]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
2019-05-27 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS)
40
41 /* Operator lists. */
42 (define_operator_list tcc_comparison
43 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
44 (define_operator_list inverted_tcc_comparison
45 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list inverted_tcc_comparison_with_nans
47 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
48 (define_operator_list swapped_tcc_comparison
49 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
50 (define_operator_list simple_comparison lt le eq ne ge gt)
51 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
52
53 #include "cfn-operators.pd"
54
55 /* Define operand lists for math rounding functions {,i,l,ll}FN,
56 where the versions prefixed with "i" return an int, those prefixed with
57 "l" return a long and those prefixed with "ll" return a long long.
58
59 Also define operand lists:
60
61 X<FN>F for all float functions, in the order i, l, ll
62 X<FN> for all double functions, in the same order
63 X<FN>L for all long double functions, in the same order. */
64 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
65 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 BUILT_IN_L##FN##F \
67 BUILT_IN_LL##FN##F) \
68 (define_operator_list X##FN BUILT_IN_I##FN \
69 BUILT_IN_L##FN \
70 BUILT_IN_LL##FN) \
71 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
72 BUILT_IN_L##FN##L \
73 BUILT_IN_LL##FN##L)
74
75 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
79
80 /* Binary operations and their associated IFN_COND_* function. */
81 (define_operator_list UNCOND_BINARY
82 plus minus
83 mult trunc_div trunc_mod rdiv
84 min max
85 bit_and bit_ior bit_xor)
86 (define_operator_list COND_BINARY
87 IFN_COND_ADD IFN_COND_SUB
88 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
89 IFN_COND_MIN IFN_COND_MAX
90 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
91
92 /* Same for ternary operations. */
93 (define_operator_list UNCOND_TERNARY
94 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
95 (define_operator_list COND_TERNARY
96 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
97
98 /* As opposed to convert?, this still creates a single pattern, so
99 it is not a suitable replacement for convert? in all cases. */
100 (match (nop_convert @0)
101 (convert @0)
102 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
103 (match (nop_convert @0)
104 (view_convert @0)
105 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
106 && known_eq (TYPE_VECTOR_SUBPARTS (type),
107 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
108 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
109 /* This one has to be last, or it shadows the others. */
110 (match (nop_convert @0)
111 @0)
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
126
127 (for op (plus pointer_plus minus bit_ior bit_xor)
128 (simplify
129 (op @0 integer_zerop)
130 (non_lvalue @0)))
131
132 /* 0 +p index -> (type)index */
133 (simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137 /* ptr - 0 -> (type)ptr */
138 (simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
144 (simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147 (non_lvalue @0)))
148
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
150 (simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153 (non_lvalue @0)))
154
155 /* Even if the fold_real_zero_addition_p can't simplify X + 0.0
156 into X, we can optimize (X + 0.0) + 0.0 or (X + 0.0) - 0.0
157 or (X - 0.0) + 0.0 into X + 0.0 and (X - 0.0) - 0.0 into X - 0.0
158 if not -frounding-math. For sNaNs the first operation would raise
159 exceptions but turn the result into qNan, so the second operation
160 would not raise it. */
161 (for inner_op (plus minus)
162 (for outer_op (plus minus)
163 (simplify
164 (outer_op (inner_op@3 @0 REAL_CST@1) REAL_CST@2)
165 (if (real_zerop (@1)
166 && real_zerop (@2)
167 && !HONOR_SIGN_DEPENDENT_ROUNDING (type))
168 (with { bool inner_plus = ((inner_op == PLUS_EXPR)
169 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)));
170 bool outer_plus
171 = ((outer_op == PLUS_EXPR)
172 ^ REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@2))); }
173 (if (outer_plus && !inner_plus)
174 (outer_op @0 @2)
175 @3))))))
176
177 /* Simplify x - x.
178 This is unsafe for certain floats even in non-IEEE formats.
179 In IEEE, it is unsafe because it does wrong for NaNs.
180 Also note that operand_equal_p is always false if an operand
181 is volatile. */
182 (simplify
183 (minus @0 @0)
184 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
185 { build_zero_cst (type); }))
186 (simplify
187 (pointer_diff @@0 @0)
188 { build_zero_cst (type); })
189
190 (simplify
191 (mult @0 integer_zerop@1)
192 @1)
193
194 /* Maybe fold x * 0 to 0. The expressions aren't the same
195 when x is NaN, since x * 0 is also NaN. Nor are they the
196 same in modes with signed zeros, since multiplying a
197 negative value by 0 gives -0, not +0. */
198 (simplify
199 (mult @0 real_zerop@1)
200 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
201 @1))
202
203 /* In IEEE floating point, x*1 is not equivalent to x for snans.
204 Likewise for complex arithmetic with signed zeros. */
205 (simplify
206 (mult @0 real_onep)
207 (if (!HONOR_SNANS (type)
208 && (!HONOR_SIGNED_ZEROS (type)
209 || !COMPLEX_FLOAT_TYPE_P (type)))
210 (non_lvalue @0)))
211
212 /* Transform x * -1.0 into -x. */
213 (simplify
214 (mult @0 real_minus_onep)
215 (if (!HONOR_SNANS (type)
216 && (!HONOR_SIGNED_ZEROS (type)
217 || !COMPLEX_FLOAT_TYPE_P (type)))
218 (negate @0)))
219
220 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
221 unless the target has native support for the former but not the latter. */
222 (simplify
223 (mult @0 VECTOR_CST@1)
224 (if (initializer_each_zero_or_onep (@1)
225 && !HONOR_SNANS (type)
226 && !HONOR_SIGNED_ZEROS (type))
227 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
228 (if (itype
229 && (!VECTOR_MODE_P (TYPE_MODE (type))
230 || (VECTOR_MODE_P (TYPE_MODE (itype))
231 && optab_handler (and_optab,
232 TYPE_MODE (itype)) != CODE_FOR_nothing)))
233 (view_convert (bit_and:itype (view_convert @0)
234 (ne @1 { build_zero_cst (type); })))))))
235
236 (for cmp (gt ge lt le)
237 outp (convert convert negate negate)
238 outn (negate negate convert convert)
239 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
240 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
241 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
242 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
243 (simplify
244 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
245 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
246 && types_match (type, TREE_TYPE (@0)))
247 (switch
248 (if (types_match (type, float_type_node))
249 (BUILT_IN_COPYSIGNF @1 (outp @0)))
250 (if (types_match (type, double_type_node))
251 (BUILT_IN_COPYSIGN @1 (outp @0)))
252 (if (types_match (type, long_double_type_node))
253 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
254 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
255 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
256 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
257 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
258 (simplify
259 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
260 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
261 && types_match (type, TREE_TYPE (@0)))
262 (switch
263 (if (types_match (type, float_type_node))
264 (BUILT_IN_COPYSIGNF @1 (outn @0)))
265 (if (types_match (type, double_type_node))
266 (BUILT_IN_COPYSIGN @1 (outn @0)))
267 (if (types_match (type, long_double_type_node))
268 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
269
270 /* Transform X * copysign (1.0, X) into abs(X). */
271 (simplify
272 (mult:c @0 (COPYSIGN_ALL real_onep @0))
273 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
274 (abs @0)))
275
276 /* Transform X * copysign (1.0, -X) into -abs(X). */
277 (simplify
278 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
279 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
280 (negate (abs @0))))
281
282 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
283 (simplify
284 (COPYSIGN_ALL REAL_CST@0 @1)
285 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
286 (COPYSIGN_ALL (negate @0) @1)))
287
288 /* X * 1, X / 1 -> X. */
289 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
290 (simplify
291 (op @0 integer_onep)
292 (non_lvalue @0)))
293
294 /* (A / (1 << B)) -> (A >> B).
295 Only for unsigned A. For signed A, this would not preserve rounding
296 toward zero.
297 For example: (-1 / ( 1 << B)) != -1 >> B. */
298 (simplify
299 (trunc_div @0 (lshift integer_onep@1 @2))
300 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
301 && (!VECTOR_TYPE_P (type)
302 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
303 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
304 (rshift @0 @2)))
305
306 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
307 undefined behavior in constexpr evaluation, and assuming that the division
308 traps enables better optimizations than these anyway. */
309 (for div (trunc_div ceil_div floor_div round_div exact_div)
310 /* 0 / X is always zero. */
311 (simplify
312 (div integer_zerop@0 @1)
313 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
314 (if (!integer_zerop (@1))
315 @0))
316 /* X / -1 is -X. */
317 (simplify
318 (div @0 integer_minus_onep@1)
319 (if (!TYPE_UNSIGNED (type))
320 (negate @0)))
321 /* X / X is one. */
322 (simplify
323 (div @0 @0)
324 /* But not for 0 / 0 so that we can get the proper warnings and errors.
325 And not for _Fract types where we can't build 1. */
326 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
327 { build_one_cst (type); }))
328 /* X / abs (X) is X < 0 ? -1 : 1. */
329 (simplify
330 (div:C @0 (abs @0))
331 (if (INTEGRAL_TYPE_P (type)
332 && TYPE_OVERFLOW_UNDEFINED (type))
333 (cond (lt @0 { build_zero_cst (type); })
334 { build_minus_one_cst (type); } { build_one_cst (type); })))
335 /* X / -X is -1. */
336 (simplify
337 (div:C @0 (negate @0))
338 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
339 && TYPE_OVERFLOW_UNDEFINED (type))
340 { build_minus_one_cst (type); })))
341
342 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
343 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
344 (simplify
345 (floor_div @0 @1)
346 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
347 && TYPE_UNSIGNED (type))
348 (trunc_div @0 @1)))
349
350 /* Combine two successive divisions. Note that combining ceil_div
351 and floor_div is trickier and combining round_div even more so. */
352 (for div (trunc_div exact_div)
353 (simplify
354 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
355 (with {
356 wi::overflow_type overflow;
357 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
358 TYPE_SIGN (type), &overflow);
359 }
360 (if (div == EXACT_DIV_EXPR
361 || optimize_successive_divisions_p (@2, @3))
362 (if (!overflow)
363 (div @0 { wide_int_to_tree (type, mul); })
364 (if (TYPE_UNSIGNED (type)
365 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
366 { build_zero_cst (type); }))))))
367
368 /* Combine successive multiplications. Similar to above, but handling
369 overflow is different. */
370 (simplify
371 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
372 (with {
373 wi::overflow_type overflow;
374 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
375 TYPE_SIGN (type), &overflow);
376 }
377 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
378 otherwise undefined overflow implies that @0 must be zero. */
379 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
380 (mult @0 { wide_int_to_tree (type, mul); }))))
381
382 /* Optimize A / A to 1.0 if we don't care about
383 NaNs or Infinities. */
384 (simplify
385 (rdiv @0 @0)
386 (if (FLOAT_TYPE_P (type)
387 && ! HONOR_NANS (type)
388 && ! HONOR_INFINITIES (type))
389 { build_one_cst (type); }))
390
391 /* Optimize -A / A to -1.0 if we don't care about
392 NaNs or Infinities. */
393 (simplify
394 (rdiv:C @0 (negate @0))
395 (if (FLOAT_TYPE_P (type)
396 && ! HONOR_NANS (type)
397 && ! HONOR_INFINITIES (type))
398 { build_minus_one_cst (type); }))
399
400 /* PR71078: x / abs(x) -> copysign (1.0, x) */
401 (simplify
402 (rdiv:C (convert? @0) (convert? (abs @0)))
403 (if (SCALAR_FLOAT_TYPE_P (type)
404 && ! HONOR_NANS (type)
405 && ! HONOR_INFINITIES (type))
406 (switch
407 (if (types_match (type, float_type_node))
408 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
409 (if (types_match (type, double_type_node))
410 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
411 (if (types_match (type, long_double_type_node))
412 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
413
414 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
415 (simplify
416 (rdiv @0 real_onep)
417 (if (!HONOR_SNANS (type))
418 (non_lvalue @0)))
419
420 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
421 (simplify
422 (rdiv @0 real_minus_onep)
423 (if (!HONOR_SNANS (type))
424 (negate @0)))
425
426 (if (flag_reciprocal_math)
427 /* Convert (A/B)/C to A/(B*C). */
428 (simplify
429 (rdiv (rdiv:s @0 @1) @2)
430 (rdiv @0 (mult @1 @2)))
431
432 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
433 (simplify
434 (rdiv @0 (mult:s @1 REAL_CST@2))
435 (with
436 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
437 (if (tem)
438 (rdiv (mult @0 { tem; } ) @1))))
439
440 /* Convert A/(B/C) to (A/B)*C */
441 (simplify
442 (rdiv @0 (rdiv:s @1 @2))
443 (mult (rdiv @0 @1) @2)))
444
445 /* Simplify x / (- y) to -x / y. */
446 (simplify
447 (rdiv @0 (negate @1))
448 (rdiv (negate @0) @1))
449
450 (if (flag_unsafe_math_optimizations)
451 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
452 Since C / x may underflow to zero, do this only for unsafe math. */
453 (for op (lt le gt ge)
454 neg_op (gt ge lt le)
455 (simplify
456 (op (rdiv REAL_CST@0 @1) real_zerop@2)
457 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
458 (switch
459 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
460 (op @1 @2))
461 /* For C < 0, use the inverted operator. */
462 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
463 (neg_op @1 @2)))))))
464
465 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
466 (for div (trunc_div ceil_div floor_div round_div exact_div)
467 (simplify
468 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
469 (if (integer_pow2p (@2)
470 && tree_int_cst_sgn (@2) > 0
471 && tree_nop_conversion_p (type, TREE_TYPE (@0))
472 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
473 (rshift (convert @0)
474 { build_int_cst (integer_type_node,
475 wi::exact_log2 (wi::to_wide (@2))); }))))
476
477 /* If ARG1 is a constant, we can convert this to a multiply by the
478 reciprocal. This does not have the same rounding properties,
479 so only do this if -freciprocal-math. We can actually
480 always safely do it if ARG1 is a power of two, but it's hard to
481 tell if it is or not in a portable manner. */
482 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
483 (simplify
484 (rdiv @0 cst@1)
485 (if (optimize)
486 (if (flag_reciprocal_math
487 && !real_zerop (@1))
488 (with
489 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
490 (if (tem)
491 (mult @0 { tem; } )))
492 (if (cst != COMPLEX_CST)
493 (with { tree inverse = exact_inverse (type, @1); }
494 (if (inverse)
495 (mult @0 { inverse; } ))))))))
496
497 (for mod (ceil_mod floor_mod round_mod trunc_mod)
498 /* 0 % X is always zero. */
499 (simplify
500 (mod integer_zerop@0 @1)
501 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
502 (if (!integer_zerop (@1))
503 @0))
504 /* X % 1 is always zero. */
505 (simplify
506 (mod @0 integer_onep)
507 { build_zero_cst (type); })
508 /* X % -1 is zero. */
509 (simplify
510 (mod @0 integer_minus_onep@1)
511 (if (!TYPE_UNSIGNED (type))
512 { build_zero_cst (type); }))
513 /* X % X is zero. */
514 (simplify
515 (mod @0 @0)
516 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
517 (if (!integer_zerop (@0))
518 { build_zero_cst (type); }))
519 /* (X % Y) % Y is just X % Y. */
520 (simplify
521 (mod (mod@2 @0 @1) @1)
522 @2)
523 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
524 (simplify
525 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
526 (if (ANY_INTEGRAL_TYPE_P (type)
527 && TYPE_OVERFLOW_UNDEFINED (type)
528 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
529 TYPE_SIGN (type)))
530 { build_zero_cst (type); }))
531 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
532 modulo and comparison, since it is simpler and equivalent. */
533 (for cmp (eq ne)
534 (simplify
535 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
536 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
537 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
538 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
539
540 /* X % -C is the same as X % C. */
541 (simplify
542 (trunc_mod @0 INTEGER_CST@1)
543 (if (TYPE_SIGN (type) == SIGNED
544 && !TREE_OVERFLOW (@1)
545 && wi::neg_p (wi::to_wide (@1))
546 && !TYPE_OVERFLOW_TRAPS (type)
547 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
548 && !sign_bit_p (@1, @1))
549 (trunc_mod @0 (negate @1))))
550
551 /* X % -Y is the same as X % Y. */
552 (simplify
553 (trunc_mod @0 (convert? (negate @1)))
554 (if (INTEGRAL_TYPE_P (type)
555 && !TYPE_UNSIGNED (type)
556 && !TYPE_OVERFLOW_TRAPS (type)
557 && tree_nop_conversion_p (type, TREE_TYPE (@1))
558 /* Avoid this transformation if X might be INT_MIN or
559 Y might be -1, because we would then change valid
560 INT_MIN % -(-1) into invalid INT_MIN % -1. */
561 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
562 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
563 (TREE_TYPE (@1))))))
564 (trunc_mod @0 (convert @1))))
565
566 /* X - (X / Y) * Y is the same as X % Y. */
567 (simplify
568 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
569 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
570 (convert (trunc_mod @0 @1))))
571
572 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
573 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
574 Also optimize A % (C << N) where C is a power of 2,
575 to A & ((C << N) - 1). */
576 (match (power_of_two_cand @1)
577 INTEGER_CST@1)
578 (match (power_of_two_cand @1)
579 (lshift INTEGER_CST@1 @2))
580 (for mod (trunc_mod floor_mod)
581 (simplify
582 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
583 (if ((TYPE_UNSIGNED (type)
584 || tree_expr_nonnegative_p (@0))
585 && tree_nop_conversion_p (type, TREE_TYPE (@3))
586 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
587 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
588
589 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
590 (simplify
591 (trunc_div (mult @0 integer_pow2p@1) @1)
592 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
593 (bit_and @0 { wide_int_to_tree
594 (type, wi::mask (TYPE_PRECISION (type)
595 - wi::exact_log2 (wi::to_wide (@1)),
596 false, TYPE_PRECISION (type))); })))
597
598 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
599 (simplify
600 (mult (trunc_div @0 integer_pow2p@1) @1)
601 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
602 (bit_and @0 (negate @1))))
603
604 /* Simplify (t * 2) / 2) -> t. */
605 (for div (trunc_div ceil_div floor_div round_div exact_div)
606 (simplify
607 (div (mult:c @0 @1) @1)
608 (if (ANY_INTEGRAL_TYPE_P (type)
609 && TYPE_OVERFLOW_UNDEFINED (type))
610 @0)))
611
612 (for op (negate abs)
613 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
614 (for coss (COS COSH)
615 (simplify
616 (coss (op @0))
617 (coss @0)))
618 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
619 (for pows (POW)
620 (simplify
621 (pows (op @0) REAL_CST@1)
622 (with { HOST_WIDE_INT n; }
623 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
624 (pows @0 @1)))))
625 /* Likewise for powi. */
626 (for pows (POWI)
627 (simplify
628 (pows (op @0) INTEGER_CST@1)
629 (if ((wi::to_wide (@1) & 1) == 0)
630 (pows @0 @1))))
631 /* Strip negate and abs from both operands of hypot. */
632 (for hypots (HYPOT)
633 (simplify
634 (hypots (op @0) @1)
635 (hypots @0 @1))
636 (simplify
637 (hypots @0 (op @1))
638 (hypots @0 @1)))
639 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
640 (for copysigns (COPYSIGN_ALL)
641 (simplify
642 (copysigns (op @0) @1)
643 (copysigns @0 @1))))
644
645 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
646 (simplify
647 (mult (abs@1 @0) @1)
648 (mult @0 @0))
649
650 /* Convert absu(x)*absu(x) -> x*x. */
651 (simplify
652 (mult (absu@1 @0) @1)
653 (mult (convert@2 @0) @2))
654
655 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
656 (for coss (COS COSH)
657 copysigns (COPYSIGN)
658 (simplify
659 (coss (copysigns @0 @1))
660 (coss @0)))
661
662 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
663 (for pows (POW)
664 copysigns (COPYSIGN)
665 (simplify
666 (pows (copysigns @0 @2) REAL_CST@1)
667 (with { HOST_WIDE_INT n; }
668 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
669 (pows @0 @1)))))
670 /* Likewise for powi. */
671 (for pows (POWI)
672 copysigns (COPYSIGN)
673 (simplify
674 (pows (copysigns @0 @2) INTEGER_CST@1)
675 (if ((wi::to_wide (@1) & 1) == 0)
676 (pows @0 @1))))
677
678 (for hypots (HYPOT)
679 copysigns (COPYSIGN)
680 /* hypot(copysign(x, y), z) -> hypot(x, z). */
681 (simplify
682 (hypots (copysigns @0 @1) @2)
683 (hypots @0 @2))
684 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
685 (simplify
686 (hypots @0 (copysigns @1 @2))
687 (hypots @0 @1)))
688
689 /* copysign(x, CST) -> [-]abs (x). */
690 (for copysigns (COPYSIGN_ALL)
691 (simplify
692 (copysigns @0 REAL_CST@1)
693 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
694 (negate (abs @0))
695 (abs @0))))
696
697 /* copysign(copysign(x, y), z) -> copysign(x, z). */
698 (for copysigns (COPYSIGN_ALL)
699 (simplify
700 (copysigns (copysigns @0 @1) @2)
701 (copysigns @0 @2)))
702
703 /* copysign(x,y)*copysign(x,y) -> x*x. */
704 (for copysigns (COPYSIGN_ALL)
705 (simplify
706 (mult (copysigns@2 @0 @1) @2)
707 (mult @0 @0)))
708
709 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
710 (for ccoss (CCOS CCOSH)
711 (simplify
712 (ccoss (negate @0))
713 (ccoss @0)))
714
715 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
716 (for ops (conj negate)
717 (for cabss (CABS)
718 (simplify
719 (cabss (ops @0))
720 (cabss @0))))
721
722 /* Fold (a * (1 << b)) into (a << b) */
723 (simplify
724 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
725 (if (! FLOAT_TYPE_P (type)
726 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
727 (lshift @0 @2)))
728
729 /* Fold (1 << (C - x)) where C = precision(type) - 1
730 into ((1 << C) >> x). */
731 (simplify
732 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
733 (if (INTEGRAL_TYPE_P (type)
734 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
735 && single_use (@1))
736 (if (TYPE_UNSIGNED (type))
737 (rshift (lshift @0 @2) @3)
738 (with
739 { tree utype = unsigned_type_for (type); }
740 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
741
742 /* Fold (C1/X)*C2 into (C1*C2)/X. */
743 (simplify
744 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
745 (if (flag_associative_math
746 && single_use (@3))
747 (with
748 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
749 (if (tem)
750 (rdiv { tem; } @1)))))
751
752 /* Simplify ~X & X as zero. */
753 (simplify
754 (bit_and:c (convert? @0) (convert? (bit_not @0)))
755 { build_zero_cst (type); })
756
757 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
758 (simplify
759 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
760 (if (TYPE_UNSIGNED (type))
761 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
762
763 (for bitop (bit_and bit_ior)
764 cmp (eq ne)
765 /* PR35691: Transform
766 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
767 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
768 (simplify
769 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
770 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
771 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
772 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
773 (cmp (bit_ior @0 (convert @1)) @2)))
774 /* Transform:
775 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
776 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
777 (simplify
778 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
779 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
780 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
781 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
782 (cmp (bit_and @0 (convert @1)) @2))))
783
784 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
785 (simplify
786 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
787 (minus (bit_xor @0 @1) @1))
788 (simplify
789 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
790 (if (~wi::to_wide (@2) == wi::to_wide (@1))
791 (minus (bit_xor @0 @1) @1)))
792
793 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
794 (simplify
795 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
796 (minus @1 (bit_xor @0 @1)))
797
798 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
799 (for op (bit_ior bit_xor plus)
800 (simplify
801 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
802 (bit_xor @0 @1))
803 (simplify
804 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
805 (if (~wi::to_wide (@2) == wi::to_wide (@1))
806 (bit_xor @0 @1))))
807
808 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
809 (simplify
810 (bit_ior:c (bit_xor:c @0 @1) @0)
811 (bit_ior @0 @1))
812
813 /* (a & ~b) | (a ^ b) --> a ^ b */
814 (simplify
815 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
816 @2)
817
818 /* (a & ~b) ^ ~a --> ~(a & b) */
819 (simplify
820 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
821 (bit_not (bit_and @0 @1)))
822
823 /* (a | b) & ~(a ^ b) --> a & b */
824 (simplify
825 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
826 (bit_and @0 @1))
827
828 /* a | ~(a ^ b) --> a | ~b */
829 (simplify
830 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
831 (bit_ior @0 (bit_not @1)))
832
833 /* (a | b) | (a &^ b) --> a | b */
834 (for op (bit_and bit_xor)
835 (simplify
836 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
837 @2))
838
839 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
840 (simplify
841 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
842 @2)
843
844 /* ~(~a & b) --> a | ~b */
845 (simplify
846 (bit_not (bit_and:cs (bit_not @0) @1))
847 (bit_ior @0 (bit_not @1)))
848
849 /* ~(~a | b) --> a & ~b */
850 (simplify
851 (bit_not (bit_ior:cs (bit_not @0) @1))
852 (bit_and @0 (bit_not @1)))
853
854 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
855 #if GIMPLE
856 (simplify
857 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
858 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
859 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
860 (bit_xor @0 @1)))
861 #endif
862
863 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
864 ((A & N) + B) & M -> (A + B) & M
865 Similarly if (N & M) == 0,
866 ((A | N) + B) & M -> (A + B) & M
867 and for - instead of + (or unary - instead of +)
868 and/or ^ instead of |.
