]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
Factor unrelated declarations out of tree.h.
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "stringpool.h"
34 #include "varasm.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "function.h"
38 #include "except.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "ggc.h"
45 #include "basic-block.h"
46 #include "target.h"
47
48 struct target_optabs default_target_optabs;
49 struct target_libfuncs default_target_libfuncs;
50 struct target_optabs *this_fn_optabs = &default_target_optabs;
51 #if SWITCHABLE_TARGET
52 struct target_optabs *this_target_optabs = &default_target_optabs;
53 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
54 #endif
55
56 #define libfunc_hash \
57 (this_target_libfuncs->x_libfunc_hash)
58
59 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
60 enum machine_mode *);
61 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
62 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
63
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
66
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
70 #else
71 #define DECIMAL_PREFIX "dpd_"
72 #endif
73 \f
74 /* Used for libfunc_hash. */
75
76 static hashval_t
77 hash_libfunc (const void *p)
78 {
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
80 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
81 }
82
83 /* Used for libfunc_hash. */
84
85 static int
86 eq_libfunc (const void *p, const void *q)
87 {
88 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
89 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
90 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
91 }
92
93 /* Return libfunc corresponding operation defined by OPTAB converting
94 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
95 if no libfunc is available. */
96 rtx
97 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
98 enum machine_mode mode2)
99 {
100 struct libfunc_entry e;
101 struct libfunc_entry **slot;
102
103 /* ??? This ought to be an assert, but not all of the places
104 that we expand optabs know about the optabs that got moved
105 to being direct. */
106 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
107 return NULL_RTX;
108
109 e.op = optab;
110 e.mode1 = mode1;
111 e.mode2 = mode2;
112 slot = (struct libfunc_entry **)
113 htab_find_slot (libfunc_hash, &e, NO_INSERT);
114 if (!slot)
115 {
116 const struct convert_optab_libcall_d *d
117 = &convlib_def[optab - FIRST_CONV_OPTAB];
118
119 if (d->libcall_gen == NULL)
120 return NULL;
121
122 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
123 slot = (struct libfunc_entry **)
124 htab_find_slot (libfunc_hash, &e, NO_INSERT);
125 if (!slot)
126 return NULL;
127 }
128 return (*slot)->libfunc;
129 }
130
131 /* Return libfunc corresponding operation defined by OPTAB in MODE.
132 Trigger lazy initialization if needed, return NULL if no libfunc is
133 available. */
134 rtx
135 optab_libfunc (optab optab, enum machine_mode mode)
136 {
137 struct libfunc_entry e;
138 struct libfunc_entry **slot;
139
140 /* ??? This ought to be an assert, but not all of the places
141 that we expand optabs know about the optabs that got moved
142 to being direct. */
143 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
144 return NULL_RTX;
145
146 e.op = optab;
147 e.mode1 = mode;
148 e.mode2 = VOIDmode;
149 slot = (struct libfunc_entry **)
150 htab_find_slot (libfunc_hash, &e, NO_INSERT);
151 if (!slot)
152 {
153 const struct optab_libcall_d *d
154 = &normlib_def[optab - FIRST_NORM_OPTAB];
155
156 if (d->libcall_gen == NULL)
157 return NULL;
158
159 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
160 slot = (struct libfunc_entry **)
161 htab_find_slot (libfunc_hash, &e, NO_INSERT);
162 if (!slot)
163 return NULL;
164 }
165 return (*slot)->libfunc;
166 }
167
168 \f
169 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
170 the result of operation CODE applied to OP0 (and OP1 if it is a binary
171 operation).
172
173 If the last insn does not set TARGET, don't do anything, but return 1.
174
175 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
176 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
177 try again, ensuring that TARGET is not one of the operands. */
178
179 static int
180 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
181 {
182 rtx last_insn, set;
183 rtx note;
184
185 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
186
187 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
188 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
189 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
190 && GET_RTX_CLASS (code) != RTX_COMPARE
191 && GET_RTX_CLASS (code) != RTX_UNARY)
192 return 1;
193
194 if (GET_CODE (target) == ZERO_EXTRACT)
195 return 1;
196
197 for (last_insn = insns;
198 NEXT_INSN (last_insn) != NULL_RTX;
199 last_insn = NEXT_INSN (last_insn))
200 ;
201
202 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
203 a value changing in the insn, so the note would be invalid for CSE. */
204 if (reg_overlap_mentioned_p (target, op0)
205 || (op1 && reg_overlap_mentioned_p (target, op1)))
206 {
207 if (MEM_P (target)
208 && (rtx_equal_p (target, op0)
209 || (op1 && rtx_equal_p (target, op1))))
210 {
211 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
212 over expanding it as temp = MEM op X, MEM = temp. If the target
213 supports MEM = MEM op X instructions, it is sometimes too hard
214 to reconstruct that form later, especially if X is also a memory,
215 and due to multiple occurrences of addresses the address might
216 be forced into register unnecessarily.
217 Note that not emitting the REG_EQUIV note might inhibit
218 CSE in some cases. */
219 set = single_set (last_insn);
220 if (set
221 && GET_CODE (SET_SRC (set)) == code
222 && MEM_P (SET_DEST (set))
223 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
224 || (op1 && rtx_equal_p (SET_DEST (set),
225 XEXP (SET_SRC (set), 1)))))
226 return 1;
227 }
228 return 0;
229 }
230
231 set = single_set (last_insn);
232 if (set == NULL_RTX)
233 return 1;
234
235 if (! rtx_equal_p (SET_DEST (set), target)
236 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
237 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
238 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
239 return 1;
240
241 if (GET_RTX_CLASS (code) == RTX_UNARY)
242 switch (code)
243 {
244 case FFS:
245 case CLZ:
246 case CTZ:
247 case CLRSB:
248 case POPCOUNT:
249 case PARITY:
250 case BSWAP:
251 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
252 {
253 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
254 if (GET_MODE_SIZE (GET_MODE (op0))
255 > GET_MODE_SIZE (GET_MODE (target)))
256 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
257 note, GET_MODE (op0));
258 else
259 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
260 note, GET_MODE (op0));
261 break;
262 }
263 /* FALLTHRU */
264 default:
265 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
266 break;
267 }
268 else
269 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
270
271 set_unique_reg_note (last_insn, REG_EQUAL, note);
272
273 return 1;
274 }
275 \f
276 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
277 for a widening operation would be. In most cases this would be OP0, but if
278 that's a constant it'll be VOIDmode, which isn't useful. */
279
280 static enum machine_mode
281 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
282 {
283 enum machine_mode m0 = GET_MODE (op0);
284 enum machine_mode m1 = GET_MODE (op1);
285 enum machine_mode result;
286
287 if (m0 == VOIDmode && m1 == VOIDmode)
288 return to_mode;
289 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
290 result = m1;
291 else
292 result = m0;
293
294 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
295 return to_mode;
296
297 return result;
298 }
299 \f
300 /* Find a widening optab even if it doesn't widen as much as we want.
301 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
302 direct HI->SI insn, then return SI->DI, if that exists.
303 If PERMIT_NON_WIDENING is non-zero then this can be used with
304 non-widening optabs also. */
305
306 enum insn_code
307 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
308 enum machine_mode from_mode,
309 int permit_non_widening,
310 enum machine_mode *found_mode)
311 {
312 for (; (permit_non_widening || from_mode != to_mode)
313 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
314 && from_mode != VOIDmode;
315 from_mode = GET_MODE_WIDER_MODE (from_mode))
316 {
317 enum insn_code handler = widening_optab_handler (op, to_mode,
318 from_mode);
319
320 if (handler != CODE_FOR_nothing)
321 {
322 if (found_mode)
323 *found_mode = from_mode;
324 return handler;
325 }
326 }
327
328 return CODE_FOR_nothing;
329 }
330 \f
331 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
332 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
333 not actually do a sign-extend or zero-extend, but can leave the
334 higher-order bits of the result rtx undefined, for example, in the case
335 of logical operations, but not right shifts. */
336
337 static rtx
338 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
339 int unsignedp, int no_extend)
340 {
341 rtx result;
342
343 /* If we don't have to extend and this is a constant, return it. */
344 if (no_extend && GET_MODE (op) == VOIDmode)
345 return op;
346
347 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
348 extend since it will be more efficient to do so unless the signedness of
349 a promoted object differs from our extension. */
350 if (! no_extend
351 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
352 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
353 return convert_modes (mode, oldmode, op, unsignedp);
354
355 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
356 SUBREG. */
357 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
358 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
359
360 /* Otherwise, get an object of MODE, clobber it, and set the low-order
361 part to OP. */
362
363 result = gen_reg_rtx (mode);
364 emit_clobber (result);
365 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
366 return result;
367 }
368 \f
369 /* Return the optab used for computing the operation given by the tree code,
370 CODE and the tree EXP. This function is not always usable (for example, it
371 cannot give complete results for multiplication or division) but probably
372 ought to be relied on more widely throughout the expander. */
373 optab
374 optab_for_tree_code (enum tree_code code, const_tree type,
375 enum optab_subtype subtype)
376 {
377 bool trapv;
378 switch (code)
379 {
380 case BIT_AND_EXPR:
381 return and_optab;
382
383 case BIT_IOR_EXPR:
384 return ior_optab;
385
386 case BIT_NOT_EXPR:
387 return one_cmpl_optab;
388
389 case BIT_XOR_EXPR:
390 return xor_optab;
391
392 case MULT_HIGHPART_EXPR:
393 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
394
395 case TRUNC_MOD_EXPR:
396 case CEIL_MOD_EXPR:
397 case FLOOR_MOD_EXPR:
398 case ROUND_MOD_EXPR:
399 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
400
401 case RDIV_EXPR:
402 case TRUNC_DIV_EXPR:
403 case CEIL_DIV_EXPR:
404 case FLOOR_DIV_EXPR:
405 case ROUND_DIV_EXPR:
406 case EXACT_DIV_EXPR:
407 if (TYPE_SATURATING (type))
408 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
409 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
410
411 case LSHIFT_EXPR:
412 if (TREE_CODE (type) == VECTOR_TYPE)
413 {
414 if (subtype == optab_vector)
415 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
416
417 gcc_assert (subtype == optab_scalar);
418 }
419 if (TYPE_SATURATING (type))
420 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
421 return ashl_optab;
422
423 case RSHIFT_EXPR:
424 if (TREE_CODE (type) == VECTOR_TYPE)
425 {
426 if (subtype == optab_vector)
427 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
428
429 gcc_assert (subtype == optab_scalar);
430 }
431 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
432
433 case LROTATE_EXPR:
434 if (TREE_CODE (type) == VECTOR_TYPE)
435 {
436 if (subtype == optab_vector)
437 return vrotl_optab;
438
439 gcc_assert (subtype == optab_scalar);
440 }
441 return rotl_optab;
442
443 case RROTATE_EXPR:
444 if (TREE_CODE (type) == VECTOR_TYPE)
445 {
446 if (subtype == optab_vector)
447 return vrotr_optab;
448
449 gcc_assert (subtype == optab_scalar);
450 }
451 return rotr_optab;
452
453 case MAX_EXPR:
454 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
455
456 case MIN_EXPR:
457 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
458
459 case REALIGN_LOAD_EXPR:
460 return vec_realign_load_optab;
461
462 case WIDEN_SUM_EXPR:
463 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
464
465 case DOT_PROD_EXPR:
466 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
467
468 case WIDEN_MULT_PLUS_EXPR:
469 return (TYPE_UNSIGNED (type)
470 ? (TYPE_SATURATING (type)
471 ? usmadd_widen_optab : umadd_widen_optab)
472 : (TYPE_SATURATING (type)
473 ? ssmadd_widen_optab : smadd_widen_optab));
474
475 case WIDEN_MULT_MINUS_EXPR:
476 return (TYPE_UNSIGNED (type)
477 ? (TYPE_SATURATING (type)
478 ? usmsub_widen_optab : umsub_widen_optab)
479 : (TYPE_SATURATING (type)
480 ? ssmsub_widen_optab : smsub_widen_optab));
481
482 case FMA_EXPR:
483 return fma_optab;
484
485 case REDUC_MAX_EXPR:
486 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
487
488 case REDUC_MIN_EXPR:
489 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
490
491 case REDUC_PLUS_EXPR:
492 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
493
494 case VEC_LSHIFT_EXPR:
495 return vec_shl_optab;
496
497 case VEC_RSHIFT_EXPR:
498 return vec_shr_optab;
499
500 case VEC_WIDEN_MULT_HI_EXPR:
501 return TYPE_UNSIGNED (type) ?
502 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
503
504 case VEC_WIDEN_MULT_LO_EXPR:
505 return TYPE_UNSIGNED (type) ?
506 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
507
508 case VEC_WIDEN_MULT_EVEN_EXPR:
509 return TYPE_UNSIGNED (type) ?
510 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
511
512 case VEC_WIDEN_MULT_ODD_EXPR:
513 return TYPE_UNSIGNED (type) ?
514 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
515
516 case VEC_WIDEN_LSHIFT_HI_EXPR:
517 return TYPE_UNSIGNED (type) ?
518 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
519
520 case VEC_WIDEN_LSHIFT_LO_EXPR:
521 return TYPE_UNSIGNED (type) ?
522 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
523
524 case VEC_UNPACK_HI_EXPR:
525 return TYPE_UNSIGNED (type) ?
526 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
527
528 case VEC_UNPACK_LO_EXPR:
529 return TYPE_UNSIGNED (type) ?
530 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
531
532 case VEC_UNPACK_FLOAT_HI_EXPR:
533 /* The signedness is determined from input operand. */
534 return TYPE_UNSIGNED (type) ?
535 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
536
537 case VEC_UNPACK_FLOAT_LO_EXPR:
538 /* The signedness is determined from input operand. */
539 return TYPE_UNSIGNED (type) ?
540 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
541
542 case VEC_PACK_TRUNC_EXPR:
543 return vec_pack_trunc_optab;
544
545 case VEC_PACK_SAT_EXPR:
546 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
547
548 case VEC_PACK_FIX_TRUNC_EXPR:
549 /* The signedness is determined from output operand. */
550 return TYPE_UNSIGNED (type) ?
551 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
552
553 default:
554 break;
555 }
556
557 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
558 switch (code)
559 {
560 case POINTER_PLUS_EXPR:
561 case PLUS_EXPR:
562 if (TYPE_SATURATING (type))
563 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
564 return trapv ? addv_optab : add_optab;
565
566 case MINUS_EXPR:
567 if (TYPE_SATURATING (type))
568 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
569 return trapv ? subv_optab : sub_optab;
570
571 case MULT_EXPR:
572 if (TYPE_SATURATING (type))
573 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
574 return trapv ? smulv_optab : smul_optab;
575
576 case NEGATE_EXPR:
577 if (TYPE_SATURATING (type))
578 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
579 return trapv ? negv_optab : neg_optab;
580
581 case ABS_EXPR:
582 return trapv ? absv_optab : abs_optab;
583
584 default:
585 return unknown_optab;
586 }
587 }
588 \f
589
590 /* Expand vector widening operations.
591
592 There are two different classes of operations handled here:
593 1) Operations whose result is wider than all the arguments to the operation.
594 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
595 In this case OP0 and optionally OP1 would be initialized,
596 but WIDE_OP wouldn't (not relevant for this case).
597 2) Operations whose result is of the same size as the last argument to the
598 operation, but wider than all the other arguments to the operation.
599 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
600 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
601
602 E.g, when called to expand the following operations, this is how
603 the arguments will be initialized:
604 nops OP0 OP1 WIDE_OP
605 widening-sum 2 oprnd0 - oprnd1
606 widening-dot-product 3 oprnd0 oprnd1 oprnd2
607 widening-mult 2 oprnd0 oprnd1 -
608 type-promotion (vec-unpack) 1 oprnd0 - - */
609
610 rtx
611 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
612 rtx target, int unsignedp)
613 {
614 struct expand_operand eops[4];
615 tree oprnd0, oprnd1, oprnd2;
616 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
617 optab widen_pattern_optab;
618 enum insn_code icode;
619 int nops = TREE_CODE_LENGTH (ops->code);
620 int op;
621
622 oprnd0 = ops->op0;
623 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
624 widen_pattern_optab =
625 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
626 if (ops->code == WIDEN_MULT_PLUS_EXPR
627 || ops->code == WIDEN_MULT_MINUS_EXPR)
628 icode = find_widening_optab_handler (widen_pattern_optab,
629 TYPE_MODE (TREE_TYPE (ops->op2)),
630 tmode0, 0);
631 else
632 icode = optab_handler (widen_pattern_optab, tmode0);
633 gcc_assert (icode != CODE_FOR_nothing);
634
635 if (nops >= 2)
636 {
637 oprnd1 = ops->op1;
638 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
639 }
640
641 /* The last operand is of a wider mode than the rest of the operands. */
642 if (nops == 2)
643 wmode = tmode1;
644 else if (nops == 3)
645 {
646 gcc_assert (tmode1 == tmode0);
647 gcc_assert (op1);
648 oprnd2 = ops->op2;
649 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
650 }
651
652 op = 0;
653 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
654 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
655 if (op1)
656 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
657 if (wide_op)
658 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
659 expand_insn (icode, op, eops);
660 return eops[0].value;
661 }
662
663 /* Generate code to perform an operation specified by TERNARY_OPTAB
664 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
665
666 UNSIGNEDP is for the case where we have to widen the operands
667 to perform the operation. It says to use zero-extension.
668
669 If TARGET is nonzero, the value
670 is generated there, if it is convenient to do so.
671 In all cases an rtx is returned for the locus of the value;
672 this may or may not be TARGET. */
673
674 rtx
675 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
676 rtx op1, rtx op2, rtx target, int unsignedp)
677 {
678 struct expand_operand ops[4];
679 enum insn_code icode = optab_handler (ternary_optab, mode);
680
681 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
682
683 create_output_operand (&ops[0], target, mode);
684 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
685 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
686 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
687 expand_insn (icode, 4, ops);
688 return ops[0].value;
689 }
690
691
692 /* Like expand_binop, but return a constant rtx if the result can be
693 calculated at compile time. The arguments and return value are
694 otherwise the same as for expand_binop. */
695
696 rtx
697 simplify_expand_binop (enum machine_mode mode, optab binoptab,
698 rtx op0, rtx op1, rtx target, int unsignedp,
699 enum optab_methods methods)
700 {
701 if (CONSTANT_P (op0) && CONSTANT_P (op1))
702 {
703 rtx x = simplify_binary_operation (optab_to_code (binoptab),
704 mode, op0, op1);
705 if (x)
706 return x;
707 }
708
709 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
710 }
711
712 /* Like simplify_expand_binop, but always put the result in TARGET.
713 Return true if the expansion succeeded. */
714
715 bool
716 force_expand_binop (enum machine_mode mode, optab binoptab,
717 rtx op0, rtx op1, rtx target, int unsignedp,
718 enum optab_methods methods)
719 {
720 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
721 target, unsignedp, methods);
722 if (x == 0)
723 return false;
724 if (x != target)
725 emit_move_insn (target, x);
726 return true;
727 }
728
729 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
730
731 rtx
732 expand_vec_shift_expr (sepops ops, rtx target)
733 {
734 struct expand_operand eops[3];
735 enum insn_code icode;
736 rtx rtx_op1, rtx_op2;
737 enum machine_mode mode = TYPE_MODE (ops->type);
738 tree vec_oprnd = ops->op0;
739 tree shift_oprnd = ops->op1;
740 optab shift_optab;
741
742 switch (ops->code)
743 {
744 case VEC_RSHIFT_EXPR:
745 shift_optab = vec_shr_optab;
746 break;
747 case VEC_LSHIFT_EXPR:
748 shift_optab = vec_shl_optab;
749 break;
750 default:
751 gcc_unreachable ();
752 }
753
754 icode = optab_handler (shift_optab, mode);
755 gcc_assert (icode != CODE_FOR_nothing);
756
757 rtx_op1 = expand_normal (vec_oprnd);
758 rtx_op2 = expand_normal (shift_oprnd);
759
760 create_output_operand (&eops[0], target, mode);
761 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
762 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
763 expand_insn (icode, 3, eops);
764
765 return eops[0].value;
766 }
767
768 /* Create a new vector value in VMODE with all elements set to OP. The
769 mode of OP must be the element mode of VMODE. If OP is a constant,
770 then the return value will be a constant. */
771
772 static rtx
773 expand_vector_broadcast (enum machine_mode vmode, rtx op)
774 {
775 enum insn_code icode;
776 rtvec vec;
777 rtx ret;
778 int i, n;
779
780 gcc_checking_assert (VECTOR_MODE_P (vmode));
781
782 n = GET_MODE_NUNITS (vmode);
783 vec = rtvec_alloc (n);
784 for (i = 0; i < n; ++i)
785 RTVEC_ELT (vec, i) = op;
786
787 if (CONSTANT_P (op))
788 return gen_rtx_CONST_VECTOR (vmode, vec);
789
790 /* ??? If the target doesn't have a vec_init, then we have no easy way
791 of performing this operation. Most of this sort of generic support
792 is hidden away in the vector lowering support in gimple. */
793 icode = optab_handler (vec_init_optab, vmode);
794 if (icode == CODE_FOR_nothing)
795 return NULL;
796
797 ret = gen_reg_rtx (vmode);
798 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
799
800 return ret;
801 }
802
803 /* This subroutine of expand_doubleword_shift handles the cases in which
804 the effective shift value is >= BITS_PER_WORD. The arguments and return
805 value are the same as for the parent routine, except that SUPERWORD_OP1
806 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
807 INTO_TARGET may be null if the caller has decided to calculate it. */
808
809 static bool
810 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
811 rtx outof_target, rtx into_target,
812 int unsignedp, enum optab_methods methods)
813 {
814 if (into_target != 0)
815 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
816 into_target, unsignedp, methods))
817 return false;
818
819 if (outof_target != 0)
820 {
821 /* For a signed right shift, we must fill OUTOF_TARGET with copies
822 of the sign bit, otherwise we must fill it with zeros. */
823 if (binoptab != ashr_optab)
824 emit_move_insn (outof_target, CONST0_RTX (word_mode));
825 else
826 if (!force_expand_binop (word_mode, binoptab,
827 outof_input, GEN_INT (BITS_PER_WORD - 1),
828 outof_target, unsignedp, methods))
829 return false;
830 }
831 return true;
832 }
833
834 /* This subroutine of expand_doubleword_shift handles the cases in which
835 the effective shift value is < BITS_PER_WORD. The arguments and return
836 value are the same as for the parent routine. */
837
838 static bool
839 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
840 rtx outof_input, rtx into_input, rtx op1,
841 rtx outof_target, rtx into_target,
842 int unsignedp, enum optab_methods methods,
843 unsigned HOST_WIDE_INT shift_mask)
844 {
845 optab reverse_unsigned_shift, unsigned_shift;
846 rtx tmp, carries;
847
848 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
849 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
850
851 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
852 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
853 the opposite direction to BINOPTAB. */
854 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
855 {
856 carries = outof_input;
857 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
858 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
859 0, true, methods);
860 }
861 else
862 {
863 /* We must avoid shifting by BITS_PER_WORD bits since that is either
864 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
865 has unknown behavior. Do a single shift first, then shift by the
866 remainder. It's OK to use ~OP1 as the remainder if shift counts
867 are truncated to the mode size. */
868 carries = expand_binop (word_mode, reverse_unsigned_shift,
869 outof_input, const1_rtx, 0, unsignedp, methods);
870 if (shift_mask == BITS_PER_WORD - 1)
871 {
872 tmp = immed_double_const (-1, -1, op1_mode);
873 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
874 0, true, methods);
875 }
876 else
877 {
878 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
879 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
880 0, true, methods);
881 }
882 }
883 if (tmp == 0 || carries == 0)
884 return false;
885 carries = expand_binop (word_mode, reverse_unsigned_shift,
886 carries, tmp, 0, unsignedp, methods);
887 if (carries == 0)
888 return false;
889
890 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
891 so the result can go directly into INTO_TARGET if convenient. */
892 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
893 into_target, unsignedp, methods);
894 if (tmp == 0)
895 return false;
896
897 /* Now OR in the bits carried over from OUTOF_INPUT. */
898 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
899 into_target, unsignedp, methods))
900 return false;
901
902 /* Use a standard word_mode shift for the out-of half. */
903 if (outof_target != 0)
904 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
905 outof_target, unsignedp, methods))
906 return false;
907
908 return true;
909 }
910
911
912 #ifdef HAVE_conditional_move
913 /* Try implementing expand_doubleword_shift using conditional moves.
914 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
915 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
916 are the shift counts to use in the former and latter case. All other
917 arguments are the same as the parent routine. */
918
919 static bool
920 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
921 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
922 rtx outof_input, rtx into_input,
923 rtx subword_op1, rtx superword_op1,
924 rtx outof_target, rtx into_target,
925 int unsignedp, enum optab_methods methods,
926 unsigned HOST_WIDE_INT shift_mask)
927 {
928 rtx outof_superword, into_superword;
929
930 /* Put the superword version of the output into OUTOF_SUPERWORD and
931 INTO_SUPERWORD. */
932 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
933 if (outof_target != 0 && subword_op1 == superword_op1)
934 {
935 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
936 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
937 into_superword = outof_target;
938 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
939 outof_superword, 0, unsignedp, methods))
940 return false;
941 }
942 else
943 {
944 into_superword = gen_reg_rtx (word_mode);
945 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
946 outof_superword, into_superword,
947 unsignedp, methods))
948 return false;
949 }
950
951 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
952 if (!expand_subword_shift (op1_mode, binoptab,
953 outof_input, into_input, subword_op1,
954 outof_target, into_target,
955 unsignedp, methods, shift_mask))
956 return false;
957
958 /* Select between them. Do the INTO half first because INTO_SUPERWORD
959 might be the current value of OUTOF_TARGET. */
960 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
961 into_target, into_superword, word_mode, false))
962 return false;
963
964 if (outof_target != 0)
965 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
966 outof_target, outof_superword,
967 word_mode, false))
968 return false;
969
970 return true;
971 }
972 #endif
973
974 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
975 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
976 input operand; the shift moves bits in the direction OUTOF_INPUT->
977 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
978 of the target. OP1 is the shift count and OP1_MODE is its mode.
979 If OP1 is constant, it will have been truncated as appropriate
980 and is known to be nonzero.
981
982 If SHIFT_MASK is zero, the result of word shifts is undefined when the
983 shift count is outside the range [0, BITS_PER_WORD). This routine must
984 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
985
986 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
987 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
988 fill with zeros or sign bits as appropriate.
989
990 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
991 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
992 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
993 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
994 are undefined.
995
996 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
997 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
998 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
999 function wants to calculate it itself.
1000
1001 Return true if the shift could be successfully synthesized. */
1002
1003 static bool
1004 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1005 rtx outof_input, rtx into_input, rtx op1,
1006 rtx outof_target, rtx into_target,
1007 int unsignedp, enum optab_methods methods,
1008 unsigned HOST_WIDE_INT shift_mask)
1009 {
1010 rtx superword_op1, tmp, cmp1, cmp2;
1011 rtx subword_label, done_label;
1012 enum rtx_code cmp_code;
1013
1014 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1015 fill the result with sign or zero bits as appropriate. If so, the value
1016 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1017 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1018 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1019
1020 This isn't worthwhile for constant shifts since the optimizers will
1021 cope better with in-range shift counts. */
1022 if (shift_mask >= BITS_PER_WORD
1023 && outof_target != 0
1024 && !CONSTANT_P (op1))
1025 {
1026 if (!expand_doubleword_shift (op1_mode, binoptab,
1027 outof_input, into_input, op1,
1028 0, into_target,
1029 unsignedp, methods, shift_mask))
1030 return false;
1031 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1032 outof_target, unsignedp, methods))
1033 return false;
1034 return true;
1035 }
1036
1037 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1038 is true when the effective shift value is less than BITS_PER_WORD.
1039 Set SUPERWORD_OP1 to the shift count that should be used to shift
1040 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1041 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1042 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1043 {
1044 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1045 is a subword shift count. */
1046 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1047 0, true, methods);
1048 cmp2 = CONST0_RTX (op1_mode);
1049 cmp_code = EQ;
1050 superword_op1 = op1;
1051 }
1052 else
1053 {
1054 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1055 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1056 0, true, methods);
1057 cmp2 = CONST0_RTX (op1_mode);
1058 cmp_code = LT;
1059 superword_op1 = cmp1;
1060 }
1061 if (cmp1 == 0)
1062 return false;
1063
1064 /* If we can compute the condition at compile time, pick the
1065 appropriate subroutine. */
1066 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1067 if (tmp != 0 && CONST_INT_P (tmp))
1068 {
1069 if (tmp == const0_rtx)
1070 return expand_superword_shift (binoptab, outof_input, superword_op1,
1071 outof_target, into_target,
1072 unsignedp, methods);
1073 else
1074 return expand_subword_shift (op1_mode, binoptab,
1075 outof_input, into_input, op1,
1076 outof_target, into_target,
1077 unsignedp, methods, shift_mask);
1078 }
1079
1080 #ifdef HAVE_conditional_move
1081 /* Try using conditional moves to generate straight-line code. */
1082 {
1083 rtx start = get_last_insn ();
1084 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1085 cmp_code, cmp1, cmp2,
1086 outof_input, into_input,
1087 op1, superword_op1,
1088 outof_target, into_target,
1089 unsignedp, methods, shift_mask))
1090 return true;
1091 delete_insns_since (start);
1092 }
1093 #endif
1094
1095 /* As a last resort, use branches to select the correct alternative. */
1096 subword_label = gen_label_rtx ();
1097 done_label = gen_label_rtx ();
1098
1099 NO_DEFER_POP;
1100 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1101 0, 0, subword_label, -1);
1102 OK_DEFER_POP;
1103
1104 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1105 outof_target, into_target,
1106 unsignedp, methods))
1107 return false;
1108
1109 emit_jump_insn (gen_jump (done_label));
1110 emit_barrier ();
1111 emit_label (subword_label);
1112
1113 if (!expand_subword_shift (op1_mode, binoptab,
1114 outof_input, into_input, op1,
1115 outof_target, into_target,
1116 unsignedp, methods, shift_mask))
1117 return false;
1118
1119 emit_label (done_label);
1120 return true;
1121 }
1122 \f
1123 /* Subroutine of expand_binop. Perform a double word multiplication of
1124 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1125 as the target's word_mode. This function return NULL_RTX if anything
1126 goes wrong, in which case it may have already emitted instructions
1127 which need to be deleted.
