]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/match.pd
re PR tree-optimization/89570 (ICE in prepare_cmp_insn, at optabs.c:4001)
[thirdparty/gcc.git] / gcc / match.pd
1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
4
5 Copyright (C) 2014-2019 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25
26 /* Generic tree predicates we inherit. */
27 (define_predicates
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
31 zerop
32 initializer_each_zero_or_onep
33 CONSTANT_CLASS_P
34 tree_expr_nonnegative_p
35 tree_expr_nonzero_p
36 integer_valued_real_p
37 integer_pow2p
38 uniform_integer_cst_p
39 HONOR_NANS)
40
41 /* Operator lists. */
42 (define_operator_list tcc_comparison
43 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
44 (define_operator_list inverted_tcc_comparison
45 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list inverted_tcc_comparison_with_nans
47 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
48 (define_operator_list swapped_tcc_comparison
49 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
50 (define_operator_list simple_comparison lt le eq ne ge gt)
51 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
52
53 #include "cfn-operators.pd"
54
55 /* Define operand lists for math rounding functions {,i,l,ll}FN,
56 where the versions prefixed with "i" return an int, those prefixed with
57 "l" return a long and those prefixed with "ll" return a long long.
58
59 Also define operand lists:
60
61 X<FN>F for all float functions, in the order i, l, ll
62 X<FN> for all double functions, in the same order
63 X<FN>L for all long double functions, in the same order. */
64 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
65 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 BUILT_IN_L##FN##F \
67 BUILT_IN_LL##FN##F) \
68 (define_operator_list X##FN BUILT_IN_I##FN \
69 BUILT_IN_L##FN \
70 BUILT_IN_LL##FN) \
71 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
72 BUILT_IN_L##FN##L \
73 BUILT_IN_LL##FN##L)
74
75 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
77 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
78 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
79
80 /* Binary operations and their associated IFN_COND_* function. */
81 (define_operator_list UNCOND_BINARY
82 plus minus
83 mult trunc_div trunc_mod rdiv
84 min max
85 bit_and bit_ior bit_xor)
86 (define_operator_list COND_BINARY
87 IFN_COND_ADD IFN_COND_SUB
88 IFN_COND_MUL IFN_COND_DIV IFN_COND_MOD IFN_COND_RDIV
89 IFN_COND_MIN IFN_COND_MAX
90 IFN_COND_AND IFN_COND_IOR IFN_COND_XOR)
91
92 /* Same for ternary operations. */
93 (define_operator_list UNCOND_TERNARY
94 IFN_FMA IFN_FMS IFN_FNMA IFN_FNMS)
95 (define_operator_list COND_TERNARY
96 IFN_COND_FMA IFN_COND_FMS IFN_COND_FNMA IFN_COND_FNMS)
97
98 /* As opposed to convert?, this still creates a single pattern, so
99 it is not a suitable replacement for convert? in all cases. */
100 (match (nop_convert @0)
101 (convert @0)
102 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
103 (match (nop_convert @0)
104 (view_convert @0)
105 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
106 && known_eq (TYPE_VECTOR_SUBPARTS (type),
107 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
108 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
109 /* This one has to be last, or it shadows the others. */
110 (match (nop_convert @0)
111 @0)
112
113 /* Transform likes of (char) ABS_EXPR <(int) x> into (char) ABSU_EXPR <x>
114 ABSU_EXPR returns unsigned absolute value of the operand and the operand
115 of the ABSU_EXPR will have the corresponding signed type. */
116 (simplify (abs (convert @0))
117 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
118 && !TYPE_UNSIGNED (TREE_TYPE (@0))
119 && element_precision (type) > element_precision (TREE_TYPE (@0)))
120 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
121 (convert (absu:utype @0)))))
122
123
124 /* Simplifications of operations with one constant operand and
125 simplifications to constants or single values. */
126
127 (for op (plus pointer_plus minus bit_ior bit_xor)
128 (simplify
129 (op @0 integer_zerop)
130 (non_lvalue @0)))
131
132 /* 0 +p index -> (type)index */
133 (simplify
134 (pointer_plus integer_zerop @1)
135 (non_lvalue (convert @1)))
136
137 /* ptr - 0 -> (type)ptr */
138 (simplify
139 (pointer_diff @0 integer_zerop)
140 (convert @0))
141
142 /* See if ARG1 is zero and X + ARG1 reduces to X.
143 Likewise if the operands are reversed. */
144 (simplify
145 (plus:c @0 real_zerop@1)
146 (if (fold_real_zero_addition_p (type, @1, 0))
147 (non_lvalue @0)))
148
149 /* See if ARG1 is zero and X - ARG1 reduces to X. */
150 (simplify
151 (minus @0 real_zerop@1)
152 (if (fold_real_zero_addition_p (type, @1, 1))
153 (non_lvalue @0)))
154
155 /* Simplify x - x.
156 This is unsafe for certain floats even in non-IEEE formats.
157 In IEEE, it is unsafe because it does wrong for NaNs.
158 Also note that operand_equal_p is always false if an operand
159 is volatile. */
160 (simplify
161 (minus @0 @0)
162 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
163 { build_zero_cst (type); }))
164 (simplify
165 (pointer_diff @@0 @0)
166 { build_zero_cst (type); })
167
168 (simplify
169 (mult @0 integer_zerop@1)
170 @1)
171
172 /* Maybe fold x * 0 to 0. The expressions aren't the same
173 when x is NaN, since x * 0 is also NaN. Nor are they the
174 same in modes with signed zeros, since multiplying a
175 negative value by 0 gives -0, not +0. */
176 (simplify
177 (mult @0 real_zerop@1)
178 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
179 @1))
180
181 /* In IEEE floating point, x*1 is not equivalent to x for snans.
182 Likewise for complex arithmetic with signed zeros. */
183 (simplify
184 (mult @0 real_onep)
185 (if (!HONOR_SNANS (type)
186 && (!HONOR_SIGNED_ZEROS (type)
187 || !COMPLEX_FLOAT_TYPE_P (type)))
188 (non_lvalue @0)))
189
190 /* Transform x * -1.0 into -x. */
191 (simplify
192 (mult @0 real_minus_onep)
193 (if (!HONOR_SNANS (type)
194 && (!HONOR_SIGNED_ZEROS (type)
195 || !COMPLEX_FLOAT_TYPE_P (type)))
196 (negate @0)))
197
198 /* Transform x * { 0 or 1, 0 or 1, ... } into x & { 0 or -1, 0 or -1, ...},
199 unless the target has native support for the former but not the latter. */
200 (simplify
201 (mult @0 VECTOR_CST@1)
202 (if (initializer_each_zero_or_onep (@1)
203 && !HONOR_SNANS (type)
204 && !HONOR_SIGNED_ZEROS (type))
205 (with { tree itype = FLOAT_TYPE_P (type) ? unsigned_type_for (type) : type; }
206 (if (itype
207 && (!VECTOR_MODE_P (TYPE_MODE (type))
208 || (VECTOR_MODE_P (TYPE_MODE (itype))
209 && optab_handler (and_optab,
210 TYPE_MODE (itype)) != CODE_FOR_nothing)))
211 (view_convert (bit_and:itype (view_convert @0)
212 (ne @1 { build_zero_cst (type); })))))))
213
214 (for cmp (gt ge lt le)
215 outp (convert convert negate negate)
216 outn (negate negate convert convert)
217 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
218 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
219 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
220 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
221 (simplify
222 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
223 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
224 && types_match (type, TREE_TYPE (@0)))
225 (switch
226 (if (types_match (type, float_type_node))
227 (BUILT_IN_COPYSIGNF @1 (outp @0)))
228 (if (types_match (type, double_type_node))
229 (BUILT_IN_COPYSIGN @1 (outp @0)))
230 (if (types_match (type, long_double_type_node))
231 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
232 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
233 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
234 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
235 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
236 (simplify
237 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
238 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
239 && types_match (type, TREE_TYPE (@0)))
240 (switch
241 (if (types_match (type, float_type_node))
242 (BUILT_IN_COPYSIGNF @1 (outn @0)))
243 (if (types_match (type, double_type_node))
244 (BUILT_IN_COPYSIGN @1 (outn @0)))
245 (if (types_match (type, long_double_type_node))
246 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
247
248 /* Transform X * copysign (1.0, X) into abs(X). */
249 (simplify
250 (mult:c @0 (COPYSIGN_ALL real_onep @0))
251 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
252 (abs @0)))
253
254 /* Transform X * copysign (1.0, -X) into -abs(X). */
255 (simplify
256 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
257 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
258 (negate (abs @0))))
259
260 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
261 (simplify
262 (COPYSIGN_ALL REAL_CST@0 @1)
263 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
264 (COPYSIGN_ALL (negate @0) @1)))
265
266 /* X * 1, X / 1 -> X. */
267 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
268 (simplify
269 (op @0 integer_onep)
270 (non_lvalue @0)))
271
272 /* (A / (1 << B)) -> (A >> B).
273 Only for unsigned A. For signed A, this would not preserve rounding
274 toward zero.
275 For example: (-1 / ( 1 << B)) != -1 >> B. */
276 (simplify
277 (trunc_div @0 (lshift integer_onep@1 @2))
278 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
279 && (!VECTOR_TYPE_P (type)
280 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
281 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
282 (rshift @0 @2)))
283
284 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
285 undefined behavior in constexpr evaluation, and assuming that the division
286 traps enables better optimizations than these anyway. */
287 (for div (trunc_div ceil_div floor_div round_div exact_div)
288 /* 0 / X is always zero. */
289 (simplify
290 (div integer_zerop@0 @1)
291 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
292 (if (!integer_zerop (@1))
293 @0))
294 /* X / -1 is -X. */
295 (simplify
296 (div @0 integer_minus_onep@1)
297 (if (!TYPE_UNSIGNED (type))
298 (negate @0)))
299 /* X / X is one. */
300 (simplify
301 (div @0 @0)
302 /* But not for 0 / 0 so that we can get the proper warnings and errors.
303 And not for _Fract types where we can't build 1. */
304 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
305 { build_one_cst (type); }))
306 /* X / abs (X) is X < 0 ? -1 : 1. */
307 (simplify
308 (div:C @0 (abs @0))
309 (if (INTEGRAL_TYPE_P (type)
310 && TYPE_OVERFLOW_UNDEFINED (type))
311 (cond (lt @0 { build_zero_cst (type); })
312 { build_minus_one_cst (type); } { build_one_cst (type); })))
313 /* X / -X is -1. */
314 (simplify
315 (div:C @0 (negate @0))
316 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
317 && TYPE_OVERFLOW_UNDEFINED (type))
318 { build_minus_one_cst (type); })))
319
320 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
321 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
322 (simplify
323 (floor_div @0 @1)
324 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
325 && TYPE_UNSIGNED (type))
326 (trunc_div @0 @1)))
327
328 /* Combine two successive divisions. Note that combining ceil_div
329 and floor_div is trickier and combining round_div even more so. */
330 (for div (trunc_div exact_div)
331 (simplify
332 (div (div@3 @0 INTEGER_CST@1) INTEGER_CST@2)
333 (with {
334 wi::overflow_type overflow;
335 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
336 TYPE_SIGN (type), &overflow);
337 }
338 (if (div == EXACT_DIV_EXPR
339 || optimize_successive_divisions_p (@2, @3))
340 (if (!overflow)
341 (div @0 { wide_int_to_tree (type, mul); })
342 (if (TYPE_UNSIGNED (type)
343 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
344 { build_zero_cst (type); }))))))
345
346 /* Combine successive multiplications. Similar to above, but handling
347 overflow is different. */
348 (simplify
349 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
350 (with {
351 wi::overflow_type overflow;
352 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
353 TYPE_SIGN (type), &overflow);
354 }
355 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
356 otherwise undefined overflow implies that @0 must be zero. */
357 (if (!overflow || TYPE_OVERFLOW_WRAPS (type))
358 (mult @0 { wide_int_to_tree (type, mul); }))))
359
360 /* Optimize A / A to 1.0 if we don't care about
361 NaNs or Infinities. */
362 (simplify
363 (rdiv @0 @0)
364 (if (FLOAT_TYPE_P (type)
365 && ! HONOR_NANS (type)
366 && ! HONOR_INFINITIES (type))
367 { build_one_cst (type); }))
368
369 /* Optimize -A / A to -1.0 if we don't care about
370 NaNs or Infinities. */
371 (simplify
372 (rdiv:C @0 (negate @0))
373 (if (FLOAT_TYPE_P (type)
374 && ! HONOR_NANS (type)
375 && ! HONOR_INFINITIES (type))
376 { build_minus_one_cst (type); }))
377
378 /* PR71078: x / abs(x) -> copysign (1.0, x) */
379 (simplify
380 (rdiv:C (convert? @0) (convert? (abs @0)))
381 (if (SCALAR_FLOAT_TYPE_P (type)
382 && ! HONOR_NANS (type)
383 && ! HONOR_INFINITIES (type))
384 (switch
385 (if (types_match (type, float_type_node))
386 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
387 (if (types_match (type, double_type_node))
388 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
389 (if (types_match (type, long_double_type_node))
390 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
391
392 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
393 (simplify
394 (rdiv @0 real_onep)
395 (if (!HONOR_SNANS (type))
396 (non_lvalue @0)))
397
398 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
399 (simplify
400 (rdiv @0 real_minus_onep)
401 (if (!HONOR_SNANS (type))
402 (negate @0)))
403
404 (if (flag_reciprocal_math)
405 /* Convert (A/B)/C to A/(B*C). */
406 (simplify
407 (rdiv (rdiv:s @0 @1) @2)
408 (rdiv @0 (mult @1 @2)))
409
410 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
411 (simplify
412 (rdiv @0 (mult:s @1 REAL_CST@2))
413 (with
414 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
415 (if (tem)
416 (rdiv (mult @0 { tem; } ) @1))))
417
418 /* Convert A/(B/C) to (A/B)*C */
419 (simplify
420 (rdiv @0 (rdiv:s @1 @2))
421 (mult (rdiv @0 @1) @2)))
422
423 /* Simplify x / (- y) to -x / y. */
424 (simplify
425 (rdiv @0 (negate @1))
426 (rdiv (negate @0) @1))
427
428 (if (flag_unsafe_math_optimizations)
429 /* Simplify (C / x op 0.0) to x op 0.0 for C != 0, C != Inf/Nan.
430 Since C / x may underflow to zero, do this only for unsafe math. */
431 (for op (lt le gt ge)
432 neg_op (gt ge lt le)
433 (simplify
434 (op (rdiv REAL_CST@0 @1) real_zerop@2)
435 (if (!HONOR_SIGNED_ZEROS (@1) && !HONOR_INFINITIES (@1))
436 (switch
437 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@0)))
438 (op @1 @2))
439 /* For C < 0, use the inverted operator. */
440 (if (real_less (TREE_REAL_CST_PTR (@0), &dconst0))
441 (neg_op @1 @2)))))))
442
443 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
444 (for div (trunc_div ceil_div floor_div round_div exact_div)
445 (simplify
446 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
447 (if (integer_pow2p (@2)
448 && tree_int_cst_sgn (@2) > 0
449 && tree_nop_conversion_p (type, TREE_TYPE (@0))
450 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
451 (rshift (convert @0)
452 { build_int_cst (integer_type_node,
453 wi::exact_log2 (wi::to_wide (@2))); }))))
454
455 /* If ARG1 is a constant, we can convert this to a multiply by the
456 reciprocal. This does not have the same rounding properties,
457 so only do this if -freciprocal-math. We can actually
458 always safely do it if ARG1 is a power of two, but it's hard to
459 tell if it is or not in a portable manner. */
460 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
461 (simplify
462 (rdiv @0 cst@1)
463 (if (optimize)
464 (if (flag_reciprocal_math
465 && !real_zerop (@1))
466 (with
467 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
468 (if (tem)
469 (mult @0 { tem; } )))
470 (if (cst != COMPLEX_CST)
471 (with { tree inverse = exact_inverse (type, @1); }
472 (if (inverse)
473 (mult @0 { inverse; } ))))))))
474
475 (for mod (ceil_mod floor_mod round_mod trunc_mod)
476 /* 0 % X is always zero. */
477 (simplify
478 (mod integer_zerop@0 @1)
479 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
480 (if (!integer_zerop (@1))
481 @0))
482 /* X % 1 is always zero. */
483 (simplify
484 (mod @0 integer_onep)
485 { build_zero_cst (type); })
486 /* X % -1 is zero. */
487 (simplify
488 (mod @0 integer_minus_onep@1)
489 (if (!TYPE_UNSIGNED (type))
490 { build_zero_cst (type); }))
491 /* X % X is zero. */
492 (simplify
493 (mod @0 @0)
494 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
495 (if (!integer_zerop (@0))
496 { build_zero_cst (type); }))
497 /* (X % Y) % Y is just X % Y. */
498 (simplify
499 (mod (mod@2 @0 @1) @1)
500 @2)
501 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
502 (simplify
503 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
504 (if (ANY_INTEGRAL_TYPE_P (type)
505 && TYPE_OVERFLOW_UNDEFINED (type)
506 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
507 TYPE_SIGN (type)))
508 { build_zero_cst (type); }))
509 /* For (X % C) == 0, if X is signed and C is power of 2, use unsigned
510 modulo and comparison, since it is simpler and equivalent. */
511 (for cmp (eq ne)
512 (simplify
513 (cmp (mod @0 integer_pow2p@2) integer_zerop@1)
514 (if (!TYPE_UNSIGNED (TREE_TYPE (@0)))
515 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
516 (cmp (mod (convert:utype @0) (convert:utype @2)) (convert:utype @1)))))))
517
518 /* X % -C is the same as X % C. */
519 (simplify
520 (trunc_mod @0 INTEGER_CST@1)
521 (if (TYPE_SIGN (type) == SIGNED
522 && !TREE_OVERFLOW (@1)
523 && wi::neg_p (wi::to_wide (@1))
524 && !TYPE_OVERFLOW_TRAPS (type)
525 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
526 && !sign_bit_p (@1, @1))
527 (trunc_mod @0 (negate @1))))
528
529 /* X % -Y is the same as X % Y. */
530 (simplify
531 (trunc_mod @0 (convert? (negate @1)))
532 (if (INTEGRAL_TYPE_P (type)
533 && !TYPE_UNSIGNED (type)
534 && !TYPE_OVERFLOW_TRAPS (type)
535 && tree_nop_conversion_p (type, TREE_TYPE (@1))
536 /* Avoid this transformation if X might be INT_MIN or
537 Y might be -1, because we would then change valid
538 INT_MIN % -(-1) into invalid INT_MIN % -1. */
539 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
540 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
541 (TREE_TYPE (@1))))))
542 (trunc_mod @0 (convert @1))))
543
544 /* X - (X / Y) * Y is the same as X % Y. */
545 (simplify
546 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
547 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
548 (convert (trunc_mod @0 @1))))
549
550 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
551 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
552 Also optimize A % (C << N) where C is a power of 2,
553 to A & ((C << N) - 1). */
554 (match (power_of_two_cand @1)
555 INTEGER_CST@1)
556 (match (power_of_two_cand @1)
557 (lshift INTEGER_CST@1 @2))
558 (for mod (trunc_mod floor_mod)
559 (simplify
560 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
561 (if ((TYPE_UNSIGNED (type)
562 || tree_expr_nonnegative_p (@0))
563 && tree_nop_conversion_p (type, TREE_TYPE (@3))
564 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
565 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
566
567 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
568 (simplify
569 (trunc_div (mult @0 integer_pow2p@1) @1)
570 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
571 (bit_and @0 { wide_int_to_tree
572 (type, wi::mask (TYPE_PRECISION (type)
573 - wi::exact_log2 (wi::to_wide (@1)),
574 false, TYPE_PRECISION (type))); })))
575
576 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
577 (simplify
578 (mult (trunc_div @0 integer_pow2p@1) @1)
579 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
580 (bit_and @0 (negate @1))))
581
582 /* Simplify (t * 2) / 2) -> t. */
583 (for div (trunc_div ceil_div floor_div round_div exact_div)
584 (simplify
585 (div (mult:c @0 @1) @1)
586 (if (ANY_INTEGRAL_TYPE_P (type)
587 && TYPE_OVERFLOW_UNDEFINED (type))
588 @0)))
589
590 (for op (negate abs)
591 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
592 (for coss (COS COSH)
593 (simplify
594 (coss (op @0))
595 (coss @0)))
596 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
597 (for pows (POW)
598 (simplify
599 (pows (op @0) REAL_CST@1)
600 (with { HOST_WIDE_INT n; }
601 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
602 (pows @0 @1)))))
603 /* Likewise for powi. */
604 (for pows (POWI)
605 (simplify
606 (pows (op @0) INTEGER_CST@1)
607 (if ((wi::to_wide (@1) & 1) == 0)
608 (pows @0 @1))))
609 /* Strip negate and abs from both operands of hypot. */
610 (for hypots (HYPOT)
611 (simplify
612 (hypots (op @0) @1)
613 (hypots @0 @1))
614 (simplify
615 (hypots @0 (op @1))
616 (hypots @0 @1)))
617 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
618 (for copysigns (COPYSIGN_ALL)
619 (simplify
620 (copysigns (op @0) @1)
621 (copysigns @0 @1))))
622
623 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
624 (simplify
625 (mult (abs@1 @0) @1)
626 (mult @0 @0))
627
628 /* Convert absu(x)*absu(x) -> x*x. */
629 (simplify
630 (mult (absu@1 @0) @1)
631 (mult (convert@2 @0) @2))
632
633 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
634 (for coss (COS COSH)
635 copysigns (COPYSIGN)
636 (simplify
637 (coss (copysigns @0 @1))
638 (coss @0)))
639
640 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
641 (for pows (POW)
642 copysigns (COPYSIGN)
643 (simplify
644 (pows (copysigns @0 @2) REAL_CST@1)
645 (with { HOST_WIDE_INT n; }
646 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
647 (pows @0 @1)))))
648 /* Likewise for powi. */
649 (for pows (POWI)
650 copysigns (COPYSIGN)
651 (simplify
652 (pows (copysigns @0 @2) INTEGER_CST@1)
653 (if ((wi::to_wide (@1) & 1) == 0)
654 (pows @0 @1))))
655
656 (for hypots (HYPOT)
657 copysigns (COPYSIGN)
658 /* hypot(copysign(x, y), z) -> hypot(x, z). */
659 (simplify
660 (hypots (copysigns @0 @1) @2)
661 (hypots @0 @2))
662 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
663 (simplify
664 (hypots @0 (copysigns @1 @2))
665 (hypots @0 @1)))
666
667 /* copysign(x, CST) -> [-]abs (x). */
668 (for copysigns (COPYSIGN_ALL)
669 (simplify
670 (copysigns @0 REAL_CST@1)
671 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
672 (negate (abs @0))
673 (abs @0))))
674
675 /* copysign(copysign(x, y), z) -> copysign(x, z). */
676 (for copysigns (COPYSIGN_ALL)
677 (simplify
678 (copysigns (copysigns @0 @1) @2)
679 (copysigns @0 @2)))
680
681 /* copysign(x,y)*copysign(x,y) -> x*x. */
682 (for copysigns (COPYSIGN_ALL)
683 (simplify
684 (mult (copysigns@2 @0 @1) @2)
685 (mult @0 @0)))
686
687 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
688 (for ccoss (CCOS CCOSH)
689 (simplify
690 (ccoss (negate @0))
691 (ccoss @0)))
692
693 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
694 (for ops (conj negate)
695 (for cabss (CABS)
696 (simplify
697 (cabss (ops @0))
698 (cabss @0))))
699
700 /* Fold (a * (1 << b)) into (a << b) */
701 (simplify
702 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
703 (if (! FLOAT_TYPE_P (type)
704 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
705 (lshift @0 @2)))
706
707 /* Fold (1 << (C - x)) where C = precision(type) - 1
708 into ((1 << C) >> x). */
709 (simplify
710 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
711 (if (INTEGRAL_TYPE_P (type)
712 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
713 && single_use (@1))
714 (if (TYPE_UNSIGNED (type))
715 (rshift (lshift @0 @2) @3)
716 (with
717 { tree utype = unsigned_type_for (type); }
718 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
719
720 /* Fold (C1/X)*C2 into (C1*C2)/X. */
721 (simplify
722 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
723 (if (flag_associative_math
724 && single_use (@3))
725 (with
726 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
727 (if (tem)
728 (rdiv { tem; } @1)))))
729
730 /* Simplify ~X & X as zero. */
731 (simplify
732 (bit_and:c (convert? @0) (convert? (bit_not @0)))
733 { build_zero_cst (type); })
734
735 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
736 (simplify
737 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
738 (if (TYPE_UNSIGNED (type))
739 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
740
741 (for bitop (bit_and bit_ior)
742 cmp (eq ne)
743 /* PR35691: Transform
744 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
745 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
746 (simplify
747 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
748 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
749 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
750 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
751 (cmp (bit_ior @0 (convert @1)) @2)))
752 /* Transform:
753 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
754 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
755 (simplify
756 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
757 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
758 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
759 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
760 (cmp (bit_and @0 (convert @1)) @2))))
761
762 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
763 (simplify
764 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
765 (minus (bit_xor @0 @1) @1))
766 (simplify
767 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
768 (if (~wi::to_wide (@2) == wi::to_wide (@1))
769 (minus (bit_xor @0 @1) @1)))
770
771 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
772 (simplify
773 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
774 (minus @1 (bit_xor @0 @1)))
775
776 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
777 (for op (bit_ior bit_xor plus)
778 (simplify
779 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
780 (bit_xor @0 @1))
781 (simplify
782 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
783 (if (~wi::to_wide (@2) == wi::to_wide (@1))
784 (bit_xor @0 @1))))
785
786 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
787 (simplify
788 (bit_ior:c (bit_xor:c @0 @1) @0)
789 (bit_ior @0 @1))
790
791 /* (a & ~b) | (a ^ b) --> a ^ b */
792 (simplify
793 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
794 @2)
795
796 /* (a & ~b) ^ ~a --> ~(a & b) */
797 (simplify
798 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
799 (bit_not (bit_and @0 @1)))
800
801 /* (a | b) & ~(a ^ b) --> a & b */
802 (simplify
803 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
804 (bit_and @0 @1))
805
806 /* a | ~(a ^ b) --> a | ~b */
807 (simplify
808 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
809 (bit_ior @0 (bit_not @1)))
810
811 /* (a | b) | (a &^ b) --> a | b */
812 (for op (bit_and bit_xor)
813 (simplify
814 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
815 @2))
816
817 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
818 (simplify
819 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
820 @2)
821
822 /* ~(~a & b) --> a | ~b */
823 (simplify
824 (bit_not (bit_and:cs (bit_not @0) @1))
825 (bit_ior @0 (bit_not @1)))
826
827 /* ~(~a | b) --> a & ~b */
828 (simplify
829 (bit_not (bit_ior:cs (bit_not @0) @1))
830 (bit_and @0 (bit_not @1)))
831
832 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
833 #if GIMPLE
834 (simplify
835 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
836 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
837 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
838 (bit_xor @0 @1)))
839 #endif
840
841 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
842 ((A & N) + B) & M -> (A + B) & M
843 Similarly if (N & M) == 0,
844 ((A | N) + B) & M -> (A + B) & M
845 and for - instead of + (or unary - instead of +)
846 and/or ^ instead of |.
