]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/modulo-sched.c
asan.c (asan_emit_stack_protection): Update.
[thirdparty/gcc.git] / gcc / modulo-sched.c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "params.h"
43 #include "ddg.h"
44 #include "tree-pass.h"
45 #include "dbgcnt.h"
46 #include "loop-unroll.h"
47
48 #ifdef INSN_SCHEDULING
49
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
58
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
82
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
97 \f
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
100
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
103
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
106
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
109
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
112
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
119
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
122 {
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
127
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
131
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
135
136 };
137
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
141 {
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
146
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
151
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
154
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
159 };
160
161 /* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164 struct partial_schedule
165 {
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
168
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
171
172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
174 vec<ps_reg_move_info> reg_moves;
175
176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
181
182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
184
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
187
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
189
190 int stage_count; /* The stage count of the partial schedule. */
191 };
192
193
194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195 static void free_partial_schedule (partial_schedule_ptr);
196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
197 void print_partial_schedule (partial_schedule_ptr, FILE *);
198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
200 int, int, sbitmap, sbitmap);
201 static void rotate_partial_schedule (partial_schedule_ptr, int);
202 void set_row_column_for_ps (partial_schedule_ptr);
203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
205
206 \f
207 /* This page defines constants and structures for the modulo scheduling
208 driver. */
209
210 static int sms_order_nodes (ddg_ptr, int, int *, int *);
211 static void set_node_sched_params (ddg_ptr);
212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
214 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
215 rtx, rtx);
216 static int calculate_stage_count (partial_schedule_ptr, int);
217 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
218 int, int, sbitmap, sbitmap, sbitmap);
219 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
220 sbitmap, int, int *, int *, int *);
221 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
222 sbitmap, int *, sbitmap, sbitmap);
223 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
224
225 #define NODE_ASAP(node) ((node)->aux.count)
226
227 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
228 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
229 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
230 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
231 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
232
233 /* The scheduling parameters held for each node. */
234 typedef struct node_sched_params
235 {
236 int time; /* The absolute scheduling cycle. */
237
238 int row; /* Holds time % ii. */
239 int stage; /* Holds time / ii. */
240
241 /* The column of a node inside the ps. If nodes u, v are on the same row,
242 u will precede v if column (u) < column (v). */
243 int column;
244 } *node_sched_params_ptr;
245 \f
246 /* The following three functions are copied from the current scheduler
247 code in order to use sched_analyze() for computing the dependencies.
248 They are used when initializing the sched_info structure. */
249 static const char *
250 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
251 {
252 static char tmp[80];
253
254 sprintf (tmp, "i%4d", INSN_UID (insn));
255 return tmp;
256 }
257
258 static void
259 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
260 regset used ATTRIBUTE_UNUSED)
261 {
262 }
263
264 static struct common_sched_info_def sms_common_sched_info;
265
266 static struct sched_deps_info_def sms_sched_deps_info =
267 {
268 compute_jump_reg_dependencies,
269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
270 NULL,
271 0, 0, 0
272 };
273
274 static struct haifa_sched_info sms_sched_info =
275 {
276 NULL,
277 NULL,
278 NULL,
279 NULL,
280 NULL,
281 sms_print_insn,
282 NULL,
283 NULL, /* insn_finishes_block_p */
284 NULL, NULL,
285 NULL, NULL,
286 0, 0,
287
288 NULL, NULL, NULL, NULL,
289 NULL, NULL,
290 0
291 };
292
293 /* Partial schedule instruction ID in PS is a register move. Return
294 information about it. */
295 static struct ps_reg_move_info *
296 ps_reg_move (partial_schedule_ptr ps, int id)
297 {
298 gcc_checking_assert (id >= ps->g->num_nodes);
299 return &ps->reg_moves[id - ps->g->num_nodes];
300 }
301
302 /* Return the rtl instruction that is being scheduled by partial schedule
303 instruction ID, which belongs to schedule PS. */
304 static rtx_insn *
305 ps_rtl_insn (partial_schedule_ptr ps, int id)
306 {
307 if (id < ps->g->num_nodes)
308 return ps->g->nodes[id].insn;
309 else
310 return ps_reg_move (ps, id)->insn;
311 }
312
313 /* Partial schedule instruction ID, which belongs to PS, occurred in
314 the original (unscheduled) loop. Return the first instruction
315 in the loop that was associated with ps_rtl_insn (PS, ID).
316 If the instruction had some notes before it, this is the first
317 of those notes. */
318 static rtx_insn *
319 ps_first_note (partial_schedule_ptr ps, int id)
320 {
321 gcc_assert (id < ps->g->num_nodes);
322 return ps->g->nodes[id].first_note;
323 }
324
325 /* Return the number of consecutive stages that are occupied by
326 partial schedule instruction ID in PS. */
327 static int
328 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
329 {
330 if (id < ps->g->num_nodes)
331 return 1;
332 else
333 return ps_reg_move (ps, id)->num_consecutive_stages;
334 }
335
336 /* Given HEAD and TAIL which are the first and last insns in a loop;
337 return the register which controls the loop. Return zero if it has
338 more than one occurrence in the loop besides the control part or the
339 do-loop pattern is not of the form we expect. */
340 static rtx
341 doloop_register_get (rtx_insn *head, rtx_insn *tail)
342 {
343 rtx reg, condition;
344 rtx_insn *insn, *first_insn_not_to_check;
345
346 if (!JUMP_P (tail))
347 return NULL_RTX;
348
349 if (!targetm.code_for_doloop_end)
350 return NULL_RTX;
351
352 /* TODO: Free SMS's dependence on doloop_condition_get. */
353 condition = doloop_condition_get (tail);
354 if (! condition)
355 return NULL_RTX;
356
357 if (REG_P (XEXP (condition, 0)))
358 reg = XEXP (condition, 0);
359 else if (GET_CODE (XEXP (condition, 0)) == PLUS
360 && REG_P (XEXP (XEXP (condition, 0), 0)))
361 reg = XEXP (XEXP (condition, 0), 0);
362 else
363 gcc_unreachable ();
364
365 /* Check that the COUNT_REG has no other occurrences in the loop
366 until the decrement. We assume the control part consists of
367 either a single (parallel) branch-on-count or a (non-parallel)
368 branch immediately preceded by a single (decrement) insn. */
369 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
370 : prev_nondebug_insn (tail));
371
372 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
373 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
374 {
375 if (dump_file)
376 {
377 fprintf (dump_file, "SMS count_reg found ");
378 print_rtl_single (dump_file, reg);
379 fprintf (dump_file, " outside control in insn:\n");
380 print_rtl_single (dump_file, insn);
381 }
382
383 return NULL_RTX;
384 }
385
386 return reg;
387 }
388
389 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
390 that the number of iterations is a compile-time constant. If so,
391 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
392 this constant. Otherwise return 0. */
393 static rtx_insn *
394 const_iteration_count (rtx count_reg, basic_block pre_header,
395 int64_t * count)
396 {
397 rtx_insn *insn;
398 rtx_insn *head, *tail;
399
400 if (! pre_header)
401 return NULL;
402
403 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
404
405 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
406 if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
407 rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
408 {
409 rtx pat = single_set (insn);
410
411 if (CONST_INT_P (SET_SRC (pat)))
412 {
413 *count = INTVAL (SET_SRC (pat));
414 return insn;
415 }
416
417 return NULL;
418 }
419
420 return NULL;
421 }
422
423 /* A very simple resource-based lower bound on the initiation interval.
424 ??? Improve the accuracy of this bound by considering the
425 utilization of various units. */
426 static int
427 res_MII (ddg_ptr g)
428 {
429 if (targetm.sched.sms_res_mii)
430 return targetm.sched.sms_res_mii (g);
431
432 return ((g->num_nodes - g->num_debug) / issue_rate);
433 }
434
435
436 /* A vector that contains the sched data for each ps_insn. */
437 static vec<node_sched_params> node_sched_param_vec;
438
439 /* Allocate sched_params for each node and initialize it. */
440 static void
441 set_node_sched_params (ddg_ptr g)
442 {
443 node_sched_param_vec.truncate (0);
444 node_sched_param_vec.safe_grow_cleared (g->num_nodes);
445 }
446
447 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
448 static void
449 extend_node_sched_params (partial_schedule_ptr ps)
450 {
451 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
452 + ps->reg_moves.length ());
453 }
454
455 /* Update the sched_params (time, row and stage) for node U using the II,
456 the CYCLE of U and MIN_CYCLE.
457 We're not simply taking the following
458 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
459 because the stages may not be aligned on cycle 0. */
460 static void
461 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
462 {
463 int sc_until_cycle_zero;
464 int stage;
465
466 SCHED_TIME (u) = cycle;
467 SCHED_ROW (u) = SMODULO (cycle, ii);
468
469 /* The calculation of stage count is done adding the number
470 of stages before cycle zero and after cycle zero. */
471 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
472
473 if (SCHED_TIME (u) < 0)
474 {
475 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
476 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
477 }
478 else
479 {
480 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
481 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
482 }
483 }
484
485 static void
486 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
487 {
488 int i;
489
490 if (! file)
491 return;
492 for (i = 0; i < num_nodes; i++)
493 {
494 node_sched_params_ptr nsp = SCHED_PARAMS (i);
495
496 fprintf (file, "Node = %d; INSN = %d\n", i,
497 INSN_UID (ps_rtl_insn (ps, i)));
498 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
499 fprintf (file, " time = %d:\n", nsp->time);
500 fprintf (file, " stage = %d:\n", nsp->stage);
501 }
502 }
503
504 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
505 static void
506 set_columns_for_row (partial_schedule_ptr ps, int row)
507 {
508 ps_insn_ptr cur_insn;
509 int column;
510
511 column = 0;
512 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
513 SCHED_COLUMN (cur_insn->id) = column++;
514 }
515
516 /* Set SCHED_COLUMN for each instruction in PS. */
517 static void
518 set_columns_for_ps (partial_schedule_ptr ps)
519 {
520 int row;
521
522 for (row = 0; row < ps->ii; row++)
523 set_columns_for_row (ps, row);
524 }
525
526 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
527 Its single predecessor has already been scheduled, as has its
528 ddg node successors. (The move may have also another move as its
529 successor, in which case that successor will be scheduled later.)
530
531 The move is part of a chain that satisfies register dependencies
532 between a producing ddg node and various consuming ddg nodes.
533 If some of these dependencies have a distance of 1 (meaning that
534 the use is upward-exposed) then DISTANCE1_USES is nonnull and
535 contains the set of uses with distance-1 dependencies.
536 DISTANCE1_USES is null otherwise.
537
538 MUST_FOLLOW is a scratch bitmap that is big enough to hold
539 all current ps_insn ids.
540
541 Return true on success. */
542 static bool
543 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
544 sbitmap distance1_uses, sbitmap must_follow)
545 {
546 unsigned int u;
547 int this_time, this_distance, this_start, this_end, this_latency;
548 int start, end, c, ii;
549 sbitmap_iterator sbi;
550 ps_reg_move_info *move;
551 rtx_insn *this_insn;
552 ps_insn_ptr psi;
553
554 move = ps_reg_move (ps, i_reg_move);
555 ii = ps->ii;
556 if (dump_file)
557 {
558 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
559 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
560 PS_MIN_CYCLE (ps));
561 print_rtl_single (dump_file, move->insn);
562 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
563 fprintf (dump_file, "=========== =========== =====\n");
564 }
565
566 start = INT_MIN;
567 end = INT_MAX;
568
569 /* For dependencies of distance 1 between a producer ddg node A
570 and consumer ddg node B, we have a chain of dependencies:
571
572 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
573
574 where Mi is the ith move. For dependencies of distance 0 between
575 a producer ddg node A and consumer ddg node C, we have a chain of
576 dependencies:
577
578 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
579
580 where Mi' occupies the same position as Mi but occurs a stage later.
