]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
* optabs.c (prepare_cmp_insn): Expand comparison of the result
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "basic-block.h"
45 #include "target.h"
46
47 struct target_optabs default_target_optabs;
48 struct target_libfuncs default_target_libfuncs;
49 #if SWITCHABLE_TARGET
50 struct target_optabs *this_target_optabs = &default_target_optabs;
51 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
52 #endif
53
54 #define libfunc_hash \
55 (this_target_libfuncs->x_libfunc_hash)
56
57 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
58 enum machine_mode *);
59 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
60 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
61
62 /* Debug facility for use in GDB. */
63 void debug_optab_libfuncs (void);
64
65 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
66 #if ENABLE_DECIMAL_BID_FORMAT
67 #define DECIMAL_PREFIX "bid_"
68 #else
69 #define DECIMAL_PREFIX "dpd_"
70 #endif
71 \f
72 /* Used for libfunc_hash. */
73
74 static hashval_t
75 hash_libfunc (const void *p)
76 {
77 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
78 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
79 }
80
81 /* Used for libfunc_hash. */
82
83 static int
84 eq_libfunc (const void *p, const void *q)
85 {
86 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
87 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
88 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
89 }
90
91 /* Return libfunc corresponding operation defined by OPTAB converting
92 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
93 if no libfunc is available. */
94 rtx
95 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
96 enum machine_mode mode2)
97 {
98 struct libfunc_entry e;
99 struct libfunc_entry **slot;
100
101 /* ??? This ought to be an assert, but not all of the places
102 that we expand optabs know about the optabs that got moved
103 to being direct. */
104 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
105 return NULL_RTX;
106
107 e.op = optab;
108 e.mode1 = mode1;
109 e.mode2 = mode2;
110 slot = (struct libfunc_entry **)
111 htab_find_slot (libfunc_hash, &e, NO_INSERT);
112 if (!slot)
113 {
114 const struct convert_optab_libcall_d *d
115 = &convlib_def[optab - FIRST_CONV_OPTAB];
116
117 if (d->libcall_gen == NULL)
118 return NULL;
119
120 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
121 slot = (struct libfunc_entry **)
122 htab_find_slot (libfunc_hash, &e, NO_INSERT);
123 if (!slot)
124 return NULL;
125 }
126 return (*slot)->libfunc;
127 }
128
129 /* Return libfunc corresponding operation defined by OPTAB in MODE.
130 Trigger lazy initialization if needed, return NULL if no libfunc is
131 available. */
132 rtx
133 optab_libfunc (optab optab, enum machine_mode mode)
134 {
135 struct libfunc_entry e;
136 struct libfunc_entry **slot;
137
138 /* ??? This ought to be an assert, but not all of the places
139 that we expand optabs know about the optabs that got moved
140 to being direct. */
141 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
142 return NULL_RTX;
143
144 e.op = optab;
145 e.mode1 = mode;
146 e.mode2 = VOIDmode;
147 slot = (struct libfunc_entry **)
148 htab_find_slot (libfunc_hash, &e, NO_INSERT);
149 if (!slot)
150 {
151 const struct optab_libcall_d *d
152 = &normlib_def[optab - FIRST_NORM_OPTAB];
153
154 if (d->libcall_gen == NULL)
155 return NULL;
156
157 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
158 slot = (struct libfunc_entry **)
159 htab_find_slot (libfunc_hash, &e, NO_INSERT);
160 if (!slot)
161 return NULL;
162 }
163 return (*slot)->libfunc;
164 }
165
166 \f
167 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
168 the result of operation CODE applied to OP0 (and OP1 if it is a binary
169 operation).
170
171 If the last insn does not set TARGET, don't do anything, but return 1.
172
173 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
174 don't add the REG_EQUAL note but return 0. Our caller can then try
175 again, ensuring that TARGET is not one of the operands. */
176
177 static int
178 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
179 {
180 rtx last_insn, insn, set;
181 rtx note;
182
183 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
184
185 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
186 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
187 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
188 && GET_RTX_CLASS (code) != RTX_COMPARE
189 && GET_RTX_CLASS (code) != RTX_UNARY)
190 return 1;
191
192 if (GET_CODE (target) == ZERO_EXTRACT)
193 return 1;
194
195 for (last_insn = insns;
196 NEXT_INSN (last_insn) != NULL_RTX;
197 last_insn = NEXT_INSN (last_insn))
198 ;
199
200 set = single_set (last_insn);
201 if (set == NULL_RTX)
202 return 1;
203
204 if (! rtx_equal_p (SET_DEST (set), target)
205 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
206 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
207 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
208 return 1;
209
210 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
211 besides the last insn. */
212 if (reg_overlap_mentioned_p (target, op0)
213 || (op1 && reg_overlap_mentioned_p (target, op1)))
214 {
215 insn = PREV_INSN (last_insn);
216 while (insn != NULL_RTX)
217 {
218 if (reg_set_p (target, insn))
219 return 0;
220
221 insn = PREV_INSN (insn);
222 }
223 }
224
225 if (GET_RTX_CLASS (code) == RTX_UNARY)
226 switch (code)
227 {
228 case FFS:
229 case CLZ:
230 case CTZ:
231 case CLRSB:
232 case POPCOUNT:
233 case PARITY:
234 case BSWAP:
235 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
236 {
237 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
238 if (GET_MODE_SIZE (GET_MODE (op0))
239 > GET_MODE_SIZE (GET_MODE (target)))
240 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
241 note, GET_MODE (op0));
242 else
243 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
244 note, GET_MODE (op0));
245 break;
246 }
247 /* FALLTHRU */
248 default:
249 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
250 break;
251 }
252 else
253 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
254
255 set_unique_reg_note (last_insn, REG_EQUAL, note);
256
257 return 1;
258 }
259 \f
260 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
261 for a widening operation would be. In most cases this would be OP0, but if
262 that's a constant it'll be VOIDmode, which isn't useful. */
263
264 static enum machine_mode
265 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
266 {
267 enum machine_mode m0 = GET_MODE (op0);
268 enum machine_mode m1 = GET_MODE (op1);
269 enum machine_mode result;
270
271 if (m0 == VOIDmode && m1 == VOIDmode)
272 return to_mode;
273 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
274 result = m1;
275 else
276 result = m0;
277
278 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
279 return to_mode;
280
281 return result;
282 }
283 \f
284 /* Find a widening optab even if it doesn't widen as much as we want.