1128
1129 If we want to multiply two two-word values and have normal and widening
1130 multiplies of single-word values, we can do this with three smaller
1131 multiplications.
1132
1133 The multiplication proceeds as follows:
1134 _______________________
1135 [__op0_high_|__op0_low__]
1136 _______________________
1137 * [__op1_high_|__op1_low__]
1138 _______________________________________________
1139 _______________________
1140 (1) [__op0_low__*__op1_low__]
1141 _______________________
1142 (2a) [__op0_low__*__op1_high_]
1143 _______________________
1144 (2b) [__op0_high_*__op1_low__]
1145 _______________________
1146 (3) [__op0_high_*__op1_high_]
1147
1148
1149 This gives a 4-word result. Since we are only interested in the
1150 lower 2 words, partial result (3) and the upper words of (2a) and
1151 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1152 calculated using non-widening multiplication.
1153
1154 (1), however, needs to be calculated with an unsigned widening
1155 multiplication. If this operation is not directly supported we
1156 try using a signed widening multiplication and adjust the result.
1157 This adjustment works as follows:
1158
1159 If both operands are positive then no adjustment is needed.
1160
1161 If the operands have different signs, for example op0_low < 0 and
1162 op1_low >= 0, the instruction treats the most significant bit of
1163 op0_low as a sign bit instead of a bit with significance
1164 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1165 with 2**BITS_PER_WORD - op0_low, and two's complements the
1166 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1167 the result.
1168
1169 Similarly, if both operands are negative, we need to add
1170 (op0_low + op1_low) * 2**BITS_PER_WORD.
1171
1172 We use a trick to adjust quickly. We logically shift op0_low right
1173 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1174 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1175 logical shift exists, we do an arithmetic right shift and subtract
1176 the 0 or -1. */
1177
1178 static rtx
1179 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1180 bool umulp, enum optab_methods methods)
1181 {
1182 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1183 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1184 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1185 rtx product, adjust, product_high, temp;
1186
1187 rtx op0_high = operand_subword_force (op0, high, mode);
1188 rtx op0_low = operand_subword_force (op0, low, mode);
1189 rtx op1_high = operand_subword_force (op1, high, mode);
1190 rtx op1_low = operand_subword_force (op1, low, mode);
1191
1192 /* If we're using an unsigned multiply to directly compute the product
1193 of the low-order words of the operands and perform any required
1194 adjustments of the operands, we begin by trying two more multiplications
1195 and then computing the appropriate sum.
1196
1197 We have checked above that the required addition is provided.
1198 Full-word addition will normally always succeed, especially if
1199 it is provided at all, so we don't worry about its failure. The
1200 multiplication may well fail, however, so we do handle that. */
1201
1202 if (!umulp)
1203 {
1204 /* ??? This could be done with emit_store_flag where available. */
1205 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1206 NULL_RTX, 1, methods);
1207 if (temp)
1208 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1209 NULL_RTX, 0, OPTAB_DIRECT);
1210 else
1211 {
1212 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1213 NULL_RTX, 0, methods);
1214 if (!temp)
1215 return NULL_RTX;
1216 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1217 NULL_RTX, 0, OPTAB_DIRECT);
1218 }
1219
1220 if (!op0_high)
1221 return NULL_RTX;
1222 }
1223
1224 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1225 NULL_RTX, 0, OPTAB_DIRECT);
1226 if (!adjust)
1227 return NULL_RTX;
1228
1229 /* OP0_HIGH should now be dead. */
1230
1231 if (!umulp)
1232 {
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1240 {
1241 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1247 }
1248
1249 if (!op1_high)
1250 return NULL_RTX;
1251 }
1252
1253 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!temp)
1256 return NULL_RTX;
1257
1258 /* OP1_HIGH should now be dead. */
1259
1260 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1261 NULL_RTX, 0, OPTAB_DIRECT);
1262
1263 if (target && !REG_P (target))
1264 target = NULL_RTX;
1265
1266 if (umulp)
1267 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1268 target, 1, OPTAB_DIRECT);
1269 else
1270 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1271 target, 1, OPTAB_DIRECT);
1272
1273 if (!product)
1274 return NULL_RTX;
1275
1276 product_high = operand_subword (product, high, 1, mode);
1277 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1278 NULL_RTX, 0, OPTAB_DIRECT);
1279 emit_move_insn (product_high, adjust);
1280 return product;
1281 }
1282 \f
1283 /* Wrapper around expand_binop which takes an rtx code to specify
1284 the operation to perform, not an optab pointer. All other
1285 arguments are the same. */
1286 rtx
1287 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1288 rtx op1, rtx target, int unsignedp,
1289 enum optab_methods methods)
1290 {
1291 optab binop = code_to_optab (code);
1292 gcc_assert (binop);
1293
1294 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1295 }
1296
1297 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1298 binop. Order them according to commutative_operand_precedence and, if
1299 possible, try to put TARGET or a pseudo first. */
1300 static bool
1301 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1302 {
1303 int op0_prec = commutative_operand_precedence (op0);
1304 int op1_prec = commutative_operand_precedence (op1);
1305
1306 if (op0_prec < op1_prec)
1307 return true;
1308
1309 if (op0_prec > op1_prec)
1310 return false;
1311
1312 /* With equal precedence, both orders are ok, but it is better if the
1313 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1314 if (target == 0 || REG_P (target))
1315 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1316 else
1317 return rtx_equal_p (op1, target);
1318 }
1319
1320 /* Return true if BINOPTAB implements a shift operation. */
1321
1322 static bool
1323 shift_optab_p (optab binoptab)
1324 {
1325 switch (optab_to_code (binoptab))
1326 {
1327 case ASHIFT:
1328 case SS_ASHIFT:
1329 case US_ASHIFT:
1330 case ASHIFTRT:
1331 case LSHIFTRT:
1332 case ROTATE:
1333 case ROTATERT:
1334 return true;
1335
1336 default:
1337 return false;
1338 }
1339 }
1340
1341 /* Return true if BINOPTAB implements a commutative binary operation. */
1342
1343 static bool
1344 commutative_optab_p (optab binoptab)
1345 {
1346 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1347 || binoptab == smul_widen_optab
1348 || binoptab == umul_widen_optab
1349 || binoptab == smul_highpart_optab
1350 || binoptab == umul_highpart_optab);
1351 }
1352
1353 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1354 optimizing, and if the operand is a constant that costs more than
1355 1 instruction, force the constant into a register and return that
1356 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1357
1358 static rtx
1359 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1360 int opn, rtx x, bool unsignedp)
1361 {
1362 bool speed = optimize_insn_for_speed_p ();
1363
1364 if (mode != VOIDmode
1365 && optimize
1366 && CONSTANT_P (x)
1367 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1368 > set_src_cost (x, speed)))
1369 {
1370 if (CONST_INT_P (x))
1371 {
1372 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1373 if (intval != INTVAL (x))
1374 x = GEN_INT (intval);
1375 }
1376 else
1377 x = convert_modes (mode, VOIDmode, x, unsignedp);
1378 x = force_reg (mode, x);
1379 }
1380 return x;
1381 }
1382
1383 /* Helper function for expand_binop: handle the case where there
1384 is an insn that directly implements the indicated operation.
1385 Returns null if this is not possible. */
1386 static rtx
1387 expand_binop_directly (enum machine_mode mode, optab binoptab,
1388 rtx op0, rtx op1,
1389 rtx target, int unsignedp, enum optab_methods methods,
1390 rtx last)
1391 {
1392 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1393 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1394 from_mode, 1);
1395 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1396 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1397 enum machine_mode mode0, mode1, tmp_mode;
1398 struct expand_operand ops[3];
1399 bool commutative_p;
1400 rtx pat;
1401 rtx xop0 = op0, xop1 = op1;
1402 rtx swap;
1403
1404 /* If it is a commutative operator and the modes would match
1405 if we would swap the operands, we can save the conversions. */
1406 commutative_p = commutative_optab_p (binoptab);
1407 if (commutative_p
1408 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1409 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1410 {
1411 swap = xop0;
1412 xop0 = xop1;
1413 xop1 = swap;
1414 }
1415
1416 /* If we are optimizing, force expensive constants into a register. */
1417 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1418 if (!shift_optab_p (binoptab))
1419 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1420
1421 /* In case the insn wants input operands in modes different from
1422 those of the actual operands, convert the operands. It would
1423 seem that we don't need to convert CONST_INTs, but we do, so
1424 that they're properly zero-extended, sign-extended or truncated
1425 for their mode. */
1426
1427 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1428 if (xmode0 != VOIDmode && xmode0 != mode0)
1429 {
1430 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1431 mode0 = xmode0;
1432 }
1433
1434 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1435 if (xmode1 != VOIDmode && xmode1 != mode1)
1436 {
1437 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1438 mode1 = xmode1;
1439 }
1440
1441 /* If operation is commutative,
1442 try to make the first operand a register.
1443 Even better, try to make it the same as the target.
1444 Also try to make the last operand a constant. */
1445 if (commutative_p
1446 && swap_commutative_operands_with_target (target, xop0, xop1))
1447 {
1448 swap = xop1;
1449 xop1 = xop0;
1450 xop0 = swap;
1451 }
1452
1453 /* Now, if insn's predicates don't allow our operands, put them into
1454 pseudo regs. */
1455
1456 if (binoptab == vec_pack_trunc_optab
1457 || binoptab == vec_pack_usat_optab
1458 || binoptab == vec_pack_ssat_optab
1459 || binoptab == vec_pack_ufix_trunc_optab
1460 || binoptab == vec_pack_sfix_trunc_optab)
1461 {
1462 /* The mode of the result is different then the mode of the
1463 arguments. */
1464 tmp_mode = insn_data[(int) icode].operand[0].mode;
1465 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1466 {
1467 delete_insns_since (last);
1468 return NULL_RTX;
1469 }
1470 }
1471 else
1472 tmp_mode = mode;
1473
1474 create_output_operand (&ops[0], target, tmp_mode);
1475 create_input_operand (&ops[1], xop0, mode0);
1476 create_input_operand (&ops[2], xop1, mode1);
1477 pat = maybe_gen_insn (icode, 3, ops);
1478 if (pat)
1479 {
1480 /* If PAT is composed of more than one insn, try to add an appropriate
1481 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1482 operand, call expand_binop again, this time without a target. */
1483 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1484 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1485 ops[1].value, ops[2].value))
1486 {
1487 delete_insns_since (last);
1488 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1489 unsignedp, methods);
1490 }
1491
1492 emit_insn (pat);
1493 return ops[0].value;
1494 }
1495 delete_insns_since (last);
1496 return NULL_RTX;
1497 }
1498
1499 /* Generate code to perform an operation specified by BINOPTAB
1500 on operands OP0 and OP1, with result having machine-mode MODE.
1501
1502 UNSIGNEDP is for the case where we have to widen the operands
1503 to perform the operation. It says to use zero-extension.
1504
1505 If TARGET is nonzero, the value
1506 is generated there, if it is convenient to do so.
1507 In all cases an rtx is returned for the locus of the value;
1508 this may or may not be TARGET. */
1509
1510 rtx
1511 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1512 rtx target, int unsignedp, enum optab_methods methods)
1513 {
1514 enum optab_methods next_methods
1515 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1516 ? OPTAB_WIDEN : methods);
1517 enum mode_class mclass;
1518 enum machine_mode wider_mode;
1519 rtx libfunc;
1520 rtx temp;
1521 rtx entry_last = get_last_insn ();
1522 rtx last;
1523
1524 mclass = GET_MODE_CLASS (mode);
1525
1526 /* If subtracting an integer constant, convert this into an addition of
1527 the negated constant. */
1528
1529 if (binoptab == sub_optab && CONST_INT_P (op1))
1530 {
1531 op1 = negate_rtx (mode, op1);
1532 binoptab = add_optab;
1533 }
1534
1535 /* Record where to delete back to if we backtrack. */
1536 last = get_last_insn ();
1537
1538 /* If we can do it with a three-operand insn, do so. */
1539
1540 if (methods != OPTAB_MUST_WIDEN
1541 && find_widening_optab_handler (binoptab, mode,
1542 widened_mode (mode, op0, op1), 1)
1543 != CODE_FOR_nothing)
1544 {
1545 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1546 unsignedp, methods, last);
1547 if (temp)
1548 return temp;
1549 }
1550
1551 /* If we were trying to rotate, and that didn't work, try rotating
1552 the other direction before falling back to shifts and bitwise-or. */
1553 if (((binoptab == rotl_optab
1554 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1555 || (binoptab == rotr_optab
1556 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1557 && mclass == MODE_INT)
1558 {
1559 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1560 rtx newop1;
1561 unsigned int bits = GET_MODE_PRECISION (mode);
1562
1563 if (CONST_INT_P (op1))
1564 newop1 = GEN_INT (bits - INTVAL (op1));
1565 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1566 newop1 = negate_rtx (GET_MODE (op1), op1);
1567 else
1568 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1569 gen_int_mode (bits, GET_MODE (op1)), op1,
1570 NULL_RTX, unsignedp, OPTAB_DIRECT);
1571
1572 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1573 target, unsignedp, methods, last);
1574 if (temp)
1575 return temp;
1576 }
1577
1578 /* If this is a multiply, see if we can do a widening operation that
1579 takes operands of this mode and makes a wider mode. */
1580
1581 if (binoptab == smul_optab
1582 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1583 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1584 : smul_widen_optab),
1585 GET_MODE_2XWIDER_MODE (mode), mode)
1586 != CODE_FOR_nothing))
1587 {
1588 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1589 unsignedp ? umul_widen_optab : smul_widen_optab,
1590 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1591
1592 if (temp != 0)
1593 {
1594 if (GET_MODE_CLASS (mode) == MODE_INT
1595 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1596 return gen_lowpart (mode, temp);
1597 else
1598 return convert_to_mode (mode, temp, unsignedp);
1599 }
1600 }
1601
1602 /* If this is a vector shift by a scalar, see if we can do a vector
1603 shift by a vector. If so, broadcast the scalar into a vector. */
1604 if (mclass == MODE_VECTOR_INT)
1605 {
1606 optab otheroptab = unknown_optab;
1607
1608 if (binoptab == ashl_optab)
1609 otheroptab = vashl_optab;
1610 else if (binoptab == ashr_optab)
1611 otheroptab = vashr_optab;
1612 else if (binoptab == lshr_optab)
1613 otheroptab = vlshr_optab;
1614 else if (binoptab == rotl_optab)
1615 otheroptab = vrotl_optab;
1616 else if (binoptab == rotr_optab)
1617 otheroptab = vrotr_optab;
1618
1619 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1620 {
1621 rtx vop1 = expand_vector_broadcast (mode, op1);
1622 if (vop1)
1623 {
1624 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1625 target, unsignedp, methods, last);
1626 if (temp)
1627 return temp;
1628 }
1629 }
1630 }
1631
1632 /* Look for a wider mode of the same class for which we think we
1633 can open-code the operation. Check for a widening multiply at the
1634 wider mode as well. */
1635
1636 if (CLASS_HAS_WIDER_MODES_P (mclass)
1637 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1638 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1639 wider_mode != VOIDmode;
1640 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1641 {
1642 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1643 || (binoptab == smul_optab
1644 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1645 && (find_widening_optab_handler ((unsignedp
1646 ? umul_widen_optab
1647 : smul_widen_optab),
1648 GET_MODE_WIDER_MODE (wider_mode),
1649 mode, 0)
1650 != CODE_FOR_nothing)))
1651 {
1652 rtx xop0 = op0, xop1 = op1;
1653 int no_extend = 0;
1654
1655 /* For certain integer operations, we need not actually extend
1656 the narrow operands, as long as we will truncate
1657 the results to the same narrowness. */
1658
1659 if ((binoptab == ior_optab || binoptab == and_optab
1660 || binoptab == xor_optab
1661 || binoptab == add_optab || binoptab == sub_optab
1662 || binoptab == smul_optab || binoptab == ashl_optab)
1663 && mclass == MODE_INT)
1664 {
1665 no_extend = 1;
1666 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1667 xop0, unsignedp);
1668 if (binoptab != ashl_optab)
1669 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1670 xop1, unsignedp);
1671 }
1672
1673 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1674
1675 /* The second operand of a shift must always be extended. */
1676 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1677 no_extend && binoptab != ashl_optab);
1678
1679 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1680 unsignedp, OPTAB_DIRECT);
1681 if (temp)
1682 {
1683 if (mclass != MODE_INT
1684 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1685 {
1686 if (target == 0)
1687 target = gen_reg_rtx (mode);
1688 convert_move (target, temp, 0);
1689 return target;
1690 }
1691 else
1692 return gen_lowpart (mode, temp);
1693 }
1694 else
1695 delete_insns_since (last);
1696 }
1697 }
1698
1699 /* If operation is commutative,
1700 try to make the first operand a register.
1701 Even better, try to make it the same as the target.
1702 Also try to make the last operand a constant. */
1703 if (commutative_optab_p (binoptab)
1704 && swap_commutative_operands_with_target (target, op0, op1))
1705 {
1706 temp = op1;
1707 op1 = op0;
1708 op0 = temp;
1709 }
1710
1711 /* These can be done a word at a time. */
1712 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1713 && mclass == MODE_INT
1714 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1715 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1716 {
1717 int i;
1718 rtx insns;
1719
1720 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1721 won't be accurate, so use a new target. */
1722 if (target == 0
1723 || target == op0
1724 || target == op1
1725 || !valid_multiword_target_p (target))
1726 target = gen_reg_rtx (mode);
1727
1728 start_sequence ();
1729
1730 /* Do the actual arithmetic. */
1731 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1732 {
1733 rtx target_piece = operand_subword (target, i, 1, mode);
1734 rtx x = expand_binop (word_mode, binoptab,
1735 operand_subword_force (op0, i, mode),
1736 operand_subword_force (op1, i, mode),
1737 target_piece, unsignedp, next_methods);
1738
1739 if (x == 0)
1740 break;
1741
1742 if (target_piece != x)
1743 emit_move_insn (target_piece, x);
1744 }
1745
1746 insns = get_insns ();
1747 end_sequence ();
1748
1749 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1750 {
1751 emit_insn (insns);
1752 return target;
1753 }
1754 }
1755
1756 /* Synthesize double word shifts from single word shifts. */
1757 if ((binoptab == lshr_optab || binoptab == ashl_optab
1758 || binoptab == ashr_optab)
1759 && mclass == MODE_INT
1760 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1761 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1762 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1763 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1765 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1766 {
1767 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1768 enum machine_mode op1_mode;
1769
1770 double_shift_mask = targetm.shift_truncation_mask (mode);
1771 shift_mask = targetm.shift_truncation_mask (word_mode);
1772 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1773
1774 /* Apply the truncation to constant shifts. */
1775 if (double_shift_mask > 0 && CONST_INT_P (op1))
1776 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1777
1778 if (op1 == CONST0_RTX (op1_mode))
1779 return op0;
1780
1781 /* Make sure that this is a combination that expand_doubleword_shift
1782 can handle. See the comments there for details. */
1783 if (double_shift_mask == 0
1784 || (shift_mask == BITS_PER_WORD - 1
1785 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1786 {
1787 rtx insns;
1788 rtx into_target, outof_target;
1789 rtx into_input, outof_input;
1790 int left_shift, outof_word;
1791
1792 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1793 won't be accurate, so use a new target. */
1794 if (target == 0
1795 || target == op0
1796 || target == op1
1797 || !valid_multiword_target_p (target))
1798 target = gen_reg_rtx (mode);
1799
1800 start_sequence ();
1801
1802 /* OUTOF_* is the word we are shifting bits away from, and
1803 INTO_* is the word that we are shifting bits towards, thus
1804 they differ depending on the direction of the shift and
1805 WORDS_BIG_ENDIAN. */
1806
1807 left_shift = binoptab == ashl_optab;
1808 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1809
1810 outof_target = operand_subword (target, outof_word, 1, mode);
1811 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1812
1813 outof_input = operand_subword_force (op0, outof_word, mode);
1814 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1815
1816 if (expand_doubleword_shift (op1_mode, binoptab,
1817 outof_input, into_input, op1,
1818 outof_target, into_target,
1819 unsignedp, next_methods, shift_mask))
1820 {
1821 insns = get_insns ();
1822 end_sequence ();
1823
1824 emit_insn (insns);
1825 return target;
1826 }
1827 end_sequence ();
1828 }
1829 }
1830
1831 /* Synthesize double word rotates from single word shifts. */
1832 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1833 && mclass == MODE_INT
1834 && CONST_INT_P (op1)
1835 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1836 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1837 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1838 {
1839 rtx insns;
1840 rtx into_target, outof_target;
1841 rtx into_input, outof_input;
1842 rtx inter;
1843 int shift_count, left_shift, outof_word;
1844
1845 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1846 won't be accurate, so use a new target. Do this also if target is not
1847 a REG, first because having a register instead may open optimization
1848 opportunities, and second because if target and op0 happen to be MEMs
1849 designating the same location, we would risk clobbering it too early
1850 in the code sequence we generate below. */
1851 if (target == 0
1852 || target == op0
1853 || target == op1
1854 || !REG_P (target)
1855 || !valid_multiword_target_p (target))
1856 target = gen_reg_rtx (mode);
1857
1858 start_sequence ();
1859
1860 shift_count = INTVAL (op1);
1861
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1866
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1869
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1872
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1875
1876 if (shift_count == BITS_PER_WORD)
1877 {
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1882 }
1883 else
1884 {
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1888
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1891
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1894
1895 if (shift_count > BITS_PER_WORD)
1896 {
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1899 }
1900 else
1901 {
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1904 }
1905
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1912
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1918
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1921
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1928
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1933
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1936 }
1937
1938 insns = get_insns ();
1939 end_sequence ();
1940
1941 if (inter != 0)
1942 {
1943 emit_insn (insns);
1944 return target;
1945 }
1946 }
1947
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1953 {
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1959
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1968
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1972
1973 xtarget = gen_reg_rtx (mode);
1974
1975 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1976 target = xtarget;
1977
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1981
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1984 {
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1990
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1997
1998 if (i + 1 < nwords)
1999 {
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2007 }
2008
2009 if (i > 0)
2010 {
2011 rtx newx;
2012
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2018
2019 if (i + 1 < nwords)
2020 {
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2028
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2035 }
2036 emit_move_insn (target_piece, newx);
2037 }
2038 else
2039 {
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2042 }
2043
2044 carry_in = carry_out;
2045 }
2046
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2048 {
2049 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2051 {
2052 rtx temp = emit_move_insn (target, xtarget);
2053
2054 set_dst_reg_note (temp, REG_EQUAL,
2055 gen_rtx_fmt_ee (optab_to_code (binoptab),
2056 mode, copy_rtx (xop0),
2057 copy_rtx (xop1)),
2058 target);
2059 }
2060 else
2061 target = xtarget;
2062
2063 return target;
2064 }
2065
2066 else
2067 delete_insns_since (last);
2068 }
2069
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2074
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2080 {
2081 rtx product = NULL_RTX;
2082 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2083 != CODE_FOR_nothing)
2084 {
2085 product = expand_doubleword_mult (mode, op0, op1, target,
2086 true, methods);
2087 if (!product)
2088 delete_insns_since (last);
2089 }
2090
2091 if (product == NULL_RTX
2092 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2093 != CODE_FOR_nothing)
2094 {
2095 product = expand_doubleword_mult (mode, op0, op1, target,
2096 false, methods);
2097 if (!product)
2098 delete_insns_since (last);
2099 }
2100
2101 if (product != NULL_RTX)
2102 {
2103 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2104 {
2105 temp = emit_move_insn (target ? target : product, product);
2106 set_dst_reg_note (temp,
2107 REG_EQUAL,
2108 gen_rtx_fmt_ee (MULT, mode,
2109 copy_rtx (op0),
2110 copy_rtx (op1)),
2111 target ? target : product);
2112 }
2113 return product;
2114 }
2115 }
2116
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2119
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2123 {
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2128
2129 start_sequence ();
2130
2131 if (shift_optab_p (binoptab))
2132 {
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2137 }
2138
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2142
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2148
2149 insns = get_insns ();
2150 end_sequence ();
2151
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block_1 (insns, target, value,
2154 gen_rtx_fmt_ee (optab_to_code (binoptab),
2155 mode, op0, op1),
2156 trapv_binoptab_p (binoptab));
2157
2158 return target;
2159 }
2160
2161 delete_insns_since (last);
2162
2163 /* It can't be done in this mode. Can we do it in a wider mode? */
2164
2165 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2166 || methods == OPTAB_MUST_WIDEN))
2167 {
2168 /* Caller says, don't even try. */
2169 delete_insns_since (entry_last);
2170 return 0;
2171 }
2172
2173 /* Compute the value of METHODS to pass to recursive calls.
2174 Don't allow widening to be tried recursively. */
2175
2176 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2177
2178 /* Look for a wider mode of the same class for which it appears we can do
2179 the operation. */
2180
2181 if (CLASS_HAS_WIDER_MODES_P (mclass))
2182 {
2183 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2184 wider_mode != VOIDmode;
2185 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2186 {
2187 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2188 != CODE_FOR_nothing
2189 || (methods == OPTAB_LIB
2190 && optab_libfunc (binoptab, wider_mode)))
2191 {
2192 rtx xop0 = op0, xop1 = op1;
2193 int no_extend = 0;
2194
2195 /* For certain integer operations, we need not actually extend
2196 the narrow operands, as long as we will truncate
2197 the results to the same narrowness. */
2198
2199 if ((binoptab == ior_optab || binoptab == and_optab
2200 || binoptab == xor_optab
2201 || binoptab == add_optab || binoptab == sub_optab
2202 || binoptab == smul_optab || binoptab == ashl_optab)
2203 && mclass == MODE_INT)
2204 no_extend = 1;
2205
2206 xop0 = widen_operand (xop0, wider_mode, mode,
2207 unsignedp, no_extend);
2208
2209 /* The second operand of a shift must always be extended. */
2210 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2211 no_extend && binoptab != ashl_optab);
2212
2213 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2214 unsignedp, methods);
2215 if (temp)
2216 {
2217 if (mclass != MODE_INT
2218 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2219 {
2220 if (target == 0)
2221 target = gen_reg_rtx (mode);
2222 convert_move (target, temp, 0);
2223 return target;
2224 }
2225 else
2226 return gen_lowpart (mode, temp);
2227 }
2228 else
2229 delete_insns_since (last);
2230 }
2231 }
2232 }
2233
2234 delete_insns_since (entry_last);
2235 return 0;
2236 }
2237 \f
2238 /* Expand a binary operator which has both signed and unsigned forms.
2239 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2240 signed operations.
2241
2242 If we widen unsigned operands, we may use a signed wider operation instead
2243 of an unsigned wider operation, since the result would be the same. */
2244
2245 rtx
2246 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2247 rtx op0, rtx op1, rtx target, int unsignedp,
2248 enum optab_methods methods)
2249 {
2250 rtx temp;
2251 optab direct_optab = unsignedp ? uoptab : soptab;
2252 bool save_enable;
2253
2254 /* Do it without widening, if possible. */
2255 temp = expand_binop (mode, direct_optab, op0, op1, target,
2256 unsignedp, OPTAB_DIRECT);
2257 if (temp || methods == OPTAB_DIRECT)
2258 return temp;
2259
2260 /* Try widening to a signed int. Disable any direct use of any
2261 signed insn in the current mode. */
2262 save_enable = swap_optab_enable (soptab, mode, false);
2263
2264 temp = expand_binop (mode, soptab, op0, op1, target,
2265 unsignedp, OPTAB_WIDEN);
2266
2267 /* For unsigned operands, try widening to an unsigned int. */
2268 if (!temp && unsignedp)
2269 temp = expand_binop (mode, uoptab, op0, op1, target,
2270 unsignedp, OPTAB_WIDEN);
2271 if (temp || methods == OPTAB_WIDEN)
2272 goto egress;
2273
2274 /* Use the right width libcall if that exists. */
2275 temp = expand_binop (mode, direct_optab, op0, op1, target,
2276 unsignedp, OPTAB_LIB);
2277 if (temp || methods == OPTAB_LIB)
2278 goto egress;
2279
2280 /* Must widen and use a libcall, use either signed or unsigned. */
2281 temp = expand_binop (mode, soptab, op0, op1, target,
2282 unsignedp, methods);
2283 if (!temp && unsignedp)
2284 temp = expand_binop (mode, uoptab, op0, op1, target,
2285 unsignedp, methods);
2286
2287 egress:
2288 /* Undo the fiddling above. */
2289 if (save_enable)
2290 swap_optab_enable (soptab, mode, true);
2291 return temp;
2292 }
2293 \f
2294 /* Generate code to perform an operation specified by UNOPPTAB
2295 on operand OP0, with two results to TARG0 and TARG1.
2296 We assume that the order of the operands for the instruction
2297 is TARG0, TARG1, OP0.
