]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/modulo-sched.c
modulo-sched: skip loops with strange register defs [PR100225]
[thirdparty/gcc.git] / gcc / modulo-sched.c
1 /* Swing Modulo Scheduling implementation.
2 Copyright (C) 2004-2021 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "gcov-io.h"
36 #include "profile.h"
37 #include "insn-attr.h"
38 #include "cfgrtl.h"
39 #include "sched-int.h"
40 #include "cfgloop.h"
41 #include "expr.h"
42 #include "ddg.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "loop-unroll.h"
46 #include "hard-reg-set.h"
47
48 #ifdef INSN_SCHEDULING
49
50 /* This file contains the implementation of the Swing Modulo Scheduler,
51 described in the following references:
52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
53 Lifetime--sensitive modulo scheduling in a production environment.
54 IEEE Trans. on Comps., 50(3), March 2001
55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
56 Swing Modulo Scheduling: A Lifetime Sensitive Approach.
57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
58
59 The basic structure is:
60 1. Build a data-dependence graph (DDG) for each loop.
61 2. Use the DDG to order the insns of a loop (not in topological order
62 necessarily, but rather) trying to place each insn after all its
63 predecessors _or_ after all its successors.
64 3. Compute MII: a lower bound on the number of cycles to schedule the loop.
65 4. Use the ordering to perform list-scheduling of the loop:
66 1. Set II = MII. We will try to schedule the loop within II cycles.
67 2. Try to schedule the insns one by one according to the ordering.
68 For each insn compute an interval of cycles by considering already-
69 scheduled preds and succs (and associated latencies); try to place
70 the insn in the cycles of this window checking for potential
71 resource conflicts (using the DFA interface).
72 Note: this is different from the cycle-scheduling of schedule_insns;
73 here the insns are not scheduled monotonically top-down (nor bottom-
74 up).
75 3. If failed in scheduling all insns - bump II++ and try again, unless
76 II reaches an upper bound MaxII, in which case report failure.
77 5. If we succeeded in scheduling the loop within II cycles, we now
78 generate prolog and epilog, decrease the counter of the loop, and
79 perform modulo variable expansion for live ranges that span more than
80 II cycles (i.e. use register copies to prevent a def from overwriting
81 itself before reaching the use).
82
83 SMS works with countable loops (1) whose control part can be easily
84 decoupled from the rest of the loop and (2) whose loop count can
85 be easily adjusted. This is because we peel a constant number of
86 iterations into a prologue and epilogue for which we want to avoid
87 emitting the control part, and a kernel which is to iterate that
88 constant number of iterations less than the original loop. So the
89 control part should be a set of insns clearly identified and having
90 its own iv, not otherwise used in the loop (at-least for now), which
91 initializes a register before the loop to the number of iterations.
92 Currently SMS relies on the do-loop pattern to recognize such loops,
93 where (1) the control part comprises of all insns defining and/or
94 using a certain 'count' register and (2) the loop count can be
95 adjusted by modifying this register prior to the loop.
96 TODO: Rely on cfgloop analysis instead. */
97 \f
98 /* This page defines partial-schedule structures and functions for
99 modulo scheduling. */
100
101 typedef struct partial_schedule *partial_schedule_ptr;
102 typedef struct ps_insn *ps_insn_ptr;
103
104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */
105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
106
107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */
108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
109
110 /* Perform signed modulo, always returning a non-negative value. */
111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
112
113 /* The number of different iterations the nodes in ps span, assuming
114 the stage boundaries are placed efficiently. */
115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
116 + 1 + ii - 1) / ii)
117 /* The stage count of ps. */
118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
119
120 /* A single instruction in the partial schedule. */
121 struct ps_insn
122 {
123 /* Identifies the instruction to be scheduled. Values smaller than
124 the ddg's num_nodes refer directly to ddg nodes. A value of
125 X - num_nodes refers to register move X. */
126 int id;
127
128 /* The (absolute) cycle in which the PS instruction is scheduled.
129 Same as SCHED_TIME (node). */
130 int cycle;
131
132 /* The next/prev PS_INSN in the same row. */
133 ps_insn_ptr next_in_row,
134 prev_in_row;
135
136 };
137
138 /* Information about a register move that has been added to a partial
139 schedule. */
140 struct ps_reg_move_info
141 {
142 /* The source of the move is defined by the ps_insn with id DEF.
143 The destination is used by the ps_insns with the ids in USES. */
144 int def;
145 sbitmap uses;
146
147 /* The original form of USES' instructions used OLD_REG, but they
148 should now use NEW_REG. */
149 rtx old_reg;
150 rtx new_reg;
151
152 /* The number of consecutive stages that the move occupies. */
153 int num_consecutive_stages;
154
155 /* An instruction that sets NEW_REG to the correct value. The first
156 move associated with DEF will have an rhs of OLD_REG; later moves
157 use the result of the previous move. */
158 rtx_insn *insn;
159 };
160
161 /* Holds the partial schedule as an array of II rows. Each entry of the
162 array points to a linked list of PS_INSNs, which represents the
163 instructions that are scheduled for that row. */
164 struct partial_schedule
165 {
166 int ii; /* Number of rows in the partial schedule. */
167 int history; /* Threshold for conflict checking using DFA. */
168
169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */
170 ps_insn_ptr *rows;
171
172 /* All the moves added for this partial schedule. Index X has
173 a ps_insn id of X + g->num_nodes. */
174 vec<ps_reg_move_info> reg_moves;
175
176 /* rows_length[i] holds the number of instructions in the row.
177 It is used only (as an optimization) to back off quickly from
178 trying to schedule a node in a full row; that is, to avoid running
179 through futile DFA state transitions. */
180 int *rows_length;
181
182 /* The earliest absolute cycle of an insn in the partial schedule. */
183 int min_cycle;
184
185 /* The latest absolute cycle of an insn in the partial schedule. */
186 int max_cycle;
187
188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */
189
190 int stage_count; /* The stage count of the partial schedule. */
191 };
192
193
194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
195 static void free_partial_schedule (partial_schedule_ptr);
196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
197 void print_partial_schedule (partial_schedule_ptr, FILE *);
198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
200 int, int, sbitmap, sbitmap);
201 static void rotate_partial_schedule (partial_schedule_ptr, int);
202 void set_row_column_for_ps (partial_schedule_ptr);
203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
205
206 \f
207 /* This page defines constants and structures for the modulo scheduling
208 driver. */
209
210 static int sms_order_nodes (ddg_ptr, int, int *, int *);
211 static void set_node_sched_params (ddg_ptr);
212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *);
214 static int calculate_stage_count (partial_schedule_ptr, int);
215 static void calculate_must_precede_follow (ddg_node_ptr, int, int,
216 int, int, sbitmap, sbitmap, sbitmap);
217 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
218 sbitmap, int, int *, int *, int *);
219 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
220 sbitmap, int *, sbitmap, sbitmap);
221 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
222
223 #define NODE_ASAP(node) ((node)->aux.count)
224
225 #define SCHED_PARAMS(x) (&node_sched_param_vec[x])
226 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
227 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
228 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
229 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
230
231 /* The scheduling parameters held for each node. */
232 typedef struct node_sched_params
233 {
234 int time; /* The absolute scheduling cycle. */
235
236 int row; /* Holds time % ii. */
237 int stage; /* Holds time / ii. */
238
239 /* The column of a node inside the ps. If nodes u, v are on the same row,
240 u will precede v if column (u) < column (v). */
241 int column;
242 } *node_sched_params_ptr;
243 \f
244 /* The following three functions are copied from the current scheduler
245 code in order to use sched_analyze() for computing the dependencies.
246 They are used when initializing the sched_info structure. */
247 static const char *
248 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED)
249 {
250 static char tmp[80];
251
252 sprintf (tmp, "i%4d", INSN_UID (insn));
253 return tmp;
254 }
255
256 static void
257 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
258 regset used ATTRIBUTE_UNUSED)
259 {
260 }
261
262 static struct common_sched_info_def sms_common_sched_info;
263
264 static struct sched_deps_info_def sms_sched_deps_info =
265 {
266 compute_jump_reg_dependencies,
267 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
268 NULL,
269 0, 0, 0
270 };
271
272 static struct haifa_sched_info sms_sched_info =
273 {
274 NULL,
275 NULL,
276 NULL,
277 NULL,
278 NULL,
279 sms_print_insn,
280 NULL,
281 NULL, /* insn_finishes_block_p */
282 NULL, NULL,
283 NULL, NULL,
284 0, 0,
285
286 NULL, NULL, NULL, NULL,
287 NULL, NULL,
288 0
289 };
290
291 /* Partial schedule instruction ID in PS is a register move. Return
292 information about it. */
293 static struct ps_reg_move_info *
294 ps_reg_move (partial_schedule_ptr ps, int id)
295 {
296 gcc_checking_assert (id >= ps->g->num_nodes);
297 return &ps->reg_moves[id - ps->g->num_nodes];
298 }
299
300 /* Return the rtl instruction that is being scheduled by partial schedule
301 instruction ID, which belongs to schedule PS. */
302 static rtx_insn *
303 ps_rtl_insn (partial_schedule_ptr ps, int id)
304 {
305 if (id < ps->g->num_nodes)
306 return ps->g->nodes[id].insn;
307 else
308 return ps_reg_move (ps, id)->insn;
309 }
310
311 /* Partial schedule instruction ID, which belongs to PS, occurred in
312 the original (unscheduled) loop. Return the first instruction
313 in the loop that was associated with ps_rtl_insn (PS, ID).
314 If the instruction had some notes before it, this is the first
315 of those notes. */
316 static rtx_insn *
317 ps_first_note (partial_schedule_ptr ps, int id)
318 {
319 gcc_assert (id < ps->g->num_nodes);
320 return ps->g->nodes[id].first_note;
321 }
322
323 /* Return the number of consecutive stages that are occupied by
324 partial schedule instruction ID in PS. */
325 static int
326 ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
327 {
328 if (id < ps->g->num_nodes)
329 return 1;
330 else
331 return ps_reg_move (ps, id)->num_consecutive_stages;
332 }
333
334 /* Given HEAD and TAIL which are the first and last insns in a loop;
335 return the register which controls the loop. Return zero if it has
336 more than one occurrence in the loop besides the control part or the
337 do-loop pattern is not of the form we expect. */
338 static rtx
339 doloop_register_get (rtx_insn *head, rtx_insn *tail)
340 {
341 rtx reg, condition;
342 rtx_insn *insn, *first_insn_not_to_check;
343
344 if (!JUMP_P (tail))
345 return NULL_RTX;
346
347 if (!targetm.code_for_doloop_end)
348 return NULL_RTX;
349
350 /* TODO: Free SMS's dependence on doloop_condition_get. */
351 condition = doloop_condition_get (tail);
352 if (! condition)
353 return NULL_RTX;
354
355 if (REG_P (XEXP (condition, 0)))
356 reg = XEXP (condition, 0);
357 else if (GET_CODE (XEXP (condition, 0)) == PLUS
358 && REG_P (XEXP (XEXP (condition, 0), 0)))
359 reg = XEXP (XEXP (condition, 0), 0);
360 else
361 gcc_unreachable ();
362
363 /* Check that the COUNT_REG has no other occurrences in the loop
364 until the decrement. We assume the control part consists of
365 either a single (parallel) branch-on-count or a (non-parallel)
366 branch immediately preceded by a single (decrement) insn. */
367 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
368 : prev_nondebug_insn (tail));
369
370 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
371 if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
372 {
373 if (dump_file)
374 {
375 fprintf (dump_file, "SMS count_reg found ");
376 print_rtl_single (dump_file, reg);
377 fprintf (dump_file, " outside control in insn:\n");
378 print_rtl_single (dump_file, insn);
379 }
380
381 return NULL_RTX;
382 }
383
384 return reg;
385 }
386
387 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
388 that the number of iterations is a compile-time constant. If so,
389 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to
390 this constant. Otherwise return 0. */
391 static rtx_insn *
392 const_iteration_count (rtx count_reg, basic_block pre_header,
393 int64_t *count, bool* adjust_inplace)
394 {
395 rtx_insn *insn;
396 rtx_insn *head, *tail;
397
398 *adjust_inplace = false;
399 bool read_after = false;
400
401 if (! pre_header)
402 return NULL;
403
404 get_ebb_head_tail (pre_header, pre_header, &head, &tail);
405
406 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
407 if (single_set (insn) && rtx_equal_p (count_reg,
408 SET_DEST (single_set (insn))))
409 {
410 rtx pat = single_set (insn);
411
412 if (CONST_INT_P (SET_SRC (pat)))
413 {
414 *count = INTVAL (SET_SRC (pat));
415 *adjust_inplace = !read_after;
416 return insn;
417 }
418
419 return NULL;
420 }
421 else if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (count_reg, insn))
422 {
423 read_after = true;
424 if (reg_set_p (count_reg, insn))
425 break;
426 }
427
428 return NULL;
429 }
430
431 /* A very simple resource-based lower bound on the initiation interval.
