]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
re PR tree-optimization/92818 (Typo in vec_perm -> bit_insert pattern)
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS
40 uniform_vector_p)
41
42 /* Operator lists. */
43 (define_operator_list tcc_comparison
44 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
45 (define_operator_list inverted_tcc_comparison
46 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
47 (define_operator_list inverted_tcc_comparison_with_nans
48 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
49 (define_operator_list swapped_tcc_comparison
50 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
51 (define_operator_list simple_comparison lt le eq ne ge gt)
52 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
53
54 #include "cfn-operators.pd"
55
56 /* Define operand lists for math rounding functions {,i,l,ll}FN,
57 where the versions prefixed with "i" return an int, those prefixed with
58 "l" return a long and those prefixed with "ll" return a long long.
59
60 Also define operand lists:
61
62 X<FN>F for all float functions, in the order i, l, ll
63 X<FN> for all double functions, in the same order
64 X<FN>L for all long double functions, in the same order. */
65 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
66 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
67 BUILT_IN_L##FN##F \
68 BUILT_IN_LL##FN##F) \
69 (define_operator_list X##FN BUILT_IN_I##FN \
70 BUILT_IN_L##FN \
71 BUILT_IN_LL##FN) \
72 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 BUILT_IN_L##FN##L \
74 BUILT_IN_LL##FN##L)
75
76 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
79 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
80
81 /* Binary operations and their associated IFN_COND_* function. */
82 (define_operator_list UNCOND_BINARY
83 plus minus
84 mult trunc_div trunc_mod rdiv
85 min max
86 bit_and bit_ior bit_xor
87 lshift rshift)
88 (define_operator_list COND_BINARY
89 IFN_COND_ADD IFN_COND_SUB
90 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
91 IFN_COND_MIN IFN_COND_MAX
92 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR
93 IFN_COND_SHL IFN_COND_SHR)
94
95 /* Same for ternary operations. */
96 (define_operator_list UNCOND_TERNARY
97 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
98 (define_operator_list COND_TERNARY
99 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
100
101 /* As opposed to convert?, this still creates a single pattern, so
102 it is not a suitable replacement for convert? in all cases. */
103 (match (nop_convert @0)
104 (convert @0)
105 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
106 (match (nop_convert @0)
107 (view_convert @0)
108 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
109 && known_eq (TYPE_VECTOR_SUBPARTS (type),
110 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
111 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
112 /* This one has to be last, or it shadows the others. */
113 (match (nop_convert @0)
114 @0)
115
116 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
117 ABSU_EXPR returns unsigned absolute value of the operand and the operand
118 of the ABSU_EXPR will have the corresponding signed type. */
119 (simplify (abs (convert @0))
120 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
121 && !TYPE_UNSIGNED (TREE_TYPE (@0))
122 && element_precision (type) > element_precision (TREE_TYPE (@0)))
123 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
124 (convert (absu:utype @0)))))
125
126
127 /* Simplifications of operations with one constant operand and
128 simplifications to constants or single values. */
129
130 (for op (plus pointer_plus minus bit_ior bit_xor)
131 (simplify
132 (op @0 integer_zerop)
133 (non_lvalue @0)))
134
135 /* 0 +p index -> (type)index */
136 (simplify
137 (pointer_plus integer_zerop @1)
138 (non_lvalue (convert @1)))
139
140 /* ptr - 0 -> (type)ptr */
141 (simplify
142 (pointer_diff @0 integer_zerop)
143 (convert @0))
144
145 /* See if ARG1 is zero and X + ARG1 reduces to X.
146 Likewise if the operands are reversed. */
147 (simplify
148 (plus:c @0 real_zerop@1)
149 (if (fold_real_zero_addition_p (type, @1, 0))
150 (non_lvalue @0)))
151
152 /* See if ARG1 is zero and X - ARG1 reduces to X. */
153 (simplify
154 (minus @0 real_zerop@1)
155 (if (fold_real_zero_addition_p (type, @1, 1))
156 (non_lvalue @0)))
157
158 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
159 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
160 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
161 if not -frounding-math. For sNaNs the first operation would raise
162 exceptions but turn the result into qNan, so the second operation
163 would not raise it. */
164 (for inner_op (plus minus)
165 (for outer_op (plus minus)
166 (simplify
167 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
168 (if (real_zerop (@1)
169 && real_zerop (@2)
170 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
171 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
173 bool outer_plus
174 = ((outer_op == PLUS_EXPR)
175 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
176 (if (outer_plus && !inner_plus)
177 (outer_op @0 @2)
178 @3))))))
179
180 /* Simplify x - x.
181 This is unsafe for certain floats even in non-IEEE formats.
182 In IEEE, it is unsafe because it does wrong for NaNs.
183 Also note that operand_equal_p is always false if an operand
184 is volatile. */
185 (simplify
186 (minus @0 @0)
187 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
188 { build_zero_cst (type); }))
189 (simplify
190 (pointer_diff @@0 @0)
191 { build_zero_cst (type); })
192
193 (simplify
194 (mult @0 integer_zerop@1)
195 @1)
196
197 /* Maybe fold x * 0 to 0. The expressions aren't the same
198 when x is NaN, since x * 0 is also NaN. Nor are they the
199 same in modes with signed zeros, since multiplying a
200 negative value by 0 gives -0, not +0. */
201 (simplify
202 (mult @0 real_zerop@1)
203 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
204 @1))
205
206 /* In IEEE floating point, x*1 is not equivalent to x for snans.
207 Likewise for complex arithmetic with signed zeros. */
208 (simplify
209 (mult @0 real_onep)
210 (if (!HONOR_SNANS (type)
211 && (!HONOR_SIGNED_ZEROS (type)
212 || !COMPLEX_FLOAT_TYPE_P (type)))
213 (non_lvalue @0)))
214
215 /* Transform x * -1.0 into -x. */
216 (simplify
217 (mult @0 real_minus_onep)
218 (if (!HONOR_SNANS (type)
219 && (!HONOR_SIGNED_ZEROS (type)
220 || !COMPLEX_FLOAT_TYPE_P (type)))
221 (negate @0)))
222
223 /* Transform { 0 or 1 } * { 0 or 1 } into { 0 or 1 } & { 0 or 1 } */
224 (simplify
225 (mult SSA_NAME@1 SSA_NAME@2)
226 (if (INTEGRAL_TYPE_P (type)
227 && get_nonzero_bits (@1) == 1
228 && get_nonzero_bits (@2) == 1)
229 (bit_and @1 @2)))
230
231 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
232 unless the target has native support for the former but not the latter. */
233 (simplify
234 (mult @0 VECTOR_CST@1)
235 (if (initializer_each_zero_or_onep (@1)
236 && !HONOR_SNANS (type)
237 && !HONOR_SIGNED_ZEROS (type))
238 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
239 (if (itype
240 && (!VECTOR_MODE_P (TYPE_MODE (type))
241 || (VECTOR_MODE_P (TYPE_MODE (itype))
242 && optab_handler (and_optab,
243 TYPE_MODE (itype)) != CODE_FOR_nothing)))
244 (view_convert (bit_and:itype (view_convert @0)
245 (ne @1 { build_zero_cst (type); })))))))
246
247 (for cmp (gt ge lt le)
248 outp (convert convert negate negate)
249 outn (negate negate convert convert)
250 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
251 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
252 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
253 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
254 (simplify
255 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
256 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
257 && types_match (type, TREE_TYPE (@0)))
258 (switch
259 (if (types_match (type, float_type_node))
260 (BUILT_IN_COPYSIGNF @1 (outp @0)))
261 (if (types_match (type, double_type_node))
262 (BUILT_IN_COPYSIGN @1 (outp @0)))
263 (if (types_match (type, long_double_type_node))
264 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
265 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
266 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
267 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
268 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
269 (simplify
270 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
271 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
272 && types_match (type, TREE_TYPE (@0)))
273 (switch
274 (if (types_match (type, float_type_node))
275 (BUILT_IN_COPYSIGNF @1 (outn @0)))
276 (if (types_match (type, double_type_node))
277 (BUILT_IN_COPYSIGN @1 (outn @0)))
278 (if (types_match (type, long_double_type_node))
279 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
280
281 /* Transform X * copysign (1.0, X) into abs(X). */
282 (simplify
283 (mult:c @0 (COPYSIGN_ALL real_onep @0))
284 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
285 (abs @0)))
286
287 /* Transform X * copysign (1.0, -X) into -abs(X). */
288 (simplify
289 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
290 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
291 (negate (abs @0))))
292
293 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
294 (simplify
295 (COPYSIGN_ALL REAL_CST@0 @1)
296 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
297 (COPYSIGN_ALL (negate @0) @1)))
298
299 /* X * 1, X / 1 -> X. */
300 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
301 (simplify
302 (op @0 integer_onep)
303 (non_lvalue @0)))
304
305 /* (A / (1 << B)) -> (A >> B).
306 Only for unsigned A. For signed A, this would not preserve rounding
307 toward zero.
308 For example: (-1 / ( 1 << B)) != -1 >> B.
309 Also also widening conversions, like:
310 (A / (unsigned long long) (1U << B)) -> (A >> B)
311 or
312 (A / (unsigned long long) (1 << B)) -> (A >> B).
313 If the left shift is signed, it can be done only if the upper bits
314 of A starting from shift's type sign bit are zero, as
315 (unsigned long long) (1 << 31) is -2147483648ULL, not 2147483648ULL,
316 so it is valid only if A >> 31 is zero. */
317 (simplify
318 (trunc_div @0 (convert? (lshift integer_onep@1 @2)))
319 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
320 && (!VECTOR_TYPE_P (type)
321 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
322 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar))
323 && (useless_type_conversion_p (type, TREE_TYPE (@1))
324 || (element_precision (type) >= element_precision (TREE_TYPE (@1))
325 && (TYPE_UNSIGNED (TREE_TYPE (@1))
326 || (element_precision (type)
327 == element_precision (TREE_TYPE (@1)))
328 || (INTEGRAL_TYPE_P (type)
329 && (tree_nonzero_bits (@0)
330 & wi::mask (element_precision (TREE_TYPE (@1)) - 1,
331 true,
332 element_precision (type))) == 0)))))
333 (rshift @0 @2)))
334
335 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
336 undefined behavior in constexpr evaluation, and assuming that the division
337 traps enables better optimizations than these anyway. */
338 (for div (trunc_div ceil_div floor_div round_div exact_div)
339 /* 0 / X is always zero. */
340 (simplify
341 (div integer_zerop@0 @1)
342 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
343 (if (!integer_zerop (@1))
344 @0))
345 /* X / -1 is -X. */
346 (simplify
347 (div @0 integer_minus_onep@1)
348 (if (!TYPE_UNSIGNED (type))
349 (negate @0)))
350 /* X / X is one. */
351 (simplify
352 (div @0 @0)
353 /* But not for 0 / 0 so that we can get the proper warnings and errors.
354 And not for _Fract types where we can't build 1. */
355 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
356 { build_one_cst (type); }))
357 /* X / abs (X) is X < 0 ? -1 : 1. */
358 (simplify
359 (div:C @0 (abs @0))
360 (if (INTEGRAL_TYPE_P (type)
361 && TYPE_OVERFLOW_UNDEFINED (type))
362 (cond (lt @0 { build_zero_cst (type); })
363 { build_minus_one_cst (type); } { build_one_cst (type); })))
364 /* X / -X is -1. */
365 (simplify
366 (div:C @0 (negate @0))
367 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
368 && TYPE_OVERFLOW_UNDEFINED (type))
369 { build_minus_one_cst (type); })))
370
371 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
372 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
373 (simplify
374 (floor_div @0 @1)
375 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
376 && TYPE_UNSIGNED (type))
377 (trunc_div @0 @1)))
378
379 /* Combine two successive divisions. Note that combining ceil_div
380 and floor_div is trickier and combining round_div even more so. */
381 (for div (trunc_div exact_div)
382 (simplify
383 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
384 (with {
385 wi::overflow_type overflow;
386 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
387 TYPE_SIGN (type), &overflow);
388 }
389 (if (div == EXACT_DIV_EXPR
390 || optimize_successive_divisions_p (@2, @3))
391 (if (!overflow)
392 (div @0 { wide_int_to_tree (type, mul); })
393 (if (TYPE_UNSIGNED (type)
394 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
395 { build_zero_cst (type); }))))))
396
397 /* Combine successive multiplications. Similar to above, but handling
398 overflow is different. */
399 (simplify
400 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
401 (with {
402 wi::overflow_type overflow;
403 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
404 TYPE_SIGN (type), &overflow);
405 }
406 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
407 otherwise undefined overflow implies that @0 must be zero. */
408 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
409 (mult @0 { wide_int_to_tree (type, mul); }))))
410
411 /* Optimize A / A to 1.0 if we don't care about
412 NaNs or Infinities. */
413 (simplify
414 (rdiv @0 @0)
415 (if (FLOAT_TYPE_P (type)
416 && ! HONOR_NANS (type)
417 && ! HONOR_INFINITIES (type))
418 { build_one_cst (type); }))
419
420 /* Optimize -A / A to -1.0 if we don't care about
421 NaNs or Infinities. */
422 (simplify
423 (rdiv:C @0 (negate @0))
424 (if (FLOAT_TYPE_P (type)
425 && ! HONOR_NANS (type)
426 && ! HONOR_INFINITIES (type))
427 { build_minus_one_cst (type); }))
428
429 /* PR71078: x / abs(x) -> copysign (1.0, x) */
430 (simplify
431 (rdiv:C (convert? @0) (convert? (abs @0)))
432 (if (SCALAR_FLOAT_TYPE_P (type)
433 && ! HONOR_NANS (type)
434 && ! HONOR_INFINITIES (type))
435 (switch
436 (if (types_match (type, float_type_node))
437 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
438 (if (types_match (type, double_type_node))
439 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
440 (if (types_match (type, long_double_type_node))
441 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
442
443 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
444 (simplify
445 (rdiv @0 real_onep)
446 (if (!HONOR_SNANS (type))
447 (non_lvalue @0)))
448
449 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
450 (simplify
451 (rdiv @0 real_minus_onep)
452 (if (!HONOR_SNANS (type))
453 (negate @0)))
454
455 (if (flag_reciprocal_math)
456 /* Convert (A/B)/C to A/(B*C). */
457 (simplify
458 (rdiv (rdiv:s @0 @1) @2)
459 (rdiv @0 (mult @1 @2)))
460
461 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
462 (simplify
463 (rdiv @0 (mult:s @1 REAL_CST@2))
464 (with
465 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
466 (if (tem)
467 (rdiv (mult @0 { tem; } ) @1))))
468
469 /* Convert A/(B/C) to (A/B)*C */
470 (simplify
471 (rdiv @0 (rdiv:s @1 @2))
472 (mult (rdiv @0 @1) @2)))
473
474 /* Simplify x / (- y) to -x / y. */
475 (simplify
476 (rdiv @0 (negate @1))
477 (rdiv (negate @0) @1))
478
479 (if (flag_unsafe_math_optimizations)
480 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
481 Since C / x may underflow to zero, do this only for unsafe math. */
482 (for op (lt le gt ge)
483 neg_op (gt ge lt le)
484 (simplify
485 (op (rdiv REAL_CST@0 @1) real_zerop@2)
486 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
487 (switch
488 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
489 (op @1 @2))
490 /* For C < 0, use the inverted operator. */
491 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
492 (neg_op @1 @2)))))))
493
494 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
495 (for div (trunc_div ceil_div floor_div round_div exact_div)
496 (simplify
497 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
498 (if (integer_pow2p (@2)
499 && tree_int_cst_sgn (@2) > 0
500 && tree_nop_conversion_p (type, TREE_TYPE (@0))
501 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
502 (rshift (convert @0)
503 { build_int_cst (integer_type_node,
504 wi::exact_log2 (wi::to_wide (@2))); }))))
505
506 /* If ARG1 is a constant, we can convert this to a multiply by the
507 reciprocal. This does not have the same rounding properties,
508 so only do this if -freciprocal-math. We can actually
509 always safely do it if ARG1 is a power of two, but it's hard to
510 tell if it is or not in a portable manner. */
511 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
512 (simplify
513 (rdiv @0 cst@1)
514 (if (optimize)
515 (if (flag_reciprocal_math
516 && !real_zerop (@1))
517 (with
518 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
519 (if (tem)
520 (mult @0 { tem; } )))
521 (if (cst != COMPLEX_CST)
522 (with { tree inverse = exact_inverse (type, @1); }
523 (if (inverse)
524 (mult @0 { inverse; } ))))))))
525
526 (for mod (ceil_mod floor_mod round_mod trunc_mod)
527 /* 0 % X is always zero. */
528 (simplify
529 (mod integer_zerop@0 @1)
530 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
531 (if (!integer_zerop (@1))
532 @0))
533 /* X % 1 is always zero. */
534 (simplify
535 (mod @0 integer_onep)
536 { build_zero_cst (type); })
537 /* X % -1 is zero. */
538 (simplify
539 (mod @0 integer_minus_onep@1)
540 (if (!TYPE_UNSIGNED (type))
541 { build_zero_cst (type); }))
542 /* X % X is zero. */
543 (simplify
544 (mod @0 @0)
545 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
546 (if (!integer_zerop (@0))
547 { build_zero_cst (type); }))
548 /* (X % Y) % Y is just X % Y. */
549 (simplify
550 (mod (mod@2 @0 @1) @1)
551 @2)
552 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
553 (simplify
554 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
555 (if (ANY_INTEGRAL_TYPE_P (type)
556 && TYPE_OVERFLOW_UNDEFINED (type)
557 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
558 TYPE_SIGN (type)))
559 { build_zero_cst (type); }))
560 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
561 modulo and comparison, since it is simpler and equivalent. */
562 (for cmp (eq ne)
563 (simplify
564 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
565 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
566 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
567 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
568
569 /* X % -C is the same as X % C. */
570 (simplify
571 (trunc_mod @0 INTEGER_CST@1)
572 (if (TYPE_SIGN (type) == SIGNED
573 && !TREE_OVERFLOW (@1)
574 && wi::neg_p (wi::to_wide (@1))
575 && !TYPE_OVERFLOW_TRAPS (type)
576 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
577 && !sign_bit_p (@1, @1))
578 (trunc_mod @0 (negate @1))))
579
580 /* X % -Y is the same as X % Y. */
581 (simplify
582 (trunc_mod @0 (convert? (negate @1)))
583 (if (INTEGRAL_TYPE_P (type)
584 && !TYPE_UNSIGNED (type)
585 && !TYPE_OVERFLOW_TRAPS (type)
586 && tree_nop_conversion_p (type, TREE_TYPE (@1))
587 /* Avoid this transformation if X might be INT_MIN or
588 Y might be -1, because we would then change valid
589 INT_MIN % -(-1) into invalid INT_MIN % -1. */
590 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
591 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
592 (TREE_TYPE (@1))))))
593 (trunc_mod @0 (convert @1))))
594
595 /* X - (X / Y) * Y is the same as X % Y. */
596 (simplify
597 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
598 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
599 (convert (trunc_mod @0 @1))))
600
601 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
602 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
603 Also optimize A % (C << N) where C is a power of 2,
604 to A & ((C << N) - 1). */
605 (match (power_of_two_cand @1)
606 INTEGER_CST@1)
607 (match (power_of_two_cand @1)
608 (lshift INTEGER_CST@1 @2))
609 (for mod (trunc_mod floor_mod)
610 (simplify
611 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
612 (if ((TYPE_UNSIGNED (type)
613 || tree_expr_nonnegative_p (@0))
614 && tree_nop_conversion_p (type, TREE_TYPE (@3))
615 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
616 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
617
618 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
619 (simplify
620 (trunc_div (mult @0 integer_pow2p@1) @1)
621 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
622 (bit_and @0 { wide_int_to_tree
623 (type, wi::mask (TYPE_PRECISION (type)
624 - wi::exact_log2 (wi::to_wide (@1)),
625 false, TYPE_PRECISION (type))); })))
626
627 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
628 (simplify
629 (mult (trunc_div @0 integer_pow2p@1) @1)
630 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
631 (bit_and @0 (negate @1))))
632
633 /* Simplify (t * 2) / 2) -> t. */
634 (for div (trunc_div ceil_div floor_div round_div exact_div)
635 (simplify
636 (div (mult:c @0 @1) @1)
637 (if (ANY_INTEGRAL_TYPE_P (type)
638 && TYPE_OVERFLOW_UNDEFINED (type))
639 @0)))
640
641 (for op (negate abs)
642 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
643 (for coss (COS COSH)
644 (simplify
645 (coss (op @0))
646 (coss @0)))
647 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
648 (for pows (POW)
649 (simplify
650 (pows (op @0) REAL_CST@1)
651 (with { HOST_WIDE_INT n; }
652 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
653 (pows @0 @1)))))
654 /* Likewise for powi. */
655 (for pows (POWI)
656 (simplify
657 (pows (op @0) INTEGER_CST@1)
658 (if ((wi::to_wide (@1) & 1) == 0)
659 (pows @0 @1))))
660 /* Strip negate and abs from both operands of hypot. */
661 (for hypots (HYPOT)
662 (simplify
663 (hypots (op @0) @1)
664 (hypots @0 @1))
665 (simplify
666 (hypots @0 (op @1))
667 (hypots @0 @1)))
668 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
669 (for copysigns (COPYSIGN_ALL)
670 (simplify
671 (copysigns (op @0) @1)
672 (copysigns @0 @1))))
673
674 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
675 (simplify
676 (mult (abs@1 @0) @1)
677 (mult @0 @0))
678
679 /* Convert absu(x)*absu(x) -> x*x. */
680 (simplify
681 (mult (absu@1 @0) @1)
682 (mult (convert@2 @0) @2))
683
684 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
685 (for coss (COS COSH)
686 copysigns (COPYSIGN)
687 (simplify
688 (coss (copysigns @0 @1))
689 (coss @0)))
690
691 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
692 (for pows (POW)
693 copysigns (COPYSIGN)
694 (simplify
695 (pows (copysigns @0 @2) REAL_CST@1)
696 (with { HOST_WIDE_INT n; }
697 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
698 (pows @0 @1)))))
699 /* Likewise for powi. */
700 (for pows (POWI)
701 copysigns (COPYSIGN)
702 (simplify
703 (pows (copysigns @0 @2) INTEGER_CST@1)
704 (if ((wi::to_wide (@1) & 1) == 0)
705 (pows @0 @1))))
706
707 (for hypots (HYPOT)
708 copysigns (COPYSIGN)
709 /* hypot(copysign(x, y), z) -> hypot(x, z). */
710 (simplify
711 (hypots (copysigns @0 @1) @2)
712 (hypots @0 @2))
713 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
714 (simplify
715 (hypots @0 (copysigns @1 @2))
716 (hypots @0 @1)))
717
718 /* copysign(x, CST) -> [-]abs (x). */
719 (for copysigns (COPYSIGN_ALL)
720 (simplify
721 (copysigns @0 REAL_CST@1)
722 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
723 (negate (abs @0))
724 (abs @0))))
725
726 /* copysign(copysign(x, y), z) -> copysign(x, z). */
727 (for copysigns (COPYSIGN_ALL)
728 (simplify
729 (copysigns (copysigns @0 @1) @2)
730 (copysigns @0 @2)))
731
732 /* copysign(x,y)*copysign(x,y) -> x*x. */
733 (for copysigns (COPYSIGN_ALL)
734 (simplify
735 (mult (copysigns@2 @0 @1) @2)
736 (mult @0 @0)))
737
738 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
739 (for ccoss (CCOS CCOSH)
740 (simplify
741 (ccoss (negate @0))
742 (ccoss @0)))
743
744 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
745 (for ops (conj negate)
746 (for cabss (CABS)
747 (simplify
748 (cabss (ops @0))
749 (cabss @0))))
750
751 /* Fold (a * (1 << b)) into (a << b) */
752 (simplify
753 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
754 (if (! FLOAT_TYPE_P (type)
755 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
756 (lshift @0 @2)))
757
758 /* Fold (1 << (C - x)) where C = precision(type) - 1
759 into ((1 << C) >> x). */
760 (simplify
761 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
762 (if (INTEGRAL_TYPE_P (type)
763 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
764 && single_use (@1))
765 (if (TYPE_UNSIGNED (type))
766 (rshift (lshift @0 @2) @3)
767 (with
768 { tree utype = unsigned_type_for (type); }
769 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
770
771 /* Fold (C1/X)*C2 into (C1*C2)/X. */
772 (simplify
773 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
774 (if (flag_associative_math
775 && single_use (@3))
776 (with
777 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
778 (if (tem)
779 (rdiv { tem; } @1)))))
780
781 /* Simplify ~X & X as zero. */
782 (simplify
783 (bit_and:c (convert? @0) (convert? (bit_not @0)))
784 { build_zero_cst (type); })
785
786 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
787 (simplify
788 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
789 (if (TYPE_UNSIGNED (type))
790 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
791
792 (for bitop (bit_and bit_ior)
793 cmp (eq ne)
794 /* PR35691: Transform
795 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
796 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
797 (simplify
798 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
799 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
800 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
801 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
802 (cmp (bit_ior @0 (convert @1)) @2)))
803 /* Transform:
804 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
805 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
806 (simplify
807 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
808 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
809 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
810 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
811 (cmp (bit_and @0 (convert @1)) @2))))
812
813 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
814 (simplify
815 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
816 (minus (bit_xor @0 @1) @1))
817 (simplify
818 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
819 (if (~wi::to_wide (@2) == wi::to_wide (@1))
820 (minus (bit_xor @0 @1) @1)))
821
822 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
823 (simplify
824 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
825 (minus @1 (bit_xor @0 @1)))
826
827 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
828 (for op (bit_ior bit_xor plus)
829 (simplify
830 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
831 (bit_xor @0 @1))
832 (simplify
833 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
834 (if (~wi::to_wide (@2) == wi::to_wide (@1))
835 (bit_xor @0 @1))))
836
837 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
838 (simplify
839 (bit_ior:c (bit_xor:c @0 @1) @0)
840 (bit_ior @0 @1))
841
842 /* (a & ~b) | (a ^ b) --> a ^ b */
843 (simplify
844 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
845 @2)
846
847 /* (a & ~b) ^ ~a --> ~(a & b) */
848 (simplify
849 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
850 (bit_not (bit_and @0 @1)))
851
852 /* (~a & b) ^ a --> (a | b) */
853 (simplify
854 (bit_xor:c (bit_and:cs (bit_not @0) @1) @0)
855 (bit_ior @0 @1))
856
857 /* (a | b) & ~(a ^ b) --> a & b */
858 (simplify
859 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
860 (bit_and @0 @1))
861
862 /* a | ~(a ^ b) --> a | ~b */
863 (simplify
864 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
865 (bit_ior @0 (bit_not @1)))
866
867 /* (a | b) | (a &^ b) --> a | b */
868 (for op (bit_and bit_xor)
869 (simplify
870 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
871 @2))
872
873 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
874 (simplify
875 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
876 @2)
877
878 /* ~(~a & b) --> a | ~b */
879 (simplify
880 (bit_not (bit_and:cs (bit_not @0) @1))
881 (bit_ior @0 (bit_not @1)))
882
883 /* ~(~a | b) --> a & ~b */
884 (simplify
885 (bit_not (bit_ior:cs (bit_not @0) @1))
886 (bit_and @0 (bit_not @1)))
887
888 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
889 #if GIMPLE
890 (simplify
891 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
892 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
893 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
894 (bit_xor @0 @1)))
895 #endif
896
897 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
898 ((A & N) + B) & M -> (A + B) & M
899 Similarly if (N & M) == 0,
900 ((A | N) + B) & M -> (A + B) & M
901 and for - instead of + (or unary - instead of +)
902 and/or ^ instead of |.