869 If B is constant and (B & M) == 0, fold into A & M. */
870 (for op (plus minus)
871 (for bitop (bit_and bit_ior bit_xor)
872 (simplify
873 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
874 (with
875 { tree pmop[2];
876 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
877 @3, @4, @1, ERROR_MARK, NULL_TREE,
878 NULL_TREE, pmop); }
879 (if (utype)
880 (convert (bit_and (op (convert:utype { pmop[0]; })
881 (convert:utype { pmop[1]; }))
882 (convert:utype @2))))))
883 (simplify
884 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
885 (with
886 { tree pmop[2];
887 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
888 NULL_TREE, NULL_TREE, @1, bitop, @3,
889 @4, pmop); }
890 (if (utype)
891 (convert (bit_and (op (convert:utype { pmop[0]; })
892 (convert:utype { pmop[1]; }))
893 (convert:utype @2)))))))
894 (simplify
895 (bit_and (op:s @0 @1) INTEGER_CST@2)
896 (with
897 { tree pmop[2];
898 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
899 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
900 NULL_TREE, NULL_TREE, pmop); }
901 (if (utype)
902 (convert (bit_and (op (convert:utype { pmop[0]; })
903 (convert:utype { pmop[1]; }))
904 (convert:utype @2)))))))
905 (for bitop (bit_and bit_ior bit_xor)
906 (simplify
907 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
908 (with
909 { tree pmop[2];
910 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
911 bitop, @2, @3, NULL_TREE, ERROR_MARK,
912 NULL_TREE, NULL_TREE, pmop); }
913 (if (utype)
914 (convert (bit_and (negate (convert:utype { pmop[0]; }))
915 (convert:utype @1)))))))
916
917 /* X % Y is smaller than Y. */
918 (for cmp (lt ge)
919 (simplify
920 (cmp (trunc_mod @0 @1) @1)
921 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
922 { constant_boolean_node (cmp == LT_EXPR, type); })))
923 (for cmp (gt le)
924 (simplify
925 (cmp @1 (trunc_mod @0 @1))
926 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
927 { constant_boolean_node (cmp == GT_EXPR, type); })))
928
929 /* x | ~0 -> ~0 */
930 (simplify
931 (bit_ior @0 integer_all_onesp@1)
932 @1)
933
934 /* x | 0 -> x */
935 (simplify
936 (bit_ior @0 integer_zerop)
937 @0)
938
939 /* x & 0 -> 0 */
940 (simplify
941 (bit_and @0 integer_zerop@1)
942 @1)
943
944 /* ~x | x -> -1 */
945 /* ~x ^ x -> -1 */
946 /* ~x + x -> -1 */
947 (for op (bit_ior bit_xor plus)
948 (simplify
949 (op:c (convert? @0) (convert? (bit_not @0)))
950 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
951
952 /* x ^ x -> 0 */
953 (simplify
954 (bit_xor @0 @0)
955 { build_zero_cst (type); })
956
957 /* Canonicalize X ^ ~0 to ~X. */
958 (simplify
959 (bit_xor @0 integer_all_onesp@1)
960 (bit_not @0))
961
962 /* x & ~0 -> x */
963 (simplify
964 (bit_and @0 integer_all_onesp)
965 (non_lvalue @0))
966
967 /* x & x -> x, x | x -> x */
968 (for bitop (bit_and bit_ior)
969 (simplify
970 (bitop @0 @0)
971 (non_lvalue @0)))
972
973 /* x & C -> x if we know that x & ~C == 0. */
974 #if GIMPLE
975 (simplify
976 (bit_and SSA_NAME@0 INTEGER_CST@1)
977 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
978 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
979 @0))
980 #endif
981
982 /* x + (x & 1) -> (x + 1) & ~1 */
983 (simplify
984 (plus:c @0 (bit_and:s @0 integer_onep@1))
985 (bit_and (plus @0 @1) (bit_not @1)))
986
987 /* x & ~(x & y) -> x & ~y */
988 /* x | ~(x | y) -> x | ~y */
989 (for bitop (bit_and bit_ior)
990 (simplify
991 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
992 (bitop @0 (bit_not @1))))
993
994 /* (~x & y) | ~(x | y) -> ~x */
995 (simplify
996 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
997 @2)
998
999 /* (x | y) ^ (x | ~y) -> ~x */
1000 (simplify
1001 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
1002 (bit_not @0))
1003
1004 /* (x & y) | ~(x | y) -> ~(x ^ y) */
1005 (simplify
1006 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1007 (bit_not (bit_xor @0 @1)))
1008
1009 /* (~x | y) ^ (x ^ y) -> x | ~y */
1010 (simplify
1011 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
1012 (bit_ior @0 (bit_not @1)))
1013
1014 /* (x ^ y) | ~(x | y) -> ~(x & y) */
1015 (simplify
1016 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
1017 (bit_not (bit_and @0 @1)))
1018
1019 /* (x | y) & ~x -> y & ~x */
1020 /* (x & y) | ~x -> y | ~x */
1021 (for bitop (bit_and bit_ior)
1022 rbitop (bit_ior bit_and)
1023 (simplify
1024 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1025 (bitop @1 @2)))
1026
1027 /* (x & y) ^ (x | y) -> x ^ y */
1028 (simplify
1029 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1030 (bit_xor @0 @1))
1031
1032 /* (x ^ y) ^ (x | y) -> x & y */
1033 (simplify
1034 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1035 (bit_and @0 @1))
1036
1037 /* (x & y) + (x ^ y) -> x | y */
1038 /* (x & y) | (x ^ y) -> x | y */
1039 /* (x & y) ^ (x ^ y) -> x | y */
1040 (for op (plus bit_ior bit_xor)
1041 (simplify
1042 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1043 (bit_ior @0 @1)))
1044
1045 /* (x & y) + (x | y) -> x + y */
1046 (simplify
1047 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1048 (plus @0 @1))
1049
1050 /* (x + y) - (x | y) -> x & y */
1051 (simplify
1052 (minus (plus @0 @1) (bit_ior @0 @1))
1053 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1054 && !TYPE_SATURATING (type))
1055 (bit_and @0 @1)))
1056
1057 /* (x + y) - (x & y) -> x | y */
1058 (simplify
1059 (minus (plus @0 @1) (bit_and @0 @1))
1060 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1061 && !TYPE_SATURATING (type))
1062 (bit_ior @0 @1)))
1063
1064 /* (x | y) - (x ^ y) -> x & y */
1065 (simplify
1066 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1067 (bit_and @0 @1))
1068
1069 /* (x | y) - (x & y) -> x ^ y */
1070 (simplify
1071 (minus (bit_ior @0 @1) (bit_and @0 @1))
1072 (bit_xor @0 @1))
1073
1074 /* (x | y) & ~(x & y) -> x ^ y */
1075 (simplify
1076 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1077 (bit_xor @0 @1))
1078
1079 /* (x | y) & (~x ^ y) -> x & y */
1080 (simplify
1081 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1082 (bit_and @0 @1))
1083
1084 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1085 (simplify
1086 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1087 (bit_not (bit_xor @0 @1)))
1088
1089 /* (~x | y) ^ (x | ~y) -> x ^ y */
1090 (simplify
1091 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1092 (bit_xor @0 @1))
1093
1094 /* ~x & ~y -> ~(x | y)
1095 ~x | ~y -> ~(x & y) */
1096 (for op (bit_and bit_ior)
1097 rop (bit_ior bit_and)
1098 (simplify
1099 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1100 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1101 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1102 (bit_not (rop (convert @0) (convert @1))))))
1103
1104 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1105 with a constant, and the two constants have no bits in common,
1106 we should treat this as a BIT_IOR_EXPR since this may produce more
1107 simplifications. */
1108 (for op (bit_xor plus)
1109 (simplify
1110 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1111 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1112 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1113 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1114 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1115 (bit_ior (convert @4) (convert @5)))))
1116
1117 /* (X | Y) ^ X -> Y & ~ X*/
1118 (simplify
1119 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1120 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1121 (convert (bit_and @1 (bit_not @0)))))
1122
1123 /* Convert ~X ^ ~Y to X ^ Y. */
1124 (simplify
1125 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1126 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1127 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1128 (bit_xor (convert @0) (convert @1))))
1129
1130 /* Convert ~X ^ C to X ^ ~C. */
1131 (simplify
1132 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1133 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1134 (bit_xor (convert @0) (bit_not @1))))
1135
1136 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1137 (for opo (bit_and bit_xor)
1138 opi (bit_xor bit_and)
1139 (simplify
1140 (opo:c (opi:cs @0 @1) @1)
1141 (bit_and (bit_not @0) @1)))
1142
1143 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1144 operands are another bit-wise operation with a common input. If so,
1145 distribute the bit operations to save an operation and possibly two if
1146 constants are involved. For example, convert
1147 (A | B) & (A | C) into A | (B & C)
1148 Further simplification will occur if B and C are constants. */
1149 (for op (bit_and bit_ior bit_xor)
1150 rop (bit_ior bit_and bit_and)
1151 (simplify
1152 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1153 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1154 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1155 (rop (convert @0) (op (convert @1) (convert @2))))))
1156
1157 /* Some simple reassociation for bit operations, also handled in reassoc. */
1158 /* (X & Y) & Y -> X & Y
1159 (X | Y) | Y -> X | Y */
1160 (for op (bit_and bit_ior)
1161 (simplify
1162 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1163 @2))
1164 /* (X ^ Y) ^ Y -> X */
1165 (simplify
1166 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1167 (convert @0))
1168 /* (X & Y) & (X & Z) -> (X & Y) & Z
1169 (X | Y) | (X | Z) -> (X | Y) | Z */
1170 (for op (bit_and bit_ior)
1171 (simplify
1172 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1173 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1174 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1175 (if (single_use (@5) && single_use (@6))
1176 (op @3 (convert @2))
1177 (if (single_use (@3) && single_use (@4))
1178 (op (convert @1) @5))))))
1179 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1180 (simplify
1181 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1182 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1183 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1184 (bit_xor (convert @1) (convert @2))))
1185
1186 /* Convert abs (abs (X)) into abs (X).
1187 also absu (absu (X)) into absu (X). */
1188 (simplify
1189 (abs (abs@1 @0))
1190 @1)
1191
1192 (simplify
1193 (absu (convert@2 (absu@1 @0)))
1194 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1195 @1))
1196
1197 /* Convert abs[u] (-X) -> abs[u] (X). */
1198 (simplify
1199 (abs (negate @0))
1200 (abs @0))
1201
1202 (simplify
1203 (absu (negate @0))
1204 (absu @0))
1205
1206 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1207 (simplify
1208 (abs tree_expr_nonnegative_p@0)
1209 @0)
1210
1211 (simplify
1212 (absu tree_expr_nonnegative_p@0)
1213 (convert @0))
1214
1215 /* A few cases of fold-const.c negate_expr_p predicate. */
1216 (match negate_expr_p
1217 INTEGER_CST
1218 (if ((INTEGRAL_TYPE_P (type)
1219 && TYPE_UNSIGNED (type))
1220 || (!TYPE_OVERFLOW_SANITIZED (type)
1221 && may_negate_without_overflow_p (t)))))
1222 (match negate_expr_p
1223 FIXED_CST)
1224 (match negate_expr_p
1225 (negate @0)
1226 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1227 (match negate_expr_p
1228 REAL_CST
1229 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1230 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1231 ways. */
1232 (match negate_expr_p
1233 VECTOR_CST
1234 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1235 (match negate_expr_p
1236 (minus @0 @1)
1237 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1238 || (FLOAT_TYPE_P (type)
1239 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1240 && !HONOR_SIGNED_ZEROS (type)))))
1241
1242 /* (-A) * (-B) -> A * B */
1243 (simplify
1244 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1245 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1246 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1247 (mult (convert @0) (convert (negate @1)))))
1248
1249 /* -(A + B) -> (-B) - A. */
1250 (simplify
1251 (negate (plus:c @0 negate_expr_p@1))
1252 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1253 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1254 (minus (negate @1) @0)))
1255
1256 /* -(A - B) -> B - A. */
1257 (simplify
1258 (negate (minus @0 @1))
1259 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1260 || (FLOAT_TYPE_P (type)
1261 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1262 && !HONOR_SIGNED_ZEROS (type)))
1263 (minus @1 @0)))
1264 (simplify
1265 (negate (pointer_diff @0 @1))
1266 (if (TYPE_OVERFLOW_UNDEFINED (type))
1267 (pointer_diff @1 @0)))
1268
1269 /* A - B -> A + (-B) if B is easily negatable. */
1270 (simplify
1271 (minus @0 negate_expr_p@1)
1272 (if (!FIXED_POINT_TYPE_P (type))
1273 (plus @0 (negate @1))))
1274
1275 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1276 when profitable.
1277 For bitwise binary operations apply operand conversions to the
1278 binary operation result instead of to the operands. This allows
1279 to combine successive conversions and bitwise binary operations.
1280 We combine the above two cases by using a conditional convert. */
1281 (for bitop (bit_and bit_ior bit_xor)
1282 (simplify
1283 (bitop (convert @0) (convert? @1))
1284 (if (((TREE_CODE (@1) == INTEGER_CST
1285 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1286 && int_fits_type_p (@1, TREE_TYPE (@0)))
1287 || types_match (@0, @1))
1288 /* ??? This transform conflicts with fold-const.c doing
1289 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1290 constants (if x has signed type, the sign bit cannot be set
1291 in c). This folds extension into the BIT_AND_EXPR.
1292 Restrict it to GIMPLE to avoid endless recursions. */
1293 && (bitop != BIT_AND_EXPR || GIMPLE)
1294 && (/* That's a good idea if the conversion widens the operand, thus
1295 after hoisting the conversion the operation will be narrower. */
1296 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1297 /* It's also a good idea if the conversion is to a non-integer
1298 mode. */
1299 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1300 /* Or if the precision of TO is not the same as the precision
1301 of its mode. */
1302 || !type_has_mode_precision_p (type)))
1303 (convert (bitop @0 (convert @1))))))
1304
1305 (for bitop (bit_and bit_ior)
1306 rbitop (bit_ior bit_and)
1307 /* (x | y) & x -> x */
1308 /* (x & y) | x -> x */
1309 (simplify
1310 (bitop:c (rbitop:c @0 @1) @0)
1311 @0)
1312 /* (~x | y) & x -> x & y */
1313 /* (~x & y) | x -> x | y */
1314 (simplify
1315 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1316 (bitop @0 @1)))
1317
1318 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1319 (simplify
1320 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1321 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1322
1323 /* Combine successive equal operations with constants. */
1324 (for bitop (bit_and bit_ior bit_xor)
1325 (simplify
1326 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1327 (if (!CONSTANT_CLASS_P (@0))
1328 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1329 folded to a constant. */
1330 (bitop @0 (bitop @1 @2))
1331 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1332 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1333 the values involved are such that the operation can't be decided at
1334 compile time. Try folding one of @0 or @1 with @2 to see whether
1335 that combination can be decided at compile time.