847 If B is constant and (B & M) == 0, fold into A & M. */
848 (for op (plus minus)
849 (for bitop (bit_and bit_ior bit_xor)
850 (simplify
851 (bit_and (op:s (bitop:s@0 @3 INTEGER_CST@4) @1) INTEGER_CST@2)
852 (with
853 { tree pmop[2];
854 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, bitop,
855 @3, @4, @1, ERROR_MARK, NULL_TREE,
856 NULL_TREE, pmop); }
857 (if (utype)
858 (convert (bit_and (op (convert:utype { pmop[0]; })
859 (convert:utype { pmop[1]; }))
860 (convert:utype @2))))))
861 (simplify
862 (bit_and (op:s @0 (bitop:s@1 @3 INTEGER_CST@4)) INTEGER_CST@2)
863 (with
864 { tree pmop[2];
865 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
866 NULL_TREE, NULL_TREE, @1, bitop, @3,
867 @4, pmop); }
868 (if (utype)
869 (convert (bit_and (op (convert:utype { pmop[0]; })
870 (convert:utype { pmop[1]; }))
871 (convert:utype @2)))))))
872 (simplify
873 (bit_and (op:s @0 @1) INTEGER_CST@2)
874 (with
875 { tree pmop[2];
876 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @2, op, @0, ERROR_MARK,
877 NULL_TREE, NULL_TREE, @1, ERROR_MARK,
878 NULL_TREE, NULL_TREE, pmop); }
879 (if (utype)
880 (convert (bit_and (op (convert:utype { pmop[0]; })
881 (convert:utype { pmop[1]; }))
882 (convert:utype @2)))))))
883 (for bitop (bit_and bit_ior bit_xor)
884 (simplify
885 (bit_and (negate:s (bitop:s@0 @2 INTEGER_CST@3)) INTEGER_CST@1)
886 (with
887 { tree pmop[2];
888 tree utype = fold_bit_and_mask (TREE_TYPE (@0), @1, NEGATE_EXPR, @0,
889 bitop, @2, @3, NULL_TREE, ERROR_MARK,
890 NULL_TREE, NULL_TREE, pmop); }
891 (if (utype)
892 (convert (bit_and (negate (convert:utype { pmop[0]; }))
893 (convert:utype @1)))))))
894
895 /* X % Y is smaller than Y. */
896 (for cmp (lt ge)
897 (simplify
898 (cmp (trunc_mod @0 @1) @1)
899 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
900 { constant_boolean_node (cmp == LT_EXPR, type); })))
901 (for cmp (gt le)
902 (simplify
903 (cmp @1 (trunc_mod @0 @1))
904 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
905 { constant_boolean_node (cmp == GT_EXPR, type); })))
906
907 /* x | ~0 -> ~0 */
908 (simplify
909 (bit_ior @0 integer_all_onesp@1)
910 @1)
911
912 /* x | 0 -> x */
913 (simplify
914 (bit_ior @0 integer_zerop)
915 @0)
916
917 /* x & 0 -> 0 */
918 (simplify
919 (bit_and @0 integer_zerop@1)
920 @1)
921
922 /* ~x | x -> -1 */
923 /* ~x ^ x -> -1 */
924 /* ~x + x -> -1 */
925 (for op (bit_ior bit_xor plus)
926 (simplify
927 (op:c (convert? @0) (convert? (bit_not @0)))
928 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
929
930 /* x ^ x -> 0 */
931 (simplify
932 (bit_xor @0 @0)
933 { build_zero_cst (type); })
934
935 /* Canonicalize X ^ ~0 to ~X. */
936 (simplify
937 (bit_xor @0 integer_all_onesp@1)
938 (bit_not @0))
939
940 /* x & ~0 -> x */
941 (simplify
942 (bit_and @0 integer_all_onesp)
943 (non_lvalue @0))
944
945 /* x & x -> x, x | x -> x */
946 (for bitop (bit_and bit_ior)
947 (simplify
948 (bitop @0 @0)
949 (non_lvalue @0)))
950
951 /* x & C -> x if we know that x & ~C == 0. */
952 #if GIMPLE
953 (simplify
954 (bit_and SSA_NAME@0 INTEGER_CST@1)
955 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
956 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
957 @0))
958 #endif
959
960 /* x + (x & 1) -> (x + 1) & ~1 */
961 (simplify
962 (plus:c @0 (bit_and:s @0 integer_onep@1))
963 (bit_and (plus @0 @1) (bit_not @1)))
964
965 /* x & ~(x & y) -> x & ~y */
966 /* x | ~(x | y) -> x | ~y */
967 (for bitop (bit_and bit_ior)
968 (simplify
969 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
970 (bitop @0 (bit_not @1))))
971
972 /* (~x & y) | ~(x | y) -> ~x */
973 (simplify
974 (bit_ior:c (bit_and:c (bit_not@2 @0) @1) (bit_not (bit_ior:c @0 @1)))
975 @2)
976
977 /* (x | y) ^ (x | ~y) -> ~x */
978 (simplify
979 (bit_xor:c (bit_ior:c @0 @1) (bit_ior:c @0 (bit_not @1)))
980 (bit_not @0))
981
982 /* (x & y) | ~(x | y) -> ~(x ^ y) */
983 (simplify
984 (bit_ior:c (bit_and:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
985 (bit_not (bit_xor @0 @1)))
986
987 /* (~x | y) ^ (x ^ y) -> x | ~y */
988 (simplify
989 (bit_xor:c (bit_ior:cs (bit_not @0) @1) (bit_xor:s @0 @1))
990 (bit_ior @0 (bit_not @1)))
991
992 /* (x ^ y) | ~(x | y) -> ~(x & y) */
993 (simplify
994 (bit_ior:c (bit_xor:s @0 @1) (bit_not:s (bit_ior:s @0 @1)))
995 (bit_not (bit_and @0 @1)))
996
997 /* (x | y) & ~x -> y & ~x */
998 /* (x & y) | ~x -> y | ~x */
999 (for bitop (bit_and bit_ior)
1000 rbitop (bit_ior bit_and)
1001 (simplify
1002 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
1003 (bitop @1 @2)))
1004
1005 /* (x & y) ^ (x | y) -> x ^ y */
1006 (simplify
1007 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
1008 (bit_xor @0 @1))
1009
1010 /* (x ^ y) ^ (x | y) -> x & y */
1011 (simplify
1012 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
1013 (bit_and @0 @1))
1014
1015 /* (x & y) + (x ^ y) -> x | y */
1016 /* (x & y) | (x ^ y) -> x | y */
1017 /* (x & y) ^ (x ^ y) -> x | y */
1018 (for op (plus bit_ior bit_xor)
1019 (simplify
1020 (op:c (bit_and @0 @1) (bit_xor @0 @1))
1021 (bit_ior @0 @1)))
1022
1023 /* (x & y) + (x | y) -> x + y */
1024 (simplify
1025 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
1026 (plus @0 @1))
1027
1028 /* (x + y) - (x | y) -> x & y */
1029 (simplify
1030 (minus (plus @0 @1) (bit_ior @0 @1))
1031 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1032 && !TYPE_SATURATING (type))
1033 (bit_and @0 @1)))
1034
1035 /* (x + y) - (x & y) -> x | y */
1036 (simplify
1037 (minus (plus @0 @1) (bit_and @0 @1))
1038 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
1039 && !TYPE_SATURATING (type))
1040 (bit_ior @0 @1)))
1041
1042 /* (x | y) - (x ^ y) -> x & y */
1043 (simplify
1044 (minus (bit_ior @0 @1) (bit_xor @0 @1))
1045 (bit_and @0 @1))
1046
1047 /* (x | y) - (x & y) -> x ^ y */
1048 (simplify
1049 (minus (bit_ior @0 @1) (bit_and @0 @1))
1050 (bit_xor @0 @1))
1051
1052 /* (x | y) & ~(x & y) -> x ^ y */
1053 (simplify
1054 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
1055 (bit_xor @0 @1))
1056
1057 /* (x | y) & (~x ^ y) -> x & y */
1058 (simplify
1059 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
1060 (bit_and @0 @1))
1061
1062 /* (~x | y) & (x | ~y) -> ~(x ^ y) */
1063 (simplify
1064 (bit_and (bit_ior:cs (bit_not @0) @1) (bit_ior:cs @0 (bit_not @1)))
1065 (bit_not (bit_xor @0 @1)))
1066
1067 /* (~x | y) ^ (x | ~y) -> x ^ y */
1068 (simplify
1069 (bit_xor (bit_ior:c (bit_not @0) @1) (bit_ior:c @0 (bit_not @1)))
1070 (bit_xor @0 @1))
1071
1072 /* ~x & ~y -> ~(x | y)
1073 ~x | ~y -> ~(x & y) */
1074 (for op (bit_and bit_ior)
1075 rop (bit_ior bit_and)
1076 (simplify
1077 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1078 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1079 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1080 (bit_not (rop (convert @0) (convert @1))))))
1081
1082 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
1083 with a constant, and the two constants have no bits in common,
1084 we should treat this as a BIT_IOR_EXPR since this may produce more
1085 simplifications. */
1086 (for op (bit_xor plus)
1087 (simplify
1088 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
1089 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
1090 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1091 && tree_nop_conversion_p (type, TREE_TYPE (@2))
1092 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
1093 (bit_ior (convert @4) (convert @5)))))
1094
1095 /* (X | Y) ^ X -> Y & ~ X*/
1096 (simplify
1097 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
1098 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1099 (convert (bit_and @1 (bit_not @0)))))
1100
1101 /* Convert ~X ^ ~Y to X ^ Y. */
1102 (simplify
1103 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
1104 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1105 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1106 (bit_xor (convert @0) (convert @1))))
1107
1108 /* Convert ~X ^ C to X ^ ~C. */
1109 (simplify
1110 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
1111 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1112 (bit_xor (convert @0) (bit_not @1))))
1113
1114 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
1115 (for opo (bit_and bit_xor)
1116 opi (bit_xor bit_and)
1117 (simplify
1118 (opo:c (opi:cs @0 @1) @1)
1119 (bit_and (bit_not @0) @1)))
1120
1121 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
1122 operands are another bit-wise operation with a common input. If so,
1123 distribute the bit operations to save an operation and possibly two if
1124 constants are involved. For example, convert
1125 (A | B) & (A | C) into A | (B & C)
1126 Further simplification will occur if B and C are constants. */
1127 (for op (bit_and bit_ior bit_xor)
1128 rop (bit_ior bit_and bit_and)
1129 (simplify
1130 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
1131 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1132 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1133 (rop (convert @0) (op (convert @1) (convert @2))))))
1134
1135 /* Some simple reassociation for bit operations, also handled in reassoc. */
1136 /* (X & Y) & Y -> X & Y
1137 (X | Y) | Y -> X | Y */
1138 (for op (bit_and bit_ior)
1139 (simplify
1140 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
1141 @2))
1142 /* (X ^ Y) ^ Y -> X */
1143 (simplify
1144 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
1145 (convert @0))
1146 /* (X & Y) & (X & Z) -> (X & Y) & Z
1147 (X | Y) | (X | Z) -> (X | Y) | Z */
1148 (for op (bit_and bit_ior)
1149 (simplify
1150 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
1151 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1152 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1153 (if (single_use (@5) && single_use (@6))
1154 (op @3 (convert @2))
1155 (if (single_use (@3) && single_use (@4))
1156 (op (convert @1) @5))))))
1157 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
1158 (simplify
1159 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
1160 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1161 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
1162 (bit_xor (convert @1) (convert @2))))
1163
1164 /* Convert abs (abs (X)) into abs (X).
1165 also absu (absu (X)) into absu (X). */
1166 (simplify
1167 (abs (abs@1 @0))
1168 @1)
1169
1170 (simplify
1171 (absu (convert@2 (absu@1 @0)))
1172 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@1)))
1173 @1))
1174
1175 /* Convert abs[u] (-X) -> abs[u] (X). */
1176 (simplify
1177 (abs (negate @0))
1178 (abs @0))
1179
1180 (simplify
1181 (absu (negate @0))
1182 (absu @0))
1183
1184 /* Convert abs[u] (X) where X is nonnegative -> (X). */
1185 (simplify
1186 (abs tree_expr_nonnegative_p@0)
1187 @0)
1188
1189 (simplify
1190 (absu tree_expr_nonnegative_p@0)
1191 (convert @0))
1192
1193 /* A few cases of fold-const.c negate_expr_p predicate. */
1194 (match negate_expr_p
1195 INTEGER_CST
1196 (if ((INTEGRAL_TYPE_P (type)
1197 && TYPE_UNSIGNED (type))
1198 || (!TYPE_OVERFLOW_SANITIZED (type)
1199 && may_negate_without_overflow_p (t)))))
1200 (match negate_expr_p
1201 FIXED_CST)
1202 (match negate_expr_p
1203 (negate @0)
1204 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1205 (match negate_expr_p
1206 REAL_CST
1207 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1208 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1209 ways. */
1210 (match negate_expr_p
1211 VECTOR_CST
1212 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1213 (match negate_expr_p
1214 (minus @0 @1)
1215 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1216 || (FLOAT_TYPE_P (type)
1217 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1218 && !HONOR_SIGNED_ZEROS (type)))))
1219
1220 /* (-A) * (-B) -> A * B */
1221 (simplify
1222 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1223 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1224 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1225 (mult (convert @0) (convert (negate @1)))))
1226
1227 /* -(A + B) -> (-B) - A. */
1228 (simplify
1229 (negate (plus:c @0 negate_expr_p@1))
1230 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1231 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1232 (minus (negate @1) @0)))
1233
1234 /* -(A - B) -> B - A. */
1235 (simplify
1236 (negate (minus @0 @1))
1237 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1238 || (FLOAT_TYPE_P (type)
1239 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1240 && !HONOR_SIGNED_ZEROS (type)))
1241 (minus @1 @0)))
1242 (simplify
1243 (negate (pointer_diff @0 @1))
1244 (if (TYPE_OVERFLOW_UNDEFINED (type))
1245 (pointer_diff @1 @0)))
1246
1247 /* A - B -> A + (-B) if B is easily negatable. */
1248 (simplify
1249 (minus @0 negate_expr_p@1)
1250 (if (!FIXED_POINT_TYPE_P (type))
1251 (plus @0 (negate @1))))
1252
1253 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1254 when profitable.
1255 For bitwise binary operations apply operand conversions to the
1256 binary operation result instead of to the operands. This allows
1257 to combine successive conversions and bitwise binary operations.
1258 We combine the above two cases by using a conditional convert. */
1259 (for bitop (bit_and bit_ior bit_xor)
1260 (simplify
1261 (bitop (convert @0) (convert? @1))
1262 (if (((TREE_CODE (@1) == INTEGER_CST
1263 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1264 && int_fits_type_p (@1, TREE_TYPE (@0)))
1265 || types_match (@0, @1))
1266 /* ??? This transform conflicts with fold-const.c doing
1267 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1268 constants (if x has signed type, the sign bit cannot be set
1269 in c). This folds extension into the BIT_AND_EXPR.
1270 Restrict it to GIMPLE to avoid endless recursions. */
1271 && (bitop != BIT_AND_EXPR || GIMPLE)
1272 && (/* That's a good idea if the conversion widens the operand, thus
1273 after hoisting the conversion the operation will be narrower. */
1274 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1275 /* It's also a good idea if the conversion is to a non-integer
1276 mode. */
1277 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1278 /* Or if the precision of TO is not the same as the precision
1279 of its mode. */
1280 || !type_has_mode_precision_p (type)))
1281 (convert (bitop @0 (convert @1))))))
1282
1283 (for bitop (bit_and bit_ior)
1284 rbitop (bit_ior bit_and)
1285 /* (x | y) & x -> x */
1286 /* (x & y) | x -> x */
1287 (simplify
1288 (bitop:c (rbitop:c @0 @1) @0)
1289 @0)
1290 /* (~x | y) & x -> x & y */
1291 /* (~x & y) | x -> x | y */
1292 (simplify
1293 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1294 (bitop @0 @1)))
1295
1296 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1297 (simplify
1298 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1299 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1300
1301 /* Combine successive equal operations with constants. */
1302 (for bitop (bit_and bit_ior bit_xor)
1303 (simplify
1304 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1305 (if (!CONSTANT_CLASS_P (@0))
1306 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1307 folded to a constant. */
1308 (bitop @0 (bitop @1 @2))
1309 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1310 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1311 the values involved are such that the operation can't be decided at
1312 compile time. Try folding one of @0 or @1 with @2 to see whether
1313 that combination can be decided at compile time.