903 If B is constant and (B & M) == 0, fold into A & M. */
904 (for op (plus minus)
905 (for bitop (bit_and bit_ior bit_xor)
906 (simplify
907 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
908 (with
909 { tree pmop[2];
910 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
911 @3, @4, @1, ERROR_MARK, NULL_TREE,
912 NULL_TREE, pmop); }
913 (if (utype)
914 (convert (bit_and (op (convert:utype { pmop[0]; })
915 (convert:utype { pmop[1]; }))
916 (convert:utype @2))))))
917 (simplify
918 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
919 (with
920 { tree pmop[2];
921 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
922 NULL_TREE, NULL_TREE, @1, bitop, @3,
923 @4, pmop); }
924 (if (utype)
925 (convert (bit_and (op (convert:utype { pmop[0]; })
926 (convert:utype { pmop[1]; }))
927 (convert:utype @2)))))))
928 (simplify
929 (bit_and (op:s @0 @1) INTEGER_CST@2)
930 (with
931 { tree pmop[2];
932 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
933 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
934 NULL_TREE, NULL_TREE, pmop); }
935 (if (utype)
936 (convert (bit_and (op (convert:utype { pmop[0]; })
937 (convert:utype { pmop[1]; }))
938 (convert:utype @2)))))))
939 (for bitop (bit_and bit_ior bit_xor)
940 (simplify
941 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
942 (with
943 { tree pmop[2];
944 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
945 bitop, @2, @3, NULL_TREE, ERROR_MARK,
946 NULL_TREE, NULL_TREE, pmop); }
947 (if (utype)
948 (convert (bit_and (negate (convert:utype { pmop[0]; }))
949 (convert:utype @1)))))))
950
951 /* X % Y is smaller than Y. */
952 (for cmp (lt ge)
953 (simplify
954 (cmp (trunc_mod @0 @1) @1)
955 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
956 { constant_boolean_node (cmp == LT_EXPR, type); })))
957 (for cmp (gt le)
958 (simplify
959 (cmp @1 (trunc_mod @0 @1))
960 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
961 { constant_boolean_node (cmp == GT_EXPR, type); })))
962
963 /* x | ~0 -> ~0 */
964 (simplify
965 (bit_ior @0 integer_all_onesp@1)
966 @1)
967
968 /* x | 0 -> x */
969 (simplify
970 (bit_ior @0 integer_zerop)
971 @0)
972
973 /* x & 0 -> 0 */
974 (simplify
975 (bit_and @0 integer_zerop@1)
976 @1)
977
978 /* ~x | x -> -1 */
979 /* ~x ^ x -> -1 */
980 /* ~x + x -> -1 */
981 (for op (bit_ior bit_xor plus)
982 (simplify
983 (op:c (convert? @0) (convert? (bit_not @0)))
984 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
985
986 /* x ^ x -> 0 */
987 (simplify
988 (bit_xor @0 @0)
989 { build_zero_cst (type); })
990
991 /* Canonicalize X ^ ~0 to ~X. */
992 (simplify
993 (bit_xor @0 integer_all_onesp@1)
994 (bit_not @0))
995
996 /* x & ~0 -> x */
997 (simplify
998 (bit_and @0 integer_all_onesp)
999 (non_lvalue @0))
1000
1001 /* x & x -> x, x | x -> x */
1002 (for bitop (bit_and bit_ior)
1003 (simplify
1004 (bitop @0 @0)
1005 (non_lvalue @0)))
1006
1007 /* x & C -> x if we know that x & ~C == 0. */
1008 #if GIMPLE
1009 (simplify
1010 (bit_and SSA_NAME@0 INTEGER_CST@1)
1011 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1012 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
1013 @0))
1014 #endif
1015
1016 /* x + (x & 1) -> (x + 1) & ~1 */
1017 (simplify
1018 (plus:c @0 (bit_and:s @0 integer_onep@1))
1019 (bit_and (plus @0 @1) (bit_not @1)))
1020
1021 /* x & ~(x & y) -> x & ~y */
1022 /* x | ~(x | y) -> x | ~y */
1023 (for bitop (bit_and bit_ior)
1024 (simplify
1025 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
1026 (bitop @0 (bit_not @1))))
1027
1028 /* (~x & y) | ~(x | y) -> ~x */
1029 (simplify
1030 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
1031 @2)
1032
1033 /* (x | y) ^ (x | ~y) -> ~x */
1034 (simplify
1035 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1036 (bit_not @0))
1037
1038 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1039 (simplify
1040 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1041 (bit_not (bit_xor @0 @1)))
1042
1043 /* (~x | y) ^ (x ^ y) -> x | ~y */
1044 (simplify
1045 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1046 (bit_ior @0 (bit_not @1)))
1047
1048 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1049 (simplify
1050 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1051 (bit_not (bit_and @0 @1)))
1052
1053 /* (x | y) & ~x -> y & ~x */
1054 /* (x & y) | ~x -> y | ~x */
1055 (for bitop (bit_and bit_ior)
1056 rbitop (bit_ior bit_and)
1057 (simplify
1058 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1059 (bitop @1 @2)))
1060
1061 /* (x & y) ^ (x | y) -> x ^ y */
1062 (simplify
1063 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1064 (bit_xor @0 @1))
1065
1066 /* (x ^ y) ^ (x | y) -> x & y */
1067 (simplify
1068 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1069 (bit_and @0 @1))
1070
1071 /* (x & y) + (x ^ y) -> x | y */
1072 /* (x & y) | (x ^ y) -> x | y */
1073 /* (x & y) ^ (x ^ y) -> x | y */
1074 (for op (plus bit_ior bit_xor)
1075 (simplify
1076 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1077 (bit_ior @0 @1)))
1078
1079 /* (x & y) + (x | y) -> x + y */
1080 (simplify
1081 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1082 (plus @0 @1))
1083
1084 /* (x + y) - (x | y) -> x & y */
1085 (simplify
1086 (minus (plus @0 @1) (bit_ior @0 @1))
1087 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1088 && !TYPE_SATURATING (type))
1089 (bit_and @0 @1)))
1090
1091 /* (x + y) - (x & y) -> x | y */
1092 (simplify
1093 (minus (plus @0 @1) (bit_and @0 @1))
1094 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1095 && !TYPE_SATURATING (type))
1096 (bit_ior @0 @1)))
1097
1098 /* (x | y) - (x ^ y) -> x & y */
1099 (simplify
1100 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1101 (bit_and @0 @1))
1102
1103 /* (x | y) - (x & y) -> x ^ y */
1104 (simplify
1105 (minus (bit_ior @0 @1) (bit_and @0 @1))
1106 (bit_xor @0 @1))
1107
1108 /* (x | y) & ~(x & y) -> x ^ y */
1109 (simplify
1110 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1111 (bit_xor @0 @1))
1112
1113 /* (x | y) & (~x ^ y) -> x & y */
1114 (simplify
1115 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1116 (bit_and @0 @1))
1117
1118 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1119 (simplify
1120 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1121 (bit_not (bit_xor @0 @1)))
1122
1123 /* (~x | y) ^ (x | ~y) -> x ^ y */
1124 (simplify
1125 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1126 (bit_xor @0 @1))
1127
1128 /* ~x & ~y -> ~(x | y)
1129 ~x | ~y -> ~(x & y) */
1130 (for op (bit_and bit_ior)
1131 rop (bit_ior bit_and)
1132 (simplify
1133 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1134 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1135 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1136 (bit_not (rop (convert @0) (convert @1))))))
1137
1138 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1139 with a constant, and the two constants have no bits in common,
1140 we should treat this as a BIT_IOR_EXPR since this may produce more
1141 simplifications. */
1142 (for op (bit_xor plus)
1143 (simplify
1144 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1145 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1146 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1147 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1148 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1149 (bit_ior (convert @4) (convert @5)))))
1150
1151 /* (X | Y) ^ X -> Y & ~ X*/
1152 (simplify
1153 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1154 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1155 (convert (bit_and @1 (bit_not @0)))))
1156
1157 /* Convert ~X ^ ~Y to X ^ Y. */
1158 (simplify
1159 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1160 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1161 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1162 (bit_xor (convert @0) (convert @1))))
1163
1164 /* Convert ~X ^ C to X ^ ~C. */
1165 (simplify
1166 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1167 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1168 (bit_xor (convert @0) (bit_not @1))))
1169
1170 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1171 (for opo (bit_and bit_xor)
1172 opi (bit_xor bit_and)
1173 (simplify
1174 (opo:c (opi:cs @0 @1) @1)
1175 (bit_and (bit_not @0) @1)))
1176
1177 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1178 operands are another bit-wise operation with a common input. If so,
1179 distribute the bit operations to save an operation and possibly two if
1180 constants are involved. For example, convert
1181 (A | B) & (A | C) into A | (B & C)
1182 Further simplification will occur if B and C are constants. */
1183 (for op (bit_and bit_ior bit_xor)
1184 rop (bit_ior bit_and bit_and)
1185 (simplify
1186 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1187 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1188 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1189 (rop (convert @0) (op (convert @1) (convert @2))))))
1190
1191 /* Some simple reassociation for bit operations, also handled in reassoc. */
1192 /* (X & Y) & Y -> X & Y
1193 (X | Y) | Y -> X | Y */
1194 (for op (bit_and bit_ior)
1195 (simplify
1196 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1197 @2))
1198 /* (X ^ Y) ^ Y -> X */
1199 (simplify
1200 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1201 (convert @0))
1202 /* (X & Y) & (X & Z) -> (X & Y) & Z
1203 (X | Y) | (X | Z) -> (X | Y) | Z */
1204 (for op (bit_and bit_ior)
1205 (simplify
1206 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1208 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1209 (if (single_use (@5) && single_use (@6))
1210 (op @3 (convert @2))
1211 (if (single_use (@3) && single_use (@4))
1212 (op (convert @1) @5))))))
1213 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1214 (simplify
1215 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1216 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1217 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1218 (bit_xor (convert @1) (convert @2))))
1219
1220 /* Convert abs (abs (X)) into abs (X).
1221 also absu (absu (X)) into absu (X). */
1222 (simplify
1223 (abs (abs@1 @0))
1224 @1)
1225
1226 (simplify
1227 (absu (convert@2 (absu@1 @0)))
1228 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1229 @1))
1230
1231 /* Convert abs[u] (-X) -> abs[u] (X). */
1232 (simplify
1233 (abs (negate @0))
1234 (abs @0))
1235
1236 (simplify
1237 (absu (negate @0))
1238 (absu @0))
1239
1240 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1241 (simplify
1242 (abs tree_expr_nonnegative_p@0)
1243 @0)
1244
1245 (simplify
1246 (absu tree_expr_nonnegative_p@0)
1247 (convert @0))
1248
1249 /* A few cases of fold-const.c negate_expr_p predicate. */
1250 (match negate_expr_p
1251 INTEGER_CST
1252 (if ((INTEGRAL_TYPE_P (type)
1253 && TYPE_UNSIGNED (type))
1254 || (!TYPE_OVERFLOW_SANITIZED (type)
1255 && may_negate_without_overflow_p (t)))))
1256 (match negate_expr_p
1257 FIXED_CST)
1258 (match negate_expr_p
1259 (negate @0)
1260 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1261 (match negate_expr_p
1262 REAL_CST
1263 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1264 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1265 ways. */
1266 (match negate_expr_p
1267 VECTOR_CST
1268 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1269 (match negate_expr_p
1270 (minus @0 @1)
1271 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1272 || (FLOAT_TYPE_P (type)
1273 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1274 && !HONOR_SIGNED_ZEROS (type)))))
1275
1276 /* (-A) * (-B) -> A * B */
1277 (simplify
1278 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1279 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1280 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1281 (mult (convert @0) (convert (negate @1)))))
1282
1283 /* -(A + B) -> (-B) - A. */
1284 (simplify
1285 (negate (plus:c @0 negate_expr_p@1))
1286 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1287 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1288 (minus (negate @1) @0)))
1289
1290 /* -(A - B) -> B - A. */
1291 (simplify
1292 (negate (minus @0 @1))
1293 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1294 || (FLOAT_TYPE_P (type)
1295 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1296 && !HONOR_SIGNED_ZEROS (type)))
1297 (minus @1 @0)))
1298 (simplify
1299 (negate (pointer_diff @0 @1))
1300 (if (TYPE_OVERFLOW_UNDEFINED (type))
1301 (pointer_diff @1 @0)))
1302
1303 /* A - B -> A + (-B) if B is easily negatable. */
1304 (simplify
1305 (minus @0 negate_expr_p@1)
1306 (if (!FIXED_POINT_TYPE_P (type))
1307 (plus @0 (negate @1))))
1308
1309 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1310 when profitable.
1311 For bitwise binary operations apply operand conversions to the
1312 binary operation result instead of to the operands. This allows
1313 to combine successive conversions and bitwise binary operations.
1314 We combine the above two cases by using a conditional convert. */
1315 (for bitop (bit_and bit_ior bit_xor)
1316 (simplify
1317 (bitop (convert @0) (convert? @1))
1318 (if (((TREE_CODE (@1) == INTEGER_CST
1319 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1320 && int_fits_type_p (@1, TREE_TYPE (@0)))
1321 || types_match (@0, @1))
1322 /* ??? This transform conflicts with fold-const.c doing
1323 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1324 constants (if x has signed type, the sign bit cannot be set
1325 in c). This folds extension into the BIT_AND_EXPR.
1326 Restrict it to GIMPLE to avoid endless recursions. */
1327 && (bitop != BIT_AND_EXPR || GIMPLE)
1328 && (/* That's a good idea if the conversion widens the operand, thus
1329 after hoisting the conversion the operation will be narrower. */
1330 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1331 /* It's also a good idea if the conversion is to a non-integer
1332 mode. */
1333 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1334 /* Or if the precision of TO is not the same as the precision
1335 of its mode. */
1336 || !type_has_mode_precision_p (type)))
1337 (convert (bitop @0 (convert @1))))))
1338
1339 (for bitop (bit_and bit_ior)
1340 rbitop (bit_ior bit_and)
1341 /* (x | y) & x -> x */
1342 /* (x & y) | x -> x */
1343 (simplify
1344 (bitop:c (rbitop:c @0 @1) @0)
1345 @0)
1346 /* (~x | y) & x -> x & y */
1347 /* (~x & y) | x -> x | y */
1348 (simplify
1349 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1350 (bitop @0 @1)))
1351
1352 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1353 (simplify
1354 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1355 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1356
1357 /* Combine successive equal operations with constants. */
1358 (for bitop (bit_and bit_ior bit_xor)
1359 (simplify
1360 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1361 (if (!CONSTANT_CLASS_P (@0))
1362 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1363 folded to a constant. */
1364 (bitop @0 (bitop @1 @2))
1365 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1366 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1367 the values involved are such that the operation can't be decided at
1368 compile time. Try folding one of @0 or @1 with @2 to see whether
1369 that combination can be decided at compile time.
1370
1371 Keep the existing form if both folds fail, to avoid endless
1372 oscillation. */
1373 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1374 (if (cst1)
1375 (bitop @1 { cst1; })
1376 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1377 (if (cst2)
1378 (bitop @0 { cst2; }))))))))
1379
1380 /* Try simple folding for X op !X, and X op X with the help
1381 of the truth_valued_p and logical_inverted_value predicates. */
1382 (match truth_valued_p
1383 @0
1384 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1385 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1386 (match truth_valued_p
1387 (op @0 @1)))
1388 (match truth_valued_p
1389 (truth_not @0))
1390
1391 (match (logical_inverted_value @0)
1392 (truth_not @0))
1393 (match (logical_inverted_value @0)
1394 (bit_not truth_valued_p@0))
1395 (match (logical_inverted_value @0)
1396 (eq @0 integer_zerop))
1397 (match (logical_inverted_value @0)
1398 (ne truth_valued_p@0 integer_truep))
1399 (match (logical_inverted_value @0)
1400 (bit_xor truth_valued_p@0 integer_truep))
1401
1402 /* X & !X -> 0. */
1403 (simplify
1404 (bit_and:c @0 (logical_inverted_value @0))
1405 { build_zero_cst (type); })
1406 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1407 (for op (bit_ior bit_xor)
1408 (simplify
1409 (op:c truth_valued_p@0 (logical_inverted_value @0))
1410 { constant_boolean_node (true, type); }))
1411 /* X ==/!= !X is false/true. */
1412 (for op (eq ne)
1413 (simplify
1414 (op:c truth_valued_p@0 (logical_inverted_value @0))
1415 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1416
1417 /* ~~x -> x */
1418 (simplify
1419 (bit_not (bit_not @0))
1420 @0)
1421
1422 /* Convert ~ (-A) to A - 1. */
1423 (simplify
1424 (bit_not (convert? (negate @0)))
1425 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1426 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1427 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1428
1429 /* Convert - (~A) to A + 1. */
1430 (simplify
1431 (negate (nop_convert (bit_not @0)))
1432 (plus (view_convert @0) { build_each_one_cst (type); }))
1433
1434 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1435 (simplify
1436 (bit_not (convert? (minus @0 integer_each_onep)))
1437 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1438 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1439 (convert (negate @0))))
1440 (simplify
1441 (bit_not (convert? (plus @0 integer_all_onesp)))
1442 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1443 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1444 (convert (negate @0))))
1445
1446 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1447 (simplify
1448 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1449 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1450 (convert (bit_xor @0 (bit_not @1)))))
1451 (simplify
1452 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1453 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1454 (convert (bit_xor @0 @1))))
1455
1456 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1457 (simplify
1458 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1459 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1460 (bit_not (bit_xor (view_convert @0) @1))))
1461
1462 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1463 (simplify
1464 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1465 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1466
1467 /* Fold A - (A & B) into ~B & A. */
1468 (simplify
1469 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1470 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1471 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1472 (convert (bit_and (bit_not @1) @0))))
1473
1474 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1475 (for cmp (gt lt ge le)
1476 (simplify
1477 (mult (convert (cmp @0 @1)) @2)
1478 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1479
1480 /* For integral types with undefined overflow and C != 0 fold
1481 x * C EQ/NE y * C into x EQ/NE y. */
1482 (for cmp (eq ne)
1483 (simplify
1484 (cmp (mult:c @0 @1) (mult:c @2 @1))
1485 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1486 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1487 && tree_expr_nonzero_p (@1))
1488 (cmp @0 @2))))
1489
1490 /* For integral types with wrapping overflow and C odd fold
1491 x * C EQ/NE y * C into x EQ/NE y. */
1492 (for cmp (eq ne)
1493 (simplify
1494 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1495 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1496 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1497 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1498 (cmp @0 @2))))
1499
1500 /* For integral types with undefined overflow and C != 0 fold
1501 x * C RELOP y * C into:
1502
1503 x RELOP y for nonnegative C
1504 y RELOP x for negative C */
1505 (for cmp (lt gt le ge)
1506 (simplify
1507 (cmp (mult:c @0 @1) (mult:c @2 @1))
1508 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1509 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1510 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1511 (cmp @0 @2)
1512 (if (TREE_CODE (@1) == INTEGER_CST
1513 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1514 (cmp @2 @0))))))
1515
1516 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1517 (for cmp (le gt)
1518 icmp (gt le)
1519 (simplify
1520 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1521 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1522 && TYPE_UNSIGNED (TREE_TYPE (@0))
1523 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1524 && (wi::to_wide (@2)
1525 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1526 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1527 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1528
1529 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1530 (for cmp (simple_comparison)
1531 (simplify
1532 (cmp (convert?@3 (exact_div @0 INTEGER_CST@2)) (convert? (exact_div @1 @2)))
1533 (if (element_precision (@3) >= element_precision (@0)
1534 && types_match (@0, @1))
1535 (if (wi::lt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1536 (if (!TYPE_UNSIGNED (TREE_TYPE (@3)))
1537 (cmp @1 @0)
1538 (if (tree_expr_nonzero_p (@0) && tree_expr_nonzero_p (@1))
1539 (with
1540 {
1541 tree utype = unsigned_type_for (TREE_TYPE (@0));
1542 }
1543 (cmp (convert:utype @1) (convert:utype @0)))))
1544 (if (wi::gt_p (wi::to_wide (@2), 1, TYPE_SIGN (TREE_TYPE (@2))))
1545 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) || !TYPE_UNSIGNED (TREE_TYPE (@3)))
1546 (cmp @0 @1)
1547 (with
1548 {
1549 tree utype = unsigned_type_for (TREE_TYPE (@0));
1550 }
1551 (cmp (convert:utype @0) (convert:utype @1)))))))))
1552
1553 /* X / C1 op C2 into a simple range test. */
1554 (for cmp (simple_comparison)
1555 (simplify
1556 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1557 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1558 && integer_nonzerop (@1)
1559 && !TREE_OVERFLOW (@1)
1560 && !TREE_OVERFLOW (@2))
1561 (with { tree lo, hi; bool neg_overflow;
1562 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1563 &neg_overflow); }
1564 (switch
1565 (if (code == LT_EXPR || code == GE_EXPR)
1566 (if (TREE_OVERFLOW (lo))
1567 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1568 (if (code == LT_EXPR)
1569 (lt @0 { lo; })
1570 (ge @0 { lo; }))))
1571 (if (code == LE_EXPR || code == GT_EXPR)
1572 (if (TREE_OVERFLOW (hi))
1573 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1574 (if (code == LE_EXPR)
1575 (le @0 { hi; })
1576 (gt @0 { hi; }))))
1577 (if (!lo && !hi)
1578 { build_int_cst (type, code == NE_EXPR); })
1579 (if (code == EQ_EXPR && !hi)
1580 (ge @0 { lo; }))
1581 (if (code == EQ_EXPR && !lo)
1582 (le @0 { hi; }))
1583 (if (code == NE_EXPR && !hi)
1584 (lt @0 { lo; }))
1585 (if (code == NE_EXPR && !lo)
1586 (gt @0 { hi; }))
1587 (if (GENERIC)
1588 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1589 lo, hi); })
1590 (with
1591 {
1592 tree etype = range_check_type (TREE_TYPE (@0));
1593 if (etype)
1594 {
1595 hi = fold_convert (etype, hi);
1596 lo = fold_convert (etype, lo);
1597 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1598 }
1599 }
1600 (if (etype && hi && !TREE_OVERFLOW (hi))
1601 (if (code == EQ_EXPR)
1602 (le (minus (convert:etype @0) { lo; }) { hi; })
1603 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1604
1605 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1606 (for op (lt le ge gt)
1607 (simplify
1608 (op (plus:c @0 @2) (plus:c @1 @2))
1609 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1610 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1611 (op @0 @1))))
1612 /* For equality and subtraction, this is also true with wrapping overflow. */
1613 (for op (eq ne minus)
1614 (simplify
1615 (op (plus:c @0 @2) (plus:c @1 @2))
1616 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1617 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1618 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1619 (op @0 @1))))
1620
1621 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1622 (for op (lt le ge gt)
1623 (simplify
1624 (op (minus @0 @2) (minus @1 @2))
1625 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1626 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1627 (op @0 @1))))
1628 /* For equality and subtraction, this is also true with wrapping overflow. */
1629 (for op (eq ne minus)
1630 (simplify
1631 (op (minus @0 @2) (minus @1 @2))
1632 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1633 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1634 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1635 (op @0 @1))))
1636 /* And for pointers... */
1637 (for op (simple_comparison)
1638 (simplify
1639 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1640 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1641 (op @0 @1))))
1642 (simplify
1643 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1644 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1645 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1646 (pointer_diff @0 @1)))
1647
1648 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1649 (for op (lt le ge gt)
1650 (simplify
1651 (op (minus @2 @0) (minus @2 @1))
1652 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1653 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1654 (op @1 @0))))
1655 /* For equality and subtraction, this is also true with wrapping overflow. */
1656 (for op (eq ne minus)
1657 (simplify
1658 (op (minus @2 @0) (minus @2 @1))
1659 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1660 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1661 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1662 (op @1 @0))))
1663 /* And for pointers... */
1664 (for op (simple_comparison)
1665 (simplify
1666 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1667 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1668 (op @1 @0))))
1669 (simplify
1670 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1671 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1672 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1673 (pointer_diff @1 @0)))
1674
1675 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1676 (for op (lt le gt ge)
1677 (simplify
1678 (op:c (plus:c@2 @0 @1) @1)
1679 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1680 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1681 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1682 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1683 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1684 /* For equality, this is also true with wrapping overflow. */
1685 (for op (eq ne)
1686 (simplify
1687 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1688 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1689 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1690 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1691 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1692 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1693 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1694 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1695 (simplify
1696 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1697 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1698 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1699 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1700 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1701
1702 /* X - Y < X is the same as Y > 0 when there is no overflow.