1336
1337 Keep the existing form if both folds fail, to avoid endless
1338 oscillation. */
1339 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1340 (if (cst1)
1341 (bitop @1 { cst1; })
1342 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1343 (if (cst2)
1344 (bitop @0 { cst2; }))))))))
1345
1346 /* Try simple folding for X op !X, and X op X with the help
1347 of the truth_valued_p and logical_inverted_value predicates. */
1348 (match truth_valued_p
1349 @0
1350 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1351 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1352 (match truth_valued_p
1353 (op @0 @1)))
1354 (match truth_valued_p
1355 (truth_not @0))
1356
1357 (match (logical_inverted_value @0)
1358 (truth_not @0))
1359 (match (logical_inverted_value @0)
1360 (bit_not truth_valued_p@0))
1361 (match (logical_inverted_value @0)
1362 (eq @0 integer_zerop))
1363 (match (logical_inverted_value @0)
1364 (ne truth_valued_p@0 integer_truep))
1365 (match (logical_inverted_value @0)
1366 (bit_xor truth_valued_p@0 integer_truep))
1367
1368 /* X & !X -> 0. */
1369 (simplify
1370 (bit_and:c @0 (logical_inverted_value @0))
1371 { build_zero_cst (type); })
1372 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1373 (for op (bit_ior bit_xor)
1374 (simplify
1375 (op:c truth_valued_p@0 (logical_inverted_value @0))
1376 { constant_boolean_node (true, type); }))
1377 /* X ==/!= !X is false/true. */
1378 (for op (eq ne)
1379 (simplify
1380 (op:c truth_valued_p@0 (logical_inverted_value @0))
1381 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1382
1383 /* ~~x -> x */
1384 (simplify
1385 (bit_not (bit_not @0))
1386 @0)
1387
1388 /* Convert ~ (-A) to A - 1. */
1389 (simplify
1390 (bit_not (convert? (negate @0)))
1391 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1392 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1393 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1394
1395 /* Convert - (~A) to A + 1. */
1396 (simplify
1397 (negate (nop_convert (bit_not @0)))
1398 (plus (view_convert @0) { build_each_one_cst (type); }))
1399
1400 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1401 (simplify
1402 (bit_not (convert? (minus @0 integer_each_onep)))
1403 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1404 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1405 (convert (negate @0))))
1406 (simplify
1407 (bit_not (convert? (plus @0 integer_all_onesp)))
1408 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1409 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1410 (convert (negate @0))))
1411
1412 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1413 (simplify
1414 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1415 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1416 (convert (bit_xor @0 (bit_not @1)))))
1417 (simplify
1418 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1419 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1420 (convert (bit_xor @0 @1))))
1421
1422 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1423 (simplify
1424 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1425 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1426 (bit_not (bit_xor (view_convert @0) @1))))
1427
1428 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1429 (simplify
1430 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1431 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1432
1433 /* Fold A - (A & B) into ~B & A. */
1434 (simplify
1435 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1436 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1437 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1438 (convert (bit_and (bit_not @1) @0))))
1439
1440 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1441 (for cmp (gt lt ge le)
1442 (simplify
1443 (mult (convert (cmp @0 @1)) @2)
1444 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1445
1446 /* For integral types with undefined overflow and C != 0 fold
1447 x * C EQ/NE y * C into x EQ/NE y. */
1448 (for cmp (eq ne)
1449 (simplify
1450 (cmp (mult:c @0 @1) (mult:c @2 @1))
1451 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1452 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1453 && tree_expr_nonzero_p (@1))
1454 (cmp @0 @2))))
1455
1456 /* For integral types with wrapping overflow and C odd fold
1457 x * C EQ/NE y * C into x EQ/NE y. */
1458 (for cmp (eq ne)
1459 (simplify
1460 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1461 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1462 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1463 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1464 (cmp @0 @2))))
1465
1466 /* For integral types with undefined overflow and C != 0 fold
1467 x * C RELOP y * C into:
1468
1469 x RELOP y for nonnegative C
1470 y RELOP x for negative C */
1471 (for cmp (lt gt le ge)
1472 (simplify
1473 (cmp (mult:c @0 @1) (mult:c @2 @1))
1474 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1475 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1476 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1477 (cmp @0 @2)
1478 (if (TREE_CODE (@1) == INTEGER_CST
1479 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1480 (cmp @2 @0))))))
1481
1482 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1483 (for cmp (le gt)
1484 icmp (gt le)
1485 (simplify
1486 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1487 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1488 && TYPE_UNSIGNED (TREE_TYPE (@0))
1489 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1490 && (wi::to_wide (@2)
1491 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1492 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1493 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1494
1495 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1496 (for cmp (simple_comparison)
1497 (simplify
1498 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1499 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1500 (cmp @0 @1))))
1501
1502 /* X / C1 op C2 into a simple range test. */
1503 (for cmp (simple_comparison)
1504 (simplify
1505 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1506 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1507 && integer_nonzerop (@1)
1508 && !TREE_OVERFLOW (@1)
1509 && !TREE_OVERFLOW (@2))
1510 (with { tree lo, hi; bool neg_overflow;
1511 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1512 &neg_overflow); }
1513 (switch
1514 (if (code == LT_EXPR || code == GE_EXPR)
1515 (if (TREE_OVERFLOW (lo))
1516 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1517 (if (code == LT_EXPR)
1518 (lt @0 { lo; })
1519 (ge @0 { lo; }))))
1520 (if (code == LE_EXPR || code == GT_EXPR)
1521 (if (TREE_OVERFLOW (hi))
1522 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1523 (if (code == LE_EXPR)
1524 (le @0 { hi; })
1525 (gt @0 { hi; }))))
1526 (if (!lo && !hi)
1527 { build_int_cst (type, code == NE_EXPR); })
1528 (if (code == EQ_EXPR && !hi)
1529 (ge @0 { lo; }))
1530 (if (code == EQ_EXPR && !lo)
1531 (le @0 { hi; }))
1532 (if (code == NE_EXPR && !hi)
1533 (lt @0 { lo; }))
1534 (if (code == NE_EXPR && !lo)
1535 (gt @0 { hi; }))
1536 (if (GENERIC)
1537 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1538 lo, hi); })
1539 (with
1540 {
1541 tree etype = range_check_type (TREE_TYPE (@0));
1542 if (etype)
1543 {
1544 if (! TYPE_UNSIGNED (etype))
1545 etype = unsigned_type_for (etype);
1546 hi = fold_convert (etype, hi);
1547 lo = fold_convert (etype, lo);
1548 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1549 }
1550 }
1551 (if (etype && hi && !TREE_OVERFLOW (hi))
1552 (if (code == EQ_EXPR)
1553 (le (minus (convert:etype @0) { lo; }) { hi; })
1554 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1555
1556 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1557 (for op (lt le ge gt)
1558 (simplify
1559 (op (plus:c @0 @2) (plus:c @1 @2))
1560 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1561 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1562 (op @0 @1))))
1563 /* For equality and subtraction, this is also true with wrapping overflow. */
1564 (for op (eq ne minus)
1565 (simplify
1566 (op (plus:c @0 @2) (plus:c @1 @2))
1567 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1568 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1569 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1570 (op @0 @1))))
1571
1572 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1573 (for op (lt le ge gt)
1574 (simplify
1575 (op (minus @0 @2) (minus @1 @2))
1576 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1577 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1578 (op @0 @1))))
1579 /* For equality and subtraction, this is also true with wrapping overflow. */
1580 (for op (eq ne minus)
1581 (simplify
1582 (op (minus @0 @2) (minus @1 @2))
1583 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1584 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1585 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1586 (op @0 @1))))
1587 /* And for pointers... */
1588 (for op (simple_comparison)
1589 (simplify
1590 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1591 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1592 (op @0 @1))))
1593 (simplify
1594 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1595 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1596 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1597 (pointer_diff @0 @1)))
1598
1599 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1600 (for op (lt le ge gt)
1601 (simplify
1602 (op (minus @2 @0) (minus @2 @1))
1603 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1604 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1605 (op @1 @0))))
1606 /* For equality and subtraction, this is also true with wrapping overflow. */
1607 (for op (eq ne minus)
1608 (simplify
1609 (op (minus @2 @0) (minus @2 @1))
1610 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1611 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1612 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1613 (op @1 @0))))
1614 /* And for pointers... */
1615 (for op (simple_comparison)
1616 (simplify
1617 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1618 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1619 (op @1 @0))))
1620 (simplify
1621 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1622 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1623 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1624 (pointer_diff @1 @0)))
1625
1626 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1627 (for op (lt le gt ge)
1628 (simplify
1629 (op:c (plus:c@2 @0 @1) @1)
1630 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1631 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1632 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1633 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1634 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1635 /* For equality, this is also true with wrapping overflow. */
1636 (for op (eq ne)
1637 (simplify
1638 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1639 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1640 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1641 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1642 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1643 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1644 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1645 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1646 (simplify
1647 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1648 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1649 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1650 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1651 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1652
1653 /* X - Y < X is the same as Y > 0 when there is no overflow.
1654 For equality, this is also true with wrapping overflow. */
1655 (for op (simple_comparison)
1656 (simplify
1657 (op:c @0 (minus@2 @0 @1))
1658 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1659 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1660 || ((op == EQ_EXPR || op == NE_EXPR)
1661 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1662 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1663 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1664
1665 /* Transform:
1666 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1667 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1668 (for cmp (eq ne)
1669 ocmp (lt ge)
1670 (simplify
1671 (cmp (trunc_div @0 @1) integer_zerop)
1672 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1673 /* Complex ==/!= is allowed, but not </>=. */
1674 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1675 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1676 (ocmp @0 @1))))
1677
1678 /* X == C - X can never be true if C is odd. */
1679 (for cmp (eq ne)
1680 (simplify
1681 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1682 (if (TREE_INT_CST_LOW (@1) & 1)
1683 { constant_boolean_node (cmp == NE_EXPR, type); })))
1684
1685 /* Arguments on which one can call get_nonzero_bits to get the bits
1686 possibly set. */
1687 (match with_possible_nonzero_bits
1688 INTEGER_CST@0)
1689 (match with_possible_nonzero_bits
1690 SSA_NAME@0
1691 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1692 /* Slightly extended version, do not make it recursive to keep it cheap. */
1693 (match (with_possible_nonzero_bits2 @0)
1694 with_possible_nonzero_bits@0)
1695 (match (with_possible_nonzero_bits2 @0)
1696 (bit_and:c with_possible_nonzero_bits@0 @2))
1697
1698 /* Same for bits that are known to be set, but we do not have
1699 an equivalent to get_nonzero_bits yet. */
1700 (match (with_certain_nonzero_bits2 @0)
1701 INTEGER_CST@0)
1702 (match (with_certain_nonzero_bits2 @0)
1703 (bit_ior @1 INTEGER_CST@0))
1704
1705 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1706 (for cmp (eq ne)
1707 (simplify
1708 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1709 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1710 { constant_boolean_node (cmp == NE_EXPR, type); })))
1711
1712 /* ((X inner_op C0) outer_op C1)
1713 With X being a tree where value_range has reasoned certain bits to always be
1714 zero throughout its computed value range,
1715 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1716 where zero_mask has 1's for all bits that are sure to be 0 in
1717 and 0's otherwise.
1718 if (inner_op == '^') C0 &= ~C1;
1719 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1720 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1721 */
1722 (for inner_op (bit_ior bit_xor)
1723 outer_op (bit_xor bit_ior)
1724 (simplify
1725 (outer_op
1726 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1727 (with
1728 {
1729 bool fail = false;
1730 wide_int zero_mask_not;
1731 wide_int C0;
1732 wide_int cst_emit;
1733
1734 if (TREE_CODE (@2) == SSA_NAME)
1735 zero_mask_not = get_nonzero_bits (@2);
1736 else
1737 fail = true;
1738
1739 if (inner_op == BIT_XOR_EXPR)
1740 {
1741 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1742 cst_emit = C0 | wi::to_wide (@1);
1743 }
1744 else
1745 {
1746 C0 = wi::to_wide (@0);
1747 cst_emit = C0 ^ wi::to_wide (@1);
1748 }
1749 }
1750 (if (!fail && (C0 & zero_mask_not) == 0)
1751 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1752 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1753 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1754
1755 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1756 (simplify
1757 (pointer_plus (pointer_plus:s @0 @1) @3)
1758 (pointer_plus @0 (plus @1 @3)))
1759
1760 /* Pattern match
1761 tem1 = (long) ptr1;
1762 tem2 = (long) ptr2;
1763 tem3 = tem2 - tem1;
1764 tem4 = (unsigned long) tem3;
1765 tem5 = ptr1 + tem4;
1766 and produce
1767 tem5 = ptr2; */
1768 (simplify
1769 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1770 /* Conditionally look through a sign-changing conversion. */
1771 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1772 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1773 || (GENERIC && type == TREE_TYPE (@1))))
1774 @1))
1775 (simplify
1776 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1777 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1778 (convert @1)))
1779
1780 /* Pattern match
1781 tem = (sizetype) ptr;
1782 tem = tem & algn;
1783 tem = -tem;
1784 ... = ptr p+ tem;
1785 and produce the simpler and easier to analyze with respect to alignment
1786 ... = ptr & ~algn; */
1787 (simplify
1788 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1789 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1790 (bit_and @0 { algn; })))
1791
1792 /* Try folding difference of addresses. */
1793 (simplify
1794 (minus (convert ADDR_EXPR@0) (convert @1))
1795 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1796 (with { poly_int64 diff; }
1797 (if (ptr_difference_const (@0, @1, &diff))
1798 { build_int_cst_type (type, diff); }))))
1799 (simplify
1800 (minus (convert @0) (convert ADDR_EXPR@1))
1801 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1802 (with { poly_int64 diff; }
1803 (if (ptr_difference_const (@0, @1, &diff))
1804 { build_int_cst_type (type, diff); }))))
1805 (simplify
1806 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1807 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1808 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1809 (with { poly_int64 diff; }
1810 (if (ptr_difference_const (@0, @1, &diff))
1811 { build_int_cst_type (type, diff); }))))
1812 (simplify
1813 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1814 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1815 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1816 (with { poly_int64 diff; }
1817 (if (ptr_difference_const (@0, @1, &diff))
1818 { build_int_cst_type (type, diff); }))))
1819
1820 /* If arg0 is derived from the address of an object or function, we may
1821 be able to fold this expression using the object or function's
1822 alignment. */
1823 (simplify
1824 (bit_and (convert? @0) INTEGER_CST@1)
1825 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1826 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1827 (with
1828 {
1829 unsigned int align;
1830 unsigned HOST_WIDE_INT bitpos;
1831 get_pointer_alignment_1 (@0, &align, &bitpos);
1832 }
1833 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1834 { wide_int_to_tree (type, (wi::to_wide (@1)
1835 & (bitpos / BITS_PER_UNIT))); }))))
1836
1837
1838 /* We can't reassociate at all for saturating types. */
1839 (if (!TYPE_SATURATING (type))
1840
1841 /* Contract negates. */
1842 /* A + (-B) -> A - B */
1843 (simplify
1844 (plus:c @0 (convert? (negate @1)))
1845 /* Apply STRIP_NOPS on the negate. */
1846 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1847 && !TYPE_OVERFLOW_SANITIZED (type))
1848 (with
1849 {
1850 tree t1 = type;
1851 if (INTEGRAL_TYPE_P (type)
1852 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1853 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1854 }
1855 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1856 /* A - (-B) -> A + B */
1857 (simplify
1858 (minus @0 (convert? (negate @1)))
1859 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1860 && !TYPE_OVERFLOW_SANITIZED (type))
1861 (with
1862 {
1863 tree t1 = type;
1864 if (INTEGRAL_TYPE_P (type)
1865 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1866 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1867 }
1868 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1869 /* -(T)(-A) -> (T)A
1870 Sign-extension is ok except for INT_MIN, which thankfully cannot
1871 happen without overflow. */
1872 (simplify
1873 (negate (convert (negate @1)))
1874 (if (INTEGRAL_TYPE_P (type)
1875 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1876 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1877 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1878 && !TYPE_OVERFLOW_SANITIZED (type)
1879 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1880 (convert @1)))
1881 (simplify
1882 (negate (convert negate_expr_p@1))
1883 (if (SCALAR_FLOAT_TYPE_P (type)
1884 && ((DECIMAL_FLOAT_TYPE_P (type)
1885 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1886 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1887 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1888 (convert (negate @1))))
1889 (simplify
1890 (negate (nop_convert (negate @1)))
1891 (if (!TYPE_OVERFLOW_SANITIZED (type)
1892 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1893 (view_convert @1)))
1894
1895 /* We can't reassociate floating-point unless -fassociative-math
1896 or fixed-point plus or minus because of saturation to +-Inf. */
1897 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1898 && !FIXED_POINT_TYPE_P (type))
1899
1900 /* Match patterns that allow contracting a plus-minus pair
1901 irrespective of overflow issues. */
1902 /* (A +- B) - A -> +- B */
1903 /* (A +- B) -+ B -> A */
1904 /* A - (A +- B) -> -+ B */
1905 /* A +- (B -+ A) -> +- B */
1906 (simplify
1907 (minus (plus:c @0 @1) @0)
1908 @1)
1909 (simplify
1910 (minus (minus @0 @1) @0)
1911 (negate @1))
1912 (simplify
1913 (plus:c (minus @0 @1) @1)
1914 @0)
1915 (simplify
1916 (minus @0 (plus:c @0 @1))
1917 (negate @1))
1918 (simplify
1919 (minus @0 (minus @0 @1))
1920 @1)
1921 /* (A +- B) + (C - A) -> C +- B */
1922 /* (A + B) - (A - C) -> B + C */
1923 /* More cases are handled with comparisons. */
1924 (simplify
1925 (plus:c (plus:c @0 @1) (minus @2 @0))
1926 (plus @2 @1))
1927 (simplify
1928 (plus:c (minus @0 @1) (minus @2 @0))
1929 (minus @2 @1))
1930 (simplify
1931 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1932 (if (TYPE_OVERFLOW_UNDEFINED (type)
1933 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1934 (pointer_diff @2 @1)))
1935 (simplify
1936 (minus (plus:c @0 @1) (minus @0 @2))
1937 (plus @1 @2))
1938
1939 /* (A +- CST1) +- CST2 -> A + CST3
1940 Use view_convert because it is safe for vectors and equivalent for
1941 scalars. */
1942 (for outer_op (plus minus)
1943 (for inner_op (plus minus)
1944 neg_inner_op (minus plus)
1945 (simplify
1946 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1947 CONSTANT_CLASS_P@2)
1948 /* If one of the types wraps, use that one. */
1949 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1950 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1951 forever if something doesn't simplify into a constant. */
1952 (if (!CONSTANT_CLASS_P (@0))
1953 (if (outer_op == PLUS_EXPR)
1954 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1955 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1956 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1957 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1958 (if (outer_op == PLUS_EXPR)
1959 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1960 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1961 /* If the constant operation overflows we cannot do the transform
1962 directly as we would introduce undefined overflow, for example
1963 with (a - 1) + INT_MIN. */
1964 (if (types_match (type, @0))
1965 (with { tree cst = const_binop (outer_op == inner_op
1966 ? PLUS_EXPR : MINUS_EXPR,
1967 type, @1, @2); }
1968 (if (cst && !TREE_OVERFLOW (cst))
1969 (inner_op @0 { cst; } )
1970 /* X+INT_MAX+1 is X-INT_MIN. */
1971 (if (INTEGRAL_TYPE_P (type) && cst
1972 && wi::to_wide (cst) == wi::min_value (type))
1973 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1974 /* Last resort, use some unsigned type. */
1975 (with { tree utype = unsigned_type_for (type); }
1976 (if (utype)
1977 (view_convert (inner_op
1978 (view_convert:utype @0)
1979 (view_convert:utype
1980 { drop_tree_overflow (cst); }))))))))))))))
1981
1982 /* (CST1 - A) +- CST2 -> CST3 - A */
1983 (for outer_op (plus minus)
1984 (simplify
1985 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1986 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1987 (if (cst && !TREE_OVERFLOW (cst))
1988 (minus { cst; } @0)))))
1989
1990 /* CST1 - (CST2 - A) -> CST3 + A */
1991 (simplify
1992 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1993 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1994 (if (cst && !TREE_OVERFLOW (cst))
1995 (plus { cst; } @0))))
1996
1997 /* ~A + A -> -1 */
1998 (simplify
1999 (plus:c (bit_not @0) @0)
2000 (if (!TYPE_OVERFLOW_TRAPS (type))
2001 { build_all_ones_cst (type); }))
2002
2003 /* ~A + 1 -> -A */
2004 (simplify
2005 (plus (convert? (bit_not @0)) integer_each_onep)
2006 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2007 (negate (convert @0))))
2008
2009 /* -A - 1 -> ~A */
2010 (simplify
2011 (minus (convert? (negate @0)) integer_each_onep)
2012 (if (!TYPE_OVERFLOW_TRAPS (type)
2013 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
2014 (bit_not (convert @0))))
2015
2016 /* -1 - A -> ~A */
2017 (simplify
2018 (minus integer_all_onesp @0)
2019 (bit_not @0))
2020
2021 /* (T)(P + A) - (T)P -> (T) A */
2022 (simplify
2023 (minus (convert (plus:c @@0 @1))
2024 (convert? @0))
2025 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2026 /* For integer types, if A has a smaller type
2027 than T the result depends on the possible
2028 overflow in P + A.
2029 E.g. T=size_t, A=(unsigned)429497295, P>0.
2030 However, if an overflow in P + A would cause
2031 undefined behavior, we can assume that there
2032 is no overflow. */
2033 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2034 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2035 (convert @1)))
2036 (simplify
2037 (minus (convert (pointer_plus @@0 @1))
2038 (convert @0))
2039 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2040 /* For pointer types, if the conversion of A to the
2041 final type requires a sign- or zero-extension,
2042 then we have to punt - it is not defined which
2043 one is correct. */
2044 || (POINTER_TYPE_P (TREE_TYPE (@0))
2045 && TREE_CODE (@1) == INTEGER_CST
2046 && tree_int_cst_sign_bit (@1) == 0))
2047 (convert @1)))
2048 (simplify
2049 (pointer_diff (pointer_plus @@0 @1) @0)
2050 /* The second argument of pointer_plus must be interpreted as signed, and
2051 thus sign-extended if necessary. */
2052 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2053 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2054 second arg is unsigned even when we need to consider it as signed,
2055 we don't want to diagnose overflow here. */
2056 (convert (view_convert:stype @1))))
2057
2058 /* (T)P - (T)(P + A) -> -(T) A */
2059 (simplify
2060 (minus (convert? @0)
2061 (convert (plus:c @@0 @1)))
2062 (if (INTEGRAL_TYPE_P (type)
2063 && TYPE_OVERFLOW_UNDEFINED (type)
2064 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2065 (with { tree utype = unsigned_type_for (type); }
2066 (convert (negate (convert:utype @1))))
2067 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2068 /* For integer types, if A has a smaller type
2069 than T the result depends on the possible
2070 overflow in P + A.
2071 E.g. T=size_t, A=(unsigned)429497295, P>0.
2072 However, if an overflow in P + A would cause
2073 undefined behavior, we can assume that there
2074 is no overflow. */
2075 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2076 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2077 (negate (convert @1)))))
2078 (simplify
2079 (minus (convert @0)
2080 (convert (pointer_plus @@0 @1)))
2081 (if (INTEGRAL_TYPE_P (type)
2082 && TYPE_OVERFLOW_UNDEFINED (type)
2083 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2084 (with { tree utype = unsigned_type_for (type); }
2085 (convert (negate (convert:utype @1))))
2086 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2087 /* For pointer types, if the conversion of A to the
2088 final type requires a sign- or zero-extension,
2089 then we have to punt - it is not defined which
2090 one is correct. */
2091 || (POINTER_TYPE_P (TREE_TYPE (@0))
2092 && TREE_CODE (@1) == INTEGER_CST
2093 && tree_int_cst_sign_bit (@1) == 0))
2094 (negate (convert @1)))))
2095 (simplify
2096 (pointer_diff @0 (pointer_plus @@0 @1))
2097 /* The second argument of pointer_plus must be interpreted as signed, and
2098 thus sign-extended if necessary. */
2099 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2100 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2101 second arg is unsigned even when we need to consider it as signed,
2102 we don't want to diagnose overflow here. */
2103 (negate (convert (view_convert:stype @1)))))
2104
2105 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2106 (simplify
2107 (minus (convert (plus:c @@0 @1))
2108 (convert (plus:c @0 @2)))
2109 (if (INTEGRAL_TYPE_P (type)
2110 && TYPE_OVERFLOW_UNDEFINED (type)
2111 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2112 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2113 (with { tree utype = unsigned_type_for (type); }
2114 (convert (minus (convert:utype @1) (convert:utype @2))))
2115 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2116 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2117 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2118 /* For integer types, if A has a smaller type
2119 than T the result depends on the possible
2120 overflow in P + A.