1314
1315 Keep the existing form if both folds fail, to avoid endless
1316 oscillation. */
1317 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1318 (if (cst1)
1319 (bitop @1 { cst1; })
1320 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1321 (if (cst2)
1322 (bitop @0 { cst2; }))))))))
1323
1324 /* Try simple folding for X op !X, and X op X with the help
1325 of the truth_valued_p and logical_inverted_value predicates. */
1326 (match truth_valued_p
1327 @0
1328 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1329 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1330 (match truth_valued_p
1331 (op @0 @1)))
1332 (match truth_valued_p
1333 (truth_not @0))
1334
1335 (match (logical_inverted_value @0)
1336 (truth_not @0))
1337 (match (logical_inverted_value @0)
1338 (bit_not truth_valued_p@0))
1339 (match (logical_inverted_value @0)
1340 (eq @0 integer_zerop))
1341 (match (logical_inverted_value @0)
1342 (ne truth_valued_p@0 integer_truep))
1343 (match (logical_inverted_value @0)
1344 (bit_xor truth_valued_p@0 integer_truep))
1345
1346 /* X & !X -> 0. */
1347 (simplify
1348 (bit_and:c @0 (logical_inverted_value @0))
1349 { build_zero_cst (type); })
1350 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1351 (for op (bit_ior bit_xor)
1352 (simplify
1353 (op:c truth_valued_p@0 (logical_inverted_value @0))
1354 { constant_boolean_node (true, type); }))
1355 /* X ==/!= !X is false/true. */
1356 (for op (eq ne)
1357 (simplify
1358 (op:c truth_valued_p@0 (logical_inverted_value @0))
1359 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1360
1361 /* ~~x -> x */
1362 (simplify
1363 (bit_not (bit_not @0))
1364 @0)
1365
1366 /* Convert ~ (-A) to A - 1. */
1367 (simplify
1368 (bit_not (convert? (negate @0)))
1369 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1370 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1371 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1372
1373 /* Convert - (~A) to A + 1. */
1374 (simplify
1375 (negate (nop_convert (bit_not @0)))
1376 (plus (view_convert @0) { build_each_one_cst (type); }))
1377
1378 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1379 (simplify
1380 (bit_not (convert? (minus @0 integer_each_onep)))
1381 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1382 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1383 (convert (negate @0))))
1384 (simplify
1385 (bit_not (convert? (plus @0 integer_all_onesp)))
1386 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1387 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1388 (convert (negate @0))))
1389
1390 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1391 (simplify
1392 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1393 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1394 (convert (bit_xor @0 (bit_not @1)))))
1395 (simplify
1396 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1397 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1398 (convert (bit_xor @0 @1))))
1399
1400 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1401 (simplify
1402 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1403 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1404 (bit_not (bit_xor (view_convert @0) @1))))
1405
1406 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1407 (simplify
1408 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1409 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1410
1411 /* Fold A - (A & B) into ~B & A. */
1412 (simplify
1413 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1414 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1415 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1416 (convert (bit_and (bit_not @1) @0))))
1417
1418 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1419 (for cmp (gt lt ge le)
1420 (simplify
1421 (mult (convert (cmp @0 @1)) @2)
1422 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1423
1424 /* For integral types with undefined overflow and C != 0 fold
1425 x * C EQ/NE y * C into x EQ/NE y. */
1426 (for cmp (eq ne)
1427 (simplify
1428 (cmp (mult:c @0 @1) (mult:c @2 @1))
1429 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1430 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1431 && tree_expr_nonzero_p (@1))
1432 (cmp @0 @2))))
1433
1434 /* For integral types with wrapping overflow and C odd fold
1435 x * C EQ/NE y * C into x EQ/NE y. */
1436 (for cmp (eq ne)
1437 (simplify
1438 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1439 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1440 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1441 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1442 (cmp @0 @2))))
1443
1444 /* For integral types with undefined overflow and C != 0 fold
1445 x * C RELOP y * C into:
1446
1447 x RELOP y for nonnegative C
1448 y RELOP x for negative C */
1449 (for cmp (lt gt le ge)
1450 (simplify
1451 (cmp (mult:c @0 @1) (mult:c @2 @1))
1452 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1453 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1454 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1455 (cmp @0 @2)
1456 (if (TREE_CODE (@1) == INTEGER_CST
1457 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1458 (cmp @2 @0))))))
1459
1460 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1461 (for cmp (le gt)
1462 icmp (gt le)
1463 (simplify
1464 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1465 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1466 && TYPE_UNSIGNED (TREE_TYPE (@0))
1467 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1468 && (wi::to_wide (@2)
1469 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1470 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1471 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1472
1473 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1474 (for cmp (simple_comparison)
1475 (simplify
1476 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1477 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1478 (cmp @0 @1))))
1479
1480 /* X / C1 op C2 into a simple range test. */
1481 (for cmp (simple_comparison)
1482 (simplify
1483 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1484 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1485 && integer_nonzerop (@1)
1486 && !TREE_OVERFLOW (@1)
1487 && !TREE_OVERFLOW (@2))
1488 (with { tree lo, hi; bool neg_overflow;
1489 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1490 &neg_overflow); }
1491 (switch
1492 (if (code == LT_EXPR || code == GE_EXPR)
1493 (if (TREE_OVERFLOW (lo))
1494 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1495 (if (code == LT_EXPR)
1496 (lt @0 { lo; })
1497 (ge @0 { lo; }))))
1498 (if (code == LE_EXPR || code == GT_EXPR)
1499 (if (TREE_OVERFLOW (hi))
1500 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1501 (if (code == LE_EXPR)
1502 (le @0 { hi; })
1503 (gt @0 { hi; }))))
1504 (if (!lo && !hi)
1505 { build_int_cst (type, code == NE_EXPR); })
1506 (if (code == EQ_EXPR && !hi)
1507 (ge @0 { lo; }))
1508 (if (code == EQ_EXPR && !lo)
1509 (le @0 { hi; }))
1510 (if (code == NE_EXPR && !hi)
1511 (lt @0 { lo; }))
1512 (if (code == NE_EXPR && !lo)
1513 (gt @0 { hi; }))
1514 (if (GENERIC)
1515 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1516 lo, hi); })
1517 (with
1518 {
1519 tree etype = range_check_type (TREE_TYPE (@0));
1520 if (etype)
1521 {
1522 if (! TYPE_UNSIGNED (etype))
1523 etype = unsigned_type_for (etype);
1524 hi = fold_convert (etype, hi);
1525 lo = fold_convert (etype, lo);
1526 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1527 }
1528 }
1529 (if (etype && hi && !TREE_OVERFLOW (hi))
1530 (if (code == EQ_EXPR)
1531 (le (minus (convert:etype @0) { lo; }) { hi; })
1532 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1533
1534 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1535 (for op (lt le ge gt)
1536 (simplify
1537 (op (plus:c @0 @2) (plus:c @1 @2))
1538 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1539 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1540 (op @0 @1))))
1541 /* For equality and subtraction, this is also true with wrapping overflow. */
1542 (for op (eq ne minus)
1543 (simplify
1544 (op (plus:c @0 @2) (plus:c @1 @2))
1545 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1546 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1547 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1548 (op @0 @1))))
1549
1550 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1551 (for op (lt le ge gt)
1552 (simplify
1553 (op (minus @0 @2) (minus @1 @2))
1554 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1555 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1556 (op @0 @1))))
1557 /* For equality and subtraction, this is also true with wrapping overflow. */
1558 (for op (eq ne minus)
1559 (simplify
1560 (op (minus @0 @2) (minus @1 @2))
1561 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1562 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1563 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1564 (op @0 @1))))
1565 /* And for pointers... */
1566 (for op (simple_comparison)
1567 (simplify
1568 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1569 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1570 (op @0 @1))))
1571 (simplify
1572 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1573 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1574 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1575 (pointer_diff @0 @1)))
1576
1577 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1578 (for op (lt le ge gt)
1579 (simplify
1580 (op (minus @2 @0) (minus @2 @1))
1581 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1582 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1583 (op @1 @0))))
1584 /* For equality and subtraction, this is also true with wrapping overflow. */
1585 (for op (eq ne minus)
1586 (simplify
1587 (op (minus @2 @0) (minus @2 @1))
1588 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1589 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1590 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1591 (op @1 @0))))
1592 /* And for pointers... */
1593 (for op (simple_comparison)
1594 (simplify
1595 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1596 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1597 (op @1 @0))))
1598 (simplify
1599 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1600 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1601 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1602 (pointer_diff @1 @0)))
1603
1604 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1605 (for op (lt le gt ge)
1606 (simplify
1607 (op:c (plus:c@2 @0 @1) @1)
1608 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1609 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1610 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
1611 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1612 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1613 /* For equality, this is also true with wrapping overflow. */
1614 (for op (eq ne)
1615 (simplify
1616 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1617 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1618 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1619 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1620 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1621 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1622 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1623 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1624 (simplify
1625 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1626 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1627 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1628 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1629 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1630
1631 /* X - Y < X is the same as Y > 0 when there is no overflow.
1632 For equality, this is also true with wrapping overflow. */
1633 (for op (simple_comparison)
1634 (simplify
1635 (op:c @0 (minus@2 @0 @1))
1636 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1637 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1638 || ((op == EQ_EXPR || op == NE_EXPR)
1639 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1640 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1641 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1642
1643 /* Transform:
1644 (X / Y) == 0 -> X < Y if X, Y are unsigned.
1645 (X / Y) != 0 -> X >= Y, if X, Y are unsigned. */
1646 (for cmp (eq ne)
1647 ocmp (lt ge)
1648 (simplify
1649 (cmp (trunc_div @0 @1) integer_zerop)
1650 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1651 /* Complex ==/!= is allowed, but not </>=. */
1652 && TREE_CODE (TREE_TYPE (@0)) != COMPLEX_TYPE
1653 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1654 (ocmp @0 @1))))
1655
1656 /* X == C - X can never be true if C is odd. */
1657 (for cmp (eq ne)
1658 (simplify
1659 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1660 (if (TREE_INT_CST_LOW (@1) & 1)
1661 { constant_boolean_node (cmp == NE_EXPR, type); })))
1662
1663 /* Arguments on which one can call get_nonzero_bits to get the bits
1664 possibly set. */
1665 (match with_possible_nonzero_bits
1666 INTEGER_CST@0)
1667 (match with_possible_nonzero_bits
1668 SSA_NAME@0
1669 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1670 /* Slightly extended version, do not make it recursive to keep it cheap. */
1671 (match (with_possible_nonzero_bits2 @0)
1672 with_possible_nonzero_bits@0)
1673 (match (with_possible_nonzero_bits2 @0)
1674 (bit_and:c with_possible_nonzero_bits@0 @2))
1675
1676 /* Same for bits that are known to be set, but we do not have
1677 an equivalent to get_nonzero_bits yet. */
1678 (match (with_certain_nonzero_bits2 @0)
1679 INTEGER_CST@0)
1680 (match (with_certain_nonzero_bits2 @0)
1681 (bit_ior @1 INTEGER_CST@0))
1682
1683 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1684 (for cmp (eq ne)
1685 (simplify
1686 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1687 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1688 { constant_boolean_node (cmp == NE_EXPR, type); })))
1689
1690 /* ((X inner_op C0) outer_op C1)
1691 With X being a tree where value_range has reasoned certain bits to always be
1692 zero throughout its computed value range,
1693 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1694 where zero_mask has 1's for all bits that are sure to be 0 in
1695 and 0's otherwise.
1696 if (inner_op == '^') C0 &= ~C1;
1697 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1698 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1699 */
1700 (for inner_op (bit_ior bit_xor)
1701 outer_op (bit_xor bit_ior)
1702 (simplify
1703 (outer_op
1704 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1705 (with
1706 {
1707 bool fail = false;
1708 wide_int zero_mask_not;
1709 wide_int C0;
1710 wide_int cst_emit;
1711
1712 if (TREE_CODE (@2) == SSA_NAME)
1713 zero_mask_not = get_nonzero_bits (@2);
1714 else
1715 fail = true;
1716
1717 if (inner_op == BIT_XOR_EXPR)
1718 {
1719 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1720 cst_emit = C0 | wi::to_wide (@1);
1721 }
1722 else
1723 {
1724 C0 = wi::to_wide (@0);
1725 cst_emit = C0 ^ wi::to_wide (@1);
1726 }
1727 }
1728 (if (!fail && (C0 & zero_mask_not) == 0)
1729 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1730 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1731 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1732
1733 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1734 (simplify
1735 (pointer_plus (pointer_plus:s @0 @1) @3)
1736 (pointer_plus @0 (plus @1 @3)))
1737
1738 /* Pattern match
1739 tem1 = (long) ptr1;
1740 tem2 = (long) ptr2;
1741 tem3 = tem2 - tem1;
1742 tem4 = (unsigned long) tem3;
1743 tem5 = ptr1 + tem4;
1744 and produce
1745 tem5 = ptr2; */
1746 (simplify
1747 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1748 /* Conditionally look through a sign-changing conversion. */
1749 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1750 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1751 || (GENERIC && type == TREE_TYPE (@1))))
1752 @1))
1753 (simplify
1754 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1755 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1756 (convert @1)))
1757
1758 /* Pattern match
1759 tem = (sizetype) ptr;
1760 tem = tem & algn;
1761 tem = -tem;
1762 ... = ptr p+ tem;
1763 and produce the simpler and easier to analyze with respect to alignment
1764 ... = ptr & ~algn; */
1765 (simplify
1766 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1767 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1768 (bit_and @0 { algn; })))
1769
1770 /* Try folding difference of addresses. */
1771 (simplify
1772 (minus (convert ADDR_EXPR@0) (convert @1))
1773 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1774 (with { poly_int64 diff; }
1775 (if (ptr_difference_const (@0, @1, &diff))
1776 { build_int_cst_type (type, diff); }))))
1777 (simplify
1778 (minus (convert @0) (convert ADDR_EXPR@1))
1779 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1780 (with { poly_int64 diff; }
1781 (if (ptr_difference_const (@0, @1, &diff))
1782 { build_int_cst_type (type, diff); }))))
1783 (simplify
1784 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert1?@3 @1))
1785 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1786 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1787 (with { poly_int64 diff; }
1788 (if (ptr_difference_const (@0, @1, &diff))
1789 { build_int_cst_type (type, diff); }))))
1790 (simplify
1791 (pointer_diff (convert?@2 @0) (convert1?@3 ADDR_EXPR@1))
1792 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1793 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1794 (with { poly_int64 diff; }
1795 (if (ptr_difference_const (@0, @1, &diff))
1796 { build_int_cst_type (type, diff); }))))
1797
1798 /* If arg0 is derived from the address of an object or function, we may
1799 be able to fold this expression using the object or function's
1800 alignment. */
1801 (simplify
1802 (bit_and (convert? @0) INTEGER_CST@1)
1803 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1804 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1805 (with
1806 {
1807 unsigned int align;
1808 unsigned HOST_WIDE_INT bitpos;
1809 get_pointer_alignment_1 (@0, &align, &bitpos);
1810 }
1811 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1812 { wide_int_to_tree (type, (wi::to_wide (@1)
1813 & (bitpos / BITS_PER_UNIT))); }))))
1814
1815
1816 /* We can't reassociate at all for saturating types. */
1817 (if (!TYPE_SATURATING (type))
1818
1819 /* Contract negates. */
1820 /* A + (-B) -> A - B */
1821 (simplify
1822 (plus:c @0 (convert? (negate @1)))
1823 /* Apply STRIP_NOPS on the negate. */
1824 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1825 && !TYPE_OVERFLOW_SANITIZED (type))
1826 (with
1827 {
1828 tree t1 = type;
1829 if (INTEGRAL_TYPE_P (type)
1830 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1831 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1832 }
1833 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1834 /* A - (-B) -> A + B */
1835 (simplify
1836 (minus @0 (convert? (negate @1)))
1837 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1838 && !TYPE_OVERFLOW_SANITIZED (type))
1839 (with
1840 {
1841 tree t1 = type;
1842 if (INTEGRAL_TYPE_P (type)
1843 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1844 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1845 }
1846 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1847 /* -(T)(-A) -> (T)A
1848 Sign-extension is ok except for INT_MIN, which thankfully cannot
1849 happen without overflow. */
1850 (simplify
1851 (negate (convert (negate @1)))
1852 (if (INTEGRAL_TYPE_P (type)
1853 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1854 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1855 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1856 && !TYPE_OVERFLOW_SANITIZED (type)
1857 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1858 (convert @1)))
1859 (simplify
1860 (negate (convert negate_expr_p@1))
1861 (if (SCALAR_FLOAT_TYPE_P (type)
1862 && ((DECIMAL_FLOAT_TYPE_P (type)
1863 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1864 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1865 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1866 (convert (negate @1))))
1867 (simplify
1868 (negate (nop_convert (negate @1)))
1869 (if (!TYPE_OVERFLOW_SANITIZED (type)
1870 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1871 (view_convert @1)))
1872
1873 /* We can't reassociate floating-point unless -fassociative-math
1874 or fixed-point plus or minus because of saturation to +-Inf. */
1875 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1876 && !FIXED_POINT_TYPE_P (type))
1877
1878 /* Match patterns that allow contracting a plus-minus pair
1879 irrespective of overflow issues. */
1880 /* (A +- B) - A -> +- B */
1881 /* (A +- B) -+ B -> A */
1882 /* A - (A +- B) -> -+ B */
1883 /* A +- (B -+ A) -> +- B */
1884 (simplify
1885 (minus (plus:c @0 @1) @0)
1886 @1)
1887 (simplify
1888 (minus (minus @0 @1) @0)
1889 (negate @1))
1890 (simplify
1891 (plus:c (minus @0 @1) @1)
1892 @0)
1893 (simplify
1894 (minus @0 (plus:c @0 @1))
1895 (negate @1))
1896 (simplify
1897 (minus @0 (minus @0 @1))
1898 @1)
1899 /* (A +- B) + (C - A) -> C +- B */
1900 /* (A + B) - (A - C) -> B + C */
1901 /* More cases are handled with comparisons. */
1902 (simplify
1903 (plus:c (plus:c @0 @1) (minus @2 @0))
1904 (plus @2 @1))
1905 (simplify
1906 (plus:c (minus @0 @1) (minus @2 @0))
1907 (minus @2 @1))
1908 (simplify
1909 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1910 (if (TYPE_OVERFLOW_UNDEFINED (type)
1911 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1912 (pointer_diff @2 @1)))
1913 (simplify
1914 (minus (plus:c @0 @1) (minus @0 @2))
1915 (plus @1 @2))
1916
1917 /* (A +- CST1) +- CST2 -> A + CST3
1918 Use view_convert because it is safe for vectors and equivalent for
1919 scalars. */
1920 (for outer_op (plus minus)
1921 (for inner_op (plus minus)
1922 neg_inner_op (minus plus)
1923 (simplify
1924 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1925 CONSTANT_CLASS_P@2)
1926 /* If one of the types wraps, use that one. */
1927 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1928 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1929 forever if something doesn't simplify into a constant. */
1930 (if (!CONSTANT_CLASS_P (@0))
1931 (if (outer_op == PLUS_EXPR)
1932 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1933 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1934 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1935 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1936 (if (outer_op == PLUS_EXPR)
1937 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1938 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1939 /* If the constant operation overflows we cannot do the transform
1940 directly as we would introduce undefined overflow, for example
1941 with (a - 1) + INT_MIN. */
1942 (if (types_match (type, @0))
1943 (with { tree cst = const_binop (outer_op == inner_op
1944 ? PLUS_EXPR : MINUS_EXPR,
1945 type, @1, @2); }
1946 (if (cst && !TREE_OVERFLOW (cst))
1947 (inner_op @0 { cst; } )
1948 /* X+INT_MAX+1 is X-INT_MIN. */
1949 (if (INTEGRAL_TYPE_P (type) && cst
1950 && wi::to_wide (cst) == wi::min_value (type))
1951 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1952 /* Last resort, use some unsigned type. */
1953 (with { tree utype = unsigned_type_for (type); }
1954 (if (utype)
1955 (view_convert (inner_op
1956 (view_convert:utype @0)
1957 (view_convert:utype
1958 { drop_tree_overflow (cst); }))))))))))))))
1959
1960 /* (CST1 - A) +- CST2 -> CST3 - A */
1961 (for outer_op (plus minus)
1962 (simplify
1963 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1964 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1965 (if (cst && !TREE_OVERFLOW (cst))
1966 (minus { cst; } @0)))))
1967
1968 /* CST1 - (CST2 - A) -> CST3 + A */
1969 (simplify
1970 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1971 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1972 (if (cst && !TREE_OVERFLOW (cst))
1973 (plus { cst; } @0))))
1974
1975 /* ~A + A -> -1 */
1976 (simplify
1977 (plus:c (bit_not @0) @0)
1978 (if (!TYPE_OVERFLOW_TRAPS (type))
1979 { build_all_ones_cst (type); }))
1980
1981 /* ~A + 1 -> -A */
1982 (simplify
1983 (plus (convert? (bit_not @0)) integer_each_onep)
1984 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1985 (negate (convert @0))))
1986
1987 /* -A - 1 -> ~A */
1988 (simplify
1989 (minus (convert? (negate @0)) integer_each_onep)
1990 (if (!TYPE_OVERFLOW_TRAPS (type)
1991 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1992 (bit_not (convert @0))))
1993
1994 /* -1 - A -> ~A */
1995 (simplify
1996 (minus integer_all_onesp @0)
1997 (bit_not @0))
1998
1999 /* (T)(P + A) - (T)P -> (T) A */
2000 (simplify
2001 (minus (convert (plus:c @@0 @1))
2002 (convert? @0))
2003 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2004 /* For integer types, if A has a smaller type
2005 than T the result depends on the possible
2006 overflow in P + A.
2007 E.g. T=size_t, A=(unsigned)429497295, P>0.
2008 However, if an overflow in P + A would cause
2009 undefined behavior, we can assume that there
2010 is no overflow. */
2011 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2013 (convert @1)))
2014 (simplify
2015 (minus (convert (pointer_plus @@0 @1))
2016 (convert @0))
2017 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2018 /* For pointer types, if the conversion of A to the
2019 final type requires a sign- or zero-extension,
2020 then we have to punt - it is not defined which
2021 one is correct. */
2022 || (POINTER_TYPE_P (TREE_TYPE (@0))
2023 && TREE_CODE (@1) == INTEGER_CST
2024 && tree_int_cst_sign_bit (@1) == 0))
2025 (convert @1)))
2026 (simplify
2027 (pointer_diff (pointer_plus @@0 @1) @0)
2028 /* The second argument of pointer_plus must be interpreted as signed, and
2029 thus sign-extended if necessary. */
2030 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2031 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2032 second arg is unsigned even when we need to consider it as signed,
2033 we don't want to diagnose overflow here. */
2034 (convert (view_convert:stype @1))))
2035
2036 /* (T)P - (T)(P + A) -> -(T) A */
2037 (simplify
2038 (minus (convert? @0)
2039 (convert (plus:c @@0 @1)))
2040 (if (INTEGRAL_TYPE_P (type)
2041 && TYPE_OVERFLOW_UNDEFINED (type)
2042 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2043 (with { tree utype = unsigned_type_for (type); }
2044 (convert (negate (convert:utype @1))))
2045 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2046 /* For integer types, if A has a smaller type
2047 than T the result depends on the possible
2048 overflow in P + A.
2049 E.g. T=size_t, A=(unsigned)429497295, P>0.
2050 However, if an overflow in P + A would cause
2051 undefined behavior, we can assume that there
2052 is no overflow. */
2053 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2054 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
2055 (negate (convert @1)))))
2056 (simplify
2057 (minus (convert @0)
2058 (convert (pointer_plus @@0 @1)))
2059 (if (INTEGRAL_TYPE_P (type)
2060 && TYPE_OVERFLOW_UNDEFINED (type)
2061 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2062 (with { tree utype = unsigned_type_for (type); }
2063 (convert (negate (convert:utype @1))))
2064 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2065 /* For pointer types, if the conversion of A to the
2066 final type requires a sign- or zero-extension,
2067 then we have to punt - it is not defined which
2068 one is correct. */
2069 || (POINTER_TYPE_P (TREE_TYPE (@0))
2070 && TREE_CODE (@1) == INTEGER_CST
2071 && tree_int_cst_sign_bit (@1) == 0))
2072 (negate (convert @1)))))
2073 (simplify
2074 (pointer_diff @0 (pointer_plus @@0 @1))
2075 /* The second argument of pointer_plus must be interpreted as signed, and
2076 thus sign-extended if necessary. */
2077 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2078 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2079 second arg is unsigned even when we need to consider it as signed,
2080 we don't want to diagnose overflow here. */
2081 (negate (convert (view_convert:stype @1)))))
2082
2083 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
2084 (simplify
2085 (minus (convert (plus:c @@0 @1))
2086 (convert (plus:c @0 @2)))
2087 (if (INTEGRAL_TYPE_P (type)
2088 && TYPE_OVERFLOW_UNDEFINED (type)
2089 && element_precision (type) <= element_precision (TREE_TYPE (@1))
2090 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
2091 (with { tree utype = unsigned_type_for (type); }
2092 (convert (minus (convert:utype @1) (convert:utype @2))))
2093 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
2094 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
2095 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
2096 /* For integer types, if A has a smaller type
2097 than T the result depends on the possible
2098 overflow in P + A.