285 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
286 direct HI->SI insn, then return SI->DI, if that exists.
287 If PERMIT_NON_WIDENING is non-zero then this can be used with
288 non-widening optabs also. */
289
290 enum insn_code
291 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
292 enum machine_mode from_mode,
293 int permit_non_widening,
294 enum machine_mode *found_mode)
295 {
296 for (; (permit_non_widening || from_mode != to_mode)
297 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
298 && from_mode != VOIDmode;
299 from_mode = GET_MODE_WIDER_MODE (from_mode))
300 {
301 enum insn_code handler = widening_optab_handler (op, to_mode,
302 from_mode);
303
304 if (handler != CODE_FOR_nothing)
305 {
306 if (found_mode)
307 *found_mode = from_mode;
308 return handler;
309 }
310 }
311
312 return CODE_FOR_nothing;
313 }
314 \f
315 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
316 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
317 not actually do a sign-extend or zero-extend, but can leave the
318 higher-order bits of the result rtx undefined, for example, in the case
319 of logical operations, but not right shifts. */
320
321 static rtx
322 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
323 int unsignedp, int no_extend)
324 {
325 rtx result;
326
327 /* If we don't have to extend and this is a constant, return it. */
328 if (no_extend && GET_MODE (op) == VOIDmode)
329 return op;
330
331 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
332 extend since it will be more efficient to do so unless the signedness of
333 a promoted object differs from our extension. */
334 if (! no_extend
335 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
336 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
337 return convert_modes (mode, oldmode, op, unsignedp);
338
339 /* If MODE is no wider than a single word, we return a paradoxical
340 SUBREG. */
341 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
342 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
343
344 /* Otherwise, get an object of MODE, clobber it, and set the low-order
345 part to OP. */
346
347 result = gen_reg_rtx (mode);
348 emit_clobber (result);
349 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
350 return result;
351 }
352 \f
353 /* Return the optab used for computing the operation given by the tree code,
354 CODE and the tree EXP. This function is not always usable (for example, it
355 cannot give complete results for multiplication or division) but probably
356 ought to be relied on more widely throughout the expander. */
357 optab
358 optab_for_tree_code (enum tree_code code, const_tree type,
359 enum optab_subtype subtype)
360 {
361 bool trapv;
362 switch (code)
363 {
364 case BIT_AND_EXPR:
365 return and_optab;
366
367 case BIT_IOR_EXPR:
368 return ior_optab;
369
370 case BIT_NOT_EXPR:
371 return one_cmpl_optab;
372
373 case BIT_XOR_EXPR:
374 return xor_optab;
375
376 case MULT_HIGHPART_EXPR:
377 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
378
379 case TRUNC_MOD_EXPR:
380 case CEIL_MOD_EXPR:
381 case FLOOR_MOD_EXPR:
382 case ROUND_MOD_EXPR:
383 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
384
385 case RDIV_EXPR:
386 case TRUNC_DIV_EXPR:
387 case CEIL_DIV_EXPR:
388 case FLOOR_DIV_EXPR:
389 case ROUND_DIV_EXPR:
390 case EXACT_DIV_EXPR:
391 if (TYPE_SATURATING(type))
392 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
393 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
394
395 case LSHIFT_EXPR:
396 if (TREE_CODE (type) == VECTOR_TYPE)
397 {
398 if (subtype == optab_vector)
399 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
400
401 gcc_assert (subtype == optab_scalar);
402 }
403 if (TYPE_SATURATING(type))
404 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
405 return ashl_optab;
406
407 case RSHIFT_EXPR:
408 if (TREE_CODE (type) == VECTOR_TYPE)
409 {
410 if (subtype == optab_vector)
411 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
412
413 gcc_assert (subtype == optab_scalar);
414 }
415 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
416
417 case LROTATE_EXPR:
418 if (TREE_CODE (type) == VECTOR_TYPE)
419 {
420 if (subtype == optab_vector)
421 return vrotl_optab;
422
423 gcc_assert (subtype == optab_scalar);
424 }
425 return rotl_optab;
426
427 case RROTATE_EXPR:
428 if (TREE_CODE (type) == VECTOR_TYPE)
429 {
430 if (subtype == optab_vector)
431 return vrotr_optab;
432
433 gcc_assert (subtype == optab_scalar);
434 }
435 return rotr_optab;
436
437 case MAX_EXPR:
438 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
439
440 case MIN_EXPR:
441 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
442
443 case REALIGN_LOAD_EXPR:
444 return vec_realign_load_optab;
445
446 case WIDEN_SUM_EXPR:
447 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
448
449 case DOT_PROD_EXPR:
450 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
451
452 case WIDEN_MULT_PLUS_EXPR:
453 return (TYPE_UNSIGNED (type)
454 ? (TYPE_SATURATING (type)
455 ? usmadd_widen_optab : umadd_widen_optab)
456 : (TYPE_SATURATING (type)
457 ? ssmadd_widen_optab : smadd_widen_optab));
458
459 case WIDEN_MULT_MINUS_EXPR:
460 return (TYPE_UNSIGNED (type)
461 ? (TYPE_SATURATING (type)
462 ? usmsub_widen_optab : umsub_widen_optab)
463 : (TYPE_SATURATING (type)
464 ? ssmsub_widen_optab : smsub_widen_optab));
465
466 case FMA_EXPR:
467 return fma_optab;
468
469 case REDUC_MAX_EXPR:
470 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
471
472 case REDUC_MIN_EXPR:
473 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
474
475 case REDUC_PLUS_EXPR:
476 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
477
478 case VEC_LSHIFT_EXPR:
479 return vec_shl_optab;
480
481 case VEC_RSHIFT_EXPR:
482 return vec_shr_optab;
483
484 case VEC_WIDEN_MULT_HI_EXPR:
485 return TYPE_UNSIGNED (type) ?
486 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
487
488 case VEC_WIDEN_MULT_LO_EXPR:
489 return TYPE_UNSIGNED (type) ?