2121 E.g. T=size_t, A=(unsigned)429497295, P>0.
2122 However, if an overflow in P + A would cause
2123 undefined behavior, we can assume that there
2124 is no overflow. */
2125 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2126 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2127 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2128 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2129 (minus (convert @1) (convert @2)))))
2130 (simplify
2131 (minus (convert (pointer_plus @@0 @1))
2132 (convert (pointer_plus @0 @2)))
2133 (if (INTEGRAL_TYPE_P (type)
2134 && TYPE_OVERFLOW_UNDEFINED (type)
2135 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2136 (with { tree utype = unsigned_type_for (type); }
2137 (convert (minus (convert:utype @1) (convert:utype @2))))
2138 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2139 /* For pointer types, if the conversion of A to the
2140 final type requires a sign- or zero-extension,
2141 then we have to punt - it is not defined which
2142 one is correct. */
2143 || (POINTER_TYPE_P (TREE_TYPE (@0))
2144 && TREE_CODE (@1) == INTEGER_CST
2145 && tree_int_cst_sign_bit (@1) == 0
2146 && TREE_CODE (@2) == INTEGER_CST
2147 && tree_int_cst_sign_bit (@2) == 0))
2148 (minus (convert @1) (convert @2)))))
2149 (simplify
2150 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2151 /* The second argument of pointer_plus must be interpreted as signed, and
2152 thus sign-extended if necessary. */
2153 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2154 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2155 second arg is unsigned even when we need to consider it as signed,
2156 we don't want to diagnose overflow here. */
2157 (minus (convert (view_convert:stype @1))
2158 (convert (view_convert:stype @2)))))))
2159
2160 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2161 Modeled after fold_plusminus_mult_expr. */
2162 (if (!TYPE_SATURATING (type)
2163 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2164 (for plusminus (plus minus)
2165 (simplify
2166 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2167 (if ((!ANY_INTEGRAL_TYPE_P (type)
2168 || TYPE_OVERFLOW_WRAPS (type)
2169 || (INTEGRAL_TYPE_P (type)
2170 && tree_expr_nonzero_p (@0)
2171 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2172 /* If @1 +- @2 is constant require a hard single-use on either
2173 original operand (but not on both). */
2174 && (single_use (@3) || single_use (@4)))
2175 (mult (plusminus @1 @2) @0)))
2176 /* We cannot generate constant 1 for fract. */
2177 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2178 (simplify
2179 (plusminus @0 (mult:c@3 @0 @2))
2180 (if ((!ANY_INTEGRAL_TYPE_P (type)
2181 || TYPE_OVERFLOW_WRAPS (type)
2182 || (INTEGRAL_TYPE_P (type)
2183 && tree_expr_nonzero_p (@0)
2184 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2185 && single_use (@3))
2186 (mult (plusminus { build_one_cst (type); } @2) @0)))
2187 (simplify
2188 (plusminus (mult:c@3 @0 @2) @0)
2189 (if ((!ANY_INTEGRAL_TYPE_P (type)
2190 || TYPE_OVERFLOW_WRAPS (type)
2191 || (INTEGRAL_TYPE_P (type)
2192 && tree_expr_nonzero_p (@0)
2193 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2194 && single_use (@3))
2195 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2196
2197 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2198
2199 (for minmax (min max FMIN_ALL FMAX_ALL)
2200 (simplify
2201 (minmax @0 @0)
2202 @0))
2203 /* min(max(x,y),y) -> y. */
2204 (simplify
2205 (min:c (max:c @0 @1) @1)
2206 @1)
2207 /* max(min(x,y),y) -> y. */
2208 (simplify
2209 (max:c (min:c @0 @1) @1)
2210 @1)
2211 /* max(a,-a) -> abs(a). */
2212 (simplify
2213 (max:c @0 (negate @0))
2214 (if (TREE_CODE (type) != COMPLEX_TYPE
2215 && (! ANY_INTEGRAL_TYPE_P (type)
2216 || TYPE_OVERFLOW_UNDEFINED (type)))
2217 (abs @0)))
2218 /* min(a,-a) -> -abs(a). */
2219 (simplify
2220 (min:c @0 (negate @0))
2221 (if (TREE_CODE (type) != COMPLEX_TYPE
2222 && (! ANY_INTEGRAL_TYPE_P (type)
2223 || TYPE_OVERFLOW_UNDEFINED (type)))
2224 (negate (abs @0))))
2225 (simplify
2226 (min @0 @1)
2227 (switch
2228 (if (INTEGRAL_TYPE_P (type)
2229 && TYPE_MIN_VALUE (type)
2230 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2231 @1)
2232 (if (INTEGRAL_TYPE_P (type)
2233 && TYPE_MAX_VALUE (type)
2234 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2235 @0)))
2236 (simplify
2237 (max @0 @1)
2238 (switch
2239 (if (INTEGRAL_TYPE_P (type)
2240 && TYPE_MAX_VALUE (type)
2241 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2242 @1)
2243 (if (INTEGRAL_TYPE_P (type)
2244 && TYPE_MIN_VALUE (type)
2245 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2246 @0)))
2247
2248 /* max (a, a + CST) -> a + CST where CST is positive. */
2249 /* max (a, a + CST) -> a where CST is negative. */
2250 (simplify
2251 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2252 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2253 (if (tree_int_cst_sgn (@1) > 0)
2254 @2
2255 @0)))
2256
2257 /* min (a, a + CST) -> a where CST is positive. */
2258 /* min (a, a + CST) -> a + CST where CST is negative. */
2259 (simplify
2260 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2261 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2262 (if (tree_int_cst_sgn (@1) > 0)
2263 @0
2264 @2)))
2265
2266 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2267 and the outer convert demotes the expression back to x's type. */
2268 (for minmax (min max)
2269 (simplify
2270 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2271 (if (INTEGRAL_TYPE_P (type)
2272 && types_match (@1, type) && int_fits_type_p (@2, type)
2273 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2274 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2275 (minmax @1 (convert @2)))))
2276
2277 (for minmax (FMIN_ALL FMAX_ALL)
2278 /* If either argument is NaN, return the other one. Avoid the
2279 transformation if we get (and honor) a signalling NaN. */
2280 (simplify
2281 (minmax:c @0 REAL_CST@1)
2282 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2283 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2284 @0)))
2285 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2286 functions to return the numeric arg if the other one is NaN.
2287 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2288 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2289 worry about it either. */
2290 (if (flag_finite_math_only)
2291 (simplify
2292 (FMIN_ALL @0 @1)
2293 (min @0 @1))
2294 (simplify
2295 (FMAX_ALL @0 @1)
2296 (max @0 @1)))
2297 /* min (-A, -B) -> -max (A, B) */
2298 (for minmax (min max FMIN_ALL FMAX_ALL)
2299 maxmin (max min FMAX_ALL FMIN_ALL)
2300 (simplify
2301 (minmax (negate:s@2 @0) (negate:s@3 @1))
2302 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2303 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2304 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2305 (negate (maxmin @0 @1)))))
2306 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2307 MAX (~X, ~Y) -> ~MIN (X, Y) */
2308 (for minmax (min max)
2309 maxmin (max min)
2310 (simplify
2311 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2312 (bit_not (maxmin @0 @1))))
2313
2314 /* MIN (X, Y) == X -> X <= Y */
2315 (for minmax (min min max max)
2316 cmp (eq ne eq ne )
2317 out (le gt ge lt )
2318 (simplify
2319 (cmp:c (minmax:c @0 @1) @0)
2320 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2321 (out @0 @1))))
2322 /* MIN (X, 5) == 0 -> X == 0
2323 MIN (X, 5) == 7 -> false */
2324 (for cmp (eq ne)
2325 (simplify
2326 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2327 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2328 TYPE_SIGN (TREE_TYPE (@0))))
2329 { constant_boolean_node (cmp == NE_EXPR, type); }
2330 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2331 TYPE_SIGN (TREE_TYPE (@0))))
2332 (cmp @0 @2)))))
2333 (for cmp (eq ne)
2334 (simplify
2335 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2336 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2337 TYPE_SIGN (TREE_TYPE (@0))))
2338 { constant_boolean_node (cmp == NE_EXPR, type); }
2339 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2340 TYPE_SIGN (TREE_TYPE (@0))))
2341 (cmp @0 @2)))))
2342 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2343 (for minmax (min min max max min min max max )
2344 cmp (lt le gt ge gt ge lt le )
2345 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2346 (simplify
2347 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2348 (comb (cmp @0 @2) (cmp @1 @2))))
2349
2350 /* Simplifications of shift and rotates. */
2351
2352 (for rotate (lrotate rrotate)
2353 (simplify
2354 (rotate integer_all_onesp@0 @1)
2355 @0))
2356
2357 /* Optimize -1 >> x for arithmetic right shifts. */
2358 (simplify
2359 (rshift integer_all_onesp@0 @1)
2360 (if (!TYPE_UNSIGNED (type)
2361 && tree_expr_nonnegative_p (@1))
2362 @0))
2363
2364 /* Optimize (x >> c) << c into x & (-1<<c). */
2365 (simplify
2366 (lshift (rshift @0 INTEGER_CST@1) @1)
2367 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2368 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2369
2370 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2371 types. */
2372 (simplify
2373 (rshift (lshift @0 INTEGER_CST@1) @1)
2374 (if (TYPE_UNSIGNED (type)
2375 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2376 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2377
2378 (for shiftrotate (lrotate rrotate lshift rshift)
2379 (simplify
2380 (shiftrotate @0 integer_zerop)
2381 (non_lvalue @0))
2382 (simplify
2383 (shiftrotate integer_zerop@0 @1)
2384 @0)
2385 /* Prefer vector1 << scalar to vector1 << vector2
2386 if vector2 is uniform. */
2387 (for vec (VECTOR_CST CONSTRUCTOR)
2388 (simplify
2389 (shiftrotate @0 vec@1)
2390 (with { tree tem = uniform_vector_p (@1); }
2391 (if (tem)
2392 (shiftrotate @0 { tem; }))))))
2393
2394 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2395 Y is 0. Similarly for X >> Y. */
2396 #if GIMPLE
2397 (for shift (lshift rshift)
2398 (simplify
2399 (shift @0 SSA_NAME@1)
2400 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2401 (with {
2402 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2403 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2404 }
2405 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2406 @0)))))
2407 #endif
2408
2409 /* Rewrite an LROTATE_EXPR by a constant into an
2410 RROTATE_EXPR by a new constant. */
2411 (simplify
2412 (lrotate @0 INTEGER_CST@1)
2413 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2414 build_int_cst (TREE_TYPE (@1),
2415 element_precision (type)), @1); }))
2416
2417 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2418 (for op (lrotate rrotate rshift lshift)
2419 (simplify
2420 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2421 (with { unsigned int prec = element_precision (type); }
2422 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2423 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2424 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2425 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2426 (with { unsigned int low = (tree_to_uhwi (@1)
2427 + tree_to_uhwi (@2)); }
2428 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2429 being well defined. */
2430 (if (low >= prec)
2431 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2432 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2433 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2434 { build_zero_cst (type); }
2435 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2436 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2437
2438
2439 /* ((1 << A) & 1) != 0 -> A == 0
2440 ((1 << A) & 1) == 0 -> A != 0 */
2441 (for cmp (ne eq)
2442 icmp (eq ne)
2443 (simplify
2444 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2445 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2446
2447 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2448 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2449 if CST2 != 0. */
2450 (for cmp (ne eq)
2451 (simplify
2452 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2453 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2454 (if (cand < 0
2455 || (!integer_zerop (@2)
2456 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2457 { constant_boolean_node (cmp == NE_EXPR, type); }
2458 (if (!integer_zerop (@2)
2459 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2460 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2461
2462 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2463 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2464 if the new mask might be further optimized. */
2465 (for shift (lshift rshift)
2466 (simplify
2467 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2468 INTEGER_CST@2)
2469 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2470 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2471 && tree_fits_uhwi_p (@1)
2472 && tree_to_uhwi (@1) > 0
2473 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2474 (with
2475 {
2476 unsigned int shiftc = tree_to_uhwi (@1);
2477 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2478 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2479 tree shift_type = TREE_TYPE (@3);
2480 unsigned int prec;
2481
2482 if (shift == LSHIFT_EXPR)
2483 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2484 else if (shift == RSHIFT_EXPR
2485 && type_has_mode_precision_p (shift_type))
2486 {
2487 prec = TYPE_PRECISION (TREE_TYPE (@3));
2488 tree arg00 = @0;
2489 /* See if more bits can be proven as zero because of
2490 zero extension. */
2491 if (@3 != @0
2492 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2493 {
2494 tree inner_type = TREE_TYPE (@0);
2495 if (type_has_mode_precision_p (inner_type)
2496 && TYPE_PRECISION (inner_type) < prec)
2497 {
2498 prec = TYPE_PRECISION (inner_type);
2499 /* See if we can shorten the right shift. */
2500 if (shiftc < prec)
2501 shift_type = inner_type;
2502 /* Otherwise X >> C1 is all zeros, so we'll optimize
2503 it into (X, 0) later on by making sure zerobits
2504 is all ones. */
2505 }
2506 }
2507 zerobits = HOST_WIDE_INT_M1U;
2508 if (shiftc < prec)
2509 {
2510 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2511 zerobits <<= prec - shiftc;
2512 }
2513 /* For arithmetic shift if sign bit could be set, zerobits
2514 can contain actually sign bits, so no transformation is
2515 possible, unless MASK masks them all away. In that
2516 case the shift needs to be converted into logical shift. */
2517 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2518 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2519 {
2520 if ((mask & zerobits) == 0)
2521 shift_type = unsigned_type_for (TREE_TYPE (@3));
2522 else
2523 zerobits = 0;
2524 }
2525 }
2526 }
2527 /* ((X << 16) & 0xff00) is (X, 0). */
2528 (if ((mask & zerobits) == mask)
2529 { build_int_cst (type, 0); }
2530 (with { newmask = mask | zerobits; }
2531 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2532 (with
2533 {
2534 /* Only do the transformation if NEWMASK is some integer
2535 mode's mask. */
2536 for (prec = BITS_PER_UNIT;
2537 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2538 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2539 break;
2540 }
2541 (if (prec < HOST_BITS_PER_WIDE_INT
2542 || newmask == HOST_WIDE_INT_M1U)
2543 (with
2544 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2545 (if (!tree_int_cst_equal (newmaskt, @2))
2546 (if (shift_type != TREE_TYPE (@3))
2547 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2548 (bit_and @4 { newmaskt; })))))))))))))
2549
2550 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2551 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2552 (for shift (lshift rshift)
2553 (for bit_op (bit_and bit_xor bit_ior)
2554 (simplify
2555 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2556 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2557 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2558 (bit_op (shift (convert @0) @1) { mask; }))))))
2559
2560 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2561 (simplify
2562 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2563 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2564 && (element_precision (TREE_TYPE (@0))
2565 <= element_precision (TREE_TYPE (@1))
2566 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2567 (with
2568 { tree shift_type = TREE_TYPE (@0); }
2569 (convert (rshift (convert:shift_type @1) @2)))))
2570
2571 /* ~(~X >>r Y) -> X >>r Y
2572 ~(~X <<r Y) -> X <<r Y */
2573 (for rotate (lrotate rrotate)
2574 (simplify
2575 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2576 (if ((element_precision (TREE_TYPE (@0))
2577 <= element_precision (TREE_TYPE (@1))
2578 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2579 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2580 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2581 (with
2582 { tree rotate_type = TREE_TYPE (@0); }
2583 (convert (rotate (convert:rotate_type @1) @2))))))
2584
2585 /* Simplifications of conversions. */
2586
2587 /* Basic strip-useless-type-conversions / strip_nops. */
2588 (for cvt (convert view_convert float fix_trunc)
2589 (simplify
2590 (cvt @0)
2591 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2592 || (GENERIC && type == TREE_TYPE (@0)))
2593 @0)))
2594
2595 /* Contract view-conversions. */
2596 (simplify
2597 (view_convert (view_convert @0))
2598 (view_convert @0))
2599
2600 /* For integral conversions with the same precision or pointer
2601 conversions use a NOP_EXPR instead. */
2602 (simplify
2603 (view_convert @0)
2604 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2605 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2606 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2607 (convert @0)))
2608
2609 /* Strip inner integral conversions that do not change precision or size, or
2610 zero-extend while keeping the same size (for bool-to-char). */
2611 (simplify
2612 (view_convert (convert@0 @1))
2613 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2614 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2615 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2616 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2617 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2618 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2619 (view_convert @1)))
2620
2621 /* Simplify a view-converted empty constructor. */
2622 (simplify
2623 (view_convert CONSTRUCTOR@0)
2624 (if (TREE_CODE (@0) != SSA_NAME
2625 && CONSTRUCTOR_NELTS (@0) == 0)
2626 { build_zero_cst (type); }))
2627
2628 /* Re-association barriers around constants and other re-association
2629 barriers can be removed. */
2630 (simplify
2631 (paren CONSTANT_CLASS_P@0)
2632 @0)
2633 (simplify
2634 (paren (paren@1 @0))
2635 @1)
2636
2637 /* Handle cases of two conversions in a row. */
2638 (for ocvt (convert float fix_trunc)
2639 (for icvt (convert float)
2640 (simplify
2641 (ocvt (icvt@1 @0))
2642 (with
2643 {
2644 tree inside_type = TREE_TYPE (@0);
2645 tree inter_type = TREE_TYPE (@1);
2646 int inside_int = INTEGRAL_TYPE_P (inside_type);
2647 int inside_ptr = POINTER_TYPE_P (inside_type);
2648 int inside_float = FLOAT_TYPE_P (inside_type);
2649 int inside_vec = VECTOR_TYPE_P (inside_type);
2650 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2651 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2652 int inter_int = INTEGRAL_TYPE_P (inter_type);
2653 int inter_ptr = POINTER_TYPE_P (inter_type);
2654 int inter_float = FLOAT_TYPE_P (inter_type);
2655 int inter_vec = VECTOR_TYPE_P (inter_type);
2656 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2657 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2658 int final_int = INTEGRAL_TYPE_P (type);
2659 int final_ptr = POINTER_TYPE_P (type);
2660 int final_float = FLOAT_TYPE_P (type);
2661 int final_vec = VECTOR_TYPE_P (type);
2662 unsigned int final_prec = TYPE_PRECISION (type);
2663 int final_unsignedp = TYPE_UNSIGNED (type);
2664 }
2665 (switch
2666 /* In addition to the cases of two conversions in a row
2667 handled below, if we are converting something to its own
2668 type via an object of identical or wider precision, neither
2669 conversion is needed. */
2670 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2671 || (GENERIC
2672 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2673 && (((inter_int || inter_ptr) && final_int)
2674 || (inter_float && final_float))
2675 && inter_prec >= final_prec)
2676 (ocvt @0))
2677
2678 /* Likewise, if the intermediate and initial types are either both
2679 float or both integer, we don't need the middle conversion if the
2680 former is wider than the latter and doesn't change the signedness
2681 (for integers). Avoid this if the final type is a pointer since
2682 then we sometimes need the middle conversion. */
2683 (if (((inter_int && inside_int) || (inter_float && inside_float))
2684 && (final_int || final_float)
2685 && inter_prec >= inside_prec
2686 && (inter_float || inter_unsignedp == inside_unsignedp))
2687 (ocvt @0))
2688
2689 /* If we have a sign-extension of a zero-extended value, we can
2690 replace that by a single zero-extension. Likewise if the
2691 final conversion does not change precision we can drop the
2692 intermediate conversion. */
2693 (if (inside_int && inter_int && final_int
2694 && ((inside_prec < inter_prec && inter_prec < final_prec
2695 && inside_unsignedp && !inter_unsignedp)
2696 || final_prec == inter_prec))
2697 (ocvt @0))
2698
2699 /* Two conversions in a row are not needed unless:
2700 - some conversion is floating-point (overstrict for now), or
2701 - some conversion is a vector (overstrict for now), or
2702 - the intermediate type is narrower than both initial and
2703 final, or
2704 - the intermediate type and innermost type differ in signedness,
2705 and the outermost type is wider than the intermediate, or
2706 - the initial type is a pointer type and the precisions of the
2707 intermediate and final types differ, or
2708 - the final type is a pointer type and the precisions of the
2709 initial and intermediate types differ. */
2710 (if (! inside_float && ! inter_float && ! final_float
2711 && ! inside_vec && ! inter_vec && ! final_vec
2712 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2713 && ! (inside_int && inter_int
2714 && inter_unsignedp != inside_unsignedp
2715 && inter_prec < final_prec)
2716 && ((inter_unsignedp && inter_prec > inside_prec)
2717 == (final_unsignedp && final_prec > inter_prec))
2718 && ! (inside_ptr && inter_prec != final_prec)
2719 && ! (final_ptr && inside_prec != inter_prec))
2720 (ocvt @0))
2721
2722 /* A truncation to an unsigned type (a zero-extension) should be
2723 canonicalized as bitwise and of a mask. */
2724 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2725 && final_int && inter_int && inside_int
2726 && final_prec == inside_prec
2727 && final_prec > inter_prec
2728 && inter_unsignedp)
2729 (convert (bit_and @0 { wide_int_to_tree
2730 (inside_type,
2731 wi::mask (inter_prec, false,
2732 TYPE_PRECISION (inside_type))); })))
2733
2734 /* If we are converting an integer to a floating-point that can
2735 represent it exactly and back to an integer, we can skip the
2736 floating-point conversion. */
2737 (if (GIMPLE /* PR66211 */
2738 && inside_int && inter_float && final_int &&
2739 (unsigned) significand_size (TYPE_MODE (inter_type))
2740 >= inside_prec - !inside_unsignedp)
2741 (convert @0)))))))
2742
2743 /* If we have a narrowing conversion to an integral type that is fed by a
2744 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2745 masks off bits outside the final type (and nothing else). */
2746 (simplify
2747 (convert (bit_and @0 INTEGER_CST@1))
2748 (if (INTEGRAL_TYPE_P (type)
2749 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2750 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2751 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2752 TYPE_PRECISION (type)), 0))
2753 (convert @0)))
2754
2755
2756 /* (X /[ex] A) * A -> X. */
2757 (simplify
2758 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2759 (convert @0))
2760
2761 /* Simplify (A / B) * B + (A % B) -> A. */
2762 (for div (trunc_div ceil_div floor_div round_div)
2763 mod (trunc_mod ceil_mod floor_mod round_mod)
2764 (simplify
2765 (plus:c (mult:c (div @0 @1) @1) (mod @0 @1))
2766 @0))
2767
2768 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2769 (for op (plus minus)
2770 (simplify
2771 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2772 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2773 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2774 (with
2775 {
2776 wi::overflow_type overflow;
2777 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2778 TYPE_SIGN (type), &overflow);
2779 }
2780 (if (types_match (type, TREE_TYPE (@2))
2781 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2782 (op @0 { wide_int_to_tree (type, mul); })
2783 (with { tree utype = unsigned_type_for (type); }
2784 (convert (op (convert:utype @0)
2785 (mult (convert:utype @1) (convert:utype @2))))))))))
2786
2787 /* Canonicalization of binary operations. */
2788
2789 /* Convert X + -C into X - C. */
2790 (simplify
2791 (plus @0 REAL_CST@1)
2792 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2793 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2794 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2795 (minus @0 { tem; })))))
2796
2797 /* Convert x+x into x*2. */
2798 (simplify
2799 (plus @0 @0)
2800 (if (SCALAR_FLOAT_TYPE_P (type))
2801 (mult @0 { build_real (type, dconst2); })
2802 (if (INTEGRAL_TYPE_P (type))
2803 (mult @0 { build_int_cst (type, 2); }))))
2804
2805 /* 0 - X -> -X. */
2806 (simplify
2807 (minus integer_zerop @1)
2808 (negate @1))
2809 (simplify
2810 (pointer_diff integer_zerop @1)
2811 (negate (convert @1)))
2812
2813 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2814 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2815 (-ARG1 + ARG0) reduces to -ARG1. */
2816 (simplify
2817 (minus real_zerop@0 @1)
2818 (if (fold_real_zero_addition_p (type, @0, 0))
2819 (negate @1)))
2820
2821 /* Transform x * -1 into -x. */
2822 (simplify
2823 (mult @0 integer_minus_onep)
2824 (negate @0))
2825
2826 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2827 signed overflow for CST != 0 && CST != -1. */
2828 (simplify
2829 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2830 (if (TREE_CODE (@2) != INTEGER_CST
2831 && single_use (@3)
2832 && !integer_zerop (@1) && !integer_minus_onep (@1))
2833 (mult (mult @0 @2) @1)))
2834
2835 /* True if we can easily extract the real and imaginary parts of a complex
2836 number. */
2837 (match compositional_complex
2838 (convert? (complex @0 @1)))
2839
2840 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2841 (simplify
2842 (complex (realpart @0) (imagpart @0))
2843 @0)
2844 (simplify
2845 (realpart (complex @0 @1))
2846 @0)
2847 (simplify
2848 (imagpart (complex @0 @1))
2849 @1)
2850
2851 /* Sometimes we only care about half of a complex expression. */
2852 (simplify
2853 (realpart (convert?:s (conj:s @0)))
2854 (convert (realpart @0)))
2855 (simplify
2856 (imagpart (convert?:s (conj:s @0)))
2857 (convert (negate (imagpart @0))))
2858 (for part (realpart imagpart)
2859 (for op (plus minus)
2860 (simplify
2861 (part (convert?:s@2 (op:s @0 @1)))
2862 (convert (op (part @0) (part @1))))))
2863 (simplify
2864 (realpart (convert?:s (CEXPI:s @0)))
2865 (convert (COS @0)))
2866 (simplify
2867 (imagpart (convert?:s (CEXPI:s @0)))
2868 (convert (SIN @0)))
2869
2870 /* conj(conj(x)) -> x */
2871 (simplify
2872 (conj (convert? (conj @0)))
2873 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2874 (convert @0)))
2875
2876 /* conj({x,y}) -> {x,-y} */
2877 (simplify
2878 (conj (convert?:s (complex:s @0 @1)))
2879 (with { tree itype = TREE_TYPE (type); }
2880 (complex (convert:itype @0) (negate (convert:itype @1)))))
2881
2882 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2883 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2884 (simplify
2885 (bswap (bswap @0))
2886 @0)
2887 (simplify
2888 (bswap (bit_not (bswap @0)))
2889 (bit_not @0))
2890 (for bitop (bit_xor bit_ior bit_and)
2891 (simplify
2892 (bswap (bitop:c (bswap @0) @1))
2893 (bitop @0 (bswap @1)))))
2894
2895
2896 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2897
2898 /* Simplify constant conditions.
