]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
expr.c (enqueue_insn, [...]): Remove.
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 /* Each optab contains info on how this target machine
49 can perform a particular operation
50 for all sizes and kinds of operands.
51
52 The operation to be performed is often specified
53 by passing one of these optabs as an argument.
54
55 See expr.h for documentation of these optabs. */
56
57 optab optab_table[OTI_MAX];
58
59 rtx libfunc_table[LTI_MAX];
60
61 /* Tables of patterns for converting one mode to another. */
62 convert_optab convert_optab_table[CTI_MAX];
63
64 /* Contains the optab used for each rtx code. */
65 optab code_to_optab[NUM_RTX_CODE + 1];
66
67 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
68 gives the gen_function to make a branch to test that condition. */
69
70 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
71
72 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
73 gives the insn code to make a store-condition insn
74 to test that condition. */
75
76 enum insn_code setcc_gen_code[NUM_RTX_CODE];
77
78 #ifdef HAVE_conditional_move
79 /* Indexed by the machine mode, gives the insn code to make a conditional
80 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
81 setcc_gen_code to cut down on the number of named patterns. Consider a day
82 when a lot more rtx codes are conditional (eg: for the ARM). */
83
84 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
85 #endif
86
87 /* The insn generating function can not take an rtx_code argument.
88 TRAP_RTX is used as an rtx argument. Its code is replaced with
89 the code to be used in the trap insn and all other fields are ignored. */
90 static GTY(()) rtx trap_rtx;
91
92 static int add_equal_note (rtx, rtx, enum rtx_code, rtx, rtx);
93 static rtx widen_operand (rtx, enum machine_mode, enum machine_mode, int,
94 int);
95 static int expand_cmplxdiv_straight (rtx, rtx, rtx, rtx, rtx, rtx,
96 enum machine_mode, int,
97 enum optab_methods, enum mode_class,
98 optab);
99 static int expand_cmplxdiv_wide (rtx, rtx, rtx, rtx, rtx, rtx,
100 enum machine_mode, int, enum optab_methods,
101 enum mode_class, optab);
102 static void prepare_cmp_insn (rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose);
105 static enum insn_code can_fix_p (enum machine_mode, enum machine_mode, int,
106 int *);
107 static enum insn_code can_float_p (enum machine_mode, enum machine_mode, int);
108 static optab new_optab (void);
109 static convert_optab new_convert_optab (void);
110 static inline optab init_optab (enum rtx_code);
111 static inline optab init_optabv (enum rtx_code);
112 static inline convert_optab init_convert_optab (enum rtx_code);
113 static void init_libfuncs (optab, int, int, const char *, int);
114 static void init_integral_libfuncs (optab, const char *, int);
115 static void init_floating_libfuncs (optab, const char *, int);
116 static void init_interclass_conv_libfuncs (convert_optab, const char *,
117 enum mode_class, enum mode_class);
118 static void init_intraclass_conv_libfuncs (convert_optab, const char *,
119 enum mode_class, bool);
120 static void emit_cmp_and_jump_insn_1 (rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx);
122 static void prepare_float_lib_cmp (rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *);
124 static rtx expand_vector_binop (enum machine_mode, optab, rtx, rtx, rtx, int,
125 enum optab_methods);
126 static rtx expand_vector_unop (enum machine_mode, optab, rtx, rtx, int);
127 static rtx widen_clz (enum machine_mode, rtx, rtx);
128 static rtx expand_parity (enum machine_mode, rtx, rtx);
129
130 #ifndef HAVE_conditional_trap
131 #define HAVE_conditional_trap 0
132 #define gen_conditional_trap(a,b) (abort (), NULL_RTX)
133 #endif
134 \f
135 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
136 the result of operation CODE applied to OP0 (and OP1 if it is a binary
137 operation).
138
139 If the last insn does not set TARGET, don't do anything, but return 1.
140
141 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
142 don't add the REG_EQUAL note but return 0. Our caller can then try
143 again, ensuring that TARGET is not one of the operands. */
144
145 static int
146 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
147 {
148 rtx last_insn, insn, set;
149 rtx note;
150
151 if (! insns
152 || ! INSN_P (insns)
153 || NEXT_INSN (insns) == NULL_RTX)
154 abort ();
155
156 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
157 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
158 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
159 && GET_RTX_CLASS (code) != RTX_COMPARE
160 && GET_RTX_CLASS (code) != RTX_UNARY)
161 return 1;
162
163 if (GET_CODE (target) == ZERO_EXTRACT)
164 return 1;
165
166 for (last_insn = insns;
167 NEXT_INSN (last_insn) != NULL_RTX;
168 last_insn = NEXT_INSN (last_insn))
169 ;
170
171 set = single_set (last_insn);
172 if (set == NULL_RTX)
173 return 1;
174
175 if (! rtx_equal_p (SET_DEST (set), target)
176 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
177 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
178 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
179 return 1;
180
181 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
182 besides the last insn. */
183 if (reg_overlap_mentioned_p (target, op0)
184 || (op1 && reg_overlap_mentioned_p (target, op1)))
185 {
186 insn = PREV_INSN (last_insn);
187 while (insn != NULL_RTX)
188 {
189 if (reg_set_p (target, insn))
190 return 0;
191
192 insn = PREV_INSN (insn);
193 }
194 }
195
196 if (GET_RTX_CLASS (code) == RTX_UNARY)
197 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
198 else
199 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
200
201 set_unique_reg_note (last_insn, REG_EQUAL, note);
202
203 return 1;
204 }
205 \f
206 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
207 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
208 not actually do a sign-extend or zero-extend, but can leave the
209 higher-order bits of the result rtx undefined, for example, in the case
210 of logical operations, but not right shifts. */
211
212 static rtx
213 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
214 int unsignedp, int no_extend)
215 {
216 rtx result;
217
218 /* If we don't have to extend and this is a constant, return it. */
219 if (no_extend && GET_MODE (op) == VOIDmode)
220 return op;
221
222 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
223 extend since it will be more efficient to do so unless the signedness of
224 a promoted object differs from our extension. */
225 if (! no_extend
226 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
227 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
228 return convert_modes (mode, oldmode, op, unsignedp);
229
230 /* If MODE is no wider than a single word, we return a paradoxical
231 SUBREG. */
232 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
233 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
234
235 /* Otherwise, get an object of MODE, clobber it, and set the low-order
236 part to OP. */
237
238 result = gen_reg_rtx (mode);
239 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
240 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
241 return result;
242 }
243 \f
244 /* Generate code to perform a straightforward complex divide. */
245
246 static int
247 expand_cmplxdiv_straight (rtx real0, rtx real1, rtx imag0, rtx imag1,
248 rtx realr, rtx imagr, enum machine_mode submode,
249 int unsignedp, enum optab_methods methods,
250 enum mode_class class, optab binoptab)
251 {
252 rtx divisor;
253 rtx real_t, imag_t;
254 rtx temp1, temp2;
255 rtx res;
256 optab this_add_optab = add_optab;
257 optab this_sub_optab = sub_optab;
258 optab this_neg_optab = neg_optab;
259 optab this_mul_optab = smul_optab;
260
261 if (binoptab == sdivv_optab)
262 {
263 this_add_optab = addv_optab;
264 this_sub_optab = subv_optab;
265 this_neg_optab = negv_optab;
266 this_mul_optab = smulv_optab;
267 }
268
269 /* Don't fetch these from memory more than once. */
270 real0 = force_reg (submode, real0);
271 real1 = force_reg (submode, real1);
272
273 if (imag0 != 0)
274 imag0 = force_reg (submode, imag0);
275
276 imag1 = force_reg (submode, imag1);
277
278 /* Divisor: c*c + d*d. */
279 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
280 NULL_RTX, unsignedp, methods);
281
282 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
283 NULL_RTX, unsignedp, methods);
284
285 if (temp1 == 0 || temp2 == 0)
286 return 0;
287
288 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
289 NULL_RTX, unsignedp, methods);
290 if (divisor == 0)
291 return 0;
292
293 if (imag0 == 0)
294 {
295 /* Mathematically, ((a)(c-id))/divisor. */
296 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
297
298 /* Calculate the dividend. */
299 real_t = expand_binop (submode, this_mul_optab, real0, real1,
300 NULL_RTX, unsignedp, methods);
301
302 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
303 NULL_RTX, unsignedp, methods);
304
305 if (real_t == 0 || imag_t == 0)
306 return 0;
307
308 imag_t = expand_unop (submode, this_neg_optab, imag_t,
309 NULL_RTX, unsignedp);
310 }
311 else
312 {
313 /* Mathematically, ((a+ib)(c-id))/divider. */
314 /* Calculate the dividend. */
315 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
316 NULL_RTX, unsignedp, methods);
317
318 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
319 NULL_RTX, unsignedp, methods);
320
321 if (temp1 == 0 || temp2 == 0)
322 return 0;
323
324 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
325 NULL_RTX, unsignedp, methods);
326
327 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
328 NULL_RTX, unsignedp, methods);
329
330 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
331 NULL_RTX, unsignedp, methods);
332
333 if (temp1 == 0 || temp2 == 0)
334 return 0;
335
336 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
337 NULL_RTX, unsignedp, methods);
338
339 if (real_t == 0 || imag_t == 0)
340 return 0;
341 }
342
343 if (class == MODE_COMPLEX_FLOAT)
344 res = expand_binop (submode, binoptab, real_t, divisor,
345 realr, unsignedp, methods);
346 else
347 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
348 real_t, divisor, realr, unsignedp);
349
350 if (res == 0)
351 return 0;
352
353 if (res != realr)
354 emit_move_insn (realr, res);
355
356 if (class == MODE_COMPLEX_FLOAT)
357 res = expand_binop (submode, binoptab, imag_t, divisor,
358 imagr, unsignedp, methods);
359 else
360 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
361 imag_t, divisor, imagr, unsignedp);
362
363 if (res == 0)
364 return 0;
365
366 if (res != imagr)
367 emit_move_insn (imagr, res);
368
369 return 1;
370 }
371 \f
372 /* Generate code to perform a wide-input-range-acceptable complex divide. */
373
374 static int
375 expand_cmplxdiv_wide (rtx real0, rtx real1, rtx imag0, rtx imag1, rtx realr,
376 rtx imagr, enum machine_mode submode, int unsignedp,
377 enum optab_methods methods, enum mode_class class,
378 optab binoptab)
379 {
380 rtx ratio, divisor;
381 rtx real_t, imag_t;
382 rtx temp1, temp2, lab1, lab2;
383 enum machine_mode mode;
384 rtx res;
385 optab this_add_optab = add_optab;
386 optab this_sub_optab = sub_optab;
387 optab this_neg_optab = neg_optab;
388 optab this_mul_optab = smul_optab;
389
390 if (binoptab == sdivv_optab)
391 {
392 this_add_optab = addv_optab;
393 this_sub_optab = subv_optab;
394 this_neg_optab = negv_optab;
395 this_mul_optab = smulv_optab;
396 }
397
398 /* Don't fetch these from memory more than once. */
399 real0 = force_reg (submode, real0);
400 real1 = force_reg (submode, real1);
401
402 if (imag0 != 0)
403 imag0 = force_reg (submode, imag0);
404
405 imag1 = force_reg (submode, imag1);
406
407 /* XXX What's an "unsigned" complex number? */
408 if (unsignedp)
409 {
410 temp1 = real1;
411 temp2 = imag1;
412 }
413 else
414 {
415 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
416 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
417 }
418
419 if (temp1 == 0 || temp2 == 0)
420 return 0;
421
422 mode = GET_MODE (temp1);
423 lab1 = gen_label_rtx ();
424 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
425 mode, unsignedp, lab1);
426
427 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
428
429 if (class == MODE_COMPLEX_FLOAT)
430 ratio = expand_binop (submode, binoptab, imag1, real1,
431 NULL_RTX, unsignedp, methods);
432 else
433 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
434 imag1, real1, NULL_RTX, unsignedp);
435
436 if (ratio == 0)
437 return 0;
438
439 /* Calculate divisor. */
440
441 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
442 NULL_RTX, unsignedp, methods);
443
444 if (temp1 == 0)
445 return 0;
446
447 divisor = expand_binop (submode, this_add_optab, temp1, real1,
448 NULL_RTX, unsignedp, methods);
449
450 if (divisor == 0)
451 return 0;
452
453 /* Calculate dividend. */
454
455 if (imag0 == 0)
456 {
457 real_t = real0;
458
459 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
460
461 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
462 NULL_RTX, unsignedp, methods);
463
464 if (imag_t == 0)
465 return 0;
466
467 imag_t = expand_unop (submode, this_neg_optab, imag_t,
468 NULL_RTX, unsignedp);
469
470 if (real_t == 0 || imag_t == 0)
471 return 0;
472 }
473 else
474 {
475 /* Compute (a+ib)/(c+id) as
476 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
477
478 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
479 NULL_RTX, unsignedp, methods);
480
481 if (temp1 == 0)
482 return 0;
483
484 real_t = expand_binop (submode, this_add_optab, temp1, real0,
485 NULL_RTX, unsignedp, methods);
486
487 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
488 NULL_RTX, unsignedp, methods);
489
490 if (temp1 == 0)
491 return 0;
492
493 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
494 NULL_RTX, unsignedp, methods);
495
496 if (real_t == 0 || imag_t == 0)
497 return 0;
498 }
499
500 if (class == MODE_COMPLEX_FLOAT)
501 res = expand_binop (submode, binoptab, real_t, divisor,
502 realr, unsignedp, methods);
503 else
504 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
505 real_t, divisor, realr, unsignedp);
506
507 if (res == 0)
508 return 0;
509
510 if (res != realr)
511 emit_move_insn (realr, res);
512
513 if (class == MODE_COMPLEX_FLOAT)
514 res = expand_binop (submode, binoptab, imag_t, divisor,
515 imagr, unsignedp, methods);
516 else
517 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
518 imag_t, divisor, imagr, unsignedp);
519
520 if (res == 0)
521 return 0;
522
523 if (res != imagr)
524 emit_move_insn (imagr, res);
525
526 lab2 = gen_label_rtx ();
527 emit_jump_insn (gen_jump (lab2));
528 emit_barrier ();
529
530 emit_label (lab1);
531
532 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
533
534 if (class == MODE_COMPLEX_FLOAT)
535 ratio = expand_binop (submode, binoptab, real1, imag1,
536 NULL_RTX, unsignedp, methods);
537 else
538 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
539 real1, imag1, NULL_RTX, unsignedp);
540
541 if (ratio == 0)
542 return 0;
543
544 /* Calculate divisor. */
545
546 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
547 NULL_RTX, unsignedp, methods);
548
549 if (temp1 == 0)
550 return 0;
551
552 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
553 NULL_RTX, unsignedp, methods);
554
555 if (divisor == 0)
556 return 0;
557
558 /* Calculate dividend. */
559
560 if (imag0 == 0)
561 {
562 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
563
564 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
565 NULL_RTX, unsignedp, methods);
566
567 imag_t = expand_unop (submode, this_neg_optab, real0,
568 NULL_RTX, unsignedp);
569
570 if (real_t == 0 || imag_t == 0)
571 return 0;
572 }
573 else
574 {
575 /* Compute (a+ib)/(c+id) as
576 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
577
578 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
579 NULL_RTX, unsignedp, methods);
580
581 if (temp1 == 0)
582 return 0;
583
584 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
585 NULL_RTX, unsignedp, methods);
586
587 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
588 NULL_RTX, unsignedp, methods);
589
590 if (temp1 == 0)
591 return 0;
592
593 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
594 NULL_RTX, unsignedp, methods);
595
596 if (real_t == 0 || imag_t == 0)
597 return 0;
598 }
599
600 if (class == MODE_COMPLEX_FLOAT)
601 res = expand_binop (submode, binoptab, real_t, divisor,
602 realr, unsignedp, methods);
603 else
604 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
605 real_t, divisor, realr, unsignedp);
606
607 if (res == 0)
608 return 0;
609
610 if (res != realr)
611 emit_move_insn (realr, res);
612
613 if (class == MODE_COMPLEX_FLOAT)
614 res = expand_binop (submode, binoptab, imag_t, divisor,
615 imagr, unsignedp, methods);
616 else
617 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
618 imag_t, divisor, imagr, unsignedp);
619
620 if (res == 0)
621 return 0;
622
623 if (res != imagr)
624 emit_move_insn (imagr, res);
625
626 emit_label (lab2);
627
628 return 1;
629 }
630 \f
631 /* Wrapper around expand_binop which takes an rtx code to specify
632 the operation to perform, not an optab pointer. All other
633 arguments are the same. */
634 rtx
635 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
636 rtx op1, rtx target, int unsignedp,
637 enum optab_methods methods)
638 {
639 optab binop = code_to_optab[(int) code];
640 if (binop == 0)
641 abort ();
642
643 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
644 }
645
646 /* Generate code to perform an operation specified by BINOPTAB
647 on operands OP0 and OP1, with result having machine-mode MODE.
648
649 UNSIGNEDP is for the case where we have to widen the operands
650 to perform the operation. It says to use zero-extension.
651
652 If TARGET is nonzero, the value
653 is generated there, if it is convenient to do so.
654 In all cases an rtx is returned for the locus of the value;
655 this may or may not be TARGET. */
656
657 rtx
658 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
659 rtx target, int unsignedp, enum optab_methods methods)
660 {
661 enum optab_methods next_methods
662 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
663 ? OPTAB_WIDEN : methods);
664 enum mode_class class;
665 enum machine_mode wider_mode;
666 rtx temp;
667 int commutative_op = 0;
668 int shift_op = (binoptab->code == ASHIFT
669 || binoptab->code == ASHIFTRT
670 || binoptab->code == LSHIFTRT
671 || binoptab->code == ROTATE
672 || binoptab->code == ROTATERT);
673 rtx entry_last = get_last_insn ();
674 rtx last;
675
676 class = GET_MODE_CLASS (mode);
677
678 if (flag_force_mem)
679 {
680 /* Load duplicate non-volatile operands once. */
681 if (rtx_equal_p (op0, op1) && ! volatile_refs_p (op0))
682 {
683 op0 = force_not_mem (op0);
684 op1 = op0;
685 }
686 else
687 {
688 op0 = force_not_mem (op0);
689 op1 = force_not_mem (op1);
690 }
691 }
692
693 /* If subtracting an integer constant, convert this into an addition of
694 the negated constant. */
695
696 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
697 {
698 op1 = negate_rtx (mode, op1);
699 binoptab = add_optab;
700 }
701
702 /* If we are inside an appropriately-short loop and one operand is an
703 expensive constant, force it into a register. */
704 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
705 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
706 op0 = force_reg (mode, op0);
707
708 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
709 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
710 op1 = force_reg (mode, op1);
711
712 /* Record where to delete back to if we backtrack. */
713 last = get_last_insn ();
714
715 /* If operation is commutative,
716 try to make the first operand a register.