2099 E.g. T=size_t, A=(unsigned)429497295, P>0.
2100 However, if an overflow in P + A would cause
2101 undefined behavior, we can assume that there
2102 is no overflow. */
2103 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
2104 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
2105 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
2106 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
2107 (minus (convert @1) (convert @2)))))
2108 (simplify
2109 (minus (convert (pointer_plus @@0 @1))
2110 (convert (pointer_plus @0 @2)))
2111 (if (INTEGRAL_TYPE_P (type)
2112 && TYPE_OVERFLOW_UNDEFINED (type)
2113 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
2114 (with { tree utype = unsigned_type_for (type); }
2115 (convert (minus (convert:utype @1) (convert:utype @2))))
2116 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
2117 /* For pointer types, if the conversion of A to the
2118 final type requires a sign- or zero-extension,
2119 then we have to punt - it is not defined which
2120 one is correct. */
2121 || (POINTER_TYPE_P (TREE_TYPE (@0))
2122 && TREE_CODE (@1) == INTEGER_CST
2123 && tree_int_cst_sign_bit (@1) == 0
2124 && TREE_CODE (@2) == INTEGER_CST
2125 && tree_int_cst_sign_bit (@2) == 0))
2126 (minus (convert @1) (convert @2)))))
2127 (simplify
2128 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
2129 /* The second argument of pointer_plus must be interpreted as signed, and
2130 thus sign-extended if necessary. */
2131 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
2132 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
2133 second arg is unsigned even when we need to consider it as signed,
2134 we don't want to diagnose overflow here. */
2135 (minus (convert (view_convert:stype @1))
2136 (convert (view_convert:stype @2)))))))
2137
2138 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
2139 Modeled after fold_plusminus_mult_expr. */
2140 (if (!TYPE_SATURATING (type)
2141 && (!FLOAT_TYPE_P (type) || flag_associative_math))
2142 (for plusminus (plus minus)
2143 (simplify
2144 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
2145 (if ((!ANY_INTEGRAL_TYPE_P (type)
2146 || TYPE_OVERFLOW_WRAPS (type)
2147 || (INTEGRAL_TYPE_P (type)
2148 && tree_expr_nonzero_p (@0)
2149 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2150 /* If @1 +- @2 is constant require a hard single-use on either
2151 original operand (but not on both). */
2152 && (single_use (@3) || single_use (@4)))
2153 (mult (plusminus @1 @2) @0)))
2154 /* We cannot generate constant 1 for fract. */
2155 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
2156 (simplify
2157 (plusminus @0 (mult:c@3 @0 @2))
2158 (if ((!ANY_INTEGRAL_TYPE_P (type)
2159 || TYPE_OVERFLOW_WRAPS (type)
2160 || (INTEGRAL_TYPE_P (type)
2161 && tree_expr_nonzero_p (@0)
2162 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2163 && single_use (@3))
2164 (mult (plusminus { build_one_cst (type); } @2) @0)))
2165 (simplify
2166 (plusminus (mult:c@3 @0 @2) @0)
2167 (if ((!ANY_INTEGRAL_TYPE_P (type)
2168 || TYPE_OVERFLOW_WRAPS (type)
2169 || (INTEGRAL_TYPE_P (type)
2170 && tree_expr_nonzero_p (@0)
2171 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
2172 && single_use (@3))
2173 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
2174
2175 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
2176
2177 (for minmax (min max FMIN_ALL FMAX_ALL)
2178 (simplify
2179 (minmax @0 @0)
2180 @0))
2181 /* min(max(x,y),y) -> y. */
2182 (simplify
2183 (min:c (max:c @0 @1) @1)
2184 @1)
2185 /* max(min(x,y),y) -> y. */
2186 (simplify
2187 (max:c (min:c @0 @1) @1)
2188 @1)
2189 /* max(a,-a) -> abs(a). */
2190 (simplify
2191 (max:c @0 (negate @0))
2192 (if (TREE_CODE (type) != COMPLEX_TYPE
2193 && (! ANY_INTEGRAL_TYPE_P (type)
2194 || TYPE_OVERFLOW_UNDEFINED (type)))
2195 (abs @0)))
2196 /* min(a,-a) -> -abs(a). */
2197 (simplify
2198 (min:c @0 (negate @0))
2199 (if (TREE_CODE (type) != COMPLEX_TYPE
2200 && (! ANY_INTEGRAL_TYPE_P (type)
2201 || TYPE_OVERFLOW_UNDEFINED (type)))
2202 (negate (abs @0))))
2203 (simplify
2204 (min @0 @1)
2205 (switch
2206 (if (INTEGRAL_TYPE_P (type)
2207 && TYPE_MIN_VALUE (type)
2208 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2209 @1)
2210 (if (INTEGRAL_TYPE_P (type)
2211 && TYPE_MAX_VALUE (type)
2212 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2213 @0)))
2214 (simplify
2215 (max @0 @1)
2216 (switch
2217 (if (INTEGRAL_TYPE_P (type)
2218 && TYPE_MAX_VALUE (type)
2219 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2220 @1)
2221 (if (INTEGRAL_TYPE_P (type)
2222 && TYPE_MIN_VALUE (type)
2223 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2224 @0)))
2225
2226 /* max (a, a + CST) -> a + CST where CST is positive. */
2227 /* max (a, a + CST) -> a where CST is negative. */
2228 (simplify
2229 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2230 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2231 (if (tree_int_cst_sgn (@1) > 0)
2232 @2
2233 @0)))
2234
2235 /* min (a, a + CST) -> a where CST is positive. */
2236 /* min (a, a + CST) -> a + CST where CST is negative. */
2237 (simplify
2238 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2239 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2240 (if (tree_int_cst_sgn (@1) > 0)
2241 @0
2242 @2)))
2243
2244 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2245 and the outer convert demotes the expression back to x's type. */
2246 (for minmax (min max)
2247 (simplify
2248 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2249 (if (INTEGRAL_TYPE_P (type)
2250 && types_match (@1, type) && int_fits_type_p (@2, type)
2251 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2252 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2253 (minmax @1 (convert @2)))))
2254
2255 (for minmax (FMIN_ALL FMAX_ALL)
2256 /* If either argument is NaN, return the other one. Avoid the
2257 transformation if we get (and honor) a signalling NaN. */
2258 (simplify
2259 (minmax:c @0 REAL_CST@1)
2260 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2261 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2262 @0)))
2263 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2264 functions to return the numeric arg if the other one is NaN.
2265 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2266 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2267 worry about it either. */
2268 (if (flag_finite_math_only)
2269 (simplify
2270 (FMIN_ALL @0 @1)
2271 (min @0 @1))
2272 (simplify
2273 (FMAX_ALL @0 @1)
2274 (max @0 @1)))
2275 /* min (-A, -B) -> -max (A, B) */
2276 (for minmax (min max FMIN_ALL FMAX_ALL)
2277 maxmin (max min FMAX_ALL FMIN_ALL)
2278 (simplify
2279 (minmax (negate:s@2 @0) (negate:s@3 @1))
2280 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2281 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2282 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2283 (negate (maxmin @0 @1)))))
2284 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2285 MAX (~X, ~Y) -> ~MIN (X, Y) */
2286 (for minmax (min max)
2287 maxmin (max min)
2288 (simplify
2289 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2290 (bit_not (maxmin @0 @1))))
2291
2292 /* MIN (X, Y) == X -> X <= Y */
2293 (for minmax (min min max max)
2294 cmp (eq ne eq ne )
2295 out (le gt ge lt )
2296 (simplify
2297 (cmp:c (minmax:c @0 @1) @0)
2298 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2299 (out @0 @1))))
2300 /* MIN (X, 5) == 0 -> X == 0
2301 MIN (X, 5) == 7 -> false */
2302 (for cmp (eq ne)
2303 (simplify
2304 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2305 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2306 TYPE_SIGN (TREE_TYPE (@0))))
2307 { constant_boolean_node (cmp == NE_EXPR, type); }
2308 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2309 TYPE_SIGN (TREE_TYPE (@0))))
2310 (cmp @0 @2)))))
2311 (for cmp (eq ne)
2312 (simplify
2313 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2314 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2315 TYPE_SIGN (TREE_TYPE (@0))))
2316 { constant_boolean_node (cmp == NE_EXPR, type); }
2317 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2318 TYPE_SIGN (TREE_TYPE (@0))))
2319 (cmp @0 @2)))))
2320 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2321 (for minmax (min min max max min min max max )
2322 cmp (lt le gt ge gt ge lt le )
2323 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2324 (simplify
2325 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2326 (comb (cmp @0 @2) (cmp @1 @2))))
2327
2328 /* Simplifications of shift and rotates. */
2329
2330 (for rotate (lrotate rrotate)
2331 (simplify
2332 (rotate integer_all_onesp@0 @1)
2333 @0))
2334
2335 /* Optimize -1 >> x for arithmetic right shifts. */
2336 (simplify
2337 (rshift integer_all_onesp@0 @1)
2338 (if (!TYPE_UNSIGNED (type)
2339 && tree_expr_nonnegative_p (@1))
2340 @0))
2341
2342 /* Optimize (x >> c) << c into x & (-1<<c). */
2343 (simplify
2344 (lshift (rshift @0 INTEGER_CST@1) @1)
2345 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2346 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2347
2348 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2349 types. */
2350 (simplify
2351 (rshift (lshift @0 INTEGER_CST@1) @1)
2352 (if (TYPE_UNSIGNED (type)
2353 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2354 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2355
2356 (for shiftrotate (lrotate rrotate lshift rshift)
2357 (simplify
2358 (shiftrotate @0 integer_zerop)
2359 (non_lvalue @0))
2360 (simplify
2361 (shiftrotate integer_zerop@0 @1)
2362 @0)
2363 /* Prefer vector1 << scalar to vector1 << vector2
2364 if vector2 is uniform. */
2365 (for vec (VECTOR_CST CONSTRUCTOR)
2366 (simplify
2367 (shiftrotate @0 vec@1)
2368 (with { tree tem = uniform_vector_p (@1); }
2369 (if (tem)
2370 (shiftrotate @0 { tem; }))))))
2371
2372 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2373 Y is 0. Similarly for X >> Y. */
2374 #if GIMPLE
2375 (for shift (lshift rshift)
2376 (simplify
2377 (shift @0 SSA_NAME@1)
2378 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2379 (with {
2380 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2381 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2382 }
2383 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2384 @0)))))
2385 #endif
2386
2387 /* Rewrite an LROTATE_EXPR by a constant into an
2388 RROTATE_EXPR by a new constant. */
2389 (simplify
2390 (lrotate @0 INTEGER_CST@1)
2391 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2392 build_int_cst (TREE_TYPE (@1),
2393 element_precision (type)), @1); }))
2394
2395 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2396 (for op (lrotate rrotate rshift lshift)
2397 (simplify
2398 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2399 (with { unsigned int prec = element_precision (type); }
2400 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2401 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2402 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2403 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2404 (with { unsigned int low = (tree_to_uhwi (@1)
2405 + tree_to_uhwi (@2)); }
2406 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2407 being well defined. */
2408 (if (low >= prec)
2409 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2410 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2411 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2412 { build_zero_cst (type); }
2413 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2414 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2415
2416
2417 /* ((1 << A) & 1) != 0 -> A == 0
2418 ((1 << A) & 1) == 0 -> A != 0 */
2419 (for cmp (ne eq)
2420 icmp (eq ne)
2421 (simplify
2422 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2423 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2424
2425 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2426 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2427 if CST2 != 0. */
2428 (for cmp (ne eq)
2429 (simplify
2430 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2431 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2432 (if (cand < 0
2433 || (!integer_zerop (@2)
2434 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2435 { constant_boolean_node (cmp == NE_EXPR, type); }
2436 (if (!integer_zerop (@2)
2437 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2438 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2439
2440 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2441 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2442 if the new mask might be further optimized. */
2443 (for shift (lshift rshift)
2444 (simplify
2445 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2446 INTEGER_CST@2)
2447 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2448 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2449 && tree_fits_uhwi_p (@1)
2450 && tree_to_uhwi (@1) > 0
2451 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2452 (with
2453 {
2454 unsigned int shiftc = tree_to_uhwi (@1);
2455 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2456 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2457 tree shift_type = TREE_TYPE (@3);
2458 unsigned int prec;
2459
2460 if (shift == LSHIFT_EXPR)
2461 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2462 else if (shift == RSHIFT_EXPR
2463 && type_has_mode_precision_p (shift_type))
2464 {
2465 prec = TYPE_PRECISION (TREE_TYPE (@3));
2466 tree arg00 = @0;
2467 /* See if more bits can be proven as zero because of
2468 zero extension. */
2469 if (@3 != @0
2470 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2471 {
2472 tree inner_type = TREE_TYPE (@0);
2473 if (type_has_mode_precision_p (inner_type)
2474 && TYPE_PRECISION (inner_type) < prec)
2475 {
2476 prec = TYPE_PRECISION (inner_type);
2477 /* See if we can shorten the right shift. */
2478 if (shiftc < prec)
2479 shift_type = inner_type;
2480 /* Otherwise X >> C1 is all zeros, so we'll optimize
2481 it into (X, 0) later on by making sure zerobits
2482 is all ones. */
2483 }
2484 }
2485 zerobits = HOST_WIDE_INT_M1U;
2486 if (shiftc < prec)
2487 {
2488 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2489 zerobits <<= prec - shiftc;
2490 }
2491 /* For arithmetic shift if sign bit could be set, zerobits
2492 can contain actually sign bits, so no transformation is
2493 possible, unless MASK masks them all away. In that
2494 case the shift needs to be converted into logical shift. */
2495 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2496 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2497 {
2498 if ((mask & zerobits) == 0)
2499 shift_type = unsigned_type_for (TREE_TYPE (@3));
2500 else
2501 zerobits = 0;
2502 }
2503 }
2504 }
2505 /* ((X << 16) & 0xff00) is (X, 0). */
2506 (if ((mask & zerobits) == mask)
2507 { build_int_cst (type, 0); }
2508 (with { newmask = mask | zerobits; }
2509 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2510 (with
2511 {
2512 /* Only do the transformation if NEWMASK is some integer
2513 mode's mask. */
2514 for (prec = BITS_PER_UNIT;
2515 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2516 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2517 break;
2518 }
2519 (if (prec < HOST_BITS_PER_WIDE_INT
2520 || newmask == HOST_WIDE_INT_M1U)
2521 (with
2522 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2523 (if (!tree_int_cst_equal (newmaskt, @2))
2524 (if (shift_type != TREE_TYPE (@3))
2525 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2526 (bit_and @4 { newmaskt; })))))))))))))
2527
2528 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2529 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2530 (for shift (lshift rshift)
2531 (for bit_op (bit_and bit_xor bit_ior)
2532 (simplify
2533 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2534 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2535 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2536 (bit_op (shift (convert @0) @1) { mask; }))))))
2537
2538 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2539 (simplify
2540 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2541 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2542 && (element_precision (TREE_TYPE (@0))
2543 <= element_precision (TREE_TYPE (@1))
2544 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2545 (with
2546 { tree shift_type = TREE_TYPE (@0); }
2547 (convert (rshift (convert:shift_type @1) @2)))))
2548
2549 /* ~(~X >>r Y) -> X >>r Y
2550 ~(~X <<r Y) -> X <<r Y */
2551 (for rotate (lrotate rrotate)
2552 (simplify
2553 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2554 (if ((element_precision (TREE_TYPE (@0))
2555 <= element_precision (TREE_TYPE (@1))
2556 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2557 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2558 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2559 (with
2560 { tree rotate_type = TREE_TYPE (@0); }
2561 (convert (rotate (convert:rotate_type @1) @2))))))
2562
2563 /* Simplifications of conversions. */
2564
2565 /* Basic strip-useless-type-conversions / strip_nops. */
2566 (for cvt (convert view_convert float fix_trunc)
2567 (simplify
2568 (cvt @0)
2569 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2570 || (GENERIC && type == TREE_TYPE (@0)))
2571 @0)))
2572
2573 /* Contract view-conversions. */
2574 (simplify
2575 (view_convert (view_convert @0))
2576 (view_convert @0))
2577
2578 /* For integral conversions with the same precision or pointer
2579 conversions use a NOP_EXPR instead. */
2580 (simplify
2581 (view_convert @0)
2582 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2583 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2584 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2585 (convert @0)))
2586
2587 /* Strip inner integral conversions that do not change precision or size, or
2588 zero-extend while keeping the same size (for bool-to-char). */
2589 (simplify
2590 (view_convert (convert@0 @1))
2591 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2592 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2593 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2594 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2595 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2596 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2597 (view_convert @1)))
2598
2599 /* Re-association barriers around constants and other re-association
2600 barriers can be removed. */
2601 (simplify
2602 (paren CONSTANT_CLASS_P@0)
2603 @0)
2604 (simplify
2605 (paren (paren@1 @0))
2606 @1)
2607
2608 /* Handle cases of two conversions in a row. */
2609 (for ocvt (convert float fix_trunc)
2610 (for icvt (convert float)
2611 (simplify
2612 (ocvt (icvt@1 @0))
2613 (with
2614 {
2615 tree inside_type = TREE_TYPE (@0);
2616 tree inter_type = TREE_TYPE (@1);
2617 int inside_int = INTEGRAL_TYPE_P (inside_type);
2618 int inside_ptr = POINTER_TYPE_P (inside_type);
2619 int inside_float = FLOAT_TYPE_P (inside_type);
2620 int inside_vec = VECTOR_TYPE_P (inside_type);
2621 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2622 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2623 int inter_int = INTEGRAL_TYPE_P (inter_type);
2624 int inter_ptr = POINTER_TYPE_P (inter_type);
2625 int inter_float = FLOAT_TYPE_P (inter_type);
2626 int inter_vec = VECTOR_TYPE_P (inter_type);
2627 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2628 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2629 int final_int = INTEGRAL_TYPE_P (type);
2630 int final_ptr = POINTER_TYPE_P (type);
2631 int final_float = FLOAT_TYPE_P (type);
2632 int final_vec = VECTOR_TYPE_P (type);
2633 unsigned int final_prec = TYPE_PRECISION (type);
2634 int final_unsignedp = TYPE_UNSIGNED (type);
2635 }
2636 (switch
2637 /* In addition to the cases of two conversions in a row
2638 handled below, if we are converting something to its own
2639 type via an object of identical or wider precision, neither
2640 conversion is needed. */
2641 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2642 || (GENERIC
2643 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2644 && (((inter_int || inter_ptr) && final_int)
2645 || (inter_float && final_float))
2646 && inter_prec >= final_prec)
2647 (ocvt @0))
2648
2649 /* Likewise, if the intermediate and initial types are either both
2650 float or both integer, we don't need the middle conversion if the
2651 former is wider than the latter and doesn't change the signedness
2652 (for integers). Avoid this if the final type is a pointer since
2653 then we sometimes need the middle conversion. */
2654 (if (((inter_int && inside_int) || (inter_float && inside_float))
2655 && (final_int || final_float)
2656 && inter_prec >= inside_prec
2657 && (inter_float || inter_unsignedp == inside_unsignedp))
2658 (ocvt @0))
2659
2660 /* If we have a sign-extension of a zero-extended value, we can
2661 replace that by a single zero-extension. Likewise if the
2662 final conversion does not change precision we can drop the
2663 intermediate conversion. */
2664 (if (inside_int && inter_int && final_int
2665 && ((inside_prec < inter_prec && inter_prec < final_prec
2666 && inside_unsignedp && !inter_unsignedp)
2667 || final_prec == inter_prec))
2668 (ocvt @0))
2669
2670 /* Two conversions in a row are not needed unless:
2671 - some conversion is floating-point (overstrict for now), or
2672 - some conversion is a vector (overstrict for now), or
2673 - the intermediate type is narrower than both initial and
2674 final, or
2675 - the intermediate type and innermost type differ in signedness,
2676 and the outermost type is wider than the intermediate, or
2677 - the initial type is a pointer type and the precisions of the
2678 intermediate and final types differ, or
2679 - the final type is a pointer type and the precisions of the
2680 initial and intermediate types differ. */
2681 (if (! inside_float && ! inter_float && ! final_float
2682 && ! inside_vec && ! inter_vec && ! final_vec
2683 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2684 && ! (inside_int && inter_int
2685 && inter_unsignedp != inside_unsignedp
2686 && inter_prec < final_prec)
2687 && ((inter_unsignedp && inter_prec > inside_prec)
2688 == (final_unsignedp && final_prec > inter_prec))
2689 && ! (inside_ptr && inter_prec != final_prec)
2690 && ! (final_ptr && inside_prec != inter_prec))
2691 (ocvt @0))
2692
2693 /* A truncation to an unsigned type (a zero-extension) should be
2694 canonicalized as bitwise and of a mask. */
2695 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2696 && final_int && inter_int && inside_int
2697 && final_prec == inside_prec
2698 && final_prec > inter_prec
2699 && inter_unsignedp)
2700 (convert (bit_and @0 { wide_int_to_tree
2701 (inside_type,
2702 wi::mask (inter_prec, false,
2703 TYPE_PRECISION (inside_type))); })))
2704
2705 /* If we are converting an integer to a floating-point that can
2706 represent it exactly and back to an integer, we can skip the
2707 floating-point conversion. */
2708 (if (GIMPLE /* PR66211 */
2709 && inside_int && inter_float && final_int &&
2710 (unsigned) significand_size (TYPE_MODE (inter_type))
2711 >= inside_prec - !inside_unsignedp)
2712 (convert @0)))))))
2713
2714 /* If we have a narrowing conversion to an integral type that is fed by a
2715 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2716 masks off bits outside the final type (and nothing else). */
2717 (simplify
2718 (convert (bit_and @0 INTEGER_CST@1))
2719 (if (INTEGRAL_TYPE_P (type)
2720 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2721 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2722 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2723 TYPE_PRECISION (type)), 0))
2724 (convert @0)))
2725
2726
2727 /* (X /[ex] A) * A -> X. */
2728 (simplify
2729 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2730 (convert @0))
2731
2732 /* ((X /[ex] A) +- B) * A --> X +- A * B. */
2733 (for op (plus minus)
2734 (simplify
2735 (mult (convert1? (op (convert2? (exact_div @0 INTEGER_CST@@1)) INTEGER_CST@2)) @1)
2736 (if (tree_nop_conversion_p (type, TREE_TYPE (@2))
2737 && tree_nop_conversion_p (TREE_TYPE (@0), TREE_TYPE (@2)))
2738 (with
2739 {
2740 wi::overflow_type overflow;
2741 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
2742 TYPE_SIGN (type), &overflow);
2743 }
2744 (if (types_match (type, TREE_TYPE (@2))
2745 && types_match (TREE_TYPE (@0), TREE_TYPE (@2)) && !overflow)
2746 (op @0 { wide_int_to_tree (type, mul); })
2747 (with { tree utype = unsigned_type_for (type); }
2748 (convert (op (convert:utype @0)
2749 (mult (convert:utype @1) (convert:utype @2))))))))))
2750
2751 /* Canonicalization of binary operations. */
2752
2753 /* Convert X + -C into X - C. */
2754 (simplify
2755 (plus @0 REAL_CST@1)
2756 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2757 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2758 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2759 (minus @0 { tem; })))))
2760
2761 /* Convert x+x into x*2. */
2762 (simplify
2763 (plus @0 @0)
2764 (if (SCALAR_FLOAT_TYPE_P (type))
2765 (mult @0 { build_real (type, dconst2); })
2766 (if (INTEGRAL_TYPE_P (type))
2767 (mult @0 { build_int_cst (type, 2); }))))
2768
2769 /* 0 - X -> -X. */
2770 (simplify
2771 (minus integer_zerop @1)
2772 (negate @1))
2773 (simplify
2774 (pointer_diff integer_zerop @1)
2775 (negate (convert @1)))
2776
2777 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2778 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2779 (-ARG1 + ARG0) reduces to -ARG1. */
2780 (simplify
2781 (minus real_zerop@0 @1)
2782 (if (fold_real_zero_addition_p (type, @0, 0))
2783 (negate @1)))
2784
2785 /* Transform x * -1 into -x. */
2786 (simplify
2787 (mult @0 integer_minus_onep)
2788 (negate @0))
2789
2790 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2791 signed overflow for CST != 0 && CST != -1. */
2792 (simplify
2793 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2794 (if (TREE_CODE (@2) != INTEGER_CST
2795 && single_use (@3)
2796 && !integer_zerop (@1) && !integer_minus_onep (@1))
2797 (mult (mult @0 @2) @1)))
2798
2799 /* True if we can easily extract the real and imaginary parts of a complex
2800 number. */
2801 (match compositional_complex
2802 (convert? (complex @0 @1)))
2803
2804 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2805 (simplify
2806 (complex (realpart @0) (imagpart @0))
2807 @0)
2808 (simplify
2809 (realpart (complex @0 @1))
2810 @0)
2811 (simplify
2812 (imagpart (complex @0 @1))
2813 @1)
2814
2815 /* Sometimes we only care about half of a complex expression. */
2816 (simplify
2817 (realpart (convert?:s (conj:s @0)))
2818 (convert (realpart @0)))
2819 (simplify
2820 (imagpart (convert?:s (conj:s @0)))
2821 (convert (negate (imagpart @0))))
2822 (for part (realpart imagpart)
2823 (for op (plus minus)
2824 (simplify
2825 (part (convert?:s@2 (op:s @0 @1)))
2826 (convert (op (part @0) (part @1))))))
2827 (simplify
2828 (realpart (convert?:s (CEXPI:s @0)))
2829 (convert (COS @0)))
2830 (simplify
2831 (imagpart (convert?:s (CEXPI:s @0)))
2832 (convert (SIN @0)))
2833
2834 /* conj(conj(x)) -> x */
2835 (simplify
2836 (conj (convert? (conj @0)))
2837 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2838 (convert @0)))
2839
2840 /* conj({x,y}) -> {x,-y} */
2841 (simplify
2842 (conj (convert?:s (complex:s @0 @1)))
2843 (with { tree itype = TREE_TYPE (type); }
2844 (complex (convert:itype @0) (negate (convert:itype @1)))))
2845
2846 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2847 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2848 (simplify
2849 (bswap (bswap @0))
2850 @0)
2851 (simplify
2852 (bswap (bit_not (bswap @0)))
2853 (bit_not @0))
2854 (for bitop (bit_xor bit_ior bit_and)
2855 (simplify
2856 (bswap (bitop:c (bswap @0) @1))
2857 (bitop @0 (bswap @1)))))
2858
2859
2860 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2861
2862 /* Simplify constant conditions.