2298
2299 Either TARG0 or TARG1 may be zero, but what that means is that
2300 the result is not actually wanted. We will generate it into
2301 a dummy pseudo-reg and discard it. They may not both be zero.
2302
2303 Returns 1 if this operation can be performed; 0 if not. */
2304
2305 int
2306 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2307 int unsignedp)
2308 {
2309 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2310 enum mode_class mclass;
2311 enum machine_mode wider_mode;
2312 rtx entry_last = get_last_insn ();
2313 rtx last;
2314
2315 mclass = GET_MODE_CLASS (mode);
2316
2317 if (!targ0)
2318 targ0 = gen_reg_rtx (mode);
2319 if (!targ1)
2320 targ1 = gen_reg_rtx (mode);
2321
2322 /* Record where to go back to if we fail. */
2323 last = get_last_insn ();
2324
2325 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2326 {
2327 struct expand_operand ops[3];
2328 enum insn_code icode = optab_handler (unoptab, mode);
2329
2330 create_fixed_operand (&ops[0], targ0);
2331 create_fixed_operand (&ops[1], targ1);
2332 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2333 if (maybe_expand_insn (icode, 3, ops))
2334 return 1;
2335 }
2336
2337 /* It can't be done in this mode. Can we do it in a wider mode? */
2338
2339 if (CLASS_HAS_WIDER_MODES_P (mclass))
2340 {
2341 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2342 wider_mode != VOIDmode;
2343 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2344 {
2345 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2346 {
2347 rtx t0 = gen_reg_rtx (wider_mode);
2348 rtx t1 = gen_reg_rtx (wider_mode);
2349 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2350
2351 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2352 {
2353 convert_move (targ0, t0, unsignedp);
2354 convert_move (targ1, t1, unsignedp);
2355 return 1;
2356 }
2357 else
2358 delete_insns_since (last);
2359 }
2360 }
2361 }
2362
2363 delete_insns_since (entry_last);
2364 return 0;
2365 }
2366 \f
2367 /* Generate code to perform an operation specified by BINOPTAB
2368 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2369 We assume that the order of the operands for the instruction
2370 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2371 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2372
2373 Either TARG0 or TARG1 may be zero, but what that means is that
2374 the result is not actually wanted. We will generate it into
2375 a dummy pseudo-reg and discard it. They may not both be zero.
2376
2377 Returns 1 if this operation can be performed; 0 if not. */
2378
2379 int
2380 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2381 int unsignedp)
2382 {
2383 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2384 enum mode_class mclass;
2385 enum machine_mode wider_mode;
2386 rtx entry_last = get_last_insn ();
2387 rtx last;
2388
2389 mclass = GET_MODE_CLASS (mode);
2390
2391 if (!targ0)
2392 targ0 = gen_reg_rtx (mode);
2393 if (!targ1)
2394 targ1 = gen_reg_rtx (mode);
2395
2396 /* Record where to go back to if we fail. */
2397 last = get_last_insn ();
2398
2399 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2400 {
2401 struct expand_operand ops[4];
2402 enum insn_code icode = optab_handler (binoptab, mode);
2403 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2404 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2405 rtx xop0 = op0, xop1 = op1;
2406
2407 /* If we are optimizing, force expensive constants into a register. */
2408 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2409 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2410
2411 create_fixed_operand (&ops[0], targ0);
2412 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2413 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2414 create_fixed_operand (&ops[3], targ1);
2415 if (maybe_expand_insn (icode, 4, ops))
2416 return 1;
2417 delete_insns_since (last);
2418 }
2419
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2421
2422 if (CLASS_HAS_WIDER_MODES_P (mclass))
2423 {
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2425 wider_mode != VOIDmode;
2426 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2427 {
2428 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2429 {
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2434
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2437 {
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2441 }
2442 else
2443 delete_insns_since (last);
2444 }
2445 }
2446 }
2447
2448 delete_insns_since (entry_last);
2449 return 0;
2450 }
2451
2452 /* Expand the two-valued library call indicated by BINOPTAB, but
2453 preserve only one of the values. If TARG0 is non-NULL, the first
2454 value is placed into TARG0; otherwise the second value is placed
2455 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2456 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2457 This routine assumes that the value returned by the library call is
2458 as if the return value was of an integral mode twice as wide as the
2459 mode of OP0. Returns 1 if the call was successful. */
2460
2461 bool
2462 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2463 rtx targ0, rtx targ1, enum rtx_code code)
2464 {
2465 enum machine_mode mode;
2466 enum machine_mode libval_mode;
2467 rtx libval;
2468 rtx insns;
2469 rtx libfunc;
2470
2471 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2472 gcc_assert (!targ0 != !targ1);
2473
2474 mode = GET_MODE (op0);
2475 libfunc = optab_libfunc (binoptab, mode);
2476 if (!libfunc)
2477 return false;
2478
2479 /* The value returned by the library function will have twice as
2480 many bits as the nominal MODE. */
2481 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2482 MODE_INT);
2483 start_sequence ();
2484 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2485 libval_mode, 2,
2486 op0, mode,
2487 op1, mode);
2488 /* Get the part of VAL containing the value that we want. */
2489 libval = simplify_gen_subreg (mode, libval, libval_mode,
2490 targ0 ? 0 : GET_MODE_SIZE (mode));
2491 insns = get_insns ();
2492 end_sequence ();
2493 /* Move the into the desired location. */
2494 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2495 gen_rtx_fmt_ee (code, mode, op0, op1));
2496
2497 return true;
2498 }
2499
2500 \f
2501 /* Wrapper around expand_unop which takes an rtx code to specify
2502 the operation to perform, not an optab pointer. All other
2503 arguments are the same. */
2504 rtx
2505 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2506 rtx target, int unsignedp)
2507 {
2508 optab unop = code_to_optab (code);
2509 gcc_assert (unop);
2510
2511 return expand_unop (mode, unop, op0, target, unsignedp);
2512 }
2513
2514 /* Try calculating
2515 (clz:narrow x)
2516 as
2517 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2518
2519 A similar operation can be used for clrsb. UNOPTAB says which operation
2520 we are trying to expand. */
2521 static rtx
2522 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2523 {
2524 enum mode_class mclass = GET_MODE_CLASS (mode);
2525 if (CLASS_HAS_WIDER_MODES_P (mclass))
2526 {
2527 enum machine_mode wider_mode;
2528 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2529 wider_mode != VOIDmode;
2530 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2531 {
2532 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2533 {
2534 rtx xop0, temp, last;
2535
2536 last = get_last_insn ();
2537
2538 if (target == 0)
2539 target = gen_reg_rtx (mode);
2540 xop0 = widen_operand (op0, wider_mode, mode,
2541 unoptab != clrsb_optab, false);
2542 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2543 unoptab != clrsb_optab);
2544 if (temp != 0)
2545 temp = expand_binop
2546 (wider_mode, sub_optab, temp,
2547 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2548 - GET_MODE_PRECISION (mode),
2549 wider_mode),
2550 target, true, OPTAB_DIRECT);
2551 if (temp == 0)
2552 delete_insns_since (last);
2553
2554 return temp;
2555 }
2556 }
2557 }
2558 return 0;
2559 }
2560
2561 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2562 quantities, choosing which based on whether the high word is nonzero. */
2563 static rtx
2564 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2565 {
2566 rtx xop0 = force_reg (mode, op0);
2567 rtx subhi = gen_highpart (word_mode, xop0);
2568 rtx sublo = gen_lowpart (word_mode, xop0);
2569 rtx hi0_label = gen_label_rtx ();
2570 rtx after_label = gen_label_rtx ();
2571 rtx seq, temp, result;
2572
2573 /* If we were not given a target, use a word_mode register, not a
2574 'mode' register. The result will fit, and nobody is expecting
2575 anything bigger (the return type of __builtin_clz* is int). */
2576 if (!target)
2577 target = gen_reg_rtx (word_mode);
2578
2579 /* In any case, write to a word_mode scratch in both branches of the
2580 conditional, so we can ensure there is a single move insn setting
2581 'target' to tag a REG_EQUAL note on. */
2582 result = gen_reg_rtx (word_mode);
2583
2584 start_sequence ();
2585
2586 /* If the high word is not equal to zero,
2587 then clz of the full value is clz of the high word. */
2588 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2589 word_mode, true, hi0_label);
2590
2591 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2592 if (!temp)
2593 goto fail;
2594
2595 if (temp != result)
2596 convert_move (result, temp, true);
2597
2598 emit_jump_insn (gen_jump (after_label));
2599 emit_barrier ();
2600
2601 /* Else clz of the full value is clz of the low word plus the number
2602 of bits in the high word. */
2603 emit_label (hi0_label);
2604
2605 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2606 if (!temp)
2607 goto fail;
2608 temp = expand_binop (word_mode, add_optab, temp,
2609 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2610 result, true, OPTAB_DIRECT);
2611 if (!temp)
2612 goto fail;
2613 if (temp != result)
2614 convert_move (result, temp, true);
2615
2616 emit_label (after_label);
2617 convert_move (target, result, true);
2618
2619 seq = get_insns ();
2620 end_sequence ();
2621
2622 add_equal_note (seq, target, CLZ, xop0, 0);
2623 emit_insn (seq);
2624 return target;
2625
2626 fail:
2627 end_sequence ();
2628 return 0;
2629 }
2630
2631 /* Try calculating
2632 (bswap:narrow x)
2633 as
2634 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2635 static rtx
2636 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2637 {
2638 enum mode_class mclass = GET_MODE_CLASS (mode);
2639 enum machine_mode wider_mode;
2640 rtx x, last;
2641
2642 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2643 return NULL_RTX;
2644
2645 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2646 wider_mode != VOIDmode;
2647 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2648 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2649 goto found;
2650 return NULL_RTX;
2651
2652 found:
2653 last = get_last_insn ();
2654
2655 x = widen_operand (op0, wider_mode, mode, true, true);
2656 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2657
2658 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2659 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2660 if (x != 0)
2661 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2662 GET_MODE_BITSIZE (wider_mode)
2663 - GET_MODE_BITSIZE (mode),
2664 NULL_RTX, true);
2665
2666 if (x != 0)
2667 {
2668 if (target == 0)
2669 target = gen_reg_rtx (mode);
2670 emit_move_insn (target, gen_lowpart (mode, x));
2671 }
2672 else
2673 delete_insns_since (last);
2674
2675 return target;
2676 }
2677
2678 /* Try calculating bswap as two bswaps of two word-sized operands. */
2679
2680 static rtx
2681 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2682 {
2683 rtx t0, t1;
2684
2685 t1 = expand_unop (word_mode, bswap_optab,
2686 operand_subword_force (op, 0, mode), NULL_RTX, true);
2687 t0 = expand_unop (word_mode, bswap_optab,
2688 operand_subword_force (op, 1, mode), NULL_RTX, true);
2689
2690 if (target == 0 || !valid_multiword_target_p (target))
2691 target = gen_reg_rtx (mode);
2692 if (REG_P (target))
2693 emit_clobber (target);
2694 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2695 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2696
2697 return target;
2698 }
2699
2700 /* Try calculating (parity x) as (and (popcount x) 1), where
2701 popcount can also be done in a wider mode. */
2702 static rtx
2703 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2704 {
2705 enum mode_class mclass = GET_MODE_CLASS (mode);
2706 if (CLASS_HAS_WIDER_MODES_P (mclass))
2707 {
2708 enum machine_mode wider_mode;
2709 for (wider_mode = mode; wider_mode != VOIDmode;
2710 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2711 {
2712 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2713 {
2714 rtx xop0, temp, last;
2715
2716 last = get_last_insn ();
2717
2718 if (target == 0)
2719 target = gen_reg_rtx (mode);
2720 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2721 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2722 true);
2723 if (temp != 0)
2724 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2725 target, true, OPTAB_DIRECT);
2726 if (temp == 0)
2727 delete_insns_since (last);
2728
2729 return temp;
2730 }
2731 }
2732 }
2733 return 0;
2734 }
2735
2736 /* Try calculating ctz(x) as K - clz(x & -x) ,
2737 where K is GET_MODE_PRECISION(mode) - 1.
2738
2739 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2740 don't have to worry about what the hardware does in that case. (If
2741 the clz instruction produces the usual value at 0, which is K, the
2742 result of this code sequence will be -1; expand_ffs, below, relies
2743 on this. It might be nice to have it be K instead, for consistency
2744 with the (very few) processors that provide a ctz with a defined
2745 value, but that would take one more instruction, and it would be
2746 less convenient for expand_ffs anyway. */
2747
2748 static rtx
2749 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2750 {
2751 rtx seq, temp;
2752
2753 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2754 return 0;
2755
2756 start_sequence ();
2757
2758 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2759 if (temp)
2760 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2761 true, OPTAB_DIRECT);
2762 if (temp)
2763 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2764 if (temp)
2765 temp = expand_binop (mode, sub_optab,
2766 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2767 temp, target,
2768 true, OPTAB_DIRECT);
2769 if (temp == 0)
2770 {
2771 end_sequence ();
2772 return 0;
2773 }
2774
2775 seq = get_insns ();
2776 end_sequence ();
2777
2778 add_equal_note (seq, temp, CTZ, op0, 0);
2779 emit_insn (seq);
2780 return temp;
2781 }
2782
2783
2784 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2785 else with the sequence used by expand_clz.
2786
2787 The ffs builtin promises to return zero for a zero value and ctz/clz
2788 may have an undefined value in that case. If they do not give us a
2789 convenient value, we have to generate a test and branch. */
2790 static rtx
2791 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2792 {
2793 HOST_WIDE_INT val = 0;
2794 bool defined_at_zero = false;
2795 rtx temp, seq;
2796
2797 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2798 {
2799 start_sequence ();
2800
2801 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2802 if (!temp)
2803 goto fail;
2804
2805 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2806 }
2807 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2808 {
2809 start_sequence ();
2810 temp = expand_ctz (mode, op0, 0);
2811 if (!temp)
2812 goto fail;
2813
2814 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2815 {
2816 defined_at_zero = true;
2817 val = (GET_MODE_PRECISION (mode) - 1) - val;
2818 }
2819 }
2820 else
2821 return 0;
2822
2823 if (defined_at_zero && val == -1)
2824 /* No correction needed at zero. */;
2825 else
2826 {
2827 /* We don't try to do anything clever with the situation found
2828 on some processors (eg Alpha) where ctz(0:mode) ==
2829 bitsize(mode). If someone can think of a way to send N to -1
2830 and leave alone all values in the range 0..N-1 (where N is a
2831 power of two), cheaper than this test-and-branch, please add it.
2832
2833 The test-and-branch is done after the operation itself, in case
2834 the operation sets condition codes that can be recycled for this.
2835 (This is true on i386, for instance.) */
2836
2837 rtx nonzero_label = gen_label_rtx ();
2838 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2839 mode, true, nonzero_label);
2840
2841 convert_move (temp, GEN_INT (-1), false);
2842 emit_label (nonzero_label);
2843 }
2844
2845 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2846 to produce a value in the range 0..bitsize. */
2847 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2848 target, false, OPTAB_DIRECT);
2849 if (!temp)
2850 goto fail;
2851
2852 seq = get_insns ();
2853 end_sequence ();
2854
2855 add_equal_note (seq, temp, FFS, op0, 0);
2856 emit_insn (seq);
2857 return temp;
2858
2859 fail:
2860 end_sequence ();
2861 return 0;
2862 }
2863
2864 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2865 conditions, VAL may already be a SUBREG against which we cannot generate
2866 a further SUBREG. In this case, we expect forcing the value into a
2867 register will work around the situation. */
2868
2869 static rtx
2870 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2871 enum machine_mode imode)
2872 {
2873 rtx ret;
2874 ret = lowpart_subreg (omode, val, imode);
2875 if (ret == NULL)
2876 {
2877 val = force_reg (imode, val);
2878 ret = lowpart_subreg (omode, val, imode);
2879 gcc_assert (ret != NULL);
2880 }
2881 return ret;
2882 }
2883
2884 /* Expand a floating point absolute value or negation operation via a
2885 logical operation on the sign bit. */
2886
2887 static rtx
2888 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2889 rtx op0, rtx target)
2890 {
2891 const struct real_format *fmt;
2892 int bitpos, word, nwords, i;
2893 enum machine_mode imode;
2894 double_int mask;
2895 rtx temp, insns;
2896
2897 /* The format has to have a simple sign bit. */
2898 fmt = REAL_MODE_FORMAT (mode);
2899 if (fmt == NULL)
2900 return NULL_RTX;
2901
2902 bitpos = fmt->signbit_rw;
2903 if (bitpos < 0)
2904 return NULL_RTX;
2905
2906 /* Don't create negative zeros if the format doesn't support them. */
2907 if (code == NEG && !fmt->has_signed_zero)
2908 return NULL_RTX;
2909
2910 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2911 {
2912 imode = int_mode_for_mode (mode);
2913 if (imode == BLKmode)
2914 return NULL_RTX;
2915 word = 0;
2916 nwords = 1;
2917 }
2918 else
2919 {
2920 imode = word_mode;
2921
2922 if (FLOAT_WORDS_BIG_ENDIAN)
2923 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2924 else
2925 word = bitpos / BITS_PER_WORD;
2926 bitpos = bitpos % BITS_PER_WORD;
2927 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2928 }
2929
2930 mask = double_int_zero.set_bit (bitpos);
2931 if (code == ABS)
2932 mask = ~mask;
2933
2934 if (target == 0
2935 || target == op0
2936 || (nwords > 1 && !valid_multiword_target_p (target)))
2937 target = gen_reg_rtx (mode);
2938
2939 if (nwords > 1)
2940 {
2941 start_sequence ();
2942
2943 for (i = 0; i < nwords; ++i)
2944 {
2945 rtx targ_piece = operand_subword (target, i, 1, mode);
2946 rtx op0_piece = operand_subword_force (op0, i, mode);
2947
2948 if (i == word)
2949 {
2950 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2951 op0_piece,
2952 immed_double_int_const (mask, imode),
2953 targ_piece, 1, OPTAB_LIB_WIDEN);
2954 if (temp != targ_piece)
2955 emit_move_insn (targ_piece, temp);
2956 }
2957 else
2958 emit_move_insn (targ_piece, op0_piece);
2959 }
2960
2961 insns = get_insns ();
2962 end_sequence ();
2963
2964 emit_insn (insns);
2965 }
2966 else
2967 {
2968 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2969 gen_lowpart (imode, op0),
2970 immed_double_int_const (mask, imode),
2971 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2972 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2973
2974 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2975 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2976 target);
2977 }
2978
2979 return target;
2980 }
2981
2982 /* As expand_unop, but will fail rather than attempt the operation in a
2983 different mode or with a libcall. */
2984 static rtx
2985 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2986 int unsignedp)
2987 {
2988 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2989 {
2990 struct expand_operand ops[2];
2991 enum insn_code icode = optab_handler (unoptab, mode);
2992 rtx last = get_last_insn ();
2993 rtx pat;
2994
2995 create_output_operand (&ops[0], target, mode);
2996 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2997 pat = maybe_gen_insn (icode, 2, ops);
2998 if (pat)
2999 {
3000 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3001 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
3002 ops[1].value, NULL_RTX))
3003 {
3004 delete_insns_since (last);
3005 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3006 }
3007
3008 emit_insn (pat);
3009
3010 return ops[0].value;
3011 }
3012 }
3013 return 0;
3014 }
3015
3016 /* Generate code to perform an operation specified by UNOPTAB
3017 on operand OP0, with result having machine-mode MODE.
3018
3019 UNSIGNEDP is for the case where we have to widen the operands
3020 to perform the operation. It says to use zero-extension.
3021
3022 If TARGET is nonzero, the value
3023 is generated there, if it is convenient to do so.
3024 In all cases an rtx is returned for the locus of the value;
3025 this may or may not be TARGET. */
3026
3027 rtx
3028 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3029 int unsignedp)
3030 {
3031 enum mode_class mclass = GET_MODE_CLASS (mode);
3032 enum machine_mode wider_mode;
3033 rtx temp;
3034 rtx libfunc;
3035
3036 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3037 if (temp)
3038 return temp;
3039
3040 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3041
3042 /* Widening (or narrowing) clz needs special treatment. */
3043 if (unoptab == clz_optab)
3044 {
3045 temp = widen_leading (mode, op0, target, unoptab);
3046 if (temp)
3047 return temp;
3048
3049 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3050 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3051 {
3052 temp = expand_doubleword_clz (mode, op0, target);
3053 if (temp)
3054 return temp;
3055 }
3056
3057 goto try_libcall;
3058 }
3059
3060 if (unoptab == clrsb_optab)
3061 {
3062 temp = widen_leading (mode, op0, target, unoptab);
3063 if (temp)
3064 return temp;
3065 goto try_libcall;
3066 }
3067
3068 /* Widening (or narrowing) bswap needs special treatment. */
3069 if (unoptab == bswap_optab)
3070 {
3071 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3072 or ROTATERT. First try these directly; if this fails, then try the
3073 obvious pair of shifts with allowed widening, as this will probably
3074 be always more efficient than the other fallback methods. */
3075 if (mode == HImode)
3076 {
3077 rtx last, temp1, temp2;
3078
3079 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3080 {
3081 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3082 unsignedp, OPTAB_DIRECT);
3083 if (temp)
3084 return temp;
3085 }
3086
3087 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3088 {
3089 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3090 unsignedp, OPTAB_DIRECT);
3091 if (temp)
3092 return temp;
3093 }
3094
3095 last = get_last_insn ();
3096
3097 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3098 unsignedp, OPTAB_WIDEN);
3099 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3100 unsignedp, OPTAB_WIDEN);
3101 if (temp1 && temp2)
3102 {
3103 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3104 unsignedp, OPTAB_WIDEN);
3105 if (temp)
3106 return temp;
3107 }
3108
3109 delete_insns_since (last);
3110 }
3111
3112 temp = widen_bswap (mode, op0, target);
3113 if (temp)
3114 return temp;
3115
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3118 {
3119 temp = expand_doubleword_bswap (mode, op0, target);
3120 if (temp)
3121 return temp;
3122 }
3123
3124 goto try_libcall;
3125 }
3126
3127 if (CLASS_HAS_WIDER_MODES_P (mclass))
3128 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3129 wider_mode != VOIDmode;
3130 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3131 {
3132 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3133 {
3134 rtx xop0 = op0;
3135 rtx last = get_last_insn ();
3136
3137 /* For certain operations, we need not actually extend
3138 the narrow operand, as long as we will truncate the
3139 results to the same narrowness. */
3140
3141 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3142 (unoptab == neg_optab
3143 || unoptab == one_cmpl_optab)
3144 && mclass == MODE_INT);
3145
3146 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3147 unsignedp);
3148
3149 if (temp)
3150 {
3151 if (mclass != MODE_INT
3152 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3153 {
3154 if (target == 0)
3155 target = gen_reg_rtx (mode);
3156 convert_move (target, temp, 0);
3157 return target;
3158 }
3159 else
3160 return gen_lowpart (mode, temp);
3161 }
3162 else
3163 delete_insns_since (last);
3164 }
3165 }
3166
3167 /* These can be done a word at a time. */
3168 if (unoptab == one_cmpl_optab
3169 && mclass == MODE_INT
3170 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3171 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3172 {
3173 int i;
3174 rtx insns;
3175
3176 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3177 target = gen_reg_rtx (mode);
3178
3179 start_sequence ();
3180
3181 /* Do the actual arithmetic. */
3182 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3183 {
3184 rtx target_piece = operand_subword (target, i, 1, mode);
3185 rtx x = expand_unop (word_mode, unoptab,
3186 operand_subword_force (op0, i, mode),
3187 target_piece, unsignedp);
3188
3189 if (target_piece != x)
3190 emit_move_insn (target_piece, x);
3191 }
3192
3193 insns = get_insns ();
3194 end_sequence ();
3195
3196 emit_insn (insns);
3197 return target;
3198 }
3199
3200 if (optab_to_code (unoptab) == NEG)
3201 {
3202 /* Try negating floating point values by flipping the sign bit. */
3203 if (SCALAR_FLOAT_MODE_P (mode))
3204 {
3205 temp = expand_absneg_bit (NEG, mode, op0, target);
3206 if (temp)
3207 return temp;
3208 }
3209
3210 /* If there is no negation pattern, and we have no negative zero,
3211 try subtracting from zero. */
3212 if (!HONOR_SIGNED_ZEROS (mode))
3213 {
3214 temp = expand_binop (mode, (unoptab == negv_optab
3215 ? subv_optab : sub_optab),
3216 CONST0_RTX (mode), op0, target,
3217 unsignedp, OPTAB_DIRECT);
3218 if (temp)
3219 return temp;
3220 }
3221 }
3222
3223 /* Try calculating parity (x) as popcount (x) % 2. */
3224 if (unoptab == parity_optab)
3225 {
3226 temp = expand_parity (mode, op0, target);
3227 if (temp)
3228 return temp;
3229 }
3230
3231 /* Try implementing ffs (x) in terms of clz (x). */
3232 if (unoptab == ffs_optab)
3233 {
3234 temp = expand_ffs (mode, op0, target);
3235 if (temp)
3236 return temp;
3237 }
3238
3239 /* Try implementing ctz (x) in terms of clz (x). */
3240 if (unoptab == ctz_optab)
3241 {
3242 temp = expand_ctz (mode, op0, target);
3243 if (temp)
3244 return temp;
3245 }
3246
3247 try_libcall:
3248 /* Now try a library call in this mode. */
3249 libfunc = optab_libfunc (unoptab, mode);
3250 if (libfunc)
3251 {
3252 rtx insns;
3253 rtx value;
3254 rtx eq_value;
3255 enum machine_mode outmode = mode;
3256
3257 /* All of these functions return small values. Thus we choose to
3258 have them return something that isn't a double-word. */
3259 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3260 || unoptab == clrsb_optab || unoptab == popcount_optab
3261 || unoptab == parity_optab)
3262 outmode
3263 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3264 optab_libfunc (unoptab, mode)));
3265
3266 start_sequence ();
3267
3268 /* Pass 1 for NO_QUEUE so we don't lose any increments
3269 if the libcall is cse'd or moved. */
3270 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3271 1, op0, mode);
3272 insns = get_insns ();
3273 end_sequence ();
3274
3275 target = gen_reg_rtx (outmode);
3276 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3277 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3278 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3279 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3280 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3281 emit_libcall_block_1 (insns, target, value, eq_value,
3282 trapv_unoptab_p (unoptab));
3283
3284 return target;
3285 }
3286
3287 /* It can't be done in this mode. Can we do it in a wider mode? */
3288
3289 if (CLASS_HAS_WIDER_MODES_P (mclass))
3290 {
3291 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3292 wider_mode != VOIDmode;
3293 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3294 {
3295 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3296 || optab_libfunc (unoptab, wider_mode))
3297 {
3298 rtx xop0 = op0;
3299 rtx last = get_last_insn ();
3300
3301 /* For certain operations, we need not actually extend
3302 the narrow operand, as long as we will truncate the
3303 results to the same narrowness. */
3304 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3305 (unoptab == neg_optab
3306 || unoptab == one_cmpl_optab
3307 || unoptab == bswap_optab)
3308 && mclass == MODE_INT);
3309
3310 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3311 unsignedp);
3312
3313 /* If we are generating clz using wider mode, adjust the
3314 result. Similarly for clrsb. */
3315 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3316 && temp != 0)
3317 temp = expand_binop
3318 (wider_mode, sub_optab, temp,
3319 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3320 - GET_MODE_PRECISION (mode),
3321 wider_mode),
3322 target, true, OPTAB_DIRECT);
3323
3324 /* Likewise for bswap. */
3325 if (unoptab == bswap_optab && temp != 0)
3326 {
3327 gcc_assert (GET_MODE_PRECISION (wider_mode)
3328 == GET_MODE_BITSIZE (wider_mode)
3329 && GET_MODE_PRECISION (mode)
3330 == GET_MODE_BITSIZE (mode));
3331
3332 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3333 GET_MODE_BITSIZE (wider_mode)
3334 - GET_MODE_BITSIZE (mode),
3335 NULL_RTX, true);
3336 }
3337
3338 if (temp)
3339 {
3340 if (mclass != MODE_INT)
3341 {
3342 if (target == 0)
3343 target = gen_reg_rtx (mode);
3344 convert_move (target, temp, 0);
3345 return target;
3346 }
3347 else
3348 return gen_lowpart (mode, temp);
3349 }
3350 else
3351 delete_insns_since (last);
3352 }
3353 }
3354 }
3355
3356 /* One final attempt at implementing negation via subtraction,
3357 this time allowing widening of the operand. */
3358 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3359 {
3360 rtx temp;
3361 temp = expand_binop (mode,
3362 unoptab == negv_optab ? subv_optab : sub_optab,
3363 CONST0_RTX (mode), op0,
3364 target, unsignedp, OPTAB_LIB_WIDEN);
3365 if (temp)
3366 return temp;
3367 }
3368
3369 return 0;
3370 }
3371 \f
3372 /* Emit code to compute the absolute value of OP0, with result to
3373 TARGET if convenient. (TARGET may be 0.) The return value says
3374 where the result actually is to be found.
3375
3376 MODE is the mode of the operand; the mode of the result is
3377 different but can be deduced from MODE.