432 ??? Improve the accuracy of this bound by considering the
433 utilization of various units. */
434 static int
435 res_MII (ddg_ptr g)
436 {
437 if (targetm.sched.sms_res_mii)
438 return targetm.sched.sms_res_mii (g);
439
440 return g->num_nodes / issue_rate;
441 }
442
443
444 /* A vector that contains the sched data for each ps_insn. */
445 static vec<node_sched_params> node_sched_param_vec;
446
447 /* Allocate sched_params for each node and initialize it. */
448 static void
449 set_node_sched_params (ddg_ptr g)
450 {
451 node_sched_param_vec.truncate (0);
452 node_sched_param_vec.safe_grow_cleared (g->num_nodes, true);
453 }
454
455 /* Make sure that node_sched_param_vec has an entry for every move in PS. */
456 static void
457 extend_node_sched_params (partial_schedule_ptr ps)
458 {
459 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes
460 + ps->reg_moves.length (), true);
461 }
462
463 /* Update the sched_params (time, row and stage) for node U using the II,
464 the CYCLE of U and MIN_CYCLE.
465 We're not simply taking the following
466 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
467 because the stages may not be aligned on cycle 0. */
468 static void
469 update_node_sched_params (int u, int ii, int cycle, int min_cycle)
470 {
471 int sc_until_cycle_zero;
472 int stage;
473
474 SCHED_TIME (u) = cycle;
475 SCHED_ROW (u) = SMODULO (cycle, ii);
476
477 /* The calculation of stage count is done adding the number
478 of stages before cycle zero and after cycle zero. */
479 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
480
481 if (SCHED_TIME (u) < 0)
482 {
483 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
484 SCHED_STAGE (u) = sc_until_cycle_zero - stage;
485 }
486 else
487 {
488 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
489 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
490 }
491 }
492
493 static void
494 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
495 {
496 int i;
497
498 if (! file)
499 return;
500 for (i = 0; i < num_nodes; i++)
501 {
502 node_sched_params_ptr nsp = SCHED_PARAMS (i);
503
504 fprintf (file, "Node = %d; INSN = %d\n", i,
505 INSN_UID (ps_rtl_insn (ps, i)));
506 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
507 fprintf (file, " time = %d:\n", nsp->time);
508 fprintf (file, " stage = %d:\n", nsp->stage);
509 }
510 }
511
512 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */
513 static void
514 set_columns_for_row (partial_schedule_ptr ps, int row)
515 {
516 ps_insn_ptr cur_insn;
517 int column;
518
519 column = 0;
520 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
521 SCHED_COLUMN (cur_insn->id) = column++;
522 }
523
524 /* Set SCHED_COLUMN for each instruction in PS. */
525 static void
526 set_columns_for_ps (partial_schedule_ptr ps)
527 {
528 int row;
529
530 for (row = 0; row < ps->ii; row++)
531 set_columns_for_row (ps, row);
532 }
533
534 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
535 Its single predecessor has already been scheduled, as has its
536 ddg node successors. (The move may have also another move as its
537 successor, in which case that successor will be scheduled later.)
538
539 The move is part of a chain that satisfies register dependencies
540 between a producing ddg node and various consuming ddg nodes.
541 If some of these dependencies have a distance of 1 (meaning that
542 the use is upward-exposed) then DISTANCE1_USES is nonnull and
543 contains the set of uses with distance-1 dependencies.
544 DISTANCE1_USES is null otherwise.
545
546 MUST_FOLLOW is a scratch bitmap that is big enough to hold
547 all current ps_insn ids.
548
549 Return true on success. */
550 static bool
551 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
552 sbitmap distance1_uses, sbitmap must_follow)
553 {
554 unsigned int u;
555 int this_time, this_distance, this_start, this_end, this_latency;
556 int start, end, c, ii;
557 sbitmap_iterator sbi;
558 ps_reg_move_info *move;
559 rtx_insn *this_insn;
560 ps_insn_ptr psi;
561
562 move = ps_reg_move (ps, i_reg_move);
563 ii = ps->ii;
564 if (dump_file)
565 {
566 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
567 ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
568 PS_MIN_CYCLE (ps));
569 print_rtl_single (dump_file, move->insn);
570 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
571 fprintf (dump_file, "=========== =========== =====\n");
572 }
573
574 start = INT_MIN;
575 end = INT_MAX;
576
577 /* For dependencies of distance 1 between a producer ddg node A
578 and consumer ddg node B, we have a chain of dependencies:
579
580 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
581
582 where Mi is the ith move. For dependencies of distance 0 between
583 a producer ddg node A and consumer ddg node C, we have a chain of
584 dependencies:
585
586 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
587
588 where Mi' occupies the same position as Mi but occurs a stage later.
589 We can only schedule each move once, so if we have both types of
590 chain, we model the second as:
591
592 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
593
594 First handle the dependencies between the previously-scheduled
595 predecessor and the move. */
596 this_insn = ps_rtl_insn (ps, move->def);
597 this_latency = insn_latency (this_insn, move->insn);
598 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
599 this_time = SCHED_TIME (move->def) - this_distance * ii;
600 this_start = this_time + this_latency;
601 this_end = this_time + ii;
602 if (dump_file)
603 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
604 this_start, this_end, SCHED_TIME (move->def),
605 INSN_UID (this_insn), this_latency, this_distance,
606 INSN_UID (move->insn));
607
608 if (start < this_start)
609 start = this_start;
610 if (end > this_end)
611 end = this_end;
612
613 /* Handle the dependencies between the move and previously-scheduled
614 successors. */
615 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi)
616 {
617 this_insn = ps_rtl_insn (ps, u);
618 this_latency = insn_latency (move->insn, this_insn);
619 if (distance1_uses && !bitmap_bit_p (distance1_uses, u))
620 this_distance = -1;
621 else
622 this_distance = 0;
623 this_time = SCHED_TIME (u) + this_distance * ii;
624 this_start = this_time - ii;
625 this_end = this_time - this_latency;
626 if (dump_file)
627 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
628 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
629 this_latency, this_distance, INSN_UID (this_insn));
630
631 if (start < this_start)
632 start = this_start;
633 if (end > this_end)
634 end = this_end;
635 }
636
637 if (dump_file)
638 {
639 fprintf (dump_file, "----------- ----------- -----\n");
640 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
641 }
642
643 bitmap_clear (must_follow);
644 bitmap_set_bit (must_follow, move->def);
645
646 start = MAX (start, end - (ii - 1));
647 for (c = end; c >= start; c--)
648 {
649 psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
650 move->uses, must_follow);
651 if (psi)
652 {
653 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
654 if (dump_file)
655 fprintf (dump_file, "\nScheduled register move INSN %d at"
656 " time %d, row %d\n\n", INSN_UID (move->insn), c,
657 SCHED_ROW (i_reg_move));
658 return true;
659 }
660 }
661
662 if (dump_file)
663 fprintf (dump_file, "\nNo available slot\n\n");
664
665 return false;
666 }
667
668 /*
669 Breaking intra-loop register anti-dependences:
670 Each intra-loop register anti-dependence implies a cross-iteration true
671 dependence of distance 1. Therefore, we can remove such false dependencies
672 and figure out if the partial schedule broke them by checking if (for a
673 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
674 if so generate a register move. The number of such moves is equal to:
675 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken
676 nreg_moves = ----------------------------------- + 1 - { dependence.
677 ii { 1 if not.
678 */
679 static bool
680 schedule_reg_moves (partial_schedule_ptr ps)
681 {
682 ddg_ptr g = ps->g;
683 int ii = ps->ii;
684 int i;
685
686 for (i = 0; i < g->num_nodes; i++)
687 {
688 ddg_node_ptr u = &g->nodes[i];
689 ddg_edge_ptr e;
690 int nreg_moves = 0, i_reg_move;
691 rtx prev_reg, old_reg;
692 int first_move;
693 int distances[2];
694 sbitmap distance1_uses;
695 rtx set = single_set (u->insn);
696
697 /* Skip instructions that do not set a register. */
698 if (set && !REG_P (SET_DEST (set)))
699 continue;
700
701 /* Compute the number of reg_moves needed for u, by looking at life
702 ranges started at u (excluding self-loops). */
703 distances[0] = distances[1] = false;
704 for (e = u->out; e; e = e->next_out)
705 if (e->type == TRUE_DEP && e->dest != e->src)
706 {
707 int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
708 - SCHED_TIME (e->src->cuid)) / ii;
709
710 if (e->distance == 1)
711 nreg_moves4e = (SCHED_TIME (e->dest->cuid)
712 - SCHED_TIME (e->src->cuid) + ii) / ii;
713
714 /* If dest precedes src in the schedule of the kernel, then dest
715 will read before src writes and we can save one reg_copy. */
716 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
717 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
718 nreg_moves4e--;
719
720 if (nreg_moves4e >= 1)
721 {
722 /* !single_set instructions are not supported yet and
723 thus we do not except to encounter them in the loop
724 except from the doloop part. For the latter case
725 we assume no regmoves are generated as the doloop
726 instructions are tied to the branch with an edge. */
727 gcc_assert (set);
728 /* If the instruction contains auto-inc register then
729 validate that the regmov is being generated for the
730 target regsiter rather then the inc'ed register. */
731 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
732 }
733
734 if (nreg_moves4e)
735 {
736 gcc_assert (e->distance < 2);
737 distances[e->distance] = true;
738 }
739 nreg_moves = MAX (nreg_moves, nreg_moves4e);
740 }
741
742 if (nreg_moves == 0)
743 continue;
744
745 /* Create NREG_MOVES register moves. */
746 first_move = ps->reg_moves.length ();
747 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves, true);
748 extend_node_sched_params (ps);
749
750 /* Record the moves associated with this node. */
751 first_move += ps->g->num_nodes;
752
753 /* Generate each move. */
754 old_reg = prev_reg = SET_DEST (set);
755 if (HARD_REGISTER_P (old_reg))
756 return false;
757
758 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
759 {
760 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
761
762 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
763 move->uses = sbitmap_alloc (first_move + nreg_moves);
764 move->old_reg = old_reg;
765 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
766 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
767 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
768 bitmap_clear (move->uses);
769
770 prev_reg = move->new_reg;
771 }
772
773 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
774
775 if (distance1_uses)
776 bitmap_clear (distance1_uses);
777
778 /* Every use of the register defined by node may require a different
779 copy of this register, depending on the time the use is scheduled.