2863 Only optimize constant conditions when the selected branch
2864 has the same type as the COND_EXPR. This avoids optimizing
2865 away "c ? x : throw", where the throw has a void type.
2866 Note that we cannot throw away the fold-const.c variant nor
2867 this one as we depend on doing this transform before possibly
2868 A ? B : B -> B triggers and the fold-const.c one can optimize
2869 0 ? A : B to B even if A has side-effects. Something
2870 genmatch cannot handle. */
2871 (simplify
2872 (cond INTEGER_CST@0 @1 @2)
2873 (if (integer_zerop (@0))
2874 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2875 @2)
2876 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2877 @1)))
2878 (simplify
2879 (vec_cond VECTOR_CST@0 @1 @2)
2880 (if (integer_all_onesp (@0))
2881 @1
2882 (if (integer_zerop (@0))
2883 @2)))
2884
2885 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2886 be extended. */
2887 /* This pattern implements two kinds simplification:
2888
2889 Case 1)
2890 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2891 1) Conversions are type widening from smaller type.
2892 2) Const c1 equals to c2 after canonicalizing comparison.
2893 3) Comparison has tree code LT, LE, GT or GE.
2894 This specific pattern is needed when (cmp (convert x) c) may not
2895 be simplified by comparison patterns because of multiple uses of
2896 x. It also makes sense here because simplifying across multiple
2897 referred var is always benefitial for complicated cases.
2898
2899 Case 2)
2900 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2901 (for cmp (lt le gt ge eq)
2902 (simplify
2903 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2904 (with
2905 {
2906 tree from_type = TREE_TYPE (@1);
2907 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2908 enum tree_code code = ERROR_MARK;
2909
2910 if (INTEGRAL_TYPE_P (from_type)
2911 && int_fits_type_p (@2, from_type)
2912 && (types_match (c1_type, from_type)
2913 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2914 && (TYPE_UNSIGNED (from_type)
2915 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2916 && (types_match (c2_type, from_type)
2917 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2918 && (TYPE_UNSIGNED (from_type)
2919 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2920 {
2921 if (cmp != EQ_EXPR)
2922 {
2923 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2924 {
2925 /* X <= Y - 1 equals to X < Y. */
2926 if (cmp == LE_EXPR)
2927 code = LT_EXPR;
2928 /* X > Y - 1 equals to X >= Y. */
2929 if (cmp == GT_EXPR)
2930 code = GE_EXPR;
2931 }
2932 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2933 {
2934 /* X < Y + 1 equals to X <= Y. */
2935 if (cmp == LT_EXPR)
2936 code = LE_EXPR;
2937 /* X >= Y + 1 equals to X > Y. */
2938 if (cmp == GE_EXPR)
2939 code = GT_EXPR;
2940 }
2941 if (code != ERROR_MARK
2942 || wi::to_widest (@2) == wi::to_widest (@3))
2943 {
2944 if (cmp == LT_EXPR || cmp == LE_EXPR)
2945 code = MIN_EXPR;
2946 if (cmp == GT_EXPR || cmp == GE_EXPR)
2947 code = MAX_EXPR;
2948 }
2949 }
2950 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2951 else if (int_fits_type_p (@3, from_type))
2952 code = EQ_EXPR;
2953 }
2954 }
2955 (if (code == MAX_EXPR)
2956 (convert (max @1 (convert @2)))
2957 (if (code == MIN_EXPR)
2958 (convert (min @1 (convert @2)))
2959 (if (code == EQ_EXPR)
2960 (convert (cond (eq @1 (convert @3))
2961 (convert:from_type @3) (convert:from_type @2)))))))))
2962
2963 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2964
2965 1) OP is PLUS or MINUS.
2966 2) CMP is LT, LE, GT or GE.
2967 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2968
2969 This pattern also handles special cases like:
2970
2971 A) Operand x is a unsigned to signed type conversion and c1 is
2972 integer zero. In this case,
2973 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2974 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2975 B) Const c1 may not equal to (C3 op' C2). In this case we also
2976 check equality for (c1+1) and (c1-1) by adjusting comparison
2977 code.
2978
2979 TODO: Though signed type is handled by this pattern, it cannot be
2980 simplified at the moment because C standard requires additional
2981 type promotion. In order to match&simplify it here, the IR needs
2982 to be cleaned up by other optimizers, i.e, VRP. */
2983 (for op (plus minus)
2984 (for cmp (lt le gt ge)
2985 (simplify
2986 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2987 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2988 (if (types_match (from_type, to_type)
2989 /* Check if it is special case A). */
2990 || (TYPE_UNSIGNED (from_type)
2991 && !TYPE_UNSIGNED (to_type)
2992 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2993 && integer_zerop (@1)
2994 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2995 (with
2996 {
2997 wi::overflow_type overflow = wi::OVF_NONE;
2998 enum tree_code code, cmp_code = cmp;
2999 wide_int real_c1;
3000 wide_int c1 = wi::to_wide (@1);
3001 wide_int c2 = wi::to_wide (@2);
3002 wide_int c3 = wi::to_wide (@3);
3003 signop sgn = TYPE_SIGN (from_type);
3004
3005 /* Handle special case A), given x of unsigned type:
3006 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
3007 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
3008 if (!types_match (from_type, to_type))
3009 {
3010 if (cmp_code == LT_EXPR)
3011 cmp_code = GT_EXPR;
3012 if (cmp_code == GE_EXPR)
3013 cmp_code = LE_EXPR;
3014 c1 = wi::max_value (to_type);
3015 }
3016 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
3017 compute (c3 op' c2) and check if it equals to c1 with op' being
3018 the inverted operator of op. Make sure overflow doesn't happen
3019 if it is undefined. */
3020 if (op == PLUS_EXPR)
3021 real_c1 = wi::sub (c3, c2, sgn, &overflow);
3022 else
3023 real_c1 = wi::add (c3, c2, sgn, &overflow);
3024
3025 code = cmp_code;
3026 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
3027 {
3028 /* Check if c1 equals to real_c1. Boundary condition is handled
3029 by adjusting comparison operation if necessary. */
3030 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
3031 && !overflow)
3032 {
3033 /* X <= Y - 1 equals to X < Y. */
3034 if (cmp_code == LE_EXPR)
3035 code = LT_EXPR;
3036 /* X > Y - 1 equals to X >= Y. */
3037 if (cmp_code == GT_EXPR)
3038 code = GE_EXPR;
3039 }
3040 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
3041 && !overflow)
3042 {
3043 /* X < Y + 1 equals to X <= Y. */
3044 if (cmp_code == LT_EXPR)
3045 code = LE_EXPR;
3046 /* X >= Y + 1 equals to X > Y. */
3047 if (cmp_code == GE_EXPR)
3048 code = GT_EXPR;
3049 }
3050 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
3051 {
3052 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
3053 code = MIN_EXPR;
3054 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
3055 code = MAX_EXPR;
3056 }
3057 }
3058 }
3059 (if (code == MAX_EXPR)
3060 (op (max @X { wide_int_to_tree (from_type, real_c1); })
3061 { wide_int_to_tree (from_type, c2); })
3062 (if (code == MIN_EXPR)
3063 (op (min @X { wide_int_to_tree (from_type, real_c1); })
3064 { wide_int_to_tree (from_type, c2); })))))))))
3065
3066 (for cnd (cond vec_cond)
3067 /* A ? B : (A ? X : C) -> A ? B : C. */
3068 (simplify
3069 (cnd @0 (cnd @0 @1 @2) @3)
3070 (cnd @0 @1 @3))
3071 (simplify
3072 (cnd @0 @1 (cnd @0 @2 @3))
3073 (cnd @0 @1 @3))
3074 /* A ? B : (!A ? C : X) -> A ? B : C. */
3075 /* ??? This matches embedded conditions open-coded because genmatch
3076 would generate matching code for conditions in separate stmts only.
3077 The following is still important to merge then and else arm cases
3078 from if-conversion. */
3079 (simplify
3080 (cnd @0 @1 (cnd @2 @3 @4))
3081 (if (inverse_conditions_p (@0, @2))
3082 (cnd @0 @1 @3)))
3083 (simplify
3084 (cnd @0 (cnd @1 @2 @3) @4)
3085 (if (inverse_conditions_p (@0, @1))
3086 (cnd @0 @3 @4)))
3087
3088 /* A ? B : B -> B. */
3089 (simplify
3090 (cnd @0 @1 @1)
3091 @1)
3092
3093 /* !A ? B : C -> A ? C : B. */
3094 (simplify
3095 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
3096 (cnd @0 @2 @1)))
3097
3098 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
3099 return all -1 or all 0 results. */
3100 /* ??? We could instead convert all instances of the vec_cond to negate,
3101 but that isn't necessarily a win on its own. */
3102 (simplify
3103 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3104 (if (VECTOR_TYPE_P (type)
3105 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3106 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3107 && (TYPE_MODE (TREE_TYPE (type))
3108 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3109 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3110
3111 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
3112 (simplify
3113 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
3114 (if (VECTOR_TYPE_P (type)
3115 && known_eq (TYPE_VECTOR_SUBPARTS (type),
3116 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
3117 && (TYPE_MODE (TREE_TYPE (type))
3118 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
3119 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
3120
3121
3122 /* Simplifications of comparisons. */
3123
3124 /* See if we can reduce the magnitude of a constant involved in a
3125 comparison by changing the comparison code. This is a canonicalization
3126 formerly done by maybe_canonicalize_comparison_1. */
3127 (for cmp (le gt)
3128 acmp (lt ge)
3129 (simplify
3130 (cmp @0 uniform_integer_cst_p@1)
3131 (with { tree cst = uniform_integer_cst_p (@1); }
3132 (if (tree_int_cst_sgn (cst) == -1)
3133 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3134 wide_int_to_tree (TREE_TYPE (cst),
3135 wi::to_wide (cst)
3136 + 1)); })))))
3137 (for cmp (ge lt)
3138 acmp (gt le)
3139 (simplify
3140 (cmp @0 uniform_integer_cst_p@1)
3141 (with { tree cst = uniform_integer_cst_p (@1); }
3142 (if (tree_int_cst_sgn (cst) == 1)
3143 (acmp @0 { build_uniform_cst (TREE_TYPE (@1),
3144 wide_int_to_tree (TREE_TYPE (cst),
3145 wi::to_wide (cst) - 1)); })))))
3146
3147 /* We can simplify a logical negation of a comparison to the
3148 inverted comparison. As we cannot compute an expression
3149 operator using invert_tree_comparison we have to simulate
3150 that with expression code iteration. */
3151 (for cmp (tcc_comparison)
3152 icmp (inverted_tcc_comparison)
3153 ncmp (inverted_tcc_comparison_with_nans)
3154 /* Ideally we'd like to combine the following two patterns
3155 and handle some more cases by using
3156 (logical_inverted_value (cmp @0 @1))
3157 here but for that genmatch would need to "inline" that.
3158 For now implement what forward_propagate_comparison did. */
3159 (simplify
3160 (bit_not (cmp @0 @1))
3161 (if (VECTOR_TYPE_P (type)
3162 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
3163 /* Comparison inversion may be impossible for trapping math,
3164 invert_tree_comparison will tell us. But we can't use
3165 a computed operator in the replacement tree thus we have
3166 to play the trick below. */
3167 (with { enum tree_code ic = invert_tree_comparison
3168 (cmp, HONOR_NANS (@0)); }
3169 (if (ic == icmp)
3170 (icmp @0 @1)
3171 (if (ic == ncmp)
3172 (ncmp @0 @1))))))
3173 (simplify
3174 (bit_xor (cmp @0 @1) integer_truep)
3175 (with { enum tree_code ic = invert_tree_comparison
3176 (cmp, HONOR_NANS (@0)); }
3177 (if (ic == icmp)
3178 (icmp @0 @1)
3179 (if (ic == ncmp)
3180 (ncmp @0 @1))))))
3181
3182 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
3183 ??? The transformation is valid for the other operators if overflow
3184 is undefined for the type, but performing it here badly interacts
3185 with the transformation in fold_cond_expr_with_comparison which
3186 attempts to synthetize ABS_EXPR. */
3187 (for cmp (eq ne)
3188 (for sub (minus pointer_diff)
3189 (simplify
3190 (cmp (sub@2 @0 @1) integer_zerop)
3191 (if (single_use (@2))
3192 (cmp @0 @1)))))
3193
3194 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
3195 signed arithmetic case. That form is created by the compiler
3196 often enough for folding it to be of value. One example is in
3197 computing loop trip counts after Operator Strength Reduction. */
3198 (for cmp (simple_comparison)
3199 scmp (swapped_simple_comparison)
3200 (simplify
3201 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
3202 /* Handle unfolded multiplication by zero. */
3203 (if (integer_zerop (@1))
3204 (cmp @1 @2)
3205 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3206 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3207 && single_use (@3))
3208 /* If @1 is negative we swap the sense of the comparison. */
3209 (if (tree_int_cst_sgn (@1) < 0)
3210 (scmp @0 @2)
3211 (cmp @0 @2))))))
3212
3213 /* Simplify comparison of something with itself. For IEEE
3214 floating-point, we can only do some of these simplifications. */
3215 (for cmp (eq ge le)
3216 (simplify
3217 (cmp @0 @0)
3218 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3219 || ! HONOR_NANS (@0))
3220 { constant_boolean_node (true, type); }
3221 (if (cmp != EQ_EXPR)
3222 (eq @0 @0)))))
3223 (for cmp (ne gt lt)
3224 (simplify
3225 (cmp @0 @0)
3226 (if (cmp != NE_EXPR
3227 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3228 || ! HONOR_NANS (@0))
3229 { constant_boolean_node (false, type); })))
3230 (for cmp (unle unge uneq)
3231 (simplify
3232 (cmp @0 @0)
3233 { constant_boolean_node (true, type); }))
3234 (for cmp (unlt ungt)
3235 (simplify
3236 (cmp @0 @0)
3237 (unordered @0 @0)))
3238 (simplify
3239 (ltgt @0 @0)
3240 (if (!flag_trapping_math)
3241 { constant_boolean_node (false, type); }))
3242
3243 /* Fold ~X op ~Y as Y op X. */
3244 (for cmp (simple_comparison)
3245 (simplify
3246 (cmp (bit_not@2 @0) (bit_not@3 @1))
3247 (if (single_use (@2) && single_use (@3))
3248 (cmp @1 @0))))
3249
3250 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3251 (for cmp (simple_comparison)
3252 scmp (swapped_simple_comparison)
3253 (simplify
3254 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3255 (if (single_use (@2)
3256 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3257 (scmp @0 (bit_not @1)))))
3258
3259 (for cmp (simple_comparison)
3260 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3261 (simplify
3262 (cmp (convert@2 @0) (convert? @1))
3263 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3264 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3265 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3266 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3267 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3268 (with
3269 {
3270 tree type1 = TREE_TYPE (@1);
3271 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3272 {
3273 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3274 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3275 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3276 type1 = float_type_node;
3277 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3278 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3279 type1 = double_type_node;
3280 }
3281 tree newtype
3282 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3283 ? TREE_TYPE (@0) : type1);
3284 }
3285 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3286 (cmp (convert:newtype @0) (convert:newtype @1))))))
3287
3288 (simplify
3289 (cmp @0 REAL_CST@1)
3290 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3291 (switch
3292 /* a CMP (-0) -> a CMP 0 */
3293 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3294 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3295 /* x != NaN is always true, other ops are always false. */
3296 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3297 && ! HONOR_SNANS (@1))
3298 { constant_boolean_node (cmp == NE_EXPR, type); })
3299 /* Fold comparisons against infinity. */
3300 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3301 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3302 (with
3303 {
3304 REAL_VALUE_TYPE max;
3305 enum tree_code code = cmp;
3306 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3307 if (neg)
3308 code = swap_tree_comparison (code);
3309 }
3310 (switch
3311 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3312 (if (code == GT_EXPR
3313 && !(HONOR_NANS (@0) && flag_trapping_math))
3314 { constant_boolean_node (false, type); })
3315 (if (code == LE_EXPR)
3316 /* x <= +Inf is always true, if we don't care about NaNs. */
3317 (if (! HONOR_NANS (@0))
3318 { constant_boolean_node (true, type); }
3319 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3320 an "invalid" exception. */
3321 (if (!flag_trapping_math)
3322 (eq @0 @0))))
3323 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3324 for == this introduces an exception for x a NaN. */
3325 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3326 || code == GE_EXPR)
3327 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3328 (if (neg)
3329 (lt @0 { build_real (TREE_TYPE (@0), max); })
3330 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3331 /* x < +Inf is always equal to x <= DBL_MAX. */
3332 (if (code == LT_EXPR)
3333 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3334 (if (neg)
3335 (ge @0 { build_real (TREE_TYPE (@0), max); })
3336 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3337 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3338 an exception for x a NaN so use an unordered comparison. */
3339 (if (code == NE_EXPR)
3340 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3341 (if (! HONOR_NANS (@0))
3342 (if (neg)
3343 (ge @0 { build_real (TREE_TYPE (@0), max); })
3344 (le @0 { build_real (TREE_TYPE (@0), max); }))
3345 (if (neg)
3346 (unge @0 { build_real (TREE_TYPE (@0), max); })
3347 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3348
3349 /* If this is a comparison of a real constant with a PLUS_EXPR
3350 or a MINUS_EXPR of a real constant, we can convert it into a
3351 comparison with a revised real constant as long as no overflow
3352 occurs when unsafe_math_optimizations are enabled. */
3353 (if (flag_unsafe_math_optimizations)
3354 (for op (plus minus)
3355 (simplify
3356 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3357 (with
3358 {
3359 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3360 TREE_TYPE (@1), @2, @1);
3361 }
3362 (if (tem && !TREE_OVERFLOW (tem))
3363 (cmp @0 { tem; }))))))
3364
3365 /* Likewise, we can simplify a comparison of a real constant with
3366 a MINUS_EXPR whose first operand is also a real constant, i.e.