581 We can only schedule each move once, so if we have both types of
582 chain, we model the second as:
583
584 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
585
586 First handle the dependencies between the previously-scheduled
587 predecessor and the move. */
588 this_insn = ps_rtl_insn (ps, move->def);
589 this_latency = insn_latency (this_insn, move->insn);
590 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
591 this_time = SCHED_TIME (move->def) - this_distance * ii;
592 this_start = this_time + this_latency;
593 this_end = this_time + ii;
594 if (dump_file)
595 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
596 this_start, this_end, SCHED_TIME (move->def),
597 INSN_UID (this_insn), this_latency, this_distance,
598 INSN_UID (move->insn));
599
600 if (start < this_start)
601 start = this_start;
602 if (end > this_end)
603 end = this_end;
604
605 /* Handle the dependencies between the move and previously-scheduled
606 successors. */
607 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
608 {
609 this_insn = ps_rtl_insn (ps, u);
610 this_latency = insn_latency (move->insn, this_insn);
611 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
612 this_distance = -1;
613 else
614 this_distance = 0;
615 this_time = SCHED_TIME (u) + this_distance * ii;
616 this_start = this_time - ii;
617 this_end = this_time - this_latency;
618 if (dump_file)
619 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
620 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
621 this_latency, this_distance, INSN_UID (this_insn));
622
623 if (start < this_start)
624 start = this_start;
625 if (end > this_end)
626 end = this_end;
627 }
628
629 if (dump_file)
630 {
631 fprintf (dump_file, "----------- ----------- -----\n");
632 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
633 }
634
635 bitmap_clear (must_follow);
636 bitmap_set_bit (must_follow, move->def);
637
638 start = MAX (start, end - (ii - 1));
639 for (c = end; c >= start; c--)
640 {
641 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
642 move->uses, must_follow);
643 if (psi)
644 {
645 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
646 if (dump_file)
647 fprintf (dump_file, "\nScheduled register move INSN %d at"
648 " time %d, row %d\n\n", INSN_UID (move->insn), c,
649 SCHED_ROW (i_reg_move));
650 return true;
651 }
652 }
653
654 if (dump_file)
655 fprintf (dump_file, "\nNo available slot\n\n");
656
657 return false;
658 }
659
660 /*
661 Breaking intra-loop register anti-dependences:
662 Each intra-loop register anti-dependence implies a cross-iteration true
663 dependence of distance 1. Therefore, we can remove such false dependencies
664 and figure out if the partial schedule broke them by checking if (for a
665 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
666 if so generate a register move. The number of such moves is equal to:
667 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
668 nreg_moves = ----------------------------------- + 1 - { dependence.
669 ii { 1 if not.
670 */
671 static bool
672 schedule_reg_moves (partial_schedule_ptr ps)
673 {
674 ddg_ptr g = ps->g;
675 int ii = ps->ii;
676 int i;
677
678 for (i = 0; i < g->num_nodes; i++)
679 {
680 ddg_node_ptr u = &g->nodes[i];
681 ddg_edge_ptr e;
682 int nreg_moves = 0, i_reg_move;
683 rtx prev_reg, old_reg;
684 int first_move;
685 int distances[2];
686 sbitmap distance1_uses;
687 rtx set = single_set (u->insn);
688
689 /* Skip instructions that do not set a register. */
690 if ((set && !REG_P (SET_DEST (set))))
691 continue;
692
693 /* Compute the number of reg_moves needed for u, by looking at life
694 ranges started at u (excluding self-loops). */
695 distances[0] = distances[1] = false;
696 for (e = u->out; e; e = e->next_out)
697 if (e->type == TRUE_DEP && e->dest != e->src)
698 {
699 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
700 - SCHED_TIME (e->src->cuid)) / ii;
701
702 if (e->distance == 1)
703 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
704 - SCHED_TIME (e->src->cuid) + ii) / ii;
705
706 /* If dest precedes src in the schedule of the kernel, then dest
707 will read before src writes and we can save one reg_copy. */
708 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
709 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
710 nreg_moves4e--;
711
712 if (nreg_moves4e >= 1)
713 {
714 /* !single_set instructions are not supported yet and
715 thus we do not except to encounter them in the loop
716 except from the doloop part. For the latter case
717 we assume no regmoves are generated as the doloop
718 instructions are tied to the branch with an edge. */
719 gcc_assert (set);
720 /* If the instruction contains auto-inc register then
721 validate that the regmov is being generated for the
722 target regsiter rather then the inc'ed register. */
723 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
724 }
725
726 if (nreg_moves4e)
727 {
728 gcc_assert (e->distance < 2);
729 distances[e->distance] = true;
730 }
731 nreg_moves = MAX (nreg_moves, nreg_moves4e);
732 }
733
734 if (nreg_moves == 0)
735 continue;
736
737 /* Create NREG_MOVES register moves. */
738 first_move = ps->reg_moves.length ();
739 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves);
740 extend_node_sched_params (ps);
741
742 /* Record the moves associated with this node. */
743 first_move += ps->g->num_nodes;
744
745 /* Generate each move. */
746 old_reg = prev_reg = SET_DEST (single_set (u->insn));
747 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
748 {
749 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
750
751 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
752 move->uses = sbitmap_alloc (first_move + nreg_moves);
753 move->old_reg = old_reg;
754 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
755 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
756 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
757 bitmap_clear (move->uses);
758
759 prev_reg = move->new_reg;
760 }
761
762 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
763
764 if (distance1_uses)
765 bitmap_clear (distance1_uses);
766
767 /* Every use of the register defined by node may require a different
768 copy of this register, depending on the time the use is scheduled.
769 Record which uses require which move results. */
770 for (e = u->out; e; e = e->next_out)
771 if (e->type == TRUE_DEP && e->dest != e->src)
772 {
773 int dest_copy = (SCHED_TIME (e->dest->cuid)
774 - SCHED_TIME (e->src->cuid)) / ii;
775
776 if (e->distance == 1)
777 dest_copy = (SCHED_TIME (e->dest->cuid)
778 - SCHED_TIME (e->src->cuid) + ii) / ii;
779
780 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
781 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
782 dest_copy--;
783
784 if (dest_copy)
785 {
786 ps_reg_move_info *move;
787
788 move = ps_reg_move (ps, first_move + dest_copy - 1);
789 bitmap_set_bit (move->uses, e->dest->cuid);
790 if (e->distance == 1)
791 bitmap_set_bit (distance1_uses, e->dest->cuid);
792 }
793 }
794
795 auto_sbitmap must_follow (first_move + nreg_moves);
796 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
797 if (!schedule_reg_move (ps, first_move + i_reg_move,
798 distance1_uses, must_follow))
799 break;
800 if (distance1_uses)
801 sbitmap_free (distance1_uses);
802 if (i_reg_move < nreg_moves)
803 return false;
804 }
805 return true;
806 }
807
808 /* Emit the moves associated with PS. Apply the substitutions
809 associated with them. */
810 static void
811 apply_reg_moves (partial_schedule_ptr ps)
812 {
813 ps_reg_move_info *move;
814 int i;
815
816 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
817 {
818 unsigned int i_use;
819 sbitmap_iterator sbi;
820
821 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
822 {
823 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
824 df_insn_rescan (ps->g->nodes[i_use].insn);
825 }
826 }
827 }
828
829 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
830 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
831 will move to cycle zero. */
832 static void
833 reset_sched_times (partial_schedule_ptr ps, int amount)
834 {
835 int row;
836 int ii = ps->ii;
837 ps_insn_ptr crr_insn;
838
839 for (row = 0; row < ii; row++)
840 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
841 {
842 int u = crr_insn->id;
843 int normalized_time = SCHED_TIME (u) - amount;
844 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
845
846 if (dump_file)
847 {
848 /* Print the scheduling times after the rotation. */
849 rtx_insn *insn = ps_rtl_insn (ps, u);
850
851 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
852 "crr_insn->cycle=%d, min_cycle=%d", u,
853 INSN_UID (insn), normalized_time, new_min_cycle);
854 if (JUMP_P (insn))
855 fprintf (dump_file, " (branch)");
856 fprintf (dump_file, "\n");
857 }
858
859 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
860 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
861
862 crr_insn->cycle = normalized_time;
863 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
864 }
865 }
866
867 /* Permute the insns according to their order in PS, from row 0 to
868 row ii-1, and position them right before LAST. This schedules
869 the insns of the loop kernel. */
870 static void
871 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
872 {
873 int ii = ps->ii;
874 int row;
875 ps_insn_ptr ps_ij;
876
877 for (row = 0; row < ii ; row++)
878 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
879 {
880 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
881
882 if (PREV_INSN (last) != insn)
883 {
884 if (ps_ij->id < ps->g->num_nodes)
885 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
886 PREV_INSN (last));
887 else
888 add_insn_before (insn, last, NULL);
889 }
890 }
891 }
892
893 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
894 respectively only if cycle C falls on the border of the scheduling
895 window boundaries marked by START and END cycles. STEP is the
896 direction of the window. */
897 static inline void
898 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
899 sbitmap *tmp_precede, sbitmap must_precede, int c,
900 int start, int end, int step)
901 {
902 *tmp_precede = NULL;
903 *tmp_follow = NULL;
904
905 if (c == start)
906 {
907 if (step == 1)
908 *tmp_precede = must_precede;
909 else /* step == -1. */
910 *tmp_follow = must_follow;
911 }
912 if (c == end - step)
913 {
914 if (step == 1)
915 *tmp_follow = must_follow;
916 else /* step == -1. */
917 *tmp_precede = must_precede;
918 }
919
920 }
921
922 /* Return True if the branch can be moved to row ii-1 while
923 normalizing the partial schedule PS to start from cycle zero and thus
924 optimize the SC. Otherwise return False. */
925 static bool
926 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
927 {
928 int amount = PS_MIN_CYCLE (ps);
929 int start, end, step;
930 int ii = ps->ii;
931 bool ok = false;
932 int stage_count, stage_count_curr;
933
934 /* Compare the SC after normalization and SC after bringing the branch
935 to row ii-1. If they are equal just bail out. */
936 stage_count = calculate_stage_count (ps, amount);
937 stage_count_curr =
938 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
939
940 if (stage_count == stage_count_curr)
941 {
942 if (dump_file)
943 fprintf (dump_file, "SMS SC already optimized.\n");
944
945 return false;
946 }
947
948 if (dump_file)
949 {
950 fprintf (dump_file, "SMS Trying to optimize branch location\n");
951 fprintf (dump_file, "SMS partial schedule before trial:\n");
952 print_partial_schedule (ps, dump_file);
953 }
954
955 /* First, normalize the partial scheduling. */
956 reset_sched_times (ps, amount);
957 rotate_partial_schedule (ps, amount);
958 if (dump_file)
959 {
960 fprintf (dump_file,
961 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
962 ii, stage_count);
963 print_partial_schedule (ps, dump_file);
964 }
965
966 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
967 return true;
968
969 auto_sbitmap sched_nodes (g->num_nodes);
970 bitmap_ones (sched_nodes);
971
972 /* Calculate the new placement of the branch. It should be in row
973 ii-1 and fall into it's scheduling window. */
974 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
975 &step, &end) == 0)
976 {
977 bool success;
978 ps_insn_ptr next_ps_i;
979 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
980 int row = SMODULO (branch_cycle, ps->ii);
981 int num_splits = 0;
982 sbitmap tmp_precede, tmp_follow;
983 int min_cycle, c;
984
985 if (dump_file)
986 fprintf (dump_file, "\nTrying to schedule node %d "
987 "INSN = %d in (%d .. %d) step %d\n",
988 g->closing_branch->cuid,
989 (INSN_UID (g->closing_branch->insn)), start, end, step);
990
991 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
992 if (step == 1)
993 {
994 c = start + ii - SMODULO (start, ii) - 1;
995 gcc_assert (c >= start);
996 if (c >= end)
997 {
998 if (dump_file)
999 fprintf (dump_file,
1000 "SMS failed to schedule branch at cycle: %d\n", c);
1001 return false;
1002 }
1003 }
1004 else
1005 {
1006 c = start - SMODULO (start, ii) - 1;
1007 gcc_assert (c <= start);
1008
1009 if (c <= end)
1010 {
1011 if (dump_file)
1012 fprintf (dump_file,
1013 "SMS failed to schedule branch at cycle: %d\n", c);
1014 return false;
1015 }
1016 }
1017
1018 auto_sbitmap must_precede (g->num_nodes);
1019 auto_sbitmap must_follow (g->num_nodes);
1020
1021 /* Try to schedule the branch is it's new cycle. */
1022 calculate_must_precede_follow (g->closing_branch, start, end,
1023 step, ii, sched_nodes,
1024 must_precede, must_follow);
1025
1026 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1027 must_precede, c, start, end, step);
1028
1029 /* Find the element in the partial schedule related to the closing
1030 branch so we can remove it from it's current cycle. */
1031 for (next_ps_i = ps->rows[row];
1032 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1033 if (next_ps_i->id == g->closing_branch->cuid)
1034 break;
1035
1036 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1037 remove_node_from_ps (ps, next_ps_i);
1038 success =
1039 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1040 sched_nodes, &num_splits,
1041 tmp_precede, tmp_follow);
1042 gcc_assert (num_splits == 0);
1043 if (!success)
1044 {
1045 if (dump_file)
1046 fprintf (dump_file,
1047 "SMS failed to schedule branch at cycle: %d, "
1048 "bringing it back to cycle %d\n", c, branch_cycle);
1049
1050 /* The branch was failed to be placed in row ii - 1.