490 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
491
492 case VEC_WIDEN_MULT_EVEN_EXPR:
493 return TYPE_UNSIGNED (type) ?
494 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
495
496 case VEC_WIDEN_MULT_ODD_EXPR:
497 return TYPE_UNSIGNED (type) ?
498 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
499
500 case VEC_WIDEN_LSHIFT_HI_EXPR:
501 return TYPE_UNSIGNED (type) ?
502 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
503
504 case VEC_WIDEN_LSHIFT_LO_EXPR:
505 return TYPE_UNSIGNED (type) ?
506 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
507
508 case VEC_UNPACK_HI_EXPR:
509 return TYPE_UNSIGNED (type) ?
510 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
511
512 case VEC_UNPACK_LO_EXPR:
513 return TYPE_UNSIGNED (type) ?
514 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
515
516 case VEC_UNPACK_FLOAT_HI_EXPR:
517 /* The signedness is determined from input operand. */
518 return TYPE_UNSIGNED (type) ?
519 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
520
521 case VEC_UNPACK_FLOAT_LO_EXPR:
522 /* The signedness is determined from input operand. */
523 return TYPE_UNSIGNED (type) ?
524 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
525
526 case VEC_PACK_TRUNC_EXPR:
527 return vec_pack_trunc_optab;
528
529 case VEC_PACK_SAT_EXPR:
530 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
531
532 case VEC_PACK_FIX_TRUNC_EXPR:
533 /* The signedness is determined from output operand. */
534 return TYPE_UNSIGNED (type) ?
535 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
536
537 default:
538 break;
539 }
540
541 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
542 switch (code)
543 {
544 case POINTER_PLUS_EXPR:
545 case PLUS_EXPR:
546 if (TYPE_SATURATING(type))
547 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
548 return trapv ? addv_optab : add_optab;
549
550 case MINUS_EXPR:
551 if (TYPE_SATURATING(type))
552 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
553 return trapv ? subv_optab : sub_optab;
554
555 case MULT_EXPR:
556 if (TYPE_SATURATING(type))
557 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
558 return trapv ? smulv_optab : smul_optab;
559
560 case NEGATE_EXPR:
561 if (TYPE_SATURATING(type))
562 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
563 return trapv ? negv_optab : neg_optab;
564
565 case ABS_EXPR:
566 return trapv ? absv_optab : abs_optab;
567
568 default:
569 return unknown_optab;
570 }
571 }
572 \f
573
574 /* Expand vector widening operations.
575
576 There are two different classes of operations handled here:
577 1) Operations whose result is wider than all the arguments to the operation.
578 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
579 In this case OP0 and optionally OP1 would be initialized,
580 but WIDE_OP wouldn't (not relevant for this case).
581 2) Operations whose result is of the same size as the last argument to the
582 operation, but wider than all the other arguments to the operation.
583 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
584 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
585
586 E.g, when called to expand the following operations, this is how
587 the arguments will be initialized:
588 nops OP0 OP1 WIDE_OP
589 widening-sum 2 oprnd0 - oprnd1
590 widening-dot-product 3 oprnd0 oprnd1 oprnd2
591 widening-mult 2 oprnd0 oprnd1 -
592 type-promotion (vec-unpack) 1 oprnd0 - - */
593
594 rtx
595 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
596 rtx target, int unsignedp)
597 {
598 struct expand_operand eops[4];
599 tree oprnd0, oprnd1, oprnd2;
600 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
601 optab widen_pattern_optab;
602 enum insn_code icode;
603 int nops = TREE_CODE_LENGTH (ops->code);
604 int op;
605
606 oprnd0 = ops->op0;
607 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
608 widen_pattern_optab =
609 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
610 if (ops->code == WIDEN_MULT_PLUS_EXPR
611 || ops->code == WIDEN_MULT_MINUS_EXPR)
612 icode = find_widening_optab_handler (widen_pattern_optab,
613 TYPE_MODE (TREE_TYPE (ops->op2)),
614 tmode0, 0);
615 else
616 icode = optab_handler (widen_pattern_optab, tmode0);
617 gcc_assert (icode != CODE_FOR_nothing);
618
619 if (nops >= 2)
620 {
621 oprnd1 = ops->op1;
622 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
623 }
624
625 /* The last operand is of a wider mode than the rest of the operands. */
626 if (nops == 2)
627 wmode = tmode1;
628 else if (nops == 3)
629 {
630 gcc_assert (tmode1 == tmode0);
631 gcc_assert (op1);
632 oprnd2 = ops->op2;
633 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
634 }
635
636 op = 0;
637 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
638 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
639 if (op1)
640 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
641 if (wide_op)
642 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
643 expand_insn (icode, op, eops);
644 return eops[0].value;
645 }
646
647 /* Generate code to perform an operation specified by TERNARY_OPTAB
648 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
649
650 UNSIGNEDP is for the case where we have to widen the operands
651 to perform the operation. It says to use zero-extension.
652
653 If TARGET is nonzero, the value
654 is generated there, if it is convenient to do so.
655 In all cases an rtx is returned for the locus of the value;
656 this may or may not be TARGET. */
657
658 rtx
659 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
660 rtx op1, rtx op2, rtx target, int unsignedp)
661 {
662 struct expand_operand ops[4];
663 enum insn_code icode = optab_handler (ternary_optab, mode);
664
665 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
666
667 create_output_operand (&ops[0], target, mode);
668 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
669 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
670 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
671 expand_insn (icode, 4, ops);
672 return ops[0].value;
673 }
674
675
676 /* Like expand_binop, but return a constant rtx if the result can be
677 calculated at compile time. The arguments and return value are
678 otherwise the same as for expand_binop. */
679
680 rtx
681 simplify_expand_binop (enum machine_mode mode, optab binoptab,
682 rtx op0, rtx op1, rtx target, int unsignedp,
683 enum optab_methods methods)
684 {
685 if (CONSTANT_P (op0) && CONSTANT_P (op1))
686 {
687 rtx x = simplify_binary_operation (optab_to_code (binoptab),
688 mode, op0, op1);
689 if (x)
690 return x;
691 }
692
693 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
694 }
695
696 /* Like simplify_expand_binop, but always put the result in TARGET.