3367 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3368 floating-point types only if -fassociative-math is set. */
3369 (if (flag_associative_math)
3370 (simplify
3371 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3372 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3373 (if (tem && !TREE_OVERFLOW (tem))
3374 (cmp { tem; } @1)))))
3375
3376 /* Fold comparisons against built-in math functions. */
3377 (if (flag_unsafe_math_optimizations
3378 && ! flag_errno_math)
3379 (for sq (SQRT)
3380 (simplify
3381 (cmp (sq @0) REAL_CST@1)
3382 (switch
3383 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3384 (switch
3385 /* sqrt(x) < y is always false, if y is negative. */
3386 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3387 { constant_boolean_node (false, type); })
3388 /* sqrt(x) > y is always true, if y is negative and we
3389 don't care about NaNs, i.e. negative values of x. */
3390 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3391 { constant_boolean_node (true, type); })
3392 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3393 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3394 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3395 (switch
3396 /* sqrt(x) < 0 is always false. */
3397 (if (cmp == LT_EXPR)
3398 { constant_boolean_node (false, type); })
3399 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3400 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3401 { constant_boolean_node (true, type); })
3402 /* sqrt(x) <= 0 -> x == 0. */
3403 (if (cmp == LE_EXPR)
3404 (eq @0 @1))
3405 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3406 == or !=. In the last case:
3407
3408 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3409
3410 if x is negative or NaN. Due to -funsafe-math-optimizations,
3411 the results for other x follow from natural arithmetic. */
3412 (cmp @0 @1)))
3413 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3414 (with
3415 {
3416 REAL_VALUE_TYPE c2;
3417 real_arithmetic (&c2, MULT_EXPR,
3418 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3419 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3420 }
3421 (if (REAL_VALUE_ISINF (c2))
3422 /* sqrt(x) > y is x == +Inf, when y is very large. */
3423 (if (HONOR_INFINITIES (@0))
3424 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3425 { constant_boolean_node (false, type); })
3426 /* sqrt(x) > c is the same as x > c*c. */
3427 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3428 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3429 (with
3430 {
3431 REAL_VALUE_TYPE c2;
3432 real_arithmetic (&c2, MULT_EXPR,
3433 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3434 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3435 }
3436 (if (REAL_VALUE_ISINF (c2))
3437 (switch
3438 /* sqrt(x) < y is always true, when y is a very large
3439 value and we don't care about NaNs or Infinities. */
3440 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3441 { constant_boolean_node (true, type); })
3442 /* sqrt(x) < y is x != +Inf when y is very large and we
3443 don't care about NaNs. */
3444 (if (! HONOR_NANS (@0))
3445 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3446 /* sqrt(x) < y is x >= 0 when y is very large and we
3447 don't care about Infinities. */
3448 (if (! HONOR_INFINITIES (@0))
3449 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3450 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3451 (if (GENERIC)
3452 (truth_andif
3453 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3454 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3455 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3456 (if (! HONOR_NANS (@0))
3457 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3458 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3459 (if (GENERIC)
3460 (truth_andif
3461 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3462 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3463 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3464 (simplify
3465 (cmp (sq @0) (sq @1))
3466 (if (! HONOR_NANS (@0))
3467 (cmp @0 @1))))))
3468
3469 /* Optimize various special cases of (FTYPE) N CMP (FTYPE) M. */
3470 (for cmp (lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
3471 icmp (lt le eq ne ge gt unordered ordered lt le gt ge eq ne)
3472 (simplify
3473 (cmp (float@0 @1) (float @2))
3474 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@0))
3475 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3476 (with
3477 {
3478 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0))));
3479 tree type1 = TREE_TYPE (@1);
3480 bool type1_signed_p = TYPE_SIGN (type1) == SIGNED;
3481 tree type2 = TREE_TYPE (@2);
3482 bool type2_signed_p = TYPE_SIGN (type2) == SIGNED;
3483 }
3484 (if (fmt.can_represent_integral_type_p (type1)
3485 && fmt.can_represent_integral_type_p (type2))
3486 (if (cmp == ORDERED_EXPR || cmp == UNORDERED_EXPR)
3487 { constant_boolean_node (cmp == ORDERED_EXPR, type); }
3488 (if (TYPE_PRECISION (type1) > TYPE_PRECISION (type2)
3489 && type1_signed_p >= type2_signed_p)
3490 (icmp @1 (convert @2))
3491 (if (TYPE_PRECISION (type1) < TYPE_PRECISION (type2)
3492 && type1_signed_p <= type2_signed_p)
3493 (icmp (convert:type2 @1) @2)
3494 (if (TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
3495 && type1_signed_p == type2_signed_p)
3496 (icmp @1 @2))))))))))
3497
3498 /* Optimize various special cases of (FTYPE) N CMP CST. */
3499 (for cmp (lt le eq ne ge gt)
3500 icmp (le le eq ne ge ge)
3501 (simplify
3502 (cmp (float @0) REAL_CST@1)
3503 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3504 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3505 (with
3506 {
3507 tree itype = TREE_TYPE (@0);
3508 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3509 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3510 /* Be careful to preserve any potential exceptions due to
3511 NaNs. qNaNs are ok in == or != context.
3512 TODO: relax under -fno-trapping-math or
3513 -fno-signaling-nans. */
3514 bool exception_p
3515 = real_isnan (cst) && (cst->signalling
3516 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3517 }
3518 /* TODO: allow non-fitting itype and SNaNs when
3519 -fno-trapping-math. */
3520 (if (fmt.can_represent_integral_type_p (itype) && ! exception_p)
3521 (with
3522 {
3523 signop isign = TYPE_SIGN (itype);
3524 REAL_VALUE_TYPE imin, imax;
3525 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3526 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3527
3528 REAL_VALUE_TYPE icst;
3529 if (cmp == GT_EXPR || cmp == GE_EXPR)
3530 real_ceil (&icst, fmt, cst);
3531 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3532 real_floor (&icst, fmt, cst);
3533 else
3534 real_trunc (&icst, fmt, cst);
3535
3536 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3537
3538 bool overflow_p = false;
3539 wide_int icst_val
3540 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3541 }
3542 (switch
3543 /* Optimize cases when CST is outside of ITYPE's range. */
3544 (if (real_compare (LT_EXPR, cst, &imin))
3545 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3546 type); })
3547 (if (real_compare (GT_EXPR, cst, &imax))
3548 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3549 type); })
3550 /* Remove cast if CST is an integer representable by ITYPE. */
3551 (if (cst_int_p)
3552 (cmp @0 { gcc_assert (!overflow_p);
3553 wide_int_to_tree (itype, icst_val); })
3554 )
3555 /* When CST is fractional, optimize
3556 (FTYPE) N == CST -> 0
3557 (FTYPE) N != CST -> 1. */
3558 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3559 { constant_boolean_node (cmp == NE_EXPR, type); })
3560 /* Otherwise replace with sensible integer constant. */
3561 (with
3562 {
3563 gcc_checking_assert (!overflow_p);
3564 }
3565 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3566
3567 /* Fold A /[ex] B CMP C to A CMP B * C. */
3568 (for cmp (eq ne)
3569 (simplify
3570 (cmp (exact_div @0 @1) INTEGER_CST@2)
3571 (if (!integer_zerop (@1))
3572 (if (wi::to_wide (@2) == 0)
3573 (cmp @0 @2)
3574 (if (TREE_CODE (@1) == INTEGER_CST)
3575 (with
3576 {
3577 wi::overflow_type ovf;
3578 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3579 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3580 }
3581 (if (ovf)
3582 { constant_boolean_node (cmp == NE_EXPR, type); }
3583 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3584 (for cmp (lt le gt ge)
3585 (simplify
3586 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3587 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3588 (with
3589 {
3590 wi::overflow_type ovf;
3591 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3592 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3593 }
3594 (if (ovf)
3595 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3596 TYPE_SIGN (TREE_TYPE (@2)))
3597 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3598 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3599
3600 /* Unordered tests if either argument is a NaN. */
3601 (simplify
3602 (bit_ior (unordered @0 @0) (unordered @1 @1))
3603 (if (types_match (@0, @1))
3604 (unordered @0 @1)))
3605 (simplify
3606 (bit_and (ordered @0 @0) (ordered @1 @1))
3607 (if (types_match (@0, @1))
3608 (ordered @0 @1)))
3609 (simplify
3610 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3611 @2)
3612 (simplify
3613 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3614 @2)
3615
3616 /* Simple range test simplifications. */
3617 /* A < B || A >= B -> true. */
3618 (for test1 (lt le le le ne ge)
3619 test2 (ge gt ge ne eq ne)
3620 (simplify
3621 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3622 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3623 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3624 { constant_boolean_node (true, type); })))
3625 /* A < B && A >= B -> false. */
3626 (for test1 (lt lt lt le ne eq)
3627 test2 (ge gt eq gt eq gt)
3628 (simplify
3629 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3630 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3631 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3632 { constant_boolean_node (false, type); })))
3633
3634 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3635 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3636
3637 Note that comparisons
3638 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3639 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3640 will be canonicalized to above so there's no need to
3641 consider them here.
3642 */
3643
3644 (for cmp (le gt)
3645 eqcmp (eq ne)
3646 (simplify
3647 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3648 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3649 (with
3650 {
3651 tree ty = TREE_TYPE (@0);
3652 unsigned prec = TYPE_PRECISION (ty);
3653 wide_int mask = wi::to_wide (@2, prec);
3654 wide_int rhs = wi::to_wide (@3, prec);
3655 signop sgn = TYPE_SIGN (ty);
3656 }
3657 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3658 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3659 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3660 { build_zero_cst (ty); }))))))
3661
3662 /* -A CMP -B -> B CMP A. */
3663 (for cmp (tcc_comparison)
3664 scmp (swapped_tcc_comparison)
3665 (simplify
3666 (cmp (negate @0) (negate @1))
3667 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3668 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3669 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3670 (scmp @0 @1)))
3671 (simplify
3672 (cmp (negate @0) CONSTANT_CLASS_P@1)
3673 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3674 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3675 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3676 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3677 (if (tem && !TREE_OVERFLOW (tem))
3678 (scmp @0 { tem; }))))))
3679
3680 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3681 (for op (eq ne)
3682 (simplify
3683 (op (abs @0) zerop@1)
3684 (op @0 @1)))
3685
3686 /* From fold_sign_changed_comparison and fold_widened_comparison.
3687 FIXME: the lack of symmetry is disturbing. */
3688 (for cmp (simple_comparison)
3689 (simplify
3690 (cmp (convert@0 @00) (convert?@1 @10))
3691 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3692 /* Disable this optimization if we're casting a function pointer
3693 type on targets that require function pointer canonicalization. */
3694 && !(targetm.have_canonicalize_funcptr_for_compare ()
3695 && ((POINTER_TYPE_P (TREE_TYPE (@00))
3696 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@00))))
3697 || (POINTER_TYPE_P (TREE_TYPE (@10))
3698 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@10))))))
3699 && single_use (@0))
3700 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3701 && (TREE_CODE (@10) == INTEGER_CST
3702 || @1 != @10)
3703 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3704 || cmp == NE_EXPR
3705 || cmp == EQ_EXPR)
3706 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3707 /* ??? The special-casing of INTEGER_CST conversion was in the original
3708 code and here to avoid a spurious overflow flag on the resulting
3709 constant which fold_convert produces. */
3710 (if (TREE_CODE (@1) == INTEGER_CST)
3711 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3712 TREE_OVERFLOW (@1)); })
3713 (cmp @00 (convert @1)))
3714
3715 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3716 /* If possible, express the comparison in the shorter mode. */
3717 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3718 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3719 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3720 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3721 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3722 || ((TYPE_PRECISION (TREE_TYPE (@00))
3723 >= TYPE_PRECISION (TREE_TYPE (@10)))
3724 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3725 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3726 || (TREE_CODE (@10) == INTEGER_CST
3727 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3728 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3729 (cmp @00 (convert @10))
3730 (if (TREE_CODE (@10) == INTEGER_CST
3731 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3732 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3733 (with
3734 {
3735 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3736 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3737 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3738 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3739 }
3740 (if (above || below)
3741 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3742 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3743 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3744 { constant_boolean_node (above ? true : false, type); }
3745 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3746 { constant_boolean_node (above ? false : true, type); }))))))))))))
3747
3748 (for cmp (eq ne)
3749 /* A local variable can never be pointed to by
3750 the default SSA name of an incoming parameter.
3751 SSA names are canonicalized to 2nd place. */
3752 (simplify
3753 (cmp addr@0 SSA_NAME@1)
3754 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3755 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3756 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3757 (if (TREE_CODE (base) == VAR_DECL
3758 && auto_var_in_fn_p (base, current_function_decl))
3759 (if (cmp == NE_EXPR)
3760 { constant_boolean_node (true, type); }
3761 { constant_boolean_node (false, type); }))))))
3762
3763 /* Equality compare simplifications from fold_binary */
3764 (for cmp (eq ne)
3765
3766 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3767 Similarly for NE_EXPR. */
3768 (simplify
3769 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3770 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3771 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3772 { constant_boolean_node (cmp == NE_EXPR, type); }))
3773
3774 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3775 (simplify
3776 (cmp (bit_xor @0 @1) integer_zerop)
3777 (cmp @0 @1))
3778
3779 /* (X ^ Y) == Y becomes X == 0.
3780 Likewise (X ^ Y) == X becomes Y == 0. */
3781 (simplify
3782 (cmp:c (bit_xor:c @0 @1) @0)
3783 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3784
3785 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3786 (simplify
3787 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3788 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3789 (cmp @0 (bit_xor @1 (convert @2)))))
3790
3791 (simplify
3792 (cmp (convert? addr@0) integer_zerop)
3793 (if (tree_single_nonzero_warnv_p (@0, NULL))
3794 { constant_boolean_node (cmp == NE_EXPR, type); })))
3795
3796 /* If we have (A & C) == C where C is a power of 2, convert this into
3797 (A & C) != 0. Similarly for NE_EXPR. */
3798 (for cmp (eq ne)
3799 icmp (ne eq)
3800 (simplify
3801 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3802 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3803
3804 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3805 convert this into a shift followed by ANDing with D. */
3806 (simplify
3807 (cond
3808 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3809 INTEGER_CST@2 integer_zerop)
3810 (if (integer_pow2p (@2))
3811 (with {
3812 int shift = (wi::exact_log2 (wi::to_wide (@2))
3813 - wi::exact_log2 (wi::to_wide (@1)));
3814 }
3815 (if (shift > 0)
3816 (bit_and
3817 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3818 (bit_and
3819 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3820 @2)))))
3821
3822 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3823 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3824 (for cmp (eq ne)
3825 ncmp (ge lt)
3826 (simplify
3827 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3828 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3829 && type_has_mode_precision_p (TREE_TYPE (@0))
3830 && element_precision (@2) >= element_precision (@0)
3831 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3832 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3833 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3834
3835 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3836 this into a right shift or sign extension followed by ANDing with C. */
3837 (simplify
3838 (cond
3839 (lt @0 integer_zerop)
3840 INTEGER_CST@1 integer_zerop)
3841 (if (integer_pow2p (@1)
3842 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3843 (with {
3844 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3845 }
3846 (if (shift >= 0)
3847 (bit_and
3848 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3849 @1)
3850 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3851 sign extension followed by AND with C will achieve the effect. */
3852 (bit_and (convert @0) @1)))))
3853
3854 /* When the addresses are not directly of decls compare base and offset.
3855 This implements some remaining parts of fold_comparison address
3856 comparisons but still no complete part of it. Still it is good
3857 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3858 (for cmp (simple_comparison)
3859 (simplify
3860 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3861 (with
3862 {
3863 poly_int64 off0, off1;
3864 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3865 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3866 if (base0 && TREE_CODE (base0) == MEM_REF)
3867 {
3868 off0 += mem_ref_offset (base0).force_shwi ();
3869 base0 = TREE_OPERAND (base0, 0);
3870 }
3871 if (base1 && TREE_CODE (base1) == MEM_REF)
3872 {
3873 off1 += mem_ref_offset (base1).force_shwi ();
3874 base1 = TREE_OPERAND (base1, 0);
3875 }
3876 }
3877 (if (base0 && base1)
3878 (with
3879 {
3880 int equal = 2;
3881 /* Punt in GENERIC on variables with value expressions;
3882 the value expressions might point to fields/elements
3883 of other vars etc. */
3884 if (GENERIC
3885 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3886 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3887 ;
3888 else if (decl_in_symtab_p (base0)
3889 && decl_in_symtab_p (base1))
3890 equal = symtab_node::get_create (base0)
3891 ->equal_address_to (symtab_node::get_create (base1));
3892 else if ((DECL_P (base0)
3893 || TREE_CODE (base0) == SSA_NAME
3894 || TREE_CODE (base0) == STRING_CST)
3895 && (DECL_P (base1)
3896 || TREE_CODE (base1) == SSA_NAME
3897 || TREE_CODE (base1) == STRING_CST))
3898 equal = (base0 == base1);
3899 if (equal == 0)
3900 {
3901 if (!DECL_P (base0) || !DECL_P (base1))
3902 equal = 2;
3903 else if (cmp != EQ_EXPR && cmp != NE_EXPR)
3904 equal = 2;
3905 /* If this is a pointer comparison, ignore for now even
3906 valid equalities where one pointer is the offset zero
3907 of one object and the other to one past end of another one. */
3908 else if (!INTEGRAL_TYPE_P (TREE_TYPE (@2)))
3909 ;
3910 /* Assume that automatic variables can't be adjacent to global
3911 variables. */
3912 else if (is_global_var (base0) != is_global_var (base1))
3913 ;
3914 else
3915 {
3916 tree sz0 = DECL_SIZE_UNIT (base0);
3917 tree sz1 = DECL_SIZE_UNIT (base1);
3918 /* If sizes are unknown, e.g. VLA or not representable,
3919 punt. */
3920 if (!tree_fits_poly_int64_p (sz0)
3921 || !tree_fits_poly_int64_p (sz1))
3922 equal = 2;
3923 else
3924 {
3925 poly_int64 size0 = tree_to_poly_int64 (sz0);
3926 poly_int64 size1 = tree_to_poly_int64 (sz1);
3927 /* If one offset is pointing (or could be) to the beginning
3928 of one object and the other is pointing to one past the
3929 last byte of the other object, punt. */
3930 if (maybe_eq (off0, 0) && maybe_eq (off1, size1))
3931 equal = 2;
3932 else if (maybe_eq (off1, 0) && maybe_eq (off0, size0))
3933 equal = 2;
3934 /* If both offsets are the same, there are some cases
3935 we know that are ok. Either if we know they aren't
3936 zero, or if we know both sizes are no zero. */
3937 if (equal == 2
3938 && known_eq (off0, off1)
3939 && (known_ne (off0, 0)
3940 || (known_ne (size0, 0) && known_ne (size1, 0))))
3941 equal = 0;
3942 }
3943 }
3944 }
3945 }
3946 (if (equal == 1
3947 && (cmp == EQ_EXPR || cmp == NE_EXPR
3948 /* If the offsets are equal we can ignore overflow. */
3949 || known_eq (off0, off1)
3950 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3951 /* Or if we compare using pointers to decls or strings. */
3952 || (POINTER_TYPE_P (TREE_TYPE (@2))
3953 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3954 (switch
3955 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3956 { constant_boolean_node (known_eq (off0, off1), type); })
3957 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3958 { constant_boolean_node (known_ne (off0, off1), type); })
3959 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3960 { constant_boolean_node (known_lt (off0, off1), type); })
3961 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3962 { constant_boolean_node (known_le (off0, off1), type); })
3963 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3964 { constant_boolean_node (known_ge (off0, off1), type); })
3965 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3966 { constant_boolean_node (known_gt (off0, off1), type); }))
3967 (if (equal == 0)
3968 (switch
3969 (if (cmp == EQ_EXPR)
3970 { constant_boolean_node (false, type); })
3971 (if (cmp == NE_EXPR)
3972 { constant_boolean_node (true, type); })))))))))
3973
3974 /* Simplify pointer equality compares using PTA. */
3975 (for neeq (ne eq)
3976 (simplify
3977 (neeq @0 @1)
3978 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3979 && ptrs_compare_unequal (@0, @1))
3980 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3981
3982 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3983 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3984 Disable the transform if either operand is pointer to function.
3985 This broke pr22051-2.c for arm where function pointer
3986 canonicalizaion is not wanted. */
3987
3988 (for cmp (ne eq)
3989 (simplify
3990 (cmp (convert @0) INTEGER_CST@1)
3991 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3992 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3993 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3994 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3995 && POINTER_TYPE_P (TREE_TYPE (@1))
3996 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3997 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3998 (cmp @0 (convert @1)))))
3999
4000 /* Non-equality compare simplifications from fold_binary */
4001 (for cmp (lt gt le ge)
4002 /* Comparisons with the highest or lowest possible integer of
4003 the specified precision will have known values. */
4004 (simplify
4005 (cmp (convert?@2 @0) uniform_integer_cst_p@1)
4006 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1))
4007 || POINTER_TYPE_P (TREE_TYPE (@1))
4008 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@1)))
4009 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
4010 (with
4011 {
4012 tree cst = uniform_integer_cst_p (@1);
4013 tree arg1_type = TREE_TYPE (cst);
4014 unsigned int prec = TYPE_PRECISION (arg1_type);
4015 wide_int max = wi::max_value (arg1_type);
4016 wide_int signed_max = wi::max_value (prec, SIGNED);
4017 wide_int min = wi::min_value (arg1_type);
4018 }
4019 (switch
4020 (if (wi::to_wide (cst) == max)
4021 (switch
4022 (if (cmp == GT_EXPR)
4023 { constant_boolean_node (false, type); })
4024 (if (cmp == GE_EXPR)
4025 (eq @2 @1))
4026 (if (cmp == LE_EXPR)
4027 { constant_boolean_node (true, type); })
4028 (if (cmp == LT_EXPR)
4029 (ne @2 @1))))
4030 (if (wi::to_wide (cst) == min)
4031 (switch
4032 (if (cmp == LT_EXPR)
4033 { constant_boolean_node (false, type); })
4034 (if (cmp == LE_EXPR)
4035 (eq @2 @1))
4036 (if (cmp == GE_EXPR)
4037 { constant_boolean_node (true, type); })
4038 (if (cmp == GT_EXPR)
4039 (ne @2 @1))))
4040 (if (wi::to_wide (cst) == max - 1)
4041 (switch
4042 (if (cmp == GT_EXPR)
4043 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4044 wide_int_to_tree (TREE_TYPE (cst),
4045 wi::to_wide (cst)
4046 + 1)); }))
4047 (if (cmp == LE_EXPR)
4048 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4049 wide_int_to_tree (TREE_TYPE (cst),
4050 wi::to_wide (cst)
4051 + 1)); }))))
4052 (if (wi::to_wide (cst) == min + 1)
4053 (switch
4054 (if (cmp == GE_EXPR)
4055 (ne @2 { build_uniform_cst (TREE_TYPE (@1),
4056 wide_int_to_tree (TREE_TYPE (cst),
4057 wi::to_wide (cst)
4058 - 1)); }))
4059 (if (cmp == LT_EXPR)
4060 (eq @2 { build_uniform_cst (TREE_TYPE (@1),
4061 wide_int_to_tree (TREE_TYPE (cst),
4062 wi::to_wide (cst)
4063 - 1)); }))))
4064 (if (wi::to_wide (cst) == signed_max
4065 && TYPE_UNSIGNED (arg1_type)
4066 /* We will flip the signedness of the comparison operator
4067 associated with the mode of @1, so the sign bit is
4068 specified by this mode. Check that @1 is the signed
4069 max associated with this sign bit. */
4070 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
4071 /* signed_type does not work on pointer types. */
4072 && INTEGRAL_TYPE_P (arg1_type))
4073 /* The following case also applies to X < signed_max+1
4074 and X >= signed_max+1 because previous transformations. */
4075 (if (cmp == LE_EXPR || cmp == GT_EXPR)
4076 (with { tree st = signed_type_for (TREE_TYPE (@1)); }
4077 (switch
4078 (if (cst == @1 && cmp == LE_EXPR)
4079 (ge (convert:st @0) { build_zero_cst (st); }))
4080 (if (cst == @1 && cmp == GT_EXPR)
4081 (lt (convert:st @0) { build_zero_cst (st); }))
4082 (if (cmp == LE_EXPR)
4083 (ge (view_convert:st @0) { build_zero_cst (st); }))
4084 (if (cmp == GT_EXPR)
4085 (lt (view_convert:st @0) { build_zero_cst (st); })))))))))))
4086
4087 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
4088 /* If the second operand is NaN, the result is constant. */
4089 (simplify
4090 (cmp @0 REAL_CST@1)
4091 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
4092 && (cmp != LTGT_EXPR || ! flag_trapping_math))
4093 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
4094 ? false : true, type); })))
4095
4096 /* bool_var != 0 becomes bool_var. */
4097 (simplify
4098 (ne @0 integer_zerop)
4099 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4100 && types_match (type, TREE_TYPE (@0)))
4101 (non_lvalue @0)))
4102 /* bool_var == 1 becomes bool_var. */
4103 (simplify
4104 (eq @0 integer_onep)
4105 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
4106 && types_match (type, TREE_TYPE (@0)))
4107 (non_lvalue @0)))
4108 /* Do not handle
4109 bool_var == 0 becomes !bool_var or
4110 bool_var != 1 becomes !bool_var
4111 here because that only is good in assignment context as long
4112 as we require a tcc_comparison in GIMPLE_CONDs where we'd
4113 replace if (x == 0) with tem = ~x; if (tem != 0) which is
4114 clearly less optimal and which we'll transform again in forwprop. */
4115
4116 /* When one argument is a constant, overflow detection can be simplified.