717 Even better, try to make it the same as the target.
718 Also try to make the last operand a constant. */
719 if (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
720 || binoptab == smul_widen_optab
721 || binoptab == umul_widen_optab
722 || binoptab == smul_highpart_optab
723 || binoptab == umul_highpart_optab)
724 {
725 commutative_op = 1;
726
727 if (((target == 0 || REG_P (target))
728 ? ((REG_P (op1)
729 && !REG_P (op0))
730 || target == op1)
731 : rtx_equal_p (op1, target))
732 || GET_CODE (op0) == CONST_INT)
733 {
734 temp = op1;
735 op1 = op0;
736 op0 = temp;
737 }
738 }
739
740 /* If we can do it with a three-operand insn, do so. */
741
742 if (methods != OPTAB_MUST_WIDEN
743 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
744 {
745 int icode = (int) binoptab->handlers[(int) mode].insn_code;
746 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
747 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
748 rtx pat;
749 rtx xop0 = op0, xop1 = op1;
750
751 if (target)
752 temp = target;
753 else
754 temp = gen_reg_rtx (mode);
755
756 /* If it is a commutative operator and the modes would match
757 if we would swap the operands, we can save the conversions. */
758 if (commutative_op)
759 {
760 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
761 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
762 {
763 rtx tmp;
764
765 tmp = op0; op0 = op1; op1 = tmp;
766 tmp = xop0; xop0 = xop1; xop1 = tmp;
767 }
768 }
769
770 /* In case the insn wants input operands in modes different from
771 those of the actual operands, convert the operands. It would
772 seem that we don't need to convert CONST_INTs, but we do, so
773 that they're properly zero-extended, sign-extended or truncated
774 for their mode. */
775
776 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
777 xop0 = convert_modes (mode0,
778 GET_MODE (op0) != VOIDmode
779 ? GET_MODE (op0)
780 : mode,
781 xop0, unsignedp);
782
783 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
784 xop1 = convert_modes (mode1,
785 GET_MODE (op1) != VOIDmode
786 ? GET_MODE (op1)
787 : mode,
788 xop1, unsignedp);
789
790 /* Now, if insn's predicates don't allow our operands, put them into
791 pseudo regs. */
792
793 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
794 && mode0 != VOIDmode)
795 xop0 = copy_to_mode_reg (mode0, xop0);
796
797 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
798 && mode1 != VOIDmode)
799 xop1 = copy_to_mode_reg (mode1, xop1);
800
801 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
802 temp = gen_reg_rtx (mode);
803
804 pat = GEN_FCN (icode) (temp, xop0, xop1);
805 if (pat)
806 {
807 /* If PAT is composed of more than one insn, try to add an appropriate
808 REG_EQUAL note to it. If we can't because TEMP conflicts with an
809 operand, call ourselves again, this time without a target. */
810 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
811 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
812 {
813 delete_insns_since (last);
814 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
815 unsignedp, methods);
816 }
817
818 emit_insn (pat);
819 return temp;
820 }
821 else
822 delete_insns_since (last);
823 }
824
825 /* If this is a multiply, see if we can do a widening operation that
826 takes operands of this mode and makes a wider mode. */
827
828 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
829 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
830 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
831 != CODE_FOR_nothing))
832 {
833 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
834 unsignedp ? umul_widen_optab : smul_widen_optab,
835 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
836
837 if (temp != 0)
838 {
839 if (GET_MODE_CLASS (mode) == MODE_INT)
840 return gen_lowpart (mode, temp);
841 else
842 return convert_to_mode (mode, temp, unsignedp);
843 }
844 }
845
846 /* Look for a wider mode of the same class for which we think we
847 can open-code the operation. Check for a widening multiply at the
848 wider mode as well. */
849
850 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
851 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
852 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
853 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
854 {
855 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
856 || (binoptab == smul_optab
857 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
858 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
859 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
860 != CODE_FOR_nothing)))
861 {
862 rtx xop0 = op0, xop1 = op1;
863 int no_extend = 0;
864
865 /* For certain integer operations, we need not actually extend
866 the narrow operands, as long as we will truncate
867 the results to the same narrowness. */
868
869 if ((binoptab == ior_optab || binoptab == and_optab
870 || binoptab == xor_optab
871 || binoptab == add_optab || binoptab == sub_optab
872 || binoptab == smul_optab || binoptab == ashl_optab)
873 && class == MODE_INT)
874 no_extend = 1;
875
876 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
877
878 /* The second operand of a shift must always be extended. */
879 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
880 no_extend && binoptab != ashl_optab);
881
882 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
883 unsignedp, OPTAB_DIRECT);
884 if (temp)
885 {
886 if (class != MODE_INT)
887 {
888 if (target == 0)
889 target = gen_reg_rtx (mode);
890 convert_move (target, temp, 0);
891 return target;
892 }
893 else
894 return gen_lowpart (mode, temp);
895 }
896 else
897 delete_insns_since (last);
898 }
899 }
900
901 /* These can be done a word at a time. */
902 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
903 && class == MODE_INT
904 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
905 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
906 {
907 int i;
908 rtx insns;
909 rtx equiv_value;
910
911 /* If TARGET is the same as one of the operands, the REG_EQUAL note
912 won't be accurate, so use a new target. */
913 if (target == 0 || target == op0 || target == op1)
914 target = gen_reg_rtx (mode);
915
916 start_sequence ();
917
918 /* Do the actual arithmetic. */
919 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
920 {
921 rtx target_piece = operand_subword (target, i, 1, mode);
922 rtx x = expand_binop (word_mode, binoptab,
923 operand_subword_force (op0, i, mode),
924 operand_subword_force (op1, i, mode),
925 target_piece, unsignedp, next_methods);
926
927 if (x == 0)
928 break;
929
930 if (target_piece != x)
931 emit_move_insn (target_piece, x);
932 }
933
934 insns = get_insns ();
935 end_sequence ();
936
937 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
938 {
939 if (binoptab->code != UNKNOWN)
940 equiv_value
941 = gen_rtx_fmt_ee (binoptab->code, mode,
942 copy_rtx (op0), copy_rtx (op1));
943 else
944 equiv_value = 0;
945
946 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
947 return target;
948 }
949 }
950
951 /* Synthesize double word shifts from single word shifts. */
952 if ((binoptab == lshr_optab || binoptab == ashl_optab
953 || binoptab == ashr_optab)
954 && class == MODE_INT
955 && GET_CODE (op1) == CONST_INT
956 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
957 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
958 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
959 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
960 {
961 rtx insns, inter, equiv_value;
962 rtx into_target, outof_target;
963 rtx into_input, outof_input;
964 int shift_count, left_shift, outof_word;
965
966 /* If TARGET is the same as one of the operands, the REG_EQUAL note
967 won't be accurate, so use a new target. */
968 if (target == 0 || target == op0 || target == op1)
969 target = gen_reg_rtx (mode);
970
971 start_sequence ();
972
973 shift_count = INTVAL (op1);
974
975 /* OUTOF_* is the word we are shifting bits away from, and
976 INTO_* is the word that we are shifting bits towards, thus
977 they differ depending on the direction of the shift and
978 WORDS_BIG_ENDIAN. */
979
980 left_shift = binoptab == ashl_optab;
981 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
982
983 outof_target = operand_subword (target, outof_word, 1, mode);
984 into_target = operand_subword (target, 1 - outof_word, 1, mode);
985
986 outof_input = operand_subword_force (op0, outof_word, mode);
987 into_input = operand_subword_force (op0, 1 - outof_word, mode);
988
989 if (shift_count >= BITS_PER_WORD)
990 {
991 inter = expand_binop (word_mode, binoptab,
992 outof_input,
993 GEN_INT (shift_count - BITS_PER_WORD),
994 into_target, unsignedp, next_methods);
995
996 if (inter != 0 && inter != into_target)
997 emit_move_insn (into_target, inter);
998
999 /* For a signed right shift, we must fill the word we are shifting
1000 out of with copies of the sign bit. Otherwise it is zeroed. */
1001 if (inter != 0 && binoptab != ashr_optab)
1002 inter = CONST0_RTX (word_mode);
1003 else if (inter != 0)
1004 inter = expand_binop (word_mode, binoptab,
1005 outof_input,
1006 GEN_INT (BITS_PER_WORD - 1),
1007 outof_target, unsignedp, next_methods);
1008
1009 if (inter != 0 && inter != outof_target)
1010 emit_move_insn (outof_target, inter);
1011 }
1012 else
1013 {
1014 rtx carries;
1015 optab reverse_unsigned_shift, unsigned_shift;
1016
1017 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1018 we must do a logical shift in the opposite direction of the
1019 desired shift. */
1020
1021 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1022
1023 /* For a shift of less than BITS_PER_WORD, to compute the word
1024 shifted towards, we need to unsigned shift the orig value of
1025 that word. */
1026
1027 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1028
1029 carries = expand_binop (word_mode, reverse_unsigned_shift,
1030 outof_input,
1031 GEN_INT (BITS_PER_WORD - shift_count),
1032 0, unsignedp, next_methods);
1033
1034 if (carries == 0)
1035 inter = 0;
1036 else
1037 inter = expand_binop (word_mode, unsigned_shift, into_input,
1038 op1, 0, unsignedp, next_methods);
1039
1040 if (inter != 0)
1041 inter = expand_binop (word_mode, ior_optab, carries, inter,
1042 into_target, unsignedp, next_methods);
1043
1044 if (inter != 0 && inter != into_target)
1045 emit_move_insn (into_target, inter);
1046
1047 if (inter != 0)
1048 inter = expand_binop (word_mode, binoptab, outof_input,
1049 op1, outof_target, unsignedp, next_methods);
1050
1051 if (inter != 0 && inter != outof_target)
1052 emit_move_insn (outof_target, inter);
1053 }
1054
1055 insns = get_insns ();
1056 end_sequence ();
1057
1058 if (inter != 0)
1059 {
1060 if (binoptab->code != UNKNOWN)
1061 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1062 else
1063 equiv_value = 0;
1064
1065 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1066 return target;
1067 }
1068 }
1069
1070 /* Synthesize double word rotates from single word shifts. */
1071 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1072 && class == MODE_INT
1073 && GET_CODE (op1) == CONST_INT
1074 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1075 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1076 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1077 {
1078 rtx insns, equiv_value;
1079 rtx into_target, outof_target;
1080 rtx into_input, outof_input;
1081 rtx inter;
1082 int shift_count, left_shift, outof_word;
1083
1084 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1085 won't be accurate, so use a new target. Do this also if target is not
1086 a REG, first because having a register instead may open optimization
1087 opportunities, and second because if target and op0 happen to be MEMs
1088 designating the same location, we would risk clobbering it too early
1089 in the code sequence we generate below. */
1090 if (target == 0 || target == op0 || target == op1 || ! REG_P (target))
1091 target = gen_reg_rtx (mode);
1092
1093 start_sequence ();
1094
1095 shift_count = INTVAL (op1);
1096
1097 /* OUTOF_* is the word we are shifting bits away from, and
1098 INTO_* is the word that we are shifting bits towards, thus
1099 they differ depending on the direction of the shift and
1100 WORDS_BIG_ENDIAN. */
1101
1102 left_shift = (binoptab == rotl_optab);
1103 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1104
1105 outof_target = operand_subword (target, outof_word, 1, mode);
1106 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1107
1108 outof_input = operand_subword_force (op0, outof_word, mode);
1109 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1110
1111 if (shift_count == BITS_PER_WORD)
1112 {
1113 /* This is just a word swap. */
1114 emit_move_insn (outof_target, into_input);
1115 emit_move_insn (into_target, outof_input);
1116 inter = const0_rtx;
1117 }
1118 else
1119 {
1120 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1121 rtx first_shift_count, second_shift_count;
1122 optab reverse_unsigned_shift, unsigned_shift;
1123
1124 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1125 ? lshr_optab : ashl_optab);
1126
1127 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1128 ? ashl_optab : lshr_optab);
1129
1130 if (shift_count > BITS_PER_WORD)
1131 {
1132 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1133 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1134 }
1135 else
1136 {
1137 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1138 second_shift_count = GEN_INT (shift_count);
1139 }
1140
1141 into_temp1 = expand_binop (word_mode, unsigned_shift,
1142 outof_input, first_shift_count,
1143 NULL_RTX, unsignedp, next_methods);
1144 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1145 into_input, second_shift_count,
1146 NULL_RTX, unsignedp, next_methods);
1147
1148 if (into_temp1 != 0 && into_temp2 != 0)
1149 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1150 into_target, unsignedp, next_methods);
1151 else
1152 inter = 0;
1153
1154 if (inter != 0 && inter != into_target)
1155 emit_move_insn (into_target, inter);
1156
1157 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1158 into_input, first_shift_count,
1159 NULL_RTX, unsignedp, next_methods);
1160 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1161 outof_input, second_shift_count,
1162 NULL_RTX, unsignedp, next_methods);
1163
1164 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1165 inter = expand_binop (word_mode, ior_optab,
1166 outof_temp1, outof_temp2,
1167 outof_target, unsignedp, next_methods);
1168
1169 if (inter != 0 && inter != outof_target)
1170 emit_move_insn (outof_target, inter);
1171 }
1172
1173 insns = get_insns ();
1174 end_sequence ();
1175
1176 if (inter != 0)
1177 {
1178 if (binoptab->code != UNKNOWN)
1179 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1180 else
1181 equiv_value = 0;
1182
1183 /* We can't make this a no conflict block if this is a word swap,
1184 because the word swap case fails if the input and output values
1185 are in the same register. */
1186 if (shift_count != BITS_PER_WORD)
1187 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1188 else
1189 emit_insn (insns);
1190
1191
1192 return target;
1193 }
1194 }
1195
1196 /* These can be done a word at a time by propagating carries. */
1197 if ((binoptab == add_optab || binoptab == sub_optab)
1198 && class == MODE_INT
1199 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1200 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1201 {
1202 unsigned int i;
1203 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1204 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1205 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1206 rtx xop0, xop1, xtarget;
1207
1208 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1209 value is one of those, use it. Otherwise, use 1 since it is the
1210 one easiest to get. */
1211 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1212 int normalizep = STORE_FLAG_VALUE;
1213 #else
1214 int normalizep = 1;
1215 #endif
1216
1217 /* Prepare the operands. */
1218 xop0 = force_reg (mode, op0);
1219 xop1 = force_reg (mode, op1);
1220
1221 xtarget = gen_reg_rtx (mode);
1222
1223 if (target == 0 || !REG_P (target))
1224 target = xtarget;
1225
1226 /* Indicate for flow that the entire target reg is being set. */
1227 if (REG_P (target))
1228 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1229
1230 /* Do the actual arithmetic. */
1231 for (i = 0; i < nwords; i++)
1232 {
1233 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1234 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1235 rtx op0_piece = operand_subword_force (xop0, index, mode);
1236 rtx op1_piece = operand_subword_force (xop1, index, mode);
1237 rtx x;
1238
1239 /* Main add/subtract of the input operands. */
1240 x = expand_binop (word_mode, binoptab,
1241 op0_piece, op1_piece,
1242 target_piece, unsignedp, next_methods);
1243 if (x == 0)
1244 break;
1245
1246 if (i + 1 < nwords)
1247 {
1248 /* Store carry from main add/subtract. */
1249 carry_out = gen_reg_rtx (word_mode);
1250 carry_out = emit_store_flag_force (carry_out,
1251 (binoptab == add_optab
1252 ? LT : GT),
1253 x, op0_piece,
1254 word_mode, 1, normalizep);
1255 }
1256
1257 if (i > 0)
1258 {
1259 rtx newx;
1260
1261 /* Add/subtract previous carry to main result. */
1262 newx = expand_binop (word_mode,
1263 normalizep == 1 ? binoptab : otheroptab,
1264 x, carry_in,
1265 NULL_RTX, 1, next_methods);
1266
1267 if (i + 1 < nwords)
1268 {
1269 /* Get out carry from adding/subtracting carry in. */
1270 rtx carry_tmp = gen_reg_rtx (word_mode);
1271 carry_tmp = emit_store_flag_force (carry_tmp,
1272 (binoptab == add_optab
1273 ? LT : GT),
1274 newx, x,
1275 word_mode, 1, normalizep);
1276
1277 /* Logical-ior the two poss. carry together. */
1278 carry_out = expand_binop (word_mode, ior_optab,
1279 carry_out, carry_tmp,
1280 carry_out, 0, next_methods);
1281 if (carry_out == 0)
1282 break;
1283 }
1284 emit_move_insn (target_piece, newx);
1285 }
1286
1287 carry_in = carry_out;
1288 }
1289
1290 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1291 {
1292 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1293 || ! rtx_equal_p (target, xtarget))
1294 {
1295 rtx temp = emit_move_insn (target, xtarget);
1296
1297 set_unique_reg_note (temp,
1298 REG_EQUAL,
1299 gen_rtx_fmt_ee (binoptab->code, mode,
1300 copy_rtx (xop0),
1301 copy_rtx (xop1)));
1302 }
1303 else
1304 target = xtarget;
1305
1306 return target;
1307 }
1308
1309 else
1310 delete_insns_since (last);
1311 }
1312
1313 /* If we want to multiply two two-word values and have normal and widening
1314 multiplies of single-word values, we can do this with three smaller
1315 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1316 because we are not operating on one word at a time.
1317
1318 The multiplication proceeds as follows:
1319 _______________________
1320 [__op0_high_|__op0_low__]
1321 _______________________
1322 * [__op1_high_|__op1_low__]
1323 _______________________________________________
1324 _______________________
1325 (1) [__op0_low__*__op1_low__]
1326 _______________________
1327 (2a) [__op0_low__*__op1_high_]
1328 _______________________
1329 (2b) [__op0_high_*__op1_low__]
1330 _______________________
1331 (3) [__op0_high_*__op1_high_]
1332
1333
1334 This gives a 4-word result. Since we are only interested in the
1335 lower 2 words, partial result (3) and the upper words of (2a) and
1336 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1337 calculated using non-widening multiplication.
1338
1339 (1), however, needs to be calculated with an unsigned widening
1340 multiplication. If this operation is not directly supported we
1341 try using a signed widening multiplication and adjust the result.
1342 This adjustment works as follows:
1343
1344 If both operands are positive then no adjustment is needed.
1345
1346 If the operands have different signs, for example op0_low < 0 and
1347 op1_low >= 0, the instruction treats the most significant bit of
1348 op0_low as a sign bit instead of a bit with significance
1349 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1350 with 2**BITS_PER_WORD - op0_low, and two's complements the
1351 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1352 the result.
1353
1354 Similarly, if both operands are negative, we need to add
1355 (op0_low + op1_low) * 2**BITS_PER_WORD.
1356
1357 We use a trick to adjust quickly. We logically shift op0_low right
1358 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1359 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1360 logical shift exists, we do an arithmetic right shift and subtract
1361 the 0 or -1. */
1362
1363 if (binoptab == smul_optab
1364 && class == MODE_INT
1365 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1366 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1367 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1368 && ((umul_widen_optab->handlers[(int) mode].insn_code
1369 != CODE_FOR_nothing)
1370 || (smul_widen_optab->handlers[(int) mode].insn_code
1371 != CODE_FOR_nothing)))
1372 {
1373 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1374 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1375 rtx op0_high = operand_subword_force (op0, high, mode);
1376 rtx op0_low = operand_subword_force (op0, low, mode);
1377 rtx op1_high = operand_subword_force (op1, high, mode);
1378 rtx op1_low = operand_subword_force (op1, low, mode);
1379 rtx product = 0;
1380 rtx op0_xhigh = NULL_RTX;
1381 rtx op1_xhigh = NULL_RTX;
1382
1383 /* If the target is the same as one of the inputs, don't use it. This
1384 prevents problems with the REG_EQUAL note. */
1385 if (target == op0 || target == op1
1386 || (target != 0 && !REG_P (target)))
1387 target = 0;
1388
1389 /* Multiply the two lower words to get a double-word product.
1390 If unsigned widening multiplication is available, use that;
1391 otherwise use the signed form and compensate. */
1392
1393 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1394 {
1395 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1396 target, 1, OPTAB_DIRECT);
1397
1398 /* If we didn't succeed, delete everything we did so far. */
1399 if (product == 0)
1400 delete_insns_since (last);
1401 else
1402 op0_xhigh = op0_high, op1_xhigh = op1_high;
1403 }
1404
1405 if (product == 0
1406 && smul_widen_optab->handlers[(int) mode].insn_code
1407 != CODE_FOR_nothing)
1408 {
1409 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1410 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1411 target, 1, OPTAB_DIRECT);
1412 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1413 NULL_RTX, 1, next_methods);
1414 if (op0_xhigh)
1415 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1416 op0_xhigh, op0_xhigh, 0, next_methods);
1417 else
1418 {
1419 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1420 NULL_RTX, 0, next_methods);
1421 if (op0_xhigh)
1422 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1423 op0_xhigh, op0_xhigh, 0,
1424 next_methods);
1425 }
1426
1427 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1428 NULL_RTX, 1, next_methods);
1429 if (op1_xhigh)
1430 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1431 op1_xhigh, op1_xhigh, 0, next_methods);
1432 else
1433 {
1434 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1435 NULL_RTX, 0, next_methods);
1436 if (op1_xhigh)
1437 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1438 op1_xhigh, op1_xhigh, 0,
1439 next_methods);
1440 }
1441 }
1442
1443 /* If we have been able to directly compute the product of the
1444 low-order words of the operands and perform any required adjustments
1445 of the operands, we proceed by trying two more multiplications
1446 and then computing the appropriate sum.