780 Record which uses require which move results. */
781 for (e = u->out; e; e = e->next_out)
782 if (e->type == TRUE_DEP && e->dest != e->src)
783 {
784 int dest_copy = (SCHED_TIME (e->dest->cuid)
785 - SCHED_TIME (e->src->cuid)) / ii;
786
787 if (e->distance == 1)
788 dest_copy = (SCHED_TIME (e->dest->cuid)
789 - SCHED_TIME (e->src->cuid) + ii) / ii;
790
791 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
792 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
793 dest_copy--;
794
795 if (dest_copy)
796 {
797 ps_reg_move_info *move;
798
799 move = ps_reg_move (ps, first_move + dest_copy - 1);
800 bitmap_set_bit (move->uses, e->dest->cuid);
801 if (e->distance == 1)
802 bitmap_set_bit (distance1_uses, e->dest->cuid);
803 }
804 }
805
806 auto_sbitmap must_follow (first_move + nreg_moves);
807 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
808 if (!schedule_reg_move (ps, first_move + i_reg_move,
809 distance1_uses, must_follow))
810 break;
811 if (distance1_uses)
812 sbitmap_free (distance1_uses);
813 if (i_reg_move < nreg_moves)
814 return false;
815 }
816 return true;
817 }
818
819 /* Emit the moves associated with PS. Apply the substitutions
820 associated with them. */
821 static void
822 apply_reg_moves (partial_schedule_ptr ps)
823 {
824 ps_reg_move_info *move;
825 int i;
826
827 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
828 {
829 unsigned int i_use;
830 sbitmap_iterator sbi;
831
832 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi)
833 {
834 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
835 df_insn_rescan (ps->g->nodes[i_use].insn);
836 }
837 }
838 }
839
840 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of
841 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT
842 will move to cycle zero. */
843 static void
844 reset_sched_times (partial_schedule_ptr ps, int amount)
845 {
846 int row;
847 int ii = ps->ii;
848 ps_insn_ptr crr_insn;
849
850 for (row = 0; row < ii; row++)
851 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
852 {
853 int u = crr_insn->id;
854 int normalized_time = SCHED_TIME (u) - amount;
855 int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
856
857 if (dump_file)
858 {
859 /* Print the scheduling times after the rotation. */
860 rtx_insn *insn = ps_rtl_insn (ps, u);
861
862 fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
863 "crr_insn->cycle=%d, min_cycle=%d", u,
864 INSN_UID (insn), normalized_time, new_min_cycle);
865 if (JUMP_P (insn))
866 fprintf (dump_file, " (branch)");
867 fprintf (dump_file, "\n");
868 }
869
870 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
871 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
872
873 crr_insn->cycle = normalized_time;
874 update_node_sched_params (u, ii, normalized_time, new_min_cycle);
875 }
876 }
877
878 /* Permute the insns according to their order in PS, from row 0 to
879 row ii-1, and position them right before LAST. This schedules
880 the insns of the loop kernel. */
881 static void
882 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last)
883 {
884 int ii = ps->ii;
885 int row;
886 ps_insn_ptr ps_ij;
887
888 for (row = 0; row < ii ; row++)
889 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
890 {
891 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id);
892
893 if (PREV_INSN (last) != insn)
894 {
895 if (ps_ij->id < ps->g->num_nodes)
896 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
897 PREV_INSN (last));
898 else
899 add_insn_before (insn, last, NULL);
900 }
901 }
902 }
903
904 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
905 respectively only if cycle C falls on the border of the scheduling
906 window boundaries marked by START and END cycles. STEP is the
907 direction of the window. */
908 static inline void
909 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
910 sbitmap *tmp_precede, sbitmap must_precede, int c,
911 int start, int end, int step)
912 {
913 *tmp_precede = NULL;
914 *tmp_follow = NULL;
915
916 if (c == start)
917 {
918 if (step == 1)
919 *tmp_precede = must_precede;
920 else /* step == -1. */
921 *tmp_follow = must_follow;
922 }
923 if (c == end - step)
924 {
925 if (step == 1)
926 *tmp_follow = must_follow;
927 else /* step == -1. */
928 *tmp_precede = must_precede;
929 }
930
931 }
932
933 /* Return True if the branch can be moved to row ii-1 while
934 normalizing the partial schedule PS to start from cycle zero and thus
935 optimize the SC. Otherwise return False. */
936 static bool
937 optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
938 {
939 int amount = PS_MIN_CYCLE (ps);
940 int start, end, step;
941 int ii = ps->ii;
942 bool ok = false;
943 int stage_count, stage_count_curr;
944
945 /* Compare the SC after normalization and SC after bringing the branch
946 to row ii-1. If they are equal just bail out. */
947 stage_count = calculate_stage_count (ps, amount);
948 stage_count_curr =
949 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
950
951 if (stage_count == stage_count_curr)
952 {
953 if (dump_file)
954 fprintf (dump_file, "SMS SC already optimized.\n");
955
956 return false;
957 }
958
959 if (dump_file)
960 {
961 fprintf (dump_file, "SMS Trying to optimize branch location\n");
962 fprintf (dump_file, "SMS partial schedule before trial:\n");
963 print_partial_schedule (ps, dump_file);
964 }
965
966 /* First, normalize the partial scheduling. */
967 reset_sched_times (ps, amount);
968 rotate_partial_schedule (ps, amount);
969 if (dump_file)
970 {
971 fprintf (dump_file,
972 "SMS partial schedule after normalization (ii, %d, SC %d):\n",
973 ii, stage_count);
974 print_partial_schedule (ps, dump_file);
975 }
976
977 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
978 return true;
979
980 auto_sbitmap sched_nodes (g->num_nodes);
981 bitmap_ones (sched_nodes);
982
983 /* Calculate the new placement of the branch. It should be in row
984 ii-1 and fall into it's scheduling window. */
985 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
986 &step, &end) == 0)
987 {
988 bool success;
989 ps_insn_ptr next_ps_i;
990 int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
991 int row = SMODULO (branch_cycle, ps->ii);
992 int num_splits = 0;
993 sbitmap tmp_precede, tmp_follow;
994 int min_cycle, c;
995
996 if (dump_file)
997 fprintf (dump_file, "\nTrying to schedule node %d "
998 "INSN = %d in (%d .. %d) step %d\n",
999 g->closing_branch->cuid,
1000 (INSN_UID (g->closing_branch->insn)), start, end, step);
1001
1002 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
1003 if (step == 1)
1004 {
1005 c = start + ii - SMODULO (start, ii) - 1;
1006 gcc_assert (c >= start);
1007 if (c >= end)
1008 {
1009 if (dump_file)
1010 fprintf (dump_file,
1011 "SMS failed to schedule branch at cycle: %d\n", c);
1012 return false;
1013 }
1014 }
1015 else
1016 {
1017 c = start - SMODULO (start, ii) - 1;
1018 gcc_assert (c <= start);
1019
1020 if (c <= end)
1021 {
1022 if (dump_file)
1023 fprintf (dump_file,
1024 "SMS failed to schedule branch at cycle: %d\n", c);
1025 return false;
1026 }
1027 }
1028
1029 auto_sbitmap must_precede (g->num_nodes);
1030 auto_sbitmap must_follow (g->num_nodes);
1031
1032 /* Try to schedule the branch is it's new cycle. */
1033 calculate_must_precede_follow (g->closing_branch, start, end,
1034 step, ii, sched_nodes,
1035 must_precede, must_follow);
1036
1037 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1038 must_precede, c, start, end, step);
1039
1040 /* Find the element in the partial schedule related to the closing
1041 branch so we can remove it from it's current cycle. */
1042 for (next_ps_i = ps->rows[row];
1043 next_ps_i; next_ps_i = next_ps_i->next_in_row)
1044 if (next_ps_i->id == g->closing_branch->cuid)
1045 break;
1046
1047 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1048 remove_node_from_ps (ps, next_ps_i);
1049 success =
1050 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
1051 sched_nodes, &num_splits,
1052 tmp_precede, tmp_follow);
1053 gcc_assert (num_splits == 0);
1054 if (!success)
1055 {
1056 if (dump_file)
1057 fprintf (dump_file,
1058 "SMS failed to schedule branch at cycle: %d, "
1059 "bringing it back to cycle %d\n", c, branch_cycle);
1060
1061 /* The branch was failed to be placed in row ii - 1.
1062 Put it back in it's original place in the partial
1063 schedualing. */
1064 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
1065 must_precede, branch_cycle, start, end,
1066 step);
1067 success =
1068 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
1069 branch_cycle, sched_nodes,
1070 &num_splits, tmp_precede,
1071 tmp_follow);
1072 gcc_assert (success && (num_splits == 0));
1073 ok = false;
1074 }
1075 else
1076 {
1077 /* The branch is placed in row ii - 1. */
1078 if (dump_file)
1079 fprintf (dump_file,
1080 "SMS success in moving branch to cycle %d\n", c);
1081
1082 update_node_sched_params (g->closing_branch->cuid, ii, c,
1083 PS_MIN_CYCLE (ps));
1084 ok = true;
1085 }
1086
1087 /* This might have been added to a new first stage. */
1088 if (PS_MIN_CYCLE (ps) < min_cycle)
1089 reset_sched_times (ps, 0);
1090 }
1091
1092 return ok;
1093 }
1094
1095 static void
1096 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
1097 int to_stage, rtx count_reg, class loop *loop)
1098 {
1099 int row;
1100 ps_insn_ptr ps_ij;
1101 copy_bb_data id;
1102
1103 for (row = 0; row < ps->ii; row++)
1104 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
1105 {
1106 int u = ps_ij->id;
1107 int first_u, last_u;
1108 rtx_insn *u_insn;
1109
1110 /* Do not duplicate any insn which refers to count_reg as it
1111 belongs to the control part.
1112 The closing branch is scheduled as well and thus should
1113 be ignored.
1114 TODO: This should be done by analyzing the control part of
1115 the loop. */
1116 u_insn = ps_rtl_insn (ps, u);
1117 if (reg_mentioned_p (count_reg, u_insn)
1118 || JUMP_P (u_insn))
1119 continue;
1120
1121 first_u = SCHED_STAGE (u);
1122 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
1123 if (from_stage <= last_u && to_stage >= first_u)
1124 {
1125 if (u < ps->g->num_nodes)
1126 duplicate_insn_chain (ps_first_note (ps, u), u_insn,
1127 loop, &id);
1128 else
1129 emit_insn (copy_rtx (PATTERN (u_insn)));
1130 }
1131 }
1132 }
1133
1134
1135 /* Generate the instructions (including reg_moves) for prolog & epilog. */
1136 static void
1137 generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop,
1138 rtx count_reg, bool adjust_init)
1139 {
1140 int i;
1141 int last_stage = PS_STAGE_COUNT (ps) - 1;
1142 edge e;
1143
1144 /* Generate the prolog, inserting its insns on the loop-entry edge. */
1145 start_sequence ();
1146
1147 if (adjust_init)
1148 {
1149 /* Generate instructions at the beginning of the prolog to
1150 adjust the loop count by STAGE_COUNT. If loop count is constant
1151 and it not used anywhere in prologue, this constant is adjusted by
1152 STAGE_COUNT outside of generate_prolog_epilog function. */
1153 rtx sub_reg = NULL_RTX;
1154
1155 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg,
1156 gen_int_mode (last_stage,
1157 GET_MODE (count_reg)),
1158 count_reg, 1, OPTAB_DIRECT);
1159 gcc_assert (REG_P (sub_reg));
1160 if (REGNO (sub_reg) != REGNO (count_reg))
1161 emit_move_insn (count_reg, sub_reg);
1162 }
1163
1164 for (i = 0; i < last_stage; i++)
1165 duplicate_insns_of_cycles (ps, 0, i, count_reg, loop);
1166
1167 /* Put the prolog on the entry edge. */
1168 e = loop_preheader_edge (loop);
1169 split_edge_and_insert (e, get_insns ());
1170 if (!flag_resched_modulo_sched)
1171 e->dest->flags |= BB_DISABLE_SCHEDULE;
1172
1173 end_sequence ();
1174
1175 /* Generate the epilog, inserting its insns on the loop-exit edge. */
1176 start_sequence ();
1177
1178 for (i = 0; i < last_stage; i++)
1179 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg, loop);
1180
1181 /* Put the epilogue on the exit edge. */
1182 gcc_assert (single_exit (loop));
1183 e = single_exit (loop);
1184 split_edge_and_insert (e, get_insns ());
1185 if (!flag_resched_modulo_sched)
1186 e->dest->flags |= BB_DISABLE_SCHEDULE;
1187
1188 end_sequence ();
1189 }
1190
1191 /* Mark LOOP as software pipelined so the later
1192 scheduling passes don't touch it. */
1193 static void
1194 mark_loop_unsched (class loop *loop)
1195 {
1196 unsigned i;
1197 basic_block *bbs = get_loop_body (loop);
1198
1199 for (i = 0; i < loop->num_nodes; i++)
1200 bbs[i]->flags |= BB_DISABLE_SCHEDULE;
1201
1202 free (bbs);
1203 }
1204
1205 /* Return true if all the BBs of the loop are empty except the
1206 loop header. */
1207 static bool
1208 loop_single_full_bb_p (class loop *loop)
1209 {
1210 unsigned i;
1211 basic_block *bbs = get_loop_body (loop);
1212
1213 for (i = 0; i < loop->num_nodes ; i++)
1214 {
1215 rtx_insn *head, *tail;
1216 bool empty_bb = true;
1217
1218 if (bbs[i] == loop->header)
1219 continue;
1220
1221 /* Make sure that basic blocks other than the header
1222 have only notes labels or jumps. */
1223 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
1224 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
1225 {
1226 if (NOTE_P (head) || LABEL_P (head)
1227 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
1228 continue;
1229 empty_bb = false;
1230 break;
1231 }
1232
1233 if (! empty_bb)
1234 {
1235 free (bbs);
1236 return false;
1237 }
1238 }
1239 free (bbs);
1240 return true;
1241 }
1242
1243 /* Dump file:line from INSN's location info to dump_file. */
1244
1245 static void
1246 dump_insn_location (rtx_insn *insn)
1247 {
1248 if (dump_file && INSN_HAS_LOCATION (insn))
1249 {
1250 expanded_location xloc = insn_location (insn);
1251 fprintf (dump_file, " %s:%i", xloc.file, xloc.line);
1252 }
1253 }
1254
1255 /* A simple loop from SMS point of view; it is a loop that is composed of
1256 either a single basic block or two BBs - a header and a latch. */
1257 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \
1258 && (EDGE_COUNT (loop->latch->preds) == 1) \
1259 && (EDGE_COUNT (loop->latch->succs) == 1))
1260
1261 /* Return true if the loop is in its canonical form and false if not.
1262 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */
1263 static bool
1264 loop_canon_p (class loop *loop)
1265 {
1266
1267 if (loop->inner || !loop_outer (loop))
1268 {
1269 if (dump_file)
1270 fprintf (dump_file, "SMS loop inner or !loop_outer\n");
1271 return false;
1272 }
1273
1274 if (!single_exit (loop))
1275 {
1276 if (dump_file)
1277 {
1278 rtx_insn *insn = BB_END (loop->header);
1279
1280 fprintf (dump_file, "SMS loop many exits");
1281 dump_insn_location (insn);
1282 fprintf (dump_file, "\n");
1283 }
1284 return false;
1285 }
1286
1287 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
1288 {
1289 if (dump_file)
1290 {
1291 rtx_insn *insn = BB_END (loop->header);
1292
1293 fprintf (dump_file, "SMS loop many BBs.");
1294 dump_insn_location (insn);
1295 fprintf (dump_file, "\n");
1296 }
1297 return false;
1298 }
1299
1300 return true;
1301 }
1302
1303 /* If there are more than one entry for the loop,
1304 make it one by splitting the first entry edge and
1305 redirecting the others to the new BB. */
1306 static void
1307 canon_loop (class loop *loop)
1308 {
1309 edge e;
1310 edge_iterator i;
1311
1312 /* Avoid annoying special cases of edges going to exit
1313 block. */
1314 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1315 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
1316 split_edge (e);
1317
1318 if (loop->latch == loop->header
1319 || EDGE_COUNT (loop->latch->succs) > 1)
1320 {
1321 FOR_EACH_EDGE (e, i, loop->header->preds)
1322 if (e->src == loop->latch)
1323 break;
1324 split_edge (e);
1325 }
1326 }
1327
1328 /* Setup infos. */
1329 static void
1330 setup_sched_infos (void)
1331 {
1332 memcpy (&sms_common_sched_info, &haifa_common_sched_info,
1333 sizeof (sms_common_sched_info));
1334 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
1335 common_sched_info = &sms_common_sched_info;
1336
1337 sched_deps_info = &sms_sched_deps_info;
1338 current_sched_info = &sms_sched_info;
1339 }
1340
1341 /* Probability in % that the sms-ed loop rolls enough so that optimized
1342 version may be entered. Just a guess. */
1343 #define PROB_SMS_ENOUGH_ITERATIONS 80
1344
1345 /* Main entry point, perform SMS scheduling on the loops of the function
1346 that consist of single basic blocks. */
1347 static void
1348 sms_schedule (void)
1349 {
1350 rtx_insn *insn;
1351 ddg_ptr *g_arr, g;
1352 int * node_order;
1353 int maxii, max_asap;
1354 partial_schedule_ptr ps;
1355 basic_block bb = NULL;
1356 class loop *loop;
1357 basic_block condition_bb = NULL;
1358 edge latch_edge;
1359 HOST_WIDE_INT trip_count, max_trip_count;
1360 HARD_REG_SET prohibited_regs;
1361
1362 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
1363 | LOOPS_HAVE_RECORDED_EXITS);
1364 if (number_of_loops (cfun) <= 1)
1365 {
1366 loop_optimizer_finalize ();
1367 return; /* There are no loops to schedule. */
1368 }
1369
1370 /* Initialize issue_rate. */
1371 if (targetm.sched.issue_rate)
1372 {
1373 int temp = reload_completed;
1374
1375 reload_completed = 1;
1376 issue_rate = targetm.sched.issue_rate ();
1377 reload_completed = temp;
1378 }
1379 else
1380 issue_rate = 1;
1381
1382 /* Initialize the scheduler. */
1383 setup_sched_infos ();
1384 haifa_sched_init ();
1385
1386 /* Allocate memory to hold the DDG array one entry for each loop.