697 Return true if the expansion succeeded. */
698
699 bool
700 force_expand_binop (enum machine_mode mode, optab binoptab,
701 rtx op0, rtx op1, rtx target, int unsignedp,
702 enum optab_methods methods)
703 {
704 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
705 target, unsignedp, methods);
706 if (x == 0)
707 return false;
708 if (x != target)
709 emit_move_insn (target, x);
710 return true;
711 }
712
713 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
714
715 rtx
716 expand_vec_shift_expr (sepops ops, rtx target)
717 {
718 struct expand_operand eops[3];
719 enum insn_code icode;
720 rtx rtx_op1, rtx_op2;
721 enum machine_mode mode = TYPE_MODE (ops->type);
722 tree vec_oprnd = ops->op0;
723 tree shift_oprnd = ops->op1;
724 optab shift_optab;
725
726 switch (ops->code)
727 {
728 case VEC_RSHIFT_EXPR:
729 shift_optab = vec_shr_optab;
730 break;
731 case VEC_LSHIFT_EXPR:
732 shift_optab = vec_shl_optab;
733 break;
734 default:
735 gcc_unreachable ();
736 }
737
738 icode = optab_handler (shift_optab, mode);
739 gcc_assert (icode != CODE_FOR_nothing);
740
741 rtx_op1 = expand_normal (vec_oprnd);
742 rtx_op2 = expand_normal (shift_oprnd);
743
744 create_output_operand (&eops[0], target, mode);
745 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
746 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
747 expand_insn (icode, 3, eops);
748
749 return eops[0].value;
750 }
751
752 /* Create a new vector value in VMODE with all elements set to OP. The
753 mode of OP must be the element mode of VMODE. If OP is a constant,
754 then the return value will be a constant. */
755
756 static rtx
757 expand_vector_broadcast (enum machine_mode vmode, rtx op)
758 {
759 enum insn_code icode;
760 rtvec vec;
761 rtx ret;
762 int i, n;
763
764 gcc_checking_assert (VECTOR_MODE_P (vmode));
765
766 n = GET_MODE_NUNITS (vmode);
767 vec = rtvec_alloc (n);
768 for (i = 0; i < n; ++i)
769 RTVEC_ELT (vec, i) = op;
770
771 if (CONSTANT_P (op))
772 return gen_rtx_CONST_VECTOR (vmode, vec);
773
774 /* ??? If the target doesn't have a vec_init, then we have no easy way
775 of performing this operation. Most of this sort of generic support
776 is hidden away in the vector lowering support in gimple. */
777 icode = optab_handler (vec_init_optab, vmode);
778 if (icode == CODE_FOR_nothing)
779 return NULL;
780
781 ret = gen_reg_rtx (vmode);
782 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
783
784 return ret;
785 }
786
787 /* This subroutine of expand_doubleword_shift handles the cases in which
788 the effective shift value is >= BITS_PER_WORD. The arguments and return
789 value are the same as for the parent routine, except that SUPERWORD_OP1
790 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
791 INTO_TARGET may be null if the caller has decided to calculate it. */
792
793 static bool
794 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
795 rtx outof_target, rtx into_target,
796 int unsignedp, enum optab_methods methods)
797 {
798 if (into_target != 0)
799 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
800 into_target, unsignedp, methods))
801 return false;
802
803 if (outof_target != 0)
804 {
805 /* For a signed right shift, we must fill OUTOF_TARGET with copies
806 of the sign bit, otherwise we must fill it with zeros. */
807 if (binoptab != ashr_optab)
808 emit_move_insn (outof_target, CONST0_RTX (word_mode));
809 else
810 if (!force_expand_binop (word_mode, binoptab,
811 outof_input, GEN_INT (BITS_PER_WORD - 1),
812 outof_target, unsignedp, methods))
813 return false;
814 }
815 return true;
816 }
817
818 /* This subroutine of expand_doubleword_shift handles the cases in which
819 the effective shift value is < BITS_PER_WORD. The arguments and return
820 value are the same as for the parent routine. */
821
822 static bool
823 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
824 rtx outof_input, rtx into_input, rtx op1,
825 rtx outof_target, rtx into_target,
826 int unsignedp, enum optab_methods methods,
827 unsigned HOST_WIDE_INT shift_mask)
828 {
829 optab reverse_unsigned_shift, unsigned_shift;
830 rtx tmp, carries;
831
832 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
833 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
834
835 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
836 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
837 the opposite direction to BINOPTAB. */
838 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
839 {
840 carries = outof_input;
841 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
842 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
843 0, true, methods);
844 }
845 else
846 {
847 /* We must avoid shifting by BITS_PER_WORD bits since that is either
848 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
849 has unknown behavior. Do a single shift first, then shift by the
850 remainder. It's OK to use ~OP1 as the remainder if shift counts
851 are truncated to the mode size. */
852 carries = expand_binop (word_mode, reverse_unsigned_shift,
853 outof_input, const1_rtx, 0, unsignedp, methods);
854 if (shift_mask == BITS_PER_WORD - 1)
855 {
856 tmp = immed_double_const (-1, -1, op1_mode);
857 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
858 0, true, methods);
859 }
860 else
861 {
862 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
863 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
864 0, true, methods);
865 }
866 }
867 if (tmp == 0 || carries == 0)
868 return false;
869 carries = expand_binop (word_mode, reverse_unsigned_shift,
870 carries, tmp, 0, unsignedp, methods);
871 if (carries == 0)
872 return false;
873
874 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
875 so the result can go directly into INTO_TARGET if convenient. */
876 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
877 into_target, unsignedp, methods);
878 if (tmp == 0)
879 return false;
880
881 /* Now OR in the bits carried over from OUTOF_INPUT. */
882 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
883 into_target, unsignedp, methods))
884 return false;
885
886 /* Use a standard word_mode shift for the out-of half. */
887 if (outof_target != 0)
888 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
889 outof_target, unsignedp, methods))
890 return false;
891
892 return true;
893 }
894
895
896 #ifdef HAVE_conditional_move
897 /* Try implementing expand_doubleword_shift using conditional moves.