1447
1448 We have checked above that the required addition is provided.
1449 Full-word addition will normally always succeed, especially if
1450 it is provided at all, so we don't worry about its failure. The
1451 multiplication may well fail, however, so we do handle that. */
1452
1453 if (product && op0_xhigh && op1_xhigh)
1454 {
1455 rtx product_high = operand_subword (product, high, 1, mode);
1456 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1457 NULL_RTX, 0, OPTAB_DIRECT);
1458
1459 if (!REG_P (product_high))
1460 product_high = force_reg (word_mode, product_high);
1461
1462 if (temp != 0)
1463 temp = expand_binop (word_mode, add_optab, temp, product_high,
1464 product_high, 0, next_methods);
1465
1466 if (temp != 0 && temp != product_high)
1467 emit_move_insn (product_high, temp);
1468
1469 if (temp != 0)
1470 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1471 NULL_RTX, 0, OPTAB_DIRECT);
1472
1473 if (temp != 0)
1474 temp = expand_binop (word_mode, add_optab, temp,
1475 product_high, product_high,
1476 0, next_methods);
1477
1478 if (temp != 0 && temp != product_high)
1479 emit_move_insn (product_high, temp);
1480
1481 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1482
1483 if (temp != 0)
1484 {
1485 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1486 {
1487 temp = emit_move_insn (product, product);
1488 set_unique_reg_note (temp,
1489 REG_EQUAL,
1490 gen_rtx_fmt_ee (MULT, mode,
1491 copy_rtx (op0),
1492 copy_rtx (op1)));
1493 }
1494
1495 return product;
1496 }
1497 }
1498
1499 /* If we get here, we couldn't do it for some reason even though we
1500 originally thought we could. Delete anything we've emitted in
1501 trying to do it. */
1502
1503 delete_insns_since (last);
1504 }
1505
1506 /* Open-code the vector operations if we have no hardware support
1507 for them. */
1508 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1509 return expand_vector_binop (mode, binoptab, op0, op1, target,
1510 unsignedp, methods);
1511
1512 /* We need to open-code the complex type operations: '+, -, * and /' */
1513
1514 /* At this point we allow operations between two similar complex
1515 numbers, and also if one of the operands is not a complex number
1516 but rather of MODE_FLOAT or MODE_INT. However, the caller
1517 must make sure that the MODE of the non-complex operand matches
1518 the SUBMODE of the complex operand. */
1519
1520 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1521 {
1522 rtx real0 = 0, imag0 = 0;
1523 rtx real1 = 0, imag1 = 0;
1524 rtx realr, imagr, res;
1525 rtx seq, result;
1526 int ok = 0;
1527
1528 /* Find the correct mode for the real and imaginary parts. */
1529 enum machine_mode submode = GET_MODE_INNER (mode);
1530
1531 if (submode == BLKmode)
1532 abort ();
1533
1534 start_sequence ();
1535
1536 if (GET_MODE (op0) == mode)
1537 {
1538 real0 = gen_realpart (submode, op0);
1539 imag0 = gen_imagpart (submode, op0);
1540 }
1541 else
1542 real0 = op0;
1543
1544 if (GET_MODE (op1) == mode)
1545 {
1546 real1 = gen_realpart (submode, op1);
1547 imag1 = gen_imagpart (submode, op1);
1548 }
1549 else
1550 real1 = op1;
1551
1552 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1553 abort ();
1554
1555 result = gen_reg_rtx (mode);
1556 realr = gen_realpart (submode, result);
1557 imagr = gen_imagpart (submode, result);
1558
1559 switch (binoptab->code)
1560 {
1561 case PLUS:
1562 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1563 case MINUS:
1564 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1565 res = expand_binop (submode, binoptab, real0, real1,
1566 realr, unsignedp, methods);
1567
1568 if (res == 0)
1569 break;
1570 else if (res != realr)
1571 emit_move_insn (realr, res);
1572
1573 if (imag0 != 0 && imag1 != 0)
1574 res = expand_binop (submode, binoptab, imag0, imag1,
1575 imagr, unsignedp, methods);
1576 else if (imag0 != 0)
1577 res = imag0;
1578 else if (binoptab->code == MINUS)
1579 res = expand_unop (submode,
1580 binoptab == subv_optab ? negv_optab : neg_optab,
1581 imag1, imagr, unsignedp);
1582 else
1583 res = imag1;
1584
1585 if (res == 0)
1586 break;
1587 else if (res != imagr)
1588 emit_move_insn (imagr, res);
1589
1590 ok = 1;
1591 break;
1592
1593 case MULT:
1594 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1595
1596 if (imag0 != 0 && imag1 != 0)
1597 {
1598 rtx temp1, temp2;
1599
1600 /* Don't fetch these from memory more than once. */
1601 real0 = force_reg (submode, real0);
1602 real1 = force_reg (submode, real1);
1603 imag0 = force_reg (submode, imag0);
1604 imag1 = force_reg (submode, imag1);
1605
1606 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1607 unsignedp, methods);
1608
1609 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1610 unsignedp, methods);
1611
1612 if (temp1 == 0 || temp2 == 0)
1613 break;
1614
1615 res = (expand_binop
1616 (submode,
1617 binoptab == smulv_optab ? subv_optab : sub_optab,
1618 temp1, temp2, realr, unsignedp, methods));
1619
1620 if (res == 0)
1621 break;
1622 else if (res != realr)
1623 emit_move_insn (realr, res);
1624
1625 temp1 = expand_binop (submode, binoptab, real0, imag1,
1626 NULL_RTX, unsignedp, methods);
1627
1628 /* Avoid expanding redundant multiplication for the common
1629 case of squaring a complex number. */
1630 if (rtx_equal_p (real0, real1) && rtx_equal_p (imag0, imag1))
1631 temp2 = temp1;
1632 else
1633 temp2 = expand_binop (submode, binoptab, real1, imag0,
1634 NULL_RTX, unsignedp, methods);
1635
1636 if (temp1 == 0 || temp2 == 0)
1637 break;
1638
1639 res = (expand_binop
1640 (submode,
1641 binoptab == smulv_optab ? addv_optab : add_optab,
1642 temp1, temp2, imagr, unsignedp, methods));
1643
1644 if (res == 0)
1645 break;
1646 else if (res != imagr)
1647 emit_move_insn (imagr, res);
1648
1649 ok = 1;
1650 }
1651 else
1652 {
1653 /* Don't fetch these from memory more than once. */
1654 real0 = force_reg (submode, real0);
1655 real1 = force_reg (submode, real1);
1656
1657 res = expand_binop (submode, binoptab, real0, real1,
1658 realr, unsignedp, methods);
1659 if (res == 0)
1660 break;
1661 else if (res != realr)
1662 emit_move_insn (realr, res);
1663
1664 if (imag0 != 0)
1665 res = expand_binop (submode, binoptab,
1666 real1, imag0, imagr, unsignedp, methods);
1667 else
1668 res = expand_binop (submode, binoptab,
1669 real0, imag1, imagr, unsignedp, methods);
1670
1671 if (res == 0)
1672 break;
1673 else if (res != imagr)
1674 emit_move_insn (imagr, res);
1675
1676 ok = 1;
1677 }
1678 break;
1679
1680 case DIV:
1681 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1682
1683 if (imag1 == 0)
1684 {
1685 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1686
1687 /* Don't fetch these from memory more than once. */
1688 real1 = force_reg (submode, real1);
1689
1690 /* Simply divide the real and imaginary parts by `c' */
1691 if (class == MODE_COMPLEX_FLOAT)
1692 res = expand_binop (submode, binoptab, real0, real1,
1693 realr, unsignedp, methods);
1694 else
1695 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1696 real0, real1, realr, unsignedp);
1697
1698 if (res == 0)
1699 break;
1700 else if (res != realr)
1701 emit_move_insn (realr, res);
1702
1703 if (class == MODE_COMPLEX_FLOAT)
1704 res = expand_binop (submode, binoptab, imag0, real1,
1705 imagr, unsignedp, methods);
1706 else
1707 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1708 imag0, real1, imagr, unsignedp);
1709
1710 if (res == 0)
1711 break;
1712 else if (res != imagr)
1713 emit_move_insn (imagr, res);
1714
1715 ok = 1;
1716 }
1717 else
1718 {
1719 switch (flag_complex_divide_method)
1720 {
1721 case 0:
1722 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1723 realr, imagr, submode,
1724 unsignedp, methods,
1725 class, binoptab);
1726 break;
1727
1728 case 1:
1729 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1730 realr, imagr, submode,
1731 unsignedp, methods,
1732 class, binoptab);
1733 break;
1734
1735 default:
1736 abort ();
1737 }
1738 }
1739 break;
1740
1741 default:
1742 abort ();
1743 }
1744
1745 seq = get_insns ();
1746 end_sequence ();
1747
1748 if (ok)
1749 {
1750 rtx equiv = gen_rtx_fmt_ee (binoptab->code, mode,
1751 copy_rtx (op0), copy_rtx (op1));
1752 emit_no_conflict_block (seq, result, op0, op1, equiv);
1753 return result;
1754 }
1755 }
1756
1757 /* It can't be open-coded in this mode.
1758 Use a library call if one is available and caller says that's ok. */
1759
1760 if (binoptab->handlers[(int) mode].libfunc
1761 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1762 {
1763 rtx insns;
1764 rtx op1x = op1;
1765 enum machine_mode op1_mode = mode;
1766 rtx value;
1767
1768 start_sequence ();
1769
1770 if (shift_op)
1771 {
1772 op1_mode = word_mode;
1773 /* Specify unsigned here,
1774 since negative shift counts are meaningless. */
1775 op1x = convert_to_mode (word_mode, op1, 1);
1776 }
1777
1778 if (GET_MODE (op0) != VOIDmode
1779 && GET_MODE (op0) != mode)
1780 op0 = convert_to_mode (mode, op0, unsignedp);
1781
1782 /* Pass 1 for NO_QUEUE so we don't lose any increments
1783 if the libcall is cse'd or moved. */
1784 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1785 NULL_RTX, LCT_CONST, mode, 2,
1786 op0, mode, op1x, op1_mode);
1787
1788 insns = get_insns ();
1789 end_sequence ();
1790
1791 target = gen_reg_rtx (mode);
1792 emit_libcall_block (insns, target, value,
1793 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1794
1795 return target;
1796 }
1797
1798 delete_insns_since (last);
1799
1800 /* It can't be done in this mode. Can we do it in a wider mode? */
1801
1802 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1803 || methods == OPTAB_MUST_WIDEN))
1804 {
1805 /* Caller says, don't even try. */
1806 delete_insns_since (entry_last);
1807 return 0;
1808 }
1809
1810 /* Compute the value of METHODS to pass to recursive calls.
1811 Don't allow widening to be tried recursively. */
1812
1813 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1814
1815 /* Look for a wider mode of the same class for which it appears we can do
1816 the operation. */
1817
1818 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1819 {
1820 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1821 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1822 {
1823 if ((binoptab->handlers[(int) wider_mode].insn_code
1824 != CODE_FOR_nothing)
1825 || (methods == OPTAB_LIB
1826 && binoptab->handlers[(int) wider_mode].libfunc))
1827 {
1828 rtx xop0 = op0, xop1 = op1;
1829 int no_extend = 0;
1830
1831 /* For certain integer operations, we need not actually extend
1832 the narrow operands, as long as we will truncate
1833 the results to the same narrowness. */
1834
1835 if ((binoptab == ior_optab || binoptab == and_optab
1836 || binoptab == xor_optab
1837 || binoptab == add_optab || binoptab == sub_optab
1838 || binoptab == smul_optab || binoptab == ashl_optab)
1839 && class == MODE_INT)
1840 no_extend = 1;
1841
1842 xop0 = widen_operand (xop0, wider_mode, mode,
1843 unsignedp, no_extend);
1844
1845 /* The second operand of a shift must always be extended. */
1846 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1847 no_extend && binoptab != ashl_optab);
1848
1849 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1850 unsignedp, methods);
1851 if (temp)
1852 {
1853 if (class != MODE_INT)
1854 {
1855 if (target == 0)
1856 target = gen_reg_rtx (mode);
1857 convert_move (target, temp, 0);
1858 return target;
1859 }
1860 else
1861 return gen_lowpart (mode, temp);
1862 }
1863 else
1864 delete_insns_since (last);
1865 }
1866 }
1867 }
1868
1869 delete_insns_since (entry_last);
1870 return 0;
1871 }
1872
1873 /* Like expand_binop, but for open-coding vectors binops. */
1874
1875 static rtx
1876 expand_vector_binop (enum machine_mode mode, optab binoptab, rtx op0,
1877 rtx op1, rtx target, int unsignedp,
1878 enum optab_methods methods)
1879 {
1880 enum machine_mode submode, tmode;
1881 int size, elts, subsize, subbitsize, i;
1882 rtx t, a, b, res, seq;
1883 enum mode_class class;
1884
1885 class = GET_MODE_CLASS (mode);
1886
1887 size = GET_MODE_SIZE (mode);
1888 submode = GET_MODE_INNER (mode);
1889
1890 /* Search for the widest vector mode with the same inner mode that is
1891 still narrower than MODE and that allows to open-code this operator.
1892 Note, if we find such a mode and the handler later decides it can't
1893 do the expansion, we'll be called recursively with the narrower mode. */
1894 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1895 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1896 tmode = GET_MODE_WIDER_MODE (tmode))
1897 {
1898 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1899 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1900 submode = tmode;
1901 }
1902
1903 switch (binoptab->code)
1904 {
1905 case AND:
1906 case IOR:
1907 case XOR:
1908 tmode = int_mode_for_mode (mode);
1909 if (tmode != BLKmode)
1910 submode = tmode;
1911 case PLUS:
1912 case MINUS:
1913 case MULT:
1914 case DIV:
1915 subsize = GET_MODE_SIZE (submode);
1916 subbitsize = GET_MODE_BITSIZE (submode);
1917 elts = size / subsize;
1918
1919 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1920 but that we operate on more than one element at a time. */
1921 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1922 return 0;
1923
1924 start_sequence ();
1925
1926 /* Errors can leave us with a const0_rtx as operand. */
1927 if (GET_MODE (op0) != mode)
1928 op0 = copy_to_mode_reg (mode, op0);
1929 if (GET_MODE (op1) != mode)
1930 op1 = copy_to_mode_reg (mode, op1);
1931
1932 if (!target)
1933 target = gen_reg_rtx (mode);
1934
1935 for (i = 0; i < elts; ++i)
1936 {
1937 /* If this is part of a register, and not the first item in the
1938 word, we can't store using a SUBREG - that would clobber
1939 previous results.
1940 And storing with a SUBREG is only possible for the least
1941 significant part, hence we can't do it for big endian
1942 (unless we want to permute the evaluation order. */
1943 if (REG_P (target)
1944 && (BYTES_BIG_ENDIAN
1945 ? subsize < UNITS_PER_WORD
1946 : ((i * subsize) % UNITS_PER_WORD) != 0))
1947 t = NULL_RTX;
1948 else
1949 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1950 if (CONSTANT_P (op0))
1951 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1952 else
1953 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1954 NULL_RTX, submode, submode);
1955 if (CONSTANT_P (op1))
1956 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1957 else
1958 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1959 NULL_RTX, submode, submode);
1960
1961 if (binoptab->code == DIV)
1962 {
1963 if (class == MODE_VECTOR_FLOAT)
1964 res = expand_binop (submode, binoptab, a, b, t,
1965 unsignedp, methods);
1966 else
1967 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1968 a, b, t, unsignedp);
1969 }
1970 else
1971 res = expand_binop (submode, binoptab, a, b, t,
1972 unsignedp, methods);
1973
1974 if (res == 0)
1975 break;
1976
1977 if (t)
1978 emit_move_insn (t, res);
1979 else
1980 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
1981 }
1982 break;
1983
1984 default:
1985 abort ();
1986 }
1987
1988 seq = get_insns ();
1989 end_sequence ();
1990 emit_insn (seq);
1991
1992 return target;
1993 }
1994
1995 /* Like expand_unop but for open-coding vector unops. */
1996
1997 static rtx
1998 expand_vector_unop (enum machine_mode mode, optab unoptab, rtx op0,
1999 rtx target, int unsignedp)
2000 {
2001 enum machine_mode submode, tmode;
2002 int size, elts, subsize, subbitsize, i;
2003 rtx t, a, res, seq;
2004
2005 size = GET_MODE_SIZE (mode);
2006 submode = GET_MODE_INNER (mode);
2007
2008 /* Search for the widest vector mode with the same inner mode that is
2009 still narrower than MODE and that allows to open-code this operator.
2010 Note, if we find such a mode and the handler later decides it can't
2011 do the expansion, we'll be called recursively with the narrower mode. */
2012 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2013 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2014 tmode = GET_MODE_WIDER_MODE (tmode))
2015 {
2016 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2017 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2018 submode = tmode;
2019 }
2020 /* If there is no negate operation, try doing a subtract from zero. */
2021 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2022 /* Avoid infinite recursion when an
2023 error has left us with the wrong mode. */
2024 && GET_MODE (op0) == mode)
2025 {
2026 rtx temp;
2027 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2028 target, unsignedp, OPTAB_DIRECT);
2029 if (temp)
2030 return temp;
2031 }
2032
2033 if (unoptab == one_cmpl_optab)
2034 {
2035 tmode = int_mode_for_mode (mode);
2036 if (tmode != BLKmode)
2037 submode = tmode;
2038 }
2039
2040 subsize = GET_MODE_SIZE (submode);
2041 subbitsize = GET_MODE_BITSIZE (submode);
2042 elts = size / subsize;
2043
2044 /* Errors can leave us with a const0_rtx as operand. */
2045 if (GET_MODE (op0) != mode)
2046 op0 = copy_to_mode_reg (mode, op0);
2047
2048 if (!target)
2049 target = gen_reg_rtx (mode);
2050
2051 start_sequence ();
2052
2053 for (i = 0; i < elts; ++i)
2054 {
2055 /* If this is part of a register, and not the first item in the
2056 word, we can't store using a SUBREG - that would clobber
2057 previous results.
2058 And storing with a SUBREG is only possible for the least
2059 significant part, hence we can't do it for big endian
2060 (unless we want to permute the evaluation order. */
2061 if (REG_P (target)
2062 && (BYTES_BIG_ENDIAN
2063 ? subsize < UNITS_PER_WORD
2064 : ((i * subsize) % UNITS_PER_WORD) != 0))
2065 t = NULL_RTX;
2066 else
2067 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2068 if (CONSTANT_P (op0))
2069 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2070 else
2071 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2072 t, submode, submode);
2073
2074 res = expand_unop (submode, unoptab, a, t, unsignedp);
2075
2076 if (t)
2077 emit_move_insn (t, res);
2078 else
2079 store_bit_field (target, subbitsize, i * subbitsize, submode, res);
2080 }
2081
2082 seq = get_insns ();
2083 end_sequence ();
2084 emit_insn (seq);
2085
2086 return target;
2087 }
2088 \f
2089 /* Expand a binary operator which has both signed and unsigned forms.
2090 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2091 signed operations.
2092
2093 If we widen unsigned operands, we may use a signed wider operation instead
2094 of an unsigned wider operation, since the result would be the same. */
2095
2096 rtx
2097 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2098 rtx op0, rtx op1, rtx target, int unsignedp,
2099 enum optab_methods methods)
2100 {
2101 rtx temp;
2102 optab direct_optab = unsignedp ? uoptab : soptab;
2103 struct optab wide_soptab;
2104
2105 /* Do it without widening, if possible. */
2106 temp = expand_binop (mode, direct_optab, op0, op1, target,
2107 unsignedp, OPTAB_DIRECT);
2108 if (temp || methods == OPTAB_DIRECT)
2109 return temp;
2110
2111 /* Try widening to a signed int. Make a fake signed optab that
2112 hides any signed insn for direct use. */
2113 wide_soptab = *soptab;
2114 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2115 wide_soptab.handlers[(int) mode].libfunc = 0;
2116
2117 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2118 unsignedp, OPTAB_WIDEN);
2119
2120 /* For unsigned operands, try widening to an unsigned int. */
2121 if (temp == 0 && unsignedp)
2122 temp = expand_binop (mode, uoptab, op0, op1, target,
2123 unsignedp, OPTAB_WIDEN);
2124 if (temp || methods == OPTAB_WIDEN)
2125 return temp;
2126
2127 /* Use the right width lib call if that exists. */
2128 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2129 if (temp || methods == OPTAB_LIB)
2130 return temp;
2131
2132 /* Must widen and use a lib call, use either signed or unsigned. */
2133 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2134 unsignedp, methods);
2135 if (temp != 0)
2136 return temp;
2137 if (unsignedp)
2138 return expand_binop (mode, uoptab, op0, op1, target,
2139 unsignedp, methods);
2140 return 0;
2141 }
2142 \f
2143 /* Generate code to perform an operation specified by UNOPPTAB
2144 on operand OP0, with two results to TARG0 and TARG1.
2145 We assume that the order of the operands for the instruction
2146 is TARG0, TARG1, OP0.
2147
2148 Either TARG0 or TARG1 may be zero, but what that means is that
2149 the result is not actually wanted. We will generate it into
2150 a dummy pseudo-reg and discard it. They may not both be zero.