1387 We use loop->num as index into this array. */
1388 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun));
1389
1390 REG_SET_TO_HARD_REG_SET (prohibited_regs, &df->regular_block_artificial_uses);
1391
1392 if (dump_file)
1393 {
1394 fprintf (dump_file, "\n\nSMS analysis phase\n");
1395 fprintf (dump_file, "===================\n\n");
1396 }
1397
1398 /* Build DDGs for all the relevant loops and hold them in G_ARR
1399 indexed by the loop index. */
1400 FOR_EACH_LOOP (loop, 0)
1401 {
1402 rtx_insn *head, *tail;
1403 rtx count_reg;
1404
1405 /* For debugging. */
1406 if (dbg_cnt (sms_sched_loop) == false)
1407 {
1408 if (dump_file)
1409 fprintf (dump_file, "SMS reached max limit... \n");
1410
1411 break;
1412 }
1413
1414 if (dump_file)
1415 {
1416 rtx_insn *insn = BB_END (loop->header);
1417
1418 fprintf (dump_file, "SMS loop num: %d", loop->num);
1419 dump_insn_location (insn);
1420 fprintf (dump_file, "\n");
1421 }
1422
1423 if (! loop_canon_p (loop))
1424 continue;
1425
1426 if (! loop_single_full_bb_p (loop))
1427 {
1428 if (dump_file)
1429 fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
1430 continue;
1431 }
1432
1433 bb = loop->header;
1434
1435 get_ebb_head_tail (bb, bb, &head, &tail);
1436 latch_edge = loop_latch_edge (loop);
1437 gcc_assert (single_exit (loop));
1438 trip_count = get_estimated_loop_iterations_int (loop);
1439 max_trip_count = get_max_loop_iterations_int (loop);
1440
1441 /* Perform SMS only on loops that their average count is above threshold. */
1442
1443 if ( latch_edge->count () > profile_count::zero ()
1444 && (latch_edge->count()
1445 < single_exit (loop)->count ().apply_scale
1446 (param_sms_loop_average_count_threshold, 1)))
1447 {
1448 if (dump_file)
1449 {
1450 dump_insn_location (tail);
1451 fprintf (dump_file, "\nSMS single-bb-loop\n");
1452 if (profile_info && flag_branch_probabilities)
1453 {
1454 fprintf (dump_file, "SMS loop-count ");
1455 fprintf (dump_file, "%" PRId64,
1456 (int64_t) bb->count.to_gcov_type ());
1457 fprintf (dump_file, "\n");
1458 fprintf (dump_file, "SMS trip-count ");
1459 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1460 (int64_t) trip_count, (int64_t) max_trip_count);
1461 fprintf (dump_file, "\n");
1462 }
1463 }
1464 continue;
1465 }
1466
1467 /* Make sure this is a doloop. */
1468 if ( !(count_reg = doloop_register_get (head, tail)))
1469 {
1470 if (dump_file)
1471 fprintf (dump_file, "SMS doloop_register_get failed\n");
1472 continue;
1473 }
1474
1475 /* Don't handle BBs with calls or barriers
1476 or !single_set with the exception of do-loop control part insns.
1477 ??? Should handle insns defining subregs. */
1478 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
1479 {
1480 if (INSN_P (insn))
1481 {
1482 HARD_REG_SET regs;
1483 CLEAR_HARD_REG_SET (regs);
1484 note_stores (insn, record_hard_reg_sets, &regs);
1485 if (hard_reg_set_intersect_p (regs, prohibited_regs))
1486 break;
1487 }
1488
1489 if (CALL_P (insn)
1490 || BARRIER_P (insn)
1491 || (INSN_P (insn) && single_set (insn)
1492 && GET_CODE (SET_DEST (single_set (insn))) == SUBREG)
1493 /* Not a single set. */
1494 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
1495 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
1496 /* But non-single-set allowed in one special case. */
1497 && (insn != prev_nondebug_insn (tail)
1498 || !reg_mentioned_p (count_reg, insn))))
1499 break;
1500 }
1501
1502 if (insn != NEXT_INSN (tail))
1503 {
1504 if (dump_file)
1505 {
1506 if (CALL_P (insn))
1507 fprintf (dump_file, "SMS loop-with-call\n");
1508 else if (BARRIER_P (insn))
1509 fprintf (dump_file, "SMS loop-with-barrier\n");
1510 else if (INSN_P (insn) && single_set (insn)
1511 && GET_CODE (SET_DEST (single_set (insn))) == SUBREG)
1512 fprintf (dump_file, "SMS loop with subreg in lhs\n");
1513 else
1514 fprintf (dump_file,
1515 "SMS loop-with-not-single-set-or-prohibited-reg\n");
1516
1517 print_rtl_single (dump_file, insn);
1518 }
1519
1520 continue;
1521 }
1522
1523 /* Always schedule the closing branch with the rest of the
1524 instructions. The branch is rotated to be in row ii-1 at the
1525 end of the scheduling procedure to make sure it's the last
1526 instruction in the iteration. */
1527 if (! (g = create_ddg (bb, 1)))
1528 {
1529 if (dump_file)
1530 fprintf (dump_file, "SMS create_ddg failed\n");
1531 continue;
1532 }
1533
1534 g_arr[loop->num] = g;
1535 if (dump_file)
1536 fprintf (dump_file, "...OK\n");
1537
1538 }
1539 if (dump_file)
1540 {
1541 fprintf (dump_file, "\nSMS transformation phase\n");
1542 fprintf (dump_file, "=========================\n\n");
1543 }
1544
1545 /* We don't want to perform SMS on new loops - created by versioning. */
1546 FOR_EACH_LOOP (loop, 0)
1547 {
1548 rtx_insn *head, *tail;
1549 rtx count_reg;
1550 rtx_insn *count_init;
1551 int mii, rec_mii, stage_count, min_cycle;
1552 int64_t loop_count = 0;
1553 bool opt_sc_p, adjust_inplace = false;
1554 basic_block pre_header;
1555
1556 if (! (g = g_arr[loop->num]))
1557 continue;
1558
1559 if (dump_file)
1560 {
1561 rtx_insn *insn = BB_END (loop->header);
1562
1563 fprintf (dump_file, "SMS loop num: %d", loop->num);
1564 dump_insn_location (insn);
1565 fprintf (dump_file, "\n");
1566
1567 print_ddg (dump_file, g);
1568 }
1569
1570 get_ebb_head_tail (loop->header, loop->header, &head, &tail);
1571
1572 latch_edge = loop_latch_edge (loop);
1573 gcc_assert (single_exit (loop));
1574 trip_count = get_estimated_loop_iterations_int (loop);
1575 max_trip_count = get_max_loop_iterations_int (loop);
1576
1577 if (dump_file)
1578 {
1579 dump_insn_location (tail);
1580 fprintf (dump_file, "\nSMS single-bb-loop\n");
1581 if (profile_info && flag_branch_probabilities)
1582 {
1583 fprintf (dump_file, "SMS loop-count ");
1584 fprintf (dump_file, "%" PRId64,
1585 (int64_t) bb->count.to_gcov_type ());
1586 fprintf (dump_file, "\n");
1587 }
1588 fprintf (dump_file, "SMS doloop\n");
1589 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
1590 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
1591 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
1592 }
1593
1594
1595 count_reg = doloop_register_get (head, tail);
1596 gcc_assert (count_reg);
1597
1598 pre_header = loop_preheader_edge (loop)->src;
1599 count_init = const_iteration_count (count_reg, pre_header, &loop_count,
1600 &adjust_inplace);
1601
1602 if (dump_file && count_init)
1603 {
1604 fprintf (dump_file, "SMS const-doloop ");
1605 fprintf (dump_file, "%" PRId64,
1606 loop_count);
1607 fprintf (dump_file, "\n");
1608 }
1609
1610 node_order = XNEWVEC (int, g->num_nodes);
1611
1612 mii = 1; /* Need to pass some estimate of mii. */
1613 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
1614 mii = MAX (res_MII (g), rec_mii);
1615 mii = MAX (mii, 1);
1616 maxii = MAX (max_asap, param_sms_max_ii_factor * mii);
1617
1618 if (dump_file)
1619 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
1620 rec_mii, mii, maxii);
1621
1622 for (;;)
1623 {
1624 set_node_sched_params (g);
1625
1626 stage_count = 0;
1627 opt_sc_p = false;
1628 ps = sms_schedule_by_order (g, mii, maxii, node_order);
1629
1630 if (ps)
1631 {
1632 /* Try to achieve optimized SC by normalizing the partial
1633 schedule (having the cycles start from cycle zero).
1634 The branch location must be placed in row ii-1 in the
1635 final scheduling. If failed, shift all instructions to
1636 position the branch in row ii-1. */
1637 opt_sc_p = optimize_sc (ps, g);
1638 if (opt_sc_p)
1639 stage_count = calculate_stage_count (ps, 0);
1640 else
1641 {
1642 /* Bring the branch to cycle ii-1. */
1643 int amount = (SCHED_TIME (g->closing_branch->cuid)
1644 - (ps->ii - 1));
1645
1646 if (dump_file)
1647 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
1648
1649 stage_count = calculate_stage_count (ps, amount);
1650 }
1651
1652 gcc_assert (stage_count >= 1);
1653 }
1654
1655 /* The default value of param_sms_min_sc is 2 as stage count of
1656 1 means that there is no interleaving between iterations thus
1657 we let the scheduling passes do the job in this case. */
1658 if (stage_count < param_sms_min_sc
1659 || (count_init && (loop_count <= stage_count))
1660 || (max_trip_count >= 0 && max_trip_count <= stage_count)
1661 || (trip_count >= 0 && trip_count <= stage_count))
1662 {
1663 if (dump_file)
1664 {
1665 fprintf (dump_file, "SMS failed... \n");
1666 fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
1667 " loop-count=", stage_count);
1668 fprintf (dump_file, "%" PRId64, loop_count);
1669 fprintf (dump_file, ", trip-count=");
1670 fprintf (dump_file, "%" PRId64 "max %" PRId64,
1671 (int64_t) trip_count, (int64_t) max_trip_count);
1672 fprintf (dump_file, ")\n");
1673 }
1674 break;
1675 }
1676
1677 if (!opt_sc_p)
1678 {
1679 /* Rotate the partial schedule to have the branch in row ii-1. */
1680 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
1681
1682 reset_sched_times (ps, amount);
1683 rotate_partial_schedule (ps, amount);
1684 }
1685
1686 set_columns_for_ps (ps);
1687
1688 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
1689 if (!schedule_reg_moves (ps))
1690 {
1691 mii = ps->ii + 1;
1692 free_partial_schedule (ps);
1693 continue;
1694 }
1695
1696 /* Moves that handle incoming values might have been added
1697 to a new first stage. Bump the stage count if so.