1703 For equality, this is also true with wrapping overflow. */
1704 (for op (simple_comparison)
1705 (simplify
1706 (op:c @0 (minus@2 @0 @1))
1707 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1708 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1709 || ((op == EQ_EXPR || op == NE_EXPR)
1710 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1711 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1712 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1713
1714 /* Transform:
1715 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1716 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1717 (for cmp (eq ne)
1718 ocmp (lt ge)
1719 (simplify
1720 (cmp (trunc_div @0 @1) integer_zerop)
1721 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1722 /* Complex ==/!= is allowed, but not </>=. */
1723 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1724 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1725 (ocmp @0 @1))))
1726
1727 /* X == C - X can never be true if C is odd. */
1728 (for cmp (eq ne)
1729 (simplify
1730 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1731 (if (TREE_INT_CST_LOW (@1) & 1)
1732 { constant_boolean_node (cmp == NE_EXPR, type); })))
1733
1734 /* Arguments on which one can call get_nonzero_bits to get the bits
1735 possibly set. */
1736 (match with_possible_nonzero_bits
1737 INTEGER_CST@0)
1738 (match with_possible_nonzero_bits
1739 SSA_NAME@0
1740 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1741 /* Slightly extended version, do not make it recursive to keep it cheap. */
1742 (match (with_possible_nonzero_bits2 @0)
1743 with_possible_nonzero_bits@0)
1744 (match (with_possible_nonzero_bits2 @0)
1745 (bit_and:c with_possible_nonzero_bits@0 @2))
1746
1747 /* Same for bits that are known to be set, but we do not have
1748 an equivalent to get_nonzero_bits yet. */
1749 (match (with_certain_nonzero_bits2 @0)
1750 INTEGER_CST@0)
1751 (match (with_certain_nonzero_bits2 @0)
1752 (bit_ior @1 INTEGER_CST@0))
1753
1754 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1755 (for cmp (eq ne)
1756 (simplify
1757 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1758 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1759 { constant_boolean_node (cmp == NE_EXPR, type); })))
1760
1761 /* ((X inner_op C0) outer_op C1)
1762 With X being a tree where value_range has reasoned certain bits to always be
1763 zero throughout its computed value range,
1764 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1765 where zero_mask has 1's for all bits that are sure to be 0 in
1766 and 0's otherwise.
1767 if (inner_op == '^') C0 &= ~C1;
1768 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1769 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1770 */
1771 (for inner_op (bit_ior bit_xor)
1772 outer_op (bit_xor bit_ior)
1773 (simplify
1774 (outer_op
1775 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1776 (with
1777 {
1778 bool fail = false;
1779 wide_int zero_mask_not;
1780 wide_int C0;
1781 wide_int cst_emit;
1782
1783 if (TREE_CODE (@2) == SSA_NAME)
1784 zero_mask_not = get_nonzero_bits (@2);
1785 else
1786 fail = true;
1787
1788 if (inner_op == BIT_XOR_EXPR)
1789 {
1790 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1791 cst_emit = C0 | wi::to_wide (@1);
1792 }
1793 else
1794 {
1795 C0 = wi::to_wide (@0);
1796 cst_emit = C0 ^ wi::to_wide (@1);
1797 }
1798 }
1799 (if (!fail && (C0 & zero_mask_not) == 0)
1800 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1801 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1802 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1803
1804 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1805 (simplify
1806 (pointer_plus (pointer_plus:s @0 @1) @3)
1807 (pointer_plus @0 (plus @1 @3)))
1808
1809 /* Pattern match
1810 tem1 = (long) ptr1;
1811 tem2 = (long) ptr2;
1812 tem3 = tem2 - tem1;
1813 tem4 = (unsigned long) tem3;
1814 tem5 = ptr1 + tem4;
1815 and produce
1816 tem5 = ptr2; */
1817 (simplify
1818 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1819 /* Conditionally look through a sign-changing conversion. */
1820 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1821 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1822 || (GENERIC && type == TREE_TYPE (@1))))
1823 @1))
1824 (simplify
1825 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1826 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1827 (convert @1)))
1828
1829 /* Pattern match
1830 tem = (sizetype) ptr;
1831 tem = tem & algn;
1832 tem = -tem;
1833 ... = ptr p+ tem;
1834 and produce the simpler and easier to analyze with respect to alignment
1835 ... = ptr & ~algn; */
1836 (simplify
1837 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1838 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1839 (bit_and @0 { algn; })))
1840
1841 /* Try folding difference of addresses. */
1842 (simplify
1843 (minus (convert ADDR_EXPR@0) (convert @1))
1844 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1845 (with { poly_int64 diff; }
1846 (if (ptr_difference_const (@0, @1, &diff))
1847 { build_int_cst_type (type, diff); }))))
1848 (simplify
1849 (minus (convert @0) (convert ADDR_EXPR@1))
1850 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1851 (with { poly_int64 diff; }
1852 (if (ptr_difference_const (@0, @1, &diff))
1853 { build_int_cst_type (type, diff); }))))
1854 (simplify
1855 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1856 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1857 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1858 (with { poly_int64 diff; }
1859 (if (ptr_difference_const (@0, @1, &diff))
1860 { build_int_cst_type (type, diff); }))))
1861 (simplify
1862 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1863 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1864 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1865 (with { poly_int64 diff; }
1866 (if (ptr_difference_const (@0, @1, &diff))
1867 { build_int_cst_type (type, diff); }))))
1868
1869 /* If arg0 is derived from the address of an object or function, we may
1870 be able to fold this expression using the object or function's
1871 alignment. */
1872 (simplify
1873 (bit_and (convert? @0) INTEGER_CST@1)
1874 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1875 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1876 (with
1877 {
1878 unsigned int align;
1879 unsigned HOST_WIDE_INT bitpos;
1880 get_pointer_alignment_1 (@0, &align, &bitpos);
1881 }
1882 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1883 { wide_int_to_tree (type, (wi::to_wide (@1)
1884 & (bitpos / BITS_PER_UNIT))); }))))
1885
1886 (match min_value
1887 INTEGER_CST
1888 (if (INTEGRAL_TYPE_P (type)
1889 && wi::eq_p (wi::to_wide (t), wi::min_value (type)))))
1890
1891 (match max_value
1892 INTEGER_CST
1893 (if (INTEGRAL_TYPE_P (type)
1894 && wi::eq_p (wi::to_wide (t), wi::max_value (type)))))
1895
1896 /* x > y && x != XXX_MIN --> x > y
1897 x > y && x == XXX_MIN --> false . */
1898 (for eqne (eq ne)
1899 (simplify
1900 (bit_and:c (gt:c@2 @0 @1) (eqne @0 min_value))
1901 (switch
1902 (if (eqne == EQ_EXPR)
1903 { constant_boolean_node (false, type); })
1904 (if (eqne == NE_EXPR)
1905 @2)
1906 )))
1907
1908 /* x < y && x != XXX_MAX --> x < y
1909 x < y && x == XXX_MAX --> false. */
1910 (for eqne (eq ne)
1911 (simplify
1912 (bit_and:c (lt:c@2 @0 @1) (eqne @0 max_value))
1913 (switch
1914 (if (eqne == EQ_EXPR)
1915 { constant_boolean_node (false, type); })
1916 (if (eqne == NE_EXPR)
1917 @2)
1918 )))
1919
1920 /* x <= y && x == XXX_MIN --> x == XXX_MIN. */
1921 (simplify
1922 (bit_and:c (le:c @0 @1) (eq@2 @0 min_value))
1923 @2)
1924
1925 /* x >= y && x == XXX_MAX --> x == XXX_MAX. */
1926 (simplify
1927 (bit_and:c (ge:c @0 @1) (eq@2 @0 max_value))
1928 @2)
1929
1930 /* x > y || x != XXX_MIN --> x != XXX_MIN. */
1931 (simplify
1932 (bit_ior:c (gt:c @0 @1) (ne@2 @0 min_value))
1933 @2)
1934
1935 /* x <= y || x != XXX_MIN --> true. */
1936 (simplify
1937 (bit_ior:c (le:c @0 @1) (ne @0 min_value))
1938 { constant_boolean_node (true, type); })
1939
1940 /* x <= y || x == XXX_MIN --> x <= y. */
1941 (simplify
1942 (bit_ior:c (le:c@2 @0 @1) (eq @0 min_value))
1943 @2)
1944
1945 /* x < y || x != XXX_MAX --> x != XXX_MAX. */
1946 (simplify
1947 (bit_ior:c (lt:c @0 @1) (ne@2 @0 max_value))
1948 @2)
1949
1950 /* x >= y || x != XXX_MAX --> true
1951 x >= y || x == XXX_MAX --> x >= y. */
1952 (for eqne (eq ne)
1953 (simplify
1954 (bit_ior:c (ge:c@2 @0 @1) (eqne @0 max_value))
1955 (switch
1956 (if (eqne == EQ_EXPR)
1957 @2)
1958 (if (eqne == NE_EXPR)
1959 { constant_boolean_node (true, type); }))))
1960
1961 /* Convert (X == CST1) && (X OP2 CST2) to a known value
1962 based on CST1 OP2 CST2. Similarly for (X != CST1). */
1963
1964 (for code1 (eq ne)
1965 (for code2 (eq ne lt gt le ge)
1966 (simplify
1967 (bit_and:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
1968 (with
1969 {
1970 int cmp = tree_int_cst_compare (@1, @2);
1971 bool val;
1972 switch (code2)
1973 {
1974 case EQ_EXPR: val = (cmp == 0); break;
1975 case NE_EXPR: val = (cmp != 0); break;
1976 case LT_EXPR: val = (cmp < 0); break;
1977 case GT_EXPR: val = (cmp > 0); break;
1978 case LE_EXPR: val = (cmp <= 0); break;
1979 case GE_EXPR: val = (cmp >= 0); break;
1980 default: gcc_unreachable ();
1981 }
1982 }
1983 (switch
1984 (if (code1 == EQ_EXPR && val) @3)
1985 (if (code1 == EQ_EXPR && !val) { constant_boolean_node (false, type); })
1986 (if (code1 == NE_EXPR && !val) @4))))))
1987
1988 /* Convert (X OP1 CST1) && (X OP2 CST2). */
1989
1990 (for code1 (lt le gt ge)
1991 (for code2 (lt le gt ge)
1992 (simplify
1993 (bit_and (code1:c@3 @0 INTEGER_CST@1) (code2:c@4 @0 INTEGER_CST@2))
1994 (with
1995 {
1996 int cmp = tree_int_cst_compare (@1, @2);
1997 }
1998 (switch
1999 /* Choose the more restrictive of two < or <= comparisons. */
2000 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2001 && (code2 == LT_EXPR || code2 == LE_EXPR))
2002 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2003 @3
2004 @4))
2005 /* Likewise chose the more restrictive of two > or >= comparisons. */
2006 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2007 && (code2 == GT_EXPR || code2 == GE_EXPR))
2008 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2009 @3
2010 @4))
2011 /* Check for singleton ranges. */
2012 (if (cmp == 0
2013 && ((code1 == LE_EXPR && code2 == GE_EXPR)
2014 || (code1 == GE_EXPR && code2 == LE_EXPR)))
2015 (eq @0 @1))
2016 /* Check for disjoint ranges. */
2017 (if (cmp <= 0
2018 && (code1 == LT_EXPR || code1 == LE_EXPR)
2019 && (code2 == GT_EXPR || code2 == GE_EXPR))
2020 { constant_boolean_node (false, type); })
2021 (if (cmp >= 0
2022 && (code1 == GT_EXPR || code1 == GE_EXPR)
2023 && (code2 == LT_EXPR || code2 == LE_EXPR))
2024 { constant_boolean_node (false, type); })
2025 )))))
2026
2027 /* Convert (X == CST1) || (X OP2 CST2) to a known value
2028 based on CST1 OP2 CST2. Similarly for (X != CST1). */
2029
2030 (for code1 (eq ne)
2031 (for code2 (eq ne lt gt le ge)
2032 (simplify
2033 (bit_ior:c (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2034 (with
2035 {
2036 int cmp = tree_int_cst_compare (@1, @2);
2037 bool val;
2038 switch (code2)
2039 {
2040 case EQ_EXPR: val = (cmp == 0); break;
2041 case NE_EXPR: val = (cmp != 0); break;
2042 case LT_EXPR: val = (cmp < 0); break;
2043 case GT_EXPR: val = (cmp > 0); break;
2044 case LE_EXPR: val = (cmp <= 0); break;
2045 case GE_EXPR: val = (cmp >= 0); break;
2046 default: gcc_unreachable ();
2047 }
2048 }
2049 (switch
2050 (if (code1 == EQ_EXPR && val) @4)
2051 (if (code1 == NE_EXPR && val) { constant_boolean_node (true, type); })
2052 (if (code1 == NE_EXPR && !val) @3))))))
2053
2054 /* Convert (X OP1 CST1) || (X OP2 CST2). */
2055
2056 (for code1 (lt le gt ge)
2057 (for code2 (lt le gt ge)
2058 (simplify
2059 (bit_ior (code1@3 @0 INTEGER_CST@1) (code2@4 @0 INTEGER_CST@2))
2060 (with
2061 {
2062 int cmp = tree_int_cst_compare (@1, @2);
2063 }
2064 (switch
2065 /* Choose the more restrictive of two < or <= comparisons. */
2066 (if ((code1 == LT_EXPR || code1 == LE_EXPR)
2067 && (code2 == LT_EXPR || code2 == LE_EXPR))
2068 (if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
2069 @4
2070 @3))
2071 /* Likewise chose the more restrictive of two > or >= comparisons. */
2072 (if ((code1 == GT_EXPR || code1 == GE_EXPR)
2073 && (code2 == GT_EXPR || code2 == GE_EXPR))
2074 (if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
2075 @4
2076 @3))
2077 /* Check for singleton ranges. */
2078 (if (cmp == 0
2079 && ((code1 == LT_EXPR && code2 == GT_EXPR)
2080 || (code1 == GT_EXPR && code2 == LT_EXPR)))
2081 (ne @0 @2))
2082 /* Check for disjoint ranges. */
2083 (if (cmp >= 0
2084 && (code1 == LT_EXPR || code1 == LE_EXPR)
2085 && (code2 == GT_EXPR || code2 == GE_EXPR))
2086 { constant_boolean_node (true, type); })
2087 (if (cmp <= 0
2088 && (code1 == GT_EXPR || code1 == GE_EXPR)
2089 && (code2 == LT_EXPR || code2 == LE_EXPR))
2090 { constant_boolean_node (true, type); })
2091 )))))
2092
2093 /* We can't reassociate at all for saturating types. */
2094 (if (!TYPE_SATURATING (type))
2095
2096 /* Contract negates. */
2097 /* A + (-B) -> A - B */
2098 (simplify
2099 (plus:c @0 (convert? (negate @1)))
2100 /* Apply STRIP_NOPS on the negate. */
2101 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2102 && !TYPE_OVERFLOW_SANITIZED (type))
2103 (with
2104 {
2105 tree t1 = type;
2106 if (INTEGRAL_TYPE_P (type)
2107 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2108 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2109 }
2110 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
2111 /* A - (-B) -> A + B */
2112 (simplify
2113 (minus @0 (convert? (negate @1)))
2114 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
2115 && !TYPE_OVERFLOW_SANITIZED (type))
2116 (with
2117 {
2118 tree t1 = type;
2119 if (INTEGRAL_TYPE_P (type)
2120 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
2121 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
2122 }
2123 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
2124 /* -(T)(-A) -> (T)A
2125 Sign-extension is ok except for INT_MIN, which thankfully cannot
2126 happen without overflow. */
2127 (simplify
2128 (negate (convert (negate @1)))
2129 (if (INTEGRAL_TYPE_P (type)
2130 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
2131 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
2132 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2133 && !TYPE_OVERFLOW_SANITIZED (type)
2134 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2135 (convert @1)))
2136 (simplify
2137 (negate (convert negate_expr_p@1))
2138 (if (SCALAR_FLOAT_TYPE_P (type)
2139 && ((DECIMAL_FLOAT_TYPE_P (type)
2140 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
2141 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
2142 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
2143 (convert (negate @1))))
2144 (simplify
2145 (negate (nop_convert (negate @1)))
2146 (if (!TYPE_OVERFLOW_SANITIZED (type)
2147 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
2148 (view_convert @1)))
2149
2150 /* We can't reassociate floating-point unless -fassociative-math
2151 or fixed-point plus or minus because of saturation to +-Inf. */
2152 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
2153 && !FIXED_POINT_TYPE_P (type))
2154
2155 /* Match patterns that allow contracting a plus-minus pair
2156 irrespective of overflow issues. */
2157 /* (A +- B) - A -> +- B */
2158 /* (A +- B) -+ B -> A */
2159 /* A - (A +- B) -> -+ B */
2160 /* A +- (B -+ A) -> +- B */
2161 (simplify
2162 (minus (nop_convert (plus:c (nop_convert @0) @1)) @0)
2163 (view_convert @1))
2164 (simplify
2165 (minus (nop_convert (minus (nop_convert @0) @1)) @0)
2166 (if (!ANY_INTEGRAL_TYPE_P (type)
2167 || TYPE_OVERFLOW_WRAPS (type))
2168 (negate (view_convert @1))
2169 (view_convert (negate @1))))
2170 (simplify
2171 (plus:c (nop_convert (minus @0 (nop_convert @1))) @1)
2172 (view_convert @0))
2173 (simplify
2174 (minus @0 (nop_convert (plus:c (nop_convert @0) @1)))
2175 (if (!ANY_INTEGRAL_TYPE_P (type)
2176 || TYPE_OVERFLOW_WRAPS (type))
2177 (negate (view_convert @1))
2178 (view_convert (negate @1))))
2179 (simplify
2180 (minus @0 (nop_convert (minus (nop_convert @0) @1)))
2181 (view_convert @1))
2182 /* (A +- B) + (C - A) -> C +- B */
2183 /* (A + B) - (A - C) -> B + C */
2184 /* More cases are handled with comparisons. */
2185 (simplify
2186 (plus:c (plus:c @0 @1) (minus @2 @0))
2187 (plus @2 @1))
2188 (simplify
2189 (plus:c (minus @0 @1) (minus @2 @0))
2190 (minus @2 @1))
2191 (simplify
2192 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
2193 (if (TYPE_OVERFLOW_UNDEFINED (type)
2194 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
2195 (pointer_diff @2 @1)))
2196 (simplify
2197 (minus (plus:c @0 @1) (minus @0 @2))
2198 (plus @1 @2))
2199
2200 /* (A +- CST1) +- CST2 -> A + CST3
2201 Use view_convert because it is safe for vectors and equivalent for
2202 scalars. */
2203 (for outer_op (plus minus)
2204 (for inner_op (plus minus)
2205 neg_inner_op (minus plus)
2206 (simplify
2207 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
2208 CONSTANT_CLASS_P@2)
2209 /* If one of the types wraps, use that one. */
2210 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2211 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2212 forever if something doesn't simplify into a constant. */
2213 (if (!CONSTANT_CLASS_P (@0))
2214 (if (outer_op == PLUS_EXPR)
2215 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
2216 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
2217 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2218 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2219 (if (outer_op == PLUS_EXPR)
2220 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
2221 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
2222 /* If the constant operation overflows we cannot do the transform
2223 directly as we would introduce undefined overflow, for example
2224 with (a - 1) + INT_MIN. */
2225 (if (types_match (type, @0))
2226 (with { tree cst = const_binop (outer_op == inner_op
2227 ? PLUS_EXPR : MINUS_EXPR,
2228 type, @1, @2); }
2229 (if (cst && !TREE_OVERFLOW (cst))
2230 (inner_op @0 { cst; } )
2231 /* X+INT_MAX+1 is X-INT_MIN. */
2232 (if (INTEGRAL_TYPE_P (type) && cst
2233 && wi::to_wide (cst) == wi::min_value (type))
2234 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
2235 /* Last resort, use some unsigned type. */
2236 (with { tree utype = unsigned_type_for (type); }
2237 (if (utype)
2238 (view_convert (inner_op
2239 (view_convert:utype @0)
2240 (view_convert:utype
2241 { drop_tree_overflow (cst); }))))))))))))))
2242
2243 /* (CST1 - A) +- CST2 -> CST3 - A */
2244 (for outer_op (plus minus)
2245 (simplify
2246 (outer_op (nop_convert (minus CONSTANT_CLASS_P@1 @0)) CONSTANT_CLASS_P@2)
2247 /* If one of the types wraps, use that one. */
2248 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2249 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2250 forever if something doesn't simplify into a constant. */
2251 (if (!CONSTANT_CLASS_P (@0))
2252 (minus (outer_op (view_convert @1) @2) (view_convert @0)))
2253 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2254 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2255 (view_convert (minus (outer_op @1 (view_convert @2)) @0))
2256 (if (types_match (type, @0))
2257 (with { tree cst = const_binop (outer_op, type, @1, @2); }
2258 (if (cst && !TREE_OVERFLOW (cst))
2259 (minus { cst; } @0))))))))
2260
2261 /* CST1 - (CST2 - A) -> CST3 + A
2262 Use view_convert because it is safe for vectors and equivalent for
2263 scalars. */
2264 (simplify
2265 (minus CONSTANT_CLASS_P@1 (nop_convert (minus CONSTANT_CLASS_P@2 @0)))
2266 /* If one of the types wraps, use that one. */
2267 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
2268 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
2269 forever if something doesn't simplify into a constant. */
2270 (if (!CONSTANT_CLASS_P (@0))
2271 (plus (view_convert @0) (minus @1 (view_convert @2))))
2272 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2273 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
2274 (view_convert (plus @0 (minus (view_convert @1) @2)))
2275 (if (types_match (type, @0))
2276 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
2277 (if (cst && !TREE_OVERFLOW (cst))
2278 (plus { cst; } @0)))))))
2279
2280 /* ((T)(A)) + CST -> (T)(A + CST) */
2281 #if GIMPLE
2282 (simplify
2283 (plus (convert SSA_NAME@0) INTEGER_CST@1)
2284 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2285 && TREE_CODE (type) == INTEGER_TYPE
2286 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2287 && int_fits_type_p (@1, TREE_TYPE (@0)))
2288 /* Perform binary operation inside the cast if the constant fits
2289 and (A + CST)'s range does not overflow. */
2290 (with
2291 {
2292 wi::overflow_type min_ovf = wi::OVF_OVERFLOW,
2293 max_ovf = wi::OVF_OVERFLOW;
2294 tree inner_type = TREE_TYPE (@0);
2295
2296 wide_int w1
2297 = wide_int::from (wi::to_wide (@1), TYPE_PRECISION (inner_type),
2298 TYPE_SIGN (inner_type));
2299
2300 wide_int wmin0, wmax0;
2301 if (get_range_info (@0, &wmin0, &wmax0) == VR_RANGE)
2302 {
2303 wi::add (wmin0, w1, TYPE_SIGN (inner_type), &min_ovf);
2304 wi::add (wmax0, w1, TYPE_SIGN (inner_type), &max_ovf);
2305 }
2306 }
2307 (if (min_ovf == wi::OVF_NONE && max_ovf == wi::OVF_NONE)
2308 (convert (plus @0 { wide_int_to_tree (TREE_TYPE (@0), w1); } )))
2309 )))
2310 #endif
2311
2312 /* ((T)(A + CST1)) + CST2 -> (T)(A) + (T)CST1 + CST2 */
2313 #if GIMPLE
2314 (for op (plus minus)
2315 (simplify
2316 (plus (convert:s (op:s @0 INTEGER_CST@1)) INTEGER_CST@2)
2317 (if (TREE_CODE (TREE_TYPE (@0)) == INTEGER_TYPE
2318 && TREE_CODE (type) == INTEGER_TYPE
2319 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (@0))
2320 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
2321 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
2322 && TYPE_OVERFLOW_WRAPS (type))
2323 (plus (convert @0) (op @2 (convert @1))))))
2324 #endif
2325
2326 /* ~A + A -> -1 */
2327 (simplify
2328 (plus:c (bit_not @0) @0)
2329 (if (!TYPE_OVERFLOW_TRAPS (type))
2330 { build_all_ones_cst (type); }))
2331
2332 /* ~A + 1 -> -A */
2333 (simplify
2334 (plus (convert? (bit_not @0)) integer_each_onep)
2335 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2336 (negate (convert @0))))
2337
2338 /* -A - 1 -> ~A */
2339 (simplify
2340 (minus (convert? (negate @0)) integer_each_onep)
2341 (if (!TYPE_OVERFLOW_TRAPS (type)
2342 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2343 (bit_not (convert @0))))
2344
2345 /* -1 - A -> ~A */
2346 (simplify
2347 (minus integer_all_onesp @0)
2348 (bit_not @0))
2349
2350 /* (T)(P + A) - (T)P -> (T) A */
2351 (simplify
2352 (minus (convert (plus:c @@0 @1))
2353 (convert? @0))
2354 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2355 /* For integer types, if A has a smaller type
2356 than T the result depends on the possible
2357 overflow in P + A.