2899 Only optimize constant conditions when the selected branch
2900 has the same type as the COND_EXPR. This avoids optimizing
2901 away "c ? x : throw", where the throw has a void type.
2902 Note that we cannot throw away the fold-const.c variant nor
2903 this one as we depend on doing this transform before possibly
2904 A ? B : B -> B triggers and the fold-const.c one can optimize
2905 0 ? A : B to B even if A has side-effects. Something
2906 genmatch cannot handle. */
2907 (simplify
2908 (cond INTEGER_CST@0 @1 @2)
2909 (if (integer_zerop (@0))
2910 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2911 @2)
2912 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2913 @1)))
2914 (simplify
2915 (vec_cond VECTOR_CST@0 @1 @2)
2916 (if (integer_all_onesp (@0))
2917 @1
2918 (if (integer_zerop (@0))
2919 @2)))
2920
2921 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2922 be extended. */
2923 /* This pattern implements two kinds simplification:
2924
2925 Case 1)
2926 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2927 1) Conversions are type widening from smaller type.
2928 2) Const c1 equals to c2 after canonicalizing comparison.
2929 3) Comparison has tree code LT, LE, GT or GE.
2930 This specific pattern is needed when (cmp (convert x) c) may not
2931 be simplified by comparison patterns because of multiple uses of
2932 x. It also makes sense here because simplifying across multiple
2933 referred var is always benefitial for complicated cases.
2934
2935 Case 2)
2936 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2937 (for cmp (lt le gt ge eq)
2938 (simplify
2939 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2940 (with
2941 {
2942 tree from_type = TREE_TYPE (@1);
2943 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2944 enum tree_code code = ERROR_MARK;
2945
2946 if (INTEGRAL_TYPE_P (from_type)
2947 && int_fits_type_p (@2, from_type)
2948 && (types_match (c1_type, from_type)
2949 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2950 && (TYPE_UNSIGNED (from_type)
2951 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2952 && (types_match (c2_type, from_type)
2953 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2954 && (TYPE_UNSIGNED (from_type)
2955 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2956 {
2957 if (cmp != EQ_EXPR)
2958 {
2959 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2960 {
2961 /* X <= Y - 1 equals to X < Y. */
2962 if (cmp == LE_EXPR)
2963 code = LT_EXPR;
2964 /* X > Y - 1 equals to X >= Y. */
2965 if (cmp == GT_EXPR)
2966 code = GE_EXPR;
2967 }
2968 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2969 {
2970 /* X < Y + 1 equals to X <= Y. */
2971 if (cmp == LT_EXPR)
2972 code = LE_EXPR;
2973 /* X >= Y + 1 equals to X > Y. */
2974 if (cmp == GE_EXPR)
2975 code = GT_EXPR;
2976 }
2977 if (code != ERROR_MARK
2978 || wi::to_widest (@2) == wi::to_widest (@3))
2979 {
2980 if (cmp == LT_EXPR || cmp == LE_EXPR)
2981 code = MIN_EXPR;
2982 if (cmp == GT_EXPR || cmp == GE_EXPR)
2983 code = MAX_EXPR;
2984 }
2985 }
2986 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2987 else if (int_fits_type_p (@3, from_type))
2988 code = EQ_EXPR;
2989 }
2990 }
2991 (if (code == MAX_EXPR)
2992 (convert (max @1 (convert @2)))
2993 (if (code == MIN_EXPR)
2994 (convert (min @1 (convert @2)))
2995 (if (code == EQ_EXPR)
2996 (convert (cond (eq @1 (convert @3))
2997 (convert:from_type @3) (convert:from_type @2)))))))))
2998
2999 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
3000
3001 1) OP is PLUS or MINUS.
3002 2) CMP is LT, LE, GT or GE.
3003 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
3004
3005 This pattern also handles special cases like:
3006
3007 A) Operand x is a unsigned to signed type conversion and c1 is
3008 integer zero. In this case,
3009 (signed type)x < 0 <=> x > MAX_VAL(signed type)
3010 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
3011 B) Const c1 may not equal to (C3 op' C2). In this case we also
3012 check equality for (c1+1) and (c1-1) by adjusting comparison
3013 code.
3014
3015 TODO: Though signed type is handled by this pattern, it cannot be
3016 simplified at the moment because C standard requires additional
3017 type promotion. In order to match&simplify it here, the IR needs
3018 to be cleaned up by other optimizers, i.e, VRP. */
3019 (for op (plus minus)
3020 (for cmp (lt le gt ge)
3021 (simplify
3022 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
3023 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
3024 (if (types_match (from_type, to_type)
3025 /* Check if it is special case A). */
3026 || (TYPE_UNSIGNED (from_type)
3027 && !TYPE_UNSIGNED (to_type)
3028 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
3029 && integer_zerop (@1)
3030 && (cmp == LT_EXPR || cmp == GE_EXPR)))
3031 (with
3032 {
3033 wi::overflow_type overflow = wi::OVF_NONE;
3034 enum tree_code code, cmp_code = cmp;
3035 wide_int real_c1;
3036 wide_int c1 = wi::to_wide (@1);
3037 wide_int c2 = wi::to_wide (@2);
3038 wide_int c3 = wi::to_wide (@3);
3039 signop sgn = TYPE_SIGN (from_type);
3040
3041 /* Handle special case A), given x of unsigned type:
3042 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3043 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3044 if (!types_match (from_type, to_type))
3045 {
3046 if (cmp_code == LT_EXPR)
3047 cmp_code = GT_EXPR;
3048 if (cmp_code == GE_EXPR)
3049 cmp_code = LE_EXPR;
3050 c1 = wi::max_value (to_type);
3051 }
3052 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3053 compute (c3 op' c2) and check if it equals to c1 with op' being
3054 the inverted operator of op. Make sure overflow doesn't happen
3055 if it is undefined. */
3056 if (op == PLUS_EXPR)
3057 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3058 else
3059 real_c1 = wi::add (c3, c2, sgn, &overflow);
3060
3061 code = cmp_code;
3062 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3063 {
3064 /* Check if c1 equals to real_c1. Boundary condition is handled
3065 by adjusting comparison operation if necessary. */
3066 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3067 && !overflow)
3068 {
3069 /* X <= Y - 1 equals to X < Y. */
3070 if (cmp_code == LE_EXPR)
3071 code = LT_EXPR;
3072 /* X > Y - 1 equals to X >= Y. */
3073 if (cmp_code == GT_EXPR)
3074 code = GE_EXPR;
3075 }
3076 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3077 && !overflow)
3078 {
3079 /* X < Y + 1 equals to X <= Y. */
3080 if (cmp_code == LT_EXPR)
3081 code = LE_EXPR;
3082 /* X >= Y + 1 equals to X > Y. */
3083 if (cmp_code == GE_EXPR)
3084 code = GT_EXPR;
3085 }
3086 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3087 {
3088 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3089 code = MIN_EXPR;
3090 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3091 code = MAX_EXPR;
3092 }
3093 }
3094 }
3095 (if (code == MAX_EXPR)
3096 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3097 { wide_int_to_tree (from_type, c2); })
3098 (if (code == MIN_EXPR)
3099 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3100 { wide_int_to_tree (from_type, c2); })))))))))
3101
3102 (for cnd (cond vec_cond)
3103 /* A ? B : (A ? X : C) -> A ? B : C. */
3104 (simplify
3105 (cnd @0 (cnd @0 @1 @2) @3)
3106 (cnd @0 @1 @3))
3107 (simplify
3108 (cnd @0 @1 (cnd @0 @2 @3))
3109 (cnd @0 @1 @3))
3110 /* A ? B : (!A ? C : X) -> A ? B : C. */
3111 /* ??? This matches embedded conditions open-coded because genmatch
3112 would generate matching code for conditions in separate stmts only.
3113 The following is still important to merge then and else arm cases
3114 from if-conversion. */
3115 (simplify
3116 (cnd @0 @1 (cnd @2 @3 @4))
3117 (if (inverse_conditions_p (@0, @2))
3118 (cnd @0 @1 @3)))
3119 (simplify
3120 (cnd @0 (cnd @1 @2 @3) @4)
3121 (if (inverse_conditions_p (@0, @1))
3122 (cnd @0 @3 @4)))
3123
3124 /* A ? B : B -> B. */
3125 (simplify
3126 (cnd @0 @1 @1)
3127 @1)
3128
3129 /* !A ? B : C -> A ? C : B. */
3130 (simplify
3131 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3132 (cnd @0 @2 @1)))
3133
3134 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3135 return all -1 or all 0 results. */
3136 /* ??? We could instead convert all instances of the vec_cond to negate,
3137 but that isn't necessarily a win on its own. */
3138 (simplify
3139 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3140 (if (VECTOR_TYPE_P (type)
3141 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3142 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3143 && (TYPE_MODE (TREE_TYPE (type))
3144 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3145 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3146
3147 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3148 (simplify
3149 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3150 (if (VECTOR_TYPE_P (type)
3151 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3152 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3153 && (TYPE_MODE (TREE_TYPE (type))
3154 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3155 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3156
3157
3158 /* Simplifications of comparisons. */
3159
3160 /* See if we can reduce the magnitude of a constant involved in a
3161 comparison by changing the comparison code. This is a canonicalization
3162 formerly done by maybe_canonicalize_comparison_1. */
3163 (for cmp (le gt)
3164 acmp (lt ge)
3165 (simplify
3166 (cmp @0 uniform_integer_cst_p@1)
3167 (with { tree cst = uniform_integer_cst_p (@1); }
3168 (if (tree_int_cst_sgn (cst) == -1)
3169 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3170 wide_int_to_tree (TREE_TYPE (cst),
3171 wi::to_wide (cst)
3172 + 1)); })))))
3173 (for cmp (ge lt)
3174 acmp (gt le)
3175 (simplify
3176 (cmp @0 uniform_integer_cst_p@1)
3177 (with { tree cst = uniform_integer_cst_p (@1); }
3178 (if (tree_int_cst_sgn (cst) == 1)
3179 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3180 wide_int_to_tree (TREE_TYPE (cst),
3181 wi::to_wide (cst) - 1)); })))))
3182
3183 /* We can simplify a logical negation of a comparison to the
3184 inverted comparison. As we cannot compute an expression
3185 operator using invert_tree_comparison we have to simulate
3186 that with expression code iteration. */
3187 (for cmp (tcc_comparison)
3188 icmp (inverted_tcc_comparison)
3189 ncmp (inverted_tcc_comparison_with_nans)
3190 /* Ideally we'd like to combine the following two patterns
3191 and handle some more cases by using
3192 (logical_inverted_value (cmp @0 @1))
3193 here but for that genmatch would need to "inline" that.
3194 For now implement what forward_propagate_comparison did. */
3195 (simplify
3196 (bit_not (cmp @0 @1))
3197 (if (VECTOR_TYPE_P (type)
3198 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3199 /* Comparison inversion may be impossible for trapping math,
3200 invert_tree_comparison will tell us. But we can't use
3201 a computed operator in the replacement tree thus we have
3202 to play the trick below. */
3203 (with { enum tree_code ic = invert_tree_comparison
3204 (cmp, HONOR_NANS (@0)); }
3205 (if (ic == icmp)
3206 (icmp @0 @1)
3207 (if (ic == ncmp)
3208 (ncmp @0 @1))))))
3209 (simplify
3210 (bit_xor (cmp @0 @1) integer_truep)
3211 (with { enum tree_code ic = invert_tree_comparison
3212 (cmp, HONOR_NANS (@0)); }
3213 (if (ic == icmp)
3214 (icmp @0 @1)
3215 (if (ic == ncmp)
3216 (ncmp @0 @1))))))
3217
3218 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3219 ??? The transformation is valid for the other operators if overflow
3220 is undefined for the type, but performing it here badly interacts
3221 with the transformation in fold_cond_expr_with_comparison which
3222 attempts to synthetize ABS_EXPR. */
3223 (for cmp (eq ne)
3224 (for sub (minus pointer_diff)
3225 (simplify
3226 (cmp (sub@2 @0 @1) integer_zerop)
3227 (if (single_use (@2))
3228 (cmp @0 @1)))))
3229
3230 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3231 signed arithmetic case. That form is created by the compiler
3232 often enough for folding it to be of value. One example is in
3233 computing loop trip counts after Operator Strength Reduction. */
3234 (for cmp (simple_comparison)
3235 scmp (swapped_simple_comparison)
3236 (simplify
3237 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3238 /* Handle unfolded multiplication by zero. */
3239 (if (integer_zerop (@1))
3240 (cmp @1 @2)
3241 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3242 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3243 && single_use (@3))
3244 /* If @1 is negative we swap the sense of the comparison. */
3245 (if (tree_int_cst_sgn (@1) < 0)
3246 (scmp @0 @2)
3247 (cmp @0 @2))))))
3248
3249 /* Simplify comparison of something with itself. For IEEE
3250 floating-point, we can only do some of these simplifications. */
3251 (for cmp (eq ge le)
3252 (simplify
3253 (cmp @0 @0)
3254 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3255 || ! HONOR_NANS (@0))
3256 { constant_boolean_node (true, type); }
3257 (if (cmp != EQ_EXPR)
3258 (eq @0 @0)))))
3259 (for cmp (ne gt lt)
3260 (simplify
3261 (cmp @0 @0)
3262 (if (cmp != NE_EXPR
3263 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3264 || ! HONOR_NANS (@0))
3265 { constant_boolean_node (false, type); })))
3266 (for cmp (unle unge uneq)
3267 (simplify
3268 (cmp @0 @0)
3269 { constant_boolean_node (true, type); }))
3270 (for cmp (unlt ungt)
3271 (simplify
3272 (cmp @0 @0)
3273 (unordered @0 @0)))
3274 (simplify
3275 (ltgt @0 @0)
3276 (if (!flag_trapping_math)
3277 { constant_boolean_node (false, type); }))
3278
3279 /* Fold ~X op ~Y as Y op X. */
3280 (for cmp (simple_comparison)
3281 (simplify
3282 (cmp (bit_not@2 @0) (bit_not@3 @1))
3283 (if (single_use (@2) && single_use (@3))
3284 (cmp @1 @0))))
3285
3286 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3287 (for cmp (simple_comparison)
3288 scmp (swapped_simple_comparison)
3289 (simplify
3290 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3291 (if (single_use (@2)
3292 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3293 (scmp @0 (bit_not @1)))))
3294
3295 (for cmp (simple_comparison)
3296 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3297 (simplify
3298 (cmp (convert@2 @0) (convert? @1))
3299 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3300 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3301 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3302 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3303 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3304 (with
3305 {
3306 tree type1 = TREE_TYPE (@1);
3307 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3308 {
3309 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3310 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3311 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3312 type1 = float_type_node;
3313 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3314 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3315 type1 = double_type_node;
3316 }
3317 tree newtype
3318 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3319 ? TREE_TYPE (@0) : type1);
3320 }
3321 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3322 (cmp (convert:newtype @0) (convert:newtype @1))))))
3323
3324 (simplify
3325 (cmp @0 REAL_CST@1)
3326 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3327 (switch
3328 /* a CMP (-0) -> a CMP 0 */
3329 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3330 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3331 /* x != NaN is always true, other ops are always false. */
3332 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3333 && ! HONOR_SNANS (@1))
3334 { constant_boolean_node (cmp == NE_EXPR, type); })
3335 /* Fold comparisons against infinity. */
3336 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3337 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3338 (with
3339 {
3340 REAL_VALUE_TYPE max;
3341 enum tree_code code = cmp;
3342 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3343 if (neg)
3344 code = swap_tree_comparison (code);
3345 }
3346 (switch
3347 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3348 (if (code == GT_EXPR
3349 && !(HONOR_NANS (@0) && flag_trapping_math))
3350 { constant_boolean_node (false, type); })
3351 (if (code == LE_EXPR)
3352 /* x <= +Inf is always true, if we don't care about NaNs. */
3353 (if (! HONOR_NANS (@0))
3354 { constant_boolean_node (true, type); }
3355 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3356 an "invalid" exception. */
3357 (if (!flag_trapping_math)
3358 (eq @0 @0))))
3359 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3360 for == this introduces an exception for x a NaN. */
3361 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3362 || code == GE_EXPR)
3363 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3364 (if (neg)
3365 (lt @0 { build_real (TREE_TYPE (@0), max); })
3366 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3367 /* x < +Inf is always equal to x <= DBL_MAX. */
3368 (if (code == LT_EXPR)
3369 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3370 (if (neg)
3371 (ge @0 { build_real (TREE_TYPE (@0), max); })
3372 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3373 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3374 an exception for x a NaN so use an unordered comparison. */
3375 (if (code == NE_EXPR)
3376 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3377 (if (! HONOR_NANS (@0))
3378 (if (neg)
3379 (ge @0 { build_real (TREE_TYPE (@0), max); })
3380 (le @0 { build_real (TREE_TYPE (@0), max); }))
3381 (if (neg)
3382 (unge @0 { build_real (TREE_TYPE (@0), max); })
3383 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3384
3385 /* If this is a comparison of a real constant with a PLUS_EXPR
3386 or a MINUS_EXPR of a real constant, we can convert it into a
3387 comparison with a revised real constant as long as no overflow
3388 occurs when unsafe_math_optimizations are enabled. */
3389 (if (flag_unsafe_math_optimizations)
3390 (for op (plus minus)
3391 (simplify
3392 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3393 (with
3394 {
3395 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3396 TREE_TYPE (@1), @2, @1);
3397 }
3398 (if (tem && !TREE_OVERFLOW (tem))
3399 (cmp @0 { tem; }))))))
3400
3401 /* Likewise, we can simplify a comparison of a real constant with
3402 a MINUS_EXPR whose first operand is also a real constant, i.e.