1051 Put it back in it's original place in the partial
1052 schedualing. */
1053 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1054 must_precede, branch_cycle, start, end,
1055 step);
1056 success =
1057 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1058 branch_cycle, sched_nodes,
1059 &num_splits, tmp_precede,
1060 tmp_follow);
1061 gcc_assert (success && (num_splits == 0));
1062 ok = false;
1063 }
1064 else
1065 {
1066 /* The branch is placed in row ii - 1. */
1067 if (dump_file)
1068 fprintf (dump_file,
1069 "SMS success in moving branch to cycle %d\n", c);
1070
1071 update_node_sched_params (g->closing_branch->cuid, ii, c,
1072 PS_MIN_CYCLE (ps));
1073 ok = true;
1074 }
1075
1076 /* This might have been added to a new first stage. */
1077 if (PS_MIN_CYCLE (ps) < min_cycle)
1078 reset_sched_times (ps, 0);
1079 }
1080
1081 return ok;
1082 }
1083
1084 static void
1085 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1086 int to_stage, rtx count_reg)
1087 {
1088 int row;
1089 ps_insn_ptr ps_ij;
1090
1091 for (row = 0; row < ps->ii; row++)
1092 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1093 {
1094 int u = ps_ij->id;
1095 int first_u, last_u;
1096 rtx_insn *u_insn;
1097
1098 /* Do not duplicate any insn which refers to count_reg as it
1099 belongs to the control part.
1100 The closing branch is scheduled as well and thus should
1101 be ignored.
1102 TODO: This should be done by analyzing the control part of
1103 the loop. */
1104 u_insn = ps_rtl_insn (ps, u);
1105 if (reg_mentioned_p (count_reg, u_insn)
1106 || JUMP_P (u_insn))
1107 continue;
1108
1109 first_u = SCHED_STAGE (u);
1110 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1111 if (from_stage <= last_u && to_stage >= first_u)
1112 {
1113 if (u < ps->g->num_nodes)
1114 duplicate_insn_chain (ps_first_note (ps, u), u_insn);
1115 else
1116 emit_insn (copy_rtx (PATTERN (u_insn)));
1117 }
1118 }
1119 }
1120
1121
1122 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1123 static void
1124 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
1125 rtx count_reg, rtx count_init)
1126 {
1127 int i;
1128 int last_stage = PS_STAGE_COUNT (ps) - 1;
1129 edge e;
1130
1131 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1132 start_sequence ();
1133
1134 if (!count_init)
1135 {
1136 /* Generate instructions at the beginning of the prolog to
1137 adjust the loop count by STAGE_COUNT. If loop count is constant
1138 (count_init), this constant is adjusted by STAGE_COUNT in
1139 generate_prolog_epilog function. */
1140 rtx sub_reg = NULL_RTX;
1141
1142 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1143 gen_int_mode (last_stage,
1144 GET_MODE (count_reg)),
1145 count_reg, 1, OPTAB_DIRECT);
1146 gcc_assert (REG_P (sub_reg));
1147 if (REGNO (sub_reg) != REGNO (count_reg))
1148 emit_move_insn (count_reg, sub_reg);
1149 }
1150
1151 for (i = 0; i < last_stage; i++)
1152 duplicate_insns_of_cycles (ps, 0, i, count_reg);
1153
1154 /* Put the prolog on the entry edge. */
1155 e = loop_preheader_edge (loop);
1156 split_edge_and_insert (e, get_insns ());
1157 if (!flag_resched_modulo_sched)
1158 e->dest->flags |= BB_DISABLE_SCHEDULE;
1159
1160 end_sequence ();
1161
1162 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1163 start_sequence ();
1164
1165 for (i = 0; i < last_stage; i++)
1166 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
1167
1168 /* Put the epilogue on the exit edge. */
1169 gcc_assert (single_exit (loop));
1170 e = single_exit (loop);
1171 split_edge_and_insert (e, get_insns ());
1172 if (!flag_resched_modulo_sched)
1173 e->dest->flags |= BB_DISABLE_SCHEDULE;
1174
1175 end_sequence ();
1176 }
1177
1178 /* Mark LOOP as software pipelined so the later
1179 scheduling passes don't touch it. */
1180 static void
1181 mark_loop_unsched (struct loop *loop)
1182 {
1183 unsigned i;
1184 basic_block *bbs = get_loop_body (loop);
1185
1186 for (i = 0; i < loop->num_nodes; i++)
1187 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1188
1189 free (bbs);
1190 }
1191
1192 /* Return true if all the BBs of the loop are empty except the
1193 loop header. */
1194 static bool
1195 loop_single_full_bb_p (struct loop *loop)
1196 {
1197 unsigned i;
1198 basic_block *bbs = get_loop_body (loop);
1199
1200 for (i = 0; i < loop->num_nodes ; i++)
1201 {
1202 rtx_insn *head, *tail;
1203 bool empty_bb = true;
1204
1205 if (bbs[i] == loop->header)
1206 continue;
1207
1208 /* Make sure that basic blocks other than the header
1209 have only notes labels or jumps. */
1210 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1211 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1212 {
1213 if (NOTE_P (head) || LABEL_P (head)
1214 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1215 continue;
1216 empty_bb = false;
1217 break;
1218 }
1219
1220 if (! empty_bb)
1221 {
1222 free (bbs);
1223 return false;
1224 }
1225 }
1226 free (bbs);
1227 return true;
1228 }
1229
1230 /* Dump file:line from INSN's location info to dump_file. */
1231
1232 static void
1233 dump_insn_location (rtx_insn *insn)
1234 {
1235 if (dump_file && INSN_HAS_LOCATION (insn))
1236 {
1237 expanded_location xloc = insn_location (insn);
1238 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1239 }
1240 }
1241
1242 /* A simple loop from SMS point of view; it is a loop that is composed of
1243 either a single basic block or two BBs - a header and a latch. */
1244 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1245 && (EDGE_COUNT (loop->latch->preds) == 1) \
1246 && (EDGE_COUNT (loop->latch->succs) == 1))
1247
1248 /* Return true if the loop is in its canonical form and false if not.
1249 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1250 static bool
1251 loop_canon_p (struct loop *loop)
1252 {
1253
1254 if (loop->inner || !loop_outer (loop))
1255 {
1256 if (dump_file)
1257 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1258 return false;
1259 }
1260
1261 if (!single_exit (loop))
1262 {
1263 if (dump_file)
1264 {
1265 rtx_insn *insn = BB_END (loop->header);
1266
1267 fprintf (dump_file, "SMS loop many exits");
1268 dump_insn_location (insn);
1269 fprintf (dump_file, "\n");
1270 }
1271 return false;
1272 }
1273
1274 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1275 {
1276 if (dump_file)
1277 {
1278 rtx_insn *insn = BB_END (loop->header);
1279
1280 fprintf (dump_file, "SMS loop many BBs.");
1281 dump_insn_location (insn);
1282 fprintf (dump_file, "\n");
1283 }
1284 return false;
1285 }
1286
1287 return true;
1288 }
1289
1290 /* If there are more than one entry for the loop,
1291 make it one by splitting the first entry edge and
1292 redirecting the others to the new BB. */
1293 static void
1294 canon_loop (struct loop *loop)
1295 {
1296 edge e;
1297 edge_iterator i;
1298
1299 /* Avoid annoying special cases of edges going to exit
1300 block. */
1301 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1302 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1303 split_edge (e);
1304
1305 if (loop->latch == loop->header
1306 || EDGE_COUNT (loop->latch->succs) > 1)
1307 {
1308 FOR_EACH_EDGE (e, i, loop->header->preds)
1309 if (e->src == loop->latch)
1310 break;
1311 split_edge (e);
1312 }
1313 }
1314
1315 /* Setup infos. */
1316 static void
1317 setup_sched_infos (void)
1318 {
1319 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1320 sizeof (sms_common_sched_info));
1321 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1322 common_sched_info = &sms_common_sched_info;
1323
1324 sched_deps_info = &sms_sched_deps_info;
1325 current_sched_info = &sms_sched_info;
1326 }
1327
1328 /* Probability in % that the sms-ed loop rolls enough so that optimized
1329 version may be entered. Just a guess. */
1330 #define PROB_SMS_ENOUGH_ITERATIONS 80
1331
1332 /* Used to calculate the upper bound of ii. */
1333 #define MAXII_FACTOR 2
1334
1335 /* Main entry point, perform SMS scheduling on the loops of the function
1336 that consist of single basic blocks. */
1337 static void
1338 sms_schedule (void)
1339 {
1340 rtx_insn *insn;
1341 ddg_ptr *g_arr, g;
1342 int * node_order;
1343 int maxii, max_asap;
1344 partial_schedule_ptr ps;
1345 basic_block bb = NULL;
1346 struct loop *loop;
1347 basic_block condition_bb = NULL;
1348 edge latch_edge;
1349 gcov_type trip_count = 0;
1350
1351 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1352 | LOOPS_HAVE_RECORDED_EXITS);
1353 if (number_of_loops (cfun) <= 1)
1354 {
1355 loop_optimizer_finalize ();
1356 return; /* There are no loops to schedule. */
1357 }
1358
1359 /* Initialize issue_rate. */
1360 if (targetm.sched.issue_rate)
1361 {
1362 int temp = reload_completed;
1363
1364 reload_completed = 1;
1365 issue_rate = targetm.sched.issue_rate ();
1366 reload_completed = temp;
1367 }
1368 else
1369 issue_rate = 1;
1370
1371 /* Initialize the scheduler. */
1372 setup_sched_infos ();
1373 haifa_sched_init ();
1374
1375 /* Allocate memory to hold the DDG array one entry for each loop.