2358 E.g. T=size_t, A=(unsigned)429497295, P>0.
2359 However, if an overflow in P + A would cause
2360 undefined behavior, we can assume that there
2361 is no overflow. */
2362 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2363 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2364 (convert @1)))
2365 (simplify
2366 (minus (convert (pointer_plus @@0 @1))
2367 (convert @0))
2368 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2369 /* For pointer types, if the conversion of A to the
2370 final type requires a sign- or zero-extension,
2371 then we have to punt - it is not defined which
2372 one is correct. */
2373 || (POINTER_TYPE_P (TREE_TYPE (@0))
2374 && TREE_CODE (@1) == INTEGER_CST
2375 && tree_int_cst_sign_bit (@1) == 0))
2376 (convert @1)))
2377 (simplify
2378 (pointer_diff (pointer_plus @@0 @1) @0)
2379 /* The second argument of pointer_plus must be interpreted as signed, and
2380 thus sign-extended if necessary. */
2381 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2382 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2383 second arg is unsigned even when we need to consider it as signed,
2384 we don't want to diagnose overflow here. */
2385 (convert (view_convert:stype @1))))
2386
2387 /* (T)P - (T)(P + A) -> -(T) A */
2388 (simplify
2389 (minus (convert? @0)
2390 (convert (plus:c @@0 @1)))
2391 (if (INTEGRAL_TYPE_P (type)
2392 && TYPE_OVERFLOW_UNDEFINED (type)
2393 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2394 (with { tree utype = unsigned_type_for (type); }
2395 (convert (negate (convert:utype @1))))
2396 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2397 /* For integer types, if A has a smaller type
2398 than T the result depends on the possible
2399 overflow in P + A.
2400 E.g. T=size_t, A=(unsigned)429497295, P>0.
2401 However, if an overflow in P + A would cause
2402 undefined behavior, we can assume that there
2403 is no overflow. */
2404 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2405 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2406 (negate (convert @1)))))
2407 (simplify
2408 (minus (convert @0)
2409 (convert (pointer_plus @@0 @1)))
2410 (if (INTEGRAL_TYPE_P (type)
2411 && TYPE_OVERFLOW_UNDEFINED (type)
2412 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2413 (with { tree utype = unsigned_type_for (type); }
2414 (convert (negate (convert:utype @1))))
2415 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2416 /* For pointer types, if the conversion of A to the
2417 final type requires a sign- or zero-extension,
2418 then we have to punt - it is not defined which
2419 one is correct. */
2420 || (POINTER_TYPE_P (TREE_TYPE (@0))
2421 && TREE_CODE (@1) == INTEGER_CST
2422 && tree_int_cst_sign_bit (@1) == 0))
2423 (negate (convert @1)))))
2424 (simplify
2425 (pointer_diff @0 (pointer_plus @@0 @1))
2426 /* The second argument of pointer_plus must be interpreted as signed, and
2427 thus sign-extended if necessary. */
2428 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2429 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2430 second arg is unsigned even when we need to consider it as signed,
2431 we don't want to diagnose overflow here. */
2432 (negate (convert (view_convert:stype @1)))))
2433
2434 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2435 (simplify
2436 (minus (convert (plus:c @@0 @1))
2437 (convert (plus:c @0 @2)))
2438 (if (INTEGRAL_TYPE_P (type)
2439 && TYPE_OVERFLOW_UNDEFINED (type)
2440 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2441 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2442 (with { tree utype = unsigned_type_for (type); }
2443 (convert (minus (convert:utype @1) (convert:utype @2))))
2444 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2445 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2446 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2447 /* For integer types, if A has a smaller type
2448 than T the result depends on the possible
2449 overflow in P + A.
2450 E.g. T=size_t, A=(unsigned)429497295, P>0.
2451 However, if an overflow in P + A would cause
2452 undefined behavior, we can assume that there
2453 is no overflow. */
2454 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2455 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2456 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2457 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2458 (minus (convert @1) (convert @2)))))
2459 (simplify
2460 (minus (convert (pointer_plus @@0 @1))
2461 (convert (pointer_plus @0 @2)))
2462 (if (INTEGRAL_TYPE_P (type)
2463 && TYPE_OVERFLOW_UNDEFINED (type)
2464 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2465 (with { tree utype = unsigned_type_for (type); }
2466 (convert (minus (convert:utype @1) (convert:utype @2))))
2467 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2468 /* For pointer types, if the conversion of A to the
2469 final type requires a sign- or zero-extension,
2470 then we have to punt - it is not defined which
2471 one is correct. */
2472 || (POINTER_TYPE_P (TREE_TYPE (@0))
2473 && TREE_CODE (@1) == INTEGER_CST
2474 && tree_int_cst_sign_bit (@1) == 0
2475 && TREE_CODE (@2) == INTEGER_CST
2476 && tree_int_cst_sign_bit (@2) == 0))
2477 (minus (convert @1) (convert @2)))))
2478 (simplify
2479 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2480 /* The second argument of pointer_plus must be interpreted as signed, and
2481 thus sign-extended if necessary. */
2482 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2483 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2484 second arg is unsigned even when we need to consider it as signed,
2485 we don't want to diagnose overflow here. */
2486 (minus (convert (view_convert:stype @1))
2487 (convert (view_convert:stype @2)))))))
2488
2489 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2490 Modeled after fold_plusminus_mult_expr. */
2491 (if (!TYPE_SATURATING (type)
2492 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2493 (for plusminus (plus minus)
2494 (simplify
2495 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2496 (if ((!ANY_INTEGRAL_TYPE_P (type)
2497 || TYPE_OVERFLOW_WRAPS (type)
2498 || (INTEGRAL_TYPE_P (type)
2499 && tree_expr_nonzero_p (@0)
2500 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2501 /* If @1 +- @2 is constant require a hard single-use on either
2502 original operand (but not on both). */
2503 && (single_use (@3) || single_use (@4)))
2504 (mult (plusminus @1 @2) @0)))
2505 /* We cannot generate constant 1 for fract. */
2506 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2507 (simplify
2508 (plusminus @0 (mult:c@3 @0 @2))
2509 (if ((!ANY_INTEGRAL_TYPE_P (type)
2510 || TYPE_OVERFLOW_WRAPS (type)
2511 /* For @0 + @0*@2 this transformation would introduce UB
2512 (where there was none before) for @0 in [-1,0] and @2 max.
2513 For @0 - @0*@2 this transformation would introduce UB
2514 for @0 0 and @2 in [min,min+1] or @0 -1 and @2 min+1. */
2515 || (INTEGRAL_TYPE_P (type)
2516 && ((tree_expr_nonzero_p (@0)
2517 && expr_not_equal_to (@0,
2518 wi::minus_one (TYPE_PRECISION (type))))
2519 || (plusminus == PLUS_EXPR
2520 ? expr_not_equal_to (@2,
2521 wi::max_value (TYPE_PRECISION (type), SIGNED))
2522 /* Let's ignore the @0 -1 and @2 min case. */
2523 : (expr_not_equal_to (@2,
2524 wi::min_value (TYPE_PRECISION (type), SIGNED))
2525 && expr_not_equal_to (@2,
2526 wi::min_value (TYPE_PRECISION (type), SIGNED)
2527 + 1))))))
2528 && single_use (@3))
2529 (mult (plusminus { build_one_cst (type); } @2) @0)))
2530 (simplify
2531 (plusminus (mult:c@3 @0 @2) @0)
2532 (if ((!ANY_INTEGRAL_TYPE_P (type)
2533 || TYPE_OVERFLOW_WRAPS (type)
2534 /* For @0*@2 + @0 this transformation would introduce UB
2535 (where there was none before) for @0 in [-1,0] and @2 max.
2536 For @0*@2 - @0 this transformation would introduce UB
2537 for @0 0 and @2 min. */
2538 || (INTEGRAL_TYPE_P (type)
2539 && ((tree_expr_nonzero_p (@0)
2540 && (plusminus == MINUS_EXPR
2541 || expr_not_equal_to (@0,
2542 wi::minus_one (TYPE_PRECISION (type)))))
2543 || expr_not_equal_to (@2,
2544 (plusminus == PLUS_EXPR
2545 ? wi::max_value (TYPE_PRECISION (type), SIGNED)
2546 : wi::min_value (TYPE_PRECISION (type), SIGNED))))))
2547 && single_use (@3))
2548 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2549
2550 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2551
2552 (for minmax (min max FMIN_ALL FMAX_ALL)
2553 (simplify
2554 (minmax @0 @0)
2555 @0))
2556 /* min(max(x,y),y) -> y. */
2557 (simplify
2558 (min:c (max:c @0 @1) @1)
2559 @1)
2560 /* max(min(x,y),y) -> y. */
2561 (simplify
2562 (max:c (min:c @0 @1) @1)
2563 @1)
2564 /* max(a,-a) -> abs(a). */
2565 (simplify
2566 (max:c @0 (negate @0))
2567 (if (TREE_CODE (type) != COMPLEX_TYPE
2568 && (! ANY_INTEGRAL_TYPE_P (type)
2569 || TYPE_OVERFLOW_UNDEFINED (type)))
2570 (abs @0)))
2571 /* min(a,-a) -> -abs(a). */
2572 (simplify
2573 (min:c @0 (negate @0))
2574 (if (TREE_CODE (type) != COMPLEX_TYPE
2575 && (! ANY_INTEGRAL_TYPE_P (type)
2576 || TYPE_OVERFLOW_UNDEFINED (type)))
2577 (negate (abs @0))))
2578 (simplify
2579 (min @0 @1)
2580 (switch
2581 (if (INTEGRAL_TYPE_P (type)
2582 && TYPE_MIN_VALUE (type)
2583 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2584 @1)
2585 (if (INTEGRAL_TYPE_P (type)
2586 && TYPE_MAX_VALUE (type)
2587 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2588 @0)))
2589 (simplify
2590 (max @0 @1)
2591 (switch
2592 (if (INTEGRAL_TYPE_P (type)
2593 && TYPE_MAX_VALUE (type)
2594 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2595 @1)
2596 (if (INTEGRAL_TYPE_P (type)
2597 && TYPE_MIN_VALUE (type)
2598 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2599 @0)))
2600
2601 /* max (a, a + CST) -> a + CST where CST is positive. */
2602 /* max (a, a + CST) -> a where CST is negative. */
2603 (simplify
2604 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2605 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2606 (if (tree_int_cst_sgn (@1) > 0)
2607 @2
2608 @0)))
2609
2610 /* min (a, a + CST) -> a where CST is positive. */
2611 /* min (a, a + CST) -> a + CST where CST is negative. */
2612 (simplify
2613 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2614 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2615 (if (tree_int_cst_sgn (@1) > 0)
2616 @0
2617 @2)))
2618
2619 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2620 and the outer convert demotes the expression back to x's type. */
2621 (for minmax (min max)
2622 (simplify
2623 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2624 (if (INTEGRAL_TYPE_P (type)
2625 && types_match (@1, type) && int_fits_type_p (@2, type)
2626 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2627 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2628 (minmax @1 (convert @2)))))
2629
2630 (for minmax (FMIN_ALL FMAX_ALL)
2631 /* If either argument is NaN, return the other one. Avoid the
2632 transformation if we get (and honor) a signalling NaN. */
2633 (simplify
2634 (minmax:c @0 REAL_CST@1)
2635 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2636 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2637 @0)))
2638 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2639 functions to return the numeric arg if the other one is NaN.
2640 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2641 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2642 worry about it either. */
2643 (if (flag_finite_math_only)
2644 (simplify
2645 (FMIN_ALL @0 @1)
2646 (min @0 @1))
2647 (simplify
2648 (FMAX_ALL @0 @1)
2649 (max @0 @1)))
2650 /* min (-A, -B) -> -max (A, B) */
2651 (for minmax (min max FMIN_ALL FMAX_ALL)
2652 maxmin (max min FMAX_ALL FMIN_ALL)
2653 (simplify
2654 (minmax (negate:s@2 @0) (negate:s@3 @1))
2655 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2656 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2657 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2658 (negate (maxmin @0 @1)))))
2659 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2660 MAX (~X, ~Y) -> ~MIN (X, Y) */
2661 (for minmax (min max)
2662 maxmin (max min)
2663 (simplify
2664 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2665 (bit_not (maxmin @0 @1))))
2666
2667 /* MIN (X, Y) == X -> X <= Y */
2668 (for minmax (min min max max)
2669 cmp (eq ne eq ne )
2670 out (le gt ge lt )
2671 (simplify
2672 (cmp:c (minmax:c @0 @1) @0)
2673 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2674 (out @0 @1))))
2675 /* MIN (X, 5) == 0 -> X == 0
2676 MIN (X, 5) == 7 -> false */
2677 (for cmp (eq ne)
2678 (simplify
2679 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2680 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2681 TYPE_SIGN (TREE_TYPE (@0))))
2682 { constant_boolean_node (cmp == NE_EXPR, type); }
2683 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2684 TYPE_SIGN (TREE_TYPE (@0))))
2685 (cmp @0 @2)))))
2686 (for cmp (eq ne)
2687 (simplify
2688 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2689 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2690 TYPE_SIGN (TREE_TYPE (@0))))
2691 { constant_boolean_node (cmp == NE_EXPR, type); }
2692 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2693 TYPE_SIGN (TREE_TYPE (@0))))
2694 (cmp @0 @2)))))
2695 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2696 (for minmax (min min max max min min max max )
2697 cmp (lt le gt ge gt ge lt le )
2698 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2699 (simplify
2700 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2701 (comb (cmp @0 @2) (cmp @1 @2))))
2702
2703 /* Simplifications of shift and rotates. */
2704
2705 (for rotate (lrotate rrotate)
2706 (simplify
2707 (rotate integer_all_onesp@0 @1)
2708 @0))
2709
2710 /* Optimize -1 >> x for arithmetic right shifts. */
2711 (simplify
2712 (rshift integer_all_onesp@0 @1)
2713 (if (!TYPE_UNSIGNED (type)
2714 && tree_expr_nonnegative_p (@1))
2715 @0))
2716
2717 /* Optimize (x >> c) << c into x & (-1<<c). */
2718 (simplify
2719 (lshift (rshift @0 INTEGER_CST@1) @1)
2720 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2721 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2722
2723 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2724 types. */
2725 (simplify
2726 (rshift (lshift @0 INTEGER_CST@1) @1)
2727 (if (TYPE_UNSIGNED (type)
2728 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2729 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2730
2731 (for shiftrotate (lrotate rrotate lshift rshift)
2732 (simplify
2733 (shiftrotate @0 integer_zerop)
2734 (non_lvalue @0))
2735 (simplify
2736 (shiftrotate integer_zerop@0 @1)
2737 @0)
2738 /* Prefer vector1 << scalar to vector1 << vector2
2739 if vector2 is uniform. */
2740 (for vec (VECTOR_CST CONSTRUCTOR)
2741 (simplify
2742 (shiftrotate @0 vec@1)
2743 (with { tree tem = uniform_vector_p (@1); }
2744 (if (tem)
2745 (shiftrotate @0 { tem; }))))))
2746
2747 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2748 Y is 0. Similarly for X >> Y. */
2749 #if GIMPLE
2750 (for shift (lshift rshift)
2751 (simplify
2752 (shift @0 SSA_NAME@1)
2753 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2754 (with {
2755 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2756 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2757 }
2758 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2759 @0)))))
2760 #endif
2761
2762 /* Rewrite an LROTATE_EXPR by a constant into an
2763 RROTATE_EXPR by a new constant. */
2764 (simplify
2765 (lrotate @0 INTEGER_CST@1)
2766 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2767 build_int_cst (TREE_TYPE (@1),
2768 element_precision (type)), @1); }))
2769
2770 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2771 (for op (lrotate rrotate rshift lshift)
2772 (simplify
2773 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2774 (with { unsigned int prec = element_precision (type); }
2775 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2776 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2777 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2778 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2779 (with { unsigned int low = (tree_to_uhwi (@1)
2780 + tree_to_uhwi (@2)); }
2781 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2782 being well defined. */
2783 (if (low >= prec)
2784 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2785 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2786 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2787 { build_zero_cst (type); }
2788 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2789 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2790
2791
2792 /* ((1 << A) & 1) != 0 -> A == 0
2793 ((1 << A) & 1) == 0 -> A != 0 */
2794 (for cmp (ne eq)
2795 icmp (eq ne)
2796 (simplify
2797 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2798 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2799
2800 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2801 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2802 if CST2 != 0. */
2803 (for cmp (ne eq)
2804 (simplify
2805 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2806 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2807 (if (cand < 0
2808 || (!integer_zerop (@2)
2809 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2810 { constant_boolean_node (cmp == NE_EXPR, type); }
2811 (if (!integer_zerop (@2)
2812 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2813 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2814
2815 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2816 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2817 if the new mask might be further optimized. */
2818 (for shift (lshift rshift)
2819 (simplify
2820 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2821 INTEGER_CST@2)
2822 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2823 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2824 && tree_fits_uhwi_p (@1)
2825 && tree_to_uhwi (@1) > 0
2826 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2827 (with
2828 {
2829 unsigned int shiftc = tree_to_uhwi (@1);
2830 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2831 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2832 tree shift_type = TREE_TYPE (@3);
2833 unsigned int prec;
2834
2835 if (shift == LSHIFT_EXPR)
2836 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2837 else if (shift == RSHIFT_EXPR
2838 && type_has_mode_precision_p (shift_type))
2839 {
2840 prec = TYPE_PRECISION (TREE_TYPE (@3));
2841 tree arg00 = @0;
2842 /* See if more bits can be proven as zero because of
2843 zero extension. */
2844 if (@3 != @0
2845 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2846 {
2847 tree inner_type = TREE_TYPE (@0);
2848 if (type_has_mode_precision_p (inner_type)
2849 && TYPE_PRECISION (inner_type) < prec)
2850 {
2851 prec = TYPE_PRECISION (inner_type);
2852 /* See if we can shorten the right shift. */
2853 if (shiftc < prec)
2854 shift_type = inner_type;
2855 /* Otherwise X >> C1 is all zeros, so we'll optimize
2856 it into (X, 0) later on by making sure zerobits
2857 is all ones. */
2858 }
2859 }
2860 zerobits = HOST_WIDE_INT_M1U;
2861 if (shiftc < prec)
2862 {
2863 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2864 zerobits <<= prec - shiftc;
2865 }
2866 /* For arithmetic shift if sign bit could be set, zerobits
2867 can contain actually sign bits, so no transformation is
2868 possible, unless MASK masks them all away. In that
2869 case the shift needs to be converted into logical shift. */
2870 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2871 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2872 {
2873 if ((mask & zerobits) == 0)
2874 shift_type = unsigned_type_for (TREE_TYPE (@3));
2875 else
2876 zerobits = 0;
2877 }
2878 }
2879 }
2880 /* ((X << 16) & 0xff00) is (X, 0). */
2881 (if ((mask & zerobits) == mask)
2882 { build_int_cst (type, 0); }
2883 (with { newmask = mask | zerobits; }
2884 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2885 (with
2886 {
2887 /* Only do the transformation if NEWMASK is some integer
2888 mode's mask. */
2889 for (prec = BITS_PER_UNIT;
2890 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2891 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2892 break;
2893 }
2894 (if (prec < HOST_BITS_PER_WIDE_INT
2895 || newmask == HOST_WIDE_INT_M1U)
2896 (with
2897 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2898 (if (!tree_int_cst_equal (newmaskt, @2))
2899 (if (shift_type != TREE_TYPE (@3))
2900 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2901 (bit_and @4 { newmaskt; })))))))))))))
2902
2903 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2904 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2905 (for shift (lshift rshift)
2906 (for bit_op (bit_and bit_xor bit_ior)
2907 (simplify
2908 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2909 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2910 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2911 (bit_op (shift (convert @0) @1) { mask; }))))))
2912
2913 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2914 (simplify
2915 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2916 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2917 && (element_precision (TREE_TYPE (@0))
2918 <= element_precision (TREE_TYPE (@1))
2919 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2920 (with
2921 { tree shift_type = TREE_TYPE (@0); }
2922 (convert (rshift (convert:shift_type @1) @2)))))
2923
2924 /* ~(~X >>r Y) -> X >>r Y
2925 ~(~X <<r Y) -> X <<r Y */
2926 (for rotate (lrotate rrotate)
2927 (simplify
2928 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2929 (if ((element_precision (TREE_TYPE (@0))
2930 <= element_precision (TREE_TYPE (@1))
2931 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2932 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2933 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2934 (with
2935 { tree rotate_type = TREE_TYPE (@0); }
2936 (convert (rotate (convert:rotate_type @1) @2))))))
2937
2938 /* Simplifications of conversions. */
2939
2940 /* Basic strip-useless-type-conversions / strip_nops. */
2941 (for cvt (convert view_convert float fix_trunc)
2942 (simplify
2943 (cvt @0)
2944 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2945 || (GENERIC && type == TREE_TYPE (@0)))
2946 @0)))
2947
2948 /* Contract view-conversions. */
2949 (simplify
2950 (view_convert (view_convert @0))
2951 (view_convert @0))
2952
2953 /* For integral conversions with the same precision or pointer
2954 conversions use a NOP_EXPR instead. */
2955 (simplify
2956 (view_convert @0)
2957 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2958 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2959 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2960 (convert @0)))
2961
2962 /* Strip inner integral conversions that do not change precision or size, or
2963 zero-extend while keeping the same size (for bool-to-char). */
2964 (simplify
2965 (view_convert (convert@0 @1))
2966 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2967 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2968 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2969 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2970 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2971 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2972 (view_convert @1)))
2973
2974 /* Simplify a view-converted empty constructor. */
2975 (simplify
2976 (view_convert CONSTRUCTOR@0)
2977 (if (TREE_CODE (@0) != SSA_NAME
2978 && CONSTRUCTOR_NELTS (@0) == 0)
2979 { build_zero_cst (type); }))
2980
2981 /* Re-association barriers around constants and other re-association
2982 barriers can be removed. */
2983 (simplify
2984 (paren CONSTANT_CLASS_P@0)
2985 @0)
2986 (simplify
2987 (paren (paren@1 @0))
2988 @1)
2989
2990 /* Handle cases of two conversions in a row. */
2991 (for ocvt (convert float fix_trunc)
2992 (for icvt (convert float)
2993 (simplify
2994 (ocvt (icvt@1 @0))
2995 (with
2996 {
2997 tree inside_type = TREE_TYPE (@0);
2998 tree inter_type = TREE_TYPE (@1);
2999 int inside_int = INTEGRAL_TYPE_P (inside_type);
3000 int inside_ptr = POINTER_TYPE_P (inside_type);
3001 int inside_float = FLOAT_TYPE_P (inside_type);
3002 int inside_vec = VECTOR_TYPE_P (inside_type);
3003 unsigned int inside_prec = TYPE_PRECISION (inside_type);
3004 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
3005 int inter_int = INTEGRAL_TYPE_P (inter_type);
3006 int inter_ptr = POINTER_TYPE_P (inter_type);
3007 int inter_float = FLOAT_TYPE_P (inter_type);
3008 int inter_vec = VECTOR_TYPE_P (inter_type);
3009 unsigned int inter_prec = TYPE_PRECISION (inter_type);
3010 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
3011 int final_int = INTEGRAL_TYPE_P (type);
3012 int final_ptr = POINTER_TYPE_P (type);
3013 int final_float = FLOAT_TYPE_P (type);
3014 int final_vec = VECTOR_TYPE_P (type);
3015 unsigned int final_prec = TYPE_PRECISION (type);
3016 int final_unsignedp = TYPE_UNSIGNED (type);
3017 }
3018 (switch
3019 /* In addition to the cases of two conversions in a row
3020 handled below, if we are converting something to its own
3021 type via an object of identical or wider precision, neither
3022 conversion is needed. */
3023 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
3024 || (GENERIC
3025 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
3026 && (((inter_int || inter_ptr) && final_int)
3027 || (inter_float && final_float))
3028 && inter_prec >= final_prec)
3029 (ocvt @0))
3030
3031 /* Likewise, if the intermediate and initial types are either both
3032 float or both integer, we don't need the middle conversion if the
3033 former is wider than the latter and doesn't change the signedness
3034 (for integers). Avoid this if the final type is a pointer since
3035 then we sometimes need the middle conversion. */
3036 (if (((inter_int && inside_int) || (inter_float && inside_float))
3037 && (final_int || final_float)
3038 && inter_prec >= inside_prec
3039 && (inter_float || inter_unsignedp == inside_unsignedp))
3040 (ocvt @0))
3041
3042 /* If we have a sign-extension of a zero-extended value, we can
3043 replace that by a single zero-extension. Likewise if the
3044 final conversion does not change precision we can drop the
3045 intermediate conversion. */
3046 (if (inside_int && inter_int && final_int
3047 && ((inside_prec < inter_prec && inter_prec < final_prec
3048 && inside_unsignedp && !inter_unsignedp)
3049 || final_prec == inter_prec))
3050 (ocvt @0))
3051
3052 /* Two conversions in a row are not needed unless:
3053 - some conversion is floating-point (overstrict for now), or
3054 - some conversion is a vector (overstrict for now), or
3055 - the intermediate type is narrower than both initial and
3056 final, or
3057 - the intermediate type and innermost type differ in signedness,
3058 and the outermost type is wider than the intermediate, or
3059 - the initial type is a pointer type and the precisions of the
3060 intermediate and final types differ, or
3061 - the final type is a pointer type and the precisions of the
3062 initial and intermediate types differ. */
3063 (if (! inside_float && ! inter_float && ! final_float
3064 && ! inside_vec && ! inter_vec && ! final_vec
3065 && (inter_prec >= inside_prec || inter_prec >= final_prec)
3066 && ! (inside_int && inter_int
3067 && inter_unsignedp != inside_unsignedp
3068 && inter_prec < final_prec)
3069 && ((inter_unsignedp && inter_prec > inside_prec)
3070 == (final_unsignedp && final_prec > inter_prec))
3071 && ! (inside_ptr && inter_prec != final_prec)
3072 && ! (final_ptr && inside_prec != inter_prec))
3073 (ocvt @0))
3074
3075 /* A truncation to an unsigned type (a zero-extension) should be
3076 canonicalized as bitwise and of a mask. */
3077 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
3078 && final_int && inter_int && inside_int
3079 && final_prec == inside_prec
3080 && final_prec > inter_prec
3081 && inter_unsignedp)
3082 (convert (bit_and @0 { wide_int_to_tree
3083 (inside_type,
3084 wi::mask (inter_prec, false,
3085 TYPE_PRECISION (inside_type))); })))
3086
3087 /* If we are converting an integer to a floating-point that can
3088 represent it exactly and back to an integer, we can skip the
3089 floating-point conversion. */
3090 (if (GIMPLE /* PR66211 */
3091 && inside_int && inter_float && final_int &&
3092 (unsigned) significand_size (TYPE_MODE (inter_type))
3093 >= inside_prec - !inside_unsignedp)
3094 (convert @0)))))))
3095
3096 /* If we have a narrowing conversion to an integral type that is fed by a
3097 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
3098 masks off bits outside the final type (and nothing else). */
3099 (simplify
3100 (convert (bit_and @0 INTEGER_CST@1))
3101 (if (INTEGRAL_TYPE_P (type)
3102 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
3103 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
3104 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
3105 TYPE_PRECISION (type)), 0))
3106 (convert @0)))
3107
3108
3109 /* (X /[ex] A) * A -> X. */
3110 (simplify
3111 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
3112 (convert @0))
3113
3114 /* Simplify (A / B) * B + (A % B) -> A. */
3115 (for div (trunc_div ceil_div floor_div round_div)
3116 mod (trunc_mod ceil_mod floor_mod round_mod)
3117 (simplify
3118 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
3119 @0))
3120
3121 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
3122 (for op (plus minus)
3123 (simplify
3124 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
3125 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
3126 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
3127 (with
3128 {
3129 wi::overflow_type overflow;
3130 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
3131 TYPE_SIGN (type), &overflow);
3132 }
3133 (if (types_match (type, TREE_TYPE (@2))
3134 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
3135 (op @0 { wide_int_to_tree (type, mul); })
3136 (with { tree utype = unsigned_type_for (type); }
3137 (convert (op (convert:utype @0)
3138 (mult (convert:utype @1) (convert:utype @2))))))))))
3139
3140 /* Canonicalization of binary operations. */
3141
3142 /* Convert X + -C into X - C. */
3143 (simplify
3144 (plus @0 REAL_CST@1)
3145 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3146 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
3147 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
3148 (minus @0 { tem; })))))
3149
3150 /* Convert x+x into x*2. */
3151 (simplify
3152 (plus @0 @0)
3153 (if (SCALAR_FLOAT_TYPE_P (type))
3154 (mult @0 { build_real (type, dconst2); })
3155 (if (INTEGRAL_TYPE_P (type))
3156 (mult @0 { build_int_cst (type, 2); }))))
3157
3158 /* 0 - X -> -X. */
3159 (simplify
3160 (minus integer_zerop @1)
3161 (negate @1))
3162 (simplify
3163 (pointer_diff integer_zerop @1)
3164 (negate (convert @1)))
3165
3166 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
3167 ARG0 is zero and X + ARG0 reduces to X, since that would mean
3168 (-ARG1 + ARG0) reduces to -ARG1. */
3169 (simplify
3170 (minus real_zerop@0 @1)
3171 (if (fold_real_zero_addition_p (type, @0, 0))
3172 (negate @1)))
3173
3174 /* Transform x * -1 into -x. */
3175 (simplify
3176 (mult @0 integer_minus_onep)
3177 (negate @0))
3178
3179 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
3180 signed overflow for CST != 0 && CST != -1. */
3181 (simplify
3182 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
3183 (if (TREE_CODE (@2) != INTEGER_CST
3184 && single_use (@3)
3185 && !integer_zerop (@1) && !integer_minus_onep (@1))
3186 (mult (mult @0 @2) @1)))
3187
3188 /* True if we can easily extract the real and imaginary parts of a complex
3189 number. */
3190 (match compositional_complex
3191 (convert? (complex @0 @1)))
3192
3193 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
3194 (simplify
3195 (complex (realpart @0) (imagpart @0))
3196 @0)
3197 (simplify
3198 (realpart (complex @0 @1))
3199 @0)
3200 (simplify
3201 (imagpart (complex @0 @1))
3202 @1)
3203
3204 /* Sometimes we only care about half of a complex expression. */
3205 (simplify
3206 (realpart (convert?:s (conj:s @0)))
3207 (convert (realpart @0)))
3208 (simplify
3209 (imagpart (convert?:s (conj:s @0)))
3210 (convert (negate (imagpart @0))))
3211 (for part (realpart imagpart)
3212 (for op (plus minus)
3213 (simplify
3214 (part (convert?:s@2 (op:s @0 @1)))
3215 (convert (op (part @0) (part @1))))))
3216 (simplify
3217 (realpart (convert?:s (CEXPI:s @0)))
3218 (convert (COS @0)))
3219 (simplify
3220 (imagpart (convert?:s (CEXPI:s @0)))
3221 (convert (SIN @0)))
3222
3223 /* conj(conj(x)) -> x */
3224 (simplify
3225 (conj (convert? (conj @0)))
3226 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
3227 (convert @0)))
3228
3229 /* conj({x,y}) -> {x,-y} */
3230 (simplify
3231 (conj (convert?:s (complex:s @0 @1)))
3232 (with { tree itype = TREE_TYPE (type); }
3233 (complex (convert:itype @0) (negate (convert:itype @1)))))
3234
3235 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
3236 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
3237 (simplify
3238 (bswap (bswap @0))
3239 @0)
3240 (simplify
3241 (bswap (bit_not (bswap @0)))
3242 (bit_not @0))
3243 (for bitop (bit_xor bit_ior bit_and)
3244 (simplify
3245 (bswap (bitop:c (bswap @0) @1))
3246 (bitop @0 (bswap @1)))))
3247
3248
3249 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
3250
3251 /* Simplify constant conditions.