2151
2152 Returns 1 if this operation can be performed; 0 if not. */
2153
2154 int
2155 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2156 int unsignedp)
2157 {
2158 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2159 enum mode_class class;
2160 enum machine_mode wider_mode;
2161 rtx entry_last = get_last_insn ();
2162 rtx last;
2163
2164 class = GET_MODE_CLASS (mode);
2165
2166 if (flag_force_mem)
2167 op0 = force_not_mem (op0);
2168
2169 if (!targ0)
2170 targ0 = gen_reg_rtx (mode);
2171 if (!targ1)
2172 targ1 = gen_reg_rtx (mode);
2173
2174 /* Record where to go back to if we fail. */
2175 last = get_last_insn ();
2176
2177 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2178 {
2179 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2180 enum machine_mode mode0 = insn_data[icode].operand[2].mode;
2181 rtx pat;
2182 rtx xop0 = op0;
2183
2184 if (GET_MODE (xop0) != VOIDmode
2185 && GET_MODE (xop0) != mode0)
2186 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2187
2188 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2189 if (! (*insn_data[icode].operand[2].predicate) (xop0, mode0))
2190 xop0 = copy_to_mode_reg (mode0, xop0);
2191
2192 /* We could handle this, but we should always be called with a pseudo
2193 for our targets and all insns should take them as outputs. */
2194 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2195 || ! (*insn_data[icode].operand[1].predicate) (targ1, mode))
2196 abort ();
2197
2198 pat = GEN_FCN (icode) (targ0, targ1, xop0);
2199 if (pat)
2200 {
2201 emit_insn (pat);
2202 return 1;
2203 }
2204 else
2205 delete_insns_since (last);
2206 }
2207
2208 /* It can't be done in this mode. Can we do it in a wider mode? */
2209
2210 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2211 {
2212 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2213 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2214 {
2215 if (unoptab->handlers[(int) wider_mode].insn_code
2216 != CODE_FOR_nothing)
2217 {
2218 rtx t0 = gen_reg_rtx (wider_mode);
2219 rtx t1 = gen_reg_rtx (wider_mode);
2220 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2221
2222 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2223 {
2224 convert_move (targ0, t0, unsignedp);
2225 convert_move (targ1, t1, unsignedp);
2226 return 1;
2227 }
2228 else
2229 delete_insns_since (last);
2230 }
2231 }
2232 }
2233
2234 delete_insns_since (entry_last);
2235 return 0;
2236 }
2237 \f
2238 /* Generate code to perform an operation specified by BINOPTAB
2239 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2240 We assume that the order of the operands for the instruction
2241 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2242 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2243
2244 Either TARG0 or TARG1 may be zero, but what that means is that
2245 the result is not actually wanted. We will generate it into
2246 a dummy pseudo-reg and discard it. They may not both be zero.
2247
2248 Returns 1 if this operation can be performed; 0 if not. */
2249
2250 int
2251 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2252 int unsignedp)
2253 {
2254 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2255 enum mode_class class;
2256 enum machine_mode wider_mode;
2257 rtx entry_last = get_last_insn ();
2258 rtx last;
2259
2260 class = GET_MODE_CLASS (mode);
2261
2262 if (flag_force_mem)
2263 {
2264 op0 = force_not_mem (op0);
2265 op1 = force_not_mem (op1);
2266 }
2267
2268 /* If we are inside an appropriately-short loop and one operand is an
2269 expensive constant, force it into a register. */
2270 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2271 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2272 op0 = force_reg (mode, op0);
2273
2274 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2275 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2276 op1 = force_reg (mode, op1);
2277
2278 if (!targ0)
2279 targ0 = gen_reg_rtx (mode);
2280 if (!targ1)
2281 targ1 = gen_reg_rtx (mode);
2282
2283 /* Record where to go back to if we fail. */
2284 last = get_last_insn ();
2285
2286 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2287 {
2288 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2289 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2290 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2291 rtx pat;
2292 rtx xop0 = op0, xop1 = op1;
2293
2294 /* In case the insn wants input operands in modes different from
2295 those of the actual operands, convert the operands. It would
2296 seem that we don't need to convert CONST_INTs, but we do, so
2297 that they're properly zero-extended, sign-extended or truncated
2298 for their mode. */
2299
2300 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2301 xop0 = convert_modes (mode0,
2302 GET_MODE (op0) != VOIDmode
2303 ? GET_MODE (op0)
2304 : mode,
2305 xop0, unsignedp);
2306
2307 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2308 xop1 = convert_modes (mode1,
2309 GET_MODE (op1) != VOIDmode
2310 ? GET_MODE (op1)
2311 : mode,
2312 xop1, unsignedp);
2313
2314 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2315 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2316 xop0 = copy_to_mode_reg (mode0, xop0);
2317
2318 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2319 xop1 = copy_to_mode_reg (mode1, xop1);
2320
2321 /* We could handle this, but we should always be called with a pseudo
2322 for our targets and all insns should take them as outputs. */
2323 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2324 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2325 abort ();
2326
2327 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2328 if (pat)
2329 {
2330 emit_insn (pat);
2331 return 1;
2332 }
2333 else
2334 delete_insns_since (last);
2335 }
2336
2337 /* It can't be done in this mode. Can we do it in a wider mode? */
2338
2339 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2340 {
2341 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2342 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2343 {
2344 if (binoptab->handlers[(int) wider_mode].insn_code
2345 != CODE_FOR_nothing)
2346 {
2347 rtx t0 = gen_reg_rtx (wider_mode);
2348 rtx t1 = gen_reg_rtx (wider_mode);
2349 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2350 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2351
2352 if (expand_twoval_binop (binoptab, cop0, cop1,
2353 t0, t1, unsignedp))
2354 {
2355 convert_move (targ0, t0, unsignedp);
2356 convert_move (targ1, t1, unsignedp);
2357 return 1;
2358 }
2359 else
2360 delete_insns_since (last);
2361 }
2362 }
2363 }
2364
2365 delete_insns_since (entry_last);
2366 return 0;
2367 }
2368 \f
2369 /* Wrapper around expand_unop which takes an rtx code to specify
2370 the operation to perform, not an optab pointer. All other
2371 arguments are the same. */
2372 rtx
2373 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2374 rtx target, int unsignedp)
2375 {
2376 optab unop = code_to_optab[(int) code];
2377 if (unop == 0)
2378 abort ();
2379
2380 return expand_unop (mode, unop, op0, target, unsignedp);
2381 }
2382
2383 /* Try calculating
2384 (clz:narrow x)
2385 as
2386 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2387 static rtx
2388 widen_clz (enum machine_mode mode, rtx op0, rtx target)
2389 {
2390 enum mode_class class = GET_MODE_CLASS (mode);
2391 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2392 {
2393 enum machine_mode wider_mode;
2394 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2395 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2396 {
2397 if (clz_optab->handlers[(int) wider_mode].insn_code
2398 != CODE_FOR_nothing)
2399 {
2400 rtx xop0, temp, last;
2401
2402 last = get_last_insn ();
2403
2404 if (target == 0)
2405 target = gen_reg_rtx (mode);
2406 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2407 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2408 if (temp != 0)
2409 temp = expand_binop (wider_mode, sub_optab, temp,
2410 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2411 - GET_MODE_BITSIZE (mode)),
2412 target, true, OPTAB_DIRECT);
2413 if (temp == 0)
2414 delete_insns_since (last);
2415
2416 return temp;
2417 }
2418 }
2419 }
2420 return 0;
2421 }
2422
2423 /* Try calculating (parity x) as (and (popcount x) 1), where
2424 popcount can also be done in a wider mode. */
2425 static rtx
2426 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2427 {
2428 enum mode_class class = GET_MODE_CLASS (mode);
2429 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2430 {
2431 enum machine_mode wider_mode;
2432 for (wider_mode = mode; wider_mode != VOIDmode;
2433 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2434 {
2435 if (popcount_optab->handlers[(int) wider_mode].insn_code
2436 != CODE_FOR_nothing)
2437 {
2438 rtx xop0, temp, last;
2439
2440 last = get_last_insn ();
2441
2442 if (target == 0)
2443 target = gen_reg_rtx (mode);
2444 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2445 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2446 true);
2447 if (temp != 0)
2448 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2449 target, true, OPTAB_DIRECT);
2450 if (temp == 0)
2451 delete_insns_since (last);
2452
2453 return temp;
2454 }
2455 }
2456 }
2457 return 0;
2458 }
2459
2460 /* Generate code to perform an operation specified by UNOPTAB
2461 on operand OP0, with result having machine-mode MODE.
2462
2463 UNSIGNEDP is for the case where we have to widen the operands
2464 to perform the operation. It says to use zero-extension.
2465
2466 If TARGET is nonzero, the value
2467 is generated there, if it is convenient to do so.
2468 In all cases an rtx is returned for the locus of the value;
2469 this may or may not be TARGET. */
2470
2471 rtx
2472 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2473 int unsignedp)
2474 {
2475 enum mode_class class;
2476 enum machine_mode wider_mode;
2477 rtx temp;
2478 rtx last = get_last_insn ();
2479 rtx pat;
2480
2481 class = GET_MODE_CLASS (mode);
2482
2483 if (flag_force_mem)
2484 op0 = force_not_mem (op0);
2485
2486 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2487 {
2488 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2489 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2490 rtx xop0 = op0;
2491
2492 if (target)
2493 temp = target;
2494 else
2495 temp = gen_reg_rtx (mode);
2496
2497 if (GET_MODE (xop0) != VOIDmode
2498 && GET_MODE (xop0) != mode0)
2499 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2500
2501 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2502
2503 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2504 xop0 = copy_to_mode_reg (mode0, xop0);
2505
2506 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2507 temp = gen_reg_rtx (mode);
2508
2509 pat = GEN_FCN (icode) (temp, xop0);
2510 if (pat)
2511 {
2512 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2513 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2514 {
2515 delete_insns_since (last);
2516 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2517 }
2518
2519 emit_insn (pat);
2520
2521 return temp;
2522 }
2523 else
2524 delete_insns_since (last);
2525 }
2526
2527 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2528
2529 /* Widening clz needs special treatment. */
2530 if (unoptab == clz_optab)
2531 {
2532 temp = widen_clz (mode, op0, target);
2533 if (temp)
2534 return temp;
2535 else
2536 goto try_libcall;
2537 }
2538
2539 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2540 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2541 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2542 {
2543 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2544 {
2545 rtx xop0 = op0;
2546
2547 /* For certain operations, we need not actually extend
2548 the narrow operand, as long as we will truncate the
2549 results to the same narrowness. */
2550
2551 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2552 (unoptab == neg_optab
2553 || unoptab == one_cmpl_optab)
2554 && class == MODE_INT);
2555
2556 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2557 unsignedp);
2558
2559 if (temp)
2560 {
2561 if (class != MODE_INT)
2562 {
2563 if (target == 0)
2564 target = gen_reg_rtx (mode);
2565 convert_move (target, temp, 0);
2566 return target;
2567 }
2568 else
2569 return gen_lowpart (mode, temp);
2570 }
2571 else
2572 delete_insns_since (last);
2573 }
2574 }
2575
2576 /* These can be done a word at a time. */
2577 if (unoptab == one_cmpl_optab
2578 && class == MODE_INT
2579 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2580 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2581 {
2582 int i;
2583 rtx insns;
2584
2585 if (target == 0 || target == op0)
2586 target = gen_reg_rtx (mode);
2587
2588 start_sequence ();
2589
2590 /* Do the actual arithmetic. */
2591 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2592 {
2593 rtx target_piece = operand_subword (target, i, 1, mode);
2594 rtx x = expand_unop (word_mode, unoptab,
2595 operand_subword_force (op0, i, mode),
2596 target_piece, unsignedp);
2597
2598 if (target_piece != x)
2599 emit_move_insn (target_piece, x);
2600 }
2601
2602 insns = get_insns ();
2603 end_sequence ();
2604
2605 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2606 gen_rtx_fmt_e (unoptab->code, mode,
2607 copy_rtx (op0)));
2608 return target;
2609 }
2610
2611 /* Open-code the complex negation operation. */
2612 else if (unoptab->code == NEG
2613 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2614 {
2615 rtx target_piece;
2616 rtx x;
2617 rtx seq;
2618
2619 /* Find the correct mode for the real and imaginary parts. */
2620 enum machine_mode submode = GET_MODE_INNER (mode);
2621
2622 if (submode == BLKmode)
2623 abort ();
2624
2625 if (target == 0)
2626 target = gen_reg_rtx (mode);
2627
2628 start_sequence ();
2629
2630 target_piece = gen_imagpart (submode, target);
2631 x = expand_unop (submode, unoptab,
2632 gen_imagpart (submode, op0),
2633 target_piece, unsignedp);
2634 if (target_piece != x)
2635 emit_move_insn (target_piece, x);
2636
2637 target_piece = gen_realpart (submode, target);
2638 x = expand_unop (submode, unoptab,
2639 gen_realpart (submode, op0),
2640 target_piece, unsignedp);
2641 if (target_piece != x)
2642 emit_move_insn (target_piece, x);
2643
2644 seq = get_insns ();
2645 end_sequence ();
2646
2647 emit_no_conflict_block (seq, target, op0, 0,
2648 gen_rtx_fmt_e (unoptab->code, mode,
2649 copy_rtx (op0)));
2650 return target;
2651 }
2652
2653 /* Try negating floating point values by flipping the sign bit. */
2654 if (unoptab->code == NEG && class == MODE_FLOAT
2655 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2656 {
2657 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2658 enum machine_mode imode = int_mode_for_mode (mode);
2659 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2660
2661 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2662 {
2663 HOST_WIDE_INT hi, lo;
2664 rtx last = get_last_insn ();
2665
2666 /* Handle targets with different FP word orders. */
2667 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2668 {
2669 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2670 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2671 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2672 }
2673
2674 if (bitpos < HOST_BITS_PER_WIDE_INT)
2675 {
2676 hi = 0;
2677 lo = (HOST_WIDE_INT) 1 << bitpos;
2678 }
2679 else
2680 {
2681 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2682 lo = 0;
2683 }
2684 temp = expand_binop (imode, xor_optab,
2685 gen_lowpart (imode, op0),
2686 immed_double_const (lo, hi, imode),
2687 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2688 if (temp != 0)
2689 {
2690 rtx insn;
2691 if (target == 0)
2692 target = gen_reg_rtx (mode);
2693 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2694 set_unique_reg_note (insn, REG_EQUAL,
2695 gen_rtx_fmt_e (NEG, mode,
2696 copy_rtx (op0)));
2697 return target;
2698 }
2699 delete_insns_since (last);
2700 }
2701 }
2702
2703 /* Try calculating parity (x) as popcount (x) % 2. */
2704 if (unoptab == parity_optab)
2705 {
2706 temp = expand_parity (mode, op0, target);
2707 if (temp)
2708 return temp;
2709 }
2710
2711 /* If there is no negation pattern, try subtracting from zero. */
2712 if (unoptab == neg_optab && class == MODE_INT)
2713 {
2714 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2715 target, unsignedp, OPTAB_DIRECT);
2716 if (temp)
2717 return temp;
2718 }
2719
2720 try_libcall:
2721 /* Now try a library call in this mode. */
2722 if (unoptab->handlers[(int) mode].libfunc)
2723 {
2724 rtx insns;
2725 rtx value;
2726 enum machine_mode outmode = mode;
2727
2728 /* All of these functions return small values. Thus we choose to
2729 have them return something that isn't a double-word. */
2730 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2731 || unoptab == popcount_optab || unoptab == parity_optab)
2732 outmode
2733 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node)));
2734
2735 start_sequence ();
2736
2737 /* Pass 1 for NO_QUEUE so we don't lose any increments
2738 if the libcall is cse'd or moved. */
2739 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2740 NULL_RTX, LCT_CONST, outmode,
2741 1, op0, mode);
2742 insns = get_insns ();
2743 end_sequence ();
2744
2745 target = gen_reg_rtx (outmode);
2746 emit_libcall_block (insns, target, value,
2747 gen_rtx_fmt_e (unoptab->code, mode, op0));
2748
2749 return target;
2750 }
2751
2752 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2753 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2754
2755 /* It can't be done in this mode. Can we do it in a wider mode? */
2756
2757 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2758 {
2759 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2760 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2761 {
2762 if ((unoptab->handlers[(int) wider_mode].insn_code
2763 != CODE_FOR_nothing)
2764 || unoptab->handlers[(int) wider_mode].libfunc)
2765 {
2766 rtx xop0 = op0;
2767
2768 /* For certain operations, we need not actually extend
2769 the narrow operand, as long as we will truncate the
2770 results to the same narrowness. */
2771
2772 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2773 (unoptab == neg_optab
2774 || unoptab == one_cmpl_optab)
2775 && class == MODE_INT);
2776
2777 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2778 unsignedp);
2779
2780 /* If we are generating clz using wider mode, adjust the
2781 result. */
2782 if (unoptab == clz_optab && temp != 0)
2783 temp = expand_binop (wider_mode, sub_optab, temp,
2784 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2785 - GET_MODE_BITSIZE (mode)),
2786 target, true, OPTAB_DIRECT);
2787
2788 if (temp)
2789 {
2790 if (class != MODE_INT)
2791 {
2792 if (target == 0)
2793 target = gen_reg_rtx (mode);
2794 convert_move (target, temp, 0);
2795 return target;
2796 }
2797 else
2798 return gen_lowpart (mode, temp);
2799 }
2800 else
2801 delete_insns_since (last);
2802 }
2803 }
2804 }
2805
2806 /* If there is no negate operation, try doing a subtract from zero.
2807 The US Software GOFAST library needs this. */
2808 if (unoptab->code == NEG)
2809 {
2810 rtx temp;
2811 temp = expand_binop (mode,
2812 unoptab == negv_optab ? subv_optab : sub_optab,
2813 CONST0_RTX (mode), op0,
2814 target, unsignedp, OPTAB_LIB_WIDEN);
2815 if (temp)
2816 return temp;
2817 }
2818
2819 return 0;
2820 }
2821 \f
2822 /* Emit code to compute the absolute value of OP0, with result to
2823 TARGET if convenient. (TARGET may be 0.) The return value says
2824 where the result actually is to be found.
2825
2826 MODE is the mode of the operand; the mode of the result is
2827 different but can be deduced from MODE.
2828
2829 */
2830
2831 rtx
2832 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
2833 int result_unsignedp)
2834 {
2835 rtx temp;
2836
2837 if (! flag_trapv)
2838 result_unsignedp = 1;
2839
2840 /* First try to do it with a special abs instruction. */
2841 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2842 op0, target, 0);
2843 if (temp != 0)
2844 return temp;
2845
2846 /* For floating point modes, try clearing the sign bit. */
2847 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2848 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2849 {
2850 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
2851 enum machine_mode imode = int_mode_for_mode (mode);
2852 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2853
2854 if (imode != BLKmode && bitpos >= 0)
2855 {
2856 HOST_WIDE_INT hi, lo;
2857 rtx last = get_last_insn ();
2858
2859 /* Handle targets with different FP word orders. */
2860 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2861 {
2862 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2863 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2864 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2865 }
2866
2867 if (bitpos < HOST_BITS_PER_WIDE_INT)
2868 {
2869 hi = 0;
2870 lo = (HOST_WIDE_INT) 1 << bitpos;
2871 }
2872 else
2873 {
2874 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2875 lo = 0;
2876 }
2877 temp = expand_binop (imode, and_optab,
2878 gen_lowpart (imode, op0),
2879 immed_double_const (~lo, ~hi, imode),
2880 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2881 if (temp != 0)
2882 {
2883 rtx insn;
2884 if (target == 0)
2885 target = gen_reg_rtx (mode);
2886 insn = emit_move_insn (target, gen_lowpart (mode, temp));
2887 set_unique_reg_note (insn, REG_EQUAL,
2888 gen_rtx_fmt_e (ABS, mode,
2889 copy_rtx (op0)));
2890 return target;
2891 }
2892 delete_insns_since (last);
2893 }
2894 }
2895
2896 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2897 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2898 {
2899 rtx last = get_last_insn ();
2900
2901 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2902 if (temp != 0)
2903 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2904 OPTAB_WIDEN);
2905
2906 if (temp != 0)
2907 return temp;
2908
2909 delete_insns_since (last);
2910 }
2911
2912 /* If this machine has expensive jumps, we can do integer absolute
2913 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2914 where W is the width of MODE. */
2915
2916 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2917 {
2918 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2919 size_int (GET_MODE_BITSIZE (mode) - 1),
2920 NULL_RTX, 0);
2921
2922 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2923 OPTAB_LIB_WIDEN);
2924 if (temp != 0)
2925 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2926 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2927
2928 if (temp != 0)
2929 return temp;
2930 }
2931
2932 return NULL_RTX;
2933 }
2934
2935 rtx
2936 expand_abs (enum machine_mode mode, rtx op0, rtx target,
2937 int result_unsignedp, int safe)
2938 {
2939 rtx temp, op1;
2940
2941 if (! flag_trapv)
2942 result_unsignedp = 1;
2943
2944 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
2945 if (temp != 0)
2946 return temp;
2947
2948 /* If that does not win, use conditional jump and negate. */
2949
2950 /* It is safe to use the target if it is the same
2951 as the source if this is also a pseudo register */
2952 if (op0 == target && REG_P (op0)
2953 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2954 safe = 1;
2955
2956 op1 = gen_label_rtx ();
2957 if (target == 0 || ! safe
2958 || GET_MODE (target) != mode
2959 || (MEM_P (target) && MEM_VOLATILE_P (target))
2960 || (REG_P (target)
2961 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2962 target = gen_reg_rtx (mode);
2963
2964 emit_move_insn (target, op0);
2965 NO_DEFER_POP;
2966
2967 /* If this mode is an integer too wide to compare properly,
2968 compare word by word. Rely on CSE to optimize constant cases. */
2969 if (GET_MODE_CLASS (mode) == MODE_INT
2970 && ! can_compare_p (GE, mode, ccp_jump))
2971 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2972 NULL_RTX, op1);
2973 else
2974 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2975 NULL_RTX, NULL_RTX, op1);
2976
2977 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2978 target, target, 0);
2979 if (op0 != target)
2980 emit_move_insn (target, op0);
2981 emit_label (op1);
2982 OK_DEFER_POP;
2983 return target;
2984 }
2985 \f
2986 /* Emit code to compute the absolute value of OP0, with result to
2987 TARGET if convenient. (TARGET may be 0.) The return value says
2988 where the result actually is to be found.