3403 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3404 floating-point types only if -fassociative-math is set. */
3405 (if (flag_associative_math)
3406 (simplify
3407 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3408 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3409 (if (tem && !TREE_OVERFLOW (tem))
3410 (cmp { tem; } @1)))))
3411
3412 /* Fold comparisons against built-in math functions. */
3413 (if (flag_unsafe_math_optimizations
3414 && ! flag_errno_math)
3415 (for sq (SQRT)
3416 (simplify
3417 (cmp (sq @0) REAL_CST@1)
3418 (switch
3419 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3420 (switch
3421 /* sqrt(x) < y is always false, if y is negative. */
3422 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3423 { constant_boolean_node (false, type); })
3424 /* sqrt(x) > y is always true, if y is negative and we
3425 don't care about NaNs, i.e. negative values of x. */
3426 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3427 { constant_boolean_node (true, type); })
3428 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3429 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3430 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3431 (switch
3432 /* sqrt(x) < 0 is always false. */
3433 (if (cmp == LT_EXPR)
3434 { constant_boolean_node (false, type); })
3435 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3436 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3437 { constant_boolean_node (true, type); })
3438 /* sqrt(x) <= 0 -> x == 0. */
3439 (if (cmp == LE_EXPR)
3440 (eq @0 @1))
3441 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3442 == or !=. In the last case:
3443
3444 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3445
3446 if x is negative or NaN. Due to -funsafe-math-optimizations,
3447 the results for other x follow from natural arithmetic. */
3448 (cmp @0 @1)))
3449 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3450 (with
3451 {
3452 REAL_VALUE_TYPE c2;
3453 real_arithmetic (&c2, MULT_EXPR,
3454 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3455 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3456 }
3457 (if (REAL_VALUE_ISINF (c2))
3458 /* sqrt(x) > y is x == +Inf, when y is very large. */
3459 (if (HONOR_INFINITIES (@0))
3460 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3461 { constant_boolean_node (false, type); })
3462 /* sqrt(x) > c is the same as x > c*c. */
3463 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3464 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3465 (with
3466 {
3467 REAL_VALUE_TYPE c2;
3468 real_arithmetic (&c2, MULT_EXPR,
3469 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3470 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3471 }
3472 (if (REAL_VALUE_ISINF (c2))
3473 (switch
3474 /* sqrt(x) < y is always true, when y is a very large
3475 value and we don't care about NaNs or Infinities. */
3476 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3477 { constant_boolean_node (true, type); })
3478 /* sqrt(x) < y is x != +Inf when y is very large and we
3479 don't care about NaNs. */
3480 (if (! HONOR_NANS (@0))
3481 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3482 /* sqrt(x) < y is x >= 0 when y is very large and we
3483 don't care about Infinities. */
3484 (if (! HONOR_INFINITIES (@0))
3485 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3486 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3487 (if (GENERIC)
3488 (truth_andif
3489 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3490 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3491 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3492 (if (! HONOR_NANS (@0))
3493 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3494 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3495 (if (GENERIC)
3496 (truth_andif
3497 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3498 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3499 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3500 (simplify
3501 (cmp (sq @0) (sq @1))
3502 (if (! HONOR_NANS (@0))
3503 (cmp @0 @1))))))
3504
3505 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3506 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3507 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3508 (simplify
3509 (cmp (float@0 @1) (float @2))
3510 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3511 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3512 (with
3513 {
3514 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3515 tree type1 = TREE_TYPE (@1);
3516 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3517 tree type2 = TREE_TYPE (@2);
3518 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3519 }
3520 (if (fmt.can_represent_integral_type_p (type1)
3521 && fmt.can_represent_integral_type_p (type2))
3522 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3523 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3524 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3525 && type1_signed_p >= type2_signed_p)
3526 (icmp @1 (convert @2))
3527 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3528 && type1_signed_p <= type2_signed_p)
3529 (icmp (convert:type2 @1) @2)
3530 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3531 && type1_signed_p == type2_signed_p)
3532 (icmp @1 @2))))))))))
3533
3534 /* Optimize various special cases of (FTYPE) N CMP CST. */
3535 (for cmp (lt le eq ne ge gt)
3536 icmp (le le eq ne ge ge)
3537 (simplify
3538 (cmp (float @0) REAL_CST@1)
3539 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3540 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3541 (with
3542 {
3543 tree itype = TREE_TYPE (@0);
3544 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3545 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3546 /* Be careful to preserve any potential exceptions due to
3547 NaNs. qNaNs are ok in == or != context.
3548 TODO: relax under -fno-trapping-math or
3549 -fno-signaling-nans. */
3550 bool exception_p
3551 = real_isnan (cst) && (cst->signalling
3552 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3553 }
3554 /* TODO: allow non-fitting itype and SNaNs when
3555 -fno-trapping-math. */
3556 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3557 (with
3558 {
3559 signop isign = TYPE_SIGN (itype);
3560 REAL_VALUE_TYPE imin, imax;
3561 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3562 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3563
3564 REAL_VALUE_TYPE icst;
3565 if (cmp == GT_EXPR || cmp == GE_EXPR)
3566 real_ceil (&icst, fmt, cst);
3567 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3568 real_floor (&icst, fmt, cst);
3569 else
3570 real_trunc (&icst, fmt, cst);
3571
3572 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3573
3574 bool overflow_p = false;
3575 wide_int icst_val
3576 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3577 }
3578 (switch
3579 /* Optimize cases when CST is outside of ITYPE's range. */
3580 (if (real_compare (LT_EXPR, cst, &imin))
3581 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3582 type); })
3583 (if (real_compare (GT_EXPR, cst, &imax))
3584 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3585 type); })
3586 /* Remove cast if CST is an integer representable by ITYPE. */
3587 (if (cst_int_p)
3588 (cmp @0 { gcc_assert (!overflow_p);
3589 wide_int_to_tree (itype, icst_val); })
3590 )
3591 /* When CST is fractional, optimize
3592 (FTYPE) N == CST -> 0
3593 (FTYPE) N != CST -> 1. */
3594 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3595 { constant_boolean_node (cmp == NE_EXPR, type); })
3596 /* Otherwise replace with sensible integer constant. */
3597 (with
3598 {
3599 gcc_checking_assert (!overflow_p);
3600 }
3601 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3602
3603 /* Fold A /[ex] B CMP C to A CMP B * C. */
3604 (for cmp (eq ne)
3605 (simplify
3606 (cmp (exact_div @0 @1) INTEGER_CST@2)
3607 (if (!integer_zerop (@1))
3608 (if (wi::to_wide (@2) == 0)
3609 (cmp @0 @2)
3610 (if (TREE_CODE (@1) == INTEGER_CST)
3611 (with
3612 {
3613 wi::overflow_type ovf;
3614 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3615 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3616 }
3617 (if (ovf)
3618 { constant_boolean_node (cmp == NE_EXPR, type); }
3619 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3620 (for cmp (lt le gt ge)
3621 (simplify
3622 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3623 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3624 (with
3625 {
3626 wi::overflow_type ovf;
3627 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3628 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3629 }
3630 (if (ovf)
3631 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3632 TYPE_SIGN (TREE_TYPE (@2)))
3633 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3634 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3635
3636 /* Unordered tests if either argument is a NaN. */
3637 (simplify
3638 (bit_ior (unordered @0 @0) (unordered @1 @1))
3639 (if (types_match (@0, @1))
3640 (unordered @0 @1)))
3641 (simplify
3642 (bit_and (ordered @0 @0) (ordered @1 @1))
3643 (if (types_match (@0, @1))
3644 (ordered @0 @1)))
3645 (simplify
3646 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3647 @2)
3648 (simplify
3649 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3650 @2)
3651
3652 /* Simple range test simplifications. */
3653 /* A < B || A >= B -> true. */
3654 (for test1 (lt le le le ne ge)
3655 test2 (ge gt ge ne eq ne)
3656 (simplify
3657 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3658 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3659 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3660 { constant_boolean_node (true, type); })))
3661 /* A < B && A >= B -> false. */
3662 (for test1 (lt lt lt le ne eq)
3663 test2 (ge gt eq gt eq gt)
3664 (simplify
3665 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3666 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3667 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3668 { constant_boolean_node (false, type); })))
3669
3670 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3671 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3672
3673 Note that comparisons
3674 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3675 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3676 will be canonicalized to above so there's no need to
3677 consider them here.
3678 */
3679
3680 (for cmp (le gt)
3681 eqcmp (eq ne)
3682 (simplify
3683 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3684 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3685 (with
3686 {
3687 tree ty = TREE_TYPE (@0);
3688 unsigned prec = TYPE_PRECISION (ty);
3689 wide_int mask = wi::to_wide (@2, prec);
3690 wide_int rhs = wi::to_wide (@3, prec);
3691 signop sgn = TYPE_SIGN (ty);
3692 }
3693 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3694 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3695 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3696 { build_zero_cst (ty); }))))))
3697
3698 /* -A CMP -B -> B CMP A. */
3699 (for cmp (tcc_comparison)
3700 scmp (swapped_tcc_comparison)
3701 (simplify
3702 (cmp (negate @0) (negate @1))
3703 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3704 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3705 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3706 (scmp @0 @1)))
3707 (simplify
3708 (cmp (negate @0) CONSTANT_CLASS_P@1)
3709 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3710 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3711 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3712 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3713 (if (tem && !TREE_OVERFLOW (tem))
3714 (scmp @0 { tem; }))))))
3715
3716 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3717 (for op (eq ne)
3718 (simplify
3719 (op (abs @0) zerop@1)
3720 (op @0 @1)))
3721
3722 /* From fold_sign_changed_comparison and fold_widened_comparison.
3723 FIXME: the lack of symmetry is disturbing. */
3724 (for cmp (simple_comparison)
3725 (simplify
3726 (cmp (convert@0 @00) (convert?@1 @10))
3727 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3728 /* Disable this optimization if we're casting a function pointer
3729 type on targets that require function pointer canonicalization. */
3730 && !(targetm.have_canonicalize_funcptr_for_compare ()
3731 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3732 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3733 || (POINTER_TYPE_P (TREE_TYPE (@10))
3734 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3735 && single_use (@0))
3736 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3737 && (TREE_CODE (@10) == INTEGER_CST
3738 || @1 != @10)
3739 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3740 || cmp == NE_EXPR
3741 || cmp == EQ_EXPR)
3742 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3743 /* ??? The special-casing of INTEGER_CST conversion was in the original
3744 code and here to avoid a spurious overflow flag on the resulting
3745 constant which fold_convert produces. */
3746 (if (TREE_CODE (@1) == INTEGER_CST)
3747 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3748 TREE_OVERFLOW (@1)); })
3749 (cmp @00 (convert @1)))
3750
3751 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3752 /* If possible, express the comparison in the shorter mode. */
3753 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3754 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3755 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3756 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3757 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3758 || ((TYPE_PRECISION (TREE_TYPE (@00))
3759 >= TYPE_PRECISION (TREE_TYPE (@10)))
3760 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3761 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3762 || (TREE_CODE (@10) == INTEGER_CST
3763 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3764 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3765 (cmp @00 (convert @10))
3766 (if (TREE_CODE (@10) == INTEGER_CST
3767 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3768 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3769 (with
3770 {
3771 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3772 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3773 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3774 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3775 }
3776 (if (above || below)
3777 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3778 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3779 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3780 { constant_boolean_node (above ? true : false, type); }
3781 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3782 { constant_boolean_node (above ? false : true, type); }))))))))))))
3783
3784 (for cmp (eq ne)
3785 /* A local variable can never be pointed to by
3786 the default SSA name of an incoming parameter.
3787 SSA names are canonicalized to 2nd place. */
3788 (simplify
3789 (cmp addr@0 SSA_NAME@1)
3790 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3791 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3792 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3793 (if (TREE_CODE (base) == VAR_DECL
3794 && auto_var_in_fn_p (base, current_function_decl))
3795 (if (cmp == NE_EXPR)
3796 { constant_boolean_node (true, type); }
3797 { constant_boolean_node (false, type); }))))))
3798
3799 /* Equality compare simplifications from fold_binary */
3800 (for cmp (eq ne)
3801
3802 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3803 Similarly for NE_EXPR. */
3804 (simplify
3805 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3806 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3807 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3808 { constant_boolean_node (cmp == NE_EXPR, type); }))
3809
3810 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3811 (simplify
3812 (cmp (bit_xor @0 @1) integer_zerop)
3813 (cmp @0 @1))
3814
3815 /* (X ^ Y) == Y becomes X == 0.
3816 Likewise (X ^ Y) == X becomes Y == 0. */
3817 (simplify
3818 (cmp:c (bit_xor:c @0 @1) @0)
3819 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3820
3821 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3822 (simplify
3823 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3824 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3825 (cmp @0 (bit_xor @1 (convert @2)))))
3826
3827 (simplify
3828 (cmp (convert? addr@0) integer_zerop)
3829 (if (tree_single_nonzero_warnv_p (@0, NULL))
3830 { constant_boolean_node (cmp == NE_EXPR, type); })))
3831
3832 /* If we have (A & C) == C where C is a power of 2, convert this into
3833 (A & C) != 0. Similarly for NE_EXPR. */
3834 (for cmp (eq ne)
3835 icmp (ne eq)
3836 (simplify
3837 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3838 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3839
3840 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3841 convert this into a shift followed by ANDing with D. */
3842 (simplify
3843 (cond
3844 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3845 INTEGER_CST@2 integer_zerop)
3846 (if (integer_pow2p (@2))
3847 (with {
3848 int shift = (wi::exact_log2 (wi::to_wide (@2))
3849 - wi::exact_log2 (wi::to_wide (@1)));
3850 }
3851 (if (shift > 0)
3852 (bit_and
3853 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3854 (bit_and
3855 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3856 @2)))))
3857
3858 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3859 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3860 (for cmp (eq ne)
3861 ncmp (ge lt)
3862 (simplify
3863 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3864 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3865 && type_has_mode_precision_p (TREE_TYPE (@0))
3866 && element_precision (@2) >= element_precision (@0)
3867 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3868 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3869 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3870
3871 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3872 this into a right shift or sign extension followed by ANDing with C. */
3873 (simplify
3874 (cond
3875 (lt @0 integer_zerop)
3876 INTEGER_CST@1 integer_zerop)
3877 (if (integer_pow2p (@1)
3878 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3879 (with {
3880 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3881 }
3882 (if (shift >= 0)
3883 (bit_and
3884 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3885 @1)
3886 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3887 sign extension followed by AND with C will achieve the effect. */
3888 (bit_and (convert @0) @1)))))
3889
3890 /* When the addresses are not directly of decls compare base and offset.
3891 This implements some remaining parts of fold_comparison address
3892 comparisons but still no complete part of it. Still it is good
3893 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3894 (for cmp (simple_comparison)
3895 (simplify
3896 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3897 (with
3898 {
3899 poly_int64 off0, off1;
3900 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3901 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3902 if (base0 && TREE_CODE (base0) == MEM_REF)
3903 {
3904 off0 += mem_ref_offset (base0).force_shwi ();
3905 base0 = TREE_OPERAND (base0, 0);
3906 }
3907 if (base1 && TREE_CODE (base1) == MEM_REF)
3908 {
3909 off1 += mem_ref_offset (base1).force_shwi ();
3910 base1 = TREE_OPERAND (base1, 0);
3911 }
3912 }
3913 (if (base0 && base1)
3914 (with
3915 {
3916 int equal = 2;
3917 /* Punt in GENERIC on variables with value expressions;
3918 the value expressions might point to fields/elements
3919 of other vars etc. */
3920 if (GENERIC
3921 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3922 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3923 ;
3924 else if (decl_in_symtab_p (base0)
3925 && decl_in_symtab_p (base1))
3926 equal = symtab_node::get_create (base0)
3927 ->equal_address_to (symtab_node::get_create (base1));
3928 else if ((DECL_P (base0)
3929 || TREE_CODE (base0) == SSA_NAME
3930 || TREE_CODE (base0) == STRING_CST)
3931 && (DECL_P (base1)
3932 || TREE_CODE (base1) == SSA_NAME
3933 || TREE_CODE (base1) == STRING_CST))
3934 equal = (base0 == base1);
3935 if (equal == 0)
3936 {
3937 HOST_WIDE_INT ioff0 = -1, ioff1 = -1;
3938 off0.is_constant (&ioff0);
3939 off1.is_constant (&ioff1);
3940 if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST)
3941 || (TREE_CODE (base0) == STRING_CST && DECL_P (base1))
3942 || (TREE_CODE (base0) == STRING_CST
3943 && TREE_CODE (base1) == STRING_CST
3944 && ioff0 >= 0 && ioff1 >= 0
3945 && ioff0 < TREE_STRING_LENGTH (base0)
3946 && ioff1 < TREE_STRING_LENGTH (base1)
3947 /* This is a too conservative test that the STRING_CSTs
3948 will not end up being string-merged. */
3949 && strncmp (TREE_STRING_POINTER (base0) + ioff0,
3950 TREE_STRING_POINTER (base1) + ioff1,
3951 MIN (TREE_STRING_LENGTH (base0) - ioff0,
3952 TREE_STRING_LENGTH (base1) - ioff1)) != 0))
3953 ;
3954 else if (!DECL_P (base0) || !DECL_P (base1))
3955 equal = 2;
3956 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
3957 equal = 2;
3958 /* If this is a pointer comparison, ignore for now even
3959 valid equalities where one pointer is the offset zero
3960 of one object and the other to one past end of another one. */
3961 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
3962 ;
3963 /* Assume that automatic variables can't be adjacent to global
3964 variables. */
3965 else if (is_global_var (base0) != is_global_var (base1))
3966 ;
3967 else
3968 {
3969 tree sz0 = DECL_SIZE_UNIT (base0);
3970 tree sz1 = DECL_SIZE_UNIT (base1);
3971 /* If sizes are unknown, e.g. VLA or not representable,
3972 punt. */
3973 if (!tree_fits_poly_int64_p (sz0)
3974 || !tree_fits_poly_int64_p (sz1))
3975 equal = 2;
3976 else
3977 {
3978 poly_int64 size0 = tree_to_poly_int64 (sz0);
3979 poly_int64 size1 = tree_to_poly_int64 (sz1);
3980 /* If one offset is pointing (or could be) to the beginning
3981 of one object and the other is pointing to one past the
3982 last byte of the other object, punt. */
3983 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
3984 equal = 2;
3985 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
3986 equal = 2;
3987 /* If both offsets are the same, there are some cases
3988 we know that are ok. Either if we know they aren't
3989 zero, or if we know both sizes are no zero. */
3990 if (equal == 2
3991 && known_eq (off0, off1)
3992 && (known_ne (off0, 0)
3993 || (known_ne (size0, 0) && known_ne (size1, 0))))
3994 equal = 0;
3995 }
3996 }
3997 }
3998 }
3999 (if (equal == 1
4000 && (cmp == EQ_EXPR || cmp == NE_EXPR
4001 /* If the offsets are equal we can ignore overflow. */
4002 || known_eq (off0, off1)
4003 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
4004 /* Or if we compare using pointers to decls or strings. */
4005 || (POINTER_TYPE_P (TREE_TYPE (@2))
4006 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
4007 (switch
4008 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4009 { constant_boolean_node (known_eq (off0, off1), type); })
4010 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
4011 { constant_boolean_node (known_ne (off0, off1), type); })
4012 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
4013 { constant_boolean_node (known_lt (off0, off1), type); })
4014 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
4015 { constant_boolean_node (known_le (off0, off1), type); })
4016 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
4017 { constant_boolean_node (known_ge (off0, off1), type); })
4018 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
4019 { constant_boolean_node (known_gt (off0, off1), type); }))
4020 (if (equal == 0)
4021 (switch
4022 (if (cmp == EQ_EXPR)
4023 { constant_boolean_node (false, type); })
4024 (if (cmp == NE_EXPR)
4025 { constant_boolean_node (true, type); })))))))))
4026
4027 /* Simplify pointer equality compares using PTA. */
4028 (for neeq (ne eq)
4029 (simplify
4030 (neeq @0 @1)
4031 (if (POINTER_TYPE_P (TREE_TYPE (@0))
4032 && ptrs_compare_unequal (@0, @1))
4033 { constant_boolean_node (neeq != EQ_EXPR, type); })))
4034
4035 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
4036 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
4037 Disable the transform if either operand is pointer to function.
4038 This broke pr22051-2.c for arm where function pointer
4039 canonicalizaion is not wanted. */
4040
4041 (for cmp (ne eq)
4042 (simplify
4043 (cmp (convert @0) INTEGER_CST@1)
4044 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
4045 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
4046 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4047 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4048 && POINTER_TYPE_P (TREE_TYPE (@1))
4049 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
4050 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
4051 (cmp @0 (convert @1)))))
4052
4053 /* Non-equality compare simplifications from fold_binary */
4054 (for cmp (lt gt le ge)
4055 /* Comparisons with the highest or lowest possible integer of
4056 the specified precision will have known values. */
4057 (simplify
4058 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4059 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4060 || POINTER_TYPE_P (TREE_TYPE (@1))
4061 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4062 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4063 (with
4064 {
4065 tree cst = uniform_integer_cst_p (@1);
4066 tree arg1_type = TREE_TYPE (cst);
4067 unsigned int prec = TYPE_PRECISION (arg1_type);
4068 wide_int max = wi::max_value (arg1_type);
4069 wide_int signed_max = wi::max_value (prec, SIGNED);
4070 wide_int min = wi::min_value (arg1_type);
4071 }
4072 (switch
4073 (if (wi::to_wide (cst) == max)
4074 (switch
4075 (if (cmp == GT_EXPR)
4076 { constant_boolean_node (false, type); })
4077 (if (cmp == GE_EXPR)
4078 (eq @2 @1))
4079 (if (cmp == LE_EXPR)
4080 { constant_boolean_node (true, type); })
4081 (if (cmp == LT_EXPR)
4082 (ne @2 @1))))
4083 (if (wi::to_wide (cst) == min)
4084 (switch
4085 (if (cmp == LT_EXPR)
4086 { constant_boolean_node (false, type); })
4087 (if (cmp == LE_EXPR)
4088 (eq @2 @1))
4089 (if (cmp == GE_EXPR)
4090 { constant_boolean_node (true, type); })
4091 (if (cmp == GT_EXPR)
4092 (ne @2 @1))))
4093 (if (wi::to_wide (cst) == max - 1)
4094 (switch
4095 (if (cmp == GT_EXPR)
4096 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4097 wide_int_to_tree (TREE_TYPE (cst),
4098 wi::to_wide (cst)
4099 + 1)); }))
4100 (if (cmp == LE_EXPR)
4101 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4102 wide_int_to_tree (TREE_TYPE (cst),
4103 wi::to_wide (cst)
4104 + 1)); }))))
4105 (if (wi::to_wide (cst) == min + 1)
4106 (switch
4107 (if (cmp == GE_EXPR)
4108 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4109 wide_int_to_tree (TREE_TYPE (cst),
4110 wi::to_wide (cst)
4111 - 1)); }))
4112 (if (cmp == LT_EXPR)
4113 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4114 wide_int_to_tree (TREE_TYPE (cst),
4115 wi::to_wide (cst)
4116 - 1)); }))))
4117 (if (wi::to_wide (cst) == signed_max
4118 && TYPE_UNSIGNED (arg1_type)
4119 /* We will flip the signedness of the comparison operator
4120 associated with the mode of @1, so the sign bit is
4121 specified by this mode. Check that @1 is the signed
4122 max associated with this sign bit. */
4123 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4124 /* signed_type does not work on pointer types. */
4125 && INTEGRAL_TYPE_P (arg1_type))
4126 /* The following case also applies to X < signed_max+1
4127 and X >= signed_max+1 because previous transformations. */
4128 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4129 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4130 (switch
4131 (if (cst == @1 && cmp == LE_EXPR)
4132 (ge (convert:st @0) { build_zero_cst (st); }))
4133 (if (cst == @1 && cmp == GT_EXPR)
4134 (lt (convert:st @0) { build_zero_cst (st); }))
4135 (if (cmp == LE_EXPR)
4136 (ge (view_convert:st @0) { build_zero_cst (st); }))
4137 (if (cmp == GT_EXPR)
4138 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4139
4140 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4141 /* If the second operand is NaN, the result is constant. */
4142 (simplify
4143 (cmp @0 REAL_CST@1)
4144 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4145 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4146 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4147 ? false : true, type); })))
4148
4149 /* bool_var != 0 becomes bool_var. */
4150 (simplify
4151 (ne @0 integer_zerop)
4152 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4153 && types_match (type, TREE_TYPE (@0)))
4154 (non_lvalue @0)))
4155 /* bool_var == 1 becomes bool_var. */
4156 (simplify
4157 (eq @0 integer_onep)
4158 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4159 && types_match (type, TREE_TYPE (@0)))
4160 (non_lvalue @0)))
4161 /* Do not handle
4162 bool_var == 0 becomes !bool_var or
4163 bool_var != 1 becomes !bool_var
4164 here because that only is good in assignment context as long
4165 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4166 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4167 clearly less optimal and which we'll transform again in forwprop. */
4168
4169 /* When one argument is a constant, overflow detection can be simplified.