4117 Currently restricted to single use so as not to interfere too much with
4118 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
4119 A + CST CMP A -> A CMP' CST' */
4120 (for cmp (lt le ge gt)
4121 out (gt gt le le)
4122 (simplify
4123 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
4124 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4125 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
4126 && wi::to_wide (@1) != 0
4127 && single_use (@2))
4128 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
4129 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
4130 wi::max_value (prec, UNSIGNED)
4131 - wi::to_wide (@1)); })))))
4132
4133 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
4134 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
4135 expects the long form, so we restrict the transformation for now. */
4136 (for cmp (gt le)
4137 (simplify
4138 (cmp:c (minus@2 @0 @1) @0)
4139 (if (single_use (@2)
4140 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
4141 && TYPE_UNSIGNED (TREE_TYPE (@0))
4142 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4143 (cmp @1 @0))))
4144
4145 /* Testing for overflow is unnecessary if we already know the result. */
4146 /* A - B > A */
4147 (for cmp (gt le)
4148 out (ne eq)
4149 (simplify
4150 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
4151 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4152 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4153 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4154 /* A + B < A */
4155 (for cmp (lt ge)
4156 out (ne eq)
4157 (simplify
4158 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
4159 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
4160 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
4161 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
4162
4163 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
4164 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
4165 (for cmp (lt ge)
4166 out (ne eq)
4167 (simplify
4168 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
4169 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
4170 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
4171 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
4172
4173 /* Simplification of math builtins. These rules must all be optimizations
4174 as well as IL simplifications. If there is a possibility that the new
4175 form could be a pessimization, the rule should go in the canonicalization
4176 section that follows this one.
4177
4178 Rules can generally go in this section if they satisfy one of
4179 the following:
4180
4181 - the rule describes an identity
4182
4183 - the rule replaces calls with something as simple as addition or
4184 multiplication
4185
4186 - the rule contains unary calls only and simplifies the surrounding
4187 arithmetic. (The idea here is to exclude non-unary calls in which
4188 one operand is constant and in which the call is known to be cheap
4189 when the operand has that value.) */
4190
4191 (if (flag_unsafe_math_optimizations)
4192 /* Simplify sqrt(x) * sqrt(x) -> x. */
4193 (simplify
4194 (mult (SQRT_ALL@1 @0) @1)
4195 (if (!HONOR_SNANS (type))
4196 @0))
4197
4198 (for op (plus minus)
4199 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
4200 (simplify
4201 (op (rdiv @0 @1)
4202 (rdiv @2 @1))
4203 (rdiv (op @0 @2) @1)))
4204
4205 (for cmp (lt le gt ge)
4206 neg_cmp (gt ge lt le)
4207 /* Simplify (x * C1) cmp C2 -> x cmp (C2 / C1), where C1 != 0. */
4208 (simplify
4209 (cmp (mult @0 REAL_CST@1) REAL_CST@2)
4210 (with
4211 { tree tem = const_binop (RDIV_EXPR, type, @2, @1); }
4212 (if (tem
4213 && !(REAL_VALUE_ISINF (TREE_REAL_CST (tem))
4214 || (real_zerop (tem) && !real_zerop (@1))))
4215 (switch
4216 (if (real_less (&dconst0, TREE_REAL_CST_PTR (@1)))
4217 (cmp @0 { tem; }))
4218 (if (real_less (TREE_REAL_CST_PTR (@1), &dconst0))
4219 (neg_cmp @0 { tem; })))))))
4220
4221 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
4222 (for root (SQRT CBRT)
4223 (simplify
4224 (mult (root:s @0) (root:s @1))
4225 (root (mult @0 @1))))
4226
4227 /* Simplify expN(x) * expN(y) -> expN(x+y). */
4228 (for exps (EXP EXP2 EXP10 POW10)
4229 (simplify
4230 (mult (exps:s @0) (exps:s @1))
4231 (exps (plus @0 @1))))
4232
4233 /* Simplify a/root(b/c) into a*root(c/b). */
4234 (for root (SQRT CBRT)
4235 (simplify
4236 (rdiv @0 (root:s (rdiv:s @1 @2)))
4237 (mult @0 (root (rdiv @2 @1)))))
4238
4239 /* Simplify x/expN(y) into x*expN(-y). */
4240 (for exps (EXP EXP2 EXP10 POW10)
4241 (simplify
4242 (rdiv @0 (exps:s @1))
4243 (mult @0 (exps (negate @1)))))
4244
4245 (for logs (LOG LOG2 LOG10 LOG10)
4246 exps (EXP EXP2 EXP10 POW10)
4247 /* logN(expN(x)) -> x. */
4248 (simplify
4249 (logs (exps @0))
4250 @0)
4251 /* expN(logN(x)) -> x. */
4252 (simplify
4253 (exps (logs @0))
4254 @0))
4255
4256 /* Optimize logN(func()) for various exponential functions. We
4257 want to determine the value "x" and the power "exponent" in
4258 order to transform logN(x**exponent) into exponent*logN(x). */
4259 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
4260 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
4261 (simplify
4262 (logs (exps @0))
4263 (if (SCALAR_FLOAT_TYPE_P (type))
4264 (with {
4265 tree x;
4266 switch (exps)
4267 {
4268 CASE_CFN_EXP:
4269 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
4270 x = build_real_truncate (type, dconst_e ());
4271 break;
4272 CASE_CFN_EXP2:
4273 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
4274 x = build_real (type, dconst2);
4275 break;
4276 CASE_CFN_EXP10:
4277 CASE_CFN_POW10:
4278 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
4279 {
4280 REAL_VALUE_TYPE dconst10;
4281 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
4282 x = build_real (type, dconst10);
4283 }
4284 break;
4285 default:
4286 gcc_unreachable ();
4287 }
4288 }
4289 (mult (logs { x; }) @0)))))
4290
4291 (for logs (LOG LOG
4292 LOG2 LOG2
4293 LOG10 LOG10)
4294 exps (SQRT CBRT)
4295 (simplify
4296 (logs (exps @0))
4297 (if (SCALAR_FLOAT_TYPE_P (type))
4298 (with {
4299 tree x;
4300 switch (exps)
4301 {
4302 CASE_CFN_SQRT:
4303 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
4304 x = build_real (type, dconsthalf);
4305 break;
4306 CASE_CFN_CBRT:
4307 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
4308 x = build_real_truncate (type, dconst_third ());
4309 break;
4310 default:
4311 gcc_unreachable ();
4312 }
4313 }
4314 (mult { x; } (logs @0))))))
4315
4316 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4317 (for logs (LOG LOG2 LOG10)
4318 pows (POW)
4319 (simplify
4320 (logs (pows @0 @1))
4321 (mult @1 (logs @0))))
4322
4323 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4324 or if C is a positive power of 2,
4325 pow(C,x) -> exp2(log2(C)*x). */
4326 #if GIMPLE
4327 (for pows (POW)
4328 exps (EXP)
4329 logs (LOG)
4330 exp2s (EXP2)
4331 log2s (LOG2)
4332 (simplify
4333 (pows REAL_CST@0 @1)
4334 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4335 && real_isfinite (TREE_REAL_CST_PTR (@0))
4336 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4337 the use_exp2 case until after vectorization. It seems actually
4338 beneficial for all constants to postpone this until later,
4339 because exp(log(C)*x), while faster, will have worse precision
4340 and if x folds into a constant too, that is unnecessary
4341 pessimization. */
4342 && canonicalize_math_after_vectorization_p ())
4343 (with {
4344 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4345 bool use_exp2 = false;
4346 if (targetm.libc_has_function (function_c99_misc)
4347 && value->cl == rvc_normal)
4348 {
4349 REAL_VALUE_TYPE frac_rvt = *value;
4350 SET_REAL_EXP (&frac_rvt, 1);
4351 if (real_equal (&frac_rvt, &dconst1))
4352 use_exp2 = true;
4353 }
4354 }
4355 (if (!use_exp2)
4356 (if (optimize_pow_to_exp (@0, @1))
4357 (exps (mult (logs @0) @1)))
4358 (exp2s (mult (log2s @0) @1)))))))
4359 #endif
4360
4361 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4362 (for pows (POW)
4363 exps (EXP EXP2 EXP10 POW10)
4364 logs (LOG LOG2 LOG10 LOG10)
4365 (simplify
4366 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4367 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4368 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4369 (exps (plus (mult (logs @0) @1) @2)))))
4370
4371 (for sqrts (SQRT)
4372 cbrts (CBRT)
4373 pows (POW)
4374 exps (EXP EXP2 EXP10 POW10)
4375 /* sqrt(expN(x)) -> expN(x*0.5). */
4376 (simplify
4377 (sqrts (exps @0))
4378 (exps (mult @0 { build_real (type, dconsthalf); })))
4379 /* cbrt(expN(x)) -> expN(x/3). */
4380 (simplify
4381 (cbrts (exps @0))
4382 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4383 /* pow(expN(x), y) -> expN(x*y). */
4384 (simplify
4385 (pows (exps @0) @1)
4386 (exps (mult @0 @1))))
4387
4388 /* tan(atan(x)) -> x. */
4389 (for tans (TAN)
4390 atans (ATAN)
4391 (simplify
4392 (tans (atans @0))
4393 @0)))
4394
4395 /* Simplify sin(atan(x)) -> x / sqrt(x*x + 1). */
4396 (for sins (SIN)
4397 atans (ATAN)
4398 sqrts (SQRT)
4399 copysigns (COPYSIGN)
4400 (simplify
4401 (sins (atans:s @0))
4402 (with
4403 {
4404 REAL_VALUE_TYPE r_cst;
4405 build_sinatan_real (&r_cst, type);
4406 tree t_cst = build_real (type, r_cst);
4407 tree t_one = build_one_cst (type);
4408 }
4409 (if (SCALAR_FLOAT_TYPE_P (type))
4410 (cond (lt (abs @0) { t_cst; })
4411 (rdiv @0 (sqrts (plus (mult @0 @0) { t_one; })))
4412 (copysigns { t_one; } @0))))))
4413
4414 /* Simplify cos(atan(x)) -> 1 / sqrt(x*x + 1). */
4415 (for coss (COS)
4416 atans (ATAN)
4417 sqrts (SQRT)
4418 copysigns (COPYSIGN)
4419 (simplify
4420 (coss (atans:s @0))
4421 (with
4422 {
4423 REAL_VALUE_TYPE r_cst;
4424 build_sinatan_real (&r_cst, type);
4425 tree t_cst = build_real (type, r_cst);
4426 tree t_one = build_one_cst (type);
4427 tree t_zero = build_zero_cst (type);
4428 }
4429 (if (SCALAR_FLOAT_TYPE_P (type))
4430 (cond (lt (abs @0) { t_cst; })
4431 (rdiv { t_one; } (sqrts (plus (mult @0 @0) { t_one; })))
4432 (copysigns { t_zero; } @0))))))
4433
4434 (if (!flag_errno_math)
4435 /* Simplify sinh(atanh(x)) -> x / sqrt((1 - x)*(1 + x)). */
4436 (for sinhs (SINH)
4437 atanhs (ATANH)
4438 sqrts (SQRT)
4439 (simplify
4440 (sinhs (atanhs:s @0))
4441 (with { tree t_one = build_one_cst (type); }
4442 (rdiv @0 (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0)))))))
4443
4444 /* Simplify cosh(atanh(x)) -> 1 / sqrt((1 - x)*(1 + x)) */
4445 (for coshs (COSH)
4446 atanhs (ATANH)
4447 sqrts (SQRT)
4448 (simplify
4449 (coshs (atanhs:s @0))
4450 (with { tree t_one = build_one_cst (type); }
4451 (rdiv { t_one; } (sqrts (mult (minus { t_one; } @0) (plus { t_one; } @0))))))))
4452
4453 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4454 (simplify
4455 (CABS (complex:C @0 real_zerop@1))
4456 (abs @0))
4457
4458 /* trunc(trunc(x)) -> trunc(x), etc. */
4459 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4460 (simplify
4461 (fns (fns @0))
4462 (fns @0)))
4463 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4464 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4465 (simplify
4466 (fns integer_valued_real_p@0)
4467 @0))
4468
4469 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4470 (simplify
4471 (HYPOT:c @0 real_zerop@1)
4472 (abs @0))
4473
4474 /* pow(1,x) -> 1. */
4475 (simplify
4476 (POW real_onep@0 @1)
4477 @0)
4478
4479 (simplify
4480 /* copysign(x,x) -> x. */
4481 (COPYSIGN_ALL @0 @0)
4482 @0)
4483
4484 (simplify
4485 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4486 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4487 (abs @0))
4488
4489 (for scale (LDEXP SCALBN SCALBLN)
4490 /* ldexp(0, x) -> 0. */
4491 (simplify
4492 (scale real_zerop@0 @1)
4493 @0)
4494 /* ldexp(x, 0) -> x. */
4495 (simplify
4496 (scale @0 integer_zerop@1)
4497 @0)
4498 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4499 (simplify
4500 (scale REAL_CST@0 @1)
4501 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4502 @0)))
4503
4504 /* Canonicalization of sequences of math builtins. These rules represent
4505 IL simplifications but are not necessarily optimizations.
4506
4507 The sincos pass is responsible for picking "optimal" implementations
4508 of math builtins, which may be more complicated and can sometimes go
4509 the other way, e.g. converting pow into a sequence of sqrts.
4510 We only want to do these canonicalizations before the pass has run. */
4511
4512 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4513 /* Simplify tan(x) * cos(x) -> sin(x). */
4514 (simplify
4515 (mult:c (TAN:s @0) (COS:s @0))
4516 (SIN @0))
4517
4518 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4519 (simplify
4520 (mult:c @0 (POW:s @0 REAL_CST@1))
4521 (if (!TREE_OVERFLOW (@1))
4522 (POW @0 (plus @1 { build_one_cst (type); }))))
4523
4524 /* Simplify sin(x) / cos(x) -> tan(x). */
4525 (simplify
4526 (rdiv (SIN:s @0) (COS:s @0))
4527 (TAN @0))
4528
4529 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4530 (simplify
4531 (rdiv (COS:s @0) (SIN:s @0))
4532 (rdiv { build_one_cst (type); } (TAN @0)))
4533
4534 /* Simplify sin(x) / tan(x) -> cos(x). */
4535 (simplify
4536 (rdiv (SIN:s @0) (TAN:s @0))
4537 (if (! HONOR_NANS (@0)
4538 && ! HONOR_INFINITIES (@0))
4539 (COS @0)))
4540
4541 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4542 (simplify
4543 (rdiv (TAN:s @0) (SIN:s @0))
4544 (if (! HONOR_NANS (@0)
4545 && ! HONOR_INFINITIES (@0))
4546 (rdiv { build_one_cst (type); } (COS @0))))
4547
4548 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4549 (simplify
4550 (mult (POW:s @0 @1) (POW:s @0 @2))
4551 (POW @0 (plus @1 @2)))
4552
4553 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4554 (simplify
4555 (mult (POW:s @0 @1) (POW:s @2 @1))
4556 (POW (mult @0 @2) @1))
4557
4558 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4559 (simplify
4560 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4561 (POWI (mult @0 @2) @1))
4562
4563 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4564 (simplify
4565 (rdiv (POW:s @0 REAL_CST@1) @0)
4566 (if (!TREE_OVERFLOW (@1))
4567 (POW @0 (minus @1 { build_one_cst (type); }))))
4568
4569 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4570 (simplify
4571 (rdiv @0 (POW:s @1 @2))
4572 (mult @0 (POW @1 (negate @2))))
4573
4574 (for sqrts (SQRT)
4575 cbrts (CBRT)
4576 pows (POW)
4577 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4578 (simplify
4579 (sqrts (sqrts @0))
4580 (pows @0 { build_real (type, dconst_quarter ()); }))
4581 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4582 (simplify
4583 (sqrts (cbrts @0))
4584 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4585 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4586 (simplify
4587 (cbrts (sqrts @0))
4588 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4589 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4590 (simplify
4591 (cbrts (cbrts tree_expr_nonnegative_p@0))
4592 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4593 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4594 (simplify
4595 (sqrts (pows @0 @1))
4596 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4597 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4598 (simplify
4599 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4600 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4601 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4602 (simplify
4603 (pows (sqrts @0) @1)
4604 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4605 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4606 (simplify
4607 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4608 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4609 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4610 (simplify
4611 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4612 (pows @0 (mult @1 @2))))
4613
4614 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4615 (simplify
4616 (CABS (complex @0 @0))
4617 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4618
4619 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4620 (simplify
4621 (HYPOT @0 @0)
4622 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4623
4624 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4625 (for cexps (CEXP)
4626 exps (EXP)
4627 cexpis (CEXPI)
4628 (simplify
4629 (cexps compositional_complex@0)
4630 (if (targetm.libc_has_function (function_c99_math_complex))
4631 (complex
4632 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4633 (mult @1 (imagpart @2)))))))
4634
4635 (if (canonicalize_math_p ())
4636 /* floor(x) -> trunc(x) if x is nonnegative. */
4637 (for floors (FLOOR_ALL)
4638 truncs (TRUNC_ALL)
4639 (simplify
4640 (floors tree_expr_nonnegative_p@0)
4641 (truncs @0))))
4642
4643 (match double_value_p
4644 @0
4645 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4646 (for froms (BUILT_IN_TRUNCL
4647 BUILT_IN_FLOORL
4648 BUILT_IN_CEILL
4649 BUILT_IN_ROUNDL
4650 BUILT_IN_NEARBYINTL
4651 BUILT_IN_RINTL)
4652 tos (BUILT_IN_TRUNC
4653 BUILT_IN_FLOOR
4654 BUILT_IN_CEIL
4655 BUILT_IN_ROUND
4656 BUILT_IN_NEARBYINT
4657 BUILT_IN_RINT)
4658 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4659 (if (optimize && canonicalize_math_p ())
4660 (simplify
4661 (froms (convert double_value_p@0))
4662 (convert (tos @0)))))
4663
4664 (match float_value_p
4665 @0
4666 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4667 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4668 BUILT_IN_FLOORL BUILT_IN_FLOOR
4669 BUILT_IN_CEILL BUILT_IN_CEIL
4670 BUILT_IN_ROUNDL BUILT_IN_ROUND
4671 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4672 BUILT_IN_RINTL BUILT_IN_RINT)
4673 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4674 BUILT_IN_FLOORF BUILT_IN_FLOORF
4675 BUILT_IN_CEILF BUILT_IN_CEILF
4676 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4677 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4678 BUILT_IN_RINTF BUILT_IN_RINTF)
4679 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4680 if x is a float. */
4681 (if (optimize && canonicalize_math_p ()
4682 && targetm.libc_has_function (function_c99_misc))
4683 (simplify
4684 (froms (convert float_value_p@0))
4685 (convert (tos @0)))))
4686
4687 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4688 tos (XFLOOR XCEIL XROUND XRINT)
4689 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4690 (if (optimize && canonicalize_math_p ())
4691 (simplify
4692 (froms (convert double_value_p@0))
4693 (tos @0))))
4694
4695 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4696 XFLOOR XCEIL XROUND XRINT)
4697 tos (XFLOORF XCEILF XROUNDF XRINTF)
4698 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4699 if x is a float. */
4700 (if (optimize && canonicalize_math_p ())
4701 (simplify
4702 (froms (convert float_value_p@0))
4703 (tos @0))))
4704
4705 (if (canonicalize_math_p ())
4706 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4707 (for floors (IFLOOR LFLOOR LLFLOOR)
4708 (simplify
4709 (floors tree_expr_nonnegative_p@0)
4710 (fix_trunc @0))))
4711
4712 (if (canonicalize_math_p ())
4713 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4714 (for fns (IFLOOR LFLOOR LLFLOOR
4715 ICEIL LCEIL LLCEIL
4716 IROUND LROUND LLROUND)
4717 (simplify
4718 (fns integer_valued_real_p@0)
4719 (fix_trunc @0)))
4720 (if (!flag_errno_math)
4721 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4722 (for rints (IRINT LRINT LLRINT)
4723 (simplify
4724 (rints integer_valued_real_p@0)
4725 (fix_trunc @0)))))
4726
4727 (if (canonicalize_math_p ())
4728 (for ifn (IFLOOR ICEIL IROUND IRINT)
4729 lfn (LFLOOR LCEIL LROUND LRINT)
4730 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4731 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4732 sizeof (int) == sizeof (long). */
4733 (if (TYPE_PRECISION (integer_type_node)
4734 == TYPE_PRECISION (long_integer_type_node))
4735 (simplify
4736 (ifn @0)
4737 (lfn:long_integer_type_node @0)))
4738 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4739 sizeof (long long) == sizeof (long). */
4740 (if (TYPE_PRECISION (long_long_integer_type_node)
4741 == TYPE_PRECISION (long_integer_type_node))
4742 (simplify
4743 (llfn @0)
4744 (lfn:long_integer_type_node @0)))))
4745
4746 /* cproj(x) -> x if we're ignoring infinities. */
4747 (simplify
4748 (CPROJ @0)
4749 (if (!HONOR_INFINITIES (type))
4750 @0))
4751
4752 /* If the real part is inf and the imag part is known to be
4753 nonnegative, return (inf + 0i). */
4754 (simplify
4755 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4756 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4757 { build_complex_inf (type, false); }))
4758
4759 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4760 (simplify
4761 (CPROJ (complex @0 REAL_CST@1))
4762 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4763 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4764
4765 (for pows (POW)
4766 sqrts (SQRT)
4767 cbrts (CBRT)
4768 (simplify
4769 (pows @0 REAL_CST@1)
4770 (with {
4771 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4772 REAL_VALUE_TYPE tmp;
4773 }
4774 (switch
4775 /* pow(x,0) -> 1. */
4776 (if (real_equal (value, &dconst0))
4777 { build_real (type, dconst1); })
4778 /* pow(x,1) -> x. */
4779 (if (real_equal (value, &dconst1))
4780 @0)
4781 /* pow(x,-1) -> 1/x. */
4782 (if (real_equal (value, &dconstm1))
4783 (rdiv { build_real (type, dconst1); } @0))
4784 /* pow(x,0.5) -> sqrt(x). */
4785 (if (flag_unsafe_math_optimizations
4786 && canonicalize_math_p ()
4787 && real_equal (value, &dconsthalf))
4788 (sqrts @0))
4789 /* pow(x,1/3) -> cbrt(x). */
4790 (if (flag_unsafe_math_optimizations
4791 && canonicalize_math_p ()
4792 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4793 real_equal (value, &tmp)))
4794 (cbrts @0))))))
4795
4796 /* powi(1,x) -> 1. */
4797 (simplify
4798 (POWI real_onep@0 @1)
4799 @0)
4800
4801 (simplify
4802 (POWI @0 INTEGER_CST@1)
4803 (switch
4804 /* powi(x,0) -> 1. */
4805 (if (wi::to_wide (@1) == 0)
4806 { build_real (type, dconst1); })
4807 /* powi(x,1) -> x. */
4808 (if (wi::to_wide (@1) == 1)
4809 @0)
4810 /* powi(x,-1) -> 1/x. */
4811 (if (wi::to_wide (@1) == -1)
4812 (rdiv { build_real (type, dconst1); } @0))))
4813
4814 /* Narrowing of arithmetic and logical operations.