2989
2990 MODE is the mode of the operand; the mode of the result is
2991 different but can be deduced from MODE.
2992
2993 UNSIGNEDP is relevant for complex integer modes. */
2994
2995 rtx
2996 expand_complex_abs (enum machine_mode mode, rtx op0, rtx target,
2997 int unsignedp)
2998 {
2999 enum mode_class class = GET_MODE_CLASS (mode);
3000 enum machine_mode wider_mode;
3001 rtx temp;
3002 rtx entry_last = get_last_insn ();
3003 rtx last;
3004 rtx pat;
3005 optab this_abs_optab;
3006
3007 /* Find the correct mode for the real and imaginary parts. */
3008 enum machine_mode submode = GET_MODE_INNER (mode);
3009
3010 if (submode == BLKmode)
3011 abort ();
3012
3013 if (flag_force_mem)
3014 op0 = force_not_mem (op0);
3015
3016 last = get_last_insn ();
3017
3018 this_abs_optab = ! unsignedp && flag_trapv
3019 && (GET_MODE_CLASS(mode) == MODE_INT)
3020 ? absv_optab : abs_optab;
3021
3022 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3023 {
3024 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
3025 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3026 rtx xop0 = op0;
3027
3028 if (target)
3029 temp = target;
3030 else
3031 temp = gen_reg_rtx (submode);
3032
3033 if (GET_MODE (xop0) != VOIDmode
3034 && GET_MODE (xop0) != mode0)
3035 xop0 = convert_to_mode (mode0, xop0, unsignedp);
3036
3037 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
3038
3039 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
3040 xop0 = copy_to_mode_reg (mode0, xop0);
3041
3042 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
3043 temp = gen_reg_rtx (submode);
3044
3045 pat = GEN_FCN (icode) (temp, xop0);
3046 if (pat)
3047 {
3048 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3049 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
3050 NULL_RTX))
3051 {
3052 delete_insns_since (last);
3053 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
3054 unsignedp);
3055 }
3056
3057 emit_insn (pat);
3058
3059 return temp;
3060 }
3061 else
3062 delete_insns_since (last);
3063 }
3064
3065 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3066
3067 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3068 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3069 {
3070 if (this_abs_optab->handlers[(int) wider_mode].insn_code
3071 != CODE_FOR_nothing)
3072 {
3073 rtx xop0 = op0;
3074
3075 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3076 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3077
3078 if (temp)
3079 {
3080 if (class != MODE_COMPLEX_INT)
3081 {
3082 if (target == 0)
3083 target = gen_reg_rtx (submode);
3084 convert_move (target, temp, 0);
3085 return target;
3086 }
3087 else
3088 return gen_lowpart (submode, temp);
3089 }
3090 else
3091 delete_insns_since (last);
3092 }
3093 }
3094
3095 /* Open-code the complex absolute-value operation
3096 if we can open-code sqrt. Otherwise it's not worth while. */
3097 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3098 && ! flag_trapv)
3099 {
3100 rtx real, imag, total;
3101
3102 real = gen_realpart (submode, op0);
3103 imag = gen_imagpart (submode, op0);
3104
3105 /* Square both parts. */
3106 real = expand_mult (submode, real, real, NULL_RTX, 0);
3107 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3108
3109 /* Sum the parts. */
3110 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
3111 0, OPTAB_LIB_WIDEN);
3112
3113 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3114 target = expand_unop (submode, sqrt_optab, total, target, 0);
3115 if (target == 0)
3116 delete_insns_since (last);
3117 else
3118 return target;
3119 }
3120
3121 /* Now try a library call in this mode. */
3122 if (this_abs_optab->handlers[(int) mode].libfunc)
3123 {
3124 rtx insns;
3125 rtx value;
3126
3127 start_sequence ();
3128
3129 /* Pass 1 for NO_QUEUE so we don't lose any increments
3130 if the libcall is cse'd or moved. */
3131 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
3132 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
3133 insns = get_insns ();
3134 end_sequence ();
3135
3136 target = gen_reg_rtx (submode);
3137 emit_libcall_block (insns, target, value,
3138 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
3139
3140 return target;
3141 }
3142
3143 /* It can't be done in this mode. Can we do it in a wider mode? */
3144
3145 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3146 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3147 {
3148 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
3149 != CODE_FOR_nothing)
3150 || this_abs_optab->handlers[(int) wider_mode].libfunc)
3151 {
3152 rtx xop0 = op0;
3153
3154 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3155
3156 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3157
3158 if (temp)
3159 {
3160 if (class != MODE_COMPLEX_INT)
3161 {
3162 if (target == 0)
3163 target = gen_reg_rtx (submode);
3164 convert_move (target, temp, 0);
3165 return target;
3166 }
3167 else
3168 return gen_lowpart (submode, temp);
3169 }
3170 else
3171 delete_insns_since (last);
3172 }
3173 }
3174
3175 delete_insns_since (entry_last);
3176 return 0;
3177 }
3178 \f
3179 /* Generate an instruction whose insn-code is INSN_CODE,
3180 with two operands: an output TARGET and an input OP0.
3181 TARGET *must* be nonzero, and the output is always stored there.
3182 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3183 the value that is stored into TARGET. */
3184
3185 void
3186 emit_unop_insn (int icode, rtx target, rtx op0, enum rtx_code code)
3187 {
3188 rtx temp;
3189 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3190 rtx pat;
3191
3192 temp = target;
3193
3194 /* Sign and zero extension from memory is often done specially on
3195 RISC machines, so forcing into a register here can pessimize
3196 code. */
3197 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
3198 op0 = force_not_mem (op0);
3199
3200 /* Now, if insn does not accept our operands, put them into pseudos. */
3201
3202 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
3203 op0 = copy_to_mode_reg (mode0, op0);
3204
3205 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
3206 || (flag_force_mem && MEM_P (temp)))
3207 temp = gen_reg_rtx (GET_MODE (temp));
3208
3209 pat = GEN_FCN (icode) (temp, op0);
3210
3211 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3212 add_equal_note (pat, temp, code, op0, NULL_RTX);
3213
3214 emit_insn (pat);
3215
3216 if (temp != target)
3217 emit_move_insn (target, temp);
3218 }
3219 \f
3220 /* Emit code to perform a series of operations on a multi-word quantity, one
3221 word at a time.
3222
3223 Such a block is preceded by a CLOBBER of the output, consists of multiple
3224 insns, each setting one word of the output, and followed by a SET copying
3225 the output to itself.
3226
3227 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3228 note indicating that it doesn't conflict with the (also multi-word)
3229 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3230 notes.
3231
3232 INSNS is a block of code generated to perform the operation, not including
3233 the CLOBBER and final copy. All insns that compute intermediate values
3234 are first emitted, followed by the block as described above.
3235
3236 TARGET, OP0, and OP1 are the output and inputs of the operations,
3237 respectively. OP1 may be zero for a unary operation.
3238
3239 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3240 on the last insn.
3241
3242 If TARGET is not a register, INSNS is simply emitted with no special
3243 processing. Likewise if anything in INSNS is not an INSN or if
3244 there is a libcall block inside INSNS.
3245
3246 The final insn emitted is returned. */
3247
3248 rtx
3249 emit_no_conflict_block (rtx insns, rtx target, rtx op0, rtx op1, rtx equiv)
3250 {
3251 rtx prev, next, first, last, insn;
3252
3253 if (!REG_P (target) || reload_in_progress)
3254 return emit_insn (insns);
3255 else
3256 for (insn = insns; insn; insn = NEXT_INSN (insn))
3257 if (!NONJUMP_INSN_P (insn)
3258 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3259 return emit_insn (insns);
3260
3261 /* First emit all insns that do not store into words of the output and remove
3262 these from the list. */
3263 for (insn = insns; insn; insn = next)
3264 {
3265 rtx set = 0, note;
3266 int i;
3267
3268 next = NEXT_INSN (insn);
3269
3270 /* Some ports (cris) create a libcall regions at their own. We must
3271 avoid any potential nesting of LIBCALLs. */
3272 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3273 remove_note (insn, note);
3274 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3275 remove_note (insn, note);
3276
3277 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3278 || GET_CODE (PATTERN (insn)) == CLOBBER)
3279 set = PATTERN (insn);
3280 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3281 {
3282 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3283 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3284 {
3285 set = XVECEXP (PATTERN (insn), 0, i);
3286 break;
3287 }
3288 }
3289
3290 if (set == 0)
3291 abort ();
3292
3293 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3294 {
3295 if (PREV_INSN (insn))
3296 NEXT_INSN (PREV_INSN (insn)) = next;
3297 else
3298 insns = next;
3299
3300 if (next)
3301 PREV_INSN (next) = PREV_INSN (insn);
3302
3303 add_insn (insn);
3304 }
3305 }
3306
3307 prev = get_last_insn ();
3308
3309 /* Now write the CLOBBER of the output, followed by the setting of each
3310 of the words, followed by the final copy. */
3311 if (target != op0 && target != op1)
3312 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3313
3314 for (insn = insns; insn; insn = next)
3315 {
3316 next = NEXT_INSN (insn);
3317 add_insn (insn);
3318
3319 if (op1 && REG_P (op1))
3320 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3321 REG_NOTES (insn));
3322
3323 if (op0 && REG_P (op0))
3324 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3325 REG_NOTES (insn));
3326 }
3327
3328 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3329 != CODE_FOR_nothing)
3330 {
3331 last = emit_move_insn (target, target);
3332 if (equiv)
3333 set_unique_reg_note (last, REG_EQUAL, equiv);
3334 }
3335 else
3336 {
3337 last = get_last_insn ();
3338
3339 /* Remove any existing REG_EQUAL note from "last", or else it will
3340 be mistaken for a note referring to the full contents of the
3341 alleged libcall value when found together with the REG_RETVAL
3342 note added below. An existing note can come from an insn
3343 expansion at "last". */
3344 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3345 }
3346
3347 if (prev == 0)
3348 first = get_insns ();
3349 else
3350 first = NEXT_INSN (prev);
3351
3352 /* Encapsulate the block so it gets manipulated as a unit. */
3353 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3354 REG_NOTES (first));
3355 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3356
3357 return last;
3358 }
3359 \f
3360 /* Emit code to make a call to a constant function or a library call.
3361
3362 INSNS is a list containing all insns emitted in the call.
3363 These insns leave the result in RESULT. Our block is to copy RESULT
3364 to TARGET, which is logically equivalent to EQUIV.
3365
3366 We first emit any insns that set a pseudo on the assumption that these are
3367 loading constants into registers; doing so allows them to be safely cse'ed
3368 between blocks. Then we emit all the other insns in the block, followed by
3369 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3370 note with an operand of EQUIV.
3371
3372 Moving assignments to pseudos outside of the block is done to improve
3373 the generated code, but is not required to generate correct code,
3374 hence being unable to move an assignment is not grounds for not making
3375 a libcall block. There are two reasons why it is safe to leave these
3376 insns inside the block: First, we know that these pseudos cannot be
3377 used in generated RTL outside the block since they are created for
3378 temporary purposes within the block. Second, CSE will not record the
3379 values of anything set inside a libcall block, so we know they must
3380 be dead at the end of the block.
3381
3382 Except for the first group of insns (the ones setting pseudos), the
3383 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3384
3385 void
3386 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3387 {
3388 rtx final_dest = target;
3389 rtx prev, next, first, last, insn;
3390
3391 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3392 into a MEM later. Protect the libcall block from this change. */
3393 if (! REG_P (target) || REG_USERVAR_P (target))
3394 target = gen_reg_rtx (GET_MODE (target));
3395
3396 /* If we're using non-call exceptions, a libcall corresponding to an
3397 operation that may trap may also trap. */
3398 if (flag_non_call_exceptions && may_trap_p (equiv))
3399 {
3400 for (insn = insns; insn; insn = NEXT_INSN (insn))
3401 if (CALL_P (insn))
3402 {
3403 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3404
3405 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3406 remove_note (insn, note);
3407 }
3408 }
3409 else
3410 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3411 reg note to indicate that this call cannot throw or execute a nonlocal
3412 goto (unless there is already a REG_EH_REGION note, in which case
3413 we update it). */
3414 for (insn = insns; insn; insn = NEXT_INSN (insn))
3415 if (CALL_P (insn))
3416 {
3417 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3418
3419 if (note != 0)
3420 XEXP (note, 0) = constm1_rtx;
3421 else
3422 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx,
3423 REG_NOTES (insn));
3424 }
3425
3426 /* First emit all insns that set pseudos. Remove them from the list as
3427 we go. Avoid insns that set pseudos which were referenced in previous
3428 insns. These can be generated by move_by_pieces, for example,
3429 to update an address. Similarly, avoid insns that reference things
3430 set in previous insns. */
3431
3432 for (insn = insns; insn; insn = next)
3433 {
3434 rtx set = single_set (insn);
3435 rtx note;
3436
3437 /* Some ports (cris) create a libcall regions at their own. We must
3438 avoid any potential nesting of LIBCALLs. */
3439 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3440 remove_note (insn, note);
3441 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3442 remove_note (insn, note);
3443
3444 next = NEXT_INSN (insn);
3445
3446 if (set != 0 && REG_P (SET_DEST (set))
3447 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3448 && (insn == insns
3449 || ((! INSN_P(insns)
3450 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3451 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3452 && ! modified_in_p (SET_SRC (set), insns)
3453 && ! modified_between_p (SET_SRC (set), insns, insn))))
3454 {
3455 if (PREV_INSN (insn))
3456 NEXT_INSN (PREV_INSN (insn)) = next;
3457 else
3458 insns = next;
3459
3460 if (next)
3461 PREV_INSN (next) = PREV_INSN (insn);
3462
3463 add_insn (insn);
3464 }
3465
3466 /* Some ports use a loop to copy large arguments onto the stack.
3467 Don't move anything outside such a loop. */
3468 if (LABEL_P (insn))
3469 break;
3470 }
3471
3472 prev = get_last_insn ();
3473
3474 /* Write the remaining insns followed by the final copy. */
3475
3476 for (insn = insns; insn; insn = next)
3477 {
3478 next = NEXT_INSN (insn);
3479
3480 add_insn (insn);
3481 }
3482
3483 last = emit_move_insn (target, result);
3484 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3485 != CODE_FOR_nothing)
3486 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3487 else
3488 {
3489 /* Remove any existing REG_EQUAL note from "last", or else it will
3490 be mistaken for a note referring to the full contents of the
3491 libcall value when found together with the REG_RETVAL note added
3492 below. An existing note can come from an insn expansion at
3493 "last". */
3494 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3495 }
3496
3497 if (final_dest != target)
3498 emit_move_insn (final_dest, target);
3499
3500 if (prev == 0)
3501 first = get_insns ();
3502 else
3503 first = NEXT_INSN (prev);
3504
3505 /* Encapsulate the block so it gets manipulated as a unit. */
3506 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3507 {
3508 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3509 when the encapsulated region would not be in one basic block,
3510 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3511 */
3512 bool attach_libcall_retval_notes = true;
3513 next = NEXT_INSN (last);
3514 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3515 if (control_flow_insn_p (insn))
3516 {
3517 attach_libcall_retval_notes = false;
3518 break;
3519 }
3520
3521 if (attach_libcall_retval_notes)
3522 {
3523 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3524 REG_NOTES (first));
3525 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3526 REG_NOTES (last));
3527 }
3528 }
3529 }
3530 \f
3531 /* Generate code to store zero in X. */
3532
3533 void
3534 emit_clr_insn (rtx x)
3535 {
3536 emit_move_insn (x, const0_rtx);
3537 }
3538
3539 /* Generate code to store 1 in X
3540 assuming it contains zero beforehand. */
3541
3542 void
3543 emit_0_to_1_insn (rtx x)
3544 {
3545 emit_move_insn (x, const1_rtx);
3546 }
3547
3548 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3549 PURPOSE describes how this comparison will be used. CODE is the rtx
3550 comparison code we will be using.
3551
3552 ??? Actually, CODE is slightly weaker than that. A target is still
3553 required to implement all of the normal bcc operations, but not
3554 required to implement all (or any) of the unordered bcc operations. */
3555
3556 int
3557 can_compare_p (enum rtx_code code, enum machine_mode mode,
3558 enum can_compare_purpose purpose)
3559 {
3560 do
3561 {
3562 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3563 {
3564 if (purpose == ccp_jump)
3565 return bcc_gen_fctn[(int) code] != NULL;
3566 else if (purpose == ccp_store_flag)
3567 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3568 else
3569 /* There's only one cmov entry point, and it's allowed to fail. */
3570 return 1;
3571 }
3572 if (purpose == ccp_jump
3573 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3574 return 1;
3575 if (purpose == ccp_cmov
3576 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3577 return 1;
3578 if (purpose == ccp_store_flag
3579 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3580 return 1;
3581
3582 mode = GET_MODE_WIDER_MODE (mode);
3583 }
3584 while (mode != VOIDmode);
3585
3586 return 0;
3587 }
3588
3589 /* This function is called when we are going to emit a compare instruction that
3590 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3591
3592 *PMODE is the mode of the inputs (in case they are const_int).
3593 *PUNSIGNEDP nonzero says that the operands are unsigned;
3594 this matters if they need to be widened.
3595
3596 If they have mode BLKmode, then SIZE specifies the size of both operands.
3597
3598 This function performs all the setup necessary so that the caller only has
3599 to emit a single comparison insn. This setup can involve doing a BLKmode
3600 comparison or emitting a library call to perform the comparison if no insn
3601 is available to handle it.
3602 The values which are passed in through pointers can be modified; the caller
3603 should perform the comparison on the modified values. */
3604
3605 static void
3606 prepare_cmp_insn (rtx *px, rtx *py, enum rtx_code *pcomparison, rtx size,
3607 enum machine_mode *pmode, int *punsignedp,
3608 enum can_compare_purpose purpose)
3609 {
3610 enum machine_mode mode = *pmode;
3611 rtx x = *px, y = *py;
3612 int unsignedp = *punsignedp;
3613 enum mode_class class;
3614
3615 class = GET_MODE_CLASS (mode);
3616
3617 /* They could both be VOIDmode if both args are immediate constants,
3618 but we should fold that at an earlier stage.