1698
1699 ??? Perhaps we could consider rotating the schedule here
1700 instead? */
1701 if (PS_MIN_CYCLE (ps) < min_cycle)
1702 {
1703 reset_sched_times (ps, 0);
1704 stage_count++;
1705 }
1706
1707 /* The stage count should now be correct without rotation. */
1708 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
1709 PS_STAGE_COUNT (ps) = stage_count;
1710
1711 canon_loop (loop);
1712
1713 if (dump_file)
1714 {
1715 dump_insn_location (tail);
1716 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
1717 ps->ii, stage_count);
1718 print_partial_schedule (ps, dump_file);
1719 }
1720
1721 if (count_init)
1722 {
1723 if (adjust_inplace)
1724 {
1725 /* When possible, set new iteration count of loop kernel in
1726 place. Otherwise, generate_prolog_epilog creates an insn
1727 to adjust. */
1728 SET_SRC (single_set (count_init)) = GEN_INT (loop_count
1729 - stage_count + 1);
1730 }
1731 }
1732 else
1733 {
1734 /* case the BCT count is not known , Do loop-versioning */
1735 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg,
1736 gen_int_mode (stage_count,
1737 GET_MODE (count_reg)));
1738 profile_probability prob = profile_probability::guessed_always ()
1739 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100);
1740
1741 loop_version (loop, comp_rtx, &condition_bb,
1742 prob, prob.invert (),
1743 prob, prob.invert (), true);
1744 }
1745
1746 /* Now apply the scheduled kernel to the RTL of the loop. */
1747 permute_partial_schedule (ps, g->closing_branch->first_note);
1748
1749 /* Mark this loop as software pipelined so the later
1750 scheduling passes don't touch it. */
1751 if (! flag_resched_modulo_sched)
1752 mark_loop_unsched (loop);
1753
1754 /* The life-info is not valid any more. */
1755 df_set_bb_dirty (g->bb);
1756
1757 apply_reg_moves (ps);
1758 if (dump_file)
1759 print_node_sched_params (dump_file, g->num_nodes, ps);
1760 /* Generate prolog and epilog. */
1761 generate_prolog_epilog (ps, loop, count_reg, !adjust_inplace);
1762 break;
1763 }
1764
1765 free_partial_schedule (ps);
1766 node_sched_param_vec.release ();
1767 free (node_order);
1768 free_ddg (g);
1769 }
1770
1771 free (g_arr);
1772
1773 /* Release scheduler data, needed until now because of DFA. */
1774 haifa_sched_finish ();
1775 loop_optimizer_finalize ();
1776 }
1777
1778 /* The SMS scheduling algorithm itself
1779 -----------------------------------
1780 Input: 'O' an ordered list of insns of a loop.
1781 Output: A scheduling of the loop - kernel, prolog, and epilogue.
1782
1783 'Q' is the empty Set
1784 'PS' is the partial schedule; it holds the currently scheduled nodes with
1785 their cycle/slot.
1786 'PSP' previously scheduled predecessors.
1787 'PSS' previously scheduled successors.
1788 't(u)' the cycle where u is scheduled.
1789 'l(u)' is the latency of u.
1790 'd(v,u)' is the dependence distance from v to u.
1791 'ASAP(u)' the earliest time at which u could be scheduled as computed in
1792 the node ordering phase.
1793 'check_hardware_resources_conflicts(u, PS, c)'
1794 run a trace around cycle/slot through DFA model
1795 to check resource conflicts involving instruction u
1796 at cycle c given the partial schedule PS.
1797 'add_to_partial_schedule_at_time(u, PS, c)'
1798 Add the node/instruction u to the partial schedule
1799 PS at time c.
1800 'calculate_register_pressure(PS)'
1801 Given a schedule of instructions, calculate the register
1802 pressure it implies. One implementation could be the
1803 maximum number of overlapping live ranges.
1804 'maxRP' The maximum allowed register pressure, it is usually derived from the number
1805 registers available in the hardware.
1806
1807 1. II = MII.
1808 2. PS = empty list
1809 3. for each node u in O in pre-computed order
1810 4. if (PSP(u) != Q && PSS(u) == Q) then
1811 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1812 6. start = Early_start; end = Early_start + II - 1; step = 1
1813 11. else if (PSP(u) == Q && PSS(u) != Q) then
1814 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1815 13. start = Late_start; end = Late_start - II + 1; step = -1
1816 14. else if (PSP(u) != Q && PSS(u) != Q) then
1817 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
1818 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
1819 17. start = Early_start;
1820 18. end = min(Early_start + II - 1 , Late_start);
1821 19. step = 1
1822 20. else "if (PSP(u) == Q && PSS(u) == Q)"
1823 21. start = ASAP(u); end = start + II - 1; step = 1
1824 22. endif
1825
1826 23. success = false
1827 24. for (c = start ; c != end ; c += step)
1828 25. if check_hardware_resources_conflicts(u, PS, c) then
1829 26. add_to_partial_schedule_at_time(u, PS, c)
1830 27. success = true
1831 28. break
1832 29. endif
1833 30. endfor
1834 31. if (success == false) then
1835 32. II = II + 1
1836 33. if (II > maxII) then
1837 34. finish - failed to schedule
1838 35. endif
1839 36. goto 2.
1840 37. endif
1841 38. endfor
1842 39. if (calculate_register_pressure(PS) > maxRP) then
1843 40. goto 32.
1844 41. endif
1845 42. compute epilogue & prologue
1846 43. finish - succeeded to schedule
1847
1848 ??? The algorithm restricts the scheduling window to II cycles.
1849 In rare cases, it may be better to allow windows of II+1 cycles.
1850 The window would then start and end on the same row, but with
1851 different "must precede" and "must follow" requirements. */
1852
1853 /* A threshold for the number of repeated unsuccessful attempts to insert
1854 an empty row, before we flush the partial schedule and start over. */
1855 #define MAX_SPLIT_NUM 10
1856 /* Given the partial schedule PS, this function calculates and returns the
1857 cycles in which we can schedule the node with the given index I.
1858 NOTE: Here we do the backtracking in SMS, in some special cases. We have
1859 noticed that there are several cases in which we fail to SMS the loop
1860 because the sched window of a node is empty due to tight data-deps. In
1861 such cases we want to unschedule some of the predecessors/successors
1862 until we get non-empty scheduling window. It returns -1 if the
1863 scheduling window is empty and zero otherwise. */
1864
1865 static int
1866 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
1867 sbitmap sched_nodes, int ii, int *start_p, int *step_p,
1868 int *end_p)
1869 {
1870 int start, step, end;
1871 int early_start, late_start;
1872 ddg_edge_ptr e;
1873 auto_sbitmap psp (ps->g->num_nodes);
1874 auto_sbitmap pss (ps->g->num_nodes);
1875 sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
1876 sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
1877 int psp_not_empty;
1878 int pss_not_empty;
1879 int count_preds;
1880 int count_succs;
1881
1882 /* 1. compute sched window for u (start, end, step). */
1883 bitmap_clear (psp);
1884 bitmap_clear (pss);
1885 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes);
1886 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes);
1887
1888 /* We first compute a forward range (start <= end), then decide whether
1889 to reverse it. */
1890 early_start = INT_MIN;
1891 late_start = INT_MAX;
1892 start = INT_MIN;
1893 end = INT_MAX;
1894 step = 1;
1895
1896 count_preds = 0;
1897 count_succs = 0;
1898
1899 if (dump_file && (psp_not_empty || pss_not_empty))
1900 {
1901 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
1902 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
1903 fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
1904 "start", "early start", "late start", "end", "time");
1905 fprintf (dump_file, "=========== =========== =========== ==========="
1906 " =====\n");
1907 }
1908 /* Calculate early_start and limit end. Both bounds are inclusive. */
1909 if (psp_not_empty)
1910 for (e = u_node->in; e != 0; e = e->next_in)
1911 {
1912 int v = e->src->cuid;
1913
1914 if (bitmap_bit_p (sched_nodes, v))
1915 {
1916 int p_st = SCHED_TIME (v);
1917 int earliest = p_st + e->latency - (e->distance * ii);
1918 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
1919
1920 if (dump_file)
1921 {
1922 fprintf (dump_file, "%11s %11d %11s %11d %5d",
1923 "", earliest, "", latest, p_st);
1924 print_ddg_edge (dump_file, e);
1925 fprintf (dump_file, "\n");
1926 }
1927
1928 early_start = MAX (early_start, earliest);
1929 end = MIN (end, latest);
1930
1931 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1932 count_preds++;
1933 }
1934 }
1935
1936 /* Calculate late_start and limit start. Both bounds are inclusive. */
1937 if (pss_not_empty)
1938 for (e = u_node->out; e != 0; e = e->next_out)
1939 {
1940 int v = e->dest->cuid;
1941
1942 if (bitmap_bit_p (sched_nodes, v))
1943 {
1944 int s_st = SCHED_TIME (v);
1945 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
1946 int latest = s_st - e->latency + (e->distance * ii);
1947
1948 if (dump_file)
1949 {
1950 fprintf (dump_file, "%11d %11s %11d %11s %5d",
1951 earliest, "", latest, "", s_st);
1952 print_ddg_edge (dump_file, e);
1953 fprintf (dump_file, "\n");
1954 }
1955
1956 start = MAX (start, earliest);
1957 late_start = MIN (late_start, latest);
1958
1959 if (e->type == TRUE_DEP && e->data_type == REG_DEP)
1960 count_succs++;
1961 }
1962 }
1963
1964 if (dump_file && (psp_not_empty || pss_not_empty))
1965 {
1966 fprintf (dump_file, "----------- ----------- ----------- -----------"
1967 " -----\n");
1968 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
1969 start, early_start, late_start, end, "",
1970 "(max, max, min, min)");
1971 }
1972
1973 /* Get a target scheduling window no bigger than ii. */
1974 if (early_start == INT_MIN && late_start == INT_MAX)
1975 early_start = NODE_ASAP (u_node);
1976 else if (early_start == INT_MIN)
1977 early_start = late_start - (ii - 1);
1978 late_start = MIN (late_start, early_start + (ii - 1));
1979
1980 /* Apply memory dependence limits. */
1981 start = MAX (start, early_start);
1982 end = MIN (end, late_start);
1983
1984 if (dump_file && (psp_not_empty || pss_not_empty))
1985 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
1986 "", start, end, "", "");
1987
1988 /* If there are at least as many successors as predecessors, schedule the
1989 node close to its successors. */
1990 if (pss_not_empty && count_succs >= count_preds)
1991 {
1992 std::swap (start, end);
1993 step = -1;
1994 }
1995
1996 /* Now that we've finalized the window, make END an exclusive rather
1997 than an inclusive bound. */
1998 end += step;
1999
2000 *start_p = start;
2001 *step_p = step;
2002 *end_p = end;
2003
2004 if ((start >= end && step == 1) || (start <= end && step == -1))
2005 {
2006 if (dump_file)
2007 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
2008 start, end, step);
2009 return -1;
2010 }
2011
2012 return 0;
2013 }
2014
2015 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
2016 node currently been scheduled. At the end of the calculation
2017 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
2018 U_NODE which are (1) already scheduled in the first/last row of
2019 U_NODE's scheduling window, (2) whose dependence inequality with U
2020 becomes an equality when U is scheduled in this same row, and (3)
2021 whose dependence latency is zero.
2022
2023 The first and last rows are calculated using the following parameters:
2024 START/END rows - The cycles that begins/ends the traversal on the window;
2025 searching for an empty cycle to schedule U_NODE.
2026 STEP - The direction in which we traverse the window.
2027 II - The initiation interval. */
2028
2029 static void
2030 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
2031 int step, int ii, sbitmap sched_nodes,
2032 sbitmap must_precede, sbitmap must_follow)
2033 {
2034 ddg_edge_ptr e;
2035 int first_cycle_in_window, last_cycle_in_window;
2036
2037 gcc_assert (must_precede && must_follow);
2038
2039 /* Consider the following scheduling window:
2040 {first_cycle_in_window, first_cycle_in_window+1, ...,
2041 last_cycle_in_window}. If step is 1 then the following will be
2042 the order we traverse the window: {start=first_cycle_in_window,
2043 first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
2044 or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
2045 end=first_cycle_in_window-1} if step is -1. */
2046 first_cycle_in_window = (step == 1) ? start : end - step;
2047 last_cycle_in_window = (step == 1) ? end - step : start;
2048
2049 bitmap_clear (must_precede);
2050 bitmap_clear (must_follow);
2051
2052 if (dump_file)
2053 fprintf (dump_file, "\nmust_precede: ");
2054
2055 /* Instead of checking if:
2056 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
2057 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
2058 first_cycle_in_window)
2059 && e->latency == 0
2060 we use the fact that latency is non-negative:
2061 SCHED_TIME (e->src) - (e->distance * ii) <=
2062 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
2063 first_cycle_in_window
2064 and check only if
2065 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */
2066 for (e = u_node->in; e != 0; e = e->next_in)
2067 if (bitmap_bit_p (sched_nodes, e->src->cuid)
2068 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
2069 first_cycle_in_window))
2070 {
2071 if (dump_file)
2072 fprintf (dump_file, "%d ", e->src->cuid);
2073
2074 bitmap_set_bit (must_precede, e->src->cuid);
2075 }
2076
2077 if (dump_file)
2078 fprintf (dump_file, "\nmust_follow: ");
2079
2080 /* Instead of checking if:
2081 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
2082 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
2083 last_cycle_in_window)
2084 && e->latency == 0
2085 we use the fact that latency is non-negative:
2086 SCHED_TIME (e->dest) + (e->distance * ii) >=
2087 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
2088 last_cycle_in_window
2089 and check only if
2090 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */
2091 for (e = u_node->out; e != 0; e = e->next_out)
2092 if (bitmap_bit_p (sched_nodes, e->dest->cuid)
2093 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
2094 last_cycle_in_window))
2095 {
2096 if (dump_file)
2097 fprintf (dump_file, "%d ", e->dest->cuid);
2098
2099 bitmap_set_bit (must_follow, e->dest->cuid);
2100 }
2101
2102 if (dump_file)
2103 fprintf (dump_file, "\n");
2104 }
2105
2106 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following
2107 parameters to decide if that's possible:
2108 PS - The partial schedule.
2109 U - The serial number of U_NODE.
2110 NUM_SPLITS - The number of row splits made so far.
2111 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
2112 the first row of the scheduling window)
2113 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
2114 last row of the scheduling window) */
2115
2116 static bool
2117 try_scheduling_node_in_cycle (partial_schedule_ptr ps,
2118 int u, int cycle, sbitmap sched_nodes,
2119 int *num_splits, sbitmap must_precede,
2120 sbitmap must_follow)
2121 {
2122 ps_insn_ptr psi;
2123 bool success = 0;
2124
2125 verify_partial_schedule (ps, sched_nodes);
2126 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
2127 if (psi)
2128 {
2129 SCHED_TIME (u) = cycle;
2130 bitmap_set_bit (sched_nodes, u);
2131 success = 1;
2132 *num_splits = 0;
2133 if (dump_file)
2134 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
2135
2136 }
2137
2138 return success;
2139 }
2140
2141 /* This function implements the scheduling algorithm for SMS according to the
2142 above algorithm. */
2143 static partial_schedule_ptr
2144 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
2145 {
2146 int ii = mii;
2147 int i, c, success, num_splits = 0;
2148 int flush_and_start_over = true;
2149 int num_nodes = g->num_nodes;
2150 int start, end, step; /* Place together into one struct? */
2151 auto_sbitmap sched_nodes (num_nodes);
2152 auto_sbitmap must_precede (num_nodes);
2153 auto_sbitmap must_follow (num_nodes);
2154 auto_sbitmap tobe_scheduled (num_nodes);
2155
2156 /* Value of param_sms_dfa_history is a limit on the number of cycles that
2157 resource conflicts can span. ??? Should be provided by DFA, and be
2158 dependent on the type of insn scheduled. Set to 0 by default to save
2159 compile time. */
2160 partial_schedule_ptr ps = create_partial_schedule (ii, g,
2161 param_sms_dfa_history);
2162
2163 bitmap_ones (tobe_scheduled);
2164 bitmap_clear (sched_nodes);
2165
2166 while (flush_and_start_over && (ii < maxii))
2167 {
2168
2169 if (dump_file)
2170 fprintf (dump_file, "Starting with ii=%d\n", ii);
2171 flush_and_start_over = false;
2172 bitmap_clear (sched_nodes);
2173
2174 for (i = 0; i < num_nodes; i++)
2175 {
2176 int u = nodes_order[i];
2177 ddg_node_ptr u_node = &ps->g->nodes[u];
2178 rtx_insn *insn = u_node->insn;
2179
2180 gcc_checking_assert (NONDEBUG_INSN_P (insn));
2181
2182 if (bitmap_bit_p (sched_nodes, u))
2183 continue;
2184
2185 /* Try to get non-empty scheduling window. */
2186 success = 0;
2187 if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
2188 &step, &end) == 0)
2189 {
2190 if (dump_file)
2191 fprintf (dump_file, "\nTrying to schedule node %d "
2192 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID
2193 (g->nodes[u].insn)), start, end, step);
2194
2195 gcc_assert ((step > 0 && start < end)
2196 || (step < 0 && start > end));
2197
2198 calculate_must_precede_follow (u_node, start, end, step, ii,
2199 sched_nodes, must_precede,
2200 must_follow);
2201
2202 for (c = start; c != end; c += step)
2203 {
2204 sbitmap tmp_precede, tmp_follow;
2205
2206 set_must_precede_follow (&tmp_follow, must_follow,
2207 &tmp_precede, must_precede,
2208 c, start, end, step);
2209 success =
2210 try_scheduling_node_in_cycle (ps, u, c,
2211 sched_nodes,
2212 &num_splits, tmp_precede,
2213 tmp_follow);
2214 if (success)
2215 break;
2216 }
2217
2218 verify_partial_schedule (ps, sched_nodes);
2219 }
2220 if (!success)
2221 {
2222 int split_row;
2223
2224 if (ii++ == maxii)
2225 break;
2226
2227 if (num_splits >= MAX_SPLIT_NUM)
2228 {
2229 num_splits = 0;
2230 flush_and_start_over = true;
2231 verify_partial_schedule (ps, sched_nodes);
2232 reset_partial_schedule (ps, ii);
2233 verify_partial_schedule (ps, sched_nodes);
2234 break;
2235 }
2236
2237 num_splits++;
2238 /* The scheduling window is exclusive of 'end'
2239 whereas compute_split_window() expects an inclusive,
2240 ordered range. */
2241 if (step == 1)
2242 split_row = compute_split_row (sched_nodes, start, end - 1,
2243 ps->ii, u_node);
2244 else
2245 split_row = compute_split_row (sched_nodes, end + 1, start,
2246 ps->ii, u_node);
2247
2248 ps_insert_empty_row (ps, split_row, sched_nodes);
2249 i--; /* Go back and retry node i. */
2250
2251 if (dump_file)
2252 fprintf (dump_file, "num_splits=%d\n", num_splits);
2253 }
2254
2255 /* ??? If (success), check register pressure estimates. */
2256 } /* Continue with next node. */
2257 } /* While flush_and_start_over. */
2258 if (ii >= maxii)
2259 {
2260 free_partial_schedule (ps);
2261 ps = NULL;
2262 }
2263 else
2264 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes));
2265
2266 return ps;
2267 }
2268
2269 /* This function inserts a new empty row into PS at the position
2270 according to SPLITROW, keeping all already scheduled instructions
2271 intact and updating their SCHED_TIME and cycle accordingly. */
2272 static void
2273 ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
2274 sbitmap sched_nodes)
2275 {
2276 ps_insn_ptr crr_insn;
2277 ps_insn_ptr *rows_new;
2278 int ii = ps->ii;
2279 int new_ii = ii + 1;
2280 int row;
2281 int *rows_length_new;
2282
2283 verify_partial_schedule (ps, sched_nodes);
2284
2285 /* We normalize sched_time and rotate ps to have only non-negative sched
2286 times, for simplicity of updating cycles after inserting new row. */
2287 split_row -= ps->min_cycle;
2288 split_row = SMODULO (split_row, ii);
2289 if (dump_file)
2290 fprintf (dump_file, "split_row=%d\n", split_row);
2291
2292 reset_sched_times (ps, PS_MIN_CYCLE (ps));
2293 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
2294
2295 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
2296 rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
2297 for (row = 0; row < split_row; row++)
2298 {
2299 rows_new[row] = ps->rows[row];
2300 rows_length_new[row] = ps->rows_length[row];
2301 ps->rows[row] = NULL;
2302 for (crr_insn = rows_new[row];
2303 crr_insn; crr_insn = crr_insn->next_in_row)
2304 {
2305 int u = crr_insn->id;
2306 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
2307
2308 SCHED_TIME (u) = new_time;
2309 crr_insn->cycle = new_time;
2310 SCHED_ROW (u) = new_time % new_ii;
2311 SCHED_STAGE (u) = new_time / new_ii;
2312 }
2313
2314 }
2315
2316 rows_new[split_row] = NULL;
2317
2318 for (row = split_row; row < ii; row++)
2319 {
2320 rows_new[row + 1] = ps->rows[row];
2321 rows_length_new[row + 1] = ps->rows_length[row];
2322 ps->rows[row] = NULL;
2323 for (crr_insn = rows_new[row + 1];
2324 crr_insn; crr_insn = crr_insn->next_in_row)
2325 {
2326 int u = crr_insn->id;
2327 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
2328
2329 SCHED_TIME (u) = new_time;
2330 crr_insn->cycle = new_time;
2331 SCHED_ROW (u) = new_time % new_ii;
2332 SCHED_STAGE (u) = new_time / new_ii;
2333 }
2334 }
2335
2336 /* Updating ps. */
2337 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
2338 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
2339 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
2340 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
2341 free (ps->rows);
2342 ps->rows = rows_new;
2343 free (ps->rows_length);
2344 ps->rows_length = rows_length_new;
2345 ps->ii = new_ii;
2346 gcc_assert (ps->min_cycle >= 0);
2347
2348 verify_partial_schedule (ps, sched_nodes);
2349
2350 if (dump_file)
2351 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
2352 ps->max_cycle);
2353 }
2354
2355 /* Given U_NODE which is the node that failed to be scheduled; LOW and
2356 UP which are the boundaries of it's scheduling window; compute using
2357 SCHED_NODES and II a row in the partial schedule that can be split
2358 which will separate a critical predecessor from a critical successor
2359 thereby expanding the window, and return it. */
2360 static int
2361 compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
2362 ddg_node_ptr u_node)
2363 {
2364 ddg_edge_ptr e;
2365 int lower = INT_MIN, upper = INT_MAX;
2366 int crit_pred = -1;
2367 int crit_succ = -1;
2368 int crit_cycle;
2369
2370 for (e = u_node->in; e != 0; e = e->next_in)
2371 {
2372 int v = e->src->cuid;
2373
2374 if (bitmap_bit_p (sched_nodes, v)
2375 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
2376 if (SCHED_TIME (v) > lower)
2377 {
2378 crit_pred = v;
2379 lower = SCHED_TIME (v);
2380 }
2381 }
2382
2383 if (crit_pred >= 0)
2384 {
2385 crit_cycle = SCHED_TIME (crit_pred) + 1;
2386 return SMODULO (crit_cycle, ii);
2387 }
2388
2389 for (e = u_node->out; e != 0; e = e->next_out)
2390 {
2391 int v = e->dest->cuid;
2392
2393 if (bitmap_bit_p (sched_nodes, v)
2394 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
2395 if (SCHED_TIME (v) < upper)
2396 {
2397 crit_succ = v;
2398 upper = SCHED_TIME (v);
2399 }
2400 }
2401
2402 if (crit_succ >= 0)
2403 {
2404 crit_cycle = SCHED_TIME (crit_succ);
2405 return SMODULO (crit_cycle, ii);
2406 }
2407
2408 if (dump_file)
2409 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
2410
2411 return SMODULO ((low + up + 1) / 2, ii);
2412 }
2413
2414 static void
2415 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
2416 {
2417 int row;
2418 ps_insn_ptr crr_insn;
2419
2420 for (row = 0; row < ps->ii; row++)
2421 {
2422 int length = 0;
2423
2424 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
2425 {
2426 int u = crr_insn->id;
2427
2428 length++;
2429 gcc_assert (bitmap_bit_p (sched_nodes, u));
2430 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
2431 popcount (sched_nodes) == number of insns in ps. */
2432 gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
2433 gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
2434 }
2435
2436 gcc_assert (ps->rows_length[row] == length);
2437 }
2438 }
2439
2440 \f
2441 /* This page implements the algorithm for ordering the nodes of a DDG
2442 for modulo scheduling, activated through the
2443 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */
2444
2445 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
2446 #define ASAP(x) (ORDER_PARAMS ((x))->asap)
2447 #define ALAP(x) (ORDER_PARAMS ((x))->alap)
2448 #define HEIGHT(x) (ORDER_PARAMS ((x))->height)
2449 #define MOB(x) (ALAP ((x)) - ASAP ((x)))
2450 #define DEPTH(x) (ASAP ((x)))
2451
2452 typedef struct node_order_params * nopa;
2453
2454 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
2455 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
2456 static nopa calculate_order_params (ddg_ptr, int, int *);
2457 static int find_max_asap (ddg_ptr, sbitmap);
2458 static int find_max_hv_min_mob (ddg_ptr, sbitmap);
2459 static int find_max_dv_min_mob (ddg_ptr, sbitmap);
2460
2461 enum sms_direction {BOTTOMUP, TOPDOWN};
2462
2463 struct node_order_params
2464 {
2465 int asap;
2466 int alap;
2467 int height;
2468 };
2469
2470 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */
2471 static void
2472 check_nodes_order (int *node_order, int num_nodes)
2473 {
2474 int i;
2475 auto_sbitmap tmp (num_nodes);
2476
2477 bitmap_clear (tmp);
2478
2479 if (dump_file)
2480 fprintf (dump_file, "SMS final nodes order: \n");
2481
2482 for (i = 0; i < num_nodes; i++)
2483 {
2484 int u = node_order[i];
2485
2486 if (dump_file)
2487 fprintf (dump_file, "%d ", u);
2488 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u));
2489
2490 bitmap_set_bit (tmp, u);
2491 }
2492
2493 if (dump_file)
2494 fprintf (dump_file, "\n");
2495 }
2496
2497 /* Order the nodes of G for scheduling and pass the result in
2498 NODE_ORDER. Also set aux.count of each node to ASAP.
2499 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */
2500 static int
2501 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
2502 {
2503 int i;
2504 int rec_mii = 0;
2505 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
2506
2507 nopa nops = calculate_order_params (g, mii, pmax_asap);
2508
2509 if (dump_file)
2510 print_sccs (dump_file, sccs, g);
2511
2512 order_nodes_of_sccs (sccs, node_order);
2513
2514 if (sccs->num_sccs > 0)
2515 /* First SCC has the largest recurrence_length. */
2516 rec_mii = sccs->sccs[0]->recurrence_length;
2517
2518 /* Save ASAP before destroying node_order_params. */
2519 for (i = 0; i < g->num_nodes; i++)
2520 {
2521 ddg_node_ptr v = &g->nodes[i];
2522 v->aux.count = ASAP (v);
2523 }
2524
2525 free (nops);
2526 free_ddg_all_sccs (sccs);
2527 check_nodes_order (node_order, g->num_nodes);
2528
2529 return rec_mii;
2530 }
2531
2532 static void
2533 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
2534 {
2535 int i, pos = 0;
2536 ddg_ptr g = all_sccs->ddg;
2537 int num_nodes = g->num_nodes;
2538 auto_sbitmap prev_sccs (num_nodes);
2539 auto_sbitmap on_path (num_nodes);
2540 auto_sbitmap tmp (num_nodes);
2541 auto_sbitmap ones (num_nodes);
2542
2543 bitmap_clear (prev_sccs);
2544 bitmap_ones (ones);
2545
2546 /* Perform the node ordering starting from the SCC with the highest recMII.