3378
3379 */
3380
3381 rtx
3382 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3383 int result_unsignedp)
3384 {
3385 rtx temp;
3386
3387 if (! flag_trapv)
3388 result_unsignedp = 1;
3389
3390 /* First try to do it with a special abs instruction. */
3391 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3392 op0, target, 0);
3393 if (temp != 0)
3394 return temp;
3395
3396 /* For floating point modes, try clearing the sign bit. */
3397 if (SCALAR_FLOAT_MODE_P (mode))
3398 {
3399 temp = expand_absneg_bit (ABS, mode, op0, target);
3400 if (temp)
3401 return temp;
3402 }
3403
3404 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3405 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3406 && !HONOR_SIGNED_ZEROS (mode))
3407 {
3408 rtx last = get_last_insn ();
3409
3410 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3411 if (temp != 0)
3412 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3413 OPTAB_WIDEN);
3414
3415 if (temp != 0)
3416 return temp;
3417
3418 delete_insns_since (last);
3419 }
3420
3421 /* If this machine has expensive jumps, we can do integer absolute
3422 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3423 where W is the width of MODE. */
3424
3425 if (GET_MODE_CLASS (mode) == MODE_INT
3426 && BRANCH_COST (optimize_insn_for_speed_p (),
3427 false) >= 2)
3428 {
3429 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3430 GET_MODE_PRECISION (mode) - 1,
3431 NULL_RTX, 0);
3432
3433 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3434 OPTAB_LIB_WIDEN);
3435 if (temp != 0)
3436 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3437 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3438
3439 if (temp != 0)
3440 return temp;
3441 }
3442
3443 return NULL_RTX;
3444 }
3445
3446 rtx
3447 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3448 int result_unsignedp, int safe)
3449 {
3450 rtx temp, op1;
3451
3452 if (! flag_trapv)
3453 result_unsignedp = 1;
3454
3455 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3456 if (temp != 0)
3457 return temp;
3458
3459 /* If that does not win, use conditional jump and negate. */
3460
3461 /* It is safe to use the target if it is the same
3462 as the source if this is also a pseudo register */
3463 if (op0 == target && REG_P (op0)
3464 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3465 safe = 1;
3466
3467 op1 = gen_label_rtx ();
3468 if (target == 0 || ! safe
3469 || GET_MODE (target) != mode
3470 || (MEM_P (target) && MEM_VOLATILE_P (target))
3471 || (REG_P (target)
3472 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3473 target = gen_reg_rtx (mode);
3474
3475 emit_move_insn (target, op0);
3476 NO_DEFER_POP;
3477
3478 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3479 NULL_RTX, NULL_RTX, op1, -1);
3480
3481 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3482 target, target, 0);
3483 if (op0 != target)
3484 emit_move_insn (target, op0);
3485 emit_label (op1);
3486 OK_DEFER_POP;
3487 return target;
3488 }
3489
3490 /* Emit code to compute the one's complement absolute value of OP0
3491 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3492 (TARGET may be NULL_RTX.) The return value says where the result
3493 actually is to be found.
3494
3495 MODE is the mode of the operand; the mode of the result is
3496 different but can be deduced from MODE. */
3497
3498 rtx
3499 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3500 {
3501 rtx temp;
3502
3503 /* Not applicable for floating point modes. */
3504 if (FLOAT_MODE_P (mode))
3505 return NULL_RTX;
3506
3507 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3508 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3509 {
3510 rtx last = get_last_insn ();
3511
3512 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3513 if (temp != 0)
3514 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3515 OPTAB_WIDEN);
3516
3517 if (temp != 0)
3518 return temp;
3519
3520 delete_insns_since (last);
3521 }
3522
3523 /* If this machine has expensive jumps, we can do one's complement
3524 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3525
3526 if (GET_MODE_CLASS (mode) == MODE_INT
3527 && BRANCH_COST (optimize_insn_for_speed_p (),
3528 false) >= 2)
3529 {
3530 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3531 GET_MODE_PRECISION (mode) - 1,
3532 NULL_RTX, 0);
3533
3534 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3535 OPTAB_LIB_WIDEN);
3536
3537 if (temp != 0)
3538 return temp;
3539 }
3540
3541 return NULL_RTX;
3542 }
3543
3544 /* A subroutine of expand_copysign, perform the copysign operation using the
3545 abs and neg primitives advertised to exist on the target. The assumption
3546 is that we have a split register file, and leaving op0 in fp registers,
3547 and not playing with subregs so much, will help the register allocator. */
3548
3549 static rtx
3550 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3551 int bitpos, bool op0_is_abs)
3552 {
3553 enum machine_mode imode;
3554 enum insn_code icode;
3555 rtx sign, label;
3556
3557 if (target == op1)
3558 target = NULL_RTX;
3559
3560 /* Check if the back end provides an insn that handles signbit for the
3561 argument's mode. */
3562 icode = optab_handler (signbit_optab, mode);
3563 if (icode != CODE_FOR_nothing)
3564 {
3565 imode = insn_data[(int) icode].operand[0].mode;
3566 sign = gen_reg_rtx (imode);
3567 emit_unop_insn (icode, sign, op1, UNKNOWN);
3568 }
3569 else
3570 {
3571 double_int mask;
3572
3573 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3574 {
3575 imode = int_mode_for_mode (mode);
3576 if (imode == BLKmode)
3577 return NULL_RTX;
3578 op1 = gen_lowpart (imode, op1);
3579 }
3580 else
3581 {
3582 int word;
3583
3584 imode = word_mode;
3585 if (FLOAT_WORDS_BIG_ENDIAN)
3586 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3587 else
3588 word = bitpos / BITS_PER_WORD;
3589 bitpos = bitpos % BITS_PER_WORD;
3590 op1 = operand_subword_force (op1, word, mode);
3591 }
3592
3593 mask = double_int_zero.set_bit (bitpos);
3594
3595 sign = expand_binop (imode, and_optab, op1,
3596 immed_double_int_const (mask, imode),
3597 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3598 }
3599
3600 if (!op0_is_abs)
3601 {
3602 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3603 if (op0 == NULL)
3604 return NULL_RTX;
3605 target = op0;
3606 }
3607 else
3608 {
3609 if (target == NULL_RTX)
3610 target = copy_to_reg (op0);
3611 else
3612 emit_move_insn (target, op0);
3613 }
3614
3615 label = gen_label_rtx ();
3616 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3617
3618 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3619 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3620 else
3621 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3622 if (op0 != target)
3623 emit_move_insn (target, op0);
3624
3625 emit_label (label);
3626
3627 return target;
3628 }
3629
3630
3631 /* A subroutine of expand_copysign, perform the entire copysign operation
3632 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3633 is true if op0 is known to have its sign bit clear. */
3634
3635 static rtx
3636 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3637 int bitpos, bool op0_is_abs)
3638 {
3639 enum machine_mode imode;
3640 double_int mask;
3641 int word, nwords, i;
3642 rtx temp, insns;
3643
3644 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3645 {
3646 imode = int_mode_for_mode (mode);
3647 if (imode == BLKmode)
3648 return NULL_RTX;
3649 word = 0;
3650 nwords = 1;
3651 }
3652 else
3653 {
3654 imode = word_mode;
3655
3656 if (FLOAT_WORDS_BIG_ENDIAN)
3657 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3658 else
3659 word = bitpos / BITS_PER_WORD;
3660 bitpos = bitpos % BITS_PER_WORD;
3661 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3662 }
3663
3664 mask = double_int_zero.set_bit (bitpos);
3665
3666 if (target == 0
3667 || target == op0
3668 || target == op1
3669 || (nwords > 1 && !valid_multiword_target_p (target)))
3670 target = gen_reg_rtx (mode);
3671
3672 if (nwords > 1)
3673 {
3674 start_sequence ();
3675
3676 for (i = 0; i < nwords; ++i)
3677 {
3678 rtx targ_piece = operand_subword (target, i, 1, mode);
3679 rtx op0_piece = operand_subword_force (op0, i, mode);
3680
3681 if (i == word)
3682 {
3683 if (!op0_is_abs)
3684 op0_piece
3685 = expand_binop (imode, and_optab, op0_piece,
3686 immed_double_int_const (~mask, imode),
3687 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3688
3689 op1 = expand_binop (imode, and_optab,
3690 operand_subword_force (op1, i, mode),
3691 immed_double_int_const (mask, imode),
3692 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3693
3694 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3695 targ_piece, 1, OPTAB_LIB_WIDEN);
3696 if (temp != targ_piece)
3697 emit_move_insn (targ_piece, temp);
3698 }
3699 else
3700 emit_move_insn (targ_piece, op0_piece);
3701 }
3702
3703 insns = get_insns ();
3704 end_sequence ();
3705
3706 emit_insn (insns);
3707 }
3708 else
3709 {
3710 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3711 immed_double_int_const (mask, imode),
3712 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3713
3714 op0 = gen_lowpart (imode, op0);
3715 if (!op0_is_abs)
3716 op0 = expand_binop (imode, and_optab, op0,
3717 immed_double_int_const (~mask, imode),
3718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3719
3720 temp = expand_binop (imode, ior_optab, op0, op1,
3721 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3722 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3723 }
3724
3725 return target;
3726 }
3727
3728 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3729 scalar floating point mode. Return NULL if we do not know how to
3730 expand the operation inline. */
3731
3732 rtx
3733 expand_copysign (rtx op0, rtx op1, rtx target)
3734 {
3735 enum machine_mode mode = GET_MODE (op0);
3736 const struct real_format *fmt;
3737 bool op0_is_abs;
3738 rtx temp;
3739
3740 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3741 gcc_assert (GET_MODE (op1) == mode);
3742
3743 /* First try to do it with a special instruction. */
3744 temp = expand_binop (mode, copysign_optab, op0, op1,
3745 target, 0, OPTAB_DIRECT);
3746 if (temp)
3747 return temp;
3748
3749 fmt = REAL_MODE_FORMAT (mode);
3750 if (fmt == NULL || !fmt->has_signed_zero)
3751 return NULL_RTX;
3752
3753 op0_is_abs = false;
3754 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3755 {
3756 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3757 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3758 op0_is_abs = true;
3759 }
3760
3761 if (fmt->signbit_ro >= 0
3762 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3763 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3764 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3765 {
3766 temp = expand_copysign_absneg (mode, op0, op1, target,
3767 fmt->signbit_ro, op0_is_abs);
3768 if (temp)
3769 return temp;
3770 }
3771
3772 if (fmt->signbit_rw < 0)
3773 return NULL_RTX;
3774 return expand_copysign_bit (mode, op0, op1, target,
3775 fmt->signbit_rw, op0_is_abs);
3776 }
3777 \f
3778 /* Generate an instruction whose insn-code is INSN_CODE,
3779 with two operands: an output TARGET and an input OP0.
3780 TARGET *must* be nonzero, and the output is always stored there.
3781 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3782 the value that is stored into TARGET.
3783
3784 Return false if expansion failed. */
3785
3786 bool
3787 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3788 enum rtx_code code)
3789 {
3790 struct expand_operand ops[2];
3791 rtx pat;
3792
3793 create_output_operand (&ops[0], target, GET_MODE (target));
3794 create_input_operand (&ops[1], op0, GET_MODE (op0));
3795 pat = maybe_gen_insn (icode, 2, ops);
3796 if (!pat)
3797 return false;
3798
3799 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3800 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3801
3802 emit_insn (pat);
3803
3804 if (ops[0].value != target)
3805 emit_move_insn (target, ops[0].value);
3806 return true;
3807 }
3808 /* Generate an instruction whose insn-code is INSN_CODE,
3809 with two operands: an output TARGET and an input OP0.
3810 TARGET *must* be nonzero, and the output is always stored there.
3811 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3812 the value that is stored into TARGET. */
3813
3814 void
3815 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3816 {
3817 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3818 gcc_assert (ok);
3819 }
3820 \f
3821 struct no_conflict_data
3822 {
3823 rtx target, first, insn;
3824 bool must_stay;
3825 };
3826
3827 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3828 the currently examined clobber / store has to stay in the list of
3829 insns that constitute the actual libcall block. */
3830 static void
3831 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3832 {
3833 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3834
3835 /* If this inns directly contributes to setting the target, it must stay. */
3836 if (reg_overlap_mentioned_p (p->target, dest))
3837 p->must_stay = true;
3838 /* If we haven't committed to keeping any other insns in the list yet,
3839 there is nothing more to check. */
3840 else if (p->insn == p->first)
3841 return;
3842 /* If this insn sets / clobbers a register that feeds one of the insns
3843 already in the list, this insn has to stay too. */
3844 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3845 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3846 || reg_used_between_p (dest, p->first, p->insn)
3847 /* Likewise if this insn depends on a register set by a previous
3848 insn in the list, or if it sets a result (presumably a hard
3849 register) that is set or clobbered by a previous insn.
3850 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3851 SET_DEST perform the former check on the address, and the latter
3852 check on the MEM. */
3853 || (GET_CODE (set) == SET
3854 && (modified_in_p (SET_SRC (set), p->first)
3855 || modified_in_p (SET_DEST (set), p->first)
3856 || modified_between_p (SET_SRC (set), p->first, p->insn)
3857 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3858 p->must_stay = true;
3859 }
3860
3861 \f
3862 /* Emit code to make a call to a constant function or a library call.
3863
3864 INSNS is a list containing all insns emitted in the call.
3865 These insns leave the result in RESULT. Our block is to copy RESULT
3866 to TARGET, which is logically equivalent to EQUIV.
3867
3868 We first emit any insns that set a pseudo on the assumption that these are
3869 loading constants into registers; doing so allows them to be safely cse'ed
3870 between blocks. Then we emit all the other insns in the block, followed by
3871 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3872 note with an operand of EQUIV. */
3873
3874 static void
3875 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3876 bool equiv_may_trap)
3877 {
3878 rtx final_dest = target;
3879 rtx next, last, insn;
3880
3881 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3882 into a MEM later. Protect the libcall block from this change. */
3883 if (! REG_P (target) || REG_USERVAR_P (target))
3884 target = gen_reg_rtx (GET_MODE (target));
3885
3886 /* If we're using non-call exceptions, a libcall corresponding to an
3887 operation that may trap may also trap. */
3888 /* ??? See the comment in front of make_reg_eh_region_note. */
3889 if (cfun->can_throw_non_call_exceptions
3890 && (equiv_may_trap || may_trap_p (equiv)))
3891 {
3892 for (insn = insns; insn; insn = NEXT_INSN (insn))
3893 if (CALL_P (insn))
3894 {
3895 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3896 if (note)
3897 {
3898 int lp_nr = INTVAL (XEXP (note, 0));
3899 if (lp_nr == 0 || lp_nr == INT_MIN)
3900 remove_note (insn, note);
3901 }
3902 }
3903 }
3904 else
3905 {
3906 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3907 reg note to indicate that this call cannot throw or execute a nonlocal
3908 goto (unless there is already a REG_EH_REGION note, in which case
3909 we update it). */
3910 for (insn = insns; insn; insn = NEXT_INSN (insn))
3911 if (CALL_P (insn))
3912 make_reg_eh_region_note_nothrow_nononlocal (insn);
3913 }
3914
3915 /* First emit all insns that set pseudos. Remove them from the list as
3916 we go. Avoid insns that set pseudos which were referenced in previous
3917 insns. These can be generated by move_by_pieces, for example,
3918 to update an address. Similarly, avoid insns that reference things
3919 set in previous insns. */
3920
3921 for (insn = insns; insn; insn = next)
3922 {
3923 rtx set = single_set (insn);
3924
3925 next = NEXT_INSN (insn);
3926
3927 if (set != 0 && REG_P (SET_DEST (set))
3928 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3929 {
3930 struct no_conflict_data data;
3931
3932 data.target = const0_rtx;
3933 data.first = insns;
3934 data.insn = insn;
3935 data.must_stay = 0;
3936 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3937 if (! data.must_stay)
3938 {
3939 if (PREV_INSN (insn))
3940 NEXT_INSN (PREV_INSN (insn)) = next;
3941 else
3942 insns = next;
3943
3944 if (next)
3945 PREV_INSN (next) = PREV_INSN (insn);
3946
3947 add_insn (insn);
3948 }
3949 }
3950
3951 /* Some ports use a loop to copy large arguments onto the stack.
3952 Don't move anything outside such a loop. */
3953 if (LABEL_P (insn))
3954 break;
3955 }
3956
3957 /* Write the remaining insns followed by the final copy. */
3958 for (insn = insns; insn; insn = next)
3959 {
3960 next = NEXT_INSN (insn);
3961
3962 add_insn (insn);
3963 }
3964
3965 last = emit_move_insn (target, result);
3966 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3967
3968 if (final_dest != target)
3969 emit_move_insn (final_dest, target);
3970 }
3971
3972 void
3973 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3974 {
3975 emit_libcall_block_1 (insns, target, result, equiv, false);
3976 }
3977 \f
3978 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3979 PURPOSE describes how this comparison will be used. CODE is the rtx
3980 comparison code we will be using.
3981
3982 ??? Actually, CODE is slightly weaker than that. A target is still
3983 required to implement all of the normal bcc operations, but not
3984 required to implement all (or any) of the unordered bcc operations. */
3985
3986 int
3987 can_compare_p (enum rtx_code code, enum machine_mode mode,
3988 enum can_compare_purpose purpose)
3989 {
3990 rtx test;
3991 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3992 do
3993 {
3994 enum insn_code icode;
3995
3996 if (purpose == ccp_jump
3997 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3998 && insn_operand_matches (icode, 0, test))
3999 return 1;
4000 if (purpose == ccp_store_flag
4001 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4002 && insn_operand_matches (icode, 1, test))
4003 return 1;
4004 if (purpose == ccp_cmov
4005 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4006 return 1;
4007
4008 mode = GET_MODE_WIDER_MODE (mode);
4009 PUT_MODE (test, mode);
4010 }
4011 while (mode != VOIDmode);
4012
4013 return 0;
4014 }
4015
4016 /* This function is called when we are going to emit a compare instruction that
4017 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4018
4019 *PMODE is the mode of the inputs (in case they are const_int).
4020 *PUNSIGNEDP nonzero says that the operands are unsigned;
4021 this matters if they need to be widened (as given by METHODS).
4022
4023 If they have mode BLKmode, then SIZE specifies the size of both operands.
4024
4025 This function performs all the setup necessary so that the caller only has
4026 to emit a single comparison insn. This setup can involve doing a BLKmode
4027 comparison or emitting a library call to perform the comparison if no insn
4028 is available to handle it.
4029 The values which are passed in through pointers can be modified; the caller
4030 should perform the comparison on the modified values. Constant
4031 comparisons must have already been folded. */
4032
4033 static void
4034 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4035 int unsignedp, enum optab_methods methods,
4036 rtx *ptest, enum machine_mode *pmode)
4037 {
4038 enum machine_mode mode = *pmode;
4039 rtx libfunc, test;
4040 enum machine_mode cmp_mode;
4041 enum mode_class mclass;
4042
4043 /* The other methods are not needed. */
4044 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4045 || methods == OPTAB_LIB_WIDEN);
4046
4047 /* If we are optimizing, force expensive constants into a register. */
4048 if (CONSTANT_P (x) && optimize
4049 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4050 > COSTS_N_INSNS (1)))
4051 x = force_reg (mode, x);
4052
4053 if (CONSTANT_P (y) && optimize
4054 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4055 > COSTS_N_INSNS (1)))
4056 y = force_reg (mode, y);
4057
4058 #ifdef HAVE_cc0
4059 /* Make sure if we have a canonical comparison. The RTL
4060 documentation states that canonical comparisons are required only
4061 for targets which have cc0. */
4062 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4063 #endif
4064
4065 /* Don't let both operands fail to indicate the mode. */
4066 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4067 x = force_reg (mode, x);
4068 if (mode == VOIDmode)
4069 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4070
4071 /* Handle all BLKmode compares. */
4072
4073 if (mode == BLKmode)
4074 {
4075 enum machine_mode result_mode;
4076 enum insn_code cmp_code;
4077 tree length_type;
4078 rtx libfunc;
4079 rtx result;
4080 rtx opalign
4081 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4082
4083 gcc_assert (size);
4084
4085 /* Try to use a memory block compare insn - either cmpstr
4086 or cmpmem will do. */
4087 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4088 cmp_mode != VOIDmode;
4089 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4090 {
4091 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4092 if (cmp_code == CODE_FOR_nothing)
4093 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4094 if (cmp_code == CODE_FOR_nothing)
4095 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4096 if (cmp_code == CODE_FOR_nothing)
4097 continue;
4098
4099 /* Must make sure the size fits the insn's mode. */
4100 if ((CONST_INT_P (size)
4101 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4102 || (GET_MODE_BITSIZE (GET_MODE (size))
4103 > GET_MODE_BITSIZE (cmp_mode)))
4104 continue;
4105
4106 result_mode = insn_data[cmp_code].operand[0].mode;
4107 result = gen_reg_rtx (result_mode);
4108 size = convert_to_mode (cmp_mode, size, 1);
4109 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4110
4111 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4112 *pmode = result_mode;
4113 return;
4114 }
4115
4116 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4117 goto fail;
4118
4119 /* Otherwise call a library function, memcmp. */
4120 libfunc = memcmp_libfunc;
4121 length_type = sizetype;
4122 result_mode = TYPE_MODE (integer_type_node);
4123 cmp_mode = TYPE_MODE (length_type);
4124 size = convert_to_mode (TYPE_MODE (length_type), size,
4125 TYPE_UNSIGNED (length_type));
4126
4127 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4128 result_mode, 3,
4129 XEXP (x, 0), Pmode,
4130 XEXP (y, 0), Pmode,
4131 size, cmp_mode);
4132 x = result;
4133 y = const0_rtx;
4134 mode = result_mode;
4135 methods = OPTAB_LIB_WIDEN;
4136 unsignedp = false;
4137 }
4138
4139 /* Don't allow operands to the compare to trap, as that can put the
4140 compare and branch in different basic blocks. */
4141 if (cfun->can_throw_non_call_exceptions)
4142 {
4143 if (may_trap_p (x))
4144 x = force_reg (mode, x);
4145 if (may_trap_p (y))
4146 y = force_reg (mode, y);
4147 }
4148
4149 if (GET_MODE_CLASS (mode) == MODE_CC)
4150 {
4151 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4152 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4153 return;
4154 }
4155
4156 mclass = GET_MODE_CLASS (mode);
4157 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4158 cmp_mode = mode;
4159 do
4160 {
4161 enum insn_code icode;
4162 icode = optab_handler (cbranch_optab, cmp_mode);
4163 if (icode != CODE_FOR_nothing
4164 && insn_operand_matches (icode, 0, test))
4165 {
4166 rtx last = get_last_insn ();
4167 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4168 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4169 if (op0 && op1
4170 && insn_operand_matches (icode, 1, op0)
4171 && insn_operand_matches (icode, 2, op1))
4172 {
4173 XEXP (test, 0) = op0;
4174 XEXP (test, 1) = op1;
4175 *ptest = test;
4176 *pmode = cmp_mode;
4177 return;
4178 }
4179 delete_insns_since (last);
4180 }
4181
4182 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4183 break;
4184 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4185 }
4186 while (cmp_mode != VOIDmode);
4187
4188 if (methods != OPTAB_LIB_WIDEN)
4189 goto fail;
4190
4191 if (!SCALAR_FLOAT_MODE_P (mode))
4192 {
4193 rtx result;
4194 enum machine_mode ret_mode;
4195
4196 /* Handle a libcall just for the mode we are using. */
4197 libfunc = optab_libfunc (cmp_optab, mode);
4198 gcc_assert (libfunc);
4199
4200 /* If we want unsigned, and this mode has a distinct unsigned
4201 comparison routine, use that. */
4202 if (unsignedp)
4203 {
4204 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4205 if (ulibfunc)
4206 libfunc = ulibfunc;
4207 }
4208
4209 ret_mode = targetm.libgcc_cmp_return_mode ();
4210 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4211 ret_mode, 2, x, mode, y, mode);
4212
4213 /* There are two kinds of comparison routines. Biased routines
4214 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4215 of gcc expect that the comparison operation is equivalent
4216 to the modified comparison. For signed comparisons compare the
4217 result against 1 in the biased case, and zero in the unbiased
4218 case. For unsigned comparisons always compare against 1 after
4219 biasing the unbiased result by adding 1. This gives us a way to
4220 represent LTU.
4221 The comparisons in the fixed-point helper library are always
4222 biased. */
4223 x = result;
4224 y = const1_rtx;
4225
4226 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4227 {
4228 if (unsignedp)
4229 x = plus_constant (ret_mode, result, 1);
4230 else
4231 y = const0_rtx;
4232 }
4233
4234 *pmode = word_mode;
4235 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4236 ptest, pmode);
4237 }
4238 else
4239 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4240
4241 return;
4242
4243 fail:
4244 *ptest = NULL_RTX;
4245 }
4246
4247 /* Before emitting an insn with code ICODE, make sure that X, which is going
4248 to be used for operand OPNUM of the insn, is converted from mode MODE to
4249 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4250 that it is accepted by the operand predicate. Return the new value. */
4251
4252 rtx
4253 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4254 enum machine_mode wider_mode, int unsignedp)
4255 {
4256 if (mode != wider_mode)
4257 x = convert_modes (wider_mode, mode, x, unsignedp);
4258
4259 if (!insn_operand_matches (icode, opnum, x))
4260 {
4261 if (reload_completed)
4262 return NULL_RTX;
4263 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4264 }
4265
4266 return x;
4267 }
4268
4269 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4270 we can do the branch. */
4271
4272 static void
4273 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4274 {
4275 enum machine_mode optab_mode;
4276 enum mode_class mclass;
4277 enum insn_code icode;
4278 rtx insn;
4279
4280 mclass = GET_MODE_CLASS (mode);
4281 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4282 icode = optab_handler (cbranch_optab, optab_mode);
4283
4284 gcc_assert (icode != CODE_FOR_nothing);
4285 gcc_assert (insn_operand_matches (icode, 0, test));
4286 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4287 XEXP (test, 1), label));
4288 if (prob != -1
4289 && profile_status != PROFILE_ABSENT
4290 && insn
4291 && JUMP_P (insn)
4292 && any_condjump_p (insn)
4293 && !find_reg_note (insn, REG_BR_PROB, 0))
4294 add_int_reg_note (insn, REG_BR_PROB, prob);
4295 }
4296
4297 /* Generate code to compare X with Y so that the condition codes are
4298 set and to jump to LABEL if the condition is true. If X is a
4299 constant and Y is not a constant, then the comparison is swapped to
4300 ensure that the comparison RTL has the canonical form.
4301
4302 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4303 need to be widened. UNSIGNEDP is also used to select the proper
4304 branch condition code.
4305
4306 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4307
4308 MODE is the mode of the inputs (in case they are const_int).
4309
4310 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4311 It will be potentially converted into an unsigned variant based on
4312 UNSIGNEDP to select a proper jump instruction.
4313
4314 PROB is the probability of jumping to LABEL. */
4315
4316 void
4317 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4318 enum machine_mode mode, int unsignedp, rtx label,
4319 int prob)
4320 {
4321 rtx op0 = x, op1 = y;
4322 rtx test;
4323
4324 /* Swap operands and condition to ensure canonical RTL. */
4325 if (swap_commutative_operands_p (x, y)
4326 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4327 {
4328 op0 = y, op1 = x;
4329 comparison = swap_condition (comparison);
4330 }
4331
4332 /* If OP0 is still a constant, then both X and Y must be constants
4333 or the opposite comparison is not supported. Force X into a register
4334 to create canonical RTL. */
4335 if (CONSTANT_P (op0))
4336 op0 = force_reg (mode, op0);
4337
4338 if (unsignedp)
4339 comparison = unsigned_condition (comparison);
4340
4341 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4342 &test, &mode);
4343 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4344 }
4345
4346 \f
4347 /* Emit a library call comparison between floating point X and Y.
4348 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4349
4350 static void
4351 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4352 rtx *ptest, enum machine_mode *pmode)
4353 {
4354 enum rtx_code swapped = swap_condition (comparison);
4355 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4356 enum machine_mode orig_mode = GET_MODE (x);
4357 enum machine_mode mode, cmp_mode;
4358 rtx true_rtx, false_rtx;
4359 rtx value, target, insns, equiv;
4360 rtx libfunc = 0;
4361 bool reversed_p = false;
4362 cmp_mode = targetm.libgcc_cmp_return_mode ();
4363
4364 for (mode = orig_mode;
4365 mode != VOIDmode;
4366 mode = GET_MODE_WIDER_MODE (mode))
4367 {
4368 if (code_to_optab (comparison)
4369 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4370 break;
4371
4372 if (code_to_optab (swapped)
4373 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4374 {
4375 rtx tmp;
4376 tmp = x; x = y; y = tmp;
4377 comparison = swapped;
4378 break;
4379 }
4380
4381 if (code_to_optab (reversed)
4382 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4383 {
4384 comparison = reversed;
4385 reversed_p = true;
4386 break;
4387 }
4388 }
4389
4390 gcc_assert (mode != VOIDmode);
4391
4392 if (mode != orig_mode)
4393 {
4394 x = convert_to_mode (mode, x, 0);
4395 y = convert_to_mode (mode, y, 0);
4396 }
4397
4398 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4399 the RTL. The allows the RTL optimizers to delete the libcall if the
4400 condition can be determined at compile-time. */
4401 if (comparison == UNORDERED
4402 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4403 {
4404 true_rtx = const_true_rtx;
4405 false_rtx = const0_rtx;
4406 }
4407 else
4408 {
4409 switch (comparison)
4410 {
4411 case EQ:
4412 true_rtx = const0_rtx;
4413 false_rtx = const_true_rtx;
4414 break;
4415
4416 case NE:
4417 true_rtx = const_true_rtx;
4418 false_rtx = const0_rtx;
4419 break;
4420
4421 case GT:
4422 true_rtx = const1_rtx;
4423 false_rtx = const0_rtx;
4424 break;
4425
4426 case GE:
4427 true_rtx = const0_rtx;
4428 false_rtx = constm1_rtx;
4429 break;
4430
4431 case LT:
4432 true_rtx = constm1_rtx;
4433 false_rtx = const0_rtx;
4434 break;
4435
4436 case LE:
4437 true_rtx = const0_rtx;
4438 false_rtx = const1_rtx;
4439 break;
4440
4441 default:
4442 gcc_unreachable ();
4443 }
4444 }
4445
4446 if (comparison == UNORDERED)
4447 {
4448 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4449 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4450 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4451 temp, const_true_rtx, equiv);
4452 }
4453 else
4454 {
4455 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4456 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4457 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4458 equiv, true_rtx, false_rtx);
4459 }
4460
4461 start_sequence ();
4462 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4463 cmp_mode, 2, x, mode, y, mode);
4464 insns = get_insns ();
4465 end_sequence ();
4466
4467 target = gen_reg_rtx (cmp_mode);
4468 emit_libcall_block (insns, target, value, equiv);
4469
4470 if (comparison == UNORDERED
4471 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4472 || reversed_p)
4473 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4474 else
4475 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4476
4477 *pmode = cmp_mode;
4478 }
4479 \f
4480 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4481
4482 void
4483 emit_indirect_jump (rtx loc)
4484 {
4485 struct expand_operand ops[1];
4486
4487 create_address_operand (&ops[0], loc);
4488 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4489 emit_barrier ();
4490 }
4491 \f
4492 #ifdef HAVE_conditional_move
4493
4494 /* Emit a conditional move instruction if the machine supports one for that
4495 condition and machine mode.