3619 With no special code here, this will call abort,
3620 reminding the programmer to implement such folding. */
3621
3622 if (mode != BLKmode && flag_force_mem)
3623 {
3624 /* Load duplicate non-volatile operands once. */
3625 if (rtx_equal_p (x, y) && ! volatile_refs_p (x))
3626 {
3627 x = force_not_mem (x);
3628 y = x;
3629 }
3630 else
3631 {
3632 x = force_not_mem (x);
3633 y = force_not_mem (y);
3634 }
3635 }
3636
3637 /* If we are inside an appropriately-short loop and one operand is an
3638 expensive constant, force it into a register. */
3639 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3640 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3641 x = force_reg (mode, x);
3642
3643 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3644 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3645 y = force_reg (mode, y);
3646
3647 #ifdef HAVE_cc0
3648 /* Abort if we have a non-canonical comparison. The RTL documentation
3649 states that canonical comparisons are required only for targets which
3650 have cc0. */
3651 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3652 abort ();
3653 #endif
3654
3655 /* Don't let both operands fail to indicate the mode. */
3656 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3657 x = force_reg (mode, x);
3658
3659 /* Handle all BLKmode compares. */
3660
3661 if (mode == BLKmode)
3662 {
3663 enum machine_mode cmp_mode, result_mode;
3664 enum insn_code cmp_code;
3665 tree length_type;
3666 rtx libfunc;
3667 rtx result;
3668 rtx opalign
3669 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3670
3671 if (size == 0)
3672 abort ();
3673
3674 /* Try to use a memory block compare insn - either cmpstr
3675 or cmpmem will do. */
3676 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3677 cmp_mode != VOIDmode;
3678 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3679 {
3680 cmp_code = cmpmem_optab[cmp_mode];
3681 if (cmp_code == CODE_FOR_nothing)
3682 cmp_code = cmpstr_optab[cmp_mode];
3683 if (cmp_code == CODE_FOR_nothing)
3684 continue;
3685
3686 /* Must make sure the size fits the insn's mode. */
3687 if ((GET_CODE (size) == CONST_INT
3688 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3689 || (GET_MODE_BITSIZE (GET_MODE (size))
3690 > GET_MODE_BITSIZE (cmp_mode)))
3691 continue;
3692
3693 result_mode = insn_data[cmp_code].operand[0].mode;
3694 result = gen_reg_rtx (result_mode);
3695 size = convert_to_mode (cmp_mode, size, 1);
3696 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3697
3698 *px = result;
3699 *py = const0_rtx;
3700 *pmode = result_mode;
3701 return;
3702 }
3703
3704 /* Otherwise call a library function, memcmp. */
3705 libfunc = memcmp_libfunc;
3706 length_type = sizetype;
3707 result_mode = TYPE_MODE (integer_type_node);
3708 cmp_mode = TYPE_MODE (length_type);
3709 size = convert_to_mode (TYPE_MODE (length_type), size,
3710 TYPE_UNSIGNED (length_type));
3711
3712 result = emit_library_call_value (libfunc, 0, LCT_PURE_MAKE_BLOCK,
3713 result_mode, 3,
3714 XEXP (x, 0), Pmode,
3715 XEXP (y, 0), Pmode,
3716 size, cmp_mode);
3717 *px = result;
3718 *py = const0_rtx;
3719 *pmode = result_mode;
3720 return;
3721 }
3722
3723 /* Don't allow operands to the compare to trap, as that can put the
3724 compare and branch in different basic blocks. */
3725 if (flag_non_call_exceptions)
3726 {
3727 if (may_trap_p (x))
3728 x = force_reg (mode, x);
3729 if (may_trap_p (y))
3730 y = force_reg (mode, y);
3731 }
3732
3733 *px = x;
3734 *py = y;
3735 if (can_compare_p (*pcomparison, mode, purpose))
3736 return;
3737
3738 /* Handle a lib call just for the mode we are using. */
3739
3740 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3741 {
3742 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3743 rtx result;
3744
3745 /* If we want unsigned, and this mode has a distinct unsigned
3746 comparison routine, use that. */
3747 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3748 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3749
3750 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3751 word_mode, 2, x, mode, y, mode);
3752
3753 /* Integer comparison returns a result that must be compared against 1,
3754 so that even if we do an unsigned compare afterward,
3755 there is still a value that can represent the result "less than". */
3756 *px = result;
3757 *py = const1_rtx;
3758 *pmode = word_mode;
3759 return;
3760 }
3761
3762 if (class == MODE_FLOAT)
3763 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3764
3765 else
3766 abort ();
3767 }
3768
3769 /* Before emitting an insn with code ICODE, make sure that X, which is going
3770 to be used for operand OPNUM of the insn, is converted from mode MODE to
3771 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3772 that it is accepted by the operand predicate. Return the new value. */
3773
3774 rtx
3775 prepare_operand (int icode, rtx x, int opnum, enum machine_mode mode,
3776 enum machine_mode wider_mode, int unsignedp)
3777 {
3778 if (mode != wider_mode)
3779 x = convert_modes (wider_mode, mode, x, unsignedp);
3780
3781 if (! (*insn_data[icode].operand[opnum].predicate)
3782 (x, insn_data[icode].operand[opnum].mode))
3783 {
3784 if (no_new_pseudos)
3785 return NULL_RTX;
3786 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3787 }
3788
3789 return x;
3790 }
3791
3792 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3793 we can do the comparison.
3794 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3795 be NULL_RTX which indicates that only a comparison is to be generated. */
3796
3797 static void
3798 emit_cmp_and_jump_insn_1 (rtx x, rtx y, enum machine_mode mode,
3799 enum rtx_code comparison, int unsignedp, rtx label)
3800 {
3801 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3802 enum mode_class class = GET_MODE_CLASS (mode);
3803 enum machine_mode wider_mode = mode;
3804
3805 /* Try combined insns first. */
3806 do
3807 {
3808 enum insn_code icode;
3809 PUT_MODE (test, wider_mode);
3810
3811 if (label)
3812 {
3813 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3814
3815 if (icode != CODE_FOR_nothing
3816 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3817 {
3818 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3819 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3820 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3821 return;
3822 }
3823 }
3824
3825 /* Handle some compares against zero. */
3826 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3827 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3828 {
3829 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3830 emit_insn (GEN_FCN (icode) (x));
3831 if (label)
3832 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3833 return;
3834 }
3835
3836 /* Handle compares for which there is a directly suitable insn. */
3837
3838 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3839 if (icode != CODE_FOR_nothing)
3840 {
3841 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3842 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3843 emit_insn (GEN_FCN (icode) (x, y));
3844 if (label)
3845 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3846 return;
3847 }
3848
3849 if (class != MODE_INT && class != MODE_FLOAT
3850 && class != MODE_COMPLEX_FLOAT)
3851 break;
3852
3853 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3854 }
3855 while (wider_mode != VOIDmode);
3856
3857 abort ();
3858 }
3859
3860 /* Generate code to compare X with Y so that the condition codes are
3861 set and to jump to LABEL if the condition is true. If X is a
3862 constant and Y is not a constant, then the comparison is swapped to
3863 ensure that the comparison RTL has the canonical form.
3864
3865 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3866 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3867 the proper branch condition code.
3868
3869 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3870
3871 MODE is the mode of the inputs (in case they are const_int).
3872
3873 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3874 be passed unchanged to emit_cmp_insn, then potentially converted into an
3875 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3876
3877 void
3878 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
3879 enum machine_mode mode, int unsignedp, rtx label)
3880 {
3881 rtx op0 = x, op1 = y;
3882
3883 /* Swap operands and condition to ensure canonical RTL. */
3884 if (swap_commutative_operands_p (x, y))
3885 {
3886 /* If we're not emitting a branch, this means some caller
3887 is out of sync. */
3888 if (! label)
3889 abort ();
3890
3891 op0 = y, op1 = x;
3892 comparison = swap_condition (comparison);
3893 }
3894
3895 #ifdef HAVE_cc0
3896 /* If OP0 is still a constant, then both X and Y must be constants. Force
3897 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3898 RTL. */
3899 if (CONSTANT_P (op0))
3900 op0 = force_reg (mode, op0);
3901 #endif
3902
3903 if (unsignedp)
3904 comparison = unsigned_condition (comparison);
3905
3906 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3907 ccp_jump);
3908 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3909 }
3910
3911 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3912
3913 void
3914 emit_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3915 enum machine_mode mode, int unsignedp)
3916 {
3917 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3918 }
3919 \f
3920 /* Emit a library call comparison between floating point X and Y.
3921 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3922
3923 static void
3924 prepare_float_lib_cmp (rtx *px, rtx *py, enum rtx_code *pcomparison,
3925 enum machine_mode *pmode, int *punsignedp)
3926 {
3927 enum rtx_code comparison = *pcomparison;
3928 enum rtx_code swapped = swap_condition (comparison);
3929 rtx x = *px;
3930 rtx y = *py;
3931 enum machine_mode orig_mode = GET_MODE (x);
3932 enum machine_mode mode;
3933 rtx value, target, insns, equiv;
3934 rtx libfunc = 0;
3935
3936 for (mode = orig_mode; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode))
3937 {
3938 if ((libfunc = code_to_optab[comparison]->handlers[mode].libfunc))
3939 break;
3940
3941 if ((libfunc = code_to_optab[swapped]->handlers[mode].libfunc))
3942 {
3943 rtx tmp;
3944 tmp = x; x = y; y = tmp;
3945 comparison = swapped;
3946 break;
3947 }
3948 }
3949
3950 if (mode == VOIDmode)
3951 abort ();
3952
3953 if (mode != orig_mode)
3954 {
3955 x = convert_to_mode (mode, x, 0);
3956 y = convert_to_mode (mode, y, 0);
3957 }
3958
3959 /* Attach a REG_EQUAL note describing the semantics of the libcall to
3960 the RTL. The allows the RTL optimizers to delete the libcall if the
3961 condition can be determined at compile-time. */
3962 if (comparison == UNORDERED)
3963 {
3964 rtx temp = simplify_gen_relational (NE, word_mode, mode, x, x);
3965 equiv = simplify_gen_relational (NE, word_mode, mode, y, y);
3966 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
3967 temp, const_true_rtx, equiv);
3968 }
3969 else
3970 {
3971 equiv = simplify_gen_relational (comparison, word_mode, mode, x, y);
3972 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
3973 {
3974 rtx true_rtx, false_rtx;
3975
3976 switch (comparison)
3977 {
3978 case EQ:
3979 true_rtx = const0_rtx;
3980 false_rtx = const_true_rtx;
3981 break;
3982
3983 case NE:
3984 true_rtx = const_true_rtx;
3985 false_rtx = const0_rtx;
3986 break;
3987
3988 case GT:
3989 true_rtx = const1_rtx;
3990 false_rtx = const0_rtx;
3991 break;
3992
3993 case GE:
3994 true_rtx = const0_rtx;
3995 false_rtx = constm1_rtx;
3996 break;
3997
3998 case LT:
3999 true_rtx = constm1_rtx;
4000 false_rtx = const0_rtx;
4001 break;
4002
4003 case LE:
4004 true_rtx = const0_rtx;
4005 false_rtx = const1_rtx;
4006 break;
4007
4008 default:
4009 abort ();
4010 }
4011 equiv = simplify_gen_ternary (IF_THEN_ELSE, word_mode, word_mode,
4012 equiv, true_rtx, false_rtx);
4013 }
4014 }
4015
4016 start_sequence ();
4017 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4018 word_mode, 2, x, mode, y, mode);
4019 insns = get_insns ();
4020 end_sequence ();
4021
4022 target = gen_reg_rtx (word_mode);
4023 emit_libcall_block (insns, target, value, equiv);
4024
4025
4026 if (comparison == UNORDERED
4027 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4028 comparison = NE;
4029
4030 *px = target;
4031 *py = const0_rtx;
4032 *pmode = word_mode;
4033 *pcomparison = comparison;
4034 *punsignedp = 0;
4035 }
4036 \f
4037 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4038
4039 void
4040 emit_indirect_jump (rtx loc)
4041 {
4042 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4043 (loc, Pmode)))
4044 loc = copy_to_mode_reg (Pmode, loc);
4045
4046 emit_jump_insn (gen_indirect_jump (loc));
4047 emit_barrier ();
4048 }
4049 \f
4050 #ifdef HAVE_conditional_move
4051
4052 /* Emit a conditional move instruction if the machine supports one for that
4053 condition and machine mode.
4054
4055 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4056 the mode to use should they be constants. If it is VOIDmode, they cannot
4057 both be constants.
4058
4059 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4060 should be stored there. MODE is the mode to use should they be constants.
4061 If it is VOIDmode, they cannot both be constants.
4062
4063 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4064 is not supported. */
4065
4066 rtx
4067 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4068 enum machine_mode cmode, rtx op2, rtx op3,
4069 enum machine_mode mode, int unsignedp)
4070 {
4071 rtx tem, subtarget, comparison, insn;
4072 enum insn_code icode;
4073 enum rtx_code reversed;
4074
4075 /* If one operand is constant, make it the second one. Only do this
4076 if the other operand is not constant as well. */
4077
4078 if (swap_commutative_operands_p (op0, op1))
4079 {
4080 tem = op0;
4081 op0 = op1;
4082 op1 = tem;
4083 code = swap_condition (code);
4084 }
4085
4086 /* get_condition will prefer to generate LT and GT even if the old
4087 comparison was against zero, so undo that canonicalization here since
4088 comparisons against zero are cheaper. */
4089 if (code == LT && op1 == const1_rtx)
4090 code = LE, op1 = const0_rtx;
4091 else if (code == GT && op1 == constm1_rtx)
4092 code = GE, op1 = const0_rtx;
4093
4094 if (cmode == VOIDmode)
4095 cmode = GET_MODE (op0);
4096
4097 if (swap_commutative_operands_p (op2, op3)
4098 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4099 != UNKNOWN))
4100 {
4101 tem = op2;
4102 op2 = op3;
4103 op3 = tem;
4104 code = reversed;
4105 }
4106
4107 if (mode == VOIDmode)
4108 mode = GET_MODE (op2);
4109
4110 icode = movcc_gen_code[mode];
4111
4112 if (icode == CODE_FOR_nothing)
4113 return 0;
4114
4115 if (flag_force_mem)
4116 {
4117 op2 = force_not_mem (op2);
4118 op3 = force_not_mem (op3);
4119 }
4120
4121 if (!target)
4122 target = gen_reg_rtx (mode);
4123
4124 subtarget = target;
4125
4126 /* If the insn doesn't accept these operands, put them in pseudos. */
4127
4128 if (! (*insn_data[icode].operand[0].predicate)
4129 (subtarget, insn_data[icode].operand[0].mode))
4130 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4131
4132 if (! (*insn_data[icode].operand[2].predicate)
4133 (op2, insn_data[icode].operand[2].mode))
4134 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4135
4136 if (! (*insn_data[icode].operand[3].predicate)
4137 (op3, insn_data[icode].operand[3].mode))
4138 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4139
4140 /* Everything should now be in the suitable form, so emit the compare insn
4141 and then the conditional move. */
4142
4143 comparison
4144 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4145
4146 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4147 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4148 return NULL and let the caller figure out how best to deal with this
4149 situation. */
4150 if (GET_CODE (comparison) != code)
4151 return NULL_RTX;
4152
4153 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4154
4155 /* If that failed, then give up. */
4156 if (insn == 0)
4157 return 0;
4158
4159 emit_insn (insn);
4160
4161 if (subtarget != target)
4162 convert_move (target, subtarget, 0);
4163
4164 return target;
4165 }
4166
4167 /* Return nonzero if a conditional move of mode MODE is supported.
4168
4169 This function is for combine so it can tell whether an insn that looks
4170 like a conditional move is actually supported by the hardware. If we
4171 guess wrong we lose a bit on optimization, but that's it. */
4172 /* ??? sparc64 supports conditionally moving integers values based on fp
4173 comparisons, and vice versa. How do we handle them? */
4174
4175 int
4176 can_conditionally_move_p (enum machine_mode mode)
4177 {
4178 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4179 return 1;
4180
4181 return 0;
4182 }
4183
4184 #endif /* HAVE_conditional_move */
4185
4186 /* Emit a conditional addition instruction if the machine supports one for that
4187 condition and machine mode.
4188
4189 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4190 the mode to use should they be constants. If it is VOIDmode, they cannot
4191 both be constants.
4192
4193 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4194 should be stored there. MODE is the mode to use should they be constants.
4195 If it is VOIDmode, they cannot both be constants.
4196
4197 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4198 is not supported. */
4199
4200 rtx
4201 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4202 enum machine_mode cmode, rtx op2, rtx op3,
4203 enum machine_mode mode, int unsignedp)
4204 {
4205 rtx tem, subtarget, comparison, insn;
4206 enum insn_code icode;
4207 enum rtx_code reversed;
4208
4209 /* If one operand is constant, make it the second one. Only do this
4210 if the other operand is not constant as well. */
4211
4212 if (swap_commutative_operands_p (op0, op1))
4213 {
4214 tem = op0;
4215 op0 = op1;
4216 op1 = tem;
4217 code = swap_condition (code);
4218 }
4219
4220 /* get_condition will prefer to generate LT and GT even if the old
4221 comparison was against zero, so undo that canonicalization here since
4222 comparisons against zero are cheaper. */
4223 if (code == LT && op1 == const1_rtx)
4224 code = LE, op1 = const0_rtx;
4225 else if (code == GT && op1 == constm1_rtx)
4226 code = GE, op1 = const0_rtx;
4227
4228 if (cmode == VOIDmode)
4229 cmode = GET_MODE (op0);
4230
4231 if (swap_commutative_operands_p (op2, op3)
4232 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4233 != UNKNOWN))
4234 {
4235 tem = op2;
4236 op2 = op3;
4237 op3 = tem;
4238 code = reversed;
4239 }
4240
4241 if (mode == VOIDmode)
4242 mode = GET_MODE (op2);
4243
4244 icode = addcc_optab->handlers[(int) mode].insn_code;
4245
4246 if (icode == CODE_FOR_nothing)
4247 return 0;
4248
4249 if (flag_force_mem)
4250 {
4251 op2 = force_not_mem (op2);
4252 op3 = force_not_mem (op3);
4253 }
4254
4255 if (!target)
4256 target = gen_reg_rtx (mode);
4257
4258 /* If the insn doesn't accept these operands, put them in pseudos. */
4259
4260 if (! (*insn_data[icode].operand[0].predicate)
4261 (target, insn_data[icode].operand[0].mode))
4262 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4263 else
4264 subtarget = target;
4265
4266 if (! (*insn_data[icode].operand[2].predicate)
4267 (op2, insn_data[icode].operand[2].mode))
4268 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4269
4270 if (! (*insn_data[icode].operand[3].predicate)
4271 (op3, insn_data[icode].operand[3].mode))
4272 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4273
4274 /* Everything should now be in the suitable form, so emit the compare insn
4275 and then the conditional move. */
4276
4277 comparison
4278 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4279
4280 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4281 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4282 return NULL and let the caller figure out how best to deal with this
4283 situation. */
4284 if (GET_CODE (comparison) != code)
4285 return NULL_RTX;
4286
4287 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4288
4289 /* If that failed, then give up. */
4290 if (insn == 0)
4291 return 0;
4292
4293 emit_insn (insn);
4294
4295 if (subtarget != target)
4296 convert_move (target, subtarget, 0);
4297
4298 return target;
4299 }
4300 \f
4301 /* These functions attempt to generate an insn body, rather than
4302 emitting the insn, but if the gen function already emits them, we
4303 make no attempt to turn them back into naked patterns. */
4304
4305 /* Generate and return an insn body to add Y to X. */
4306
4307 rtx
4308 gen_add2_insn (rtx x, rtx y)
4309 {
4310 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4311
4312 if (! ((*insn_data[icode].operand[0].predicate)
4313 (x, insn_data[icode].operand[0].mode))
4314 || ! ((*insn_data[icode].operand[1].predicate)
4315 (x, insn_data[icode].operand[1].mode))
4316 || ! ((*insn_data[icode].operand[2].predicate)
4317 (y, insn_data[icode].operand[2].mode)))
4318 abort ();
4319
4320 return (GEN_FCN (icode) (x, x, y));
4321 }
4322
4323 /* Generate and return an insn body to add r1 and c,
4324 storing the result in r0. */
4325 rtx
4326 gen_add3_insn (rtx r0, rtx r1, rtx c)
4327 {
4328 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4329
4330 if (icode == CODE_FOR_nothing
4331 || ! ((*insn_data[icode].operand[0].predicate)
4332 (r0, insn_data[icode].operand[0].mode))
4333 || ! ((*insn_data[icode].operand[1].predicate)
4334 (r1, insn_data[icode].operand[1].mode))
4335 || ! ((*insn_data[icode].operand[2].predicate)
4336 (c, insn_data[icode].operand[2].mode)))
4337 return NULL_RTX;
4338
4339 return (GEN_FCN (icode) (r0, r1, c));
4340 }
4341
4342 int
4343 have_add2_insn (rtx x, rtx y)
4344 {
4345 int icode;
4346
4347 if (GET_MODE (x) == VOIDmode)
4348 abort ();
4349
4350 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4351
4352 if (icode == CODE_FOR_nothing)
4353 return 0;
4354
4355 if (! ((*insn_data[icode].operand[0].predicate)
4356 (x, insn_data[icode].operand[0].mode))
4357 || ! ((*insn_data[icode].operand[1].predicate)
4358 (x, insn_data[icode].operand[1].mode))
4359 || ! ((*insn_data[icode].operand[2].predicate)
4360 (y, insn_data[icode].operand[2].mode)))
4361 return 0;
4362
4363 return 1;
4364 }
4365
4366 /* Generate and return an insn body to subtract Y from X. */
4367
4368 rtx
4369 gen_sub2_insn (rtx x, rtx y)
4370 {
4371 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4372
4373 if (! ((*insn_data[icode].operand[0].predicate)
4374 (x, insn_data[icode].operand[0].mode))
4375 || ! ((*insn_data[icode].operand[1].predicate)
4376 (x, insn_data[icode].operand[1].mode))
4377 || ! ((*insn_data[icode].operand[2].predicate)
4378 (y, insn_data[icode].operand[2].mode)))
4379 abort ();
4380
4381 return (GEN_FCN (icode) (x, x, y));
4382 }
4383
4384 /* Generate and return an insn body to subtract r1 and c,
4385 storing the result in r0. */
4386 rtx
4387 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4388 {
4389 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4390
4391 if (icode == CODE_FOR_nothing
4392 || ! ((*insn_data[icode].operand[0].predicate)
4393 (r0, insn_data[icode].operand[0].mode))
4394 || ! ((*insn_data[icode].operand[1].predicate)
4395 (r1, insn_data[icode].operand[1].mode))
4396 || ! ((*insn_data[icode].operand[2].predicate)
4397 (c, insn_data[icode].operand[2].mode)))
4398 return NULL_RTX;
4399
4400 return (GEN_FCN (icode) (r0, r1, c));
4401 }
4402
4403 int
4404 have_sub2_insn (rtx x, rtx y)
4405 {
4406 int icode;
4407
4408 if (GET_MODE (x) == VOIDmode)
4409 abort ();
4410
4411 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4412
4413 if (icode == CODE_FOR_nothing)
4414 return 0;
4415
4416 if (! ((*insn_data[icode].operand[0].predicate)
4417 (x, insn_data[icode].operand[0].mode))
4418 || ! ((*insn_data[icode].operand[1].predicate)
4419 (x, insn_data[icode].operand[1].mode))
4420 || ! ((*insn_data[icode].operand[2].predicate)
4421 (y, insn_data[icode].operand[2].mode)))
4422 return 0;
4423
4424 return 1;
4425 }
4426
4427 /* Generate the body of an instruction to copy Y into X.