1376 We use loop->num as index into this array. */
1377 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1378
1379 if (dump_file)
1380 {
1381 fprintf (dump_file, "\n\nSMS analysis phase\n");
1382 fprintf (dump_file, "===================\n\n");
1383 }
1384
1385 /* Build DDGs for all the relevant loops and hold them in G_ARR
1386 indexed by the loop index. */
1387 FOR_EACH_LOOP (loop, 0)
1388 {
1389 rtx_insn *head, *tail;
1390 rtx count_reg;
1391
1392 /* For debugging. */
1393 if (dbg_cnt (sms_sched_loop) == false)
1394 {
1395 if (dump_file)
1396 fprintf (dump_file, "SMS reached max limit... \n");
1397
1398 break;
1399 }
1400
1401 if (dump_file)
1402 {
1403 rtx_insn *insn = BB_END (loop->header);
1404
1405 fprintf (dump_file, "SMS loop num: %d", loop->num);
1406 dump_insn_location (insn);
1407 fprintf (dump_file, "\n");
1408 }
1409
1410 if (! loop_canon_p (loop))
1411 continue;
1412
1413 if (! loop_single_full_bb_p (loop))
1414 {
1415 if (dump_file)
1416 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1417 continue;
1418 }
1419
1420 bb = loop->header;
1421
1422 get_ebb_head_tail (bb, bb, &head, &tail);
1423 latch_edge = loop_latch_edge (loop);
1424 gcc_assert (single_exit (loop));
1425 if (single_exit (loop)->count > profile_count::zero ())
1426 trip_count = latch_edge->count.to_gcov_type ()
1427 / single_exit (loop)->count.to_gcov_type ();
1428
1429 /* Perform SMS only on loops that their average count is above threshold. */
1430
1431 if ( latch_edge->count > profile_count::zero ()
1432 && (latch_edge->count
1433 < single_exit (loop)->count.apply_scale
1434 (SMS_LOOP_AVERAGE_COUNT_THRESHOLD, 1)))
1435 {
1436 if (dump_file)
1437 {
1438 dump_insn_location (tail);
1439 fprintf (dump_file, "\nSMS single-bb-loop\n");
1440 if (profile_info && flag_branch_probabilities)
1441 {
1442 fprintf (dump_file, "SMS loop-count ");
1443 fprintf (dump_file, "%" PRId64,
1444 (int64_t) bb->count.to_gcov_type ());
1445 fprintf (dump_file, "\n");
1446 fprintf (dump_file, "SMS trip-count ");
1447 fprintf (dump_file, "%" PRId64,
1448 (int64_t) trip_count);
1449 fprintf (dump_file, "\n");
1450 fprintf (dump_file, "SMS profile-sum-max ");
1451 fprintf (dump_file, "%" PRId64,
1452 (int64_t) profile_info->sum_max);
1453 fprintf (dump_file, "\n");
1454 }
1455 }
1456 continue;
1457 }
1458
1459 /* Make sure this is a doloop. */
1460 if ( !(count_reg = doloop_register_get (head, tail)))
1461 {
1462 if (dump_file)
1463 fprintf (dump_file, "SMS doloop_register_get failed\n");
1464 continue;
1465 }
1466
1467 /* Don't handle BBs with calls or barriers
1468 or !single_set with the exception of instructions that include
1469 count_reg---these instructions are part of the control part
1470 that do-loop recognizes.
1471 ??? Should handle insns defining subregs. */
1472 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1473 {
1474 rtx set;
1475
1476 if (CALL_P (insn)
1477 || BARRIER_P (insn)
1478 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1479 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1480 && !reg_mentioned_p (count_reg, insn))
1481 || (INSN_P (insn) && (set = single_set (insn))
1482 && GET_CODE (SET_DEST (set)) == SUBREG))
1483 break;
1484 }
1485
1486 if (insn != NEXT_INSN (tail))
1487 {
1488 if (dump_file)
1489 {
1490 if (CALL_P (insn))
1491 fprintf (dump_file, "SMS loop-with-call\n");
1492 else if (BARRIER_P (insn))
1493 fprintf (dump_file, "SMS loop-with-barrier\n");
1494 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1495 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
1496 fprintf (dump_file, "SMS loop-with-not-single-set\n");
1497 else
1498 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1499 print_rtl_single (dump_file, insn);
1500 }
1501
1502 continue;
1503 }
1504
1505 /* Always schedule the closing branch with the rest of the
1506 instructions. The branch is rotated to be in row ii-1 at the
1507 end of the scheduling procedure to make sure it's the last
1508 instruction in the iteration. */
1509 if (! (g = create_ddg (bb, 1)))
1510 {
1511 if (dump_file)
1512 fprintf (dump_file, "SMS create_ddg failed\n");
1513 continue;
1514 }
1515
1516 g_arr[loop->num] = g;
1517 if (dump_file)
1518 fprintf (dump_file, "...OK\n");
1519
1520 }
1521 if (dump_file)
1522 {
1523 fprintf (dump_file, "\nSMS transformation phase\n");
1524 fprintf (dump_file, "=========================\n\n");
1525 }
1526
1527 /* We don't want to perform SMS on new loops - created by versioning. */
1528 FOR_EACH_LOOP (loop, 0)
1529 {
1530 rtx_insn *head, *tail;
1531 rtx count_reg;
1532 rtx_insn *count_init;
1533 int mii, rec_mii, stage_count, min_cycle;
1534 int64_t loop_count = 0;
1535 bool opt_sc_p;
1536
1537 if (! (g = g_arr[loop->num]))
1538 continue;
1539
1540 if (dump_file)
1541 {
1542 rtx_insn *insn = BB_END (loop->header);
1543
1544 fprintf (dump_file, "SMS loop num: %d", loop->num);
1545 dump_insn_location (insn);
1546 fprintf (dump_file, "\n");
1547
1548 print_ddg (dump_file, g);
1549 }
1550
1551 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1552
1553 latch_edge = loop_latch_edge (loop);
1554 gcc_assert (single_exit (loop));
1555 if (single_exit (loop)->count > profile_count::zero ())
1556 trip_count = latch_edge->count.to_gcov_type ()
1557 / single_exit (loop)->count.to_gcov_type ();
1558
1559 if (dump_file)
1560 {
1561 dump_insn_location (tail);
1562 fprintf (dump_file, "\nSMS single-bb-loop\n");
1563 if (profile_info && flag_branch_probabilities)
1564 {
1565 fprintf (dump_file, "SMS loop-count ");
1566 fprintf (dump_file, "%" PRId64,
1567 (int64_t) bb->count.to_gcov_type ());
1568 fprintf (dump_file, "\n");
1569 fprintf (dump_file, "SMS profile-sum-max ");
1570 fprintf (dump_file, "%" PRId64,
1571 (int64_t) profile_info->sum_max);
1572 fprintf (dump_file, "\n");
1573 }
1574 fprintf (dump_file, "SMS doloop\n");
1575 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1576 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1577 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1578 }
1579
1580
1581 /* In case of th loop have doloop register it gets special
1582 handling. */
1583 count_init = NULL;
1584 if ((count_reg = doloop_register_get (head, tail)))
1585 {
1586 basic_block pre_header;
1587
1588 pre_header = loop_preheader_edge (loop)->src;
1589 count_init = const_iteration_count (count_reg, pre_header,
1590 &loop_count);
1591 }
1592 gcc_assert (count_reg);
1593
1594 if (dump_file && count_init)
1595 {
1596 fprintf (dump_file, "SMS const-doloop ");
1597 fprintf (dump_file, "%" PRId64,
1598 loop_count);
1599 fprintf (dump_file, "\n");
1600 }
1601
1602 node_order = XNEWVEC (int, g->num_nodes);
1603
1604 mii = 1; /* Need to pass some estimate of mii. */
1605 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1606 mii = MAX (res_MII (g), rec_mii);
1607 maxii = MAX (max_asap, MAXII_FACTOR * mii);
1608
1609 if (dump_file)
1610 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1611 rec_mii, mii, maxii);
1612
1613 for (;;)
1614 {
1615 set_node_sched_params (g);
1616
1617 stage_count = 0;
1618 opt_sc_p = false;
1619 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1620
1621 if (ps)
1622 {
1623 /* Try to achieve optimized SC by normalizing the partial
1624 schedule (having the cycles start from cycle zero).
1625 The branch location must be placed in row ii-1 in the
1626 final scheduling. If failed, shift all instructions to
1627 position the branch in row ii-1. */
1628 opt_sc_p = optimize_sc (ps, g);
1629 if (opt_sc_p)
1630 stage_count = calculate_stage_count (ps, 0);
1631 else
1632 {
1633 /* Bring the branch to cycle ii-1. */
1634 int amount = (SCHED_TIME (g->closing_branch->cuid)
1635 - (ps->ii - 1));
1636
1637 if (dump_file)
1638 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1639
1640 stage_count = calculate_stage_count (ps, amount);
1641 }
1642
1643 gcc_assert (stage_count >= 1);
1644 }
1645
1646 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
1647 1 means that there is no interleaving between iterations thus
1648 we let the scheduling passes do the job in this case. */
1649 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
1650 || (count_init && (loop_count <= stage_count))
1651 || (flag_branch_probabilities && (trip_count <= stage_count)))
1652 {
1653 if (dump_file)
1654 {
1655 fprintf (dump_file, "SMS failed... \n");
1656 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1657 " loop-count=", stage_count);
1658 fprintf (dump_file, "%" PRId64, loop_count);
1659 fprintf (dump_file, ", trip-count=");
1660 fprintf (dump_file, "%" PRId64, trip_count);
1661 fprintf (dump_file, ")\n");
1662 }
1663 break;
1664 }
1665
1666 if (!opt_sc_p)
1667 {
1668 /* Rotate the partial schedule to have the branch in row ii-1. */
1669 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1670
1671 reset_sched_times (ps, amount);
1672 rotate_partial_schedule (ps, amount);
1673 }
1674
1675 set_columns_for_ps (ps);
1676
1677 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1678 if (!schedule_reg_moves (ps))
1679 {
1680 mii = ps->ii + 1;
1681 free_partial_schedule (ps);
1682 continue;
1683 }
1684
1685 /* Moves that handle incoming values might have been added
1686 to a new first stage. Bump the stage count if so.
1687
1688 ??? Perhaps we could consider rotating the schedule here
1689 instead? */
1690 if (PS_MIN_CYCLE (ps) < min_cycle)
1691 {
1692 reset_sched_times (ps, 0);
1693 stage_count++;
1694 }
1695
1696 /* The stage count should now be correct without rotation. */
1697 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1698 PS_STAGE_COUNT (ps) = stage_count;
1699
1700 canon_loop (loop);
1701
1702 if (dump_file)
1703 {
1704 dump_insn_location (tail);
1705 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1706 ps->ii, stage_count);
1707 print_partial_schedule (ps, dump_file);
1708 }
1709
1710 /* case the BCT count is not known , Do loop-versioning */
1711 if (count_reg && ! count_init)
1712 {
1713 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1714 gen_int_mode (stage_count,
1715 GET_MODE (count_reg)));
1716 profile_probability prob = profile_probability::guessed_always ()
1717 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1718
1719 loop_version (loop, comp_rtx, &condition_bb,
1720 prob, prob.invert (),
1721 prob.to_reg_br_prob_base (),
1722 prob.invert ().to_reg_br_prob_base (),
1723 true);
1724 }
1725
1726 /* Set new iteration count of loop kernel. */
1727 if (count_reg && count_init)
1728 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1729 - stage_count + 1);
1730
1731 /* Now apply the scheduled kernel to the RTL of the loop. */
1732 permute_partial_schedule (ps, g->closing_branch->first_note);
1733
1734 /* Mark this loop as software pipelined so the later
1735 scheduling passes don't touch it. */
1736 if (! flag_resched_modulo_sched)
1737 mark_loop_unsched (loop);
1738
1739 /* The life-info is not valid any more. */
1740 df_set_bb_dirty (g->bb);
1741
1742 apply_reg_moves (ps);
1743 if (dump_file)
1744 print_node_sched_params (dump_file, g->num_nodes, ps);
1745 /* Generate prolog and epilog. */
1746 generate_prolog_epilog (ps, loop, count_reg, count_init);
1747 break;
1748 }
1749
1750 free_partial_schedule (ps);
1751 node_sched_param_vec.release ();
1752 free (node_order);
1753 free_ddg (g);
1754 }
1755
1756 free (g_arr);
1757
1758 /* Release scheduler data, needed until now because of DFA. */
1759 haifa_sched_finish ();
1760 loop_optimizer_finalize ();
1761 }
1762
1763 /* The SMS scheduling algorithm itself
1764 -----------------------------------
1765 Input: 'O' an ordered list of insns of a loop.
1766 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1767
1768 'Q' is the empty Set
1769 'PS' is the partial schedule; it holds the currently scheduled nodes with
1770 their cycle/slot.
1771 'PSP' previously scheduled predecessors.
1772 'PSS' previously scheduled successors.
1773 't(u)' the cycle where u is scheduled.
1774 'l(u)' is the latency of u.
1775 'd(v,u)' is the dependence distance from v to u.
1776 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1777 the node ordering phase.
1778 'check_hardware_resources_conflicts(u, PS, c)'
1779 run a trace around cycle/slot through DFA model
1780 to check resource conflicts involving instruction u
1781 at cycle c given the partial schedule PS.
1782 'add_to_partial_schedule_at_time(u, PS, c)'
1783 Add the node/instruction u to the partial schedule
1784 PS at time c.
1785 'calculate_register_pressure(PS)'
1786 Given a schedule of instructions, calculate the register
1787 pressure it implies. One implementation could be the
1788 maximum number of overlapping live ranges.