4496
4497 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4498 the mode to use should they be constants. If it is VOIDmode, they cannot
4499 both be constants.
4500
4501 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4502 should be stored there. MODE is the mode to use should they be constants.
4503 If it is VOIDmode, they cannot both be constants.
4504
4505 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4506 is not supported. */
4507
4508 rtx
4509 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4510 enum machine_mode cmode, rtx op2, rtx op3,
4511 enum machine_mode mode, int unsignedp)
4512 {
4513 rtx tem, comparison, last;
4514 enum insn_code icode;
4515 enum rtx_code reversed;
4516
4517 /* If one operand is constant, make it the second one. Only do this
4518 if the other operand is not constant as well. */
4519
4520 if (swap_commutative_operands_p (op0, op1))
4521 {
4522 tem = op0;
4523 op0 = op1;
4524 op1 = tem;
4525 code = swap_condition (code);
4526 }
4527
4528 /* get_condition will prefer to generate LT and GT even if the old
4529 comparison was against zero, so undo that canonicalization here since
4530 comparisons against zero are cheaper. */
4531 if (code == LT && op1 == const1_rtx)
4532 code = LE, op1 = const0_rtx;
4533 else if (code == GT && op1 == constm1_rtx)
4534 code = GE, op1 = const0_rtx;
4535
4536 if (cmode == VOIDmode)
4537 cmode = GET_MODE (op0);
4538
4539 if (swap_commutative_operands_p (op2, op3)
4540 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4541 != UNKNOWN))
4542 {
4543 tem = op2;
4544 op2 = op3;
4545 op3 = tem;
4546 code = reversed;
4547 }
4548
4549 if (mode == VOIDmode)
4550 mode = GET_MODE (op2);
4551
4552 icode = direct_optab_handler (movcc_optab, mode);
4553
4554 if (icode == CODE_FOR_nothing)
4555 return 0;
4556
4557 if (!target)
4558 target = gen_reg_rtx (mode);
4559
4560 code = unsignedp ? unsigned_condition (code) : code;
4561 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4562
4563 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4564 return NULL and let the caller figure out how best to deal with this
4565 situation. */
4566 if (!COMPARISON_P (comparison))
4567 return NULL_RTX;
4568
4569 do_pending_stack_adjust ();
4570 last = get_last_insn ();
4571 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4572 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4573 &comparison, &cmode);
4574 if (comparison)
4575 {
4576 struct expand_operand ops[4];
4577
4578 create_output_operand (&ops[0], target, mode);
4579 create_fixed_operand (&ops[1], comparison);
4580 create_input_operand (&ops[2], op2, mode);
4581 create_input_operand (&ops[3], op3, mode);
4582 if (maybe_expand_insn (icode, 4, ops))
4583 {
4584 if (ops[0].value != target)
4585 convert_move (target, ops[0].value, false);
4586 return target;
4587 }
4588 }
4589 delete_insns_since (last);
4590 return NULL_RTX;
4591 }
4592
4593 /* Return nonzero if a conditional move of mode MODE is supported.
4594
4595 This function is for combine so it can tell whether an insn that looks
4596 like a conditional move is actually supported by the hardware. If we
4597 guess wrong we lose a bit on optimization, but that's it. */
4598 /* ??? sparc64 supports conditionally moving integers values based on fp
4599 comparisons, and vice versa. How do we handle them? */
4600
4601 int
4602 can_conditionally_move_p (enum machine_mode mode)
4603 {
4604 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4605 return 1;
4606
4607 return 0;
4608 }
4609
4610 #endif /* HAVE_conditional_move */
4611
4612 /* Emit a conditional addition instruction if the machine supports one for that
4613 condition and machine mode.
4614
4615 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4616 the mode to use should they be constants. If it is VOIDmode, they cannot
4617 both be constants.
4618
4619 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4620 should be stored there. MODE is the mode to use should they be constants.
4621 If it is VOIDmode, they cannot both be constants.
4622
4623 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4624 is not supported. */
4625
4626 rtx
4627 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4628 enum machine_mode cmode, rtx op2, rtx op3,
4629 enum machine_mode mode, int unsignedp)
4630 {
4631 rtx tem, comparison, last;
4632 enum insn_code icode;
4633
4634 /* If one operand is constant, make it the second one. Only do this
4635 if the other operand is not constant as well. */
4636
4637 if (swap_commutative_operands_p (op0, op1))
4638 {
4639 tem = op0;
4640 op0 = op1;
4641 op1 = tem;
4642 code = swap_condition (code);
4643 }
4644
4645 /* get_condition will prefer to generate LT and GT even if the old
4646 comparison was against zero, so undo that canonicalization here since
4647 comparisons against zero are cheaper. */
4648 if (code == LT && op1 == const1_rtx)
4649 code = LE, op1 = const0_rtx;
4650 else if (code == GT && op1 == constm1_rtx)
4651 code = GE, op1 = const0_rtx;
4652
4653 if (cmode == VOIDmode)
4654 cmode = GET_MODE (op0);
4655
4656 if (mode == VOIDmode)
4657 mode = GET_MODE (op2);
4658
4659 icode = optab_handler (addcc_optab, mode);
4660
4661 if (icode == CODE_FOR_nothing)
4662 return 0;
4663
4664 if (!target)
4665 target = gen_reg_rtx (mode);
4666
4667 code = unsignedp ? unsigned_condition (code) : code;
4668 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4669
4670 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4671 return NULL and let the caller figure out how best to deal with this
4672 situation. */
4673 if (!COMPARISON_P (comparison))
4674 return NULL_RTX;
4675
4676 do_pending_stack_adjust ();
4677 last = get_last_insn ();
4678 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4679 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4680 &comparison, &cmode);
4681 if (comparison)
4682 {
4683 struct expand_operand ops[4];
4684
4685 create_output_operand (&ops[0], target, mode);
4686 create_fixed_operand (&ops[1], comparison);
4687 create_input_operand (&ops[2], op2, mode);
4688 create_input_operand (&ops[3], op3, mode);
4689 if (maybe_expand_insn (icode, 4, ops))
4690 {
4691 if (ops[0].value != target)
4692 convert_move (target, ops[0].value, false);
4693 return target;
4694 }
4695 }
4696 delete_insns_since (last);
4697 return NULL_RTX;
4698 }
4699 \f
4700 /* These functions attempt to generate an insn body, rather than
4701 emitting the insn, but if the gen function already emits them, we
4702 make no attempt to turn them back into naked patterns. */
4703
4704 /* Generate and return an insn body to add Y to X. */
4705
4706 rtx
4707 gen_add2_insn (rtx x, rtx y)
4708 {
4709 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4710
4711 gcc_assert (insn_operand_matches (icode, 0, x));
4712 gcc_assert (insn_operand_matches (icode, 1, x));
4713 gcc_assert (insn_operand_matches (icode, 2, y));
4714
4715 return GEN_FCN (icode) (x, x, y);
4716 }
4717
4718 /* Generate and return an insn body to add r1 and c,
4719 storing the result in r0. */
4720
4721 rtx
4722 gen_add3_insn (rtx r0, rtx r1, rtx c)
4723 {
4724 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4725
4726 if (icode == CODE_FOR_nothing
4727 || !insn_operand_matches (icode, 0, r0)
4728 || !insn_operand_matches (icode, 1, r1)
4729 || !insn_operand_matches (icode, 2, c))
4730 return NULL_RTX;
4731
4732 return GEN_FCN (icode) (r0, r1, c);
4733 }
4734
4735 int
4736 have_add2_insn (rtx x, rtx y)
4737 {
4738 enum insn_code icode;
4739
4740 gcc_assert (GET_MODE (x) != VOIDmode);
4741
4742 icode = optab_handler (add_optab, GET_MODE (x));
4743
4744 if (icode == CODE_FOR_nothing)
4745 return 0;
4746
4747 if (!insn_operand_matches (icode, 0, x)
4748 || !insn_operand_matches (icode, 1, x)
4749 || !insn_operand_matches (icode, 2, y))
4750 return 0;
4751
4752 return 1;
4753 }
4754
4755 /* Generate and return an insn body to subtract Y from X. */
4756
4757 rtx
4758 gen_sub2_insn (rtx x, rtx y)
4759 {
4760 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4761
4762 gcc_assert (insn_operand_matches (icode, 0, x));
4763 gcc_assert (insn_operand_matches (icode, 1, x));
4764 gcc_assert (insn_operand_matches (icode, 2, y));
4765
4766 return GEN_FCN (icode) (x, x, y);
4767 }
4768
4769 /* Generate and return an insn body to subtract r1 and c,
4770 storing the result in r0. */
4771
4772 rtx
4773 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4774 {
4775 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4776
4777 if (icode == CODE_FOR_nothing
4778 || !insn_operand_matches (icode, 0, r0)
4779 || !insn_operand_matches (icode, 1, r1)
4780 || !insn_operand_matches (icode, 2, c))
4781 return NULL_RTX;
4782
4783 return GEN_FCN (icode) (r0, r1, c);
4784 }
4785
4786 int
4787 have_sub2_insn (rtx x, rtx y)
4788 {
4789 enum insn_code icode;
4790
4791 gcc_assert (GET_MODE (x) != VOIDmode);
4792
4793 icode = optab_handler (sub_optab, GET_MODE (x));
4794
4795 if (icode == CODE_FOR_nothing)
4796 return 0;
4797
4798 if (!insn_operand_matches (icode, 0, x)
4799 || !insn_operand_matches (icode, 1, x)
4800 || !insn_operand_matches (icode, 2, y))
4801 return 0;
4802
4803 return 1;
4804 }
4805
4806 /* Generate the body of an instruction to copy Y into X.
4807 It may be a list of insns, if one insn isn't enough. */
4808
4809 rtx
4810 gen_move_insn (rtx x, rtx y)
4811 {
4812 rtx seq;
4813
4814 start_sequence ();
4815 emit_move_insn_1 (x, y);
4816 seq = get_insns ();
4817 end_sequence ();
4818 return seq;
4819 }
4820 \f
4821 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4822 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4823 no such operation exists, CODE_FOR_nothing will be returned. */
4824
4825 enum insn_code
4826 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4827 int unsignedp)
4828 {
4829 convert_optab tab;
4830 #ifdef HAVE_ptr_extend
4831 if (unsignedp < 0)
4832 return CODE_FOR_ptr_extend;
4833 #endif
4834
4835 tab = unsignedp ? zext_optab : sext_optab;
4836 return convert_optab_handler (tab, to_mode, from_mode);
4837 }
4838
4839 /* Generate the body of an insn to extend Y (with mode MFROM)
4840 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4841
4842 rtx
4843 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4844 enum machine_mode mfrom, int unsignedp)
4845 {
4846 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4847 return GEN_FCN (icode) (x, y);
4848 }
4849 \f
4850 /* can_fix_p and can_float_p say whether the target machine
4851 can directly convert a given fixed point type to
4852 a given floating point type, or vice versa.
4853 The returned value is the CODE_FOR_... value to use,
4854 or CODE_FOR_nothing if these modes cannot be directly converted.
4855
4856 *TRUNCP_PTR is set to 1 if it is necessary to output
4857 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4858
4859 static enum insn_code
4860 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4861 int unsignedp, int *truncp_ptr)
4862 {
4863 convert_optab tab;
4864 enum insn_code icode;
4865
4866 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4867 icode = convert_optab_handler (tab, fixmode, fltmode);
4868 if (icode != CODE_FOR_nothing)
4869 {
4870 *truncp_ptr = 0;
4871 return icode;
4872 }
4873
4874 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4875 for this to work. We need to rework the fix* and ftrunc* patterns
4876 and documentation. */
4877 tab = unsignedp ? ufix_optab : sfix_optab;
4878 icode = convert_optab_handler (tab, fixmode, fltmode);
4879 if (icode != CODE_FOR_nothing
4880 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4881 {
4882 *truncp_ptr = 1;
4883 return icode;
4884 }
4885
4886 *truncp_ptr = 0;
4887 return CODE_FOR_nothing;
4888 }
4889
4890 enum insn_code
4891 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4892 int unsignedp)
4893 {
4894 convert_optab tab;
4895
4896 tab = unsignedp ? ufloat_optab : sfloat_optab;
4897 return convert_optab_handler (tab, fltmode, fixmode);
4898 }
4899
4900 /* Function supportable_convert_operation
4901
4902 Check whether an operation represented by the code CODE is a
4903 convert operation that is supported by the target platform in
4904 vector form (i.e., when operating on arguments of type VECTYPE_IN
4905 producing a result of type VECTYPE_OUT).
4906
4907 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4908 This function checks if these operations are supported
4909 by the target platform either directly (via vector tree-codes), or via
4910 target builtins.
4911
4912 Output:
4913 - CODE1 is code of vector operation to be used when
4914 vectorizing the operation, if available.
4915 - DECL is decl of target builtin functions to be used
4916 when vectorizing the operation, if available. In this case,
4917 CODE1 is CALL_EXPR. */
4918
4919 bool
4920 supportable_convert_operation (enum tree_code code,
4921 tree vectype_out, tree vectype_in,
4922 tree *decl, enum tree_code *code1)
4923 {
4924 enum machine_mode m1,m2;
4925 int truncp;
4926
4927 m1 = TYPE_MODE (vectype_out);
4928 m2 = TYPE_MODE (vectype_in);
4929
4930 /* First check if we can done conversion directly. */
4931 if ((code == FIX_TRUNC_EXPR
4932 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4933 != CODE_FOR_nothing)
4934 || (code == FLOAT_EXPR
4935 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4936 != CODE_FOR_nothing))
4937 {
4938 *code1 = code;
4939 return true;
4940 }
4941
4942 /* Now check for builtin. */
4943 if (targetm.vectorize.builtin_conversion
4944 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4945 {
4946 *code1 = CALL_EXPR;
4947 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4948 return true;
4949 }
4950 return false;
4951 }
4952
4953 \f
4954 /* Generate code to convert FROM to floating point
4955 and store in TO. FROM must be fixed point and not VOIDmode.
4956 UNSIGNEDP nonzero means regard FROM as unsigned.
4957 Normally this is done by correcting the final value
4958 if it is negative. */
4959
4960 void
4961 expand_float (rtx to, rtx from, int unsignedp)
4962 {
4963 enum insn_code icode;
4964 rtx target = to;
4965 enum machine_mode fmode, imode;
4966 bool can_do_signed = false;
4967
4968 /* Crash now, because we won't be able to decide which mode to use. */
4969 gcc_assert (GET_MODE (from) != VOIDmode);
4970
4971 /* Look for an insn to do the conversion. Do it in the specified
4972 modes if possible; otherwise convert either input, output or both to
4973 wider mode. If the integer mode is wider than the mode of FROM,
4974 we can do the conversion signed even if the input is unsigned. */
4975
4976 for (fmode = GET_MODE (to); fmode != VOIDmode;
4977 fmode = GET_MODE_WIDER_MODE (fmode))
4978 for (imode = GET_MODE (from); imode != VOIDmode;
4979 imode = GET_MODE_WIDER_MODE (imode))
4980 {
4981 int doing_unsigned = unsignedp;
4982
4983 if (fmode != GET_MODE (to)
4984 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4985 continue;
4986
4987 icode = can_float_p (fmode, imode, unsignedp);
4988 if (icode == CODE_FOR_nothing && unsignedp)
4989 {
4990 enum insn_code scode = can_float_p (fmode, imode, 0);
4991 if (scode != CODE_FOR_nothing)
4992 can_do_signed = true;
4993 if (imode != GET_MODE (from))
4994 icode = scode, doing_unsigned = 0;
4995 }
4996
4997 if (icode != CODE_FOR_nothing)
4998 {
4999 if (imode != GET_MODE (from))
5000 from = convert_to_mode (imode, from, unsignedp);
5001
5002 if (fmode != GET_MODE (to))
5003 target = gen_reg_rtx (fmode);
5004
5005 emit_unop_insn (icode, target, from,
5006 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5007
5008 if (target != to)
5009 convert_move (to, target, 0);
5010 return;
5011 }
5012 }
5013
5014 /* Unsigned integer, and no way to convert directly. Convert as signed,
5015 then unconditionally adjust the result. */
5016 if (unsignedp && can_do_signed)
5017 {
5018 rtx label = gen_label_rtx ();
5019 rtx temp;
5020 REAL_VALUE_TYPE offset;
5021
5022 /* Look for a usable floating mode FMODE wider than the source and at
5023 least as wide as the target. Using FMODE will avoid rounding woes
5024 with unsigned values greater than the signed maximum value. */
5025
5026 for (fmode = GET_MODE (to); fmode != VOIDmode;
5027 fmode = GET_MODE_WIDER_MODE (fmode))
5028 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5029 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5030 break;
5031
5032 if (fmode == VOIDmode)
5033 {
5034 /* There is no such mode. Pretend the target is wide enough. */
5035 fmode = GET_MODE (to);
5036
5037 /* Avoid double-rounding when TO is narrower than FROM. */
5038 if ((significand_size (fmode) + 1)
5039 < GET_MODE_PRECISION (GET_MODE (from)))
5040 {
5041 rtx temp1;
5042 rtx neglabel = gen_label_rtx ();
5043
5044 /* Don't use TARGET if it isn't a register, is a hard register,
5045 or is the wrong mode. */
5046 if (!REG_P (target)
5047 || REGNO (target) < FIRST_PSEUDO_REGISTER
5048 || GET_MODE (target) != fmode)
5049 target = gen_reg_rtx (fmode);
5050
5051 imode = GET_MODE (from);
5052 do_pending_stack_adjust ();
5053
5054 /* Test whether the sign bit is set. */
5055 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5056 0, neglabel);
5057
5058 /* The sign bit is not set. Convert as signed. */
5059 expand_float (target, from, 0);
5060 emit_jump_insn (gen_jump (label));
5061 emit_barrier ();
5062
5063 /* The sign bit is set.
5064 Convert to a usable (positive signed) value by shifting right
5065 one bit, while remembering if a nonzero bit was shifted
5066 out; i.e., compute (from & 1) | (from >> 1). */
5067
5068 emit_label (neglabel);
5069 temp = expand_binop (imode, and_optab, from, const1_rtx,
5070 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5071 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5072 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5073 OPTAB_LIB_WIDEN);
5074 expand_float (target, temp, 0);
5075
5076 /* Multiply by 2 to undo the shift above. */
5077 temp = expand_binop (fmode, add_optab, target, target,
5078 target, 0, OPTAB_LIB_WIDEN);
5079 if (temp != target)
5080 emit_move_insn (target, temp);
5081
5082 do_pending_stack_adjust ();
5083 emit_label (label);
5084 goto done;
5085 }
5086 }
5087
5088 /* If we are about to do some arithmetic to correct for an
5089 unsigned operand, do it in a pseudo-register. */
5090
5091 if (GET_MODE (to) != fmode
5092 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5093 target = gen_reg_rtx (fmode);
5094
5095 /* Convert as signed integer to floating. */
5096 expand_float (target, from, 0);
5097
5098 /* If FROM is negative (and therefore TO is negative),
5099 correct its value by 2**bitwidth. */
5100
5101 do_pending_stack_adjust ();
5102 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5103 0, label);
5104
5105
5106 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5107 temp = expand_binop (fmode, add_optab, target,
5108 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5109 target, 0, OPTAB_LIB_WIDEN);
5110 if (temp != target)
5111 emit_move_insn (target, temp);
5112
5113 do_pending_stack_adjust ();
5114 emit_label (label);
5115 goto done;
5116 }
5117
5118 /* No hardware instruction available; call a library routine. */
5119 {
5120 rtx libfunc;
5121 rtx insns;
5122 rtx value;
5123 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5124
5125 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5126 from = convert_to_mode (SImode, from, unsignedp);
5127
5128 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5129 gcc_assert (libfunc);
5130
5131 start_sequence ();
5132
5133 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5134 GET_MODE (to), 1, from,
5135 GET_MODE (from));
5136 insns = get_insns ();
5137 end_sequence ();
5138
5139 emit_libcall_block (insns, target, value,
5140 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5141 GET_MODE (to), from));
5142 }
5143
5144 done:
5145
5146 /* Copy result to requested destination
5147 if we have been computing in a temp location. */
5148
5149 if (target != to)
5150 {
5151 if (GET_MODE (target) == GET_MODE (to))
5152 emit_move_insn (to, target);
5153 else
5154 convert_move (to, target, 0);
5155 }
5156 }
5157 \f
5158 /* Generate code to convert FROM to fixed point and store in TO. FROM
5159 must be floating point. */
5160
5161 void
5162 expand_fix (rtx to, rtx from, int unsignedp)
5163 {
5164 enum insn_code icode;
5165 rtx target = to;
5166 enum machine_mode fmode, imode;
5167 int must_trunc = 0;
5168
5169 /* We first try to find a pair of modes, one real and one integer, at
5170 least as wide as FROM and TO, respectively, in which we can open-code
5171 this conversion. If the integer mode is wider than the mode of TO,
5172 we can do the conversion either signed or unsigned. */
5173
5174 for (fmode = GET_MODE (from); fmode != VOIDmode;
5175 fmode = GET_MODE_WIDER_MODE (fmode))
5176 for (imode = GET_MODE (to); imode != VOIDmode;
5177 imode = GET_MODE_WIDER_MODE (imode))
5178 {
5179 int doing_unsigned = unsignedp;
5180
5181 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5182 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5183 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5184
5185 if (icode != CODE_FOR_nothing)
5186 {
5187 rtx last = get_last_insn ();
5188 if (fmode != GET_MODE (from))
5189 from = convert_to_mode (fmode, from, 0);
5190
5191 if (must_trunc)
5192 {
5193 rtx temp = gen_reg_rtx (GET_MODE (from));
5194 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5195 temp, 0);
5196 }
5197
5198 if (imode != GET_MODE (to))
5199 target = gen_reg_rtx (imode);
5200
5201 if (maybe_emit_unop_insn (icode, target, from,
5202 doing_unsigned ? UNSIGNED_FIX : FIX))
5203 {
5204 if (target != to)
5205 convert_move (to, target, unsignedp);
5206 return;
5207 }
5208 delete_insns_since (last);
5209 }
5210 }
5211
5212 /* For an unsigned conversion, there is one more way to do it.
5213 If we have a signed conversion, we generate code that compares
5214 the real value to the largest representable positive number. If if
5215 is smaller, the conversion is done normally. Otherwise, subtract
5216 one plus the highest signed number, convert, and add it back.
5217
5218 We only need to check all real modes, since we know we didn't find
5219 anything with a wider integer mode.
5220
5221 This code used to extend FP value into mode wider than the destination.
5222 This is needed for decimal float modes which cannot accurately
5223 represent one plus the highest signed number of the same size, but
5224 not for binary modes. Consider, for instance conversion from SFmode
5225 into DImode.
5226
5227 The hot path through the code is dealing with inputs smaller than 2^63
5228 and doing just the conversion, so there is no bits to lose.
5229
5230 In the other path we know the value is positive in the range 2^63..2^64-1
5231 inclusive. (as for other input overflow happens and result is undefined)
5232 So we know that the most important bit set in mantissa corresponds to
5233 2^63. The subtraction of 2^63 should not generate any rounding as it
5234 simply clears out that bit. The rest is trivial. */
5235
5236 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5237 for (fmode = GET_MODE (from); fmode != VOIDmode;
5238 fmode = GET_MODE_WIDER_MODE (fmode))
5239 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5240 && (!DECIMAL_FLOAT_MODE_P (fmode)
5241 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5242 {
5243 int bitsize;
5244 REAL_VALUE_TYPE offset;
5245 rtx limit, lab1, lab2, insn;
5246
5247 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5248 real_2expN (&offset, bitsize - 1, fmode);
5249 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5250 lab1 = gen_label_rtx ();
5251 lab2 = gen_label_rtx ();
5252
5253 if (fmode != GET_MODE (from))
5254 from = convert_to_mode (fmode, from, 0);
5255
5256 /* See if we need to do the subtraction. */
5257 do_pending_stack_adjust ();
5258 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5259 0, lab1);
5260
5261 /* If not, do the signed "fix" and branch around fixup code. */
5262 expand_fix (to, from, 0);
5263 emit_jump_insn (gen_jump (lab2));
5264 emit_barrier ();
5265
5266 /* Otherwise, subtract 2**(N-1), convert to signed number,
5267 then add 2**(N-1). Do the addition using XOR since this
5268 will often generate better code. */
5269 emit_label (lab1);
5270 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5271 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5272 expand_fix (to, target, 0);
5273 target = expand_binop (GET_MODE (to), xor_optab, to,
5274 gen_int_mode
5275 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5276 GET_MODE (to)),
5277 to, 1, OPTAB_LIB_WIDEN);
5278
5279 if (target != to)
5280 emit_move_insn (to, target);
5281
5282 emit_label (lab2);
5283
5284 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5285 {
5286 /* Make a place for a REG_NOTE and add it. */
5287 insn = emit_move_insn (to, to);
5288 set_dst_reg_note (insn, REG_EQUAL,
5289 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5290 copy_rtx (from)),
5291 to);
5292 }
5293
5294 return;
5295 }
5296
5297 /* We can't do it with an insn, so use a library call. But first ensure
5298 that the mode of TO is at least as wide as SImode, since those are the
5299 only library calls we know about. */
5300
5301 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5302 {
5303 target = gen_reg_rtx (SImode);
5304
5305 expand_fix (target, from, unsignedp);
5306 }
5307 else
5308 {
5309 rtx insns;
5310 rtx value;
5311 rtx libfunc;
5312
5313 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5314 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5315 gcc_assert (libfunc);
5316
5317 start_sequence ();
5318
5319 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5320 GET_MODE (to), 1, from,
5321 GET_MODE (from));
5322 insns = get_insns ();
5323 end_sequence ();
5324
5325 emit_libcall_block (insns, target, value,
5326 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5327 GET_MODE (to), from));
5328 }
5329
5330 if (target != to)
5331 {
5332 if (GET_MODE (to) == GET_MODE (target))
5333 emit_move_insn (to, target);
5334 else
5335 convert_move (to, target, 0);
5336 }
5337 }
5338
5339 /* Generate code to convert FROM or TO a fixed-point.
5340 If UINTP is true, either TO or FROM is an unsigned integer.
5341 If SATP is true, we need to saturate the result. */
5342
5343 void
5344 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5345 {
5346 enum machine_mode to_mode = GET_MODE (to);
5347 enum machine_mode from_mode = GET_MODE (from);
5348 convert_optab tab;
5349 enum rtx_code this_code;
5350 enum insn_code code;
5351 rtx insns, value;
5352 rtx libfunc;
5353
5354 if (to_mode == from_mode)
5355 {
5356 emit_move_insn (to, from);
5357 return;
5358 }
5359
5360 if (uintp)
5361 {
5362 tab = satp ? satfractuns_optab : fractuns_optab;
5363 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5364 }
5365 else
5366 {
5367 tab = satp ? satfract_optab : fract_optab;
5368 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5369 }
5370 code = convert_optab_handler (tab, to_mode, from_mode);
5371 if (code != CODE_FOR_nothing)
5372 {
5373 emit_unop_insn (code, to, from, this_code);
5374 return;
5375 }
5376
5377 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5378 gcc_assert (libfunc);
5379
5380 start_sequence ();
5381 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5382 1, from, from_mode);
5383 insns = get_insns ();
5384 end_sequence ();
5385
5386 emit_libcall_block (insns, to, value,
5387 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5388 }
5389
5390 /* Generate code to convert FROM to fixed point and store in TO. FROM
5391 must be floating point, TO must be signed. Use the conversion optab
5392 TAB to do the conversion. */
5393
5394 bool
5395 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5396 {
5397 enum insn_code icode;
5398 rtx target = to;
5399 enum machine_mode fmode, imode;
5400
5401 /* We first try to find a pair of modes, one real and one integer, at
5402 least as wide as FROM and TO, respectively, in which we can open-code
5403 this conversion. If the integer mode is wider than the mode of TO,
5404 we can do the conversion either signed or unsigned. */
5405
5406 for (fmode = GET_MODE (from); fmode != VOIDmode;
5407 fmode = GET_MODE_WIDER_MODE (fmode))
5408 for (imode = GET_MODE (to); imode != VOIDmode;
5409 imode = GET_MODE_WIDER_MODE (imode))
5410 {
5411 icode = convert_optab_handler (tab, imode, fmode);
5412 if (icode != CODE_FOR_nothing)
5413 {
5414 rtx last = get_last_insn ();
5415 if (fmode != GET_MODE (from))
5416 from = convert_to_mode (fmode, from, 0);
5417
5418 if (imode != GET_MODE (to))
5419 target = gen_reg_rtx (imode);
5420
5421 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5422 {
5423 delete_insns_since (last);
5424 continue;
5425 }
5426 if (target != to)
5427 convert_move (to, target, 0);
5428 return true;
5429 }
5430 }
5431
5432 return false;
5433 }
5434 \f
5435 /* Report whether we have an instruction to perform the operation
5436 specified by CODE on operands of mode MODE. */
5437 int
5438 have_insn_for (enum rtx_code code, enum machine_mode mode)
5439 {
5440 return (code_to_optab (code)
5441 && (optab_handler (code_to_optab (code), mode)
5442 != CODE_FOR_nothing));
5443 }
5444
5445 /* Initialize the libfunc fields of an entire group of entries in some
5446 optab. Each entry is set equal to a string consisting of a leading
5447 pair of underscores followed by a generic operation name followed by
5448 a mode name (downshifted to lowercase) followed by a single character
5449 representing the number of operands for the given operation (which is
5450 usually one of the characters '2', '3', or '4').