4170 Currently restricted to single use so as not to interfere too much with
4171 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4172 A + CST CMP A -> A CMP' CST' */
4173 (for cmp (lt le ge gt)
4174 out (gt gt le le)
4175 (simplify
4176 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4177 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4178 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4179 && wi::to_wide (@1) != 0
4180 && single_use (@2))
4181 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4182 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4183 wi::max_value (prec, UNSIGNED)
4184 - wi::to_wide (@1)); })))))
4185
4186 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4187 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4188 expects the long form, so we restrict the transformation for now. */
4189 (for cmp (gt le)
4190 (simplify
4191 (cmp:c (minus@2 @0 @1) @0)
4192 (if (single_use (@2)
4193 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4194 && TYPE_UNSIGNED (TREE_TYPE (@0))
4195 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4196 (cmp @1 @0))))
4197
4198 /* Testing for overflow is unnecessary if we already know the result. */
4199 /* A - B > A */
4200 (for cmp (gt le)
4201 out (ne eq)
4202 (simplify
4203 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4204 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4205 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4206 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4207 /* A + B < A */
4208 (for cmp (lt ge)
4209 out (ne eq)
4210 (simplify
4211 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4212 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4213 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4214 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4215
4216 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4217 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4218 (for cmp (lt ge)
4219 out (ne eq)
4220 (simplify
4221 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4222 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4223 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4224 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4225
4226 /* Simplification of math builtins. These rules must all be optimizations
4227 as well as IL simplifications. If there is a possibility that the new
4228 form could be a pessimization, the rule should go in the canonicalization
4229 section that follows this one.
4230
4231 Rules can generally go in this section if they satisfy one of
4232 the following:
4233
4234 - the rule describes an identity
4235
4236 - the rule replaces calls with something as simple as addition or
4237 multiplication
4238
4239 - the rule contains unary calls only and simplifies the surrounding
4240 arithmetic. (The idea here is to exclude non-unary calls in which
4241 one operand is constant and in which the call is known to be cheap
4242 when the operand has that value.) */
4243
4244 (if (flag_unsafe_math_optimizations)
4245 /* Simplify sqrt(x) * sqrt(x) -> x. */
4246 (simplify
4247 (mult (SQRT_ALL@1 @0) @1)
4248 (if (!HONOR_SNANS (type))
4249 @0))
4250
4251 (for op (plus minus)
4252 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4253 (simplify
4254 (op (rdiv @0 @1)
4255 (rdiv @2 @1))
4256 (rdiv (op @0 @2) @1)))
4257
4258 (for cmp (lt le gt ge)
4259 neg_cmp (gt ge lt le)
4260 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4261 (simplify
4262 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4263 (with
4264 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4265 (if (tem
4266 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4267 || (real_zerop (tem) && !real_zerop (@1))))
4268 (switch
4269 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4270 (cmp @0 { tem; }))
4271 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4272 (neg_cmp @0 { tem; })))))))
4273
4274 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4275 (for root (SQRT CBRT)
4276 (simplify
4277 (mult (root:s @0) (root:s @1))
4278 (root (mult @0 @1))))
4279
4280 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4281 (for exps (EXP EXP2 EXP10 POW10)
4282 (simplify
4283 (mult (exps:s @0) (exps:s @1))
4284 (exps (plus @0 @1))))
4285
4286 /* Simplify a/root(b/c) into a*root(c/b). */
4287 (for root (SQRT CBRT)
4288 (simplify
4289 (rdiv @0 (root:s (rdiv:s @1 @2)))
4290 (mult @0 (root (rdiv @2 @1)))))
4291
4292 /* Simplify x/expN(y) into x*expN(-y). */
4293 (for exps (EXP EXP2 EXP10 POW10)
4294 (simplify
4295 (rdiv @0 (exps:s @1))
4296 (mult @0 (exps (negate @1)))))
4297
4298 (for logs (LOG LOG2 LOG10 LOG10)
4299 exps (EXP EXP2 EXP10 POW10)
4300 /* logN(expN(x)) -> x. */
4301 (simplify
4302 (logs (exps @0))
4303 @0)
4304 /* expN(logN(x)) -> x. */
4305 (simplify
4306 (exps (logs @0))
4307 @0))
4308
4309 /* Optimize logN(func()) for various exponential functions. We
4310 want to determine the value "x" and the power "exponent" in
4311 order to transform logN(x**exponent) into exponent*logN(x). */
4312 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4313 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4314 (simplify
4315 (logs (exps @0))
4316 (if (SCALAR_FLOAT_TYPE_P (type))
4317 (with {
4318 tree x;
4319 switch (exps)
4320 {
4321 CASE_CFN_EXP:
4322 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4323 x = build_real_truncate (type, dconst_e ());
4324 break;
4325 CASE_CFN_EXP2:
4326 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4327 x = build_real (type, dconst2);
4328 break;
4329 CASE_CFN_EXP10:
4330 CASE_CFN_POW10:
4331 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4332 {
4333 REAL_VALUE_TYPE dconst10;
4334 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4335 x = build_real (type, dconst10);
4336 }
4337 break;
4338 default:
4339 gcc_unreachable ();
4340 }
4341 }
4342 (mult (logs { x; }) @0)))))
4343
4344 (for logs (LOG LOG
4345 LOG2 LOG2
4346 LOG10 LOG10)
4347 exps (SQRT CBRT)
4348 (simplify
4349 (logs (exps @0))
4350 (if (SCALAR_FLOAT_TYPE_P (type))
4351 (with {
4352 tree x;
4353 switch (exps)
4354 {
4355 CASE_CFN_SQRT:
4356 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4357 x = build_real (type, dconsthalf);
4358 break;
4359 CASE_CFN_CBRT:
4360 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4361 x = build_real_truncate (type, dconst_third ());
4362 break;
4363 default:
4364 gcc_unreachable ();
4365 }
4366 }
4367 (mult { x; } (logs @0))))))
4368
4369 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4370 (for logs (LOG LOG2 LOG10)
4371 pows (POW)
4372 (simplify
4373 (logs (pows @0 @1))
4374 (mult @1 (logs @0))))
4375
4376 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4377 or if C is a positive power of 2,
4378 pow(C,x) -> exp2(log2(C)*x). */
4379 #if GIMPLE
4380 (for pows (POW)
4381 exps (EXP)
4382 logs (LOG)
4383 exp2s (EXP2)
4384 log2s (LOG2)
4385 (simplify
4386 (pows REAL_CST@0 @1)
4387 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4388 && real_isfinite (TREE_REAL_CST_PTR (@0))
4389 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4390 the use_exp2 case until after vectorization. It seems actually
4391 beneficial for all constants to postpone this until later,
4392 because exp(log(C)*x), while faster, will have worse precision
4393 and if x folds into a constant too, that is unnecessary
4394 pessimization. */
4395 && canonicalize_math_after_vectorization_p ())
4396 (with {
4397 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4398 bool use_exp2 = false;
4399 if (targetm.libc_has_function (function_c99_misc)
4400 && value->cl == rvc_normal)
4401 {
4402 REAL_VALUE_TYPE frac_rvt = *value;
4403 SET_REAL_EXP (&frac_rvt, 1);
4404 if (real_equal (&frac_rvt, &dconst1))
4405 use_exp2 = true;
4406 }
4407 }
4408 (if (!use_exp2)
4409 (if (optimize_pow_to_exp (@0, @1))
4410 (exps (mult (logs @0) @1)))
4411 (exp2s (mult (log2s @0) @1)))))))
4412 #endif
4413
4414 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4415 (for pows (POW)
4416 exps (EXP EXP2 EXP10 POW10)
4417 logs (LOG LOG2 LOG10 LOG10)
4418 (simplify
4419 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4420 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4421 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4422 (exps (plus (mult (logs @0) @1) @2)))))
4423
4424 (for sqrts (SQRT)
4425 cbrts (CBRT)
4426 pows (POW)
4427 exps (EXP EXP2 EXP10 POW10)
4428 /* sqrt(expN(x)) -> expN(x*0.5). */
4429 (simplify
4430 (sqrts (exps @0))
4431 (exps (mult @0 { build_real (type, dconsthalf); })))
4432 /* cbrt(expN(x)) -> expN(x/3). */
4433 (simplify
4434 (cbrts (exps @0))
4435 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4436 /* pow(expN(x), y) -> expN(x*y). */
4437 (simplify
4438 (pows (exps @0) @1)
4439 (exps (mult @0 @1))))
4440
4441 /* tan(atan(x)) -> x. */
4442 (for tans (TAN)
4443 atans (ATAN)
4444 (simplify
4445 (tans (atans @0))
4446 @0)))
4447
4448 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4449 (for sins (SIN)
4450 atans (ATAN)
4451 sqrts (SQRT)
4452 copysigns (COPYSIGN)
4453 (simplify
4454 (sins (atans:s @0))
4455 (with
4456 {
4457 REAL_VALUE_TYPE r_cst;
4458 build_sinatan_real (&r_cst, type);
4459 tree t_cst = build_real (type, r_cst);
4460 tree t_one = build_one_cst (type);
4461 }
4462 (if (SCALAR_FLOAT_TYPE_P (type))
4463 (cond (lt (abs @0) { t_cst; })
4464 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4465 (copysigns { t_one; } @0))))))
4466
4467 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4468 (for coss (COS)
4469 atans (ATAN)
4470 sqrts (SQRT)
4471 copysigns (COPYSIGN)
4472 (simplify
4473 (coss (atans:s @0))
4474 (with
4475 {
4476 REAL_VALUE_TYPE r_cst;
4477 build_sinatan_real (&r_cst, type);
4478 tree t_cst = build_real (type, r_cst);
4479 tree t_one = build_one_cst (type);
4480 tree t_zero = build_zero_cst (type);
4481 }
4482 (if (SCALAR_FLOAT_TYPE_P (type))
4483 (cond (lt (abs @0) { t_cst; })
4484 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4485 (copysigns { t_zero; } @0))))))
4486
4487 (if (!flag_errno_math)
4488 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4489 (for sinhs (SINH)
4490 atanhs (ATANH)
4491 sqrts (SQRT)
4492 (simplify
4493 (sinhs (atanhs:s @0))
4494 (with { tree t_one = build_one_cst (type); }
4495 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4496
4497 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4498 (for coshs (COSH)
4499 atanhs (ATANH)
4500 sqrts (SQRT)
4501 (simplify
4502 (coshs (atanhs:s @0))
4503 (with { tree t_one = build_one_cst (type); }
4504 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4505
4506 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4507 (simplify
4508 (CABS (complex:C @0 real_zerop@1))
4509 (abs @0))
4510
4511 /* trunc(trunc(x)) -> trunc(x), etc. */
4512 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4513 (simplify
4514 (fns (fns @0))
4515 (fns @0)))
4516 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4517 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4518 (simplify
4519 (fns integer_valued_real_p@0)
4520 @0))
4521
4522 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4523 (simplify
4524 (HYPOT:c @0 real_zerop@1)
4525 (abs @0))
4526
4527 /* pow(1,x) -> 1. */
4528 (simplify
4529 (POW real_onep@0 @1)
4530 @0)
4531
4532 (simplify
4533 /* copysign(x,x) -> x. */
4534 (COPYSIGN_ALL @0 @0)
4535 @0)
4536
4537 (simplify
4538 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4539 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4540 (abs @0))
4541
4542 (for scale (LDEXP SCALBN SCALBLN)
4543 /* ldexp(0, x) -> 0. */
4544 (simplify
4545 (scale real_zerop@0 @1)
4546 @0)
4547 /* ldexp(x, 0) -> x. */
4548 (simplify
4549 (scale @0 integer_zerop@1)
4550 @0)
4551 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4552 (simplify
4553 (scale REAL_CST@0 @1)
4554 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4555 @0)))
4556
4557 /* Canonicalization of sequences of math builtins. These rules represent
4558 IL simplifications but are not necessarily optimizations.
4559
4560 The sincos pass is responsible for picking "optimal" implementations
4561 of math builtins, which may be more complicated and can sometimes go
4562 the other way, e.g. converting pow into a sequence of sqrts.
4563 We only want to do these canonicalizations before the pass has run. */
4564
4565 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4566 /* Simplify tan(x) * cos(x) -> sin(x). */
4567 (simplify
4568 (mult:c (TAN:s @0) (COS:s @0))
4569 (SIN @0))
4570
4571 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4572 (simplify
4573 (mult:c @0 (POW:s @0 REAL_CST@1))
4574 (if (!TREE_OVERFLOW (@1))
4575 (POW @0 (plus @1 { build_one_cst (type); }))))
4576
4577 /* Simplify sin(x) / cos(x) -> tan(x). */
4578 (simplify
4579 (rdiv (SIN:s @0) (COS:s @0))
4580 (TAN @0))
4581
4582 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4583 (simplify
4584 (rdiv (COS:s @0) (SIN:s @0))
4585 (rdiv { build_one_cst (type); } (TAN @0)))
4586
4587 /* Simplify sin(x) / tan(x) -> cos(x). */
4588 (simplify
4589 (rdiv (SIN:s @0) (TAN:s @0))
4590 (if (! HONOR_NANS (@0)
4591 && ! HONOR_INFINITIES (@0))
4592 (COS @0)))
4593
4594 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4595 (simplify
4596 (rdiv (TAN:s @0) (SIN:s @0))
4597 (if (! HONOR_NANS (@0)
4598 && ! HONOR_INFINITIES (@0))
4599 (rdiv { build_one_cst (type); } (COS @0))))
4600
4601 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4602 (simplify
4603 (mult (POW:s @0 @1) (POW:s @0 @2))
4604 (POW @0 (plus @1 @2)))
4605
4606 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4607 (simplify
4608 (mult (POW:s @0 @1) (POW:s @2 @1))
4609 (POW (mult @0 @2) @1))
4610
4611 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4612 (simplify
4613 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4614 (POWI (mult @0 @2) @1))
4615
4616 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4617 (simplify
4618 (rdiv (POW:s @0 REAL_CST@1) @0)
4619 (if (!TREE_OVERFLOW (@1))
4620 (POW @0 (minus @1 { build_one_cst (type); }))))
4621
4622 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4623 (simplify
4624 (rdiv @0 (POW:s @1 @2))
4625 (mult @0 (POW @1 (negate @2))))
4626
4627 (for sqrts (SQRT)
4628 cbrts (CBRT)
4629 pows (POW)
4630 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4631 (simplify
4632 (sqrts (sqrts @0))
4633 (pows @0 { build_real (type, dconst_quarter ()); }))
4634 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4635 (simplify
4636 (sqrts (cbrts @0))
4637 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4638 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4639 (simplify
4640 (cbrts (sqrts @0))
4641 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4642 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4643 (simplify
4644 (cbrts (cbrts tree_expr_nonnegative_p@0))
4645 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4646 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4647 (simplify
4648 (sqrts (pows @0 @1))
4649 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4650 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4651 (simplify
4652 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4653 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4654 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4655 (simplify
4656 (pows (sqrts @0) @1)
4657 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4658 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4659 (simplify
4660 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4661 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4662 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4663 (simplify
4664 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4665 (pows @0 (mult @1 @2))))
4666
4667 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4668 (simplify
4669 (CABS (complex @0 @0))
4670 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4671
4672 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4673 (simplify
4674 (HYPOT @0 @0)
4675 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4676
4677 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4678 (for cexps (CEXP)
4679 exps (EXP)
4680 cexpis (CEXPI)
4681 (simplify
4682 (cexps compositional_complex@0)
4683 (if (targetm.libc_has_function (function_c99_math_complex))
4684 (complex
4685 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4686 (mult @1 (imagpart @2)))))))
4687
4688 (if (canonicalize_math_p ())
4689 /* floor(x) -> trunc(x) if x is nonnegative. */
4690 (for floors (FLOOR_ALL)
4691 truncs (TRUNC_ALL)
4692 (simplify
4693 (floors tree_expr_nonnegative_p@0)
4694 (truncs @0))))
4695
4696 (match double_value_p
4697 @0
4698 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4699 (for froms (BUILT_IN_TRUNCL
4700 BUILT_IN_FLOORL
4701 BUILT_IN_CEILL
4702 BUILT_IN_ROUNDL
4703 BUILT_IN_NEARBYINTL
4704 BUILT_IN_RINTL)
4705 tos (BUILT_IN_TRUNC
4706 BUILT_IN_FLOOR
4707 BUILT_IN_CEIL
4708 BUILT_IN_ROUND
4709 BUILT_IN_NEARBYINT
4710 BUILT_IN_RINT)
4711 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4712 (if (optimize && canonicalize_math_p ())
4713 (simplify
4714 (froms (convert double_value_p@0))
4715 (convert (tos @0)))))
4716
4717 (match float_value_p
4718 @0
4719 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4720 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4721 BUILT_IN_FLOORL BUILT_IN_FLOOR
4722 BUILT_IN_CEILL BUILT_IN_CEIL
4723 BUILT_IN_ROUNDL BUILT_IN_ROUND
4724 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4725 BUILT_IN_RINTL BUILT_IN_RINT)
4726 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4727 BUILT_IN_FLOORF BUILT_IN_FLOORF
4728 BUILT_IN_CEILF BUILT_IN_CEILF
4729 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4730 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4731 BUILT_IN_RINTF BUILT_IN_RINTF)
4732 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4733 if x is a float. */
4734 (if (optimize && canonicalize_math_p ()
4735 && targetm.libc_has_function (function_c99_misc))
4736 (simplify
4737 (froms (convert float_value_p@0))
4738 (convert (tos @0)))))
4739
4740 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4741 tos (XFLOOR XCEIL XROUND XRINT)
4742 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4743 (if (optimize && canonicalize_math_p ())
4744 (simplify
4745 (froms (convert double_value_p@0))
4746 (tos @0))))
4747
4748 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4749 XFLOOR XCEIL XROUND XRINT)
4750 tos (XFLOORF XCEILF XROUNDF XRINTF)
4751 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4752 if x is a float. */
4753 (if (optimize && canonicalize_math_p ())
4754 (simplify
4755 (froms (convert float_value_p@0))
4756 (tos @0))))
4757
4758 (if (canonicalize_math_p ())
4759 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4760 (for floors (IFLOOR LFLOOR LLFLOOR)
4761 (simplify
4762 (floors tree_expr_nonnegative_p@0)
4763 (fix_trunc @0))))
4764
4765 (if (canonicalize_math_p ())
4766 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4767 (for fns (IFLOOR LFLOOR LLFLOOR
4768 ICEIL LCEIL LLCEIL
4769 IROUND LROUND LLROUND)
4770 (simplify
4771 (fns integer_valued_real_p@0)
4772 (fix_trunc @0)))
4773 (if (!flag_errno_math)
4774 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4775 (for rints (IRINT LRINT LLRINT)
4776 (simplify
4777 (rints integer_valued_real_p@0)
4778 (fix_trunc @0)))))
4779
4780 (if (canonicalize_math_p ())
4781 (for ifn (IFLOOR ICEIL IROUND IRINT)
4782 lfn (LFLOOR LCEIL LROUND LRINT)
4783 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4784 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4785 sizeof (int) == sizeof (long). */
4786 (if (TYPE_PRECISION (integer_type_node)
4787 == TYPE_PRECISION (long_integer_type_node))
4788 (simplify
4789 (ifn @0)
4790 (lfn:long_integer_type_node @0)))
4791 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4792 sizeof (long long) == sizeof (long). */
4793 (if (TYPE_PRECISION (long_long_integer_type_node)
4794 == TYPE_PRECISION (long_integer_type_node))
4795 (simplify
4796 (llfn @0)
4797 (lfn:long_integer_type_node @0)))))
4798
4799 /* cproj(x) -> x if we're ignoring infinities. */
4800 (simplify
4801 (CPROJ @0)
4802 (if (!HONOR_INFINITIES (type))
4803 @0))
4804
4805 /* If the real part is inf and the imag part is known to be
4806 nonnegative, return (inf + 0i). */
4807 (simplify
4808 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4809 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4810 { build_complex_inf (type, false); }))
4811
4812 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4813 (simplify
4814 (CPROJ (complex @0 REAL_CST@1))
4815 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4816 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4817
4818 (for pows (POW)
4819 sqrts (SQRT)
4820 cbrts (CBRT)
4821 (simplify
4822 (pows @0 REAL_CST@1)
4823 (with {
4824 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4825 REAL_VALUE_TYPE tmp;
4826 }
4827 (switch
4828 /* pow(x,0) -> 1. */
4829 (if (real_equal (value, &dconst0))
4830 { build_real (type, dconst1); })
4831 /* pow(x,1) -> x. */
4832 (if (real_equal (value, &dconst1))
4833 @0)
4834 /* pow(x,-1) -> 1/x. */
4835 (if (real_equal (value, &dconstm1))
4836 (rdiv { build_real (type, dconst1); } @0))
4837 /* pow(x,0.5) -> sqrt(x). */
4838 (if (flag_unsafe_math_optimizations
4839 && canonicalize_math_p ()
4840 && real_equal (value, &dconsthalf))
4841 (sqrts @0))
4842 /* pow(x,1/3) -> cbrt(x). */
4843 (if (flag_unsafe_math_optimizations
4844 && canonicalize_math_p ()
4845 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4846 real_equal (value, &tmp)))
4847 (cbrts @0))))))
4848
4849 /* powi(1,x) -> 1. */
4850 (simplify
4851 (POWI real_onep@0 @1)
4852 @0)
4853
4854 (simplify
4855 (POWI @0 INTEGER_CST@1)
4856 (switch
4857 /* powi(x,0) -> 1. */
4858 (if (wi::to_wide (@1) == 0)
4859 { build_real (type, dconst1); })
4860 /* powi(x,1) -> x. */
4861 (if (wi::to_wide (@1) == 1)
4862 @0)
4863 /* powi(x,-1) -> 1/x. */
4864 (if (wi::to_wide (@1) == -1)
4865 (rdiv { build_real (type, dconst1); } @0))))
4866
4867 /* Narrowing of arithmetic and logical operations.