1789 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1790 registers available in the hardware.
1791
1792 1. II = MII.
1793 2. PS = empty list
1794 3. for each node u in O in pre-computed order
1795 4. if (PSP(u) != Q && PSS(u) == Q) then
1796 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1797 6. start = Early_start; end = Early_start + II - 1; step = 1
1798 11. else if (PSP(u) == Q && PSS(u) != Q) then
1799 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1800 13. start = Late_start; end = Late_start - II + 1; step = -1
1801 14. else if (PSP(u) != Q && PSS(u) != Q) then
1802 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1803 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1804 17. start = Early_start;
1805 18. end = min(Early_start + II - 1 , Late_start);
1806 19. step = 1
1807 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1808 21. start = ASAP(u); end = start + II - 1; step = 1
1809 22. endif
1810
1811 23. success = false
1812 24. for (c = start ; c != end ; c += step)
1813 25. if check_hardware_resources_conflicts(u, PS, c) then
1814 26. add_to_partial_schedule_at_time(u, PS, c)
1815 27. success = true
1816 28. break
1817 29. endif
1818 30. endfor
1819 31. if (success == false) then
1820 32. II = II + 1
1821 33. if (II > maxII) then
1822 34. finish - failed to schedule
1823 35. endif
1824 36. goto 2.
1825 37. endif
1826 38. endfor
1827 39. if (calculate_register_pressure(PS) > maxRP) then
1828 40. goto 32.
1829 41. endif
1830 42. compute epilogue & prologue
1831 43. finish - succeeded to schedule
1832
1833 ??? The algorithm restricts the scheduling window to II cycles.
1834 In rare cases, it may be better to allow windows of II+1 cycles.
1835 The window would then start and end on the same row, but with
1836 different "must precede" and "must follow" requirements. */
1837
1838 /* A limit on the number of cycles that resource conflicts can span. ??? Should
1839 be provided by DFA, and be dependent on the type of insn scheduled. Currently
1840 set to 0 to save compile time. */
1841 #define DFA_HISTORY SMS_DFA_HISTORY
1842
1843 /* A threshold for the number of repeated unsuccessful attempts to insert
1844 an empty row, before we flush the partial schedule and start over. */
1845 #define MAX_SPLIT_NUM 10
1846 /* Given the partial schedule PS, this function calculates and returns the
1847 cycles in which we can schedule the node with the given index I.
1848 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1849 noticed that there are several cases in which we fail to SMS the loop
1850 because the sched window of a node is empty due to tight data-deps. In
1851 such cases we want to unschedule some of the predecessors/successors
1852 until we get non-empty scheduling window. It returns -1 if the
1853 scheduling window is empty and zero otherwise. */
1854
1855 static int
1856 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1857 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1858 int *end_p)
1859 {
1860 int start, step, end;
1861 int early_start, late_start;
1862 ddg_edge_ptr e;
1863 auto_sbitmap psp (ps->g->num_nodes);
1864 auto_sbitmap pss (ps->g->num_nodes);
1865 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1866 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1867 int psp_not_empty;
1868 int pss_not_empty;
1869 int count_preds;
1870 int count_succs;
1871
1872 /* 1. compute sched window for u (start, end, step). */
1873 bitmap_clear (psp);
1874 bitmap_clear (pss);
1875 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1876 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1877
1878 /* We first compute a forward range (start <= end), then decide whether
1879 to reverse it. */
1880 early_start = INT_MIN;
1881 late_start = INT_MAX;
1882 start = INT_MIN;
1883 end = INT_MAX;
1884 step = 1;
1885
1886 count_preds = 0;
1887 count_succs = 0;
1888
1889 if (dump_file && (psp_not_empty || pss_not_empty))
1890 {
1891 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1892 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1893 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1894 "start", "early start", "late start", "end", "time");
1895 fprintf (dump_file, "=========== =========== =========== ==========="
1896 " =====\n");
1897 }
1898 /* Calculate early_start and limit end. Both bounds are inclusive. */
1899 if (psp_not_empty)
1900 for (e = u_node->in; e != 0; e = e->next_in)
1901 {
1902 int v = e->src->cuid;
1903
1904 if (bitmap_bit_p (sched_nodes, v))
1905 {
1906 int p_st = SCHED_TIME (v);
1907 int earliest = p_st + e->latency - (e->distance * ii);
1908 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1909
1910 if (dump_file)
1911 {
1912 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1913 "", earliest, "", latest, p_st);
1914 print_ddg_edge (dump_file, e);
1915 fprintf (dump_file, "\n");
1916 }
1917
1918 early_start = MAX (early_start, earliest);
1919 end = MIN (end, latest);
1920
1921 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1922 count_preds++;
1923 }
1924 }
1925
1926 /* Calculate late_start and limit start. Both bounds are inclusive. */
1927 if (pss_not_empty)
1928 for (e = u_node->out; e != 0; e = e->next_out)
1929 {
1930 int v = e->dest->cuid;
1931
1932 if (bitmap_bit_p (sched_nodes, v))
1933 {
1934 int s_st = SCHED_TIME (v);
1935 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1936 int latest = s_st - e->latency + (e->distance * ii);
1937
1938 if (dump_file)
1939 {
1940 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1941 earliest, "", latest, "", s_st);
1942 print_ddg_edge (dump_file, e);
1943 fprintf (dump_file, "\n");
1944 }
1945
1946 start = MAX (start, earliest);
1947 late_start = MIN (late_start, latest);
1948
1949 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1950 count_succs++;
1951 }
1952 }
1953
1954 if (dump_file && (psp_not_empty || pss_not_empty))
1955 {
1956 fprintf (dump_file, "----------- ----------- ----------- -----------"
1957 " -----\n");
1958 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1959 start, early_start, late_start, end, "",
1960 "(max, max, min, min)");
1961 }
1962
1963 /* Get a target scheduling window no bigger than ii. */
1964 if (early_start == INT_MIN && late_start == INT_MAX)
1965 early_start = NODE_ASAP (u_node);
1966 else if (early_start == INT_MIN)
1967 early_start = late_start - (ii - 1);
1968 late_start = MIN (late_start, early_start + (ii - 1));
1969
1970 /* Apply memory dependence limits. */
1971 start = MAX (start, early_start);
1972 end = MIN (end, late_start);
1973
1974 if (dump_file && (psp_not_empty || pss_not_empty))
1975 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1976 "", start, end, "", "");
1977
1978 /* If there are at least as many successors as predecessors, schedule the
1979 node close to its successors. */
1980 if (pss_not_empty && count_succs >= count_preds)
1981 {
1982 std::swap (start, end);
1983 step = -1;
1984 }
1985
1986 /* Now that we've finalized the window, make END an exclusive rather
1987 than an inclusive bound. */
1988 end += step;
1989
1990 *start_p = start;
1991 *step_p = step;
1992 *end_p = end;
1993
1994 if ((start >= end && step == 1) || (start <= end && step == -1))
1995 {
1996 if (dump_file)
1997 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
1998 start, end, step);
1999 return -1;
2000 }
2001
2002 return 0;
2003 }
2004
2005 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2006 node currently been scheduled. At the end of the calculation
2007 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2008 U_NODE which are (1) already scheduled in the first/last row of
2009 U_NODE's scheduling window, (2) whose dependence inequality with U
2010 becomes an equality when U is scheduled in this same row, and (3)
2011 whose dependence latency is zero.
2012
2013 The first and last rows are calculated using the following parameters:
2014 START/END rows - The cycles that begins/ends the traversal on the window;
2015 searching for an empty cycle to schedule U_NODE.
2016 STEP - The direction in which we traverse the window.
2017 II - The initiation interval. */
2018
2019 static void
2020 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2021 int step, int ii, sbitmap sched_nodes,
2022 sbitmap must_precede, sbitmap must_follow)
2023 {
2024 ddg_edge_ptr e;
2025 int first_cycle_in_window, last_cycle_in_window;
2026
2027 gcc_assert (must_precede && must_follow);
2028
2029 /* Consider the following scheduling window:
2030 {first_cycle_in_window, first_cycle_in_window+1, ...,
2031 last_cycle_in_window}. If step is 1 then the following will be
2032 the order we traverse the window: {start=first_cycle_in_window,
2033 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2034 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2035 end=first_cycle_in_window-1} if step is -1. */
2036 first_cycle_in_window = (step == 1) ? start : end - step;
2037 last_cycle_in_window = (step == 1) ? end - step : start;
2038
2039 bitmap_clear (must_precede);
2040 bitmap_clear (must_follow);
2041
2042 if (dump_file)
2043 fprintf (dump_file, "\nmust_precede: ");
2044
2045 /* Instead of checking if:
2046 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2047 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2048 first_cycle_in_window)
2049 && e->latency == 0
2050 we use the fact that latency is non-negative:
2051 SCHED_TIME (e->src) - (e->distance * ii) <=
2052 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2053 first_cycle_in_window
2054 and check only if
2055 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2056 for (e = u_node->in; e != 0; e = e->next_in)
2057 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2058 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2059 first_cycle_in_window))
2060 {
2061 if (dump_file)
2062 fprintf (dump_file, "%d ", e->src->cuid);
2063
2064 bitmap_set_bit (must_precede, e->src->cuid);
2065 }
2066
2067 if (dump_file)
2068 fprintf (dump_file, "\nmust_follow: ");
2069
2070 /* Instead of checking if:
2071 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2072 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2073 last_cycle_in_window)
2074 && e->latency == 0
2075 we use the fact that latency is non-negative:
2076 SCHED_TIME (e->dest) + (e->distance * ii) >=
2077 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2078 last_cycle_in_window
2079 and check only if
2080 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2081 for (e = u_node->out; e != 0; e = e->next_out)
2082 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2083 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2084 last_cycle_in_window))
2085 {
2086 if (dump_file)
2087 fprintf (dump_file, "%d ", e->dest->cuid);
2088
2089 bitmap_set_bit (must_follow, e->dest->cuid);
2090 }
2091
2092 if (dump_file)
2093 fprintf (dump_file, "\n");
2094 }
2095
2096 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2097 parameters to decide if that's possible:
2098 PS - The partial schedule.
2099 U - The serial number of U_NODE.
2100 NUM_SPLITS - The number of row splits made so far.
2101 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2102 the first row of the scheduling window)
2103 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2104 last row of the scheduling window) */
2105
2106 static bool
2107 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2108 int u, int cycle, sbitmap sched_nodes,
2109 int *num_splits, sbitmap must_precede,
2110 sbitmap must_follow)
2111 {
2112 ps_insn_ptr psi;
2113 bool success = 0;
2114
2115 verify_partial_schedule (ps, sched_nodes);
2116 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2117 if (psi)
2118 {
2119 SCHED_TIME (u) = cycle;
2120 bitmap_set_bit (sched_nodes, u);
2121 success = 1;
2122 *num_splits = 0;
2123 if (dump_file)
2124 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2125
2126 }
2127
2128 return success;
2129 }
2130
2131 /* This function implements the scheduling algorithm for SMS according to the
2132 above algorithm. */
2133 static partial_schedule_ptr
2134 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2135 {
2136 int ii = mii;
2137 int i, c, success, num_splits = 0;
2138 int flush_and_start_over = true;
2139 int num_nodes = g->num_nodes;
2140 int start, end, step; /* Place together into one struct? */
2141 auto_sbitmap sched_nodes (num_nodes);
2142 auto_sbitmap must_precede (num_nodes);
2143 auto_sbitmap must_follow (num_nodes);
2144 auto_sbitmap tobe_scheduled (num_nodes);
2145
2146 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
2147
2148 bitmap_ones (tobe_scheduled);
2149 bitmap_clear (sched_nodes);
2150
2151 while (flush_and_start_over && (ii < maxii))
2152 {
2153
2154 if (dump_file)
2155 fprintf (dump_file, "Starting with ii=%d\n", ii);
2156 flush_and_start_over = false;
2157 bitmap_clear (sched_nodes);
2158
2159 for (i = 0; i < num_nodes; i++)
2160 {
2161 int u = nodes_order[i];
2162 ddg_node_ptr u_node = &ps->g->nodes[u];
2163 rtx_insn *insn = u_node->insn;
2164
2165 if (!NONDEBUG_INSN_P (insn))
2166 {
2167 bitmap_clear_bit (tobe_scheduled, u);
2168 continue;
2169 }
2170
2171 if (bitmap_bit_p (sched_nodes, u))
2172 continue;
2173
2174 /* Try to get non-empty scheduling window. */
2175 success = 0;
2176 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2177 &step, &end) == 0)
2178 {
2179 if (dump_file)
2180 fprintf (dump_file, "\nTrying to schedule node %d "
2181 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2182 (g->nodes[u].insn)), start, end, step);
2183
2184 gcc_assert ((step > 0 && start < end)
2185 || (step < 0 && start > end));
2186
2187 calculate_must_precede_follow (u_node, start, end, step, ii,
2188 sched_nodes, must_precede,
2189 must_follow);
2190
2191 for (c = start; c != end; c += step)
2192 {
2193 sbitmap tmp_precede, tmp_follow;
2194
2195 set_must_precede_follow (&tmp_follow, must_follow,
2196 &tmp_precede, must_precede,
2197 c, start, end, step);
2198 success =
2199 try_scheduling_node_in_cycle (ps, u, c,
2200 sched_nodes,
2201 &num_splits, tmp_precede,
2202 tmp_follow);
2203 if (success)
2204 break;
2205 }
2206
2207 verify_partial_schedule (ps, sched_nodes);
2208 }
2209 if (!success)
2210 {
2211 int split_row;
2212
2213 if (ii++ == maxii)
2214 break;
2215
2216 if (num_splits >= MAX_SPLIT_NUM)
2217 {
2218 num_splits = 0;
2219 flush_and_start_over = true;
2220 verify_partial_schedule (ps, sched_nodes);
2221 reset_partial_schedule (ps, ii);
2222 verify_partial_schedule (ps, sched_nodes);
2223 break;
2224 }
2225
2226 num_splits++;
2227 /* The scheduling window is exclusive of 'end'
2228 whereas compute_split_window() expects an inclusive,
2229 ordered range. */
2230 if (step == 1)
2231 split_row = compute_split_row (sched_nodes, start, end - 1,
2232 ps->ii, u_node);
2233 else
2234 split_row = compute_split_row (sched_nodes, end + 1, start,
2235 ps->ii, u_node);
2236
2237 ps_insert_empty_row (ps, split_row, sched_nodes);
2238 i--; /* Go back and retry node i. */
2239
2240 if (dump_file)
2241 fprintf (dump_file, "num_splits=%d\n", num_splits);
2242 }
2243
2244 /* ??? If (success), check register pressure estimates. */
2245 } /* Continue with next node. */
2246 } /* While flush_and_start_over. */
2247 if (ii >= maxii)
2248 {
2249 free_partial_schedule (ps);
2250 ps = NULL;
2251 }
2252 else
2253 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2254
2255 return ps;
2256 }
2257
2258 /* This function inserts a new empty row into PS at the position
2259 according to SPLITROW, keeping all already scheduled instructions
2260 intact and updating their SCHED_TIME and cycle accordingly. */
2261 static void
2262 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2263 sbitmap sched_nodes)
2264 {
2265 ps_insn_ptr crr_insn;
2266 ps_insn_ptr *rows_new;
2267 int ii = ps->ii;
2268 int new_ii = ii + 1;
2269 int row;
2270 int *rows_length_new;
2271
2272 verify_partial_schedule (ps, sched_nodes);
2273
2274 /* We normalize sched_time and rotate ps to have only non-negative sched
2275 times, for simplicity of updating cycles after inserting new row. */
2276 split_row -= ps->min_cycle;
2277 split_row = SMODULO (split_row, ii);
2278 if (dump_file)
2279 fprintf (dump_file, "split_row=%d\n", split_row);
2280
2281 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2282 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2283
2284 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2285 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2286 for (row = 0; row < split_row; row++)
2287 {
2288 rows_new[row] = ps->rows[row];
2289 rows_length_new[row] = ps->rows_length[row];
2290 ps->rows[row] = NULL;
2291 for (crr_insn = rows_new[row];
2292 crr_insn; crr_insn = crr_insn->next_in_row)
2293 {
2294 int u = crr_insn->id;
2295 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2296
2297 SCHED_TIME (u) = new_time;
2298 crr_insn->cycle = new_time;
2299 SCHED_ROW (u) = new_time % new_ii;
2300 SCHED_STAGE (u) = new_time / new_ii;
2301 }
2302
2303 }
2304
2305 rows_new[split_row] = NULL;
2306
2307 for (row = split_row; row < ii; row++)
2308 {
2309 rows_new[row + 1] = ps->rows[row];
2310 rows_length_new[row + 1] = ps->rows_length[row];
2311 ps->rows[row] = NULL;
2312 for (crr_insn = rows_new[row + 1];
2313 crr_insn; crr_insn = crr_insn->next_in_row)
2314 {
2315 int u = crr_insn->id;
2316 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2317
2318 SCHED_TIME (u) = new_time;
2319 crr_insn->cycle = new_time;
2320 SCHED_ROW (u) = new_time % new_ii;
2321 SCHED_STAGE (u) = new_time / new_ii;
2322 }
2323 }
2324
2325 /* Updating ps. */
2326 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2327 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2328 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2329 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2330 free (ps->rows);
2331 ps->rows = rows_new;
2332 free (ps->rows_length);
2333 ps->rows_length = rows_length_new;
2334 ps->ii = new_ii;
2335 gcc_assert (ps->min_cycle >= 0);
2336
2337 verify_partial_schedule (ps, sched_nodes);
2338
2339 if (dump_file)
2340 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2341 ps->max_cycle);
2342 }
2343
2344 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2345 UP which are the boundaries of it's scheduling window; compute using
2346 SCHED_NODES and II a row in the partial schedule that can be split
2347 which will separate a critical predecessor from a critical successor
2348 thereby expanding the window, and return it. */
2349 static int
2350 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2351 ddg_node_ptr u_node)
2352 {
2353 ddg_edge_ptr e;
2354 int lower = INT_MIN, upper = INT_MAX;
2355 int crit_pred = -1;
2356 int crit_succ = -1;
2357 int crit_cycle;
2358
2359 for (e = u_node->in; e != 0; e = e->next_in)
2360 {
2361 int v = e->src->cuid;
2362
2363 if (bitmap_bit_p (sched_nodes, v)
2364 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2365 if (SCHED_TIME (v) > lower)
2366 {
2367 crit_pred = v;
2368 lower = SCHED_TIME (v);
2369 }
2370 }
2371
2372 if (crit_pred >= 0)
2373 {
2374 crit_cycle = SCHED_TIME (crit_pred) + 1;
2375 return SMODULO (crit_cycle, ii);
2376 }
2377
2378 for (e = u_node->out; e != 0; e = e->next_out)
2379 {
2380 int v = e->dest->cuid;
2381
2382 if (bitmap_bit_p (sched_nodes, v)
2383 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2384 if (SCHED_TIME (v) < upper)
2385 {
2386 crit_succ = v;
2387 upper = SCHED_TIME (v);
2388 }
2389 }
2390
2391 if (crit_succ >= 0)
2392 {
2393 crit_cycle = SCHED_TIME (crit_succ);
2394 return SMODULO (crit_cycle, ii);
2395 }
2396
2397 if (dump_file)
2398 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2399
2400 return SMODULO ((low + up + 1) / 2, ii);
2401 }
2402
2403 static void
2404 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2405 {
2406 int row;
2407 ps_insn_ptr crr_insn;
2408
2409 for (row = 0; row < ps->ii; row++)
2410 {
2411 int length = 0;
2412
2413 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2414 {
2415 int u = crr_insn->id;
2416
2417 length++;
2418 gcc_assert (bitmap_bit_p (sched_nodes, u));
2419 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2420 popcount (sched_nodes) == number of insns in ps. */
2421 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2422 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2423 }
2424
2425 gcc_assert (ps->rows_length[row] == length);
2426 }
2427 }
2428
2429 \f
2430 /* This page implements the algorithm for ordering the nodes of a DDG
2431 for modulo scheduling, activated through the
2432 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2433
2434 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2435 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2436 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2437 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2438 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2439 #define DEPTH(x) (ASAP ((x)))
2440
2441 typedef struct node_order_params * nopa;
2442
2443 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2444 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2445 static nopa calculate_order_params (ddg_ptr, int, int *);
2446 static int find_max_asap (ddg_ptr, sbitmap);
2447 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2448 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2449
2450 enum sms_direction {BOTTOMUP, TOPDOWN};
2451
2452 struct node_order_params
2453 {
2454 int asap;
2455 int alap;
2456 int height;
2457 };
2458
2459 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2460 static void
2461 check_nodes_order (int *node_order, int num_nodes)
2462 {
2463 int i;
2464 auto_sbitmap tmp (num_nodes);
2465
2466 bitmap_clear (tmp);
2467
2468 if (dump_file)
2469 fprintf (dump_file, "SMS final nodes order: \n");
2470
2471 for (i = 0; i < num_nodes; i++)
2472 {
2473 int u = node_order[i];
2474
2475 if (dump_file)
2476 fprintf (dump_file, "%d ", u);
2477 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2478
2479 bitmap_set_bit (tmp, u);
2480 }
2481
2482 if (dump_file)
2483 fprintf (dump_file, "\n");
2484 }
2485
2486 /* Order the nodes of G for scheduling and pass the result in
2487 NODE_ORDER. Also set aux.count of each node to ASAP.
2488 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2489 static int
2490 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2491 {
2492 int i;
2493 int rec_mii = 0;
2494 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2495
2496 nopa nops = calculate_order_params (g, mii, pmax_asap);
2497
2498 if (dump_file)
2499 print_sccs (dump_file, sccs, g);
2500
2501 order_nodes_of_sccs (sccs, node_order);
2502
2503 if (sccs->num_sccs > 0)
2504 /* First SCC has the largest recurrence_length. */
2505 rec_mii = sccs->sccs[0]->recurrence_length;
2506
2507 /* Save ASAP before destroying node_order_params. */
2508 for (i = 0; i < g->num_nodes; i++)
2509 {
2510 ddg_node_ptr v = &g->nodes[i];
2511 v->aux.count = ASAP (v);
2512 }
2513
2514 free (nops);
2515 free_ddg_all_sccs (sccs);
2516 check_nodes_order (node_order, g->num_nodes);
2517
2518 return rec_mii;
2519 }
2520
2521 static void
2522 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2523 {
2524 int i, pos = 0;
2525 ddg_ptr g = all_sccs->ddg;
2526 int num_nodes = g->num_nodes;
2527 auto_sbitmap prev_sccs (num_nodes);
2528 auto_sbitmap on_path (num_nodes);
2529 auto_sbitmap tmp (num_nodes);
2530 auto_sbitmap ones (num_nodes);
2531
2532 bitmap_clear (prev_sccs);
2533 bitmap_ones (ones);
2534
2535 /* Perform the node ordering starting from the SCC with the highest recMII.