2547 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */
2548 for (i = 0; i < all_sccs->num_sccs; i++)
2549 {
2550 ddg_scc_ptr scc = all_sccs->sccs[i];
2551
2552 /* Add nodes on paths from previous SCCs to the current SCC. */
2553 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
2554 bitmap_ior (tmp, scc->nodes, on_path);
2555
2556 /* Add nodes on paths from the current SCC to previous SCCs. */
2557 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
2558 bitmap_ior (tmp, tmp, on_path);
2559
2560 /* Remove nodes of previous SCCs from current extended SCC. */
2561 bitmap_and_compl (tmp, tmp, prev_sccs);
2562
2563 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2564 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */
2565 }
2566
2567 /* Handle the remaining nodes that do not belong to any scc. Each call
2568 to order_nodes_in_scc handles a single connected component. */
2569 while (pos < g->num_nodes)
2570 {
2571 bitmap_and_compl (tmp, ones, prev_sccs);
2572 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
2573 }
2574 }
2575
2576 /* MII is needed if we consider backarcs (that do not close recursive cycles). */
2577 static struct node_order_params *
2578 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
2579 {
2580 int u;
2581 int max_asap;
2582 int num_nodes = g->num_nodes;
2583 ddg_edge_ptr e;
2584 /* Allocate a place to hold ordering params for each node in the DDG. */
2585 nopa node_order_params_arr;
2586
2587 /* Initialize of ASAP/ALAP/HEIGHT to zero. */
2588 node_order_params_arr = (nopa) xcalloc (num_nodes,
2589 sizeof (struct node_order_params));
2590
2591 /* Set the aux pointer of each node to point to its order_params structure. */
2592 for (u = 0; u < num_nodes; u++)
2593 g->nodes[u].aux.info = &node_order_params_arr[u];
2594
2595 /* Disregarding a backarc from each recursive cycle to obtain a DAG,
2596 calculate ASAP, ALAP, mobility, distance, and height for each node
2597 in the dependence (direct acyclic) graph. */
2598
2599 /* We assume that the nodes in the array are in topological order. */
2600
2601 max_asap = 0;
2602 for (u = 0; u < num_nodes; u++)
2603 {
2604 ddg_node_ptr u_node = &g->nodes[u];
2605
2606 ASAP (u_node) = 0;
2607 for (e = u_node->in; e; e = e->next_in)
2608 if (e->distance == 0)
2609 ASAP (u_node) = MAX (ASAP (u_node),
2610 ASAP (e->src) + e->latency);
2611 max_asap = MAX (max_asap, ASAP (u_node));
2612 }
2613
2614 for (u = num_nodes - 1; u > -1; u--)
2615 {
2616 ddg_node_ptr u_node = &g->nodes[u];
2617
2618 ALAP (u_node) = max_asap;
2619 HEIGHT (u_node) = 0;
2620 for (e = u_node->out; e; e = e->next_out)
2621 if (e->distance == 0)
2622 {
2623 ALAP (u_node) = MIN (ALAP (u_node),
2624 ALAP (e->dest) - e->latency);
2625 HEIGHT (u_node) = MAX (HEIGHT (u_node),
2626 HEIGHT (e->dest) + e->latency);
2627 }
2628 }
2629 if (dump_file)
2630 {
2631 fprintf (dump_file, "\nOrder params\n");
2632 for (u = 0; u < num_nodes; u++)
2633 {
2634 ddg_node_ptr u_node = &g->nodes[u];
2635
2636 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
2637 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
2638 }
2639 }
2640
2641 *pmax_asap = max_asap;
2642 return node_order_params_arr;
2643 }
2644
2645 static int
2646 find_max_asap (ddg_ptr g, sbitmap nodes)
2647 {
2648 unsigned int u = 0;
2649 int max_asap = -1;
2650 int result = -1;
2651 sbitmap_iterator sbi;
2652
2653 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2654 {
2655 ddg_node_ptr u_node = &g->nodes[u];
2656
2657 if (max_asap < ASAP (u_node))
2658 {
2659 max_asap = ASAP (u_node);
2660 result = u;
2661 }
2662 }
2663 return result;
2664 }
2665
2666 static int
2667 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
2668 {
2669 unsigned int u = 0;
2670 int max_hv = -1;
2671 int min_mob = INT_MAX;
2672 int result = -1;
2673 sbitmap_iterator sbi;
2674
2675 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2676 {
2677 ddg_node_ptr u_node = &g->nodes[u];
2678
2679 if (max_hv < HEIGHT (u_node))
2680 {
2681 max_hv = HEIGHT (u_node);
2682 min_mob = MOB (u_node);
2683 result = u;
2684 }
2685 else if ((max_hv == HEIGHT (u_node))
2686 && (min_mob > MOB (u_node)))
2687 {
2688 min_mob = MOB (u_node);
2689 result = u;
2690 }
2691 }
2692 return result;
2693 }
2694
2695 static int
2696 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
2697 {
2698 unsigned int u = 0;
2699 int max_dv = -1;
2700 int min_mob = INT_MAX;
2701 int result = -1;
2702 sbitmap_iterator sbi;
2703
2704 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
2705 {
2706 ddg_node_ptr u_node = &g->nodes[u];
2707
2708 if (max_dv < DEPTH (u_node))
2709 {
2710 max_dv = DEPTH (u_node);
2711 min_mob = MOB (u_node);
2712 result = u;
2713 }
2714 else if ((max_dv == DEPTH (u_node))
2715 && (min_mob > MOB (u_node)))
2716 {
2717 min_mob = MOB (u_node);
2718 result = u;
2719 }
2720 }
2721 return result;
2722 }
2723
2724 /* Places the nodes of SCC into the NODE_ORDER array starting
2725 at position POS, according to the SMS ordering algorithm.
2726 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
2727 the NODE_ORDER array, starting from position zero. */
2728 static int
2729 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
2730 int * node_order, int pos)
2731 {
2732 enum sms_direction dir;
2733 int num_nodes = g->num_nodes;
2734 auto_sbitmap workset (num_nodes);
2735 auto_sbitmap tmp (num_nodes);
2736 sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
2737 auto_sbitmap predecessors (num_nodes);
2738 auto_sbitmap successors (num_nodes);
2739
2740 bitmap_clear (predecessors);
2741 find_predecessors (predecessors, g, nodes_ordered);
2742
2743 bitmap_clear (successors);
2744 find_successors (successors, g, nodes_ordered);
2745
2746 bitmap_clear (tmp);
2747 if (bitmap_and (tmp, predecessors, scc))
2748 {
2749 bitmap_copy (workset, tmp);
2750 dir = BOTTOMUP;
2751 }
2752 else if (bitmap_and (tmp, successors, scc))
2753 {
2754 bitmap_copy (workset, tmp);
2755 dir = TOPDOWN;
2756 }
2757 else
2758 {
2759 int u;
2760
2761 bitmap_clear (workset);
2762 if ((u = find_max_asap (g, scc)) >= 0)
2763 bitmap_set_bit (workset, u);
2764 dir = BOTTOMUP;
2765 }
2766
2767 bitmap_clear (zero_bitmap);
2768 while (!bitmap_equal_p (workset, zero_bitmap))
2769 {
2770 int v;
2771 ddg_node_ptr v_node;
2772 sbitmap v_node_preds;
2773 sbitmap v_node_succs;
2774
2775 if (dir == TOPDOWN)
2776 {
2777 while (!bitmap_equal_p (workset, zero_bitmap))
2778 {
2779 v = find_max_hv_min_mob (g, workset);
2780 v_node = &g->nodes[v];
2781 node_order[pos++] = v;
2782 v_node_succs = NODE_SUCCESSORS (v_node);
2783 bitmap_and (tmp, v_node_succs, scc);
2784
2785 /* Don't consider the already ordered successors again. */
2786 bitmap_and_compl (tmp, tmp, nodes_ordered);
2787 bitmap_ior (workset, workset, tmp);
2788 bitmap_clear_bit (workset, v);
2789 bitmap_set_bit (nodes_ordered, v);
2790 }
2791 dir = BOTTOMUP;
2792 bitmap_clear (predecessors);
2793 find_predecessors (predecessors, g, nodes_ordered);
2794 bitmap_and (workset, predecessors, scc);
2795 }
2796 else
2797 {
2798 while (!bitmap_equal_p (workset, zero_bitmap))
2799 {
2800 v = find_max_dv_min_mob (g, workset);
2801 v_node = &g->nodes[v];
2802 node_order[pos++] = v;
2803 v_node_preds = NODE_PREDECESSORS (v_node);
2804 bitmap_and (tmp, v_node_preds, scc);
2805
2806 /* Don't consider the already ordered predecessors again. */
2807 bitmap_and_compl (tmp, tmp, nodes_ordered);
2808 bitmap_ior (workset, workset, tmp);
2809 bitmap_clear_bit (workset, v);
2810 bitmap_set_bit (nodes_ordered, v);
2811 }
2812 dir = TOPDOWN;
2813 bitmap_clear (successors);
2814 find_successors (successors, g, nodes_ordered);
2815 bitmap_and (workset, successors, scc);
2816 }
2817 }
2818 sbitmap_free (zero_bitmap);
2819 return pos;
2820 }
2821
2822 \f
2823 /* This page contains functions for manipulating partial-schedules during
2824 modulo scheduling. */
2825
2826 /* Create a partial schedule and allocate a memory to hold II rows. */
2827
2828 static partial_schedule_ptr
2829 create_partial_schedule (int ii, ddg_ptr g, int history)
2830 {
2831 partial_schedule_ptr ps = XNEW (struct partial_schedule);
2832 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
2833 ps->rows_length = (int *) xcalloc (ii, sizeof (int));
2834 ps->reg_moves.create (0);
2835 ps->ii = ii;
2836 ps->history = history;
2837 ps->min_cycle = INT_MAX;
2838 ps->max_cycle = INT_MIN;
2839 ps->g = g;
2840
2841 return ps;
2842 }
2843
2844 /* Free the PS_INSNs in rows array of the given partial schedule.