3252 Only optimize constant conditions when the selected branch
3253 has the same type as the COND_EXPR. This avoids optimizing
3254 away "c ? x : throw", where the throw has a void type.
3255 Note that we cannot throw away the fold-const.c variant nor
3256 this one as we depend on doing this transform before possibly
3257 A ? B : B -> B triggers and the fold-const.c one can optimize
3258 0 ? A : B to B even if A has side-effects. Something
3259 genmatch cannot handle. */
3260 (simplify
3261 (cond INTEGER_CST@0 @1 @2)
3262 (if (integer_zerop (@0))
3263 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
3264 @2)
3265 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
3266 @1)))
3267 (simplify
3268 (vec_cond VECTOR_CST@0 @1 @2)
3269 (if (integer_all_onesp (@0))
3270 @1
3271 (if (integer_zerop (@0))
3272 @2)))
3273
3274 /* Sink unary operations to constant branches, but only if we do fold it to
3275 constants. */
3276 (for op (negate bit_not abs absu)
3277 (simplify
3278 (op (vec_cond @0 VECTOR_CST@1 VECTOR_CST@2))
3279 (with
3280 {
3281 tree cst1, cst2;
3282 cst1 = const_unop (op, type, @1);
3283 if (cst1)
3284 cst2 = const_unop (op, type, @2);
3285 }
3286 (if (cst1 && cst2)
3287 (vec_cond @0 { cst1; } { cst2; })))))
3288
3289 /* Simplification moved from fold_cond_expr_with_comparison. It may also
3290 be extended. */
3291 /* This pattern implements two kinds simplification:
3292
3293 Case 1)
3294 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
3295 1) Conversions are type widening from smaller type.
3296 2) Const c1 equals to c2 after canonicalizing comparison.
3297 3) Comparison has tree code LT, LE, GT or GE.
3298 This specific pattern is needed when (cmp (convert x) c) may not
3299 be simplified by comparison patterns because of multiple uses of
3300 x. It also makes sense here because simplifying across multiple
3301 referred var is always benefitial for complicated cases.
3302
3303 Case 2)
3304 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
3305 (for cmp (lt le gt ge eq)
3306 (simplify
3307 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
3308 (with
3309 {
3310 tree from_type = TREE_TYPE (@1);
3311 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
3312 enum tree_code code = ERROR_MARK;
3313
3314 if (INTEGRAL_TYPE_P (from_type)
3315 && int_fits_type_p (@2, from_type)
3316 && (types_match (c1_type, from_type)
3317 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
3318 && (TYPE_UNSIGNED (from_type)
3319 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
3320 && (types_match (c2_type, from_type)
3321 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
3322 && (TYPE_UNSIGNED (from_type)
3323 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
3324 {
3325 if (cmp != EQ_EXPR)
3326 {
3327 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
3328 {
3329 /* X <= Y - 1 equals to X < Y. */
3330 if (cmp == LE_EXPR)
3331 code = LT_EXPR;
3332 /* X > Y - 1 equals to X >= Y. */
3333 if (cmp == GT_EXPR)
3334 code = GE_EXPR;
3335 }
3336 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
3337 {
3338 /* X < Y + 1 equals to X <= Y. */
3339 if (cmp == LT_EXPR)
3340 code = LE_EXPR;
3341 /* X >= Y + 1 equals to X > Y. */
3342 if (cmp == GE_EXPR)
3343 code = GT_EXPR;
3344 }
3345 if (code != ERROR_MARK
3346 || wi::to_widest (@2) == wi::to_widest (@3))
3347 {
3348 if (cmp == LT_EXPR || cmp == LE_EXPR)
3349 code = MIN_EXPR;
3350 if (cmp == GT_EXPR || cmp == GE_EXPR)
3351 code = MAX_EXPR;
3352 }
3353 }
3354 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
3355 else if (int_fits_type_p (@3, from_type))
3356 code = EQ_EXPR;
3357 }
3358 }
3359 (if (code == MAX_EXPR)
3360 (convert (max @1 (convert @2)))
3361 (if (code == MIN_EXPR)
3362 (convert (min @1 (convert @2)))
3363 (if (code == EQ_EXPR)
3364 (convert (cond (eq @1 (convert @3))
3365 (convert:from_type @3) (convert:from_type @2)))))))))
3366
3367 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3368
3369 1) OP is PLUS or MINUS.
3370 2) CMP is LT, LE, GT or GE.
3371 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3372
3373 This pattern also handles special cases like:
3374
3375 A) Operand x is a unsigned to signed type conversion and c1 is
3376 integer zero. In this case,
3377 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3378 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3379 B) Const c1 may not equal to (C3 op' C2). In this case we also
3380 check equality for (c1+1) and (c1-1) by adjusting comparison
3381 code.
3382
3383 TODO: Though signed type is handled by this pattern, it cannot be
3384 simplified at the moment because C standard requires additional
3385 type promotion. In order to match&simplify it here, the IR needs
3386 to be cleaned up by other optimizers, i.e, VRP. */
3387 (for op (plus minus)
3388 (for cmp (lt le gt ge)
3389 (simplify
3390 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3391 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3392 (if (types_match (from_type, to_type)
3393 /* Check if it is special case A). */
3394 || (TYPE_UNSIGNED (from_type)
3395 && !TYPE_UNSIGNED (to_type)
3396 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3397 && integer_zerop (@1)
3398 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3399 (with
3400 {
3401 wi::overflow_type overflow = wi::OVF_NONE;
3402 enum tree_code code, cmp_code = cmp;
3403 wide_int real_c1;
3404 wide_int c1 = wi::to_wide (@1);
3405 wide_int c2 = wi::to_wide (@2);
3406 wide_int c3 = wi::to_wide (@3);
3407 signop sgn = TYPE_SIGN (from_type);
3408
3409 /* Handle special case A), given x of unsigned type:
3410 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3411 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3412 if (!types_match (from_type, to_type))
3413 {
3414 if (cmp_code == LT_EXPR)
3415 cmp_code = GT_EXPR;
3416 if (cmp_code == GE_EXPR)
3417 cmp_code = LE_EXPR;
3418 c1 = wi::max_value (to_type);
3419 }
3420 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3421 compute (c3 op' c2) and check if it equals to c1 with op' being
3422 the inverted operator of op. Make sure overflow doesn't happen
3423 if it is undefined. */
3424 if (op == PLUS_EXPR)
3425 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3426 else
3427 real_c1 = wi::add (c3, c2, sgn, &overflow);
3428
3429 code = cmp_code;
3430 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3431 {
3432 /* Check if c1 equals to real_c1. Boundary condition is handled
3433 by adjusting comparison operation if necessary. */
3434 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3435 && !overflow)
3436 {
3437 /* X <= Y - 1 equals to X < Y. */
3438 if (cmp_code == LE_EXPR)
3439 code = LT_EXPR;
3440 /* X > Y - 1 equals to X >= Y. */
3441 if (cmp_code == GT_EXPR)
3442 code = GE_EXPR;
3443 }
3444 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3445 && !overflow)
3446 {
3447 /* X < Y + 1 equals to X <= Y. */
3448 if (cmp_code == LT_EXPR)
3449 code = LE_EXPR;
3450 /* X >= Y + 1 equals to X > Y. */
3451 if (cmp_code == GE_EXPR)
3452 code = GT_EXPR;
3453 }
3454 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3455 {
3456 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3457 code = MIN_EXPR;
3458 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3459 code = MAX_EXPR;
3460 }
3461 }
3462 }
3463 (if (code == MAX_EXPR)
3464 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3465 { wide_int_to_tree (from_type, c2); })
3466 (if (code == MIN_EXPR)
3467 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3468 { wide_int_to_tree (from_type, c2); })))))))))
3469
3470 (for cnd (cond vec_cond)
3471 /* A ? B : (A ? X : C) -> A ? B : C. */
3472 (simplify
3473 (cnd @0 (cnd @0 @1 @2) @3)
3474 (cnd @0 @1 @3))
3475 (simplify
3476 (cnd @0 @1 (cnd @0 @2 @3))
3477 (cnd @0 @1 @3))
3478 /* A ? B : (!A ? C : X) -> A ? B : C. */
3479 /* ??? This matches embedded conditions open-coded because genmatch
3480 would generate matching code for conditions in separate stmts only.
3481 The following is still important to merge then and else arm cases
3482 from if-conversion. */
3483 (simplify
3484 (cnd @0 @1 (cnd @2 @3 @4))
3485 (if (inverse_conditions_p (@0, @2))
3486 (cnd @0 @1 @3)))
3487 (simplify
3488 (cnd @0 (cnd @1 @2 @3) @4)
3489 (if (inverse_conditions_p (@0, @1))
3490 (cnd @0 @3 @4)))
3491
3492 /* A ? B : B -> B. */
3493 (simplify
3494 (cnd @0 @1 @1)
3495 @1)
3496
3497 /* !A ? B : C -> A ? C : B. */
3498 (simplify
3499 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3500 (cnd @0 @2 @1)))
3501
3502 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3503 return all -1 or all 0 results. */
3504 /* ??? We could instead convert all instances of the vec_cond to negate,
3505 but that isn't necessarily a win on its own. */
3506 (simplify
3507 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3508 (if (VECTOR_TYPE_P (type)
3509 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3510 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3511 && (TYPE_MODE (TREE_TYPE (type))
3512 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3513 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3514
3515 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3516 (simplify
3517 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3518 (if (VECTOR_TYPE_P (type)
3519 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3520 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3521 && (TYPE_MODE (TREE_TYPE (type))
3522 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3523 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3524
3525
3526 /* Simplifications of comparisons. */
3527
3528 /* See if we can reduce the magnitude of a constant involved in a
3529 comparison by changing the comparison code. This is a canonicalization
3530 formerly done by maybe_canonicalize_comparison_1. */
3531 (for cmp (le gt)
3532 acmp (lt ge)
3533 (simplify
3534 (cmp @0 uniform_integer_cst_p@1)
3535 (with { tree cst = uniform_integer_cst_p (@1); }
3536 (if (tree_int_cst_sgn (cst) == -1)
3537 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3538 wide_int_to_tree (TREE_TYPE (cst),
3539 wi::to_wide (cst)
3540 + 1)); })))))
3541 (for cmp (ge lt)
3542 acmp (gt le)
3543 (simplify
3544 (cmp @0 uniform_integer_cst_p@1)
3545 (with { tree cst = uniform_integer_cst_p (@1); }
3546 (if (tree_int_cst_sgn (cst) == 1)
3547 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3548 wide_int_to_tree (TREE_TYPE (cst),
3549 wi::to_wide (cst) - 1)); })))))
3550
3551 /* We can simplify a logical negation of a comparison to the
3552 inverted comparison. As we cannot compute an expression
3553 operator using invert_tree_comparison we have to simulate
3554 that with expression code iteration. */
3555 (for cmp (tcc_comparison)
3556 icmp (inverted_tcc_comparison)
3557 ncmp (inverted_tcc_comparison_with_nans)
3558 /* Ideally we'd like to combine the following two patterns
3559 and handle some more cases by using
3560 (logical_inverted_value (cmp @0 @1))
3561 here but for that genmatch would need to "inline" that.
3562 For now implement what forward_propagate_comparison did. */
3563 (simplify
3564 (bit_not (cmp @0 @1))
3565 (if (VECTOR_TYPE_P (type)
3566 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3567 /* Comparison inversion may be impossible for trapping math,
3568 invert_tree_comparison will tell us. But we can't use
3569 a computed operator in the replacement tree thus we have
3570 to play the trick below. */
3571 (with { enum tree_code ic = invert_tree_comparison
3572 (cmp, HONOR_NANS (@0)); }
3573 (if (ic == icmp)
3574 (icmp @0 @1)
3575 (if (ic == ncmp)
3576 (ncmp @0 @1))))))
3577 (simplify
3578 (bit_xor (cmp @0 @1) integer_truep)
3579 (with { enum tree_code ic = invert_tree_comparison
3580 (cmp, HONOR_NANS (@0)); }
3581 (if (ic == icmp)
3582 (icmp @0 @1)
3583 (if (ic == ncmp)
3584 (ncmp @0 @1))))))
3585
3586 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3587 ??? The transformation is valid for the other operators if overflow
3588 is undefined for the type, but performing it here badly interacts
3589 with the transformation in fold_cond_expr_with_comparison which
3590 attempts to synthetize ABS_EXPR. */
3591 (for cmp (eq ne)
3592 (for sub (minus pointer_diff)
3593 (simplify
3594 (cmp (sub@2 @0 @1) integer_zerop)
3595 (if (single_use (@2))
3596 (cmp @0 @1)))))
3597
3598 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3599 signed arithmetic case. That form is created by the compiler
3600 often enough for folding it to be of value. One example is in
3601 computing loop trip counts after Operator Strength Reduction. */
3602 (for cmp (simple_comparison)
3603 scmp (swapped_simple_comparison)
3604 (simplify
3605 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3606 /* Handle unfolded multiplication by zero. */
3607 (if (integer_zerop (@1))
3608 (cmp @1 @2)
3609 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3610 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3611 && single_use (@3))
3612 /* If @1 is negative we swap the sense of the comparison. */
3613 (if (tree_int_cst_sgn (@1) < 0)
3614 (scmp @0 @2)
3615 (cmp @0 @2))))))
3616
3617 /* Simplify comparison of something with itself. For IEEE
3618 floating-point, we can only do some of these simplifications. */
3619 (for cmp (eq ge le)
3620 (simplify
3621 (cmp @0 @0)
3622 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3623 || ! HONOR_NANS (@0))
3624 { constant_boolean_node (true, type); }
3625 (if (cmp != EQ_EXPR)
3626 (eq @0 @0)))))
3627 (for cmp (ne gt lt)
3628 (simplify
3629 (cmp @0 @0)
3630 (if (cmp != NE_EXPR
3631 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3632 || ! HONOR_NANS (@0))
3633 { constant_boolean_node (false, type); })))
3634 (for cmp (unle unge uneq)
3635 (simplify
3636 (cmp @0 @0)
3637 { constant_boolean_node (true, type); }))
3638 (for cmp (unlt ungt)
3639 (simplify
3640 (cmp @0 @0)
3641 (unordered @0 @0)))
3642 (simplify
3643 (ltgt @0 @0)
3644 (if (!flag_trapping_math)
3645 { constant_boolean_node (false, type); }))
3646
3647 /* Fold ~X op ~Y as Y op X. */
3648 (for cmp (simple_comparison)
3649 (simplify
3650 (cmp (bit_not@2 @0) (bit_not@3 @1))
3651 (if (single_use (@2) && single_use (@3))
3652 (cmp @1 @0))))
3653
3654 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3655 (for cmp (simple_comparison)
3656 scmp (swapped_simple_comparison)
3657 (simplify
3658 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3659 (if (single_use (@2)
3660 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3661 (scmp @0 (bit_not @1)))))
3662
3663 (for cmp (simple_comparison)
3664 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3665 (simplify
3666 (cmp (convert@2 @0) (convert? @1))
3667 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3668 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3669 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3670 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3671 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3672 (with
3673 {
3674 tree type1 = TREE_TYPE (@1);
3675 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3676 {
3677 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3678 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3679 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3680 type1 = float_type_node;
3681 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3682 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3683 type1 = double_type_node;
3684 }
3685 tree newtype
3686 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3687 ? TREE_TYPE (@0) : type1);
3688 }
3689 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3690 (cmp (convert:newtype @0) (convert:newtype @1))))))
3691
3692 (simplify
3693 (cmp @0 REAL_CST@1)
3694 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3695 (switch
3696 /* a CMP (-0) -> a CMP 0 */
3697 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3698 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3699 /* x != NaN is always true, other ops are always false. */
3700 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3701 && ! HONOR_SNANS (@1))
3702 { constant_boolean_node (cmp == NE_EXPR, type); })
3703 /* Fold comparisons against infinity. */
3704 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3705 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3706 (with
3707 {
3708 REAL_VALUE_TYPE max;
3709 enum tree_code code = cmp;
3710 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3711 if (neg)
3712 code = swap_tree_comparison (code);
3713 }
3714 (switch
3715 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3716 (if (code == GT_EXPR
3717 && !(HONOR_NANS (@0) && flag_trapping_math))
3718 { constant_boolean_node (false, type); })
3719 (if (code == LE_EXPR)
3720 /* x <= +Inf is always true, if we don't care about NaNs. */
3721 (if (! HONOR_NANS (@0))
3722 { constant_boolean_node (true, type); }
3723 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3724 an "invalid" exception. */
3725 (if (!flag_trapping_math)
3726 (eq @0 @0))))
3727 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3728 for == this introduces an exception for x a NaN. */
3729 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3730 || code == GE_EXPR)
3731 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3732 (if (neg)
3733 (lt @0 { build_real (TREE_TYPE (@0), max); })
3734 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3735 /* x < +Inf is always equal to x <= DBL_MAX. */
3736 (if (code == LT_EXPR)
3737 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3738 (if (neg)
3739 (ge @0 { build_real (TREE_TYPE (@0), max); })
3740 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3741 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3742 an exception for x a NaN so use an unordered comparison. */
3743 (if (code == NE_EXPR)
3744 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3745 (if (! HONOR_NANS (@0))
3746 (if (neg)
3747 (ge @0 { build_real (TREE_TYPE (@0), max); })
3748 (le @0 { build_real (TREE_TYPE (@0), max); }))
3749 (if (neg)
3750 (unge @0 { build_real (TREE_TYPE (@0), max); })
3751 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3752
3753 /* If this is a comparison of a real constant with a PLUS_EXPR
3754 or a MINUS_EXPR of a real constant, we can convert it into a
3755 comparison with a revised real constant as long as no overflow
3756 occurs when unsafe_math_optimizations are enabled. */
3757 (if (flag_unsafe_math_optimizations)
3758 (for op (plus minus)
3759 (simplify
3760 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3761 (with
3762 {
3763 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3764 TREE_TYPE (@1), @2, @1);
3765 }
3766 (if (tem && !TREE_OVERFLOW (tem))
3767 (cmp @0 { tem; }))))))
3768
3769 /* Likewise, we can simplify a comparison of a real constant with
3770 a MINUS_EXPR whose first operand is also a real constant, i.e.