5451
5452 OPTABLE is the table in which libfunc fields are to be initialized.
5453 OPNAME is the generic (string) name of the operation.
5454 SUFFIX is the character which specifies the number of operands for
5455 the given generic operation.
5456 MODE is the mode to generate for.
5457 */
5458
5459 static void
5460 gen_libfunc (optab optable, const char *opname, int suffix,
5461 enum machine_mode mode)
5462 {
5463 unsigned opname_len = strlen (opname);
5464 const char *mname = GET_MODE_NAME (mode);
5465 unsigned mname_len = strlen (mname);
5466 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5467 int len = prefix_len + opname_len + mname_len + 1 + 1;
5468 char *libfunc_name = XALLOCAVEC (char, len);
5469 char *p;
5470 const char *q;
5471
5472 p = libfunc_name;
5473 *p++ = '_';
5474 *p++ = '_';
5475 if (targetm.libfunc_gnu_prefix)
5476 {
5477 *p++ = 'g';
5478 *p++ = 'n';
5479 *p++ = 'u';
5480 *p++ = '_';
5481 }
5482 for (q = opname; *q; )
5483 *p++ = *q++;
5484 for (q = mname; *q; q++)
5485 *p++ = TOLOWER (*q);
5486 *p++ = suffix;
5487 *p = '\0';
5488
5489 set_optab_libfunc (optable, mode,
5490 ggc_alloc_string (libfunc_name, p - libfunc_name));
5491 }
5492
5493 /* Like gen_libfunc, but verify that integer operation is involved. */
5494
5495 void
5496 gen_int_libfunc (optab optable, const char *opname, char suffix,
5497 enum machine_mode mode)
5498 {
5499 int maxsize = 2 * BITS_PER_WORD;
5500
5501 if (GET_MODE_CLASS (mode) != MODE_INT)
5502 return;
5503 if (maxsize < LONG_LONG_TYPE_SIZE)
5504 maxsize = LONG_LONG_TYPE_SIZE;
5505 if (GET_MODE_CLASS (mode) != MODE_INT
5506 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5507 return;
5508 gen_libfunc (optable, opname, suffix, mode);
5509 }
5510
5511 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5512
5513 void
5514 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5515 enum machine_mode mode)
5516 {
5517 char *dec_opname;
5518
5519 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5520 gen_libfunc (optable, opname, suffix, mode);
5521 if (DECIMAL_FLOAT_MODE_P (mode))
5522 {
5523 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5524 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5525 depending on the low level floating format used. */
5526 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5527 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5528 gen_libfunc (optable, dec_opname, suffix, mode);
5529 }
5530 }
5531
5532 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5533
5534 void
5535 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5536 enum machine_mode mode)
5537 {
5538 if (!ALL_FIXED_POINT_MODE_P (mode))
5539 return;
5540 gen_libfunc (optable, opname, suffix, mode);
5541 }
5542
5543 /* Like gen_libfunc, but verify that signed fixed-point operation is
5544 involved. */
5545
5546 void
5547 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5548 enum machine_mode mode)
5549 {
5550 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5551 return;
5552 gen_libfunc (optable, opname, suffix, mode);
5553 }
5554
5555 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5556 involved. */
5557
5558 void
5559 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5560 enum machine_mode mode)
5561 {
5562 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5563 return;
5564 gen_libfunc (optable, opname, suffix, mode);
5565 }
5566
5567 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5568
5569 void
5570 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5571 enum machine_mode mode)
5572 {
5573 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5574 gen_fp_libfunc (optable, name, suffix, mode);
5575 if (INTEGRAL_MODE_P (mode))
5576 gen_int_libfunc (optable, name, suffix, mode);
5577 }
5578
5579 /* Like gen_libfunc, but verify that FP or INT operation is involved
5580 and add 'v' suffix for integer operation. */
5581
5582 void
5583 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5584 enum machine_mode mode)
5585 {
5586 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5587 gen_fp_libfunc (optable, name, suffix, mode);
5588 if (GET_MODE_CLASS (mode) == MODE_INT)
5589 {
5590 int len = strlen (name);
5591 char *v_name = XALLOCAVEC (char, len + 2);
5592 strcpy (v_name, name);
5593 v_name[len] = 'v';
5594 v_name[len + 1] = 0;
5595 gen_int_libfunc (optable, v_name, suffix, mode);
5596 }
5597 }
5598
5599 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5600 involved. */
5601
5602 void
5603 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5604 enum machine_mode mode)
5605 {
5606 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5607 gen_fp_libfunc (optable, name, suffix, mode);
5608 if (INTEGRAL_MODE_P (mode))
5609 gen_int_libfunc (optable, name, suffix, mode);
5610 if (ALL_FIXED_POINT_MODE_P (mode))
5611 gen_fixed_libfunc (optable, name, suffix, mode);
5612 }
5613
5614 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5615 involved. */
5616
5617 void
5618 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5619 enum machine_mode mode)
5620 {
5621 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5622 gen_fp_libfunc (optable, name, suffix, mode);
5623 if (INTEGRAL_MODE_P (mode))
5624 gen_int_libfunc (optable, name, suffix, mode);
5625 if (SIGNED_FIXED_POINT_MODE_P (mode))
5626 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5627 }
5628
5629 /* Like gen_libfunc, but verify that INT or FIXED operation is
5630 involved. */
5631
5632 void
5633 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5634 enum machine_mode mode)
5635 {
5636 if (INTEGRAL_MODE_P (mode))
5637 gen_int_libfunc (optable, name, suffix, mode);
5638 if (ALL_FIXED_POINT_MODE_P (mode))
5639 gen_fixed_libfunc (optable, name, suffix, mode);
5640 }
5641
5642 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5643 involved. */
5644
5645 void
5646 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5647 enum machine_mode mode)
5648 {
5649 if (INTEGRAL_MODE_P (mode))
5650 gen_int_libfunc (optable, name, suffix, mode);
5651 if (SIGNED_FIXED_POINT_MODE_P (mode))
5652 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5653 }
5654
5655 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5656 involved. */
5657
5658 void
5659 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5660 enum machine_mode mode)
5661 {
5662 if (INTEGRAL_MODE_P (mode))
5663 gen_int_libfunc (optable, name, suffix, mode);
5664 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5665 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5666 }
5667
5668 /* Initialize the libfunc fields of an entire group of entries of an
5669 inter-mode-class conversion optab. The string formation rules are
5670 similar to the ones for init_libfuncs, above, but instead of having
5671 a mode name and an operand count these functions have two mode names
5672 and no operand count. */
5673
5674 void
5675 gen_interclass_conv_libfunc (convert_optab tab,
5676 const char *opname,
5677 enum machine_mode tmode,
5678 enum machine_mode fmode)
5679 {
5680 size_t opname_len = strlen (opname);
5681 size_t mname_len = 0;
5682
5683 const char *fname, *tname;
5684 const char *q;
5685 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5686 char *libfunc_name, *suffix;
5687 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5688 char *p;
5689
5690 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5691 depends on which underlying decimal floating point format is used. */
5692 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5693
5694 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5695
5696 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5697 nondec_name[0] = '_';
5698 nondec_name[1] = '_';
5699 if (targetm.libfunc_gnu_prefix)
5700 {
5701 nondec_name[2] = 'g';
5702 nondec_name[3] = 'n';
5703 nondec_name[4] = 'u';
5704 nondec_name[5] = '_';
5705 }
5706
5707 memcpy (&nondec_name[prefix_len], opname, opname_len);
5708 nondec_suffix = nondec_name + opname_len + prefix_len;
5709
5710 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5711 dec_name[0] = '_';
5712 dec_name[1] = '_';
5713 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5714 memcpy (&dec_name[2+dec_len], opname, opname_len);
5715 dec_suffix = dec_name + dec_len + opname_len + 2;
5716
5717 fname = GET_MODE_NAME (fmode);
5718 tname = GET_MODE_NAME (tmode);
5719
5720 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5721 {
5722 libfunc_name = dec_name;
5723 suffix = dec_suffix;
5724 }
5725 else
5726 {
5727 libfunc_name = nondec_name;
5728 suffix = nondec_suffix;
5729 }
5730
5731 p = suffix;
5732 for (q = fname; *q; p++, q++)
5733 *p = TOLOWER (*q);
5734 for (q = tname; *q; p++, q++)
5735 *p = TOLOWER (*q);
5736
5737 *p = '\0';
5738
5739 set_conv_libfunc (tab, tmode, fmode,
5740 ggc_alloc_string (libfunc_name, p - libfunc_name));
5741 }
5742
5743 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5744 int->fp conversion. */
5745
5746 void
5747 gen_int_to_fp_conv_libfunc (convert_optab tab,
5748 const char *opname,
5749 enum machine_mode tmode,
5750 enum machine_mode fmode)
5751 {
5752 if (GET_MODE_CLASS (fmode) != MODE_INT)
5753 return;
5754 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5755 return;
5756 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5757 }
5758
5759 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5760 naming scheme. */
5761
5762 void
5763 gen_ufloat_conv_libfunc (convert_optab tab,
5764 const char *opname ATTRIBUTE_UNUSED,
5765 enum machine_mode tmode,
5766 enum machine_mode fmode)
5767 {
5768 if (DECIMAL_FLOAT_MODE_P (tmode))
5769 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5770 else
5771 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5772 }
5773
5774 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5775 fp->int conversion. */
5776
5777 void
5778 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5779 const char *opname,
5780 enum machine_mode tmode,
5781 enum machine_mode fmode)
5782 {
5783 if (GET_MODE_CLASS (fmode) != MODE_INT)
5784 return;
5785 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5786 return;
5787 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5788 }
5789
5790 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5791 fp->int conversion with no decimal floating point involved. */
5792
5793 void
5794 gen_fp_to_int_conv_libfunc (convert_optab tab,
5795 const char *opname,
5796 enum machine_mode tmode,
5797 enum machine_mode fmode)
5798 {
5799 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5800 return;
5801 if (GET_MODE_CLASS (tmode) != MODE_INT)
5802 return;
5803 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5804 }
5805
5806 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5807 The string formation rules are
5808 similar to the ones for init_libfunc, above. */
5809
5810 void
5811 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5812 enum machine_mode tmode, enum machine_mode fmode)
5813 {
5814 size_t opname_len = strlen (opname);
5815 size_t mname_len = 0;
5816
5817 const char *fname, *tname;
5818 const char *q;
5819 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5820 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5821 char *libfunc_name, *suffix;
5822 char *p;
5823
5824 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5825 depends on which underlying decimal floating point format is used. */
5826 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5827
5828 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5829
5830 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5831 nondec_name[0] = '_';
5832 nondec_name[1] = '_';
5833 if (targetm.libfunc_gnu_prefix)
5834 {
5835 nondec_name[2] = 'g';
5836 nondec_name[3] = 'n';
5837 nondec_name[4] = 'u';
5838 nondec_name[5] = '_';
5839 }
5840 memcpy (&nondec_name[prefix_len], opname, opname_len);
5841 nondec_suffix = nondec_name + opname_len + prefix_len;
5842
5843 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5844 dec_name[0] = '_';
5845 dec_name[1] = '_';
5846 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5847 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5848 dec_suffix = dec_name + dec_len + opname_len + 2;
5849
5850 fname = GET_MODE_NAME (fmode);
5851 tname = GET_MODE_NAME (tmode);
5852
5853 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5854 {
5855 libfunc_name = dec_name;
5856 suffix = dec_suffix;
5857 }
5858 else
5859 {
5860 libfunc_name = nondec_name;
5861 suffix = nondec_suffix;
5862 }
5863
5864 p = suffix;
5865 for (q = fname; *q; p++, q++)
5866 *p = TOLOWER (*q);
5867 for (q = tname; *q; p++, q++)
5868 *p = TOLOWER (*q);
5869
5870 *p++ = '2';
5871 *p = '\0';
5872
5873 set_conv_libfunc (tab, tmode, fmode,
5874 ggc_alloc_string (libfunc_name, p - libfunc_name));
5875 }
5876
5877 /* Pick proper libcall for trunc_optab. We need to chose if we do
5878 truncation or extension and interclass or intraclass. */
5879
5880 void
5881 gen_trunc_conv_libfunc (convert_optab tab,
5882 const char *opname,
5883 enum machine_mode tmode,
5884 enum machine_mode fmode)
5885 {
5886 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5887 return;
5888 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5889 return;
5890 if (tmode == fmode)
5891 return;
5892
5893 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5894 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5895 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5896
5897 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5898 return;
5899
5900 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5901 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5902 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5903 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5904 }
5905
5906 /* Pick proper libcall for extend_optab. We need to chose if we do
5907 truncation or extension and interclass or intraclass. */
5908
5909 void
5910 gen_extend_conv_libfunc (convert_optab tab,
5911 const char *opname ATTRIBUTE_UNUSED,
5912 enum machine_mode tmode,
5913 enum machine_mode fmode)
5914 {
5915 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5916 return;
5917 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5918 return;
5919 if (tmode == fmode)
5920 return;
5921
5922 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5923 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5924 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5925
5926 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5927 return;
5928
5929 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5930 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5931 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5932 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5933 }
5934
5935 /* Pick proper libcall for fract_optab. We need to chose if we do
5936 interclass or intraclass. */
5937
5938 void
5939 gen_fract_conv_libfunc (convert_optab tab,
5940 const char *opname,
5941 enum machine_mode tmode,
5942 enum machine_mode fmode)
5943 {
5944 if (tmode == fmode)
5945 return;
5946 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5947 return;
5948
5949 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5950 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5951 else
5952 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5953 }
5954
5955 /* Pick proper libcall for fractuns_optab. */
5956
5957 void
5958 gen_fractuns_conv_libfunc (convert_optab tab,
5959 const char *opname,
5960 enum machine_mode tmode,
5961 enum machine_mode fmode)
5962 {
5963 if (tmode == fmode)
5964 return;
5965 /* One mode must be a fixed-point mode, and the other must be an integer
5966 mode. */
5967 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5968 || (ALL_FIXED_POINT_MODE_P (fmode)
5969 && GET_MODE_CLASS (tmode) == MODE_INT)))
5970 return;
5971
5972 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5973 }
5974
5975 /* Pick proper libcall for satfract_optab. We need to chose if we do
5976 interclass or intraclass. */
5977
5978 void
5979 gen_satfract_conv_libfunc (convert_optab tab,
5980 const char *opname,
5981 enum machine_mode tmode,
5982 enum machine_mode fmode)
5983 {
5984 if (tmode == fmode)
5985 return;
5986 /* TMODE must be a fixed-point mode. */
5987 if (!ALL_FIXED_POINT_MODE_P (tmode))
5988 return;
5989
5990 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5991 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5992 else
5993 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5994 }
5995
5996 /* Pick proper libcall for satfractuns_optab. */
5997
5998 void
5999 gen_satfractuns_conv_libfunc (convert_optab tab,
6000 const char *opname,
6001 enum machine_mode tmode,
6002 enum machine_mode fmode)
6003 {
6004 if (tmode == fmode)
6005 return;
6006 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6007 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6008 return;
6009
6010 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6011 }
6012
6013 /* A table of previously-created libfuncs, hashed by name. */
6014 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6015
6016 /* Hashtable callbacks for libfunc_decls. */
6017
6018 static hashval_t
6019 libfunc_decl_hash (const void *entry)
6020 {
6021 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6022 }
6023
6024 static int
6025 libfunc_decl_eq (const void *entry1, const void *entry2)
6026 {
6027 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6028 }
6029
6030 /* Build a decl for a libfunc named NAME. */
6031
6032 tree
6033 build_libfunc_function (const char *name)
6034 {
6035 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6036 get_identifier (name),
6037 build_function_type (integer_type_node, NULL_TREE));
6038 /* ??? We don't have any type information except for this is
6039 a function. Pretend this is "int foo()". */
6040 DECL_ARTIFICIAL (decl) = 1;
6041 DECL_EXTERNAL (decl) = 1;
6042 TREE_PUBLIC (decl) = 1;
6043 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6044
6045 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6046 are the flags assigned by targetm.encode_section_info. */
6047 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6048
6049 return decl;
6050 }
6051
6052 rtx
6053 init_one_libfunc (const char *name)
6054 {
6055 tree id, decl;
6056 void **slot;
6057 hashval_t hash;
6058
6059 if (libfunc_decls == NULL)
6060 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6061 libfunc_decl_eq, NULL);
6062
6063 /* See if we have already created a libfunc decl for this function. */
6064 id = get_identifier (name);
6065 hash = IDENTIFIER_HASH_VALUE (id);
6066 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6067 decl = (tree) *slot;
6068 if (decl == NULL)
6069 {
6070 /* Create a new decl, so that it can be passed to
6071 targetm.encode_section_info. */
6072 decl = build_libfunc_function (name);
6073 *slot = decl;
6074 }
6075 return XEXP (DECL_RTL (decl), 0);
6076 }
6077
6078 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6079
6080 rtx
6081 set_user_assembler_libfunc (const char *name, const char *asmspec)
6082 {
6083 tree id, decl;
6084 void **slot;
6085 hashval_t hash;
6086
6087 id = get_identifier (name);
6088 hash = IDENTIFIER_HASH_VALUE (id);
6089 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6090 gcc_assert (slot);
6091 decl = (tree) *slot;
6092 set_user_assembler_name (decl, asmspec);
6093 return XEXP (DECL_RTL (decl), 0);
6094 }
6095
6096 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6097 MODE to NAME, which should be either 0 or a string constant. */
6098 void
6099 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6100 {
6101 rtx val;
6102 struct libfunc_entry e;
6103 struct libfunc_entry **slot;
6104
6105 e.op = op;
6106 e.mode1 = mode;
6107 e.mode2 = VOIDmode;
6108
6109 if (name)
6110 val = init_one_libfunc (name);
6111 else
6112 val = 0;
6113 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6114 if (*slot == NULL)
6115 *slot = ggc_alloc_libfunc_entry ();
6116 (*slot)->op = op;
6117 (*slot)->mode1 = mode;
6118 (*slot)->mode2 = VOIDmode;
6119 (*slot)->libfunc = val;
6120 }
6121
6122 /* Call this to reset the function entry for one conversion optab
6123 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6124 either 0 or a string constant. */
6125 void
6126 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6127 enum machine_mode fmode, const char *name)
6128 {
6129 rtx val;
6130 struct libfunc_entry e;
6131 struct libfunc_entry **slot;
6132
6133 e.op = optab;
6134 e.mode1 = tmode;
6135 e.mode2 = fmode;
6136
6137 if (name)
6138 val = init_one_libfunc (name);
6139 else
6140 val = 0;
6141 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6142 if (*slot == NULL)
6143 *slot = ggc_alloc_libfunc_entry ();
6144 (*slot)->op = optab;
6145 (*slot)->mode1 = tmode;
6146 (*slot)->mode2 = fmode;
6147 (*slot)->libfunc = val;
6148 }
6149
6150 /* Call this to initialize the contents of the optabs
6151 appropriately for the current target machine. */
6152
6153 void
6154 init_optabs (void)
6155 {
6156 if (libfunc_hash)
6157 htab_empty (libfunc_hash);
6158 else
6159 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6160
6161 /* Fill in the optabs with the insns we support. */
6162 init_all_optabs (this_fn_optabs);
6163
6164 /* The ffs function operates on `int'. Fall back on it if we do not
6165 have a libgcc2 function for that width. */
6166 if (INT_TYPE_SIZE < BITS_PER_WORD)
6167 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6168 "ffs");
6169
6170 /* Explicitly initialize the bswap libfuncs since we need them to be
6171 valid for things other than word_mode. */
6172 if (targetm.libfunc_gnu_prefix)
6173 {
6174 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6175 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6176 }
6177 else
6178 {
6179 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6180 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6181 }
6182
6183 /* Use cabs for double complex abs, since systems generally have cabs.
6184 Don't define any libcall for float complex, so that cabs will be used. */
6185 if (complex_double_type_node)
6186 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6187 "cabs");
6188
6189 abort_libfunc = init_one_libfunc ("abort");
6190 memcpy_libfunc = init_one_libfunc ("memcpy");
6191 memmove_libfunc = init_one_libfunc ("memmove");
6192 memcmp_libfunc = init_one_libfunc ("memcmp");
6193 memset_libfunc = init_one_libfunc ("memset");
6194 setbits_libfunc = init_one_libfunc ("__setbits");
6195
6196 #ifndef DONT_USE_BUILTIN_SETJMP
6197 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6198 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6199 #else
6200 setjmp_libfunc = init_one_libfunc ("setjmp");
6201 longjmp_libfunc = init_one_libfunc ("longjmp");
6202 #endif
6203 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6204 unwind_sjlj_unregister_libfunc
6205 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6206
6207 /* For function entry/exit instrumentation. */
6208 profile_function_entry_libfunc
6209 = init_one_libfunc ("__cyg_profile_func_enter");
6210 profile_function_exit_libfunc
6211 = init_one_libfunc ("__cyg_profile_func_exit");
6212
6213 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6214
6215 /* Allow the target to add more libcalls or rename some, etc. */
6216 targetm.init_libfuncs ();
6217 }
6218
6219 /* Use the current target and options to initialize
6220 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6221
6222 void
6223 init_tree_optimization_optabs (tree optnode)
6224 {
6225 /* Quick exit if we have already computed optabs for this target. */
6226 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6227 return;
6228
6229 /* Forget any previous information and set up for the current target. */
6230 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6231 struct target_optabs *tmp_optabs = (struct target_optabs *)
6232 TREE_OPTIMIZATION_OPTABS (optnode);
6233 if (tmp_optabs)
6234 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6235 else
6236 tmp_optabs = (struct target_optabs *)
6237 ggc_alloc_atomic (sizeof (struct target_optabs));
6238
6239 /* Generate a new set of optabs into tmp_optabs. */
6240 init_all_optabs (tmp_optabs);
6241
6242 /* If the optabs changed, record it. */
6243 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6244 TREE_OPTIMIZATION_OPTABS (optnode) = (unsigned char *) tmp_optabs;
6245 else
6246 {
6247 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6248 ggc_free (tmp_optabs);
6249 }
6250 }
6251
6252 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6253 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6254
6255 static void
6256 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6257 {
6258 enum machine_mode mode;
6259 char buf[64];
6260 size_t len = strlen (base);
6261 int i;
6262
6263 gcc_assert (max <= 8);
6264 gcc_assert (len + 3 < sizeof (buf));
6265
6266 memcpy (buf, base, len);
6267 buf[len] = '_';
6268 buf[len + 1] = '0';
6269 buf[len + 2] = '\0';
6270
6271 mode = QImode;
6272 for (i = 1; i <= max; i *= 2)
6273 {
6274 buf[len + 1] = '0' + i;
6275 set_optab_libfunc (tab, mode, buf);
6276 mode = GET_MODE_2XWIDER_MODE (mode);
6277 }
6278 }
6279
6280 void
6281 init_sync_libfuncs (int max)
6282 {
6283 if (!flag_sync_libcalls)
6284 return;
6285
6286 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6287 "__sync_val_compare_and_swap", max);
6288 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6289 "__sync_lock_test_and_set", max);
6290
6291 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6292 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6293 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6294 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6295 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6296 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6297
6298 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6299 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6300 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6301 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6302 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6303 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6304 }
6305
6306 /* Print information about the current contents of the optabs on
6307 STDERR. */
6308
6309 DEBUG_FUNCTION void
6310 debug_optab_libfuncs (void)
6311 {
6312 int i, j, k;
6313
6314 /* Dump the arithmetic optabs. */
6315 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6316 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6317 {
6318 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6319 if (l)
6320 {
6321 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6322 fprintf (stderr, "%s\t%s:\t%s\n",
6323 GET_RTX_NAME (optab_to_code ((optab) i)),
6324 GET_MODE_NAME (j),
6325 XSTR (l, 0));
6326 }
6327 }
6328
6329 /* Dump the conversion optabs. */
6330 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6331 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6332 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6333 {
6334 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6335 (enum machine_mode) k);
6336 if (l)
6337 {
6338 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6339 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6340 GET_RTX_NAME (optab_to_code ((optab) i)),
6341 GET_MODE_NAME (j),
6342 GET_MODE_NAME (k),
6343 XSTR (l, 0));
6344 }
6345 }
6346 }
6347
6348 \f
6349 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6350 CODE. Return 0 on failure. */
6351
6352 rtx
6353 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6354 {
6355 enum machine_mode mode = GET_MODE (op1);
6356 enum insn_code icode;
6357 rtx insn;
6358 rtx trap_rtx;
6359
6360 if (mode == VOIDmode)
6361 return 0;
6362
6363 icode = optab_handler (ctrap_optab, mode);
6364 if (icode == CODE_FOR_nothing)
6365 return 0;
6366
6367 /* Some targets only accept a zero trap code. */
6368 if (!insn_operand_matches (icode, 3, tcode))
6369 return 0;
6370
6371 do_pending_stack_adjust ();
6372 start_sequence ();
6373 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6374 &trap_rtx, &mode);
6375 if (!trap_rtx)
6376 insn = NULL_RTX;
6377 else
6378 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6379 tcode);
6380
6381 /* If that failed, then give up. */
6382 if (insn == 0)
6383 {
6384 end_sequence ();
6385 return 0;
6386 }
6387
6388 emit_insn (insn);
6389 insn = get_insns ();
6390 end_sequence ();
6391 return insn;
6392 }
6393
6394 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6395 or unsigned operation code. */
6396
6397 static enum rtx_code
6398 get_rtx_code (enum tree_code tcode, bool unsignedp)
6399 {
6400 enum rtx_code code;
6401 switch (tcode)
6402 {
6403 case EQ_EXPR:
6404 code = EQ;
6405 break;
6406 case NE_EXPR:
6407 code = NE;
6408 break;
6409 case LT_EXPR:
6410 code = unsignedp ? LTU : LT;
6411 break;
6412 case LE_EXPR:
6413 code = unsignedp ? LEU : LE;
6414 break;
6415 case GT_EXPR:
6416 code = unsignedp ? GTU : GT;
6417 break;
6418 case GE_EXPR:
6419 code = unsignedp ? GEU : GE;
6420 break;
6421
6422 case UNORDERED_EXPR:
6423 code = UNORDERED;
6424 break;
6425 case ORDERED_EXPR:
6426 code = ORDERED;
6427 break;
6428 case UNLT_EXPR:
6429 code = UNLT;
6430 break;
6431 case UNLE_EXPR:
6432 code = UNLE;
6433 break;
6434 case UNGT_EXPR:
6435 code = UNGT;
6436 break;
6437 case UNGE_EXPR:
6438 code = UNGE;
6439 break;
6440 case UNEQ_EXPR:
6441 code = UNEQ;
6442 break;
6443 case LTGT_EXPR:
6444 code = LTGT;
6445 break;
6446
6447 default:
6448 gcc_unreachable ();
6449 }
6450 return code;
6451 }
6452
6453 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6454 unsigned operators. Do not generate compare instruction. */
6455
6456 static rtx
6457 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6458 bool unsignedp, enum insn_code icode)
6459 {
6460 struct expand_operand ops[2];
6461 rtx rtx_op0, rtx_op1;
6462 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6463
6464 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6465
6466 /* Expand operands. */
6467 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6468 EXPAND_STACK_PARM);
6469 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6470 EXPAND_STACK_PARM);
6471
6472 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6473 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6474 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6475 gcc_unreachable ();
6476 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6477 }
6478
6479 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6480 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6481
6482 bool
6483 can_vec_perm_p (enum machine_mode mode, bool variable,
6484 const unsigned char *sel)
6485 {
6486 enum machine_mode qimode;
6487
6488 /* If the target doesn't implement a vector mode for the vector type,
6489 then no operations are supported. */
6490 if (!VECTOR_MODE_P (mode))
6491 return false;
6492
6493 if (!variable)
6494 {
6495 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6496 && (sel == NULL
6497 || targetm.vectorize.vec_perm_const_ok == NULL
6498 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6499 return true;
6500 }
6501
6502 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6503 return true;
6504
6505 /* We allow fallback to a QI vector mode, and adjust the mask. */
6506 if (GET_MODE_INNER (mode) == QImode)
6507 return false;
6508 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6509 if (!VECTOR_MODE_P (qimode))
6510 return false;
6511
6512 /* ??? For completeness, we ought to check the QImode version of
6513 vec_perm_const_optab. But all users of this implicit lowering
6514 feature implement the variable vec_perm_optab. */
6515 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6516 return false;
6517
6518 /* In order to support the lowering of variable permutations,
6519 we need to support shifts and adds. */
6520 if (variable)
6521 {
6522 if (GET_MODE_UNIT_SIZE (mode) > 2
6523 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6524 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6525 return false;
6526 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6527 return false;
6528 }
6529
6530 return true;
6531 }
6532
6533 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6534
6535 static rtx
6536 expand_vec_perm_1 (enum insn_code icode, rtx target,
6537 rtx v0, rtx v1, rtx sel)
6538 {
6539 enum machine_mode tmode = GET_MODE (target);
6540 enum machine_mode smode = GET_MODE (sel);
6541 struct expand_operand ops[4];
6542
6543 create_output_operand (&ops[0], target, tmode);
6544 create_input_operand (&ops[3], sel, smode);
6545
6546 /* Make an effort to preserve v0 == v1. The target expander is able to
6547 rely on this to determine if we're permuting a single input operand. */
6548 if (rtx_equal_p (v0, v1))
6549 {
6550 if (!insn_operand_matches (icode, 1, v0))
6551 v0 = force_reg (tmode, v0);
6552 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6553 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6554
6555 create_fixed_operand (&ops[1], v0);
6556 create_fixed_operand (&ops[2], v0);
6557 }
6558 else
6559 {
6560 create_input_operand (&ops[1], v0, tmode);
6561 create_input_operand (&ops[2], v1, tmode);
6562 }
6563
6564 if (maybe_expand_insn (icode, 4, ops))
6565 return ops[0].value;
6566 return NULL_RTX;
6567 }
6568
6569 /* Generate instructions for vec_perm optab given its mode
6570 and three operands. */
6571
6572 rtx
6573 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6574 {
6575 enum insn_code icode;
6576 enum machine_mode qimode;
6577 unsigned int i, w, e, u;
6578 rtx tmp, sel_qi = NULL;
6579 rtvec vec;
6580
6581 if (!target || GET_MODE (target) != mode)
6582 target = gen_reg_rtx (mode);
6583
6584 w = GET_MODE_SIZE (mode);
6585 e = GET_MODE_NUNITS (mode);
6586 u = GET_MODE_UNIT_SIZE (mode);
6587
6588 /* Set QIMODE to a different vector mode with byte elements.