4868
4869 These are conceptually similar to the transformations performed for
4870 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4871 term we want to move all that code out of the front-ends into here. */
4872
4873 /* If we have a narrowing conversion of an arithmetic operation where
4874 both operands are widening conversions from the same type as the outer
4875 narrowing conversion. Then convert the innermost operands to a suitable
4876 unsigned type (to avoid introducing undefined behavior), perform the
4877 operation and convert the result to the desired type. */
4878 (for op (plus minus)
4879 (simplify
4880 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4881 (if (INTEGRAL_TYPE_P (type)
4882 /* We check for type compatibility between @0 and @1 below,
4883 so there's no need to check that @1/@3 are integral types. */
4884 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4885 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4886 /* The precision of the type of each operand must match the
4887 precision of the mode of each operand, similarly for the
4888 result. */
4889 && type_has_mode_precision_p (TREE_TYPE (@0))
4890 && type_has_mode_precision_p (TREE_TYPE (@1))
4891 && type_has_mode_precision_p (type)
4892 /* The inner conversion must be a widening conversion. */
4893 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4894 && types_match (@0, type)
4895 && (types_match (@0, @1)
4896 /* Or the second operand is const integer or converted const
4897 integer from valueize. */
4898 || TREE_CODE (@1) == INTEGER_CST))
4899 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4900 (op @0 (convert @1))
4901 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4902 (convert (op (convert:utype @0)
4903 (convert:utype @1))))))))
4904
4905 /* This is another case of narrowing, specifically when there's an outer
4906 BIT_AND_EXPR which masks off bits outside the type of the innermost
4907 operands. Like the previous case we have to convert the operands
4908 to unsigned types to avoid introducing undefined behavior for the
4909 arithmetic operation. */
4910 (for op (minus plus)
4911 (simplify
4912 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4913 (if (INTEGRAL_TYPE_P (type)
4914 /* We check for type compatibility between @0 and @1 below,
4915 so there's no need to check that @1/@3 are integral types. */
4916 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4917 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4918 /* The precision of the type of each operand must match the
4919 precision of the mode of each operand, similarly for the
4920 result. */
4921 && type_has_mode_precision_p (TREE_TYPE (@0))
4922 && type_has_mode_precision_p (TREE_TYPE (@1))
4923 && type_has_mode_precision_p (type)
4924 /* The inner conversion must be a widening conversion. */
4925 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4926 && types_match (@0, @1)
4927 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4928 <= TYPE_PRECISION (TREE_TYPE (@0)))
4929 && (wi::to_wide (@4)
4930 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4931 true, TYPE_PRECISION (type))) == 0)
4932 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4933 (with { tree ntype = TREE_TYPE (@0); }
4934 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4935 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4936 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4937 (convert:utype @4))))))))
4938
4939 /* Transform (@0 < @1 and @0 < @2) to use min,
4940 (@0 > @1 and @0 > @2) to use max */
4941 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4942 op (lt le gt ge lt le gt ge )
4943 ext (min min max max max max min min )
4944 (simplify
4945 (logic (op:cs @0 @1) (op:cs @0 @2))
4946 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4947 && TREE_CODE (@0) != INTEGER_CST)
4948 (op @0 (ext @1 @2)))))
4949
4950 (simplify
4951 /* signbit(x) -> 0 if x is nonnegative. */
4952 (SIGNBIT tree_expr_nonnegative_p@0)
4953 { integer_zero_node; })
4954
4955 (simplify
4956 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4957 (SIGNBIT @0)
4958 (if (!HONOR_SIGNED_ZEROS (@0))
4959 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4960
4961 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4962 (for cmp (eq ne)
4963 (for op (plus minus)
4964 rop (minus plus)
4965 (simplify
4966 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4967 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4968 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4969 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4970 && !TYPE_SATURATING (TREE_TYPE (@0)))
4971 (with { tree res = int_const_binop (rop, @2, @1); }
4972 (if (TREE_OVERFLOW (res)
4973 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4974 { constant_boolean_node (cmp == NE_EXPR, type); }
4975 (if (single_use (@3))
4976 (cmp @0 { TREE_OVERFLOW (res)
4977 ? drop_tree_overflow (res) : res; }))))))))
4978 (for cmp (lt le gt ge)
4979 (for op (plus minus)
4980 rop (minus plus)
4981 (simplify
4982 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4983 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4984 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4985 (with { tree res = int_const_binop (rop, @2, @1); }
4986 (if (TREE_OVERFLOW (res))
4987 {
4988 fold_overflow_warning (("assuming signed overflow does not occur "
4989 "when simplifying conditional to constant"),
4990 WARN_STRICT_OVERFLOW_CONDITIONAL);
4991 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4992 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4993 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4994 TYPE_SIGN (TREE_TYPE (@1)))
4995 != (op == MINUS_EXPR);
4996 constant_boolean_node (less == ovf_high, type);
4997 }
4998 (if (single_use (@3))
4999 (with
5000 {
5001 fold_overflow_warning (("assuming signed overflow does not occur "
5002 "when changing X +- C1 cmp C2 to "
5003 "X cmp C2 -+ C1"),
5004 WARN_STRICT_OVERFLOW_COMPARISON);
5005 }
5006 (cmp @0 { res; })))))))))
5007
5008 /* Canonicalizations of BIT_FIELD_REFs. */
5009
5010 (simplify
5011 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
5012 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
5013
5014 (simplify
5015 (BIT_FIELD_REF (view_convert @0) @1 @2)
5016 (BIT_FIELD_REF @0 @1 @2))
5017
5018 (simplify
5019 (BIT_FIELD_REF @0 @1 integer_zerop)
5020 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
5021 (view_convert @0)))
5022
5023 (simplify
5024 (BIT_FIELD_REF @0 @1 @2)
5025 (switch
5026 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
5027 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5028 (switch
5029 (if (integer_zerop (@2))
5030 (view_convert (realpart @0)))
5031 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
5032 (view_convert (imagpart @0)))))
5033 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
5034 && INTEGRAL_TYPE_P (type)
5035 /* On GIMPLE this should only apply to register arguments. */
5036 && (! GIMPLE || is_gimple_reg (@0))
5037 /* A bit-field-ref that referenced the full argument can be stripped. */
5038 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
5039 && integer_zerop (@2))
5040 /* Low-parts can be reduced to integral conversions.
5041 ??? The following doesn't work for PDP endian. */
5042 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
5043 /* Don't even think about BITS_BIG_ENDIAN. */
5044 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
5045 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
5046 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
5047 ? (TYPE_PRECISION (TREE_TYPE (@0))
5048 - TYPE_PRECISION (type))
5049 : 0)) == 0)))
5050 (convert @0))))
5051
5052 /* Simplify vector extracts. */
5053
5054 (simplify
5055 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5056 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5057 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5058 || (VECTOR_TYPE_P (type)
5059 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5060 (with
5061 {
5062 tree ctor = (TREE_CODE (@0) == SSA_NAME
5063 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5064 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5065 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5066 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5067 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5068 }
5069 (if (n != 0
5070 && (idx % width) == 0
5071 && (n % width) == 0
5072 && known_le ((idx + n) / width,
5073 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5074 (with
5075 {
5076 idx = idx / width;
5077 n = n / width;
5078 /* Constructor elements can be subvectors. */
5079 poly_uint64 k = 1;
5080 if (CONSTRUCTOR_NELTS (ctor) != 0)
5081 {
5082 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5083 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5084 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5085 }
5086 unsigned HOST_WIDE_INT elt, count, const_k;
5087 }
5088 (switch
5089 /* We keep an exact subset of the constructor elements. */
5090 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5091 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5092 { build_constructor (type, NULL); }
5093 (if (count == 1)
5094 (if (elt < CONSTRUCTOR_NELTS (ctor))
5095 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5096 { build_zero_cst (type); })
5097 {
5098 vec<constructor_elt, va_gc> *vals;
5099 vec_alloc (vals, count);
5100 for (unsigned i = 0;
5101 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5102 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5103 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5104 build_constructor (type, vals);
5105 })))
5106 /* The bitfield references a single constructor element. */
5107 (if (k.is_constant (&const_k)
5108 && idx + n <= (idx / const_k + 1) * const_k)
5109 (switch
5110 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5111 { build_zero_cst (type); })
5112 (if (n == const_k)
5113 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5114 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5115 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5116
5117 /* Simplify a bit extraction from a bit insertion for the cases with
5118 the inserted element fully covering the extraction or the insertion
5119 not touching the extraction. */
5120 (simplify
5121 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5122 (with
5123 {
5124 unsigned HOST_WIDE_INT isize;
5125 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5126 isize = TYPE_PRECISION (TREE_TYPE (@1));
5127 else
5128 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5129 }
5130 (switch
5131 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5132 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5133 wi::to_wide (@ipos) + isize))
5134 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5135 wi::to_wide (@rpos)
5136 - wi::to_wide (@ipos)); }))
5137 (if (wi::geu_p (wi::to_wide (@ipos),
5138 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5139 || wi::geu_p (wi::to_wide (@rpos),
5140 wi::to_wide (@ipos) + isize))
5141 (BIT_FIELD_REF @0 @rsize @rpos)))))
5142
5143 (if (canonicalize_math_after_vectorization_p ())
5144 (for fmas (FMA)
5145 (simplify
5146 (fmas:c (negate @0) @1 @2)
5147 (IFN_FNMA @0 @1 @2))
5148 (simplify
5149 (fmas @0 @1 (negate @2))
5150 (IFN_FMS @0 @1 @2))
5151 (simplify
5152 (fmas:c (negate @0) @1 (negate @2))
5153 (IFN_FNMS @0 @1 @2))
5154 (simplify
5155 (negate (fmas@3 @0 @1 @2))
5156 (if (single_use (@3))
5157 (IFN_FNMS @0 @1 @2))))
5158
5159 (simplify
5160 (IFN_FMS:c (negate @0) @1 @2)
5161 (IFN_FNMS @0 @1 @2))
5162 (simplify
5163 (IFN_FMS @0 @1 (negate @2))
5164 (IFN_FMA @0 @1 @2))
5165 (simplify
5166 (IFN_FMS:c (negate @0) @1 (negate @2))
5167 (IFN_FNMA @0 @1 @2))
5168 (simplify
5169 (negate (IFN_FMS@3 @0 @1 @2))
5170 (if (single_use (@3))
5171 (IFN_FNMA @0 @1 @2)))
5172
5173 (simplify
5174 (IFN_FNMA:c (negate @0) @1 @2)
5175 (IFN_FMA @0 @1 @2))
5176 (simplify
5177 (IFN_FNMA @0 @1 (negate @2))
5178 (IFN_FNMS @0 @1 @2))
5179 (simplify
5180 (IFN_FNMA:c (negate @0) @1 (negate @2))
5181 (IFN_FMS @0 @1 @2))
5182 (simplify
5183 (negate (IFN_FNMA@3 @0 @1 @2))
5184 (if (single_use (@3))
5185 (IFN_FMS @0 @1 @2)))
5186
5187 (simplify
5188 (IFN_FNMS:c (negate @0) @1 @2)
5189 (IFN_FMS @0 @1 @2))
5190 (simplify
5191 (IFN_FNMS @0 @1 (negate @2))
5192 (IFN_FNMA @0 @1 @2))
5193 (simplify
5194 (IFN_FNMS:c (negate @0) @1 (negate @2))
5195 (IFN_FMA @0 @1 @2))
5196 (simplify
5197 (negate (IFN_FNMS@3 @0 @1 @2))
5198 (if (single_use (@3))
5199 (IFN_FMA @0 @1 @2))))
5200
5201 /* POPCOUNT simplifications. */
5202 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5203 BUILT_IN_POPCOUNTIMAX)
5204 /* popcount(X&1) is nop_expr(X&1). */
5205 (simplify
5206 (popcount @0)
5207 (if (tree_nonzero_bits (@0) == 1)
5208 (convert @0)))
5209 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5210 (simplify
5211 (plus (popcount:s @0) (popcount:s @1))
5212 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5213 (popcount (bit_ior @0 @1))))
5214 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5215 (for cmp (le eq ne gt)
5216 rep (eq eq ne ne)
5217 (simplify
5218 (cmp (popcount @0) integer_zerop)
5219 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5220
5221 /* Simplify:
5222
5223 a = a1 op a2
5224 r = c ? a : b;
5225
5226 to:
5227
5228 r = c ? a1 op a2 : b;
5229
5230 if the target can do it in one go. This makes the operation conditional
5231 on c, so could drop potentially-trapping arithmetic, but that's a valid
5232 simplification if the result of the operation isn't needed.
5233
5234 Avoid speculatively generating a stand-alone vector comparison
5235 on targets that might not support them. Any target implementing
5236 conditional internal functions must support the same comparisons
5237 inside and outside a VEC_COND_EXPR. */
5238
5239 #if GIMPLE
5240 (for uncond_op (UNCOND_BINARY)
5241 cond_op (COND_BINARY)
5242 (simplify
5243 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5244 (with { tree op_type = TREE_TYPE (@4); }
5245 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5246 && element_precision (type) == element_precision (op_type))
5247 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5248 (simplify
5249 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5250 (with { tree op_type = TREE_TYPE (@4); }
5251 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5252 && element_precision (type) == element_precision (op_type))
5253 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5254
5255 /* Same for ternary operations. */
5256 (for uncond_op (UNCOND_TERNARY)
5257 cond_op (COND_TERNARY)
5258 (simplify
5259 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5260 (with { tree op_type = TREE_TYPE (@5); }
5261 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5262 && element_precision (type) == element_precision (op_type))
5263 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5264 (simplify
5265 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5266 (with { tree op_type = TREE_TYPE (@5); }
5267 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5268 && element_precision (type) == element_precision (op_type))
5269 (view_convert (cond_op (bit_not @0) @2 @3 @4
5270 (view_convert:op_type @1)))))))
5271 #endif
5272
5273 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5274 "else" value of an IFN_COND_*. */
5275 (for cond_op (COND_BINARY)
5276 (simplify
5277 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5278 (with { tree op_type = TREE_TYPE (@3); }
5279 (if (element_precision (type) == element_precision (op_type))
5280 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5281 (simplify
5282 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5283 (with { tree op_type = TREE_TYPE (@5); }
5284 (if (inverse_conditions_p (@0, @2)
5285 && element_precision (type) == element_precision (op_type))
5286 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5287
5288 /* Same for ternary operations. */
5289 (for cond_op (COND_TERNARY)
5290 (simplify
5291 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5292 (with { tree op_type = TREE_TYPE (@4); }
5293 (if (element_precision (type) == element_precision (op_type))
5294 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5295 (simplify
5296 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5297 (with { tree op_type = TREE_TYPE (@6); }
5298 (if (inverse_conditions_p (@0, @2)
5299 && element_precision (type) == element_precision (op_type))
5300 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5301
5302 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5303 expressions like:
5304
5305 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5306 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5307
5308 If pointers are known not to wrap, B checks whether @1 bytes starting
5309 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5310 bytes. A is more efficiently tested as:
5311
5312 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5313
5314 The equivalent expression for B is given by replacing @1 with @1 - 1:
5315
5316 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5317
5318 @0 and @2 can be swapped in both expressions without changing the result.
5319
5320 The folds rely on sizetype's being unsigned (which is always true)
5321 and on its being the same width as the pointer (which we have to check).
5322
5323 The fold replaces two pointer_plus expressions, two comparisons and
5324 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5325 the best case it's a saving of two operations. The A fold retains one
5326 of the original pointer_pluses, so is a win even if both pointer_pluses
5327 are used elsewhere. The B fold is a wash if both pointer_pluses are
5328 used elsewhere, since all we end up doing is replacing a comparison with
5329 a pointer_plus. We do still apply the fold under those circumstances
5330 though, in case applying it to other conditions eventually makes one of the
5331 pointer_pluses dead. */
5332 (for ior (truth_orif truth_or bit_ior)
5333 (for cmp (le lt)
5334 (simplify
5335 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5336 (cmp:cs (pointer_plus@4 @2 @1) @0))
5337 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5338 && TYPE_OVERFLOW_WRAPS (sizetype)
5339 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5340 /* Calculate the rhs constant. */
5341 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5342 offset_int rhs = off * 2; }
5343 /* Always fails for negative values. */
5344 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5345 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5346 pick a canonical order. This increases the chances of using the
5347 same pointer_plus in multiple checks. */
5348 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5349 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5350 (if (cmp == LT_EXPR)
5351 (gt (convert:sizetype
5352 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5353 { swap_p ? @0 : @2; }))
5354 { rhs_tree; })
5355 (gt (convert:sizetype
5356 (pointer_diff:ssizetype
5357 (pointer_plus { swap_p ? @2 : @0; }
5358 { wide_int_to_tree (sizetype, off); })
5359 { swap_p ? @0 : @2; }))
5360 { rhs_tree; })))))))))
5361
5362 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5363 element of @1. */
5364 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5365 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5366 (with { int i = single_nonzero_element (@1); }
5367 (if (i >= 0)
5368 (with { tree elt = vector_cst_elt (@1, i);
5369 tree elt_type = TREE_TYPE (elt);
5370 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5371 tree size = bitsize_int (elt_bits);
5372 tree pos = bitsize_int (elt_bits * i); }
5373 (view_convert
5374 (bit_and:elt_type
5375 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5376 { elt; })))))))
5377
5378 (simplify
5379 (vec_perm @0 @1 VECTOR_CST@2)
5380 (with
5381 {
5382 tree op0 = @0, op1 = @1, op2 = @2;
5383
5384 /* Build a vector of integers from the tree mask. */
5385 vec_perm_builder builder;
5386 if (!tree_to_vec_perm_builder (&builder, op2))
5387 return NULL_TREE;
5388
5389 /* Create a vec_perm_indices for the integer vector. */
5390 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
5391 bool single_arg = (op0 == op1);
5392 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts);
5393 }
5394 (if (sel.series_p (0, 1, 0, 1))
5395 { op0; }
5396 (if (sel.series_p (0, 1, nelts, 1))
5397 { op1; }
5398 (with
5399 {
5400 if (!single_arg)
5401 {
5402 if (sel.all_from_input_p (0))
5403 op1 = op0;
5404 else if (sel.all_from_input_p (1))
5405 {
5406 op0 = op1;
5407 sel.rotate_inputs (1);
5408 }
5409 else if (known_ge (poly_uint64 (sel[0]), nelts))
5410 {
5411 std::swap (op0, op1);
5412 sel.rotate_inputs (1);
5413 }
5414 }
5415 gassign *def;
5416 tree cop0 = op0, cop1 = op1;
5417 if (TREE_CODE (op0) == SSA_NAME
5418 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op0)))
5419 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5420 cop0 = gimple_assign_rhs1 (def);
5421 if (TREE_CODE (op1) == SSA_NAME
5422 && (def = dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op1)))
5423 && gimple_assign_rhs_code (def) == CONSTRUCTOR)
5424 cop1 = gimple_assign_rhs1 (def);
5425
5426 tree t;
5427 }
5428 (if ((TREE_CODE (cop0) == VECTOR_CST
5429 || TREE_CODE (cop0) == CONSTRUCTOR)
5430 && (TREE_CODE (cop1) == VECTOR_CST
5431 || TREE_CODE (cop1) == CONSTRUCTOR)
5432 && (t = fold_vec_perm (type, cop0, cop1, sel)))
5433 { t; }
5434 (with
5435 {
5436 bool changed = (op0 == op1 && !single_arg);
5437 tree ins = NULL_TREE;
5438 unsigned at = 0;
5439
5440 /* See if the permutation is performing a single element
5441 insert from a CONSTRUCTOR or constant and use a BIT_INSERT_EXPR
5442 in that case. But only if the vector mode is supported,
5443 otherwise this is invalid GIMPLE. */
5444 if (TYPE_MODE (type) != BLKmode
5445 && (TREE_CODE (cop0) == VECTOR_CST
5446 || TREE_CODE (cop0) == CONSTRUCTOR
5447 || TREE_CODE (cop1) == VECTOR_CST
5448 || TREE_CODE (cop1) == CONSTRUCTOR))
5449 {
5450 if (sel.series_p (1, 1, nelts + 1, 1))
5451 {
5452 /* After canonicalizing the first elt to come from the
5453 first vector we only can insert the first elt from
5454 the first vector. */
5455 at = 0;
5456 if ((ins = fold_read_from_vector (cop0, 0)))
5457 op0 = op1;
5458 }
5459 else
5460 {
5461 unsigned int encoded_nelts = sel.encoding ().encoded_nelts ();
5462 for (at = 0; at < encoded_nelts; ++at)
5463 if (maybe_ne (sel[at], at))
5464 break;
5465 if (at < encoded_nelts && sel.series_p (at + 1, 1, at + 1, 1))
5466 {
5467 if (known_lt (at, nelts))
5468 ins = fold_read_from_vector (cop0, sel[at]);
5469 else
5470 ins = fold_read_from_vector (cop1, sel[at] - nelts);
5471 }
5472 }
5473 }
5474
5475 /* Generate a canonical form of the selector. */
5476 if (!ins && sel.encoding () != builder)
5477 {
5478 /* Some targets are deficient and fail to expand a single
5479 argument permutation while still allowing an equivalent
5480 2-argument version. */
5481 tree oldop2 = op2;
5482 if (sel.ninputs () == 2
5483 || can_vec_perm_const_p (TYPE_MODE (type), sel, false))
5484 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5485 else
5486 {
5487 vec_perm_indices sel2 (builder, 2, nelts);
5488 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false))
5489 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel2);
5490 else
5491 /* Not directly supported with either encoding,
5492 so use the preferred form. */
5493 op2 = vec_perm_indices_to_tree (TREE_TYPE (op2), sel);
5494 }
5495 if (!operand_equal_p (op2, oldop2, 0))
5496 changed = true;
5497 }
5498 }
5499 (if (ins)
5500 (bit_insert { op0; } { ins; }
5501 { bitsize_int (at * tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)))); })
5502 (if (changed)
5503 (vec_perm { op0; } { op1; } { op2; }))))))))))