3771 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3772 floating-point types only if -fassociative-math is set. */
3773 (if (flag_associative_math)
3774 (simplify
3775 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3776 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3777 (if (tem && !TREE_OVERFLOW (tem))
3778 (cmp { tem; } @1)))))
3779
3780 /* Fold comparisons against built-in math functions. */
3781 (if (flag_unsafe_math_optimizations && ! flag_errno_math)
3782 (for sq (SQRT)
3783 (simplify
3784 (cmp (sq @0) REAL_CST@1)
3785 (switch
3786 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3787 (switch
3788 /* sqrt(x) < y is always false, if y is negative. */
3789 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3790 { constant_boolean_node (false, type); })
3791 /* sqrt(x) > y is always true, if y is negative and we
3792 don't care about NaNs, i.e. negative values of x. */
3793 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3794 { constant_boolean_node (true, type); })
3795 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3796 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3797 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3798 (switch
3799 /* sqrt(x) < 0 is always false. */
3800 (if (cmp == LT_EXPR)
3801 { constant_boolean_node (false, type); })
3802 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3803 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3804 { constant_boolean_node (true, type); })
3805 /* sqrt(x) <= 0 -> x == 0. */
3806 (if (cmp == LE_EXPR)
3807 (eq @0 @1))
3808 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3809 == or !=. In the last case:
3810
3811 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3812
3813 if x is negative or NaN. Due to -funsafe-math-optimizations,
3814 the results for other x follow from natural arithmetic. */
3815 (cmp @0 @1)))
3816 (if ((cmp == LT_EXPR
3817 || cmp == LE_EXPR
3818 || cmp == GT_EXPR
3819 || cmp == GE_EXPR)
3820 && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3821 /* Give up for -frounding-math. */
3822 && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
3823 (with
3824 {
3825 REAL_VALUE_TYPE c2;
3826 enum tree_code ncmp = cmp;
3827 const real_format *fmt
3828 = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
3829 real_arithmetic (&c2, MULT_EXPR,
3830 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3831 real_convert (&c2, fmt, &c2);
3832 /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
3833 then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
3834 if (!REAL_VALUE_ISINF (c2))
3835 {
3836 tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3837 build_real (TREE_TYPE (@0), c2));
3838 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3839 ncmp = ERROR_MARK;
3840 else if ((cmp == LT_EXPR || cmp == GE_EXPR)
3841 && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
3842 ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
3843 else if ((cmp == LE_EXPR || cmp == GT_EXPR)
3844 && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
3845 ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
3846 else
3847 {
3848 /* With rounding to even, sqrt of up to 3 different values
3849 gives the same normal result, so in some cases c2 needs
3850 to be adjusted. */
3851 REAL_VALUE_TYPE c2alt, tow;
3852 if (cmp == LT_EXPR || cmp == GE_EXPR)
3853 tow = dconst0;
3854 else
3855 real_inf (&tow);
3856 real_nextafter (&c2alt, fmt, &c2, &tow);
3857 real_convert (&c2alt, fmt, &c2alt);
3858 if (REAL_VALUE_ISINF (c2alt))
3859 ncmp = ERROR_MARK;
3860 else
3861 {
3862 c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
3863 build_real (TREE_TYPE (@0), c2alt));
3864 if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
3865 ncmp = ERROR_MARK;
3866 else if (real_equal (&TREE_REAL_CST (c3),
3867 &TREE_REAL_CST (@1)))
3868 c2 = c2alt;
3869 }
3870 }
3871 }
3872 }
3873 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3874 (if (REAL_VALUE_ISINF (c2))
3875 /* sqrt(x) > y is x == +Inf, when y is very large. */
3876 (if (HONOR_INFINITIES (@0))
3877 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3878 { constant_boolean_node (false, type); })
3879 /* sqrt(x) > c is the same as x > c*c. */
3880 (if (ncmp != ERROR_MARK)
3881 (if (ncmp == GE_EXPR)
3882 (ge @0 { build_real (TREE_TYPE (@0), c2); })
3883 (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
3884 /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
3885 (if (REAL_VALUE_ISINF (c2))
3886 (switch
3887 /* sqrt(x) < y is always true, when y is a very large
3888 value and we don't care about NaNs or Infinities. */
3889 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3890 { constant_boolean_node (true, type); })
3891 /* sqrt(x) < y is x != +Inf when y is very large and we
3892 don't care about NaNs. */
3893 (if (! HONOR_NANS (@0))
3894 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3895 /* sqrt(x) < y is x >= 0 when y is very large and we
3896 don't care about Infinities. */
3897 (if (! HONOR_INFINITIES (@0))
3898 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3899 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3900 (if (GENERIC)
3901 (truth_andif
3902 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3903 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3904 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3905 (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
3906 (if (ncmp == LT_EXPR)
3907 (lt @0 { build_real (TREE_TYPE (@0), c2); })
3908 (le @0 { build_real (TREE_TYPE (@0), c2); }))
3909 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3910 (if (ncmp != ERROR_MARK && GENERIC)
3911 (if (ncmp == LT_EXPR)
3912 (truth_andif
3913 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3914 (lt @0 { build_real (TREE_TYPE (@0), c2); }))
3915 (truth_andif
3916 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3917 (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
3918 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3919 (simplify
3920 (cmp (sq @0) (sq @1))
3921 (if (! HONOR_NANS (@0))
3922 (cmp @0 @1))))))
3923
3924 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3925 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3926 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3927 (simplify
3928 (cmp (float@0 @1) (float @2))
3929 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3930 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3931 (with
3932 {
3933 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3934 tree type1 = TREE_TYPE (@1);
3935 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3936 tree type2 = TREE_TYPE (@2);
3937 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3938 }
3939 (if (fmt.can_represent_integral_type_p (type1)
3940 && fmt.can_represent_integral_type_p (type2))
3941 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3942 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3943 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3944 && type1_signed_p >= type2_signed_p)
3945 (icmp @1 (convert @2))
3946 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3947 && type1_signed_p <= type2_signed_p)
3948 (icmp (convert:type2 @1) @2)
3949 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3950 && type1_signed_p == type2_signed_p)
3951 (icmp @1 @2))))))))))
3952
3953 /* Optimize various special cases of (FTYPE) N CMP CST. */
3954 (for cmp (lt le eq ne ge gt)
3955 icmp (le le eq ne ge ge)
3956 (simplify
3957 (cmp (float @0) REAL_CST@1)
3958 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3959 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3960 (with
3961 {
3962 tree itype = TREE_TYPE (@0);
3963 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3964 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3965 /* Be careful to preserve any potential exceptions due to
3966 NaNs. qNaNs are ok in == or != context.
3967 TODO: relax under -fno-trapping-math or
3968 -fno-signaling-nans. */
3969 bool exception_p
3970 = real_isnan (cst) && (cst->signalling
3971 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3972 }
3973 /* TODO: allow non-fitting itype and SNaNs when
3974 -fno-trapping-math. */
3975 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3976 (with
3977 {
3978 signop isign = TYPE_SIGN (itype);
3979 REAL_VALUE_TYPE imin, imax;
3980 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3981 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3982
3983 REAL_VALUE_TYPE icst;
3984 if (cmp == GT_EXPR || cmp == GE_EXPR)
3985 real_ceil (&icst, fmt, cst);
3986 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3987 real_floor (&icst, fmt, cst);
3988 else
3989 real_trunc (&icst, fmt, cst);
3990
3991 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3992
3993 bool overflow_p = false;
3994 wide_int icst_val
3995 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3996 }
3997 (switch
3998 /* Optimize cases when CST is outside of ITYPE's range. */
3999 (if (real_compare (LT_EXPR, cst, &imin))
4000 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
4001 type); })
4002 (if (real_compare (GT_EXPR, cst, &imax))
4003 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
4004 type); })
4005 /* Remove cast if CST is an integer representable by ITYPE. */
4006 (if (cst_int_p)
4007 (cmp @0 { gcc_assert (!overflow_p);
4008 wide_int_to_tree (itype, icst_val); })
4009 )
4010 /* When CST is fractional, optimize
4011 (FTYPE) N == CST -> 0
4012 (FTYPE) N != CST -> 1. */
4013 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4014 { constant_boolean_node (cmp == NE_EXPR, type); })
4015 /* Otherwise replace with sensible integer constant. */
4016 (with
4017 {
4018 gcc_checking_assert (!overflow_p);
4019 }
4020 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
4021
4022 /* Fold A /[ex] B CMP C to A CMP B * C. */
4023 (for cmp (eq ne)
4024 (simplify
4025 (cmp (exact_div @0 @1) INTEGER_CST@2)
4026 (if (!integer_zerop (@1))
4027 (if (wi::to_wide (@2) == 0)
4028 (cmp @0 @2)
4029 (if (TREE_CODE (@1) == INTEGER_CST)
4030 (with
4031 {
4032 wi::overflow_type ovf;
4033 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4034 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4035 }
4036 (if (ovf)
4037 { constant_boolean_node (cmp == NE_EXPR, type); }
4038 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
4039 (for cmp (lt le gt ge)
4040 (simplify
4041 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
4042 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4043 (with
4044 {
4045 wi::overflow_type ovf;
4046 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
4047 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
4048 }
4049 (if (ovf)
4050 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
4051 TYPE_SIGN (TREE_TYPE (@2)))
4052 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
4053 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
4054
4055 /* Fold (size_t)(A /[ex] B) CMP C to (size_t)A CMP (size_t)B * C or A CMP' 0.
4056
4057 For small C (less than max/B), this is (size_t)A CMP (size_t)B * C.
4058 For large C (more than min/B+2^size), this is also true, with the
4059 multiplication computed modulo 2^size.
4060 For intermediate C, this just tests the sign of A. */
4061 (for cmp (lt le gt ge)
4062 cmp2 (ge ge lt lt)
4063 (simplify
4064 (cmp (convert (exact_div @0 INTEGER_CST@1)) INTEGER_CST@2)
4065 (if (tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2))
4066 && TYPE_UNSIGNED (TREE_TYPE (@2)) && !TYPE_UNSIGNED (TREE_TYPE (@0))
4067 && wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
4068 (with
4069 {
4070 tree utype = TREE_TYPE (@2);
4071 wide_int denom = wi::to_wide (@1);
4072 wide_int right = wi::to_wide (@2);
4073 wide_int smax = wi::sdiv_trunc (wi::max_value (TREE_TYPE (@0)), denom);
4074 wide_int smin = wi::sdiv_trunc (wi::min_value (TREE_TYPE (@0)), denom);
4075 bool small = wi::leu_p (right, smax);
4076 bool large = wi::geu_p (right, smin);
4077 }
4078 (if (small || large)
4079 (cmp (convert:utype @0) (mult @2 (convert @1)))
4080 (cmp2 @0 { build_zero_cst (TREE_TYPE (@0)); }))))))
4081
4082 /* Unordered tests if either argument is a NaN. */
4083 (simplify
4084 (bit_ior (unordered @0 @0) (unordered @1 @1))
4085 (if (types_match (@0, @1))
4086 (unordered @0 @1)))
4087 (simplify
4088 (bit_and (ordered @0 @0) (ordered @1 @1))
4089 (if (types_match (@0, @1))
4090 (ordered @0 @1)))
4091 (simplify
4092 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
4093 @2)
4094 (simplify
4095 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
4096 @2)
4097
4098 /* Simple range test simplifications. */
4099 /* A < B || A >= B -> true. */
4100 (for test1 (lt le le le ne ge)
4101 test2 (ge gt ge ne eq ne)
4102 (simplify
4103 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
4104 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4105 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4106 { constant_boolean_node (true, type); })))
4107 /* A < B && A >= B -> false. */
4108 (for test1 (lt lt lt le ne eq)
4109 test2 (ge gt eq gt eq gt)
4110 (simplify
4111 (bit_and:c (test1 @0 @1) (test2 @0 @1))
4112 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4113 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
4114 { constant_boolean_node (false, type); })))
4115
4116 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
4117 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
4118
4119 Note that comparisons
4120 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
4121 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
4122 will be canonicalized to above so there's no need to
4123 consider them here.
4124 */
4125
4126 (for cmp (le gt)
4127 eqcmp (eq ne)
4128 (simplify
4129 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
4130 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
4131 (with
4132 {
4133 tree ty = TREE_TYPE (@0);
4134 unsigned prec = TYPE_PRECISION (ty);
4135 wide_int mask = wi::to_wide (@2, prec);
4136 wide_int rhs = wi::to_wide (@3, prec);
4137 signop sgn = TYPE_SIGN (ty);
4138 }
4139 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
4140 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
4141 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
4142 { build_zero_cst (ty); }))))))
4143
4144 /* -A CMP -B -> B CMP A. */
4145 (for cmp (tcc_comparison)
4146 scmp (swapped_tcc_comparison)
4147 (simplify
4148 (cmp (negate @0) (negate @1))
4149 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4150 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4151 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4152 (scmp @0 @1)))
4153 (simplify
4154 (cmp (negate @0) CONSTANT_CLASS_P@1)
4155 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
4156 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4157 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
4158 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
4159 (if (tem && !TREE_OVERFLOW (tem))
4160 (scmp @0 { tem; }))))))
4161
4162 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
4163 (for op (eq ne)
4164 (simplify
4165 (op (abs @0) zerop@1)
4166 (op @0 @1)))
4167
4168 /* From fold_sign_changed_comparison and fold_widened_comparison.
4169 FIXME: the lack of symmetry is disturbing. */
4170 (for cmp (simple_comparison)
4171 (simplify
4172 (cmp (convert@0 @00) (convert?@1 @10))
4173 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4174 /* Disable this optimization if we're casting a function pointer
4175 type on targets that require function pointer canonicalization. */
4176 && !(targetm.have_canonicalize_funcptr_for_compare ()
4177 && ((POINTER_TYPE_P (TREE_TYPE (@00))
4178 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
4179 || (POINTER_TYPE_P (TREE_TYPE (@10))
4180 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
4181 && single_use (@0))
4182 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
4183 && (TREE_CODE (@10) == INTEGER_CST
4184 || @1 != @10)
4185 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
4186 || cmp == NE_EXPR
4187 || cmp == EQ_EXPR)
4188 && !POINTER_TYPE_P (TREE_TYPE (@00)))
4189 /* ??? The special-casing of INTEGER_CST conversion was in the original
4190 code and here to avoid a spurious overflow flag on the resulting
4191 constant which fold_convert produces. */
4192 (if (TREE_CODE (@1) == INTEGER_CST)
4193 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
4194 TREE_OVERFLOW (@1)); })
4195 (cmp @00 (convert @1)))
4196
4197 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
4198 /* If possible, express the comparison in the shorter mode. */
4199 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
4200 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
4201 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
4202 && TYPE_UNSIGNED (TREE_TYPE (@00))))
4203 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
4204 || ((TYPE_PRECISION (TREE_TYPE (@00))
4205 >= TYPE_PRECISION (TREE_TYPE (@10)))
4206 && (TYPE_UNSIGNED (TREE_TYPE (@00))
4207 == TYPE_UNSIGNED (TREE_TYPE (@10))))
4208 || (TREE_CODE (@10) == INTEGER_CST
4209 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4210 && int_fits_type_p (@10, TREE_TYPE (@00)))))
4211 (cmp @00 (convert @10))
4212 (if (TREE_CODE (@10) == INTEGER_CST
4213 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
4214 && !int_fits_type_p (@10, TREE_TYPE (@00)))
4215 (with
4216 {
4217 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4218 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
4219 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
4220 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
4221 }
4222 (if (above || below)
4223 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
4224 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
4225 (if (cmp == LT_EXPR || cmp == LE_EXPR)
4226 { constant_boolean_node (above ? true : false, type); }
4227 (if (cmp == GT_EXPR || cmp == GE_EXPR)
4228 { constant_boolean_node (above ? false : true, type); }))))))))))))
4229
4230 (for cmp (eq ne)
4231 /* A local variable can never be pointed to by
4232 the default SSA name of an incoming parameter.
4233 SSA names are canonicalized to 2nd place. */
4234 (simplify
4235 (cmp addr@0 SSA_NAME@1)
4236 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
4237 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
4238 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
4239 (if (TREE_CODE (base) == VAR_DECL
4240 && auto_var_in_fn_p (base, current_function_decl))
4241 (if (cmp == NE_EXPR)
4242 { constant_boolean_node (true, type); }
4243 { constant_boolean_node (false, type); }))))))
4244
4245 /* Equality compare simplifications from fold_binary */
4246 (for cmp (eq ne)
4247
4248 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
4249 Similarly for NE_EXPR. */
4250 (simplify
4251 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
4252 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
4253 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
4254 { constant_boolean_node (cmp == NE_EXPR, type); }))
4255
4256 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
4257 (simplify
4258 (cmp (bit_xor @0 @1) integer_zerop)
4259 (cmp @0 @1))
4260
4261 /* (X ^ Y) == Y becomes X == 0.
4262 Likewise (X ^ Y) == X becomes Y == 0. */
4263 (simplify
4264 (cmp:c (bit_xor:c @0 @1) @0)
4265 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
4266
4267 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
4268 (simplify
4269 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
4270 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
4271 (cmp @0 (bit_xor @1 (convert @2)))))
4272
4273 (simplify
4274 (cmp (convert? addr@0) integer_zerop)
4275 (if (tree_single_nonzero_warnv_p (@0, NULL))
4276 { constant_boolean_node (cmp == NE_EXPR, type); })))
4277
4278 /* If we have (A & C) == C where C is a power of 2, convert this into
4279 (A & C) != 0. Similarly for NE_EXPR. */
4280 (for cmp (eq ne)
4281 icmp (ne eq)
4282 (simplify
4283 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
4284 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
4285
4286 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
4287 convert this into a shift followed by ANDing with D. */
4288 (simplify
4289 (cond
4290 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
4291 INTEGER_CST@2 integer_zerop)
4292 (if (integer_pow2p (@2))
4293 (with {
4294 int shift = (wi::exact_log2 (wi::to_wide (@2))
4295 - wi::exact_log2 (wi::to_wide (@1)));
4296 }
4297 (if (shift > 0)
4298 (bit_and
4299 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
4300 (bit_and
4301 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
4302 @2)))))
4303
4304 /* If we have (A & C) != 0 where C is the sign bit of A, convert
4305 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
4306 (for cmp (eq ne)
4307 ncmp (ge lt)
4308 (simplify
4309 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
4310 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4311 && type_has_mode_precision_p (TREE_TYPE (@0))
4312 && element_precision (@2) >= element_precision (@0)
4313 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
4314 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
4315 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
4316
4317 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
4318 this into a right shift or sign extension followed by ANDing with C. */
4319 (simplify
4320 (cond
4321 (lt @0 integer_zerop)
4322 INTEGER_CST@1 integer_zerop)
4323 (if (integer_pow2p (@1)
4324 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
4325 (with {
4326 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
4327 }
4328 (if (shift >= 0)
4329 (bit_and
4330 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
4331 @1)
4332 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
4333 sign extension followed by AND with C will achieve the effect. */
4334 (bit_and (convert @0) @1)))))
4335
4336 /* When the addresses are not directly of decls compare base and offset.
4337 This implements some remaining parts of fold_comparison address
4338 comparisons but still no complete part of it. Still it is good
4339 enough to make fold_stmt not regress when not dispatching to fold_binary. */
4340 (for cmp (simple_comparison)
4341 (simplify
4342 (cmp (convert1?@2 addr@0) (convert2? addr@1))
4343 (with
4344 {
4345 poly_int64 off0, off1;
4346 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
4347 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
4348 if (base0 && TREE_CODE (base0) == MEM_REF)
4349 {
4350 off0 += mem_ref_offset (base0).force_shwi ();
4351 base0 = TREE_OPERAND (base0, 0);
4352 }
4353 if (base1 && TREE_CODE (base1) == MEM_REF)
4354 {
4355 off1 += mem_ref_offset (base1).force_shwi ();
4356 base1 = TREE_OPERAND (base1, 0);
4357 }
4358 }
4359 (if (base0 && base1)
4360 (with
4361 {
4362 int equal = 2;
4363 /* Punt in GENERIC on variables with value expressions;
4364 the value expressions might point to fields/elements
4365 of other vars etc. */
4366 if (GENERIC
4367 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
4368 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
4369 ;
4370 else if (decl_in_symtab_p (base0)
4371 && decl_in_symtab_p (base1))
4372 equal = symtab_node::get_create (base0)
4373 ->equal_address_to (symtab_node::get_create (base1));
4374 else if ((DECL_P (base0)
4375 || TREE_CODE (base0) == SSA_NAME
4376 || TREE_CODE (base0) == STRING_CST)
4377 && (DECL_P (base1)
4378 || TREE_CODE (base1) == SSA_NAME
4379 || TREE_CODE (base1) == STRING_CST))
4380 equal = (base0 == base1);
4381 if (equal == 0)
4382 {
4383 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
4384 off0.is_constant (&ioff0);
4385 off1.is_constant (&ioff1);
4386 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
4387 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
4388 || (TREE_CODE (base0) == STRING_CST
4389 && TREE_CODE (base1) == STRING_CST
4390 && ioff0 >= 0 && ioff1 >= 0
4391 && ioff0 < TREE_STRING_LENGTH (base0)
4392 && ioff1 < TREE_STRING_LENGTH (base1)
4393 /* This is a too conservative test that the STRING_CSTs
4394 will not end up being string-merged. */
4395 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
4396 TREE_STRING_POINTER (base1) + ioff1,
4397 MIN (TREE_STRING_LENGTH (base0) - ioff0,
4398 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
4399 ;
4400 else if (!DECL_P (base0) || !DECL_P (base1))
4401 equal = 2;
4402 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
4403 equal = 2;
4404 /* If this is a pointer comparison, ignore for now even
4405 valid equalities where one pointer is the offset zero
4406 of one object and the other to one past end of another one. */
4407 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
4408 ;
4409 /* Assume that automatic variables can't be adjacent to global
4410 variables. */
4411 else if (is_global_var (base0) != is_global_var (base1))
4412 ;
4413 else
4414 {
4415 tree sz0 = DECL_SIZE_UNIT (base0);
4416 tree sz1 = DECL_SIZE_UNIT (base1);
4417 /* If sizes are unknown, e.g. VLA or not representable,
4418 punt. */
4419 if (!tree_fits_poly_int64_p (sz0)
4420 || !tree_fits_poly_int64_p (sz1))
4421 equal = 2;
4422 else
4423 {
4424 poly_int64 size0 = tree_to_poly_int64 (sz0);
4425 poly_int64 size1 = tree_to_poly_int64 (sz1);
4426 /* If one offset is pointing (or could be) to the beginning
4427 of one object and the other is pointing to one past the
4428 last byte of the other object, punt. */
4429 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
4430 equal = 2;
4431 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
4432 equal = 2;
4433 /* If both offsets are the same, there are some cases
4434 we know that are ok. Either if we know they aren't
4435 zero, or if we know both sizes are no zero. */
4436 if (equal == 2
4437 && known_eq (off0, off1)
4438 && (known_ne (off0, 0)
4439 || (known_ne (size0, 0) && known_ne (size1, 0))))
4440 equal = 0;
4441 }
4442 }
4443 }
4444 }
4445 (if (equal == 1
4446 && (cmp == EQ_EXPR || cmp == NE_EXPR
4447 /* If the offsets are equal we can ignore overflow. */
4448 || known_eq (off0, off1)
4449 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4450 /* Or if we compare using pointers to decls or strings. */
4451 || (POINTER_TYPE_P (TREE_TYPE (@2))
4452 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4453 (switch
4454 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4455 { constant_boolean_node (known_eq (off0, off1), type); })
4456 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4457 { constant_boolean_node (known_ne (off0, off1), type); })
4458 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4459 { constant_boolean_node (known_lt (off0, off1), type); })
4460 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4461 { constant_boolean_node (known_le (off0, off1), type); })
4462 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4463 { constant_boolean_node (known_ge (off0, off1), type); })
4464 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4465 { constant_boolean_node (known_gt (off0, off1), type); }))
4466 (if (equal == 0)
4467 (switch
4468 (if (cmp == EQ_EXPR)
4469 { constant_boolean_node (false, type); })
4470 (if (cmp == NE_EXPR)
4471 { constant_boolean_node (true, type); })))))))))
4472
4473 /* Simplify pointer equality compares using PTA. */
4474 (for neeq (ne eq)
4475 (simplify
4476 (neeq @0 @1)
4477 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4478 && ptrs_compare_unequal (@0, @1))
4479 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4480
4481 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4482 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4483 Disable the transform if either operand is pointer to function.
4484 This broke pr22051-2.c for arm where function pointer
4485 canonicalizaion is not wanted. */
4486
4487 (for cmp (ne eq)
4488 (simplify
4489 (cmp (convert @0) INTEGER_CST@1)
4490 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4491 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4492 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4493 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4494 && POINTER_TYPE_P (TREE_TYPE (@1))
4495 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4496 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4497 (cmp @0 (convert @1)))))
4498
4499 /* Non-equality compare simplifications from fold_binary */
4500 (for cmp (lt gt le ge)
4501 /* Comparisons with the highest or lowest possible integer of
4502 the specified precision will have known values. */
4503 (simplify
4504 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4505 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4506 || POINTER_TYPE_P (TREE_TYPE (@1))
4507 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4508 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4509 (with
4510 {
4511 tree cst = uniform_integer_cst_p (@1);
4512 tree arg1_type = TREE_TYPE (cst);
4513 unsigned int prec = TYPE_PRECISION (arg1_type);
4514 wide_int max = wi::max_value (arg1_type);
4515 wide_int signed_max = wi::max_value (prec, SIGNED);
4516 wide_int min = wi::min_value (arg1_type);
4517 }
4518 (switch
4519 (if (wi::to_wide (cst) == max)
4520 (switch
4521 (if (cmp == GT_EXPR)
4522 { constant_boolean_node (false, type); })
4523 (if (cmp == GE_EXPR)
4524 (eq @2 @1))
4525 (if (cmp == LE_EXPR)
4526 { constant_boolean_node (true, type); })
4527 (if (cmp == LT_EXPR)
4528 (ne @2 @1))))
4529 (if (wi::to_wide (cst) == min)
4530 (switch
4531 (if (cmp == LT_EXPR)
4532 { constant_boolean_node (false, type); })
4533 (if (cmp == LE_EXPR)
4534 (eq @2 @1))
4535 (if (cmp == GE_EXPR)
4536 { constant_boolean_node (true, type); })
4537 (if (cmp == GT_EXPR)
4538 (ne @2 @1))))
4539 (if (wi::to_wide (cst) == max - 1)
4540 (switch
4541 (if (cmp == GT_EXPR)
4542 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4543 wide_int_to_tree (TREE_TYPE (cst),
4544 wi::to_wide (cst)
4545 + 1)); }))
4546 (if (cmp == LE_EXPR)
4547 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4548 wide_int_to_tree (TREE_TYPE (cst),
4549 wi::to_wide (cst)
4550 + 1)); }))))
4551 (if (wi::to_wide (cst) == min + 1)
4552 (switch
4553 (if (cmp == GE_EXPR)
4554 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4555 wide_int_to_tree (TREE_TYPE (cst),
4556 wi::to_wide (cst)
4557 - 1)); }))
4558 (if (cmp == LT_EXPR)
4559 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4560 wide_int_to_tree (TREE_TYPE (cst),
4561 wi::to_wide (cst)
4562 - 1)); }))))
4563 (if (wi::to_wide (cst) == signed_max
4564 && TYPE_UNSIGNED (arg1_type)
4565 /* We will flip the signedness of the comparison operator
4566 associated with the mode of @1, so the sign bit is
4567 specified by this mode. Check that @1 is the signed
4568 max associated with this sign bit. */
4569 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4570 /* signed_type does not work on pointer types. */
4571 && INTEGRAL_TYPE_P (arg1_type))
4572 /* The following case also applies to X < signed_max+1
4573 and X >= signed_max+1 because previous transformations. */
4574 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4575 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4576 (switch
4577 (if (cst == @1 && cmp == LE_EXPR)
4578 (ge (convert:st @0) { build_zero_cst (st); }))
4579 (if (cst == @1 && cmp == GT_EXPR)
4580 (lt (convert:st @0) { build_zero_cst (st); }))
4581 (if (cmp == LE_EXPR)
4582 (ge (view_convert:st @0) { build_zero_cst (st); }))
4583 (if (cmp == GT_EXPR)
4584 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4585
4586 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4587 /* If the second operand is NaN, the result is constant. */
4588 (simplify
4589 (cmp @0 REAL_CST@1)
4590 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4591 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4592 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4593 ? false : true, type); })))
4594
4595 /* bool_var != 0 becomes bool_var. */
4596 (simplify
4597 (ne @0 integer_zerop)
4598 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4599 && types_match (type, TREE_TYPE (@0)))
4600 (non_lvalue @0)))
4601 /* bool_var == 1 becomes bool_var. */
4602 (simplify
4603 (eq @0 integer_onep)
4604 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4605 && types_match (type, TREE_TYPE (@0)))
4606 (non_lvalue @0)))
4607 /* Do not handle
4608 bool_var == 0 becomes !bool_var or
4609 bool_var != 1 becomes !bool_var
4610 here because that only is good in assignment context as long
4611 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4612 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4613 clearly less optimal and which we'll transform again in forwprop. */
4614
4615 /* When one argument is a constant, overflow detection can be simplified.