6589 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6590 qimode = VOIDmode;
6591 if (GET_MODE_INNER (mode) != QImode)
6592 {
6593 qimode = mode_for_vector (QImode, w);
6594 if (!VECTOR_MODE_P (qimode))
6595 qimode = VOIDmode;
6596 }
6597
6598 /* If the input is a constant, expand it specially. */
6599 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6600 if (GET_CODE (sel) == CONST_VECTOR)
6601 {
6602 icode = direct_optab_handler (vec_perm_const_optab, mode);
6603 if (icode != CODE_FOR_nothing)
6604 {
6605 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6606 if (tmp)
6607 return tmp;
6608 }
6609
6610 /* Fall back to a constant byte-based permutation. */
6611 if (qimode != VOIDmode)
6612 {
6613 vec = rtvec_alloc (w);
6614 for (i = 0; i < e; ++i)
6615 {
6616 unsigned int j, this_e;
6617
6618 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6619 this_e &= 2 * e - 1;
6620 this_e *= u;
6621
6622 for (j = 0; j < u; ++j)
6623 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6624 }
6625 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6626
6627 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6628 if (icode != CODE_FOR_nothing)
6629 {
6630 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6631 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6632 gen_lowpart (qimode, v1), sel_qi);
6633 if (tmp)
6634 return gen_lowpart (mode, tmp);
6635 }
6636 }
6637 }
6638
6639 /* Otherwise expand as a fully variable permuation. */
6640 icode = direct_optab_handler (vec_perm_optab, mode);
6641 if (icode != CODE_FOR_nothing)
6642 {
6643 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6644 if (tmp)
6645 return tmp;
6646 }
6647
6648 /* As a special case to aid several targets, lower the element-based
6649 permutation to a byte-based permutation and try again. */
6650 if (qimode == VOIDmode)
6651 return NULL_RTX;
6652 icode = direct_optab_handler (vec_perm_optab, qimode);
6653 if (icode == CODE_FOR_nothing)
6654 return NULL_RTX;
6655
6656 if (sel_qi == NULL)
6657 {
6658 /* Multiply each element by its byte size. */
6659 enum machine_mode selmode = GET_MODE (sel);
6660 if (u == 2)
6661 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6662 sel, 0, OPTAB_DIRECT);
6663 else
6664 sel = expand_simple_binop (selmode, ASHIFT, sel,
6665 GEN_INT (exact_log2 (u)),
6666 sel, 0, OPTAB_DIRECT);
6667 gcc_assert (sel != NULL);
6668
6669 /* Broadcast the low byte each element into each of its bytes. */
6670 vec = rtvec_alloc (w);
6671 for (i = 0; i < w; ++i)
6672 {
6673 int this_e = i / u * u;
6674 if (BYTES_BIG_ENDIAN)
6675 this_e += u - 1;
6676 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6677 }
6678 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6679 sel = gen_lowpart (qimode, sel);
6680 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6681 gcc_assert (sel != NULL);
6682
6683 /* Add the byte offset to each byte element. */
6684 /* Note that the definition of the indicies here is memory ordering,
6685 so there should be no difference between big and little endian. */
6686 vec = rtvec_alloc (w);
6687 for (i = 0; i < w; ++i)
6688 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6689 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6690 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6691 sel, 0, OPTAB_DIRECT);
6692 gcc_assert (sel_qi != NULL);
6693 }
6694
6695 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6696 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6697 gen_lowpart (qimode, v1), sel_qi);
6698 if (tmp)
6699 tmp = gen_lowpart (mode, tmp);
6700 return tmp;
6701 }
6702
6703 /* Return insn code for a conditional operator with a comparison in
6704 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6705
6706 static inline enum insn_code
6707 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6708 {
6709 enum insn_code icode = CODE_FOR_nothing;
6710 if (uns)
6711 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6712 else
6713 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6714 return icode;
6715 }
6716
6717 /* Return TRUE iff, appropriate vector insns are available
6718 for vector cond expr with vector type VALUE_TYPE and a comparison
6719 with operand vector types in CMP_OP_TYPE. */
6720
6721 bool
6722 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6723 {
6724 enum machine_mode value_mode = TYPE_MODE (value_type);
6725 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6726 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6727 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6728 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6729 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6730 return false;
6731 return true;
6732 }
6733
6734 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6735 three operands. */
6736
6737 rtx
6738 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6739 rtx target)
6740 {
6741 struct expand_operand ops[6];
6742 enum insn_code icode;
6743 rtx comparison, rtx_op1, rtx_op2;
6744 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6745 enum machine_mode cmp_op_mode;
6746 bool unsignedp;
6747 tree op0a, op0b;
6748 enum tree_code tcode;
6749
6750 if (COMPARISON_CLASS_P (op0))
6751 {
6752 op0a = TREE_OPERAND (op0, 0);
6753 op0b = TREE_OPERAND (op0, 1);
6754 tcode = TREE_CODE (op0);
6755 }
6756 else
6757 {
6758 /* Fake op0 < 0. */
6759 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6760 op0a = op0;
6761 op0b = build_zero_cst (TREE_TYPE (op0));
6762 tcode = LT_EXPR;
6763 }
6764 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6765 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6766
6767
6768 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6769 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6770
6771 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6772 if (icode == CODE_FOR_nothing)
6773 return 0;
6774
6775 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6776 rtx_op1 = expand_normal (op1);
6777 rtx_op2 = expand_normal (op2);
6778
6779 create_output_operand (&ops[0], target, mode);
6780 create_input_operand (&ops[1], rtx_op1, mode);
6781 create_input_operand (&ops[2], rtx_op2, mode);
6782 create_fixed_operand (&ops[3], comparison);
6783 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6784 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6785 expand_insn (icode, 6, ops);
6786 return ops[0].value;
6787 }
6788
6789 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6790 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6791 2 for even/odd widening, and 3 for hi/lo widening. */
6792
6793 int
6794 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6795 {
6796 optab op;
6797 unsigned char *sel;
6798 unsigned i, nunits;
6799
6800 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6801 if (optab_handler (op, mode) != CODE_FOR_nothing)
6802 return 1;
6803
6804 /* If the mode is an integral vector, synth from widening operations. */
6805 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6806 return 0;
6807
6808 nunits = GET_MODE_NUNITS (mode);
6809 sel = XALLOCAVEC (unsigned char, nunits);
6810
6811 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6812 if (optab_handler (op, mode) != CODE_FOR_nothing)
6813 {
6814 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6815 if (optab_handler (op, mode) != CODE_FOR_nothing)
6816 {
6817 for (i = 0; i < nunits; ++i)
6818 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6819 if (can_vec_perm_p (mode, false, sel))
6820 return 2;
6821 }
6822 }
6823
6824 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6825 if (optab_handler (op, mode) != CODE_FOR_nothing)
6826 {
6827 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6828 if (optab_handler (op, mode) != CODE_FOR_nothing)
6829 {
6830 for (i = 0; i < nunits; ++i)
6831 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6832 if (can_vec_perm_p (mode, false, sel))
6833 return 3;
6834 }
6835 }
6836
6837 return 0;
6838 }
6839
6840 /* Expand a highpart multiply. */
6841
6842 rtx
6843 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6844 rtx target, bool uns_p)
6845 {
6846 struct expand_operand eops[3];
6847 enum insn_code icode;
6848 int method, i, nunits;
6849 enum machine_mode wmode;
6850 rtx m1, m2, perm;
6851 optab tab1, tab2;
6852 rtvec v;
6853
6854 method = can_mult_highpart_p (mode, uns_p);
6855 switch (method)
6856 {
6857 case 0:
6858 return NULL_RTX;
6859 case 1:
6860 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6861 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6862 OPTAB_LIB_WIDEN);
6863 case 2:
6864 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6865 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6866 break;
6867 case 3:
6868 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6869 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6870 if (BYTES_BIG_ENDIAN)
6871 {
6872 optab t = tab1;
6873 tab1 = tab2;
6874 tab2 = t;
6875 }
6876 break;
6877 default:
6878 gcc_unreachable ();
6879 }
6880
6881 icode = optab_handler (tab1, mode);
6882 nunits = GET_MODE_NUNITS (mode);
6883 wmode = insn_data[icode].operand[0].mode;
6884 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6885 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6886
6887 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6888 create_input_operand (&eops[1], op0, mode);
6889 create_input_operand (&eops[2], op1, mode);
6890 expand_insn (icode, 3, eops);
6891 m1 = gen_lowpart (mode, eops[0].value);
6892
6893 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6894 create_input_operand (&eops[1], op0, mode);
6895 create_input_operand (&eops[2], op1, mode);
6896 expand_insn (optab_handler (tab2, mode), 3, eops);
6897 m2 = gen_lowpart (mode, eops[0].value);
6898
6899 v = rtvec_alloc (nunits);
6900 if (method == 2)
6901 {
6902 for (i = 0; i < nunits; ++i)
6903 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6904 + ((i & 1) ? nunits : 0));
6905 }
6906 else
6907 {
6908 for (i = 0; i < nunits; ++i)
6909 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6910 }
6911 perm = gen_rtx_CONST_VECTOR (mode, v);
6912
6913 return expand_vec_perm (mode, m1, m2, perm, target);
6914 }
6915 \f
6916 /* Return true if there is a compare_and_swap pattern. */
6917
6918 bool
6919 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6920 {
6921 enum insn_code icode;
6922
6923 /* Check for __atomic_compare_and_swap. */
6924 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6925 if (icode != CODE_FOR_nothing)
6926 return true;
6927
6928 /* Check for __sync_compare_and_swap. */
6929 icode = optab_handler (sync_compare_and_swap_optab, mode);
6930 if (icode != CODE_FOR_nothing)
6931 return true;
6932 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6933 return true;
6934
6935 /* No inline compare and swap. */
6936 return false;
6937 }
6938
6939 /* Return true if an atomic exchange can be performed. */
6940
6941 bool
6942 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6943 {
6944 enum insn_code icode;
6945
6946 /* Check for __atomic_exchange. */
6947 icode = direct_optab_handler (atomic_exchange_optab, mode);
6948 if (icode != CODE_FOR_nothing)
6949 return true;
6950
6951 /* Don't check __sync_test_and_set, as on some platforms that
6952 has reduced functionality. Targets that really do support
6953 a proper exchange should simply be updated to the __atomics. */
6954
6955 return can_compare_and_swap_p (mode, allow_libcall);
6956 }
6957
6958
6959 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6960 pattern. */
6961
6962 static void
6963 find_cc_set (rtx x, const_rtx pat, void *data)
6964 {
6965 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6966 && GET_CODE (pat) == SET)
6967 {
6968 rtx *p_cc_reg = (rtx *) data;
6969 gcc_assert (!*p_cc_reg);
6970 *p_cc_reg = x;
6971 }
6972 }
6973
6974 /* This is a helper function for the other atomic operations. This function
6975 emits a loop that contains SEQ that iterates until a compare-and-swap
6976 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6977 a set of instructions that takes a value from OLD_REG as an input and
6978 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6979 set to the current contents of MEM. After SEQ, a compare-and-swap will
6980 attempt to update MEM with NEW_REG. The function returns true when the
6981 loop was generated successfully. */
6982
6983 static bool
6984 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6985 {
6986 enum machine_mode mode = GET_MODE (mem);
6987 rtx label, cmp_reg, success, oldval;
6988
6989 /* The loop we want to generate looks like
6990
6991 cmp_reg = mem;
6992 label:
6993 old_reg = cmp_reg;
6994 seq;
6995 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6996 if (success)
6997 goto label;
6998
6999 Note that we only do the plain load from memory once. Subsequent
7000 iterations use the value loaded by the compare-and-swap pattern. */
7001
7002 label = gen_label_rtx ();
7003 cmp_reg = gen_reg_rtx (mode);
7004
7005 emit_move_insn (cmp_reg, mem);
7006 emit_label (label);
7007 emit_move_insn (old_reg, cmp_reg);
7008 if (seq)
7009 emit_insn (seq);
7010
7011 success = NULL_RTX;
7012 oldval = cmp_reg;
7013 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7014 new_reg, false, MEMMODEL_SEQ_CST,
7015 MEMMODEL_RELAXED))
7016 return false;
7017
7018 if (oldval != cmp_reg)
7019 emit_move_insn (cmp_reg, oldval);
7020
7021 /* Mark this jump predicted not taken. */
7022 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7023 GET_MODE (success), 1, label, 0);
7024 return true;
7025 }
7026
7027
7028 /* This function tries to emit an atomic_exchange intruction. VAL is written
7029 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7030 using TARGET if possible. */
7031
7032 static rtx
7033 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7034 {
7035 enum machine_mode mode = GET_MODE (mem);
7036 enum insn_code icode;
7037
7038 /* If the target supports the exchange directly, great. */
7039 icode = direct_optab_handler (atomic_exchange_optab, mode);
7040 if (icode != CODE_FOR_nothing)
7041 {
7042 struct expand_operand ops[4];
7043
7044 create_output_operand (&ops[0], target, mode);
7045 create_fixed_operand (&ops[1], mem);
7046 create_input_operand (&ops[2], val, mode);
7047 create_integer_operand (&ops[3], model);
7048 if (maybe_expand_insn (icode, 4, ops))
7049 return ops[0].value;
7050 }
7051
7052 return NULL_RTX;
7053 }
7054
7055 /* This function tries to implement an atomic exchange operation using
7056 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7057 The previous contents of *MEM are returned, using TARGET if possible.
7058 Since this instructionn is an acquire barrier only, stronger memory
7059 models may require additional barriers to be emitted. */
7060
7061 static rtx
7062 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7063 enum memmodel model)
7064 {
7065 enum machine_mode mode = GET_MODE (mem);
7066 enum insn_code icode;
7067 rtx last_insn = get_last_insn ();
7068
7069 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7070
7071 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7072 exists, and the memory model is stronger than acquire, add a release
7073 barrier before the instruction. */
7074
7075 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7076 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7077 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7078 expand_mem_thread_fence (model);
7079
7080 if (icode != CODE_FOR_nothing)
7081 {
7082 struct expand_operand ops[3];
7083 create_output_operand (&ops[0], target, mode);
7084 create_fixed_operand (&ops[1], mem);
7085 create_input_operand (&ops[2], val, mode);
7086 if (maybe_expand_insn (icode, 3, ops))
7087 return ops[0].value;
7088 }
7089
7090 /* If an external test-and-set libcall is provided, use that instead of
7091 any external compare-and-swap that we might get from the compare-and-
7092 swap-loop expansion later. */
7093 if (!can_compare_and_swap_p (mode, false))
7094 {
7095 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7096 if (libfunc != NULL)
7097 {
7098 rtx addr;
7099
7100 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7101 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7102 mode, 2, addr, ptr_mode,
7103 val, mode);
7104 }
7105 }
7106
7107 /* If the test_and_set can't be emitted, eliminate any barrier that might
7108 have been emitted. */
7109 delete_insns_since (last_insn);
7110 return NULL_RTX;
7111 }
7112
7113 /* This function tries to implement an atomic exchange operation using a
7114 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7115 *MEM are returned, using TARGET if possible. No memory model is required
7116 since a compare_and_swap loop is seq-cst. */
7117
7118 static rtx
7119 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7120 {
7121 enum machine_mode mode = GET_MODE (mem);
7122
7123 if (can_compare_and_swap_p (mode, true))
7124 {
7125 if (!target || !register_operand (target, mode))
7126 target = gen_reg_rtx (mode);
7127 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7128 return target;
7129 }
7130
7131 return NULL_RTX;
7132 }
7133
7134 /* This function tries to implement an atomic test-and-set operation
7135 using the atomic_test_and_set instruction pattern. A boolean value
7136 is returned from the operation, using TARGET if possible. */
7137
7138 #ifndef HAVE_atomic_test_and_set
7139 #define HAVE_atomic_test_and_set 0
7140 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7141 #endif
7142
7143 static rtx
7144 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7145 {
7146 enum machine_mode pat_bool_mode;
7147 struct expand_operand ops[3];
7148
7149 if (!HAVE_atomic_test_and_set)
7150 return NULL_RTX;
7151
7152 /* While we always get QImode from __atomic_test_and_set, we get
7153 other memory modes from __sync_lock_test_and_set. Note that we
7154 use no endian adjustment here. This matches the 4.6 behavior
7155 in the Sparc backend. */
7156 gcc_checking_assert
7157 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7158 if (GET_MODE (mem) != QImode)
7159 mem = adjust_address_nv (mem, QImode, 0);
7160
7161 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7162 create_output_operand (&ops[0], target, pat_bool_mode);
7163 create_fixed_operand (&ops[1], mem);
7164 create_integer_operand (&ops[2], model);
7165
7166 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7167 return ops[0].value;
7168 return NULL_RTX;
7169 }
7170
7171 /* This function expands the legacy _sync_lock test_and_set operation which is
7172 generally an atomic exchange. Some limited targets only allow the
7173 constant 1 to be stored. This is an ACQUIRE operation.
7174
7175 TARGET is an optional place to stick the return value.
7176 MEM is where VAL is stored. */
7177
7178 rtx
7179 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7180 {
7181 rtx ret;
7182
7183 /* Try an atomic_exchange first. */
7184 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7185 if (ret)
7186 return ret;
7187
7188 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7189 if (ret)
7190 return ret;
7191
7192 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7193 if (ret)
7194 return ret;
7195
7196 /* If there are no other options, try atomic_test_and_set if the value
7197 being stored is 1. */
7198 if (val == const1_rtx)
7199 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7200
7201 return ret;
7202 }
7203
7204 /* This function expands the atomic test_and_set operation:
7205 atomically store a boolean TRUE into MEM and return the previous value.
7206
7207 MEMMODEL is the memory model variant to use.
7208 TARGET is an optional place to stick the return value. */
7209
7210 rtx
7211 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7212 {
7213 enum machine_mode mode = GET_MODE (mem);
7214 rtx ret, trueval, subtarget;
7215
7216 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7217 if (ret)
7218 return ret;
7219
7220 /* Be binary compatible with non-default settings of trueval, and different
7221 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7222 another only has atomic-exchange. */
7223 if (targetm.atomic_test_and_set_trueval == 1)
7224 {
7225 trueval = const1_rtx;
7226 subtarget = target ? target : gen_reg_rtx (mode);
7227 }
7228 else
7229 {
7230 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7231 subtarget = gen_reg_rtx (mode);
7232 }
7233
7234 /* Try the atomic-exchange optab... */
7235 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7236
7237 /* ... then an atomic-compare-and-swap loop ... */
7238 if (!ret)
7239 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7240
7241 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7242 if (!ret)
7243 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7244
7245 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7246 things with the value 1. Thus we try again without trueval. */
7247 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7248 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7249
7250 /* Failing all else, assume a single threaded environment and simply
7251 perform the operation. */
7252 if (!ret)
7253 {
7254 emit_move_insn (subtarget, mem);
7255 emit_move_insn (mem, trueval);
7256 ret = subtarget;
7257 }
7258
7259 /* Recall that have to return a boolean value; rectify if trueval
7260 is not exactly one. */
7261 if (targetm.atomic_test_and_set_trueval != 1)
7262 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7263
7264 return ret;
7265 }
7266
7267 /* This function expands the atomic exchange operation:
7268 atomically store VAL in MEM and return the previous value in MEM.
7269
7270 MEMMODEL is the memory model variant to use.
7271 TARGET is an optional place to stick the return value. */
7272
7273 rtx
7274 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7275 {
7276 rtx ret;
7277
7278 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7279
7280 /* Next try a compare-and-swap loop for the exchange. */
7281 if (!ret)
7282 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7283
7284 return ret;
7285 }
7286
7287 /* This function expands the atomic compare exchange operation:
7288
7289 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7290 *PTARGET_OVAL is an optional place to store the old value from memory.
7291 Both target parameters may be NULL to indicate that we do not care about
7292 that return value. Both target parameters are updated on success to
7293 the actual location of the corresponding result.
7294
7295 MEMMODEL is the memory model variant to use.
7296
7297 The return value of the function is true for success. */
7298
7299 bool
7300 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7301 rtx mem, rtx expected, rtx desired,
7302 bool is_weak, enum memmodel succ_model,
7303 enum memmodel fail_model)
7304 {
7305 enum machine_mode mode = GET_MODE (mem);
7306 struct expand_operand ops[8];
7307 enum insn_code icode;
7308 rtx target_oval, target_bool = NULL_RTX;
7309 rtx libfunc;
7310
7311 /* Load expected into a register for the compare and swap. */
7312 if (MEM_P (expected))
7313 expected = copy_to_reg (expected);
7314
7315 /* Make sure we always have some place to put the return oldval.
7316 Further, make sure that place is distinct from the input expected,
7317 just in case we need that path down below. */
7318 if (ptarget_oval == NULL
7319 || (target_oval = *ptarget_oval) == NULL
7320 || reg_overlap_mentioned_p (expected, target_oval))
7321 target_oval = gen_reg_rtx (mode);
7322
7323 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7324 if (icode != CODE_FOR_nothing)
7325 {
7326 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7327
7328 /* Make sure we always have a place for the bool operand. */
7329 if (ptarget_bool == NULL
7330 || (target_bool = *ptarget_bool) == NULL
7331 || GET_MODE (target_bool) != bool_mode)
7332 target_bool = gen_reg_rtx (bool_mode);
7333
7334 /* Emit the compare_and_swap. */
7335 create_output_operand (&ops[0], target_bool, bool_mode);
7336 create_output_operand (&ops[1], target_oval, mode);
7337 create_fixed_operand (&ops[2], mem);
7338 create_input_operand (&ops[3], expected, mode);
7339 create_input_operand (&ops[4], desired, mode);
7340 create_integer_operand (&ops[5], is_weak);
7341 create_integer_operand (&ops[6], succ_model);
7342 create_integer_operand (&ops[7], fail_model);
7343 expand_insn (icode, 8, ops);
7344
7345 /* Return success/failure. */
7346 target_bool = ops[0].value;
7347 target_oval = ops[1].value;
7348 goto success;
7349 }
7350
7351 /* Otherwise fall back to the original __sync_val_compare_and_swap
7352 which is always seq-cst. */
7353 icode = optab_handler (sync_compare_and_swap_optab, mode);
7354 if (icode != CODE_FOR_nothing)
7355 {
7356 rtx cc_reg;
7357
7358 create_output_operand (&ops[0], target_oval, mode);
7359 create_fixed_operand (&ops[1], mem);
7360 create_input_operand (&ops[2], expected, mode);
7361 create_input_operand (&ops[3], desired, mode);
7362 if (!maybe_expand_insn (icode, 4, ops))
7363 return false;
7364
7365 target_oval = ops[0].value;
7366
7367 /* If the caller isn't interested in the boolean return value,
7368 skip the computation of it. */
7369 if (ptarget_bool == NULL)
7370 goto success;
7371
7372 /* Otherwise, work out if the compare-and-swap succeeded. */
7373 cc_reg = NULL_RTX;
7374 if (have_insn_for (COMPARE, CCmode))
7375 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7376 if (cc_reg)
7377 {
7378 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7379 const0_rtx, VOIDmode, 0, 1);
7380 goto success;
7381 }
7382 goto success_bool_from_val;
7383 }
7384
7385 /* Also check for library support for __sync_val_compare_and_swap. */
7386 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7387 if (libfunc != NULL)
7388 {
7389 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7390 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7391 mode, 3, addr, ptr_mode,
7392 expected, mode, desired, mode);
7393
7394 /* Compute the boolean return value only if requested. */
7395 if (ptarget_bool)
7396 goto success_bool_from_val;
7397 else
7398 goto success;
7399 }
7400
7401 /* Failure. */
7402 return false;
7403
7404 success_bool_from_val:
7405 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7406 expected, VOIDmode, 1, 1);
7407 success:
7408 /* Make sure that the oval output winds up where the caller asked. */
7409 if (ptarget_oval)
7410 *ptarget_oval = target_oval;
7411 if (ptarget_bool)
7412 *ptarget_bool = target_bool;
7413 return true;
7414 }
7415
7416 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7417
7418 static void
7419 expand_asm_memory_barrier (void)
7420 {
7421 rtx asm_op, clob;
7422
7423 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7424 rtvec_alloc (0), rtvec_alloc (0),
7425 rtvec_alloc (0), UNKNOWN_LOCATION);
7426 MEM_VOLATILE_P (asm_op) = 1;
7427
7428 clob = gen_rtx_SCRATCH (VOIDmode);
7429 clob = gen_rtx_MEM (BLKmode, clob);
7430 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7431
7432 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7433 }
7434
7435 /* This routine will either emit the mem_thread_fence pattern or issue a
7436 sync_synchronize to generate a fence for memory model MEMMODEL. */
7437
7438 #ifndef HAVE_mem_thread_fence
7439 # define HAVE_mem_thread_fence 0
7440 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7441 #endif
7442 #ifndef HAVE_memory_barrier
7443 # define HAVE_memory_barrier 0
7444 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7445 #endif
7446
7447 void
7448 expand_mem_thread_fence (enum memmodel model)
7449 {
7450 if (HAVE_mem_thread_fence)
7451 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7452 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7453 {
7454 if (HAVE_memory_barrier)
7455 emit_insn (gen_memory_barrier ());
7456 else if (synchronize_libfunc != NULL_RTX)
7457 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7458 else
7459 expand_asm_memory_barrier ();
7460 }
7461 }
7462
7463 /* This routine will either emit the mem_signal_fence pattern or issue a
7464 sync_synchronize to generate a fence for memory model MEMMODEL. */
7465
7466 #ifndef HAVE_mem_signal_fence
7467 # define HAVE_mem_signal_fence 0
7468 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7469 #endif
7470
7471 void
7472 expand_mem_signal_fence (enum memmodel model)
7473 {
7474 if (HAVE_mem_signal_fence)
7475 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7476 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7477 {
7478 /* By default targets are coherent between a thread and the signal
7479 handler running on the same thread. Thus this really becomes a
7480 compiler barrier, in that stores must not be sunk past
7481 (or raised above) a given point. */
7482 expand_asm_memory_barrier ();
7483 }
7484 }
7485
7486 /* This function expands the atomic load operation:
7487 return the atomically loaded value in MEM.
7488
7489 MEMMODEL is the memory model variant to use.
7490 TARGET is an option place to stick the return value. */
7491
7492 rtx
7493 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7494 {
7495 enum machine_mode mode = GET_MODE (mem);
7496 enum insn_code icode;
7497
7498 /* If the target supports the load directly, great. */
7499 icode = direct_optab_handler (atomic_load_optab, mode);
7500 if (icode != CODE_FOR_nothing)
7501 {
7502 struct expand_operand ops[3];
7503
7504 create_output_operand (&ops[0], target, mode);
7505 create_fixed_operand (&ops[1], mem);
7506 create_integer_operand (&ops[2], model);
7507 if (maybe_expand_insn (icode, 3, ops))
7508 return ops[0].value;
7509 }
7510
7511 /* If the size of the object is greater than word size on this target,
7512 then we assume that a load will not be atomic. */
7513 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7514 {
7515 /* Issue val = compare_and_swap (mem, 0, 0).