898 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
899 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
900 are the shift counts to use in the former and latter case. All other
901 arguments are the same as the parent routine. */
902
903 static bool
904 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
905 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
906 rtx outof_input, rtx into_input,
907 rtx subword_op1, rtx superword_op1,
908 rtx outof_target, rtx into_target,
909 int unsignedp, enum optab_methods methods,
910 unsigned HOST_WIDE_INT shift_mask)
911 {
912 rtx outof_superword, into_superword;
913
914 /* Put the superword version of the output into OUTOF_SUPERWORD and
915 INTO_SUPERWORD. */
916 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
917 if (outof_target != 0 && subword_op1 == superword_op1)
918 {
919 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
920 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
921 into_superword = outof_target;
922 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
923 outof_superword, 0, unsignedp, methods))
924 return false;
925 }
926 else
927 {
928 into_superword = gen_reg_rtx (word_mode);
929 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
930 outof_superword, into_superword,
931 unsignedp, methods))
932 return false;
933 }
934
935 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
936 if (!expand_subword_shift (op1_mode, binoptab,
937 outof_input, into_input, subword_op1,
938 outof_target, into_target,
939 unsignedp, methods, shift_mask))
940 return false;
941
942 /* Select between them. Do the INTO half first because INTO_SUPERWORD
943 might be the current value of OUTOF_TARGET. */
944 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
945 into_target, into_superword, word_mode, false))
946 return false;
947
948 if (outof_target != 0)
949 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
950 outof_target, outof_superword,
951 word_mode, false))
952 return false;
953
954 return true;
955 }
956 #endif
957
958 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
959 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
960 input operand; the shift moves bits in the direction OUTOF_INPUT->
961 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
962 of the target. OP1 is the shift count and OP1_MODE is its mode.
963 If OP1 is constant, it will have been truncated as appropriate
964 and is known to be nonzero.
965
966 If SHIFT_MASK is zero, the result of word shifts is undefined when the
967 shift count is outside the range [0, BITS_PER_WORD). This routine must
968 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
969
970 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
971 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
972 fill with zeros or sign bits as appropriate.
973
974 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
975 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
976 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
977 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
978 are undefined.
979
980 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
981 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
982 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
983 function wants to calculate it itself.
984
985 Return true if the shift could be successfully synthesized. */
986
987 static bool
988 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
989 rtx outof_input, rtx into_input, rtx op1,
990 rtx outof_target, rtx into_target,
991 int unsignedp, enum optab_methods methods,
992 unsigned HOST_WIDE_INT shift_mask)
993 {
994 rtx superword_op1, tmp, cmp1, cmp2;
995 rtx subword_label, done_label;
996 enum rtx_code cmp_code;
997
998 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
999 fill the result with sign or zero bits as appropriate. If so, the value
1000 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1001 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1002 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1003
1004 This isn't worthwhile for constant shifts since the optimizers will
1005 cope better with in-range shift counts. */
1006 if (shift_mask >= BITS_PER_WORD
1007 && outof_target != 0
1008 && !CONSTANT_P (op1))
1009 {
1010 if (!expand_doubleword_shift (op1_mode, binoptab,
1011 outof_input, into_input, op1,
1012 0, into_target,
1013 unsignedp, methods, shift_mask))
1014 return false;
1015 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1016 outof_target, unsignedp, methods))
1017 return false;
1018 return true;
1019 }
1020
1021 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1022 is true when the effective shift value is less than BITS_PER_WORD.
1023 Set SUPERWORD_OP1 to the shift count that should be used to shift
1024 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1025 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1026 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1027 {
1028 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1029 is a subword shift count. */
1030 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1031 0, true, methods);
1032 cmp2 = CONST0_RTX (op1_mode);
1033 cmp_code = EQ;
1034 superword_op1 = op1;
1035 }
1036 else
1037 {
1038 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1039 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1040 0, true, methods);
1041 cmp2 = CONST0_RTX (op1_mode);
1042 cmp_code = LT;
1043 superword_op1 = cmp1;
1044 }
1045 if (cmp1 == 0)
1046 return false;
1047
1048 /* If we can compute the condition at compile time, pick the
1049 appropriate subroutine. */
1050 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1051 if (tmp != 0 && CONST_INT_P (tmp))
1052 {
1053 if (tmp == const0_rtx)
1054 return expand_superword_shift (binoptab, outof_input, superword_op1,
1055 outof_target, into_target,
1056 unsignedp, methods);
1057 else
1058 return expand_subword_shift (op1_mode, binoptab,
1059 outof_input, into_input, op1,
1060 outof_target, into_target,
1061 unsignedp, methods, shift_mask);
1062 }
1063
1064 #ifdef HAVE_conditional_move
1065 /* Try using conditional moves to generate straight-line code. */
1066 {
1067 rtx start = get_last_insn ();
1068 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1069 cmp_code, cmp1, cmp2,
1070 outof_input, into_input,
1071 op1, superword_op1,
1072 outof_target, into_target,
1073 unsignedp, methods, shift_mask))
1074 return true;
1075 delete_insns_since (start);
1076 }
1077 #endif
1078
1079 /* As a last resort, use branches to select the correct alternative. */
1080 subword_label = gen_label_rtx ();
1081 done_label = gen_label_rtx ();
1082
1083 NO_DEFER_POP;
1084 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1085 0, 0, subword_label, -1);
1086 OK_DEFER_POP;
1087
1088 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1089 outof_target, into_target,
1090 unsignedp, methods))
1091 return false;
1092
1093 emit_jump_insn (gen_jump (done_label));
1094 emit_barrier ();
1095 emit_label (subword_label);
1096
1097 if (!expand_subword_shift (op1_mode, binoptab,
1098 outof_input, into_input, op1,
1099 outof_target, into_target,
1100 unsignedp, methods, shift_mask))
1101 return false;
1102
1103 emit_label (done_label);
1104 return true;
1105 }
1106 \f
1107 /* Subroutine of expand_binop. Perform a double word multiplication of
1108 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1109 as the target's word_mode. This function return NULL_RTX if anything
1110 goes wrong, in which case it may have already emitted instructions
1111 which need to be deleted.
1112
1113 If we want to multiply two two-word values and have normal and widening
1114 multiplies of single-word values, we can do this with three smaller
1115 multiplications.