4616 Currently restricted to single use so as not to interfere too much with
4617 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4618 A + CST CMP A -> A CMP' CST' */
4619 (for cmp (lt le ge gt)
4620 out (gt gt le le)
4621 (simplify
4622 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4623 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4624 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4625 && wi::to_wide (@1) != 0
4626 && single_use (@2))
4627 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4628 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4629 wi::max_value (prec, UNSIGNED)
4630 - wi::to_wide (@1)); })))))
4631
4632 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4633 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4634 expects the long form, so we restrict the transformation for now. */
4635 (for cmp (gt le)
4636 (simplify
4637 (cmp:c (minus@2 @0 @1) @0)
4638 (if (single_use (@2)
4639 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4640 && TYPE_UNSIGNED (TREE_TYPE (@0))
4641 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4642 (cmp @1 @0))))
4643
4644 /* Testing for overflow is unnecessary if we already know the result. */
4645 /* A - B > A */
4646 (for cmp (gt le)
4647 out (ne eq)
4648 (simplify
4649 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4650 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4651 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4652 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4653 /* A + B < A */
4654 (for cmp (lt ge)
4655 out (ne eq)
4656 (simplify
4657 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4658 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4659 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4660 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4661
4662 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4663 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4664 (for cmp (lt ge)
4665 out (ne eq)
4666 (simplify
4667 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4668 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4669 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4670 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4671
4672 /* Simplification of math builtins. These rules must all be optimizations
4673 as well as IL simplifications. If there is a possibility that the new
4674 form could be a pessimization, the rule should go in the canonicalization
4675 section that follows this one.
4676
4677 Rules can generally go in this section if they satisfy one of
4678 the following:
4679
4680 - the rule describes an identity
4681
4682 - the rule replaces calls with something as simple as addition or
4683 multiplication
4684
4685 - the rule contains unary calls only and simplifies the surrounding
4686 arithmetic. (The idea here is to exclude non-unary calls in which
4687 one operand is constant and in which the call is known to be cheap
4688 when the operand has that value.) */
4689
4690 (if (flag_unsafe_math_optimizations)
4691 /* Simplify sqrt(x) * sqrt(x) -> x. */
4692 (simplify
4693 (mult (SQRT_ALL@1 @0) @1)
4694 (if (!HONOR_SNANS (type))
4695 @0))
4696
4697 (for op (plus minus)
4698 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4699 (simplify
4700 (op (rdiv @0 @1)
4701 (rdiv @2 @1))
4702 (rdiv (op @0 @2) @1)))
4703
4704 (for cmp (lt le gt ge)
4705 neg_cmp (gt ge lt le)
4706 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4707 (simplify
4708 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4709 (with
4710 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4711 (if (tem
4712 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4713 || (real_zerop (tem) && !real_zerop (@1))))
4714 (switch
4715 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4716 (cmp @0 { tem; }))
4717 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4718 (neg_cmp @0 { tem; })))))))
4719
4720 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4721 (for root (SQRT CBRT)
4722 (simplify
4723 (mult (root:s @0) (root:s @1))
4724 (root (mult @0 @1))))
4725
4726 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4727 (for exps (EXP EXP2 EXP10 POW10)
4728 (simplify
4729 (mult (exps:s @0) (exps:s @1))
4730 (exps (plus @0 @1))))
4731
4732 /* Simplify a/root(b/c) into a*root(c/b). */
4733 (for root (SQRT CBRT)
4734 (simplify
4735 (rdiv @0 (root:s (rdiv:s @1 @2)))
4736 (mult @0 (root (rdiv @2 @1)))))
4737
4738 /* Simplify x/expN(y) into x*expN(-y). */
4739 (for exps (EXP EXP2 EXP10 POW10)
4740 (simplify
4741 (rdiv @0 (exps:s @1))
4742 (mult @0 (exps (negate @1)))))
4743
4744 (for logs (LOG LOG2 LOG10 LOG10)
4745 exps (EXP EXP2 EXP10 POW10)
4746 /* logN(expN(x)) -> x. */
4747 (simplify
4748 (logs (exps @0))
4749 @0)
4750 /* expN(logN(x)) -> x. */
4751 (simplify
4752 (exps (logs @0))
4753 @0))
4754
4755 /* Optimize logN(func()) for various exponential functions. We
4756 want to determine the value "x" and the power "exponent" in
4757 order to transform logN(x**exponent) into exponent*logN(x). */
4758 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4759 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4760 (simplify
4761 (logs (exps @0))
4762 (if (SCALAR_FLOAT_TYPE_P (type))
4763 (with {
4764 tree x;
4765 switch (exps)
4766 {
4767 CASE_CFN_EXP:
4768 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4769 x = build_real_truncate (type, dconst_e ());
4770 break;
4771 CASE_CFN_EXP2:
4772 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4773 x = build_real (type, dconst2);
4774 break;
4775 CASE_CFN_EXP10:
4776 CASE_CFN_POW10:
4777 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4778 {
4779 REAL_VALUE_TYPE dconst10;
4780 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4781 x = build_real (type, dconst10);
4782 }
4783 break;
4784 default:
4785 gcc_unreachable ();
4786 }
4787 }
4788 (mult (logs { x; }) @0)))))
4789
4790 (for logs (LOG LOG
4791 LOG2 LOG2
4792 LOG10 LOG10)
4793 exps (SQRT CBRT)
4794 (simplify
4795 (logs (exps @0))
4796 (if (SCALAR_FLOAT_TYPE_P (type))
4797 (with {
4798 tree x;
4799 switch (exps)
4800 {
4801 CASE_CFN_SQRT:
4802 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4803 x = build_real (type, dconsthalf);
4804 break;
4805 CASE_CFN_CBRT:
4806 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4807 x = build_real_truncate (type, dconst_third ());
4808 break;
4809 default:
4810 gcc_unreachable ();
4811 }
4812 }
4813 (mult { x; } (logs @0))))))
4814
4815 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4816 (for logs (LOG LOG2 LOG10)
4817 pows (POW)
4818 (simplify
4819 (logs (pows @0 @1))
4820 (mult @1 (logs @0))))
4821
4822 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4823 or if C is a positive power of 2,
4824 pow(C,x) -> exp2(log2(C)*x). */
4825 #if GIMPLE
4826 (for pows (POW)
4827 exps (EXP)
4828 logs (LOG)
4829 exp2s (EXP2)
4830 log2s (LOG2)
4831 (simplify
4832 (pows REAL_CST@0 @1)
4833 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4834 && real_isfinite (TREE_REAL_CST_PTR (@0))
4835 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4836 the use_exp2 case until after vectorization. It seems actually
4837 beneficial for all constants to postpone this until later,
4838 because exp(log(C)*x), while faster, will have worse precision
4839 and if x folds into a constant too, that is unnecessary
4840 pessimization. */
4841 && canonicalize_math_after_vectorization_p ())
4842 (with {
4843 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4844 bool use_exp2 = false;
4845 if (targetm.libc_has_function (function_c99_misc)
4846 && value->cl == rvc_normal)
4847 {
4848 REAL_VALUE_TYPE frac_rvt = *value;
4849 SET_REAL_EXP (&frac_rvt, 1);
4850 if (real_equal (&frac_rvt, &dconst1))
4851 use_exp2 = true;
4852 }
4853 }
4854 (if (!use_exp2)
4855 (if (optimize_pow_to_exp (@0, @1))
4856 (exps (mult (logs @0) @1)))
4857 (exp2s (mult (log2s @0) @1)))))))
4858 #endif
4859
4860 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4861 (for pows (POW)
4862 exps (EXP EXP2 EXP10 POW10)
4863 logs (LOG LOG2 LOG10 LOG10)
4864 (simplify
4865 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4866 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4867 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4868 (exps (plus (mult (logs @0) @1) @2)))))
4869
4870 (for sqrts (SQRT)
4871 cbrts (CBRT)
4872 pows (POW)
4873 exps (EXP EXP2 EXP10 POW10)
4874 /* sqrt(expN(x)) -> expN(x*0.5). */
4875 (simplify
4876 (sqrts (exps @0))
4877 (exps (mult @0 { build_real (type, dconsthalf); })))
4878 /* cbrt(expN(x)) -> expN(x/3). */
4879 (simplify
4880 (cbrts (exps @0))
4881 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4882 /* pow(expN(x), y) -> expN(x*y). */
4883 (simplify
4884 (pows (exps @0) @1)
4885 (exps (mult @0 @1))))
4886
4887 /* tan(atan(x)) -> x. */
4888 (for tans (TAN)
4889 atans (ATAN)
4890 (simplify
4891 (tans (atans @0))
4892 @0)))
4893
4894 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4895 (for sins (SIN)
4896 atans (ATAN)
4897 sqrts (SQRT)
4898 copysigns (COPYSIGN)
4899 (simplify
4900 (sins (atans:s @0))
4901 (with
4902 {
4903 REAL_VALUE_TYPE r_cst;
4904 build_sinatan_real (&r_cst, type);
4905 tree t_cst = build_real (type, r_cst);
4906 tree t_one = build_one_cst (type);
4907 }
4908 (if (SCALAR_FLOAT_TYPE_P (type))
4909 (cond (lt (abs @0) { t_cst; })
4910 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4911 (copysigns { t_one; } @0))))))
4912
4913 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4914 (for coss (COS)
4915 atans (ATAN)
4916 sqrts (SQRT)
4917 copysigns (COPYSIGN)
4918 (simplify
4919 (coss (atans:s @0))
4920 (with
4921 {
4922 REAL_VALUE_TYPE r_cst;
4923 build_sinatan_real (&r_cst, type);
4924 tree t_cst = build_real (type, r_cst);
4925 tree t_one = build_one_cst (type);
4926 tree t_zero = build_zero_cst (type);
4927 }
4928 (if (SCALAR_FLOAT_TYPE_P (type))
4929 (cond (lt (abs @0) { t_cst; })
4930 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4931 (copysigns { t_zero; } @0))))))
4932
4933 (if (!flag_errno_math)
4934 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4935 (for sinhs (SINH)
4936 atanhs (ATANH)
4937 sqrts (SQRT)
4938 (simplify
4939 (sinhs (atanhs:s @0))
4940 (with { tree t_one = build_one_cst (type); }
4941 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4942
4943 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4944 (for coshs (COSH)
4945 atanhs (ATANH)
4946 sqrts (SQRT)
4947 (simplify
4948 (coshs (atanhs:s @0))
4949 (with { tree t_one = build_one_cst (type); }
4950 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4951
4952 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4953 (simplify
4954 (CABS (complex:C @0 real_zerop@1))
4955 (abs @0))
4956
4957 /* trunc(trunc(x)) -> trunc(x), etc. */
4958 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4959 (simplify
4960 (fns (fns @0))
4961 (fns @0)))
4962 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4963 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4964 (simplify
4965 (fns integer_valued_real_p@0)
4966 @0))
4967
4968 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4969 (simplify
4970 (HYPOT:c @0 real_zerop@1)
4971 (abs @0))
4972
4973 /* pow(1,x) -> 1. */
4974 (simplify
4975 (POW real_onep@0 @1)
4976 @0)
4977
4978 (simplify
4979 /* copysign(x,x) -> x. */
4980 (COPYSIGN_ALL @0 @0)
4981 @0)
4982
4983 (simplify
4984 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4985 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4986 (abs @0))
4987
4988 (for scale (LDEXP SCALBN SCALBLN)
4989 /* ldexp(0, x) -> 0. */
4990 (simplify
4991 (scale real_zerop@0 @1)
4992 @0)
4993 /* ldexp(x, 0) -> x. */
4994 (simplify
4995 (scale @0 integer_zerop@1)
4996 @0)
4997 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4998 (simplify
4999 (scale REAL_CST@0 @1)
5000 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
5001 @0)))
5002
5003 /* Canonicalization of sequences of math builtins. These rules represent
5004 IL simplifications but are not necessarily optimizations.
5005
5006 The sincos pass is responsible for picking "optimal" implementations
5007 of math builtins, which may be more complicated and can sometimes go
5008 the other way, e.g. converting pow into a sequence of sqrts.
5009 We only want to do these canonicalizations before the pass has run. */
5010
5011 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
5012 /* Simplify tan(x) * cos(x) -> sin(x). */
5013 (simplify
5014 (mult:c (TAN:s @0) (COS:s @0))
5015 (SIN @0))
5016
5017 /* Simplify x * pow(x,c) -> pow(x,c+1). */
5018 (simplify
5019 (mult:c @0 (POW:s @0 REAL_CST@1))
5020 (if (!TREE_OVERFLOW (@1))
5021 (POW @0 (plus @1 { build_one_cst (type); }))))
5022
5023 /* Simplify sin(x) / cos(x) -> tan(x). */
5024 (simplify
5025 (rdiv (SIN:s @0) (COS:s @0))
5026 (TAN @0))
5027
5028 /* Simplify sinh(x) / cosh(x) -> tanh(x). */
5029 (simplify
5030 (rdiv (SINH:s @0) (COSH:s @0))
5031 (TANH @0))
5032
5033 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
5034 (simplify
5035 (rdiv (COS:s @0) (SIN:s @0))
5036 (rdiv { build_one_cst (type); } (TAN @0)))
5037
5038 /* Simplify sin(x) / tan(x) -> cos(x). */
5039 (simplify
5040 (rdiv (SIN:s @0) (TAN:s @0))
5041 (if (! HONOR_NANS (@0)
5042 && ! HONOR_INFINITIES (@0))
5043 (COS @0)))
5044
5045 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
5046 (simplify
5047 (rdiv (TAN:s @0) (SIN:s @0))
5048 (if (! HONOR_NANS (@0)
5049 && ! HONOR_INFINITIES (@0))
5050 (rdiv { build_one_cst (type); } (COS @0))))
5051
5052 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
5053 (simplify
5054 (mult (POW:s @0 @1) (POW:s @0 @2))
5055 (POW @0 (plus @1 @2)))
5056
5057 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
5058 (simplify
5059 (mult (POW:s @0 @1) (POW:s @2 @1))
5060 (POW (mult @0 @2) @1))
5061
5062 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
5063 (simplify
5064 (mult (POWI:s @0 @1) (POWI:s @2 @1))
5065 (POWI (mult @0 @2) @1))
5066
5067 /* Simplify pow(x,c) / x -> pow(x,c-1). */
5068 (simplify
5069 (rdiv (POW:s @0 REAL_CST@1) @0)
5070 (if (!TREE_OVERFLOW (@1))
5071 (POW @0 (minus @1 { build_one_cst (type); }))))
5072
5073 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
5074 (simplify
5075 (rdiv @0 (POW:s @1 @2))
5076 (mult @0 (POW @1 (negate @2))))
5077
5078 (for sqrts (SQRT)
5079 cbrts (CBRT)
5080 pows (POW)
5081 /* sqrt(sqrt(x)) -> pow(x,1/4). */
5082 (simplify
5083 (sqrts (sqrts @0))
5084 (pows @0 { build_real (type, dconst_quarter ()); }))
5085 /* sqrt(cbrt(x)) -> pow(x,1/6). */
5086 (simplify
5087 (sqrts (cbrts @0))
5088 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5089 /* cbrt(sqrt(x)) -> pow(x,1/6). */
5090 (simplify
5091 (cbrts (sqrts @0))
5092 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
5093 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
5094 (simplify
5095 (cbrts (cbrts tree_expr_nonnegative_p@0))
5096 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
5097 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
5098 (simplify
5099 (sqrts (pows @0 @1))
5100 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
5101 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
5102 (simplify
5103 (cbrts (pows tree_expr_nonnegative_p@0 @1))
5104 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5105 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
5106 (simplify
5107 (pows (sqrts @0) @1)
5108 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
5109 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
5110 (simplify
5111 (pows (cbrts tree_expr_nonnegative_p@0) @1)
5112 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
5113 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
5114 (simplify
5115 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
5116 (pows @0 (mult @1 @2))))
5117
5118 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
5119 (simplify
5120 (CABS (complex @0 @0))
5121 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5122
5123 /* hypot(x,x) -> fabs(x)*sqrt(2). */
5124 (simplify
5125 (HYPOT @0 @0)
5126 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
5127
5128 /* cexp(x+yi) -> exp(x)*cexpi(y). */
5129 (for cexps (CEXP)
5130 exps (EXP)
5131 cexpis (CEXPI)
5132 (simplify
5133 (cexps compositional_complex@0)
5134 (if (targetm.libc_has_function (function_c99_math_complex))
5135 (complex
5136 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
5137 (mult @1 (imagpart @2)))))))
5138
5139 (if (canonicalize_math_p ())
5140 /* floor(x) -> trunc(x) if x is nonnegative. */
5141 (for floors (FLOOR_ALL)
5142 truncs (TRUNC_ALL)
5143 (simplify
5144 (floors tree_expr_nonnegative_p@0)
5145 (truncs @0))))
5146
5147 (match double_value_p
5148 @0
5149 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
5150 (for froms (BUILT_IN_TRUNCL
5151 BUILT_IN_FLOORL
5152 BUILT_IN_CEILL
5153 BUILT_IN_ROUNDL
5154 BUILT_IN_NEARBYINTL
5155 BUILT_IN_RINTL)
5156 tos (BUILT_IN_TRUNC
5157 BUILT_IN_FLOOR
5158 BUILT_IN_CEIL
5159 BUILT_IN_ROUND
5160 BUILT_IN_NEARBYINT
5161 BUILT_IN_RINT)
5162 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
5163 (if (optimize && canonicalize_math_p ())
5164 (simplify
5165 (froms (convert double_value_p@0))
5166 (convert (tos @0)))))
5167
5168 (match float_value_p
5169 @0
5170 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
5171 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
5172 BUILT_IN_FLOORL BUILT_IN_FLOOR
5173 BUILT_IN_CEILL BUILT_IN_CEIL
5174 BUILT_IN_ROUNDL BUILT_IN_ROUND
5175 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
5176 BUILT_IN_RINTL BUILT_IN_RINT)
5177 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
5178 BUILT_IN_FLOORF BUILT_IN_FLOORF
5179 BUILT_IN_CEILF BUILT_IN_CEILF
5180 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
5181 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
5182 BUILT_IN_RINTF BUILT_IN_RINTF)
5183 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
5184 if x is a float. */
5185 (if (optimize && canonicalize_math_p ()
5186 && targetm.libc_has_function (function_c99_misc))
5187 (simplify
5188 (froms (convert float_value_p@0))
5189 (convert (tos @0)))))
5190
5191 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
5192 tos (XFLOOR XCEIL XROUND XRINT)
5193 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
5194 (if (optimize && canonicalize_math_p ())
5195 (simplify
5196 (froms (convert double_value_p@0))
5197 (tos @0))))
5198
5199 (for froms (XFLOORL XCEILL XROUNDL XRINTL
5200 XFLOOR XCEIL XROUND XRINT)
5201 tos (XFLOORF XCEILF XROUNDF XRINTF)
5202 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
5203 if x is a float. */
5204 (if (optimize && canonicalize_math_p ())
5205 (simplify
5206 (froms (convert float_value_p@0))
5207 (tos @0))))
5208
5209 (if (canonicalize_math_p ())
5210 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
5211 (for floors (IFLOOR LFLOOR LLFLOOR)
5212 (simplify
5213 (floors tree_expr_nonnegative_p@0)
5214 (fix_trunc @0))))
5215
5216 (if (canonicalize_math_p ())
5217 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
5218 (for fns (IFLOOR LFLOOR LLFLOOR
5219 ICEIL LCEIL LLCEIL
5220 IROUND LROUND LLROUND)
5221 (simplify
5222 (fns integer_valued_real_p@0)
5223 (fix_trunc @0)))
5224 (if (!flag_errno_math)
5225 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
5226 (for rints (IRINT LRINT LLRINT)
5227 (simplify
5228 (rints integer_valued_real_p@0)
5229 (fix_trunc @0)))))
5230
5231 (if (canonicalize_math_p ())
5232 (for ifn (IFLOOR ICEIL IROUND IRINT)
5233 lfn (LFLOOR LCEIL LROUND LRINT)
5234 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
5235 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
5236 sizeof (int) == sizeof (long). */
5237 (if (TYPE_PRECISION (integer_type_node)
5238 == TYPE_PRECISION (long_integer_type_node))
5239 (simplify
5240 (ifn @0)
5241 (lfn:long_integer_type_node @0)))
5242 /* Canonicalize llround (x) to lround (x) on LP64 targets where
5243 sizeof (long long) == sizeof (long). */
5244 (if (TYPE_PRECISION (long_long_integer_type_node)
5245 == TYPE_PRECISION (long_integer_type_node))
5246 (simplify
5247 (llfn @0)
5248 (lfn:long_integer_type_node @0)))))
5249
5250 /* cproj(x) -> x if we're ignoring infinities. */
5251 (simplify
5252 (CPROJ @0)
5253 (if (!HONOR_INFINITIES (type))
5254 @0))
5255
5256 /* If the real part is inf and the imag part is known to be
5257 nonnegative, return (inf + 0i). */
5258 (simplify
5259 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
5260 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
5261 { build_complex_inf (type, false); }))
5262
5263 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
5264 (simplify
5265 (CPROJ (complex @0 REAL_CST@1))
5266 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
5267 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
5268
5269 (for pows (POW)
5270 sqrts (SQRT)
5271 cbrts (CBRT)
5272 (simplify
5273 (pows @0 REAL_CST@1)
5274 (with {
5275 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
5276 REAL_VALUE_TYPE tmp;
5277 }
5278 (switch
5279 /* pow(x,0) -> 1. */
5280 (if (real_equal (value, &dconst0))
5281 { build_real (type, dconst1); })
5282 /* pow(x,1) -> x. */
5283 (if (real_equal (value, &dconst1))
5284 @0)
5285 /* pow(x,-1) -> 1/x. */
5286 (if (real_equal (value, &dconstm1))
5287 (rdiv { build_real (type, dconst1); } @0))
5288 /* pow(x,0.5) -> sqrt(x). */
5289 (if (flag_unsafe_math_optimizations
5290 && canonicalize_math_p ()
5291 && real_equal (value, &dconsthalf))
5292 (sqrts @0))
5293 /* pow(x,1/3) -> cbrt(x). */
5294 (if (flag_unsafe_math_optimizations
5295 && canonicalize_math_p ()
5296 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
5297 real_equal (value, &tmp)))
5298 (cbrts @0))))))
5299
5300 /* powi(1,x) -> 1. */
5301 (simplify
5302 (POWI real_onep@0 @1)
5303 @0)
5304
5305 (simplify
5306 (POWI @0 INTEGER_CST@1)
5307 (switch
5308 /* powi(x,0) -> 1. */
5309 (if (wi::to_wide (@1) == 0)
5310 { build_real (type, dconst1); })
5311 /* powi(x,1) -> x. */
5312 (if (wi::to_wide (@1) == 1)
5313 @0)
5314 /* powi(x,-1) -> 1/x. */
5315 (if (wi::to_wide (@1) == -1)
5316 (rdiv { build_real (type, dconst1); } @0))))
5317
5318 /* Narrowing of arithmetic and logical operations.