2536 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2537 for (i = 0; i < all_sccs->num_sccs; i++)
2538 {
2539 ddg_scc_ptr scc = all_sccs->sccs[i];
2540
2541 /* Add nodes on paths from previous SCCs to the current SCC. */
2542 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2543 bitmap_ior (tmp, scc->nodes, on_path);
2544
2545 /* Add nodes on paths from the current SCC to previous SCCs. */
2546 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2547 bitmap_ior (tmp, tmp, on_path);
2548
2549 /* Remove nodes of previous SCCs from current extended SCC. */
2550 bitmap_and_compl (tmp, tmp, prev_sccs);
2551
2552 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2553 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2554 }
2555
2556 /* Handle the remaining nodes that do not belong to any scc. Each call
2557 to order_nodes_in_scc handles a single connected component. */
2558 while (pos < g->num_nodes)
2559 {
2560 bitmap_and_compl (tmp, ones, prev_sccs);
2561 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2562 }
2563 }
2564
2565 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2566 static struct node_order_params *
2567 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2568 {
2569 int u;
2570 int max_asap;
2571 int num_nodes = g->num_nodes;
2572 ddg_edge_ptr e;
2573 /* Allocate a place to hold ordering params for each node in the DDG. */
2574 nopa node_order_params_arr;
2575
2576 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2577 node_order_params_arr = (nopa) xcalloc (num_nodes,
2578 sizeof (struct node_order_params));
2579
2580 /* Set the aux pointer of each node to point to its order_params structure. */
2581 for (u = 0; u < num_nodes; u++)
2582 g->nodes[u].aux.info = &node_order_params_arr[u];
2583
2584 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2585 calculate ASAP, ALAP, mobility, distance, and height for each node
2586 in the dependence (direct acyclic) graph. */
2587
2588 /* We assume that the nodes in the array are in topological order. */
2589
2590 max_asap = 0;
2591 for (u = 0; u < num_nodes; u++)
2592 {
2593 ddg_node_ptr u_node = &g->nodes[u];
2594
2595 ASAP (u_node) = 0;
2596 for (e = u_node->in; e; e = e->next_in)
2597 if (e->distance == 0)
2598 ASAP (u_node) = MAX (ASAP (u_node),
2599 ASAP (e->src) + e->latency);
2600 max_asap = MAX (max_asap, ASAP (u_node));
2601 }
2602
2603 for (u = num_nodes - 1; u > -1; u--)
2604 {
2605 ddg_node_ptr u_node = &g->nodes[u];
2606
2607 ALAP (u_node) = max_asap;
2608 HEIGHT (u_node) = 0;
2609 for (e = u_node->out; e; e = e->next_out)
2610 if (e->distance == 0)
2611 {
2612 ALAP (u_node) = MIN (ALAP (u_node),
2613 ALAP (e->dest) - e->latency);
2614 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2615 HEIGHT (e->dest) + e->latency);
2616 }
2617 }
2618 if (dump_file)
2619 {
2620 fprintf (dump_file, "\nOrder params\n");
2621 for (u = 0; u < num_nodes; u++)
2622 {
2623 ddg_node_ptr u_node = &g->nodes[u];
2624
2625 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2626 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2627 }
2628 }
2629
2630 *pmax_asap = max_asap;
2631 return node_order_params_arr;
2632 }
2633
2634 static int
2635 find_max_asap (ddg_ptr g, sbitmap nodes)
2636 {
2637 unsigned int u = 0;
2638 int max_asap = -1;
2639 int result = -1;
2640 sbitmap_iterator sbi;
2641
2642 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2643 {
2644 ddg_node_ptr u_node = &g->nodes[u];
2645
2646 if (max_asap < ASAP (u_node))
2647 {
2648 max_asap = ASAP (u_node);
2649 result = u;
2650 }
2651 }
2652 return result;
2653 }
2654
2655 static int
2656 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2657 {
2658 unsigned int u = 0;
2659 int max_hv = -1;
2660 int min_mob = INT_MAX;
2661 int result = -1;
2662 sbitmap_iterator sbi;
2663
2664 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2665 {
2666 ddg_node_ptr u_node = &g->nodes[u];
2667
2668 if (max_hv < HEIGHT (u_node))
2669 {
2670 max_hv = HEIGHT (u_node);
2671 min_mob = MOB (u_node);
2672 result = u;
2673 }
2674 else if ((max_hv == HEIGHT (u_node))
2675 && (min_mob > MOB (u_node)))
2676 {
2677 min_mob = MOB (u_node);
2678 result = u;
2679 }
2680 }
2681 return result;
2682 }
2683
2684 static int
2685 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2686 {
2687 unsigned int u = 0;
2688 int max_dv = -1;
2689 int min_mob = INT_MAX;
2690 int result = -1;
2691 sbitmap_iterator sbi;
2692
2693 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2694 {
2695 ddg_node_ptr u_node = &g->nodes[u];
2696
2697 if (max_dv < DEPTH (u_node))
2698 {
2699 max_dv = DEPTH (u_node);
2700 min_mob = MOB (u_node);
2701 result = u;
2702 }
2703 else if ((max_dv == DEPTH (u_node))
2704 && (min_mob > MOB (u_node)))
2705 {
2706 min_mob = MOB (u_node);
2707 result = u;
2708 }
2709 }
2710 return result;
2711 }
2712
2713 /* Places the nodes of SCC into the NODE_ORDER array starting
2714 at position POS, according to the SMS ordering algorithm.
2715 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2716 the NODE_ORDER array, starting from position zero. */
2717 static int
2718 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2719 int * node_order, int pos)
2720 {
2721 enum sms_direction dir;
2722 int num_nodes = g->num_nodes;
2723 auto_sbitmap workset (num_nodes);
2724 auto_sbitmap tmp (num_nodes);
2725 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2726 auto_sbitmap predecessors (num_nodes);
2727 auto_sbitmap successors (num_nodes);
2728
2729 bitmap_clear (predecessors);
2730 find_predecessors (predecessors, g, nodes_ordered);
2731
2732 bitmap_clear (successors);
2733 find_successors (successors, g, nodes_ordered);
2734
2735 bitmap_clear (tmp);
2736 if (bitmap_and (tmp, predecessors, scc))
2737 {
2738 bitmap_copy (workset, tmp);
2739 dir = BOTTOMUP;
2740 }
2741 else if (bitmap_and (tmp, successors, scc))
2742 {
2743 bitmap_copy (workset, tmp);
2744 dir = TOPDOWN;
2745 }
2746 else
2747 {
2748 int u;
2749
2750 bitmap_clear (workset);
2751 if ((u = find_max_asap (g, scc)) >= 0)
2752 bitmap_set_bit (workset, u);
2753 dir = BOTTOMUP;
2754 }
2755
2756 bitmap_clear (zero_bitmap);
2757 while (!bitmap_equal_p (workset, zero_bitmap))
2758 {
2759 int v;
2760 ddg_node_ptr v_node;
2761 sbitmap v_node_preds;
2762 sbitmap v_node_succs;
2763
2764 if (dir == TOPDOWN)
2765 {
2766 while (!bitmap_equal_p (workset, zero_bitmap))
2767 {
2768 v = find_max_hv_min_mob (g, workset);
2769 v_node = &g->nodes[v];
2770 node_order[pos++] = v;
2771 v_node_succs = NODE_SUCCESSORS (v_node);
2772 bitmap_and (tmp, v_node_succs, scc);
2773
2774 /* Don't consider the already ordered successors again. */
2775 bitmap_and_compl (tmp, tmp, nodes_ordered);
2776 bitmap_ior (workset, workset, tmp);
2777 bitmap_clear_bit (workset, v);
2778 bitmap_set_bit (nodes_ordered, v);
2779 }
2780 dir = BOTTOMUP;
2781 bitmap_clear (predecessors);
2782 find_predecessors (predecessors, g, nodes_ordered);
2783 bitmap_and (workset, predecessors, scc);
2784 }
2785 else
2786 {
2787 while (!bitmap_equal_p (workset, zero_bitmap))
2788 {
2789 v = find_max_dv_min_mob (g, workset);
2790 v_node = &g->nodes[v];
2791 node_order[pos++] = v;
2792 v_node_preds = NODE_PREDECESSORS (v_node);
2793 bitmap_and (tmp, v_node_preds, scc);
2794
2795 /* Don't consider the already ordered predecessors again. */
2796 bitmap_and_compl (tmp, tmp, nodes_ordered);
2797 bitmap_ior (workset, workset, tmp);
2798 bitmap_clear_bit (workset, v);
2799 bitmap_set_bit (nodes_ordered, v);
2800 }
2801 dir = TOPDOWN;
2802 bitmap_clear (successors);
2803 find_successors (successors, g, nodes_ordered);
2804 bitmap_and (workset, successors, scc);
2805 }
2806 }
2807 sbitmap_free (zero_bitmap);
2808 return pos;
2809 }
2810
2811 \f
2812 /* This page contains functions for manipulating partial-schedules during
2813 modulo scheduling. */
2814
2815 /* Create a partial schedule and allocate a memory to hold II rows. */
2816
2817 static partial_schedule_ptr
2818 create_partial_schedule (int ii, ddg_ptr g, int history)
2819 {
2820 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2821 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2822 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2823 ps->reg_moves.create (0);
2824 ps->ii = ii;
2825 ps->history = history;
2826 ps->min_cycle = INT_MAX;
2827 ps->max_cycle = INT_MIN;
2828 ps->g = g;
2829
2830 return ps;
2831 }
2832
2833 /* Free the PS_INSNs in rows array of the given partial schedule.
2834 ??? Consider caching the PS_INSN's. */
2835 static void
2836 free_ps_insns (partial_schedule_ptr ps)
2837 {
2838 int i;
2839
2840 for (i = 0; i < ps->ii; i++)
2841 {
2842 while (ps->rows[i])
2843 {
2844 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2845
2846 free (ps->rows[i]);
2847 ps->rows[i] = ps_insn;
2848 }
2849 ps->rows[i] = NULL;
2850 }
2851 }
2852
2853 /* Free all the memory allocated to the partial schedule. */
2854
2855 static void
2856 free_partial_schedule (partial_schedule_ptr ps)
2857 {
2858 ps_reg_move_info *move;
2859 unsigned int i;
2860
2861 if (!ps)
2862 return;
2863
2864 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2865 sbitmap_free (move->uses);
2866 ps->reg_moves.release ();
2867
2868 free_ps_insns (ps);
2869 free (ps->rows);
2870 free (ps->rows_length);
2871 free (ps);
2872 }
2873
2874 /* Clear the rows array with its PS_INSNs, and create a new one with
2875 NEW_II rows. */
2876
2877 static void
2878 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2879 {
2880 if (!ps)
2881 return;
2882 free_ps_insns (ps);
2883 if (new_ii == ps->ii)
2884 return;
2885 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2886 * sizeof (ps_insn_ptr));
2887 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2888 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2889 memset (ps->rows_length, 0, new_ii * sizeof (int));
2890 ps->ii = new_ii;
2891 ps->min_cycle = INT_MAX;
2892 ps->max_cycle = INT_MIN;
2893 }
2894
2895 /* Prints the partial schedule as an ii rows array, for each rows
2896 print the ids of the insns in it. */
2897 void
2898 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2899 {
2900 int i;
2901
2902 for (i = 0; i < ps->ii; i++)
2903 {
2904 ps_insn_ptr ps_i = ps->rows[i];
2905
2906 fprintf (dump, "\n[ROW %d ]: ", i);
2907 while (ps_i)
2908 {
2909 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2910
2911 if (JUMP_P (insn))
2912 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2913 else
2914 fprintf (dump, "%d, ", INSN_UID (insn));
2915
2916 ps_i = ps_i->next_in_row;
2917 }
2918 }
2919 }
2920
2921 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2922 static ps_insn_ptr
2923 create_ps_insn (int id, int cycle)
2924 {
2925 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2926
2927 ps_i->id = id;
2928 ps_i->next_in_row = NULL;
2929 ps_i->prev_in_row = NULL;
2930 ps_i->cycle = cycle;
2931
2932 return ps_i;
2933 }
2934
2935
2936 /* Removes the given PS_INSN from the partial schedule. */
2937 static void
2938 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2939 {
2940 int row;
2941
2942 gcc_assert (ps && ps_i);
2943
2944 row = SMODULO (ps_i->cycle, ps->ii);
2945 if (! ps_i->prev_in_row)
2946 {
2947 gcc_assert (ps_i == ps->rows[row]);
2948 ps->rows[row] = ps_i->next_in_row;
2949 if (ps->rows[row])
2950 ps->rows[row]->prev_in_row = NULL;
2951 }
2952 else
2953 {
2954 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2955 if (ps_i->next_in_row)
2956 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2957 }
2958
2959 ps->rows_length[row] -= 1;
2960 free (ps_i);
2961 return;
2962 }
2963
2964 /* Unlike what literature describes for modulo scheduling (which focuses
2965 on VLIW machines) the order of the instructions inside a cycle is
2966 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2967 where the current instruction should go relative to the already
