision (type) == element_precision (op_type))
5019 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5020 (simplify
5021 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5022 (with { tree op_type = TREE_TYPE (@4); }
5023 (if (element_precision (type) == element_precision (op_type))
5024 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5025
5026 /* Same for ternary operations. */
5027 (for uncond_op (UNCOND_TERNARY)
5028 cond_op (COND_TERNARY)
5029 (simplify
5030 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5031 (with { tree op_type = TREE_TYPE (@5); }
5032 (if (element_precision (type) == element_precision (op_type))
5033 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5034 (simplify
5035 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5036 (with { tree op_type = TREE_TYPE (@5); }
5037 (if (element_precision (type) == element_precision (op_type))
5038 (view_convert (cond_op (bit_not @0) @2 @3 @4
5039 (view_convert:op_type @1)))))))
5040
5041 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5042 "else" value of an IFN_COND_*. */
5043 (for cond_op (COND_BINARY)
5044 (simplify
5045 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5046 (with { tree op_type = TREE_TYPE (@3); }
5047 (if (element_precision (type) == element_precision (op_type))
5048 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5049 (simplify
5050 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5051 (with { tree op_type = TREE_TYPE (@5); }
5052 (if (inverse_conditions_p (@0, @2)
5053 && element_precision (type) == element_precision (op_type))
5054 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5055
5056 /* Same for ternary operations. */
5057 (for cond_op (COND_TERNARY)
5058 (simplify
5059 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5060 (with { tree op_type = TREE_TYPE (@4); }
5061 (if (element_precision (type) == element_precision (op_type))
5062 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5063 (simplify
5064 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5065 (with { tree op_type = TREE_TYPE (@6); }
5066 (if (inverse_conditions_p (@0, @2)
5067 && element_precision (type) == element_precision (op_type))
5068 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5069
5070 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5071 expressions like:
5072
5073 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5074 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5075
5076 If pointers are known not to wrap, B checks whether @1 bytes starting
5077 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5078 bytes. A is more efficiently tested as:
5079
5080 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5081
5082 The equivalent expression for B is given by replacing @1 with @1 - 1:
5083
5084 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5085
5086 @0 and @2 can be swapped in both expressions without changing the result.
5087
5088 The folds rely on sizetype's being unsigned (which is always true)
5089 and on its being the same width as the pointer (which we have to check).
5090
5091 The fold replaces two pointer_plus expressions, two comparisons and
5092 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5093 the best case it's a saving of two operations. The A fold retains one
5094 of the original pointer_pluses, so is a win even if both pointer_pluses
5095 are used elsewhere. The B fold is a wash if both pointer_pluses are
5096 used elsewhere, since all we end up doing is replacing a comparison with
5097 a pointer_plus. We do still apply the fold under those circumstances
5098 though, in case applying it to other conditions eventually makes one of the
5099 pointer_pluses dead. */
5100 (for ior (truth_orif truth_or bit_ior)
5101 (for cmp (le lt)
5102 (simplify
5103 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5104 (cmp:cs (pointer_plus@4 @2 @1) @0))
5105 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5106 && TYPE_OVERFLOW_WRAPS (sizetype)
5107 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5108 /* Calculate the rhs constant. */
5109 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5110 offset_int rhs = off * 2; }
5111 /* Always fails for negative values. */
5112 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5113 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5114 pick a canonical order. This increases the chances of using the
5115 same pointer_plus in multiple checks. */
5116 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5117 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5118 (if (cmp == LT_EXPR)
5119 (gt (convert:sizetype
5120 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5121 { swap_p ? @0 : @2; }))
5122 { rhs_tree; })
5123 (gt (convert:sizetype
5124 (pointer_diff:ssizetype
5125 (pointer_plus { swap_p ? @2 : @0; }
5126 { wide_int_to_tree (sizetype, off); })
5127 { swap_p ? @0 : @2; }))
5128 { rhs_tree; })))))))))