5319
5320 These are conceptually similar to the transformations performed for
5321 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
5322 term we want to move all that code out of the front-ends into here. */
5323
5324 /* Convert (outertype)((innertype0)a+(innertype1)b)
5325 into ((newtype)a+(newtype)b) where newtype
5326 is the widest mode from all of these. */
5327 (for op (plus minus mult rdiv)
5328 (simplify
5329 (convert (op:s@0 (convert1?@3 @1) (convert2?@4 @2)))
5330 /* If we have a narrowing conversion of an arithmetic operation where
5331 both operands are widening conversions from the same type as the outer
5332 narrowing conversion. Then convert the innermost operands to a
5333 suitable unsigned type (to avoid introducing undefined behavior),
5334 perform the operation and convert the result to the desired type. */
5335 (if (INTEGRAL_TYPE_P (type)
5336 && op != MULT_EXPR
5337 && op != RDIV_EXPR
5338 /* We check for type compatibility between @0 and @1 below,
5339 so there's no need to check that @2/@4 are integral types. */
5340 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
5341 && INTEGRAL_TYPE_P (TREE_TYPE (@3))
5342 /* The precision of the type of each operand must match the
5343 precision of the mode of each operand, similarly for the
5344 result. */
5345 && type_has_mode_precision_p (TREE_TYPE (@1))
5346 && type_has_mode_precision_p (TREE_TYPE (@2))
5347 && type_has_mode_precision_p (type)
5348 /* The inner conversion must be a widening conversion. */
5349 && TYPE_PRECISION (TREE_TYPE (@3)) > TYPE_PRECISION (TREE_TYPE (@1))
5350 && types_match (@1, type)
5351 && (types_match (@1, @2)
5352 /* Or the second operand is const integer or converted const
5353 integer from valueize. */
5354 || TREE_CODE (@2) == INTEGER_CST))
5355 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
5356 (op @1 (convert @2))
5357 (with { tree utype = unsigned_type_for (TREE_TYPE (@1)); }
5358 (convert (op (convert:utype @1)
5359 (convert:utype @2)))))
5360 (if (FLOAT_TYPE_P (type)
5361 && DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0))
5362 == DECIMAL_FLOAT_TYPE_P (type))
5363 (with { tree arg0 = strip_float_extensions (@1);
5364 tree arg1 = strip_float_extensions (@2);
5365 tree itype = TREE_TYPE (@0);
5366 tree ty1 = TREE_TYPE (arg0);
5367 tree ty2 = TREE_TYPE (arg1);
5368 enum tree_code code = TREE_CODE (itype); }
5369 (if (FLOAT_TYPE_P (ty1)
5370 && FLOAT_TYPE_P (ty2))
5371 (with { tree newtype = type;
5372 if (TYPE_MODE (ty1) == SDmode
5373 || TYPE_MODE (ty2) == SDmode
5374 || TYPE_MODE (type) == SDmode)
5375 newtype = dfloat32_type_node;
5376 if (TYPE_MODE (ty1) == DDmode
5377 || TYPE_MODE (ty2) == DDmode
5378 || TYPE_MODE (type) == DDmode)
5379 newtype = dfloat64_type_node;
5380 if (TYPE_MODE (ty1) == TDmode
5381 || TYPE_MODE (ty2) == TDmode
5382 || TYPE_MODE (type) == TDmode)
5383 newtype = dfloat128_type_node; }
5384 (if ((newtype == dfloat32_type_node
5385 || newtype == dfloat64_type_node
5386 || newtype == dfloat128_type_node)
5387 && newtype == type
5388 && types_match (newtype, type))
5389 (op (convert:newtype @1) (convert:newtype @2))
5390 (with { if (TYPE_PRECISION (ty1) > TYPE_PRECISION (newtype))
5391 newtype = ty1;
5392 if (TYPE_PRECISION (ty2) > TYPE_PRECISION (newtype))
5393 newtype = ty2; }
5394 /* Sometimes this transformation is safe (cannot
5395 change results through affecting double rounding
5396 cases) and sometimes it is not. If NEWTYPE is
5397 wider than TYPE, e.g. (float)((long double)double
5398 + (long double)double) converted to
5399 (float)(double + double), the transformation is
5400 unsafe regardless of the details of the types
5401 involved; double rounding can arise if the result
5402 of NEWTYPE arithmetic is a NEWTYPE value half way
5403 between two representable TYPE values but the
5404 exact value is sufficiently different (in the
5405 right direction) for this difference to be
5406 visible in ITYPE arithmetic. If NEWTYPE is the
5407 same as TYPE, however, the transformation may be
5408 safe depending on the types involved: it is safe
5409 if the ITYPE has strictly more than twice as many
5410 mantissa bits as TYPE, can represent infinities
5411 and NaNs if the TYPE can, and has sufficient
5412 exponent range for the product or ratio of two
5413 values representable in the TYPE to be within the
5414 range of normal values of ITYPE. */
5415 (if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
5416 && (flag_unsafe_math_optimizations
5417 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
5418 && real_can_shorten_arithmetic (TYPE_MODE (itype),
5419 TYPE_MODE (type))
5420 && !excess_precision_type (newtype)))
5421 && !types_match (itype, newtype))
5422 (convert:type (op (convert:newtype @1)
5423 (convert:newtype @2)))
5424 )))) )
5425 ))
5426 )))
5427
5428 /* This is another case of narrowing, specifically when there's an outer
5429 BIT_AND_EXPR which masks off bits outside the type of the innermost
5430 operands. Like the previous case we have to convert the operands
5431 to unsigned types to avoid introducing undefined behavior for the
5432 arithmetic operation. */
5433 (for op (minus plus)
5434 (simplify
5435 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
5436 (if (INTEGRAL_TYPE_P (type)
5437 /* We check for type compatibility between @0 and @1 below,
5438 so there's no need to check that @1/@3 are integral types. */
5439 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
5440 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
5441 /* The precision of the type of each operand must match the
5442 precision of the mode of each operand, similarly for the
5443 result. */
5444 && type_has_mode_precision_p (TREE_TYPE (@0))
5445 && type_has_mode_precision_p (TREE_TYPE (@1))
5446 && type_has_mode_precision_p (type)
5447 /* The inner conversion must be a widening conversion. */
5448 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
5449 && types_match (@0, @1)
5450 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
5451 <= TYPE_PRECISION (TREE_TYPE (@0)))
5452 && (wi::to_wide (@4)
5453 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
5454 true, TYPE_PRECISION (type))) == 0)
5455 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
5456 (with { tree ntype = TREE_TYPE (@0); }
5457 (convert (bit_and (op @0 @1) (convert:ntype @4))))
5458 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
5459 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
5460 (convert:utype @4))))))))
5461
5462 /* Transform (@0 < @1 and @0 < @2) to use min,
5463 (@0 > @1 and @0 > @2) to use max */
5464 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
5465 op (lt le gt ge lt le gt ge )
5466 ext (min min max max max max min min )
5467 (simplify
5468 (logic (op:cs @0 @1) (op:cs @0 @2))
5469 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5470 && TREE_CODE (@0) != INTEGER_CST)
5471 (op @0 (ext @1 @2)))))
5472
5473 (simplify
5474 /* signbit(x) -> 0 if x is nonnegative. */
5475 (SIGNBIT tree_expr_nonnegative_p@0)
5476 { integer_zero_node; })
5477
5478 (simplify
5479 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
5480 (SIGNBIT @0)
5481 (if (!HONOR_SIGNED_ZEROS (@0))
5482 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
5483
5484 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
5485 (for cmp (eq ne)
5486 (for op (plus minus)
5487 rop (minus plus)
5488 (simplify
5489 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5490 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5491 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
5492 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
5493 && !TYPE_SATURATING (TREE_TYPE (@0)))
5494 (with { tree res = int_const_binop (rop, @2, @1); }
5495 (if (TREE_OVERFLOW (res)
5496 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5497 { constant_boolean_node (cmp == NE_EXPR, type); }
5498 (if (single_use (@3))
5499 (cmp @0 { TREE_OVERFLOW (res)
5500 ? drop_tree_overflow (res) : res; }))))))))
5501 (for cmp (lt le gt ge)
5502 (for op (plus minus)
5503 rop (minus plus)
5504 (simplify
5505 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
5506 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
5507 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
5508 (with { tree res = int_const_binop (rop, @2, @1); }
5509 (if (TREE_OVERFLOW (res))
5510 {
5511 fold_overflow_warning (("assuming signed overflow does not occur "
5512 "when simplifying conditional to constant"),
5513 WARN_STRICT_OVERFLOW_CONDITIONAL);
5514 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
5515 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
5516 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
5517 TYPE_SIGN (TREE_TYPE (@1)))
5518 != (op == MINUS_EXPR);
5519 constant_boolean_node (less == ovf_high, type);
5520 }
5521 (if (single_use (@3))
5522 (with
5523 {
5524 fold_overflow_warning (("assuming signed overflow does not occur "
5525 "when changing X +- C1 cmp C2 to "
5526 "X cmp C2 -+ C1"),
5527 WARN_STRICT_OVERFLOW_COMPARISON);
5528 }
5529 (cmp @0 { res; })))))))))
5530
5531 /* Canonicalizations of BIT_FIELD_REFs. */
5532
5533 (simplify
5534 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5535 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5536
5537 (simplify
5538 (BIT_FIELD_REF (view_convert @0) @1 @2)
5539 (BIT_FIELD_REF @0 @1 @2))
5540
5541 (simplify
5542 (BIT_FIELD_REF @0 @1 integer_zerop)
5543 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5544 (view_convert @0)))
5545
5546 (simplify
5547 (BIT_FIELD_REF @0 @1 @2)
5548 (switch
5549 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5550 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5551 (switch
5552 (if (integer_zerop (@2))
5553 (view_convert (realpart @0)))
5554 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5555 (view_convert (imagpart @0)))))
5556 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5557 && INTEGRAL_TYPE_P (type)
5558 /* On GIMPLE this should only apply to register arguments. */
5559 && (! GIMPLE || is_gimple_reg (@0))
5560 /* A bit-field-ref that referenced the full argument can be stripped. */
5561 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5562 && integer_zerop (@2))
5563 /* Low-parts can be reduced to integral conversions.
5564 ??? The following doesn't work for PDP endian. */
5565 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5566 /* Don't even think about BITS_BIG_ENDIAN. */
5567 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5568 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5569 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5570 ? (TYPE_PRECISION (TREE_TYPE (@0))
5571 - TYPE_PRECISION (type))
5572 : 0)) == 0)))
5573 (convert @0))))
5574
5575 /* Simplify vector extracts. */
5576
5577 (simplify
5578 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5579 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5580 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5581 || (VECTOR_TYPE_P (type)
5582 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5583 (with
5584 {
5585 tree ctor = (TREE_CODE (@0) == SSA_NAME
5586 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5587 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5588 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5589 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5590 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5591 }
5592 (if (n != 0
5593 && (idx % width) == 0
5594 && (n % width) == 0
5595 && known_le ((idx + n) / width,
5596 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5597 (with
5598 {
5599 idx = idx / width;
5600 n = n / width;
5601 /* Constructor elements can be subvectors. */
5602 poly_uint64 k = 1;
5603 if (CONSTRUCTOR_NELTS (ctor) != 0)
5604 {
5605 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5606 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5607 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5608 }
5609 unsigned HOST_WIDE_INT elt, count, const_k;
5610 }
5611 (switch
5612 /* We keep an exact subset of the constructor elements. */
5613 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5614 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5615 { build_constructor (type, NULL); }
5616 (if (count == 1)
5617 (if (elt < CONSTRUCTOR_NELTS (ctor))
5618 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5619 { build_zero_cst (type); })
5620 /* We don't want to emit new CTORs unless the old one goes away.
5621 ??? Eventually allow this if the CTOR ends up constant or
5622 uniform. */
5623 (if (single_use (@0))
5624 {
5625 vec<constructor_elt, va_gc> *vals;
5626 vec_alloc (vals, count);
5627 for (unsigned i = 0;
5628 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5629 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5630 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5631 build_constructor (type, vals);
5632 }))))
5633 /* The bitfield references a single constructor element. */
5634 (if (k.is_constant (&const_k)
5635 && idx + n <= (idx / const_k + 1) * const_k)
5636 (switch
5637 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5638 { build_zero_cst (type); })
5639 (if (n == const_k)
5640 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5641 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5642 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5643
5644 /* Simplify a bit extraction from a bit insertion for the cases with
5645 the inserted element fully covering the extraction or the insertion
5646 not touching the extraction. */
5647 (simplify
5648 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5649 (with
5650 {
5651 unsigned HOST_WIDE_INT isize;
5652 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5653 isize = TYPE_PRECISION (TREE_TYPE (@1));
5654 else
5655 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5656 }
5657 (switch
5658 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5659 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5660 wi::to_wide (@ipos) + isize))
5661 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5662 wi::to_wide (@rpos)
5663 - wi::to_wide (@ipos)); }))
5664 (if (wi::geu_p (wi::to_wide (@ipos),
5665 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5666 || wi::geu_p (wi::to_wide (@rpos),
5667 wi::to_wide (@ipos) + isize))
5668 (BIT_FIELD_REF @0 @rsize @rpos)))))
5669
5670 (if (canonicalize_math_after_vectorization_p ())
5671 (for fmas (FMA)
5672 (simplify
5673 (fmas:c (negate @0) @1 @2)
5674 (IFN_FNMA @0 @1 @2))
5675 (simplify
5676 (fmas @0 @1 (negate @2))
5677 (IFN_FMS @0 @1 @2))
5678 (simplify
5679 (fmas:c (negate @0) @1 (negate @2))
5680 (IFN_FNMS @0 @1 @2))
5681 (simplify
5682 (negate (fmas@3 @0 @1 @2))
5683 (if (single_use (@3))
5684 (IFN_FNMS @0 @1 @2))))
5685
5686 (simplify
5687 (IFN_FMS:c (negate @0) @1 @2)
5688 (IFN_FNMS @0 @1 @2))
5689 (simplify
5690 (IFN_FMS @0 @1 (negate @2))
5691 (IFN_FMA @0 @1 @2))
5692 (simplify
5693 (IFN_FMS:c (negate @0) @1 (negate @2))
5694 (IFN_FNMA @0 @1 @2))
5695 (simplify
5696 (negate (IFN_FMS@3 @0 @1 @2))
5697 (if (single_use (@3))
5698 (IFN_FNMA @0 @1 @2)))
5699
5700 (simplify
5701 (IFN_FNMA:c (negate @0) @1 @2)
5702 (IFN_FMA @0 @1 @2))
5703 (simplify
5704 (IFN_FNMA @0 @1 (negate @2))
5705 (IFN_FNMS @0 @1 @2))
5706 (simplify
5707 (IFN_FNMA:c (negate @0) @1 (negate @2))
5708 (IFN_FMS @0 @1 @2))
5709 (simplify
5710 (negate (IFN_FNMA@3 @0 @1 @2))
5711 (if (single_use (@3))
5712 (IFN_FMS @0 @1 @2)))
5713
5714 (simplify
5715 (IFN_FNMS:c (negate @0) @1 @2)
5716 (IFN_FMS @0 @1 @2))
5717 (simplify
5718 (IFN_FNMS @0 @1 (negate @2))
5719 (IFN_FNMA @0 @1 @2))
5720 (simplify
5721 (IFN_FNMS:c (negate @0) @1 (negate @2))
5722 (IFN_FMA @0 @1 @2))
5723 (simplify
5724 (negate (IFN_FNMS@3 @0 @1 @2))
5725 (if (single_use (@3))
5726 (IFN_FMA @0 @1 @2))))
5727
5728 /* POPCOUNT simplifications. */
5729 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5730 BUILT_IN_POPCOUNTIMAX)
5731 /* popcount(X&1) is nop_expr(X&1). */
5732 (simplify
5733 (popcount @0)
5734 (if (tree_nonzero_bits (@0) == 1)
5735 (convert @0)))
5736 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5737 (simplify
5738 (plus (popcount:s @0) (popcount:s @1))
5739 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5740 (popcount (bit_ior @0 @1))))
5741 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5742 (for cmp (le eq ne gt)
5743 rep (eq eq ne ne)
5744 (simplify
5745 (cmp (popcount @0) integer_zerop)
5746 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5747
5748 #if GIMPLE
5749 /* 64- and 32-bits branchless implementations of popcount are detected:
5750
5751 int popcount64c (uint64_t x)
5752 {
5753 x -= (x >> 1) & 0x5555555555555555ULL;
5754 x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
5755 x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
5756 return (x * 0x0101010101010101ULL) >> 56;
5757 }
5758
5759 int popcount32c (uint32_t x)
5760 {
5761 x -= (x >> 1) & 0x55555555;
5762 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
5763 x = (x + (x >> 4)) & 0x0f0f0f0f;
5764 return (x * 0x01010101) >> 24;
5765 } */
5766 (simplify
5767 (rshift
5768 (mult
5769 (bit_and
5770 (plus:c
5771 (rshift @8 INTEGER_CST@5)
5772 (plus:c@8
5773 (bit_and @6 INTEGER_CST@7)
5774 (bit_and
5775 (rshift
5776 (minus@6
5777 @0
5778 (bit_and
5779 (rshift @0 INTEGER_CST@4)
5780 INTEGER_CST@11))
5781 INTEGER_CST@10)
5782 INTEGER_CST@9)))
5783 INTEGER_CST@3)
5784 INTEGER_CST@2)
5785 INTEGER_CST@1)
5786 /* Check constants and optab. */
5787 (with
5788 {
5789 unsigned prec = TYPE_PRECISION (type);
5790 int shift = 64 - prec;
5791 const unsigned HOST_WIDE_INT c1 = 0x0101010101010101ULL >> shift,
5792 c2 = 0x0F0F0F0F0F0F0F0FULL >> shift,
5793 c3 = 0x3333333333333333ULL >> shift,
5794 c4 = 0x5555555555555555ULL >> shift;
5795 }
5796 (if (prec <= 64 && TYPE_UNSIGNED (type) && tree_to_uhwi (@4) == 1
5797 && tree_to_uhwi (@10) == 2 && tree_to_uhwi (@5) == 4
5798 && tree_to_uhwi (@1) == prec - 8 && tree_to_uhwi (@2) == c1
5799 && tree_to_uhwi (@3) == c2 && tree_to_uhwi (@9) == c3
5800 && tree_to_uhwi (@7) == c3 && tree_to_uhwi (@11) == c4
5801 && direct_internal_fn_supported_p (IFN_POPCOUNT, type,
5802 OPTIMIZE_FOR_BOTH))
5803 (convert (IFN_POPCOUNT:type @0)))))
5804 #endif
5805
5806 /* Simplify:
5807
5808 a = a1 op a2
5809 r = c ? a : b;
5810
5811 to:
5812
5813 r = c ? a1 op a2 : b;
5814
5815 if the target can do it in one go. This makes the operation conditional
5816 on c, so could drop potentially-trapping arithmetic, but that's a valid
5817 simplification if the result of the operation isn't needed.
5818
5819 Avoid speculatively generating a stand-alone vector comparison
5820 on targets that might not support them. Any target implementing
5821 conditional internal functions must support the same comparisons
5822 inside and outside a VEC_COND_EXPR. */
5823
5824 #if GIMPLE
5825 (for uncond_op (UNCOND_BINARY)
5826 cond_op (COND_BINARY)
5827 (simplify
5828 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5829 (with { tree op_type = TREE_TYPE (@4); }
5830 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5831 && element_precision (type) == element_precision (op_type))
5832 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5833 (simplify
5834 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5835 (with { tree op_type = TREE_TYPE (@4); }
5836 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5837 && element_precision (type) == element_precision (op_type))
5838 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5839
5840 /* Same for ternary operations. */
5841 (for uncond_op (UNCOND_TERNARY)
5842 cond_op (COND_TERNARY)
5843 (simplify
5844 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5845 (with { tree op_type = TREE_TYPE (@5); }
5846 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5847 && element_precision (type) == element_precision (op_type))
5848 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5849 (simplify
5850 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5851 (with { tree op_type = TREE_TYPE (@5); }
5852 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5853 && element_precision (type) == element_precision (op_type))
5854 (view_convert (cond_op (bit_not @0) @2 @3 @4
5855 (view_convert:op_type @1)))))))
5856 #endif
5857
5858 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5859 "else" value of an IFN_COND_*. */
5860 (for cond_op (COND_BINARY)
5861 (simplify
5862 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5863 (with { tree op_type = TREE_TYPE (@3); }
5864 (if (element_precision (type) == element_precision (op_type))
5865 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5866 (simplify
5867 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5868 (with { tree op_type = TREE_TYPE (@5); }
5869 (if (inverse_conditions_p (@0, @2)
5870 && element_precision (type) == element_precision (op_type))
5871 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5872
5873 /* Same for ternary operations. */
5874 (for cond_op (COND_TERNARY)
5875 (simplify
5876 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5877 (with { tree op_type = TREE_TYPE (@4); }
5878 (if (element_precision (type) == element_precision (op_type))
5879 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5880 (simplify
5881 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5882 (with { tree op_type = TREE_TYPE (@6); }
5883 (if (inverse_conditions_p (@0, @2)
5884 && element_precision (type) == element_precision (op_type))
5885 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5886
5887 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5888 expressions like:
5889
5890 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5891 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5892
5893 If pointers are known not to wrap, B checks whether @1 bytes starting
5894 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5895 bytes. A is more efficiently tested as:
5896
5897 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5898
5899 The equivalent expression for B is given by replacing @1 with @1 - 1:
5900
5901 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5902
5903 @0 and @2 can be swapped in both expressions without changing the result.
5904
5905 The folds rely on sizetype's being unsigned (which is always true)
5906 and on its being the same width as the pointer (which we have to check).
5907
5908 The fold replaces two pointer_plus expressions, two comparisons and
5909 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5910 the best case it's a saving of two operations. The A fold retains one
5911 of the original pointer_pluses, so is a win even if both pointer_pluses
5912 are used elsewhere. The B fold is a wash if both pointer_pluses are
5913 used elsewhere, since all we end up doing is replacing a comparison with
5914 a pointer_plus. We do still apply the fold under those circumstances
5915 though, in case applying it to other conditions eventually makes one of the
5916 pointer_pluses dead. */
5917 (for ior (truth_orif truth_or bit_ior)
5918 (for cmp (le lt)
5919 (simplify
5920 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5921 (cmp:cs (pointer_plus@4 @2 @1) @0))
5922 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5923 && TYPE_OVERFLOW_WRAPS (sizetype)
5924 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5925 /* Calculate the rhs constant. */
5926 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5927 offset_int rhs = off * 2; }
5928 /* Always fails for negative values. */
5929 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5930 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5931 pick a canonical order. This increases the chances of using the
5932 same pointer_plus in multiple checks. */
5933 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5934 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5935 (if (cmp == LT_EXPR)
5936 (gt (convert:sizetype
5937 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5938 { swap_p ? @0 : @2; }))
5939 { rhs_tree; })
5940 (gt (convert:sizetype
5941 (pointer_diff:ssizetype
5942 (pointer_plus { swap_p ? @2 : @0; }
5943 { wide_int_to_tree (sizetype, off); })
5944 { swap_p ? @0 : @2; }))
5945 { rhs_tree; })))))))))
5946
5947 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5948 element of @1. */
5949 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5950 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5951 (with { int i = single_nonzero_element (@1); }
5952 (if (i >= 0)
5953 (with { tree elt = vector_cst_elt (@1, i);
5954 tree elt_type = TREE_TYPE (elt);
5955 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5956 tree size = bitsize_int (elt_bits);
5957 tree pos = bitsize_int (elt_bits * i); }
5958 (view_convert
5959 (bit_and:elt_type
5960 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5961 { elt; })))))))
5962
5963 (simplify
5964 (vec_perm @0 @1 VECTOR_CST@2)
5965 (with
5966 {
5967 tree op0 = @0, op1 = @1, op2 = @2;
5968
5969 /* Build a vector of integers from the tree mask. */
5970 vec_perm_builder builder;
5971 if (!tree_to_vec_perm_builder (&builder, op2))
5972 return NULL_TREE;
5973
5974 /* Create a vec_perm_indices for the integer vector. */
5975 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
5976 bool single_arg = (op0 == op1);
5977 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
5978 }
5979 (if (sel.series_p (0, 1, 0, 1))
5980 { op0; }
5981 (if (sel.series_p (0, 1, nelts, 1))
5982 { op1; }
5983 (with
5984 {
5985 if (!single_arg)
5986 {
5987 if (sel.all_from_input_p (0))
5988 op1 = op0;
5989 else if (sel.all_from_input_p (1))
5990 {
5991 op0 = op1;
5992 sel.rotate_inputs (1);
5993 }
5994 else if (known_ge (poly_uint64 (sel[0]), nelts))
5995 {
5996 std::swap (op0, op1);
5997 sel.rotate_inputs (1);
5998 }
5999 }
6000 gassign *def;
6001 tree cop0 = op0, cop1 = op1;
6002 if (TREE_CODE (op0) == SSA_NAME
6003 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
6004 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6005 cop0 = gimple_assign_rhs1 (def);
6006 if (TREE_CODE (op1) == SSA_NAME
6007 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
6008 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
6009 cop1 = gimple_assign_rhs1 (def);
6010
6011 tree t;
6012 }
6013 (if ((TREE_CODE (cop0) == VECTOR_CST
6014 || TREE_CODE (cop0) == CONSTRUCTOR)
6015 && (TREE_CODE (cop1) == VECTOR_CST
6016 || TREE_CODE (cop1) == CONSTRUCTOR)
6017 && (t = fold_vec_perm (type, cop0, cop1, sel)))
6018 { t; }
6019 (with
6020 {
6021 bool changed = (op0 == op1 && !single_arg);
6022 tree ins = NULL_TREE;
6023 unsigned at = 0;
6024
6025 /* See if the permutation is performing a single element
6026 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
6027 in that case. But only if the vector mode is supported,
6028 otherwise this is invalid GIMPLE. */
6029 if (TYPE_MODE (type) != BLKmode
6030 && (TREE_CODE (cop0) == VECTOR_CST
6031 || TREE_CODE (cop0) == CONSTRUCTOR
6032 || TREE_CODE (cop1) == VECTOR_CST
6033 || TREE_CODE (cop1) == CONSTRUCTOR))
6034 {
6035 if (sel.series_p (1, 1, nelts + 1, 1))
6036 {
6037 /* After canonicalizing the first elt to come from the
6038 first vector we only can insert the first elt from
6039 the first vector. */
6040 at = 0;
6041 if ((ins = fold_read_from_vector (cop0, sel[0])))
6042 op0 = op1;
6043 }
6044 else
6045 {
6046 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
6047 for (at = 0; at < encoded_nelts; ++at)
6048 if (maybe_ne (sel[at], at))
6049 break;
6050 if (at < encoded_nelts && sel.series_p (at + 1, 1, at + 1, 1))
6051 {
6052 if (known_lt (poly_uint64 (sel[at]), nelts))
6053 ins = fold_read_from_vector (cop0, sel[at]);
6054 else
6055 ins = fold_read_from_vector (cop1, sel[at] - nelts);
6056 }
6057 }
6058 }
6059
6060 /* Generate a canonical form of the selector. */
6061 if (!ins && sel.encoding () != builder)
6062 {
6063 /* Some targets are deficient and fail to expand a single
6064 argument permutation while still allowing an equivalent
6065 2-argument version. */
6066 tree oldop2 = op2;
6067 if (sel.ninputs () == 2
6068 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
6069 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6070 else
6071 {
6072 vec_perm_indices sel2 (builder, 2, nelts);
6073 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
6074 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
6075 else
6076 /* Not directly supported with either encoding,
6077 so use the preferred form. */
6078 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
6079 }
6080 if (!operand_equal_p (op2, oldop2, 0))
6081 changed = true;
6082 }
6083 }
6084 (if (ins)
6085 (bit_insert { op0; } { ins; }
6086 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
6087 (if (changed)
6088 (vec_perm { op0; } { op1; } { op2; }))))))))))
6089
6090 /* VEC_PERM_EXPR (v, v, mask) -> v where v contains same element. */
6091
6092 (match vec_same_elem_p
6093 @0
6094 (if (uniform_vector_p (@0))))
6095
6096 (match vec_same_elem_p
6097 (vec_duplicate @0))
6098
6099 (simplify
6100 (vec_perm vec_same_elem_p@0 @0 @1)
6101 @0)