2968 scheduled instructions in the given cycle. Go over these
2969 instructions and find the first possible column to put it in. */
2970 static bool
2971 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2972 sbitmap must_precede, sbitmap must_follow)
2973 {
2974 ps_insn_ptr next_ps_i;
2975 ps_insn_ptr first_must_follow = NULL;
2976 ps_insn_ptr last_must_precede = NULL;
2977 ps_insn_ptr last_in_row = NULL;
2978 int row;
2979
2980 if (! ps_i)
2981 return false;
2982
2983 row = SMODULO (ps_i->cycle, ps->ii);
2984
2985 /* Find the first must follow and the last must precede
2986 and insert the node immediately after the must precede
2987 but make sure that it there is no must follow after it. */
2988 for (next_ps_i = ps->rows[row];
2989 next_ps_i;
2990 next_ps_i = next_ps_i->next_in_row)
2991 {
2992 if (must_follow
2993 && bitmap_bit_p (must_follow, next_ps_i->id)
2994 && ! first_must_follow)
2995 first_must_follow = next_ps_i;
2996 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
2997 {
2998 /* If we have already met a node that must follow, then
2999 there is no possible column. */
3000 if (first_must_follow)
3001 return false;
3002 else
3003 last_must_precede = next_ps_i;
3004 }
3005 /* The closing branch must be the last in the row. */
3006 if (must_precede
3007 && bitmap_bit_p (must_precede, next_ps_i->id)
3008 && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3009 return false;
3010
3011 last_in_row = next_ps_i;
3012 }
3013
3014 /* The closing branch is scheduled as well. Make sure there is no
3015 dependent instruction after it as the branch should be the last
3016 instruction in the row. */
3017 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3018 {
3019 if (first_must_follow)
3020 return false;
3021 if (last_in_row)
3022 {
3023 /* Make the branch the last in the row. New instructions
3024 will be inserted at the beginning of the row or after the
3025 last must_precede instruction thus the branch is guaranteed
3026 to remain the last instruction in the row. */
3027 last_in_row->next_in_row = ps_i;
3028 ps_i->prev_in_row = last_in_row;
3029 ps_i->next_in_row = NULL;
3030 }
3031 else
3032 ps->rows[row] = ps_i;
3033 return true;
3034 }
3035
3036 /* Now insert the node after INSERT_AFTER_PSI. */
3037
3038 if (! last_must_precede)
3039 {
3040 ps_i->next_in_row = ps->rows[row];
3041 ps_i->prev_in_row = NULL;
3042 if (ps_i->next_in_row)
3043 ps_i->next_in_row->prev_in_row = ps_i;
3044 ps->rows[row] = ps_i;
3045 }
3046 else
3047 {
3048 ps_i->next_in_row = last_must_precede->next_in_row;
3049 last_must_precede->next_in_row = ps_i;
3050 ps_i->prev_in_row = last_must_precede;
3051 if (ps_i->next_in_row)
3052 ps_i->next_in_row->prev_in_row = ps_i;
3053 }
3054
3055 return true;
3056 }
3057
3058 /* Advances the PS_INSN one column in its current row; returns false
3059 in failure and true in success. Bit N is set in MUST_FOLLOW if
3060 the node with cuid N must be come after the node pointed to by
3061 PS_I when scheduled in the same cycle. */
3062 static int
3063 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3064 sbitmap must_follow)
3065 {
3066 ps_insn_ptr prev, next;
3067 int row;
3068
3069 if (!ps || !ps_i)
3070 return false;
3071
3072 row = SMODULO (ps_i->cycle, ps->ii);
3073
3074 if (! ps_i->next_in_row)
3075 return false;
3076
3077 /* Check if next_in_row is dependent on ps_i, both having same sched
3078 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3079 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3080 return false;
3081
3082 /* Advance PS_I over its next_in_row in the doubly linked list. */
3083 prev = ps_i->prev_in_row;
3084 next = ps_i->next_in_row;
3085
3086 if (ps_i == ps->rows[row])
3087 ps->rows[row] = next;
3088
3089 ps_i->next_in_row = next->next_in_row;
3090
3091 if (next->next_in_row)
3092 next->next_in_row->prev_in_row = ps_i;
3093
3094 next->next_in_row = ps_i;
3095 ps_i->prev_in_row = next;
3096
3097 next->prev_in_row = prev;
3098 if (prev)
3099 prev->next_in_row = next;
3100
3101 return true;
3102 }
3103
3104 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3105 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3106 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3107 before/after (respectively) the node pointed to by PS_I when scheduled
3108 in the same cycle. */
3109 static ps_insn_ptr
3110 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3111 sbitmap must_precede, sbitmap must_follow)
3112 {
3113 ps_insn_ptr ps_i;
3114 int row = SMODULO (cycle, ps->ii);
3115
3116 if (ps->rows_length[row] >= issue_rate)
3117 return NULL;
3118
3119 ps_i = create_ps_insn (id, cycle);
3120
3121 /* Finds and inserts PS_I according to MUST_FOLLOW and
3122 MUST_PRECEDE. */
3123 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3124 {
3125 free (ps_i);
3126 return NULL;
3127 }
3128
3129 ps->rows_length[row] += 1;
3130 return ps_i;
3131 }
3132
3133 /* Advance time one cycle. Assumes DFA is being used. */
3134 static void
3135 advance_one_cycle (void)
3136 {
3137 if (targetm.sched.dfa_pre_cycle_insn)
3138 state_transition (curr_state,
3139 targetm.sched.dfa_pre_cycle_insn ());
3140
3141 state_transition (curr_state, NULL);
3142
3143 if (targetm.sched.dfa_post_cycle_insn)
3144 state_transition (curr_state,
3145 targetm.sched.dfa_post_cycle_insn ());
3146 }
3147
3148
3149
3150 /* Checks if PS has resource conflicts according to DFA, starting from
3151 FROM cycle to TO cycle; returns true if there are conflicts and false
3152 if there are no conflicts. Assumes DFA is being used. */
3153 static int
3154 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3155 {
3156 int cycle;
3157
3158 state_reset (curr_state);
3159
3160 for (cycle = from; cycle <= to; cycle++)
3161 {
3162 ps_insn_ptr crr_insn;
3163 /* Holds the remaining issue slots in the current row. */
3164 int can_issue_more = issue_rate;
3165
3166 /* Walk through the DFA for the current row. */
3167 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3168 crr_insn;
3169 crr_insn = crr_insn->next_in_row)
3170 {
3171 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3172
3173 if (!NONDEBUG_INSN_P (insn))
3174 continue;
3175
3176 /* Check if there is room for the current insn. */
3177 if (!can_issue_more || state_dead_lock_p (curr_state))
3178 return true;
3179
3180 /* Update the DFA state and return with failure if the DFA found
3181 resource conflicts. */
3182 if (state_transition (curr_state, insn) >= 0)
3183 return true;
3184
3185 if (targetm.sched.variable_issue)
3186 can_issue_more =
3187 targetm.sched.variable_issue (sched_dump, sched_verbose,
3188 insn, can_issue_more);
3189 /* A naked CLOBBER or USE generates no instruction, so don't
3190 let them consume issue slots. */
3191 else if (GET_CODE (PATTERN (insn)) != USE
3192 && GET_CODE (PATTERN (insn)) != CLOBBER)
3193 can_issue_more--;
3194 }
3195
3196 /* Advance the DFA to the next cycle. */
3197 advance_one_cycle ();
3198 }
3199 return false;
3200 }
3201
3202 /* Checks if the given node causes resource conflicts when added to PS at
3203 cycle C. If not the node is added to PS and returned; otherwise zero
3204 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3205 cuid N must be come before/after (respectively) the node pointed to by
3206 PS_I when scheduled in the same cycle. */
3207 ps_insn_ptr
3208 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3209 int c, sbitmap must_precede,
3210 sbitmap must_follow)
3211 {
3212 int has_conflicts = 0;
3213 ps_insn_ptr ps_i;
3214
3215 /* First add the node to the PS, if this succeeds check for
3216 conflicts, trying different issue slots in the same row. */
3217 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3218 return NULL; /* Failed to insert the node at the given cycle. */
3219
3220 has_conflicts = ps_has_conflicts (ps, c, c)
3221 || (ps->history > 0
3222 && ps_has_conflicts (ps,
3223 c - ps->history,
3224 c + ps->history));
3225
3226 /* Try different issue slots to find one that the given node can be
3227 scheduled in without conflicts. */
3228 while (has_conflicts)
3229 {
3230 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3231 break;
3232 has_conflicts = ps_has_conflicts (ps, c, c)
3233 || (ps->history > 0
3234 && ps_has_conflicts (ps,
3235 c - ps->history,
3236 c + ps->history));
3237 }
3238
3239 if (has_conflicts)
3240 {
3241 remove_node_from_ps (ps, ps_i);
3242 return NULL;
3243 }
3244
3245 ps->min_cycle = MIN (ps->min_cycle, c);
3246 ps->max_cycle = MAX (ps->max_cycle, c);
3247 return ps_i;
3248 }
3249
3250 /* Calculate the stage count of the partial schedule PS. The calculation
3251 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3252 int
3253 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3254 {
3255 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3256 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3257 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3258
3259 /* The calculation of stage count is done adding the number of stages
3260 before cycle zero and after cycle zero. */
3261 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3262
3263 return stage_count;
3264 }
3265
3266 /* Rotate the rows of PS such that insns scheduled at time
3267 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3268 void
3269 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3270 {
3271 int i, row, backward_rotates;
3272 int last_row = ps->ii - 1;
3273
3274 if (start_cycle == 0)
3275 return;
3276
3277 backward_rotates = SMODULO (start_cycle, ps->ii);
3278
3279 /* Revisit later and optimize this into a single loop. */
3280 for (i = 0; i < backward_rotates; i++)
3281 {
3282 ps_insn_ptr first_row = ps->rows[0];
3283 int first_row_length = ps->rows_length[0];
3284
3285 for (row = 0; row < last_row; row++)
3286 {
3287 ps->rows[row] = ps->rows[row + 1];
3288 ps->rows_length[row] = ps->rows_length[row + 1];
3289 }
3290
3291 ps->rows[last_row] = first_row;
3292 ps->rows_length[last_row] = first_row_length;
3293 }
3294
3295 ps->max_cycle -= start_cycle;
3296 ps->min_cycle -= start_cycle;
3297 }
3298
3299 #endif /* INSN_SCHEDULING */
3300 \f
3301 /* Run instruction scheduler. */
3302 /* Perform SMS module scheduling. */
3303
3304 namespace {
3305
3306 const pass_data pass_data_sms =
3307 {
3308 RTL_PASS, /* type */
3309 "sms", /* name */
3310 OPTGROUP_NONE, /* optinfo_flags */
3311 TV_SMS, /* tv_id */
3312 0, /* properties_required */
3313 0, /* properties_provided */
3314 0, /* properties_destroyed */
3315 0, /* todo_flags_start */
3316 TODO_df_finish, /* todo_flags_finish */
3317 };
3318
3319 class pass_sms : public rtl_opt_pass
3320 {
3321 public:
3322 pass_sms (gcc::context *ctxt)
3323 : rtl_opt_pass (pass_data_sms, ctxt)
3324 {}
3325
3326 /* opt_pass methods: */
3327 virtual bool gate (function *)
3328 {
3329 return (optimize > 0 && flag_modulo_sched);
3330 }
3331
3332 virtual unsigned int execute (function *);
3333
3334 }; // class pass_sms
3335
3336 unsigned int
3337 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3338 {
3339 #ifdef INSN_SCHEDULING
3340 basic_block bb;
3341
3342 /* Collect loop information to be used in SMS. */
3343 cfg_layout_initialize (0);
3344 sms_schedule ();
3345
3346 /* Update the life information, because we add pseudos. */
3347 max_regno = max_reg_num ();
3348
3349 /* Finalize layout changes. */
3350 FOR_EACH_BB_FN (bb, fun)
3351 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3352 bb->aux = bb->next_bb;
3353 free_dominance_info (CDI_DOMINATORS);
3354 cfg_layout_finalize ();
3355 #endif /* INSN_SCHEDULING */
3356 return 0;
3357 }
3358
3359 } // anon namespace
3360
3361 rtl_opt_pass *
3362 make_pass_sms (gcc::context *ctxt)
3363 {
3364 return new pass_sms (ctxt);
3365 }