1116
1117 The multiplication proceeds as follows:
1118 _______________________
1119 [__op0_high_|__op0_low__]
1120 _______________________
1121 * [__op1_high_|__op1_low__]
1122 _______________________________________________
1123 _______________________
1124 (1) [__op0_low__*__op1_low__]
1125 _______________________
1126 (2a) [__op0_low__*__op1_high_]
1127 _______________________
1128 (2b) [__op0_high_*__op1_low__]
1129 _______________________
1130 (3) [__op0_high_*__op1_high_]
1131
1132
1133 This gives a 4-word result. Since we are only interested in the
1134 lower 2 words, partial result (3) and the upper words of (2a) and
1135 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1136 calculated using non-widening multiplication.
1137
1138 (1), however, needs to be calculated with an unsigned widening
1139 multiplication. If this operation is not directly supported we
1140 try using a signed widening multiplication and adjust the result.
1141 This adjustment works as follows:
1142
1143 If both operands are positive then no adjustment is needed.
1144
1145 If the operands have different signs, for example op0_low < 0 and
1146 op1_low >= 0, the instruction treats the most significant bit of
1147 op0_low as a sign bit instead of a bit with significance
1148 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1149 with 2**BITS_PER_WORD - op0_low, and two's complements the
1150 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1151 the result.
1152
1153 Similarly, if both operands are negative, we need to add
1154 (op0_low + op1_low) * 2**BITS_PER_WORD.
1155
1156 We use a trick to adjust quickly. We logically shift op0_low right
1157 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1158 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1159 logical shift exists, we do an arithmetic right shift and subtract
1160 the 0 or -1. */
1161
1162 static rtx
1163 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1164 bool umulp, enum optab_methods methods)
1165 {
1166 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1167 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1168 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1169 rtx product, adjust, product_high, temp;
1170
1171 rtx op0_high = operand_subword_force (op0, high, mode);
1172 rtx op0_low = operand_subword_force (op0, low, mode);
1173 rtx op1_high = operand_subword_force (op1, high, mode);
1174 rtx op1_low = operand_subword_force (op1, low, mode);
1175
1176 /* If we're using an unsigned multiply to directly compute the product
1177 of the low-order words of the operands and perform any required
1178 adjustments of the operands, we begin by trying two more multiplications
1179 and then computing the appropriate sum.
1180
1181 We have checked above that the required addition is provided.
1182 Full-word addition will normally always succeed, especially if
1183 it is provided at all, so we don't worry about its failure. The
1184 multiplication may well fail, however, so we do handle that. */
1185
1186 if (!umulp)
1187 {
1188 /* ??? This could be done with emit_store_flag where available. */
1189 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1190 NULL_RTX, 1, methods);
1191 if (temp)
1192 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1193 NULL_RTX, 0, OPTAB_DIRECT);
1194 else
1195 {
1196 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1197 NULL_RTX, 0, methods);
1198 if (!temp)
1199 return NULL_RTX;
1200 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1201 NULL_RTX, 0, OPTAB_DIRECT);
1202 }
1203
1204 if (!op0_high)
1205 return NULL_RTX;
1206 }
1207
1208 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1209 NULL_RTX, 0, OPTAB_DIRECT);
1210 if (!adjust)
1211 return NULL_RTX;
1212
1213 /* OP0_HIGH should now be dead. */
1214
1215 if (!umulp)
1216 {
1217 /* ??? This could be done with emit_store_flag where available. */
1218 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1219 NULL_RTX, 1, methods);
1220 if (temp)
1221 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1222 NULL_RTX, 0, OPTAB_DIRECT);
1223 else
1224 {
1225 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1226 NULL_RTX, 0, methods);
1227 if (!temp)
1228 return NULL_RTX;
1229 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1230 NULL_RTX, 0, OPTAB_DIRECT);
1231 }
1232
1233 if (!op1_high)
1234 return NULL_RTX;
1235 }
1236
1237 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 if (!temp)
1240 return NULL_RTX;
1241
1242 /* OP1_HIGH should now be dead. */
1243
1244 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1245 NULL_RTX, 0, OPTAB_DIRECT);
1246
1247 if (target && !REG_P (target))
1248 target = NULL_RTX;
1249
1250 if (umulp)
1251 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1252 target, 1, OPTAB_DIRECT);
1253 else
1254 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1255 target, 1, OPTAB_DIRECT);
1256
1257 if (!product)
1258 return NULL_RTX;
1259
1260 product_high = operand_subword (product, high, 1, mode);
1261 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1262 NULL_RTX, 0, OPTAB_DIRECT);
1263 emit_move_insn (product_high, adjust);
1264 return product;
1265 }
1266 \f
1267 /* Wrapper around expand_binop which takes an rtx code to specify
1268 the operation to perform, not an optab pointer. All other
1269 arguments are the same. */
1270 rtx
1271 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1272 rtx op1, rtx target, int unsignedp,
1273 enum optab_methods methods)
1274 {
1275 optab binop = code_to_optab (code);
1276 gcc_assert (binop);
1277
1278 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1279 }
1280
1281 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1282 binop. Order them according to commutative_operand_precedence and, if
1283 possible, try to put TARGET or a pseudo first. */
1284 static bool
1285 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1286 {
1287 int op0_prec = commutative_operand_precedence (op0);
1288 int op1_prec = commutative_operand_precedence (op1);
1289
1290 if (op0_prec < op1_prec)
1291 return true;
1292
1293 if (op0_prec > op1_prec)
1294 return false;
1295
1296 /* With equal precedence, both orders are ok, but it is better if the
1297 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1298 if (target == 0 || REG_P (target))
1299 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1300 else
1301 return rtx_equal_p (op1, target);
1302 }
1303
1304 /* Return true if BINOPTAB implements a shift operation. */
1305
1306 static bool
1307 shift_optab_p (optab binoptab)
1308 {
1309 switch (optab_to_code (binoptab))
1310 {
1311 case ASHIFT:
1312 case SS_ASHIFT:
1313 case US_ASHIFT:
1314 case ASHIFTRT:
1315 case LSHIFTRT:
1316 case ROTATE:
1317 case ROTATERT:
1318 return true;
1319
1320 default:
1321 return false;
1322 }
1323 }
1324
1325 /* Return true if BINOPTAB implements a commutative binary operation. */
1326
1327 static bool
1328 commutative_optab_p (optab binoptab)
1329 {
1330 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1331 || binoptab == smul_widen_optab
1332 || binoptab == umul_widen_optab
1333 || binoptab == smul_highpart_optab
1334 || binoptab == umul_highpart_optab);
1335 }
1336
1337 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1338 optimizing, and if the operand is a constant that costs more than
1339 1 instruction, force the constant into a register and return that
1340 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1341
1342 static rtx
1343 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1344 int opn, rtx x, bool unsignedp)
1345 {
1346 bool speed = optimize_insn_for_speed_p ();
1347
1348 if (mode != VOIDmode
1349 && optimize
1350 && CONSTANT_P (x)
1351 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1352 > set_src_cost (x, speed)))
1353 {
1354 if (CONST_INT_P (x))
1355 {
1356 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1357 if (intval != INTVAL (x))
1358 x = GEN_INT (intval);
1359 }
1360 else
1361 x = convert_modes (mode, VOIDmode, x, unsignedp);
1362 x = force_reg (mode, x);
1363 }
1364 return x;
1365 }
1366
1367 /* Helper function for expand_binop: handle the case where there
1368 is an insn that directly implements the indicated operation.