4428 It may be a list of insns, if one insn isn't enough. */
4429
4430 rtx
4431 gen_move_insn (rtx x, rtx y)
4432 {
4433 rtx seq;
4434
4435 start_sequence ();
4436 emit_move_insn_1 (x, y);
4437 seq = get_insns ();
4438 end_sequence ();
4439 return seq;
4440 }
4441 \f
4442 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4443 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4444 no such operation exists, CODE_FOR_nothing will be returned. */
4445
4446 enum insn_code
4447 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4448 int unsignedp)
4449 {
4450 convert_optab tab;
4451 #ifdef HAVE_ptr_extend
4452 if (unsignedp < 0)
4453 return CODE_FOR_ptr_extend;
4454 #endif
4455
4456 tab = unsignedp ? zext_optab : sext_optab;
4457 return tab->handlers[to_mode][from_mode].insn_code;
4458 }
4459
4460 /* Generate the body of an insn to extend Y (with mode MFROM)
4461 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4462
4463 rtx
4464 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4465 enum machine_mode mfrom, int unsignedp)
4466 {
4467 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4468 return GEN_FCN (icode) (x, y);
4469 }
4470 \f
4471 /* can_fix_p and can_float_p say whether the target machine
4472 can directly convert a given fixed point type to
4473 a given floating point type, or vice versa.
4474 The returned value is the CODE_FOR_... value to use,
4475 or CODE_FOR_nothing if these modes cannot be directly converted.
4476
4477 *TRUNCP_PTR is set to 1 if it is necessary to output
4478 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4479
4480 static enum insn_code
4481 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4482 int unsignedp, int *truncp_ptr)
4483 {
4484 convert_optab tab;
4485 enum insn_code icode;
4486
4487 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4488 icode = tab->handlers[fixmode][fltmode].insn_code;
4489 if (icode != CODE_FOR_nothing)
4490 {
4491 *truncp_ptr = 0;
4492 return icode;
4493 }
4494
4495 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4496 for this to work. We need to rework the fix* and ftrunc* patterns
4497 and documentation. */
4498 tab = unsignedp ? ufix_optab : sfix_optab;
4499 icode = tab->handlers[fixmode][fltmode].insn_code;
4500 if (icode != CODE_FOR_nothing
4501 && ftrunc_optab->handlers[fltmode].insn_code != CODE_FOR_nothing)
4502 {
4503 *truncp_ptr = 1;
4504 return icode;
4505 }
4506
4507 *truncp_ptr = 0;
4508 return CODE_FOR_nothing;
4509 }
4510
4511 static enum insn_code
4512 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4513 int unsignedp)
4514 {
4515 convert_optab tab;
4516
4517 tab = unsignedp ? ufloat_optab : sfloat_optab;
4518 return tab->handlers[fltmode][fixmode].insn_code;
4519 }
4520 \f
4521 /* Generate code to convert FROM to floating point
4522 and store in TO. FROM must be fixed point and not VOIDmode.
4523 UNSIGNEDP nonzero means regard FROM as unsigned.
4524 Normally this is done by correcting the final value
4525 if it is negative. */
4526
4527 void
4528 expand_float (rtx to, rtx from, int unsignedp)
4529 {
4530 enum insn_code icode;
4531 rtx target = to;
4532 enum machine_mode fmode, imode;
4533
4534 /* Crash now, because we won't be able to decide which mode to use. */
4535 if (GET_MODE (from) == VOIDmode)
4536 abort ();
4537
4538 /* Look for an insn to do the conversion. Do it in the specified
4539 modes if possible; otherwise convert either input, output or both to
4540 wider mode. If the integer mode is wider than the mode of FROM,
4541 we can do the conversion signed even if the input is unsigned. */
4542
4543 for (fmode = GET_MODE (to); fmode != VOIDmode;
4544 fmode = GET_MODE_WIDER_MODE (fmode))
4545 for (imode = GET_MODE (from); imode != VOIDmode;
4546 imode = GET_MODE_WIDER_MODE (imode))
4547 {
4548 int doing_unsigned = unsignedp;
4549
4550 if (fmode != GET_MODE (to)
4551 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4552 continue;
4553
4554 icode = can_float_p (fmode, imode, unsignedp);
4555 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4556 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4557
4558 if (icode != CODE_FOR_nothing)
4559 {
4560 if (imode != GET_MODE (from))
4561 from = convert_to_mode (imode, from, unsignedp);
4562
4563 if (fmode != GET_MODE (to))
4564 target = gen_reg_rtx (fmode);
4565
4566 emit_unop_insn (icode, target, from,
4567 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4568
4569 if (target != to)
4570 convert_move (to, target, 0);
4571 return;
4572 }
4573 }
4574
4575 /* Unsigned integer, and no way to convert directly.
4576 Convert as signed, then conditionally adjust the result. */
4577 if (unsignedp)
4578 {
4579 rtx label = gen_label_rtx ();
4580 rtx temp;
4581 REAL_VALUE_TYPE offset;
4582
4583 if (flag_force_mem)
4584 from = force_not_mem (from);
4585
4586 /* Look for a usable floating mode FMODE wider than the source and at
4587 least as wide as the target. Using FMODE will avoid rounding woes
4588 with unsigned values greater than the signed maximum value. */
4589
4590 for (fmode = GET_MODE (to); fmode != VOIDmode;
4591 fmode = GET_MODE_WIDER_MODE (fmode))
4592 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4593 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4594 break;
4595
4596 if (fmode == VOIDmode)
4597 {
4598 /* There is no such mode. Pretend the target is wide enough. */
4599 fmode = GET_MODE (to);
4600
4601 /* Avoid double-rounding when TO is narrower than FROM. */
4602 if ((significand_size (fmode) + 1)
4603 < GET_MODE_BITSIZE (GET_MODE (from)))
4604 {
4605 rtx temp1;
4606 rtx neglabel = gen_label_rtx ();
4607
4608 /* Don't use TARGET if it isn't a register, is a hard register,
4609 or is the wrong mode. */
4610 if (!REG_P (target)
4611 || REGNO (target) < FIRST_PSEUDO_REGISTER
4612 || GET_MODE (target) != fmode)
4613 target = gen_reg_rtx (fmode);
4614
4615 imode = GET_MODE (from);
4616 do_pending_stack_adjust ();
4617
4618 /* Test whether the sign bit is set. */
4619 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4620 0, neglabel);
4621
4622 /* The sign bit is not set. Convert as signed. */
4623 expand_float (target, from, 0);
4624 emit_jump_insn (gen_jump (label));
4625 emit_barrier ();
4626
4627 /* The sign bit is set.
4628 Convert to a usable (positive signed) value by shifting right
4629 one bit, while remembering if a nonzero bit was shifted
4630 out; i.e., compute (from & 1) | (from >> 1). */
4631
4632 emit_label (neglabel);
4633 temp = expand_binop (imode, and_optab, from, const1_rtx,
4634 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4635 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4636 NULL_RTX, 1);
4637 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4638 OPTAB_LIB_WIDEN);
4639 expand_float (target, temp, 0);
4640
4641 /* Multiply by 2 to undo the shift above. */
4642 temp = expand_binop (fmode, add_optab, target, target,
4643 target, 0, OPTAB_LIB_WIDEN);
4644 if (temp != target)
4645 emit_move_insn (target, temp);
4646
4647 do_pending_stack_adjust ();
4648 emit_label (label);
4649 goto done;
4650 }
4651 }
4652
4653 /* If we are about to do some arithmetic to correct for an
4654 unsigned operand, do it in a pseudo-register. */
4655
4656 if (GET_MODE (to) != fmode
4657 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4658 target = gen_reg_rtx (fmode);
4659
4660 /* Convert as signed integer to floating. */
4661 expand_float (target, from, 0);
4662
4663 /* If FROM is negative (and therefore TO is negative),
4664 correct its value by 2**bitwidth. */
4665
4666 do_pending_stack_adjust ();
4667 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4668 0, label);
4669
4670
4671 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4672 temp = expand_binop (fmode, add_optab, target,
4673 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4674 target, 0, OPTAB_LIB_WIDEN);
4675 if (temp != target)
4676 emit_move_insn (target, temp);
4677
4678 do_pending_stack_adjust ();
4679 emit_label (label);
4680 goto done;
4681 }
4682
4683 /* No hardware instruction available; call a library routine. */
4684 {
4685 rtx libfunc;
4686 rtx insns;
4687 rtx value;
4688 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4689
4690 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4691 from = convert_to_mode (SImode, from, unsignedp);
4692
4693 if (flag_force_mem)
4694 from = force_not_mem (from);
4695
4696 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4697 if (!libfunc)
4698 abort ();
4699
4700 start_sequence ();
4701
4702 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4703 GET_MODE (to), 1, from,
4704 GET_MODE (from));
4705 insns = get_insns ();
4706 end_sequence ();
4707
4708 emit_libcall_block (insns, target, value,
4709 gen_rtx_FLOAT (GET_MODE (to), from));
4710 }
4711
4712 done:
4713
4714 /* Copy result to requested destination
4715 if we have been computing in a temp location. */
4716
4717 if (target != to)
4718 {
4719 if (GET_MODE (target) == GET_MODE (to))
4720 emit_move_insn (to, target);
4721 else
4722 convert_move (to, target, 0);
4723 }
4724 }
4725 \f
4726 /* Generate code to convert FROM to fixed point and store in TO. FROM
4727 must be floating point. */
4728
4729 void
4730 expand_fix (rtx to, rtx from, int unsignedp)
4731 {
4732 enum insn_code icode;
4733 rtx target = to;
4734 enum machine_mode fmode, imode;
4735 int must_trunc = 0;
4736
4737 /* We first try to find a pair of modes, one real and one integer, at
4738 least as wide as FROM and TO, respectively, in which we can open-code
4739 this conversion. If the integer mode is wider than the mode of TO,
4740 we can do the conversion either signed or unsigned. */
4741
4742 for (fmode = GET_MODE (from); fmode != VOIDmode;
4743 fmode = GET_MODE_WIDER_MODE (fmode))
4744 for (imode = GET_MODE (to); imode != VOIDmode;
4745 imode = GET_MODE_WIDER_MODE (imode))
4746 {
4747 int doing_unsigned = unsignedp;
4748
4749 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4750 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4751 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4752
4753 if (icode != CODE_FOR_nothing)
4754 {
4755 if (fmode != GET_MODE (from))
4756 from = convert_to_mode (fmode, from, 0);
4757
4758 if (must_trunc)
4759 {
4760 rtx temp = gen_reg_rtx (GET_MODE (from));
4761 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4762 temp, 0);
4763 }
4764
4765 if (imode != GET_MODE (to))
4766 target = gen_reg_rtx (imode);
4767
4768 emit_unop_insn (icode, target, from,
4769 doing_unsigned ? UNSIGNED_FIX : FIX);
4770 if (target != to)
4771 convert_move (to, target, unsignedp);
4772 return;
4773 }
4774 }
4775
4776 /* For an unsigned conversion, there is one more way to do it.
4777 If we have a signed conversion, we generate code that compares
4778 the real value to the largest representable positive number. If if
4779 is smaller, the conversion is done normally. Otherwise, subtract
4780 one plus the highest signed number, convert, and add it back.
4781
4782 We only need to check all real modes, since we know we didn't find
4783 anything with a wider integer mode.
4784
4785 This code used to extend FP value into mode wider than the destination.
4786 This is not needed. Consider, for instance conversion from SFmode
4787 into DImode.
4788
4789 The hot path trought the code is dealing with inputs smaller than 2^63
4790 and doing just the conversion, so there is no bits to lose.
4791
4792 In the other path we know the value is positive in the range 2^63..2^64-1
4793 inclusive. (as for other imput overflow happens and result is undefined)
4794 So we know that the most important bit set in mantissa corresponds to
4795 2^63. The subtraction of 2^63 should not generate any rounding as it
4796 simply clears out that bit. The rest is trivial. */
4797
4798 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
4799 for (fmode = GET_MODE (from); fmode != VOIDmode;
4800 fmode = GET_MODE_WIDER_MODE (fmode))
4801 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
4802 &must_trunc))
4803 {
4804 int bitsize;
4805 REAL_VALUE_TYPE offset;
4806 rtx limit, lab1, lab2, insn;
4807
4808 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
4809 real_2expN (&offset, bitsize - 1);
4810 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
4811 lab1 = gen_label_rtx ();
4812 lab2 = gen_label_rtx ();
4813
4814 if (flag_force_mem)
4815 from = force_not_mem (from);
4816
4817 if (fmode != GET_MODE (from))
4818 from = convert_to_mode (fmode, from, 0);
4819
4820 /* See if we need to do the subtraction. */
4821 do_pending_stack_adjust ();
4822 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
4823 0, lab1);
4824
4825 /* If not, do the signed "fix" and branch around fixup code. */
4826 expand_fix (to, from, 0);
4827 emit_jump_insn (gen_jump (lab2));
4828 emit_barrier ();
4829
4830 /* Otherwise, subtract 2**(N-1), convert to signed number,
4831 then add 2**(N-1). Do the addition using XOR since this
4832 will often generate better code. */
4833 emit_label (lab1);
4834 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
4835 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4836 expand_fix (to, target, 0);
4837 target = expand_binop (GET_MODE (to), xor_optab, to,
4838 gen_int_mode
4839 ((HOST_WIDE_INT) 1 << (bitsize - 1),
4840 GET_MODE (to)),
4841 to, 1, OPTAB_LIB_WIDEN);
4842
4843 if (target != to)
4844 emit_move_insn (to, target);
4845
4846 emit_label (lab2);
4847
4848 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
4849 != CODE_FOR_nothing)
4850 {
4851 /* Make a place for a REG_NOTE and add it. */
4852 insn = emit_move_insn (to, to);
4853 set_unique_reg_note (insn,
4854 REG_EQUAL,
4855 gen_rtx_fmt_e (UNSIGNED_FIX,
4856 GET_MODE (to),
4857 copy_rtx (from)));
4858 }
4859
4860 return;
4861 }
4862
4863 /* We can't do it with an insn, so use a library call. But first ensure
4864 that the mode of TO is at least as wide as SImode, since those are the
4865 only library calls we know about. */
4866
4867 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
4868 {
4869 target = gen_reg_rtx (SImode);
4870
4871 expand_fix (target, from, unsignedp);
4872 }
4873 else
4874 {
4875 rtx insns;
4876 rtx value;
4877 rtx libfunc;
4878
4879 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
4880 libfunc = tab->handlers[GET_MODE (to)][GET_MODE (from)].libfunc;
4881 if (!libfunc)
4882 abort ();
4883
4884 if (flag_force_mem)
4885 from = force_not_mem (from);
4886
4887 start_sequence ();
4888
4889 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4890 GET_MODE (to), 1, from,
4891 GET_MODE (from));
4892 insns = get_insns ();
4893 end_sequence ();
4894
4895 emit_libcall_block (insns, target, value,
4896 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4897 GET_MODE (to), from));
4898 }
4899
4900 if (target != to)
4901 {
4902 if (GET_MODE (to) == GET_MODE (target))
4903 emit_move_insn (to, target);
4904 else
4905 convert_move (to, target, 0);
4906 }
4907 }
4908 \f
4909 /* Report whether we have an instruction to perform the operation
4910 specified by CODE on operands of mode MODE. */
4911 int
4912 have_insn_for (enum rtx_code code, enum machine_mode mode)
4913 {
4914 return (code_to_optab[(int) code] != 0
4915 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
4916 != CODE_FOR_nothing));
4917 }
4918
4919 /* Create a blank optab. */
4920 static optab
4921 new_optab (void)
4922 {
4923 int i;
4924 optab op = ggc_alloc (sizeof (struct optab));
4925 for (i = 0; i < NUM_MACHINE_MODES; i++)
4926 {
4927 op->handlers[i].insn_code = CODE_FOR_nothing;
4928 op->handlers[i].libfunc = 0;
4929 }
4930
4931 return op;
4932 }
4933
4934 static convert_optab
4935 new_convert_optab (void)
4936 {
4937 int i, j;
4938 convert_optab op = ggc_alloc (sizeof (struct convert_optab));
4939 for (i = 0; i < NUM_MACHINE_MODES; i++)
4940 for (j = 0; j < NUM_MACHINE_MODES; j++)
4941 {
4942 op->handlers[i][j].insn_code = CODE_FOR_nothing;
4943 op->handlers[i][j].libfunc = 0;
4944 }
4945 return op;
4946 }
4947
4948 /* Same, but fill in its code as CODE, and write it into the
4949 code_to_optab table. */
4950 static inline optab
4951 init_optab (enum rtx_code code)
4952 {
4953 optab op = new_optab ();
4954 op->code = code;
4955 code_to_optab[(int) code] = op;
4956 return op;
4957 }
4958
4959 /* Same, but fill in its code as CODE, and do _not_ write it into
4960 the code_to_optab table. */
4961 static inline optab
4962 init_optabv (enum rtx_code code)
4963 {
4964 optab op = new_optab ();
4965 op->code = code;
4966 return op;
4967 }
4968
4969 /* Conversion optabs never go in the code_to_optab table. */
4970 static inline convert_optab
4971 init_convert_optab (enum rtx_code code)
4972 {
4973 convert_optab op = new_convert_optab ();
4974 op->code = code;
4975 return op;
4976 }
4977
4978 /* Initialize the libfunc fields of an entire group of entries in some
4979 optab. Each entry is set equal to a string consisting of a leading
4980 pair of underscores followed by a generic operation name followed by
4981 a mode name (downshifted to lowercase) followed by a single character
4982 representing the number of operands for the given operation (which is
4983 usually one of the characters '2', '3', or '4').
4984
4985 OPTABLE is the table in which libfunc fields are to be initialized.
4986 FIRST_MODE is the first machine mode index in the given optab to
4987 initialize.
4988 LAST_MODE is the last machine mode index in the given optab to
4989 initialize.
4990 OPNAME is the generic (string) name of the operation.
4991 SUFFIX is the character which specifies the number of operands for
4992 the given generic operation.