7516 This may cause the occasional harmless store of 0 when the value is
7517 already 0, but it seems to be OK according to the standards guys. */
7518 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7519 const0_rtx, false, model, model))
7520 return target;
7521 else
7522 /* Otherwise there is no atomic load, leave the library call. */
7523 return NULL_RTX;
7524 }
7525
7526 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7527 if (!target || target == const0_rtx)
7528 target = gen_reg_rtx (mode);
7529
7530 /* For SEQ_CST, emit a barrier before the load. */
7531 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7532 expand_mem_thread_fence (model);
7533
7534 emit_move_insn (target, mem);
7535
7536 /* Emit the appropriate barrier after the load. */
7537 expand_mem_thread_fence (model);
7538
7539 return target;
7540 }
7541
7542 /* This function expands the atomic store operation:
7543 Atomically store VAL in MEM.
7544 MEMMODEL is the memory model variant to use.
7545 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7546 function returns const0_rtx if a pattern was emitted. */
7547
7548 rtx
7549 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7550 {
7551 enum machine_mode mode = GET_MODE (mem);
7552 enum insn_code icode;
7553 struct expand_operand ops[3];
7554
7555 /* If the target supports the store directly, great. */
7556 icode = direct_optab_handler (atomic_store_optab, mode);
7557 if (icode != CODE_FOR_nothing)
7558 {
7559 create_fixed_operand (&ops[0], mem);
7560 create_input_operand (&ops[1], val, mode);
7561 create_integer_operand (&ops[2], model);
7562 if (maybe_expand_insn (icode, 3, ops))
7563 return const0_rtx;
7564 }
7565
7566 /* If using __sync_lock_release is a viable alternative, try it. */
7567 if (use_release)
7568 {
7569 icode = direct_optab_handler (sync_lock_release_optab, mode);
7570 if (icode != CODE_FOR_nothing)
7571 {
7572 create_fixed_operand (&ops[0], mem);
7573 create_input_operand (&ops[1], const0_rtx, mode);
7574 if (maybe_expand_insn (icode, 2, ops))
7575 {
7576 /* lock_release is only a release barrier. */
7577 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7578 expand_mem_thread_fence (model);
7579 return const0_rtx;
7580 }
7581 }
7582 }
7583
7584 /* If the size of the object is greater than word size on this target,
7585 a default store will not be atomic, Try a mem_exchange and throw away
7586 the result. If that doesn't work, don't do anything. */
7587 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7588 {
7589 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7590 if (!target)
7591 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7592 if (target)
7593 return const0_rtx;
7594 else
7595 return NULL_RTX;
7596 }
7597
7598 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7599 expand_mem_thread_fence (model);
7600
7601 emit_move_insn (mem, val);
7602
7603 /* For SEQ_CST, also emit a barrier after the store. */
7604 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7605 expand_mem_thread_fence (model);
7606
7607 return const0_rtx;
7608 }
7609
7610
7611 /* Structure containing the pointers and values required to process the
7612 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7613
7614 struct atomic_op_functions
7615 {
7616 direct_optab mem_fetch_before;
7617 direct_optab mem_fetch_after;
7618 direct_optab mem_no_result;
7619 optab fetch_before;
7620 optab fetch_after;
7621 direct_optab no_result;
7622 enum rtx_code reverse_code;
7623 };
7624
7625
7626 /* Fill in structure pointed to by OP with the various optab entries for an
7627 operation of type CODE. */
7628
7629 static void
7630 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7631 {
7632 gcc_assert (op!= NULL);
7633
7634 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7635 in the source code during compilation, and the optab entries are not
7636 computable until runtime. Fill in the values at runtime. */
7637 switch (code)
7638 {
7639 case PLUS:
7640 op->mem_fetch_before = atomic_fetch_add_optab;
7641 op->mem_fetch_after = atomic_add_fetch_optab;
7642 op->mem_no_result = atomic_add_optab;
7643 op->fetch_before = sync_old_add_optab;
7644 op->fetch_after = sync_new_add_optab;
7645 op->no_result = sync_add_optab;
7646 op->reverse_code = MINUS;
7647 break;
7648 case MINUS:
7649 op->mem_fetch_before = atomic_fetch_sub_optab;
7650 op->mem_fetch_after = atomic_sub_fetch_optab;
7651 op->mem_no_result = atomic_sub_optab;
7652 op->fetch_before = sync_old_sub_optab;
7653 op->fetch_after = sync_new_sub_optab;
7654 op->no_result = sync_sub_optab;
7655 op->reverse_code = PLUS;
7656 break;
7657 case XOR:
7658 op->mem_fetch_before = atomic_fetch_xor_optab;
7659 op->mem_fetch_after = atomic_xor_fetch_optab;
7660 op->mem_no_result = atomic_xor_optab;
7661 op->fetch_before = sync_old_xor_optab;
7662 op->fetch_after = sync_new_xor_optab;
7663 op->no_result = sync_xor_optab;
7664 op->reverse_code = XOR;
7665 break;
7666 case AND:
7667 op->mem_fetch_before = atomic_fetch_and_optab;
7668 op->mem_fetch_after = atomic_and_fetch_optab;
7669 op->mem_no_result = atomic_and_optab;
7670 op->fetch_before = sync_old_and_optab;
7671 op->fetch_after = sync_new_and_optab;
7672 op->no_result = sync_and_optab;
7673 op->reverse_code = UNKNOWN;
7674 break;
7675 case IOR:
7676 op->mem_fetch_before = atomic_fetch_or_optab;
7677 op->mem_fetch_after = atomic_or_fetch_optab;
7678 op->mem_no_result = atomic_or_optab;
7679 op->fetch_before = sync_old_ior_optab;
7680 op->fetch_after = sync_new_ior_optab;
7681 op->no_result = sync_ior_optab;
7682 op->reverse_code = UNKNOWN;
7683 break;
7684 case NOT:
7685 op->mem_fetch_before = atomic_fetch_nand_optab;
7686 op->mem_fetch_after = atomic_nand_fetch_optab;
7687 op->mem_no_result = atomic_nand_optab;
7688 op->fetch_before = sync_old_nand_optab;
7689 op->fetch_after = sync_new_nand_optab;
7690 op->no_result = sync_nand_optab;
7691 op->reverse_code = UNKNOWN;
7692 break;
7693 default:
7694 gcc_unreachable ();
7695 }
7696 }
7697
7698 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7699 using memory order MODEL. If AFTER is true the operation needs to return
7700 the value of *MEM after the operation, otherwise the previous value.
7701 TARGET is an optional place to place the result. The result is unused if
7702 it is const0_rtx.
7703 Return the result if there is a better sequence, otherwise NULL_RTX. */
7704
7705 static rtx
7706 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7707 enum memmodel model, bool after)
7708 {
7709 /* If the value is prefetched, or not used, it may be possible to replace
7710 the sequence with a native exchange operation. */
7711 if (!after || target == const0_rtx)
7712 {
7713 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7714 if (code == AND && val == const0_rtx)
7715 {
7716 if (target == const0_rtx)
7717 target = gen_reg_rtx (GET_MODE (mem));
7718 return maybe_emit_atomic_exchange (target, mem, val, model);
7719 }
7720
7721 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7722 if (code == IOR && val == constm1_rtx)
7723 {
7724 if (target == const0_rtx)
7725 target = gen_reg_rtx (GET_MODE (mem));
7726 return maybe_emit_atomic_exchange (target, mem, val, model);
7727 }
7728 }
7729
7730 return NULL_RTX;
7731 }
7732
7733 /* Try to emit an instruction for a specific operation varaition.
7734 OPTAB contains the OP functions.
7735 TARGET is an optional place to return the result. const0_rtx means unused.
7736 MEM is the memory location to operate on.
7737 VAL is the value to use in the operation.
7738 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7739 MODEL is the memory model, if used.
7740 AFTER is true if the returned result is the value after the operation. */
7741
7742 static rtx
7743 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7744 rtx val, bool use_memmodel, enum memmodel model, bool after)
7745 {
7746 enum machine_mode mode = GET_MODE (mem);
7747 struct expand_operand ops[4];
7748 enum insn_code icode;
7749 int op_counter = 0;
7750 int num_ops;
7751
7752 /* Check to see if there is a result returned. */
7753 if (target == const0_rtx)
7754 {
7755 if (use_memmodel)
7756 {
7757 icode = direct_optab_handler (optab->mem_no_result, mode);
7758 create_integer_operand (&ops[2], model);
7759 num_ops = 3;
7760 }
7761 else
7762 {
7763 icode = direct_optab_handler (optab->no_result, mode);
7764 num_ops = 2;
7765 }
7766 }
7767 /* Otherwise, we need to generate a result. */
7768 else
7769 {
7770 if (use_memmodel)
7771 {
7772 icode = direct_optab_handler (after ? optab->mem_fetch_after
7773 : optab->mem_fetch_before, mode);
7774 create_integer_operand (&ops[3], model);
7775 num_ops = 4;
7776 }
7777 else
7778 {
7779 icode = optab_handler (after ? optab->fetch_after
7780 : optab->fetch_before, mode);
7781 num_ops = 3;
7782 }
7783 create_output_operand (&ops[op_counter++], target, mode);
7784 }
7785 if (icode == CODE_FOR_nothing)
7786 return NULL_RTX;
7787
7788 create_fixed_operand (&ops[op_counter++], mem);
7789 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7790 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7791
7792 if (maybe_expand_insn (icode, num_ops, ops))
7793 return (target == const0_rtx ? const0_rtx : ops[0].value);
7794
7795 return NULL_RTX;
7796 }
7797
7798
7799 /* This function expands an atomic fetch_OP or OP_fetch operation:
7800 TARGET is an option place to stick the return value. const0_rtx indicates
7801 the result is unused.
7802 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7803 CODE is the operation being performed (OP)
7804 MEMMODEL is the memory model variant to use.
7805 AFTER is true to return the result of the operation (OP_fetch).
7806 AFTER is false to return the value before the operation (fetch_OP).
7807
7808 This function will *only* generate instructions if there is a direct
7809 optab. No compare and swap loops or libcalls will be generated. */
7810
7811 static rtx
7812 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7813 enum rtx_code code, enum memmodel model,
7814 bool after)
7815 {
7816 enum machine_mode mode = GET_MODE (mem);
7817 struct atomic_op_functions optab;
7818 rtx result;
7819 bool unused_result = (target == const0_rtx);
7820
7821 get_atomic_op_for_code (&optab, code);
7822
7823 /* Check to see if there are any better instructions. */
7824 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7825 if (result)
7826 return result;
7827
7828 /* Check for the case where the result isn't used and try those patterns. */
7829 if (unused_result)
7830 {
7831 /* Try the memory model variant first. */
7832 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7833 if (result)
7834 return result;
7835
7836 /* Next try the old style withuot a memory model. */
7837 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7838 if (result)
7839 return result;
7840
7841 /* There is no no-result pattern, so try patterns with a result. */
7842 target = NULL_RTX;
7843 }
7844
7845 /* Try the __atomic version. */
7846 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7847 if (result)
7848 return result;
7849
7850 /* Try the older __sync version. */
7851 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7852 if (result)
7853 return result;
7854
7855 /* If the fetch value can be calculated from the other variation of fetch,
7856 try that operation. */
7857 if (after || unused_result || optab.reverse_code != UNKNOWN)
7858 {
7859 /* Try the __atomic version, then the older __sync version. */
7860 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7861 if (!result)
7862 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7863
7864 if (result)
7865 {
7866 /* If the result isn't used, no need to do compensation code. */
7867 if (unused_result)
7868 return result;
7869
7870 /* Issue compensation code. Fetch_after == fetch_before OP val.
7871 Fetch_before == after REVERSE_OP val. */
7872 if (!after)
7873 code = optab.reverse_code;
7874 if (code == NOT)
7875 {
7876 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7877 true, OPTAB_LIB_WIDEN);
7878 result = expand_simple_unop (mode, NOT, result, target, true);
7879 }
7880 else
7881 result = expand_simple_binop (mode, code, result, val, target,
7882 true, OPTAB_LIB_WIDEN);
7883 return result;
7884 }
7885 }
7886
7887 /* No direct opcode can be generated. */
7888 return NULL_RTX;
7889 }
7890
7891
7892
7893 /* This function expands an atomic fetch_OP or OP_fetch operation:
7894 TARGET is an option place to stick the return value. const0_rtx indicates
7895 the result is unused.
7896 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7897 CODE is the operation being performed (OP)
7898 MEMMODEL is the memory model variant to use.
7899 AFTER is true to return the result of the operation (OP_fetch).
7900 AFTER is false to return the value before the operation (fetch_OP). */
7901 rtx
7902 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7903 enum memmodel model, bool after)
7904 {
7905 enum machine_mode mode = GET_MODE (mem);
7906 rtx result;
7907 bool unused_result = (target == const0_rtx);
7908
7909 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7910 after);
7911
7912 if (result)
7913 return result;
7914
7915 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7916 if (code == PLUS || code == MINUS)
7917 {
7918 rtx tmp;
7919 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7920
7921 start_sequence ();
7922 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7923 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7924 model, after);
7925 if (result)
7926 {
7927 /* PLUS worked so emit the insns and return. */
7928 tmp = get_insns ();
7929 end_sequence ();
7930 emit_insn (tmp);
7931 return result;
7932 }
7933
7934 /* PLUS did not work, so throw away the negation code and continue. */
7935 end_sequence ();
7936 }
7937
7938 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7939 if (!can_compare_and_swap_p (mode, false))
7940 {
7941 rtx libfunc;
7942 bool fixup = false;
7943 enum rtx_code orig_code = code;
7944 struct atomic_op_functions optab;
7945
7946 get_atomic_op_for_code (&optab, code);
7947 libfunc = optab_libfunc (after ? optab.fetch_after
7948 : optab.fetch_before, mode);
7949 if (libfunc == NULL
7950 && (after || unused_result || optab.reverse_code != UNKNOWN))
7951 {
7952 fixup = true;
7953 if (!after)
7954 code = optab.reverse_code;
7955 libfunc = optab_libfunc (after ? optab.fetch_before
7956 : optab.fetch_after, mode);
7957 }
7958 if (libfunc != NULL)
7959 {
7960 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7961 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7962 2, addr, ptr_mode, val, mode);
7963
7964 if (!unused_result && fixup)
7965 result = expand_simple_binop (mode, code, result, val, target,
7966 true, OPTAB_LIB_WIDEN);
7967 return result;
7968 }
7969
7970 /* We need the original code for any further attempts. */
7971 code = orig_code;
7972 }
7973
7974 /* If nothing else has succeeded, default to a compare and swap loop. */
7975 if (can_compare_and_swap_p (mode, true))
7976 {
7977 rtx insn;
7978 rtx t0 = gen_reg_rtx (mode), t1;
7979
7980 start_sequence ();
7981
7982 /* If the result is used, get a register for it. */
7983 if (!unused_result)
7984 {
7985 if (!target || !register_operand (target, mode))
7986 target = gen_reg_rtx (mode);
7987 /* If fetch_before, copy the value now. */
7988 if (!after)
7989 emit_move_insn (target, t0);
7990 }
7991 else
7992 target = const0_rtx;
7993
7994 t1 = t0;
7995 if (code == NOT)
7996 {
7997 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7998 true, OPTAB_LIB_WIDEN);
7999 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8000 }
8001 else
8002 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8003 OPTAB_LIB_WIDEN);
8004
8005 /* For after, copy the value now. */
8006 if (!unused_result && after)
8007 emit_move_insn (target, t1);
8008 insn = get_insns ();
8009 end_sequence ();
8010
8011 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8012 return target;
8013 }
8014
8015 return NULL_RTX;
8016 }
8017 \f
8018 /* Return true if OPERAND is suitable for operand number OPNO of
8019 instruction ICODE. */
8020
8021 bool
8022 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8023 {
8024 return (!insn_data[(int) icode].operand[opno].predicate
8025 || (insn_data[(int) icode].operand[opno].predicate
8026 (operand, insn_data[(int) icode].operand[opno].mode)));
8027 }
8028 \f
8029 /* TARGET is a target of a multiword operation that we are going to
8030 implement as a series of word-mode operations. Return true if
8031 TARGET is suitable for this purpose. */
8032
8033 bool
8034 valid_multiword_target_p (rtx target)
8035 {
8036 enum machine_mode mode;
8037 int i;
8038
8039 mode = GET_MODE (target);
8040 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8041 if (!validate_subreg (word_mode, mode, target, i))
8042 return false;
8043 return true;
8044 }
8045
8046 /* Like maybe_legitimize_operand, but do not change the code of the
8047 current rtx value. */
8048
8049 static bool
8050 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8051 struct expand_operand *op)
8052 {
8053 /* See if the operand matches in its current form. */
8054 if (insn_operand_matches (icode, opno, op->value))
8055 return true;
8056
8057 /* If the operand is a memory whose address has no side effects,
8058 try forcing the address into a non-virtual pseudo register.
8059 The check for side effects is important because copy_to_mode_reg
8060 cannot handle things like auto-modified addresses. */
8061 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8062 {
8063 rtx addr, mem;
8064
8065 mem = op->value;
8066 addr = XEXP (mem, 0);
8067 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8068 && !side_effects_p (addr))
8069 {
8070 rtx last;
8071 enum machine_mode mode;
8072
8073 last = get_last_insn ();
8074 mode = get_address_mode (mem);
8075 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8076 if (insn_operand_matches (icode, opno, mem))
8077 {
8078 op->value = mem;
8079 return true;
8080 }
8081 delete_insns_since (last);
8082 }
8083 }
8084
8085 return false;
8086 }
8087
8088 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8089 on success, storing the new operand value back in OP. */
8090
8091 static bool
8092 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8093 struct expand_operand *op)
8094 {
8095 enum machine_mode mode, imode;
8096 bool old_volatile_ok, result;
8097
8098 mode = op->mode;
8099 switch (op->type)
8100 {
8101 case EXPAND_FIXED:
8102 old_volatile_ok = volatile_ok;
8103 volatile_ok = true;
8104 result = maybe_legitimize_operand_same_code (icode, opno, op);
8105 volatile_ok = old_volatile_ok;
8106 return result;
8107
8108 case EXPAND_OUTPUT:
8109 gcc_assert (mode != VOIDmode);
8110 if (op->value
8111 && op->value != const0_rtx
8112 && GET_MODE (op->value) == mode
8113 && maybe_legitimize_operand_same_code (icode, opno, op))
8114 return true;
8115
8116 op->value = gen_reg_rtx (mode);
8117 break;
8118
8119 case EXPAND_INPUT:
8120 input:
8121 gcc_assert (mode != VOIDmode);
8122 gcc_assert (GET_MODE (op->value) == VOIDmode
8123 || GET_MODE (op->value) == mode);
8124 if (maybe_legitimize_operand_same_code (icode, opno, op))
8125 return true;
8126
8127 op->value = copy_to_mode_reg (mode, op->value);
8128 break;
8129
8130 case EXPAND_CONVERT_TO:
8131 gcc_assert (mode != VOIDmode);
8132 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8133 goto input;
8134
8135 case EXPAND_CONVERT_FROM:
8136 if (GET_MODE (op->value) != VOIDmode)
8137 mode = GET_MODE (op->value);
8138 else
8139 /* The caller must tell us what mode this value has. */
8140 gcc_assert (mode != VOIDmode);
8141
8142 imode = insn_data[(int) icode].operand[opno].mode;
8143 if (imode != VOIDmode && imode != mode)
8144 {
8145 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8146 mode = imode;
8147 }
8148 goto input;
8149
8150 case EXPAND_ADDRESS:
8151 gcc_assert (mode != VOIDmode);
8152 op->value = convert_memory_address (mode, op->value);
8153 goto input;
8154
8155 case EXPAND_INTEGER:
8156 mode = insn_data[(int) icode].operand[opno].mode;
8157 if (mode != VOIDmode && const_int_operand (op->value, mode))
8158 goto input;
8159 break;
8160 }
8161 return insn_operand_matches (icode, opno, op->value);
8162 }
8163
8164 /* Make OP describe an input operand that should have the same value
8165 as VALUE, after any mode conversion that the target might request.
8166 TYPE is the type of VALUE. */
8167
8168 void
8169 create_convert_operand_from_type (struct expand_operand *op,
8170 rtx value, tree type)
8171 {
8172 create_convert_operand_from (op, value, TYPE_MODE (type),
8173 TYPE_UNSIGNED (type));
8174 }
8175
8176 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8177 of instruction ICODE. Return true on success, leaving the new operand
8178 values in the OPS themselves. Emit no code on failure. */
8179
8180 bool
8181 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8182 unsigned int nops, struct expand_operand *ops)
8183 {
8184 rtx last;
8185 unsigned int i;
8186
8187 last = get_last_insn ();
8188 for (i = 0; i < nops; i++)
8189 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8190 {
8191 delete_insns_since (last);
8192 return false;
8193 }
8194 return true;
8195 }
8196
8197 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8198 as its operands. Return the instruction pattern on success,
8199 and emit any necessary set-up code. Return null and emit no
8200 code on failure. */
8201
8202 rtx
8203 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8204 struct expand_operand *ops)
8205 {
8206 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8207 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8208 return NULL_RTX;
8209
8210 switch (nops)
8211 {
8212 case 1:
8213 return GEN_FCN (icode) (ops[0].value);
8214 case 2:
8215 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8216 case 3:
8217 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8218 case 4:
8219 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8220 ops[3].value);
8221 case 5:
8222 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8223 ops[3].value, ops[4].value);
8224 case 6:
8225 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8226 ops[3].value, ops[4].value, ops[5].value);
8227 case 7:
8228 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8229 ops[3].value, ops[4].value, ops[5].value,
8230 ops[6].value);
8231 case 8:
8232 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8233 ops[3].value, ops[4].value, ops[5].value,
8234 ops[6].value, ops[7].value);
8235 case 9:
8236 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8237 ops[3].value, ops[4].value, ops[5].value,
8238 ops[6].value, ops[7].value, ops[8].value);
8239 }
8240 gcc_unreachable ();
8241 }
8242
8243 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8244 as its operands. Return true on success and emit no code on failure. */
8245
8246 bool
8247 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8248 struct expand_operand *ops)
8249 {
8250 rtx pat = maybe_gen_insn (icode, nops, ops);
8251 if (pat)
8252 {
8253 emit_insn (pat);
8254 return true;
8255 }
8256 return false;
8257 }
8258
8259 /* Like maybe_expand_insn, but for jumps. */
8260
8261 bool
8262 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8263 struct expand_operand *ops)
8264 {
8265 rtx pat = maybe_gen_insn (icode, nops, ops);
8266 if (pat)
8267 {
8268 emit_jump_insn (pat);
8269 return true;
8270 }
8271 return false;
8272 }
8273
8274 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8275 as its operands. */
8276
8277 void
8278 expand_insn (enum insn_code icode, unsigned int nops,
8279 struct expand_operand *ops)
8280 {
8281 if (!maybe_expand_insn (icode, nops, ops))
8282 gcc_unreachable ();
8283 }
8284
8285 /* Like expand_insn, but for jumps. */
8286
8287 void
8288 expand_jump_insn (enum insn_code icode, unsigned int nops,
8289 struct expand_operand *ops)
8290 {
8291 if (!maybe_expand_jump_insn (icode, nops, ops))
8292 gcc_unreachable ();
8293 }
8294
8295 /* Reduce conditional compilation elsewhere. */
8296 #ifndef HAVE_insv
8297 #define HAVE_insv 0
8298 #define CODE_FOR_insv CODE_FOR_nothing
8299 #endif
8300 #ifndef HAVE_extv
8301 #define HAVE_extv 0
8302 #define CODE_FOR_extv CODE_FOR_nothing
8303 #endif
8304 #ifndef HAVE_extzv
8305 #define HAVE_extzv 0
8306 #define CODE_FOR_extzv CODE_FOR_nothing
8307 #endif
8308
8309 /* Enumerates the possible types of structure operand to an
8310 extraction_insn. */
8311 enum extraction_type { ET_unaligned_mem, ET_reg };
8312
8313 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8314 insertion or extraction of type TYPE on a structure of mode MODE.
8315 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8316 operand number of the structure (the first sign_extract or zero_extract
8317 operand) and FIELD_OP is the operand number of the field (the other
8318 side of the set from the sign_extract or zero_extract). */
8319
8320 static bool
8321 get_traditional_extraction_insn (extraction_insn *insn,
8322 enum extraction_type type,
8323 enum machine_mode mode,
8324 enum insn_code icode,
8325 int struct_op, int field_op)
8326 {
8327 const struct insn_data_d *data = &insn_data[icode];
8328
8329 enum machine_mode struct_mode = data->operand[struct_op].mode;
8330 if (struct_mode == VOIDmode)
8331 struct_mode = word_mode;
8332 if (mode != struct_mode)
8333 return false;
8334
8335 enum machine_mode field_mode = data->operand[field_op].mode;
8336 if (field_mode == VOIDmode)
8337 field_mode = word_mode;
8338
8339 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8340 if (pos_mode == VOIDmode)
8341 pos_mode = word_mode;
8342
8343 insn->icode = icode;
8344 insn->field_mode = field_mode;
8345 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8346 insn->pos_mode = pos_mode;
8347 return true;
8348 }
8349
8350 /* Return true if an optab exists to perform an insertion or extraction
8351 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8352
8353 REG_OPTAB is the optab to use for register structures and
8354 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8355 POS_OP is the operand number of the bit position. */
8356
8357 static bool
8358 get_optab_extraction_insn (struct extraction_insn *insn,
8359 enum extraction_type type,
8360 enum machine_mode mode, direct_optab reg_optab,
8361 direct_optab misalign_optab, int pos_op)
8362 {
8363 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8364 enum insn_code icode = direct_optab_handler (optab, mode);
8365 if (icode == CODE_FOR_nothing)
8366 return false;
8367
8368 const struct insn_data_d *data = &insn_data[icode];
8369
8370 insn->icode = icode;
8371 insn->field_mode = mode;
8372 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8373 insn->pos_mode = data->operand[pos_op].mode;
8374 if (insn->pos_mode == VOIDmode)
8375 insn->pos_mode = word_mode;
8376 return true;
8377 }
8378
8379 /* Return true if an instruction exists to perform an insertion or
8380 extraction (PATTERN says which) of type TYPE in mode MODE.
8381 Describe the instruction in *INSN if so. */
8382
8383 static bool
8384 get_extraction_insn (extraction_insn *insn,
8385 enum extraction_pattern pattern,
8386 enum extraction_type type,
8387 enum machine_mode mode)
8388 {
8389 switch (pattern)
8390 {
8391 case EP_insv:
8392 if (HAVE_insv
8393 && get_traditional_extraction_insn (insn, type, mode,
8394 CODE_FOR_insv, 0, 3))
8395 return true;
8396 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8397 insvmisalign_optab, 2);
8398
8399 case EP_extv:
8400 if (HAVE_extv
8401 && get_traditional_extraction_insn (insn, type, mode,
8402 CODE_FOR_extv, 1, 0))
8403 return true;
8404 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8405 extvmisalign_optab, 3);
8406
8407 case EP_extzv:
8408 if (HAVE_extzv
8409 && get_traditional_extraction_insn (insn, type, mode,
8410 CODE_FOR_extzv, 1, 0))
8411 return true;
8412 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8413 extzvmisalign_optab, 3);
8414
8415 default:
8416 gcc_unreachable ();
8417 }
8418 }
8419
8420 /* Return true if an instruction exists to access a field of mode
8421 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8422 Describe the "best" such instruction in *INSN if so. PATTERN and
8423 TYPE describe the type of insertion or extraction we want to perform.
8424
8425 For an insertion, the number of significant structure bits includes
8426 all bits of the target. For an extraction, it need only include the
8427 most significant bit of the field. Larger widths are acceptable
8428 in both cases. */
8429
8430 static bool
8431 get_best_extraction_insn (extraction_insn *insn,
8432 enum extraction_pattern pattern,
8433 enum extraction_type type,
8434 unsigned HOST_WIDE_INT struct_bits,
8435 enum machine_mode field_mode)
8436 {
8437 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8438 while (mode != VOIDmode)
8439 {
8440 if (get_extraction_insn (insn, pattern, type, mode))
8441 {
8442 while (mode != VOIDmode
8443 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8444 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8445 field_mode))
8446 {
8447 get_extraction_insn (insn, pattern, type, mode);
8448 mode = GET_MODE_WIDER_MODE (mode);
8449 }
8450 return true;
8451 }
8452 mode = GET_MODE_WIDER_MODE (mode);
8453 }
8454 return false;
8455 }
8456
8457 /* Return true if an instruction exists to access a field of mode
8458 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8459 Describe the "best" such instruction in *INSN if so. PATTERN describes
8460 the type of insertion or extraction we want to perform.
8461
8462 For an insertion, the number of significant structure bits includes
8463 all bits of the target. For an extraction, it need only include the
8464 most significant bit of the field. Larger widths are acceptable
8465 in both cases. */
8466
8467 bool
8468 get_best_reg_extraction_insn (extraction_insn *insn,
8469 enum extraction_pattern pattern,
8470 unsigned HOST_WIDE_INT struct_bits,
8471 enum machine_mode field_mode)
8472 {
8473 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8474 field_mode);
8475 }
8476
8477 /* Return true if an instruction exists to access a field of BITSIZE
8478 bits starting BITNUM bits into a memory structure. Describe the
8479 "best" such instruction in *INSN if so. PATTERN describes the type
8480 of insertion or extraction we want to perform and FIELDMODE is the
8481 natural mode of the extracted field.
8482
8483 The instructions considered here only access bytes that overlap
8484 the bitfield; they do not touch any surrounding bytes. */
8485
8486 bool
8487 get_best_mem_extraction_insn (extraction_insn *insn,
8488 enum extraction_pattern pattern,
8489 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8490 enum machine_mode field_mode)
8491 {
8492 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8493 + bitsize
8494 + BITS_PER_UNIT - 1);
8495 struct_bits -= struct_bits % BITS_PER_UNIT;
8496 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8497 struct_bits, field_mode);
8498 }
8499
8500 #include "gt-optabs.h"