1369 Returns null if this is not possible. */
1370 static rtx
1371 expand_binop_directly (enum machine_mode mode, optab binoptab,
1372 rtx op0, rtx op1,
1373 rtx target, int unsignedp, enum optab_methods methods,
1374 rtx last)
1375 {
1376 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1377 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1378 from_mode, 1);
1379 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1380 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1381 enum machine_mode mode0, mode1, tmp_mode;
1382 struct expand_operand ops[3];
1383 bool commutative_p;
1384 rtx pat;
1385 rtx xop0 = op0, xop1 = op1;
1386 rtx swap;
1387
1388 /* If it is a commutative operator and the modes would match
1389 if we would swap the operands, we can save the conversions. */
1390 commutative_p = commutative_optab_p (binoptab);
1391 if (commutative_p
1392 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1393 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1394 {
1395 swap = xop0;
1396 xop0 = xop1;
1397 xop1 = swap;
1398 }
1399
1400 /* If we are optimizing, force expensive constants into a register. */
1401 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1402 if (!shift_optab_p (binoptab))
1403 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1404
1405 /* In case the insn wants input operands in modes different from
1406 those of the actual operands, convert the operands. It would
1407 seem that we don't need to convert CONST_INTs, but we do, so
1408 that they're properly zero-extended, sign-extended or truncated
1409 for their mode. */
1410
1411 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1412 if (xmode0 != VOIDmode && xmode0 != mode0)
1413 {
1414 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1415 mode0 = xmode0;
1416 }
1417
1418 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1419 if (xmode1 != VOIDmode && xmode1 != mode1)
1420 {
1421 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1422 mode1 = xmode1;
1423 }
1424
1425 /* If operation is commutative,
1426 try to make the first operand a register.
1427 Even better, try to make it the same as the target.
1428 Also try to make the last operand a constant. */
1429 if (commutative_p
1430 && swap_commutative_operands_with_target (target, xop0, xop1))
1431 {
1432 swap = xop1;
1433 xop1 = xop0;
1434 xop0 = swap;
1435 }
1436
1437 /* Now, if insn's predicates don't allow our operands, put them into
1438 pseudo regs. */
1439
1440 if (binoptab == vec_pack_trunc_optab
1441 || binoptab == vec_pack_usat_optab
1442 || binoptab == vec_pack_ssat_optab
1443 || binoptab == vec_pack_ufix_trunc_optab
1444 || binoptab == vec_pack_sfix_trunc_optab)
1445 {
1446 /* The mode of the result is different then the mode of the
1447 arguments. */
1448 tmp_mode = insn_data[(int) icode].operand[0].mode;
1449 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1450 {
1451 delete_insns_since (last);
1452 return NULL_RTX;
1453 }
1454 }
1455 else
1456 tmp_mode = mode;
1457
1458 create_output_operand (&ops[0], target, tmp_mode);
1459 create_input_operand (&ops[1], xop0, mode0);
1460 create_input_operand (&ops[2], xop1, mode1);
1461 pat = maybe_gen_insn (icode, 3, ops);
1462 if (pat)
1463 {
1464 /* If PAT is composed of more than one insn, try to add an appropriate
1465 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1466 operand, call expand_binop again, this time without a target. */
1467 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1468 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1469 ops[1].value, ops[2].value))
1470 {
1471 delete_insns_since (last);
1472 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1473 unsignedp, methods);
1474 }
1475
1476 emit_insn (pat);
1477 return ops[0].value;
1478 }
1479 delete_insns_since (last);
1480 return NULL_RTX;
1481 }
1482
1483 /* Generate code to perform an operation specified by BINOPTAB
1484 on operands OP0 and OP1, with result having machine-mode MODE.
1485
1486 UNSIGNEDP is for the case where we have to widen the operands
1487 to perform the operation. It says to use zero-extension.
1488
1489 If TARGET is nonzero, the value
1490 is generated there, if it is convenient to do so.