4815
4816 These are conceptually similar to the transformations performed for
4817 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4818 term we want to move all that code out of the front-ends into here. */
4819
4820 /* If we have a narrowing conversion of an arithmetic operation where
4821 both operands are widening conversions from the same type as the outer
4822 narrowing conversion. Then convert the innermost operands to a suitable
4823 unsigned type (to avoid introducing undefined behavior), perform the
4824 operation and convert the result to the desired type. */
4825 (for op (plus minus)
4826 (simplify
4827 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4828 (if (INTEGRAL_TYPE_P (type)
4829 /* We check for type compatibility between @0 and @1 below,
4830 so there's no need to check that @1/@3 are integral types. */
4831 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4832 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4833 /* The precision of the type of each operand must match the
4834 precision of the mode of each operand, similarly for the
4835 result. */
4836 && type_has_mode_precision_p (TREE_TYPE (@0))
4837 && type_has_mode_precision_p (TREE_TYPE (@1))
4838 && type_has_mode_precision_p (type)
4839 /* The inner conversion must be a widening conversion. */
4840 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4841 && types_match (@0, type)
4842 && (types_match (@0, @1)
4843 /* Or the second operand is const integer or converted const
4844 integer from valueize. */
4845 || TREE_CODE (@1) == INTEGER_CST))
4846 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4847 (op @0 (convert @1))
4848 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4849 (convert (op (convert:utype @0)
4850 (convert:utype @1))))))))
4851
4852 /* This is another case of narrowing, specifically when there's an outer
4853 BIT_AND_EXPR which masks off bits outside the type of the innermost
4854 operands. Like the previous case we have to convert the operands
4855 to unsigned types to avoid introducing undefined behavior for the
4856 arithmetic operation. */
4857 (for op (minus plus)
4858 (simplify
4859 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4860 (if (INTEGRAL_TYPE_P (type)
4861 /* We check for type compatibility between @0 and @1 below,
4862 so there's no need to check that @1/@3 are integral types. */
4863 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4864 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4865 /* The precision of the type of each operand must match the
4866 precision of the mode of each operand, similarly for the
4867 result. */
4868 && type_has_mode_precision_p (TREE_TYPE (@0))
4869 && type_has_mode_precision_p (TREE_TYPE (@1))
4870 && type_has_mode_precision_p (type)
4871 /* The inner conversion must be a widening conversion. */
4872 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4873 && types_match (@0, @1)
4874 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4875 <= TYPE_PRECISION (TREE_TYPE (@0)))
4876 && (wi::to_wide (@4)
4877 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4878 true, TYPE_PRECISION (type))) == 0)
4879 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4880 (with { tree ntype = TREE_TYPE (@0); }
4881 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4882 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4883 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4884 (convert:utype @4))))))))
4885
4886 /* Transform (@0 < @1 and @0 < @2) to use min,
4887 (@0 > @1 and @0 > @2) to use max */
4888 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4889 op (lt le gt ge lt le gt ge )
4890 ext (min min max max max max min min )
4891 (simplify
4892 (logic (op:cs @0 @1) (op:cs @0 @2))
4893 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4894 && TREE_CODE (@0) != INTEGER_CST)
4895 (op @0 (ext @1 @2)))))
4896
4897 (simplify
4898 /* signbit(x) -> 0 if x is nonnegative. */
4899 (SIGNBIT tree_expr_nonnegative_p@0)
4900 { integer_zero_node; })
4901
4902 (simplify
4903 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4904 (SIGNBIT @0)
4905 (if (!HONOR_SIGNED_ZEROS (@0))
4906 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4907
4908 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4909 (for cmp (eq ne)
4910 (for op (plus minus)
4911 rop (minus plus)
4912 (simplify
4913 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4914 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4915 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4916 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4917 && !TYPE_SATURATING (TREE_TYPE (@0)))
4918 (with { tree res = int_const_binop (rop, @2, @1); }
4919 (if (TREE_OVERFLOW (res)
4920 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4921 { constant_boolean_node (cmp == NE_EXPR, type); }
4922 (if (single_use (@3))
4923 (cmp @0 { TREE_OVERFLOW (res)
4924 ? drop_tree_overflow (res) : res; }))))))))
4925 (for cmp (lt le gt ge)
4926 (for op (plus minus)
4927 rop (minus plus)
4928 (simplify
4929 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4930 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4931 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4932 (with { tree res = int_const_binop (rop, @2, @1); }
4933 (if (TREE_OVERFLOW (res))
4934 {
4935 fold_overflow_warning (("assuming signed overflow does not occur "
4936 "when simplifying conditional to constant"),
4937 WARN_STRICT_OVERFLOW_CONDITIONAL);
4938 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4939 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4940 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4941 TYPE_SIGN (TREE_TYPE (@1)))
4942 != (op == MINUS_EXPR);
4943 constant_boolean_node (less == ovf_high, type);
4944 }
4945 (if (single_use (@3))
4946 (with
4947 {
4948 fold_overflow_warning (("assuming signed overflow does not occur "
4949 "when changing X +- C1 cmp C2 to "
4950 "X cmp C2 -+ C1"),
4951 WARN_STRICT_OVERFLOW_COMPARISON);
4952 }
4953 (cmp @0 { res; })))))))))
4954
4955 /* Canonicalizations of BIT_FIELD_REFs. */
4956
4957 (simplify
4958 (BIT_FIELD_REF (BIT_FIELD_REF @0 @1 @2) @3 @4)
4959 (BIT_FIELD_REF @0 @3 { const_binop (PLUS_EXPR, bitsizetype, @2, @4); }))
4960
4961 (simplify
4962 (BIT_FIELD_REF (view_convert @0) @1 @2)
4963 (BIT_FIELD_REF @0 @1 @2))
4964
4965 (simplify
4966 (BIT_FIELD_REF @0 @1 integer_zerop)
4967 (if (tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (@0))))
4968 (view_convert @0)))
4969
4970 (simplify
4971 (BIT_FIELD_REF @0 @1 @2)
4972 (switch
4973 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4974 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4975 (switch
4976 (if (integer_zerop (@2))
4977 (view_convert (realpart @0)))
4978 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4979 (view_convert (imagpart @0)))))
4980 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4981 && INTEGRAL_TYPE_P (type)
4982 /* On GIMPLE this should only apply to register arguments. */
4983 && (! GIMPLE || is_gimple_reg (@0))
4984 /* A bit-field-ref that referenced the full argument can be stripped. */
4985 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4986 && integer_zerop (@2))
4987 /* Low-parts can be reduced to integral conversions.
4988 ??? The following doesn't work for PDP endian. */
4989 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4990 /* Don't even think about BITS_BIG_ENDIAN. */
4991 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4992 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4993 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4994 ? (TYPE_PRECISION (TREE_TYPE (@0))
4995 - TYPE_PRECISION (type))
4996 : 0)) == 0)))
4997 (convert @0))))
4998
4999 /* Simplify vector extracts. */
5000
5001 (simplify
5002 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
5003 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
5004 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
5005 || (VECTOR_TYPE_P (type)
5006 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
5007 (with
5008 {
5009 tree ctor = (TREE_CODE (@0) == SSA_NAME
5010 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
5011 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
5012 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
5013 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
5014 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
5015 }
5016 (if (n != 0
5017 && (idx % width) == 0
5018 && (n % width) == 0
5019 && known_le ((idx + n) / width,
5020 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
5021 (with
5022 {
5023 idx = idx / width;
5024 n = n / width;
5025 /* Constructor elements can be subvectors. */
5026 poly_uint64 k = 1;
5027 if (CONSTRUCTOR_NELTS (ctor) != 0)
5028 {
5029 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
5030 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
5031 k = TYPE_VECTOR_SUBPARTS (cons_elem);
5032 }
5033 unsigned HOST_WIDE_INT elt, count, const_k;
5034 }
5035 (switch
5036 /* We keep an exact subset of the constructor elements. */
5037 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
5038 (if (CONSTRUCTOR_NELTS (ctor) == 0)
5039 { build_constructor (type, NULL); }
5040 (if (count == 1)
5041 (if (elt < CONSTRUCTOR_NELTS (ctor))
5042 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
5043 { build_zero_cst (type); })
5044 {
5045 vec<constructor_elt, va_gc> *vals;
5046 vec_alloc (vals, count);
5047 for (unsigned i = 0;
5048 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
5049 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
5050 CONSTRUCTOR_ELT (ctor, elt + i)->value);
5051 build_constructor (type, vals);
5052 })))
5053 /* The bitfield references a single constructor element. */
5054 (if (k.is_constant (&const_k)
5055 && idx + n <= (idx / const_k + 1) * const_k)
5056 (switch
5057 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
5058 { build_zero_cst (type); })
5059 (if (n == const_k)
5060 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
5061 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
5062 @1 { bitsize_int ((idx % const_k) * width); })))))))))
5063
5064 /* Simplify a bit extraction from a bit insertion for the cases with
5065 the inserted element fully covering the extraction or the insertion
5066 not touching the extraction. */
5067 (simplify
5068 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
5069 (with
5070 {
5071 unsigned HOST_WIDE_INT isize;
5072 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
5073 isize = TYPE_PRECISION (TREE_TYPE (@1));
5074 else
5075 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
5076 }
5077 (switch
5078 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
5079 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
5080 wi::to_wide (@ipos) + isize))
5081 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
5082 wi::to_wide (@rpos)
5083 - wi::to_wide (@ipos)); }))
5084 (if (wi::geu_p (wi::to_wide (@ipos),
5085 wi::to_wide (@rpos) + wi::to_wide (@rsize))
5086 || wi::geu_p (wi::to_wide (@rpos),
5087 wi::to_wide (@ipos) + isize))
5088 (BIT_FIELD_REF @0 @rsize @rpos)))))
5089
5090 (if (canonicalize_math_after_vectorization_p ())
5091 (for fmas (FMA)
5092 (simplify
5093 (fmas:c (negate @0) @1 @2)
5094 (IFN_FNMA @0 @1 @2))
5095 (simplify
5096 (fmas @0 @1 (negate @2))
5097 (IFN_FMS @0 @1 @2))
5098 (simplify
5099 (fmas:c (negate @0) @1 (negate @2))
5100 (IFN_FNMS @0 @1 @2))
5101 (simplify
5102 (negate (fmas@3 @0 @1 @2))
5103 (if (single_use (@3))
5104 (IFN_FNMS @0 @1 @2))))
5105
5106 (simplify
5107 (IFN_FMS:c (negate @0) @1 @2)
5108 (IFN_FNMS @0 @1 @2))
5109 (simplify
5110 (IFN_FMS @0 @1 (negate @2))
5111 (IFN_FMA @0 @1 @2))
5112 (simplify
5113 (IFN_FMS:c (negate @0) @1 (negate @2))
5114 (IFN_FNMA @0 @1 @2))
5115 (simplify
5116 (negate (IFN_FMS@3 @0 @1 @2))
5117 (if (single_use (@3))
5118 (IFN_FNMA @0 @1 @2)))
5119
5120 (simplify
5121 (IFN_FNMA:c (negate @0) @1 @2)
5122 (IFN_FMA @0 @1 @2))
5123 (simplify
5124 (IFN_FNMA @0 @1 (negate @2))
5125 (IFN_FNMS @0 @1 @2))
5126 (simplify
5127 (IFN_FNMA:c (negate @0) @1 (negate @2))
5128 (IFN_FMS @0 @1 @2))
5129 (simplify
5130 (negate (IFN_FNMA@3 @0 @1 @2))
5131 (if (single_use (@3))
5132 (IFN_FMS @0 @1 @2)))
5133
5134 (simplify
5135 (IFN_FNMS:c (negate @0) @1 @2)
5136 (IFN_FMS @0 @1 @2))
5137 (simplify
5138 (IFN_FNMS @0 @1 (negate @2))
5139 (IFN_FNMA @0 @1 @2))
5140 (simplify
5141 (IFN_FNMS:c (negate @0) @1 (negate @2))
5142 (IFN_FMA @0 @1 @2))
5143 (simplify
5144 (negate (IFN_FNMS@3 @0 @1 @2))
5145 (if (single_use (@3))
5146 (IFN_FMA @0 @1 @2))))
5147
5148 /* POPCOUNT simplifications. */
5149 (for popcount (BUILT_IN_POPCOUNT BUILT_IN_POPCOUNTL BUILT_IN_POPCOUNTLL
5150 BUILT_IN_POPCOUNTIMAX)
5151 /* popcount(X&1) is nop_expr(X&1). */
5152 (simplify
5153 (popcount @0)
5154 (if (tree_nonzero_bits (@0) == 1)
5155 (convert @0)))
5156 /* popcount(X) + popcount(Y) is popcount(X|Y) when X&Y must be zero. */
5157 (simplify
5158 (plus (popcount:s @0) (popcount:s @1))
5159 (if (wi::bit_and (tree_nonzero_bits (@0), tree_nonzero_bits (@1)) == 0)
5160 (popcount (bit_ior @0 @1))))
5161 /* popcount(X) == 0 is X == 0, and related (in)equalities. */
5162 (for cmp (le eq ne gt)
5163 rep (eq eq ne ne)
5164 (simplify
5165 (cmp (popcount @0) integer_zerop)
5166 (rep @0 { build_zero_cst (TREE_TYPE (@0)); }))))
5167
5168 /* Simplify:
5169
5170 a = a1 op a2
5171 r = c ? a : b;
5172
5173 to:
5174
5175 r = c ? a1 op a2 : b;
5176
5177 if the target can do it in one go. This makes the operation conditional
5178 on c, so could drop potentially-trapping arithmetic, but that's a valid
5179 simplification if the result of the operation isn't needed.
5180
5181 Avoid speculatively generating a stand-alone vector comparison
5182 on targets that might not support them. Any target implementing
5183 conditional internal functions must support the same comparisons
5184 inside and outside a VEC_COND_EXPR. */
5185
5186 #if GIMPLE
5187 (for uncond_op (UNCOND_BINARY)
5188 cond_op (COND_BINARY)
5189 (simplify
5190 (vec_cond @0 (view_convert? (uncond_op@4 @1 @2)) @3)
5191 (with { tree op_type = TREE_TYPE (@4); }
5192 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5193 && element_precision (type) == element_precision (op_type))
5194 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @3))))))
5195 (simplify
5196 (vec_cond @0 @1 (view_convert? (uncond_op@4 @2 @3)))
5197 (with { tree op_type = TREE_TYPE (@4); }
5198 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5199 && element_precision (type) == element_precision (op_type))
5200 (view_convert (cond_op (bit_not @0) @2 @3 (view_convert:op_type @1)))))))
5201
5202 /* Same for ternary operations. */
5203 (for uncond_op (UNCOND_TERNARY)
5204 cond_op (COND_TERNARY)
5205 (simplify
5206 (vec_cond @0 (view_convert? (uncond_op@5 @1 @2 @3)) @4)
5207 (with { tree op_type = TREE_TYPE (@5); }
5208 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5209 && element_precision (type) == element_precision (op_type))
5210 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @4))))))
5211 (simplify
5212 (vec_cond @0 @1 (view_convert? (uncond_op@5 @2 @3 @4)))
5213 (with { tree op_type = TREE_TYPE (@5); }
5214 (if (vectorized_internal_fn_supported_p (as_internal_fn (cond_op), op_type)
5215 && element_precision (type) == element_precision (op_type))
5216 (view_convert (cond_op (bit_not @0) @2 @3 @4
5217 (view_convert:op_type @1)))))))
5218 #endif
5219
5220 /* Detect cases in which a VEC_COND_EXPR effectively replaces the
5221 "else" value of an IFN_COND_*. */
5222 (for cond_op (COND_BINARY)
5223 (simplify
5224 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3)) @4)
5225 (with { tree op_type = TREE_TYPE (@3); }
5226 (if (element_precision (type) == element_precision (op_type))
5227 (view_convert (cond_op @0 @1 @2 (view_convert:op_type @4))))))
5228 (simplify
5229 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5)))
5230 (with { tree op_type = TREE_TYPE (@5); }
5231 (if (inverse_conditions_p (@0, @2)
5232 && element_precision (type) == element_precision (op_type))
5233 (view_convert (cond_op @2 @3 @4 (view_convert:op_type @1)))))))
5234
5235 /* Same for ternary operations. */
5236 (for cond_op (COND_TERNARY)
5237 (simplify
5238 (vec_cond @0 (view_convert? (cond_op @0 @1 @2 @3 @4)) @5)
5239 (with { tree op_type = TREE_TYPE (@4); }
5240 (if (element_precision (type) == element_precision (op_type))
5241 (view_convert (cond_op @0 @1 @2 @3 (view_convert:op_type @5))))))
5242 (simplify
5243 (vec_cond @0 @1 (view_convert? (cond_op @2 @3 @4 @5 @6)))
5244 (with { tree op_type = TREE_TYPE (@6); }
5245 (if (inverse_conditions_p (@0, @2)
5246 && element_precision (type) == element_precision (op_type))
5247 (view_convert (cond_op @2 @3 @4 @5 (view_convert:op_type @1)))))))
5248
5249 /* For pointers @0 and @2 and nonnegative constant offset @1, look for
5250 expressions like:
5251
5252 A: (@0 + @1 < @2) | (@2 + @1 < @0)
5253 B: (@0 + @1 <= @2) | (@2 + @1 <= @0)
5254
5255 If pointers are known not to wrap, B checks whether @1 bytes starting
5256 at @0 and @2 do not overlap, while A tests the same thing for @1 + 1
5257 bytes. A is more efficiently tested as:
5258
5259 A: (sizetype) (@0 + @1 - @2) > @1 * 2
5260
5261 The equivalent expression for B is given by replacing @1 with @1 - 1:
5262
5263 B: (sizetype) (@0 + (@1 - 1) - @2) > (@1 - 1) * 2
5264
5265 @0 and @2 can be swapped in both expressions without changing the result.
5266
5267 The folds rely on sizetype's being unsigned (which is always true)
5268 and on its being the same width as the pointer (which we have to check).
5269
5270 The fold replaces two pointer_plus expressions, two comparisons and
5271 an IOR with a pointer_plus, a pointer_diff, and a comparison, so in
5272 the best case it's a saving of two operations. The A fold retains one
5273 of the original pointer_pluses, so is a win even if both pointer_pluses
5274 are used elsewhere. The B fold is a wash if both pointer_pluses are
5275 used elsewhere, since all we end up doing is replacing a comparison with
5276 a pointer_plus. We do still apply the fold under those circumstances
5277 though, in case applying it to other conditions eventually makes one of the
5278 pointer_pluses dead. */
5279 (for ior (truth_orif truth_or bit_ior)
5280 (for cmp (le lt)
5281 (simplify
5282 (ior (cmp:cs (pointer_plus@3 @0 INTEGER_CST@1) @2)
5283 (cmp:cs (pointer_plus@4 @2 @1) @0))
5284 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
5285 && TYPE_OVERFLOW_WRAPS (sizetype)
5286 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (sizetype))
5287 /* Calculate the rhs constant. */
5288 (with { offset_int off = wi::to_offset (@1) - (cmp == LE_EXPR ? 1 : 0);
5289 offset_int rhs = off * 2; }
5290 /* Always fails for negative values. */
5291 (if (wi::min_precision (rhs, UNSIGNED) <= TYPE_PRECISION (sizetype))
5292 /* Since the order of @0 and @2 doesn't matter, let tree_swap_operands_p
5293 pick a canonical order. This increases the chances of using the
5294 same pointer_plus in multiple checks. */
5295 (with { bool swap_p = tree_swap_operands_p (@0, @2);
5296 tree rhs_tree = wide_int_to_tree (sizetype, rhs); }
5297 (if (cmp == LT_EXPR)
5298 (gt (convert:sizetype
5299 (pointer_diff:ssizetype { swap_p ? @4 : @3; }
5300 { swap_p ? @0 : @2; }))
5301 { rhs_tree; })
5302 (gt (convert:sizetype
5303 (pointer_diff:ssizetype
5304 (pointer_plus { swap_p ? @2 : @0; }
5305 { wide_int_to_tree (sizetype, off); })
5306 { swap_p ? @0 : @2; }))
5307 { rhs_tree; })))))))))
5308
5309 /* Fold REDUC (@0 & @1) -> @0[I] & @1[I] if element I is the only nonzero
5310 element of @1. */
5311 (for reduc (IFN_REDUC_PLUS IFN_REDUC_IOR IFN_REDUC_XOR)
5312 (simplify (reduc (view_convert? (bit_and @0 VECTOR_CST@1)))
5313 (with { int i = single_nonzero_element (@1); }
5314 (if (i >= 0)
5315 (with { tree elt = vector_cst_elt (@1, i);
5316 tree elt_type = TREE_TYPE (elt);
5317 unsigned int elt_bits = tree_to_uhwi (TYPE_SIZE (elt_type));
5318 tree size = bitsize_int (elt_bits);
5319 tree pos = bitsize_int (elt_bits * i); }
5320 (view_convert
5321 (bit_and:elt_type
5322 (BIT_FIELD_REF:elt_type @0 { size; } { pos; })
5323 { elt; })))))))