2845 ??? Consider caching the PS_INSN's. */
2846 static void
2847 free_ps_insns (partial_schedule_ptr ps)
2848 {
2849 int i;
2850
2851 for (i = 0; i < ps->ii; i++)
2852 {
2853 while (ps->rows[i])
2854 {
2855 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
2856
2857 free (ps->rows[i]);
2858 ps->rows[i] = ps_insn;
2859 }
2860 ps->rows[i] = NULL;
2861 }
2862 }
2863
2864 /* Free all the memory allocated to the partial schedule. */
2865
2866 static void
2867 free_partial_schedule (partial_schedule_ptr ps)
2868 {
2869 ps_reg_move_info *move;
2870 unsigned int i;
2871
2872 if (!ps)
2873 return;
2874
2875 FOR_EACH_VEC_ELT (ps->reg_moves, i, move)
2876 sbitmap_free (move->uses);
2877 ps->reg_moves.release ();
2878
2879 free_ps_insns (ps);
2880 free (ps->rows);
2881 free (ps->rows_length);
2882 free (ps);
2883 }
2884
2885 /* Clear the rows array with its PS_INSNs, and create a new one with
2886 NEW_II rows. */
2887
2888 static void
2889 reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
2890 {
2891 if (!ps)
2892 return;
2893 free_ps_insns (ps);
2894 if (new_ii == ps->ii)
2895 return;
2896 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
2897 * sizeof (ps_insn_ptr));
2898 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
2899 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
2900 memset (ps->rows_length, 0, new_ii * sizeof (int));
2901 ps->ii = new_ii;
2902 ps->min_cycle = INT_MAX;
2903 ps->max_cycle = INT_MIN;
2904 }
2905
2906 /* Prints the partial schedule as an ii rows array, for each rows
2907 print the ids of the insns in it. */
2908 void
2909 print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
2910 {
2911 int i;
2912
2913 for (i = 0; i < ps->ii; i++)
2914 {
2915 ps_insn_ptr ps_i = ps->rows[i];
2916
2917 fprintf (dump, "\n[ROW %d ]: ", i);
2918 while (ps_i)
2919 {
2920 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id);
2921
2922 if (JUMP_P (insn))
2923 fprintf (dump, "%d (branch), ", INSN_UID (insn));
2924 else
2925 fprintf (dump, "%d, ", INSN_UID (insn));
2926
2927 ps_i = ps_i->next_in_row;
2928 }
2929 }
2930 }
2931
2932 /* Creates an object of PS_INSN and initializes it to the given parameters. */
2933 static ps_insn_ptr
2934 create_ps_insn (int id, int cycle)
2935 {
2936 ps_insn_ptr ps_i = XNEW (struct ps_insn);
2937
2938 ps_i->id = id;
2939 ps_i->next_in_row = NULL;
2940 ps_i->prev_in_row = NULL;
2941 ps_i->cycle = cycle;
2942
2943 return ps_i;
2944 }
2945
2946
2947 /* Removes the given PS_INSN from the partial schedule. */
2948 static void
2949 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
2950 {
2951 int row;
2952
2953 gcc_assert (ps && ps_i);
2954
2955 row = SMODULO (ps_i->cycle, ps->ii);
2956 if (! ps_i->prev_in_row)
2957 {
2958 gcc_assert (ps_i == ps->rows[row]);
2959 ps->rows[row] = ps_i->next_in_row;
2960 if (ps->rows[row])
2961 ps->rows[row]->prev_in_row = NULL;
2962 }
2963 else
2964 {
2965 ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
2966 if (ps_i->next_in_row)
2967 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
2968 }
2969
2970 ps->rows_length[row] -= 1;
2971 free (ps_i);
2972 return;
2973 }
2974
2975 /* Unlike what literature describes for modulo scheduling (which focuses
2976 on VLIW machines) the order of the instructions inside a cycle is
2977 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
2978 where the current instruction should go relative to the already
2979 scheduled instructions in the given cycle. Go over these
2980 instructions and find the first possible column to put it in. */
2981 static bool
2982 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
2983 sbitmap must_precede, sbitmap must_follow)
2984 {
2985 ps_insn_ptr next_ps_i;
2986 ps_insn_ptr first_must_follow = NULL;
2987 ps_insn_ptr last_must_precede = NULL;
2988 ps_insn_ptr last_in_row = NULL;
2989 int row;
2990
2991 if (! ps_i)
2992 return false;
2993
2994 row = SMODULO (ps_i->cycle, ps->ii);
2995
2996 /* Find the first must follow and the last must precede
2997 and insert the node immediately after the must precede
2998 but make sure that it there is no must follow after it. */
2999 for (next_ps_i = ps->rows[row];
3000 next_ps_i;
3001 next_ps_i = next_ps_i->next_in_row)
3002 {
3003 if (must_follow
3004 && bitmap_bit_p (must_follow, next_ps_i->id)
3005 && ! first_must_follow)
3006 first_must_follow = next_ps_i;
3007 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id))
3008 {
3009 /* If we have already met a node that must follow, then
3010 there is no possible column. */
3011 if (first_must_follow)
3012 return false;
3013 else
3014 last_must_precede = next_ps_i;
3015 }
3016 /* The closing branch must be the last in the row. */
3017 if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
3018 return false;
3019
3020 last_in_row = next_ps_i;
3021 }
3022
3023 /* The closing branch is scheduled as well. Make sure there is no
3024 dependent instruction after it as the branch should be the last
3025 instruction in the row. */
3026 if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
3027 {
3028 if (first_must_follow)
3029 return false;
3030 if (last_in_row)
3031 {
3032 /* Make the branch the last in the row. New instructions
3033 will be inserted at the beginning of the row or after the
3034 last must_precede instruction thus the branch is guaranteed
3035 to remain the last instruction in the row. */
3036 last_in_row->next_in_row = ps_i;
3037 ps_i->prev_in_row = last_in_row;
3038 ps_i->next_in_row = NULL;
3039 }
3040 else
3041 ps->rows[row] = ps_i;
3042 return true;
3043 }
3044
3045 /* Now insert the node after INSERT_AFTER_PSI. */
3046
3047 if (! last_must_precede)
3048 {
3049 ps_i->next_in_row = ps->rows[row];
3050 ps_i->prev_in_row = NULL;
3051 if (ps_i->next_in_row)
3052 ps_i->next_in_row->prev_in_row = ps_i;
3053 ps->rows[row] = ps_i;
3054 }
3055 else
3056 {
3057 ps_i->next_in_row = last_must_precede->next_in_row;
3058 last_must_precede->next_in_row = ps_i;
3059 ps_i->prev_in_row = last_must_precede;
3060 if (ps_i->next_in_row)
3061 ps_i->next_in_row->prev_in_row = ps_i;
3062 }
3063
3064 return true;
3065 }
3066
3067 /* Advances the PS_INSN one column in its current row; returns false
3068 in failure and true in success. Bit N is set in MUST_FOLLOW if
3069 the node with cuid N must be come after the node pointed to by
3070 PS_I when scheduled in the same cycle. */
3071 static int
3072 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
3073 sbitmap must_follow)
3074 {
3075 ps_insn_ptr prev, next;
3076 int row;
3077
3078 if (!ps || !ps_i)
3079 return false;
3080
3081 row = SMODULO (ps_i->cycle, ps->ii);
3082
3083 if (! ps_i->next_in_row)
3084 return false;
3085
3086 /* Check if next_in_row is dependent on ps_i, both having same sched
3087 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */
3088 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id))
3089 return false;
3090
3091 /* Advance PS_I over its next_in_row in the doubly linked list. */
3092 prev = ps_i->prev_in_row;
3093 next = ps_i->next_in_row;
3094
3095 if (ps_i == ps->rows[row])
3096 ps->rows[row] = next;
3097
3098 ps_i->next_in_row = next->next_in_row;
3099
3100 if (next->next_in_row)
3101 next->next_in_row->prev_in_row = ps_i;
3102
3103 next->next_in_row = ps_i;
3104 ps_i->prev_in_row = next;
3105
3106 next->prev_in_row = prev;
3107 if (prev)
3108 prev->next_in_row = next;
3109
3110 return true;
3111 }
3112
3113 /* Inserts a DDG_NODE to the given partial schedule at the given cycle.
3114 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is
3115 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
3116 before/after (respectively) the node pointed to by PS_I when scheduled
3117 in the same cycle. */
3118 static ps_insn_ptr
3119 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
3120 sbitmap must_precede, sbitmap must_follow)
3121 {
3122 ps_insn_ptr ps_i;
3123 int row = SMODULO (cycle, ps->ii);
3124
3125 if (ps->rows_length[row] >= issue_rate)
3126 return NULL;
3127
3128 ps_i = create_ps_insn (id, cycle);
3129
3130 /* Finds and inserts PS_I according to MUST_FOLLOW and
3131 MUST_PRECEDE. */
3132 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
3133 {
3134 free (ps_i);
3135 return NULL;
3136 }
3137
3138 ps->rows_length[row] += 1;
3139 return ps_i;
3140 }
3141
3142 /* Advance time one cycle. Assumes DFA is being used. */
3143 static void
3144 advance_one_cycle (void)
3145 {
3146 if (targetm.sched.dfa_pre_cycle_insn)
3147 state_transition (curr_state,
3148 targetm.sched.dfa_pre_cycle_insn ());
3149
3150 state_transition (curr_state, NULL);
3151
3152 if (targetm.sched.dfa_post_cycle_insn)
3153 state_transition (curr_state,
3154 targetm.sched.dfa_post_cycle_insn ());
3155 }
3156
3157
3158
3159 /* Checks if PS has resource conflicts according to DFA, starting from
3160 FROM cycle to TO cycle; returns true if there are conflicts and false
3161 if there are no conflicts. Assumes DFA is being used. */
3162 static int
3163 ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
3164 {
3165 int cycle;
3166
3167 state_reset (curr_state);
3168
3169 for (cycle = from; cycle <= to; cycle++)
3170 {
3171 ps_insn_ptr crr_insn;
3172 /* Holds the remaining issue slots in the current row. */
3173 int can_issue_more = issue_rate;
3174
3175 /* Walk through the DFA for the current row. */
3176 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
3177 crr_insn;
3178 crr_insn = crr_insn->next_in_row)
3179 {
3180 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id);
3181
3182 /* Check if there is room for the current insn. */
3183 if (!can_issue_more || state_dead_lock_p (curr_state))
3184 return true;
3185
3186 /* Update the DFA state and return with failure if the DFA found
3187 resource conflicts. */
3188 if (state_transition (curr_state, insn) >= 0)
3189 return true;
3190
3191 if (targetm.sched.variable_issue)
3192 can_issue_more =
3193 targetm.sched.variable_issue (sched_dump, sched_verbose,
3194 insn, can_issue_more);
3195 /* A naked CLOBBER or USE generates no instruction, so don't
3196 let them consume issue slots. */
3197 else if (GET_CODE (PATTERN (insn)) != USE
3198 && GET_CODE (PATTERN (insn)) != CLOBBER)
3199 can_issue_more--;
3200 }
3201
3202 /* Advance the DFA to the next cycle. */
3203 advance_one_cycle ();
3204 }
3205 return false;
3206 }
3207
3208 /* Checks if the given node causes resource conflicts when added to PS at
3209 cycle C. If not the node is added to PS and returned; otherwise zero
3210 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
3211 cuid N must be come before/after (respectively) the node pointed to by
3212 PS_I when scheduled in the same cycle. */
3213 ps_insn_ptr
3214 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
3215 int c, sbitmap must_precede,
3216 sbitmap must_follow)
3217 {
3218 int i, first, amount, has_conflicts = 0;
3219 ps_insn_ptr ps_i;
3220
3221 /* First add the node to the PS, if this succeeds check for
3222 conflicts, trying different issue slots in the same row. */
3223 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
3224 return NULL; /* Failed to insert the node at the given cycle. */
3225
3226 while (1)
3227 {
3228 has_conflicts = ps_has_conflicts (ps, c, c);
3229 if (ps->history > 0 && !has_conflicts)
3230 {
3231 /* Check all 2h+1 intervals, starting from c-2h..c up to c..2h,
3232 but not more than ii intervals. */
3233 first = c - ps->history;
3234 amount = 2 * ps->history + 1;
3235 if (amount > ps->ii)
3236 amount = ps->ii;
3237 for (i = first; i < first + amount; i++)
3238 {
3239 has_conflicts = ps_has_conflicts (ps,
3240 i - ps->history,
3241 i + ps->history);
3242 if (has_conflicts)
3243 break;
3244 }
3245 }
3246 if (!has_conflicts)
3247 break;
3248 /* Try different issue slots to find one that the given node can be
3249 scheduled in without conflicts. */
3250 if (! ps_insn_advance_column (ps, ps_i, must_follow))
3251 break;
3252 }
3253
3254 if (has_conflicts)
3255 {
3256 remove_node_from_ps (ps, ps_i);
3257 return NULL;
3258 }
3259
3260 ps->min_cycle = MIN (ps->min_cycle, c);
3261 ps->max_cycle = MAX (ps->max_cycle, c);
3262 return ps_i;
3263 }
3264
3265 /* Calculate the stage count of the partial schedule PS. The calculation
3266 takes into account the rotation amount passed in ROTATION_AMOUNT. */
3267 int
3268 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
3269 {
3270 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
3271 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
3272 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
3273
3274 /* The calculation of stage count is done adding the number of stages
3275 before cycle zero and after cycle zero. */
3276 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
3277
3278 return stage_count;
3279 }
3280
3281 /* Rotate the rows of PS such that insns scheduled at time
3282 START_CYCLE will appear in row 0. Updates max/min_cycles. */
3283 void
3284 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
3285 {
3286 int i, row, backward_rotates;
3287 int last_row = ps->ii - 1;
3288
3289 if (start_cycle == 0)
3290 return;
3291
3292 backward_rotates = SMODULO (start_cycle, ps->ii);
3293
3294 /* Revisit later and optimize this into a single loop. */
3295 for (i = 0; i < backward_rotates; i++)
3296 {
3297 ps_insn_ptr first_row = ps->rows[0];
3298 int first_row_length = ps->rows_length[0];
3299
3300 for (row = 0; row < last_row; row++)
3301 {
3302 ps->rows[row] = ps->rows[row + 1];
3303 ps->rows_length[row] = ps->rows_length[row + 1];
3304 }
3305
3306 ps->rows[last_row] = first_row;
3307 ps->rows_length[last_row] = first_row_length;
3308 }
3309
3310 ps->max_cycle -= start_cycle;
3311 ps->min_cycle -= start_cycle;
3312 }
3313
3314 #endif /* INSN_SCHEDULING */
3315 \f
3316 /* Run instruction scheduler. */
3317 /* Perform SMS module scheduling. */
3318
3319 namespace {
3320
3321 const pass_data pass_data_sms =
3322 {
3323 RTL_PASS, /* type */
3324 "sms", /* name */
3325 OPTGROUP_NONE, /* optinfo_flags */
3326 TV_SMS, /* tv_id */
3327 0, /* properties_required */
3328 0, /* properties_provided */
3329 0, /* properties_destroyed */
3330 0, /* todo_flags_start */
3331 TODO_df_finish, /* todo_flags_finish */
3332 };
3333
3334 class pass_sms : public rtl_opt_pass
3335 {
3336 public:
3337 pass_sms (gcc::context *ctxt)
3338 : rtl_opt_pass (pass_data_sms, ctxt)
3339 {}
3340
3341 /* opt_pass methods: */
3342 virtual bool gate (function *)
3343 {
3344 return (optimize > 0 && flag_modulo_sched);
3345 }
3346
3347 virtual unsigned int execute (function *);
3348
3349 }; // class pass_sms
3350
3351 unsigned int
3352 pass_sms::execute (function *fun ATTRIBUTE_UNUSED)
3353 {
3354 #ifdef INSN_SCHEDULING
3355 basic_block bb;
3356
3357 /* Collect loop information to be used in SMS. */
3358 cfg_layout_initialize (0);
3359 sms_schedule ();
3360
3361 /* Update the life information, because we add pseudos. */
3362 max_regno = max_reg_num ();
3363
3364 /* Finalize layout changes. */
3365 FOR_EACH_BB_FN (bb, fun)
3366 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun))
3367 bb->aux = bb->next_bb;
3368 free_dominance_info (CDI_DOMINATORS);
3369 cfg_layout_finalize ();
3370 #endif /* INSN_SCHEDULING */
3371 return 0;
3372 }
3373
3374 } // anon namespace
3375
3376 rtl_opt_pass *
3377 make_pass_sms (gcc::context *ctxt)
3378 {
3379 return new pass_sms (ctxt);
3380 }