4993 */
4994
4995 static void
4996 init_libfuncs (optab optable, int first_mode, int last_mode,
4997 const char *opname, int suffix)
4998 {
4999 int mode;
5000 unsigned opname_len = strlen (opname);
5001
5002 for (mode = first_mode; (int) mode <= (int) last_mode;
5003 mode = (enum machine_mode) ((int) mode + 1))
5004 {
5005 const char *mname = GET_MODE_NAME (mode);
5006 unsigned mname_len = strlen (mname);
5007 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5008 char *p;
5009 const char *q;
5010
5011 p = libfunc_name;
5012 *p++ = '_';
5013 *p++ = '_';
5014 for (q = opname; *q; )
5015 *p++ = *q++;
5016 for (q = mname; *q; q++)
5017 *p++ = TOLOWER (*q);
5018 *p++ = suffix;
5019 *p = '\0';
5020
5021 optable->handlers[(int) mode].libfunc
5022 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
5023 }
5024 }
5025
5026 /* Initialize the libfunc fields of an entire group of entries in some
5027 optab which correspond to all integer mode operations. The parameters
5028 have the same meaning as similarly named ones for the `init_libfuncs'
5029 routine. (See above). */
5030
5031 static void
5032 init_integral_libfuncs (optab optable, const char *opname, int suffix)
5033 {
5034 int maxsize = 2*BITS_PER_WORD;
5035 if (maxsize < LONG_LONG_TYPE_SIZE)
5036 maxsize = LONG_LONG_TYPE_SIZE;
5037 init_libfuncs (optable, word_mode,
5038 mode_for_size (maxsize, MODE_INT, 0),
5039 opname, suffix);
5040 }
5041
5042 /* Initialize the libfunc fields of an entire group of entries in some
5043 optab which correspond to all real mode operations. The parameters
5044 have the same meaning as similarly named ones for the `init_libfuncs'
5045 routine. (See above). */
5046
5047 static void
5048 init_floating_libfuncs (optab optable, const char *opname, int suffix)
5049 {
5050 init_libfuncs (optable, MIN_MODE_FLOAT, MAX_MODE_FLOAT, opname, suffix);
5051 }
5052
5053 /* Initialize the libfunc fields of an entire group of entries of an
5054 inter-mode-class conversion optab. The string formation rules are
5055 similar to the ones for init_libfuncs, above, but instead of having
5056 a mode name and an operand count these functions have two mode names
5057 and no operand count. */
5058 static void
5059 init_interclass_conv_libfuncs (convert_optab tab, const char *opname,
5060 enum mode_class from_class,
5061 enum mode_class to_class)
5062 {
5063 enum machine_mode first_from_mode = GET_CLASS_NARROWEST_MODE (from_class);
5064 enum machine_mode first_to_mode = GET_CLASS_NARROWEST_MODE (to_class);
5065 size_t opname_len = strlen (opname);
5066 size_t max_mname_len = 0;
5067
5068 enum machine_mode fmode, tmode;
5069 const char *fname, *tname;
5070 const char *q;
5071 char *libfunc_name, *suffix;
5072 char *p;
5073
5074 for (fmode = first_from_mode;
5075 fmode != VOIDmode;
5076 fmode = GET_MODE_WIDER_MODE (fmode))
5077 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (fmode)));
5078
5079 for (tmode = first_to_mode;
5080 tmode != VOIDmode;
5081 tmode = GET_MODE_WIDER_MODE (tmode))
5082 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (tmode)));
5083
5084 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5085 libfunc_name[0] = '_';
5086 libfunc_name[1] = '_';
5087 memcpy (&libfunc_name[2], opname, opname_len);
5088 suffix = libfunc_name + opname_len + 2;
5089
5090 for (fmode = first_from_mode; fmode != VOIDmode;
5091 fmode = GET_MODE_WIDER_MODE (fmode))
5092 for (tmode = first_to_mode; tmode != VOIDmode;
5093 tmode = GET_MODE_WIDER_MODE (tmode))
5094 {
5095 fname = GET_MODE_NAME (fmode);
5096 tname = GET_MODE_NAME (tmode);
5097
5098 p = suffix;
5099 for (q = fname; *q; p++, q++)
5100 *p = TOLOWER (*q);
5101 for (q = tname; *q; p++, q++)
5102 *p = TOLOWER (*q);
5103
5104 *p = '\0';
5105
5106 tab->handlers[tmode][fmode].libfunc
5107 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5108 p - libfunc_name));
5109 }
5110 }
5111
5112 /* Initialize the libfunc fields of an entire group of entries of an
5113 intra-mode-class conversion optab. The string formation rules are
5114 similar to the ones for init_libfunc, above. WIDENING says whether
5115 the optab goes from narrow to wide modes or vice versa. These functions
5116 have two mode names _and_ an operand count. */
5117 static void
5118 init_intraclass_conv_libfuncs (convert_optab tab, const char *opname,
5119 enum mode_class class, bool widening)
5120 {
5121 enum machine_mode first_mode = GET_CLASS_NARROWEST_MODE (class);
5122 size_t opname_len = strlen (opname);
5123 size_t max_mname_len = 0;
5124
5125 enum machine_mode nmode, wmode;
5126 const char *nname, *wname;
5127 const char *q;
5128 char *libfunc_name, *suffix;
5129 char *p;
5130
5131 for (nmode = first_mode; nmode != VOIDmode;
5132 nmode = GET_MODE_WIDER_MODE (nmode))
5133 max_mname_len = MAX (max_mname_len, strlen (GET_MODE_NAME (nmode)));
5134
5135 libfunc_name = alloca (2 + opname_len + 2*max_mname_len + 1 + 1);
5136 libfunc_name[0] = '_';
5137 libfunc_name[1] = '_';
5138 memcpy (&libfunc_name[2], opname, opname_len);
5139 suffix = libfunc_name + opname_len + 2;
5140
5141 for (nmode = first_mode; nmode != VOIDmode;
5142 nmode = GET_MODE_WIDER_MODE (nmode))
5143 for (wmode = GET_MODE_WIDER_MODE (nmode); wmode != VOIDmode;
5144 wmode = GET_MODE_WIDER_MODE (wmode))
5145 {
5146 nname = GET_MODE_NAME (nmode);
5147 wname = GET_MODE_NAME (wmode);
5148
5149 p = suffix;
5150 for (q = widening ? nname : wname; *q; p++, q++)
5151 *p = TOLOWER (*q);
5152 for (q = widening ? wname : nname; *q; p++, q++)
5153 *p = TOLOWER (*q);
5154
5155 *p++ = '2';
5156 *p = '\0';
5157
5158 tab->handlers[widening ? wmode : nmode]
5159 [widening ? nmode : wmode].libfunc
5160 = init_one_libfunc (ggc_alloc_string (libfunc_name,
5161 p - libfunc_name));
5162 }
5163 }
5164
5165
5166 rtx
5167 init_one_libfunc (const char *name)
5168 {
5169 rtx symbol;
5170
5171 /* Create a FUNCTION_DECL that can be passed to
5172 targetm.encode_section_info. */
5173 /* ??? We don't have any type information except for this is
5174 a function. Pretend this is "int foo()". */
5175 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5176 build_function_type (integer_type_node, NULL_TREE));
5177 DECL_ARTIFICIAL (decl) = 1;
5178 DECL_EXTERNAL (decl) = 1;
5179 TREE_PUBLIC (decl) = 1;
5180
5181 symbol = XEXP (DECL_RTL (decl), 0);
5182
5183 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5184 are the flags assigned by targetm.encode_section_info. */
5185 SYMBOL_REF_DECL (symbol) = 0;
5186
5187 return symbol;
5188 }
5189
5190 /* Call this to reset the function entry for one optab (OPTABLE) in mode
5191 MODE to NAME, which should be either 0 or a string constant. */
5192 void
5193 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
5194 {
5195 if (name)
5196 optable->handlers[mode].libfunc = init_one_libfunc (name);
5197 else
5198 optable->handlers[mode].libfunc = 0;
5199 }
5200
5201 /* Call this to reset the function entry for one conversion optab
5202 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
5203 either 0 or a string constant. */
5204 void
5205 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
5206 enum machine_mode fmode, const char *name)
5207 {
5208 if (name)
5209 optable->handlers[tmode][fmode].libfunc = init_one_libfunc (name);
5210 else
5211 optable->handlers[tmode][fmode].libfunc = 0;
5212 }
5213
5214 /* Call this once to initialize the contents of the optabs
5215 appropriately for the current target machine. */
5216
5217 void
5218 init_optabs (void)
5219 {
5220 unsigned int i;
5221
5222 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5223
5224 for (i = 0; i < NUM_RTX_CODE; i++)
5225 setcc_gen_code[i] = CODE_FOR_nothing;
5226
5227 #ifdef HAVE_conditional_move
5228 for (i = 0; i < NUM_MACHINE_MODES; i++)
5229 movcc_gen_code[i] = CODE_FOR_nothing;
5230 #endif
5231
5232 add_optab = init_optab (PLUS);
5233 addv_optab = init_optabv (PLUS);
5234 sub_optab = init_optab (MINUS);
5235 subv_optab = init_optabv (MINUS);
5236 smul_optab = init_optab (MULT);
5237 smulv_optab = init_optabv (MULT);
5238 smul_highpart_optab = init_optab (UNKNOWN);
5239 umul_highpart_optab = init_optab (UNKNOWN);
5240 smul_widen_optab = init_optab (UNKNOWN);
5241 umul_widen_optab = init_optab (UNKNOWN);
5242 sdiv_optab = init_optab (DIV);
5243 sdivv_optab = init_optabv (DIV);
5244 sdivmod_optab = init_optab (UNKNOWN);
5245 udiv_optab = init_optab (UDIV);
5246 udivmod_optab = init_optab (UNKNOWN);
5247 smod_optab = init_optab (MOD);
5248 umod_optab = init_optab (UMOD);
5249 fmod_optab = init_optab (UNKNOWN);
5250 drem_optab = init_optab (UNKNOWN);
5251 ftrunc_optab = init_optab (UNKNOWN);
5252 and_optab = init_optab (AND);
5253 ior_optab = init_optab (IOR);
5254 xor_optab = init_optab (XOR);
5255 ashl_optab = init_optab (ASHIFT);
5256 ashr_optab = init_optab (ASHIFTRT);
5257 lshr_optab = init_optab (LSHIFTRT);
5258 rotl_optab = init_optab (ROTATE);
5259 rotr_optab = init_optab (ROTATERT);
5260 smin_optab = init_optab (SMIN);
5261 smax_optab = init_optab (SMAX);
5262 umin_optab = init_optab (UMIN);
5263 umax_optab = init_optab (UMAX);
5264 pow_optab = init_optab (UNKNOWN);
5265 atan2_optab = init_optab (UNKNOWN);
5266
5267 /* These three have codes assigned exclusively for the sake of
5268 have_insn_for. */
5269 mov_optab = init_optab (SET);
5270 movstrict_optab = init_optab (STRICT_LOW_PART);
5271 cmp_optab = init_optab (COMPARE);
5272
5273 ucmp_optab = init_optab (UNKNOWN);
5274 tst_optab = init_optab (UNKNOWN);
5275
5276 eq_optab = init_optab (EQ);
5277 ne_optab = init_optab (NE);
5278 gt_optab = init_optab (GT);
5279 ge_optab = init_optab (GE);
5280 lt_optab = init_optab (LT);
5281 le_optab = init_optab (LE);
5282 unord_optab = init_optab (UNORDERED);
5283
5284 neg_optab = init_optab (NEG);
5285 negv_optab = init_optabv (NEG);
5286 abs_optab = init_optab (ABS);
5287 absv_optab = init_optabv (ABS);
5288 addcc_optab = init_optab (UNKNOWN);
5289 one_cmpl_optab = init_optab (NOT);
5290 ffs_optab = init_optab (FFS);
5291 clz_optab = init_optab (CLZ);
5292 ctz_optab = init_optab (CTZ);
5293 popcount_optab = init_optab (POPCOUNT);
5294 parity_optab = init_optab (PARITY);
5295 sqrt_optab = init_optab (SQRT);
5296 floor_optab = init_optab (UNKNOWN);
5297 ceil_optab = init_optab (UNKNOWN);
5298 round_optab = init_optab (UNKNOWN);
5299 btrunc_optab = init_optab (UNKNOWN);
5300 nearbyint_optab = init_optab (UNKNOWN);
5301 sincos_optab = init_optab (UNKNOWN);
5302 sin_optab = init_optab (UNKNOWN);
5303 asin_optab = init_optab (UNKNOWN);
5304 cos_optab = init_optab (UNKNOWN);
5305 acos_optab = init_optab (UNKNOWN);
5306 exp_optab = init_optab (UNKNOWN);
5307 exp10_optab = init_optab (UNKNOWN);
5308 exp2_optab = init_optab (UNKNOWN);
5309 expm1_optab = init_optab (UNKNOWN);
5310 logb_optab = init_optab (UNKNOWN);
5311 ilogb_optab = init_optab (UNKNOWN);
5312 log_optab = init_optab (UNKNOWN);
5313 log10_optab = init_optab (UNKNOWN);
5314 log2_optab = init_optab (UNKNOWN);
5315 log1p_optab = init_optab (UNKNOWN);
5316 tan_optab = init_optab (UNKNOWN);
5317 atan_optab = init_optab (UNKNOWN);
5318 strlen_optab = init_optab (UNKNOWN);
5319 cbranch_optab = init_optab (UNKNOWN);
5320 cmov_optab = init_optab (UNKNOWN);
5321 cstore_optab = init_optab (UNKNOWN);
5322 push_optab = init_optab (UNKNOWN);
5323
5324 vec_extract_optab = init_optab (UNKNOWN);
5325 vec_set_optab = init_optab (UNKNOWN);
5326 vec_init_optab = init_optab (UNKNOWN);
5327 /* Conversions. */
5328 sext_optab = init_convert_optab (SIGN_EXTEND);
5329 zext_optab = init_convert_optab (ZERO_EXTEND);
5330 trunc_optab = init_convert_optab (TRUNCATE);
5331 sfix_optab = init_convert_optab (FIX);
5332 ufix_optab = init_convert_optab (UNSIGNED_FIX);
5333 sfixtrunc_optab = init_convert_optab (UNKNOWN);
5334 ufixtrunc_optab = init_convert_optab (UNKNOWN);
5335 sfloat_optab = init_convert_optab (FLOAT);
5336 ufloat_optab = init_convert_optab (UNSIGNED_FLOAT);
5337
5338 for (i = 0; i < NUM_MACHINE_MODES; i++)
5339 {
5340 movmem_optab[i] = CODE_FOR_nothing;
5341 clrmem_optab[i] = CODE_FOR_nothing;
5342 cmpstr_optab[i] = CODE_FOR_nothing;
5343 cmpmem_optab[i] = CODE_FOR_nothing;
5344
5345 #ifdef HAVE_SECONDARY_RELOADS
5346 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5347 #endif
5348 }
5349
5350 /* Fill in the optabs with the insns we support. */
5351 init_all_optabs ();
5352
5353 /* Initialize the optabs with the names of the library functions. */
5354 init_integral_libfuncs (add_optab, "add", '3');
5355 init_floating_libfuncs (add_optab, "add", '3');
5356 init_integral_libfuncs (addv_optab, "addv", '3');
5357 init_floating_libfuncs (addv_optab, "add", '3');
5358 init_integral_libfuncs (sub_optab, "sub", '3');
5359 init_floating_libfuncs (sub_optab, "sub", '3');
5360 init_integral_libfuncs (subv_optab, "subv", '3');
5361 init_floating_libfuncs (subv_optab, "sub", '3');
5362 init_integral_libfuncs (smul_optab, "mul", '3');
5363 init_floating_libfuncs (smul_optab, "mul", '3');
5364 init_integral_libfuncs (smulv_optab, "mulv", '3');
5365 init_floating_libfuncs (smulv_optab, "mul", '3');
5366 init_integral_libfuncs (sdiv_optab, "div", '3');
5367 init_floating_libfuncs (sdiv_optab, "div", '3');
5368 init_integral_libfuncs (sdivv_optab, "divv", '3');
5369 init_integral_libfuncs (udiv_optab, "udiv", '3');
5370 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5371 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5372 init_integral_libfuncs (smod_optab, "mod", '3');
5373 init_integral_libfuncs (umod_optab, "umod", '3');
5374 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5375 init_integral_libfuncs (and_optab, "and", '3');
5376 init_integral_libfuncs (ior_optab, "ior", '3');
5377 init_integral_libfuncs (xor_optab, "xor", '3');
5378 init_integral_libfuncs (ashl_optab, "ashl", '3');
5379 init_integral_libfuncs (ashr_optab, "ashr", '3');
5380 init_integral_libfuncs (lshr_optab, "lshr", '3');
5381 init_integral_libfuncs (smin_optab, "min", '3');
5382 init_floating_libfuncs (smin_optab, "min", '3');
5383 init_integral_libfuncs (smax_optab, "max", '3');
5384 init_floating_libfuncs (smax_optab, "max", '3');
5385 init_integral_libfuncs (umin_optab, "umin", '3');
5386 init_integral_libfuncs (umax_optab, "umax", '3');
5387 init_integral_libfuncs (neg_optab, "neg", '2');
5388 init_floating_libfuncs (neg_optab, "neg", '2');
5389 init_integral_libfuncs (negv_optab, "negv", '2');
5390 init_floating_libfuncs (negv_optab, "neg", '2');
5391 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5392 init_integral_libfuncs (ffs_optab, "ffs", '2');
5393 init_integral_libfuncs (clz_optab, "clz", '2');
5394 init_integral_libfuncs (ctz_optab, "ctz", '2');
5395 init_integral_libfuncs (popcount_optab, "popcount", '2');
5396 init_integral_libfuncs (parity_optab, "parity", '2');
5397
5398 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5399 init_integral_libfuncs (cmp_optab, "cmp", '2');
5400 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5401 init_floating_libfuncs (cmp_optab, "cmp", '2');
5402
5403 /* EQ etc are floating point only. */
5404 init_floating_libfuncs (eq_optab, "eq", '2');
5405 init_floating_libfuncs (ne_optab, "ne", '2');
5406 init_floating_libfuncs (gt_optab, "gt", '2');
5407 init_floating_libfuncs (ge_optab, "ge", '2');
5408 init_floating_libfuncs (lt_optab, "lt", '2');
5409 init_floating_libfuncs (le_optab, "le", '2');
5410 init_floating_libfuncs (unord_optab, "unord", '2');
5411
5412 /* Conversions. */
5413 init_interclass_conv_libfuncs (sfloat_optab, "float", MODE_INT, MODE_FLOAT);
5414 init_interclass_conv_libfuncs (sfix_optab, "fix", MODE_FLOAT, MODE_INT);
5415 init_interclass_conv_libfuncs (ufix_optab, "fixuns", MODE_FLOAT, MODE_INT);
5416
5417 /* sext_optab is also used for FLOAT_EXTEND. */
5418 init_intraclass_conv_libfuncs (sext_optab, "extend", MODE_FLOAT, true);
5419 init_intraclass_conv_libfuncs (trunc_optab, "trunc", MODE_FLOAT, false);
5420
5421 /* Use cabs for double complex abs, since systems generally have cabs.
5422 Don't define any libcall for float complex, so that cabs will be used. */
5423 if (complex_double_type_node)
5424 abs_optab->handlers[TYPE_MODE (complex_double_type_node)].libfunc
5425 = init_one_libfunc ("cabs");
5426
5427 /* The ffs function operates on `int'. */
5428 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5429 = init_one_libfunc ("ffs");
5430
5431 abort_libfunc = init_one_libfunc ("abort");
5432 memcpy_libfunc = init_one_libfunc ("memcpy");
5433 memmove_libfunc = init_one_libfunc ("memmove");
5434 memcmp_libfunc = init_one_libfunc ("memcmp");
5435 memset_libfunc = init_one_libfunc ("memset");
5436 setbits_libfunc = init_one_libfunc ("__setbits");
5437
5438 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5439 ? "_Unwind_SjLj_Resume"
5440 : "_Unwind_Resume");
5441 #ifndef DONT_USE_BUILTIN_SETJMP
5442 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5443 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5444 #else
5445 setjmp_libfunc = init_one_libfunc ("setjmp");
5446 longjmp_libfunc = init_one_libfunc ("longjmp");
5447 #endif
5448 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5449 unwind_sjlj_unregister_libfunc
5450 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5451
5452 /* For function entry/exit instrumentation. */
5453 profile_function_entry_libfunc
5454 = init_one_libfunc ("__cyg_profile_func_enter");
5455 profile_function_exit_libfunc
5456 = init_one_libfunc ("__cyg_profile_func_exit");
5457
5458 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5459
5460 if (HAVE_conditional_trap)
5461 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5462
5463 /* Allow the target to add more libcalls or rename some, etc. */
5464 targetm.init_libfuncs ();
5465 }
5466 \f
5467 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5468 CODE. Return 0 on failure. */
5469
5470 rtx
5471 gen_cond_trap (enum rtx_code code ATTRIBUTE_UNUSED, rtx op1,
5472 rtx op2 ATTRIBUTE_UNUSED, rtx tcode ATTRIBUTE_UNUSED)
5473 {
5474 enum machine_mode mode = GET_MODE (op1);
5475 enum insn_code icode;
5476 rtx insn;
5477
5478 if (!HAVE_conditional_trap)
5479 return 0;
5480
5481 if (mode == VOIDmode)
5482 return 0;
5483
5484 icode = cmp_optab->handlers[(int) mode].insn_code;
5485 if (icode == CODE_FOR_nothing)
5486 return 0;
5487
5488 start_sequence ();
5489 op1 = prepare_operand (icode, op1, 0, mode, mode, 0);
5490 op2 = prepare_operand (icode, op2, 1, mode, mode, 0);
5491 if (!op1 || !op2)
5492 {
5493 end_sequence ();
5494 return 0;
5495 }
5496 emit_insn (GEN_FCN (icode) (op1, op2));
5497
5498 PUT_CODE (trap_rtx, code);
5499 insn = gen_conditional_trap (trap_rtx, tcode);
5500 if (insn)
5501 {
5502 emit_insn (insn);
5503 insn = get_insns ();
5504 }
5505 end_sequence ();
5506
5507 return insn;
5508 }
5509
5510 #include "gt-optabs.h"