1491 In all cases an rtx is returned for the locus of the value;
1492 this may or may not be TARGET. */
1493
1494 rtx
1495 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1496 rtx target, int unsignedp, enum optab_methods methods)
1497 {
1498 enum optab_methods next_methods
1499 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1500 ? OPTAB_WIDEN : methods);
1501 enum mode_class mclass;
1502 enum machine_mode wider_mode;
1503 rtx libfunc;
1504 rtx temp;
1505 rtx entry_last = get_last_insn ();
1506 rtx last;
1507
1508 mclass = GET_MODE_CLASS (mode);
1509
1510 /* If subtracting an integer constant, convert this into an addition of
1511 the negated constant. */
1512
1513 if (binoptab == sub_optab && CONST_INT_P (op1))
1514 {
1515 op1 = negate_rtx (mode, op1);
1516 binoptab = add_optab;
1517 }
1518
1519 /* Record where to delete back to if we backtrack. */
1520 last = get_last_insn ();
1521
1522 /* If we can do it with a three-operand insn, do so. */
1523
1524 if (methods != OPTAB_MUST_WIDEN
1525 && find_widening_optab_handler (binoptab, mode,
1526 widened_mode (mode, op0, op1), 1)
1527 != CODE_FOR_nothing)
1528 {
1529 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1530 unsignedp, methods, last);
1531 if (temp)
1532 return temp;
1533 }
1534
1535 /* If we were trying to rotate, and that didn't work, try rotating
1536 the other direction before falling back to shifts and bitwise-or. */
1537 if (((binoptab == rotl_optab
1538 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1539 || (binoptab == rotr_optab
1540 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1541 && mclass == MODE_INT)
1542 {
1543 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1544 rtx newop1;
1545 unsigned int bits = GET_MODE_PRECISION (mode);
1546
1547 if (CONST_INT_P (op1))
1548 newop1 = GEN_INT (bits - INTVAL (op1));
1549 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1550 newop1 = negate_rtx (GET_MODE (op1), op1);
1551 else
1552 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1553 GEN_INT (bits), op1,
1554 NULL_RTX, unsignedp, OPTAB_DIRECT);
1555
1556 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1557 target, unsignedp, methods, last);
1558 if (temp)
1559 return temp;
1560 }
1561
1562 /* If this is a multiply, see if we can do a widening operation that
1563 takes operands of this mode and makes a wider mode. */
1564
1565 if (binoptab == smul_optab
1566 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1567 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1568 : smul_widen_optab),
1569 GET_MODE_2XWIDER_MODE (mode), mode)
1570 != CODE_FOR_nothing))
1571 {
1572 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1573 unsignedp ? umul_widen_optab : smul_widen_optab,
1574 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1575
1576 if (temp != 0)
1577 {
1578 if (GET_MODE_CLASS (mode) == MODE_INT
1579 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1580 return gen_lowpart (mode, temp);
1581 else
1582 return convert_to_mode (mode, temp, unsignedp);
1583 }
1584 }
1585
1586 /* If this is a vector shift by a scalar, see if we can do a vector
1587 shift by a vector. If so, broadcast the scalar into a vector. */
1588 if (mclass == MODE_VECTOR_INT)
1589 {
1590 optab otheroptab = unknown_optab;
1591
1592 if (binoptab == ashl_optab)
1593 otheroptab = vashl_optab;
1594 else if (binoptab == ashr_optab)
1595 otheroptab = vashr_optab;
1596 else if (binoptab == lshr_optab)
1597 otheroptab = vlshr_optab;
1598 else if (binoptab == rotl_optab)
1599 otheroptab = vrotl_optab;
1600 else if (binoptab == rotr_optab)
1601 otheroptab = vrotr_optab;
1602
1603 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1604 {
1605 rtx vop1 = expand_vector_broadcast (mode, op1);
1606 if (vop1)
1607 {
1608 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1609 target, unsignedp, methods, last);
1610 if (temp)
1611 return temp;
1612 }
1613 }
1614 }
1615
1616 /* Look for a wider mode of the same class for which we think we
1617 can open-code the operation. Check for a widening multiply at the
1618 wider mode as well. */
1619
1620 if (CLASS_HAS_WIDER_MODES_P (mclass)
1621 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1622 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1623 wider_mode != VOIDmode;
1624 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1625 {
1626 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1627 || (binoptab == smul_optab
1628 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1629 && (find_widening_optab_handler ((unsignedp
1630 ? umul_widen_optab
1631 : smul_widen_optab),
1632 GET_MODE_WIDER_MODE (wider_mode),
1633 mode, 0)
1634 != CODE_FOR_nothing)))
1635 {
1636 rtx xop0 = op0, xop1 = op1;
1637 int no_extend = 0;
1638
1639 /* For certain integer operations, we need not actually extend
1640 the narrow operands, as long as we will truncate
1641 the results to the same narrowness. */
1642
1643 if ((binoptab == ior_optab || binoptab == and_optab
1644 || binoptab == xor_optab
1645 || binoptab == add_optab || binoptab == sub_optab
1646 || binoptab == smul_optab || binoptab == ashl_optab)
1647 && mclass == MODE_INT)
1648 {
1649 no_extend = 1;
1650 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1651 xop0, unsignedp);
1652 if (binoptab != ashl_optab)
1653 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1654 xop1, unsignedp);
1655 }
1656
1657 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1658
1659 /* The second operand of a shift must always be extended. */
1660 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1661 no_extend && binoptab != ashl_optab);
1662
1663 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1664 unsignedp, OPTAB_DIRECT);
1665 if (temp)
1666 {
1667 if (mclass != MODE_INT
1668 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1669 {
1670 if (target == 0)
1671 target = gen_reg_rtx (mode);
1672 convert_move (target, temp, 0);
1673 return target;
1674 }
1675 else
1676 return gen_lowpart (mode, temp);
1677 }
1678 else
1679 delete_insns_since (last);
1680 }
1681 }
1682
1683 /* If operation is commutative,
1684 try to make the first operand a register.
1685 Even better, try to make it the same as the target.
1686 Also try to make the last operand a constant. */
1687 if (commutative_optab_p (binoptab)
1688 && swap_commutative_operands_with_target (target, op0, op1))
1689 {
1690 temp = op1;
1691 op1 = op0;
1692 op0 = temp;
1693 }
1694
1695 /* These can be done a word at a time. */
1696 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1697 && mclass == MODE_INT
1698 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1699 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1700 {
1701 int i;
1702 rtx insns;
1703
1704 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1705 won't be accurate, so use a new target. */
1706 if (target == 0
1707 || target == op0
1708 || target == op1
1709 || !valid_multiword_target_p (target))
1710 target = gen_reg_rtx (mode);
1711
1712 start_sequence ();
1713
1714 /* Do the actual arithmetic. */
1715 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1716 {
1717 rtx target_piece = operand_subword (target, i, 1, mode);
1718 rtx x = expand_binop (word_mode, binoptab,
1719 operand_subword_force (op0, i, mode),
1720 operand_subword_force (op1, i, mode),
1721 target_piece, unsignedp, next_methods);
1722
1723 if (x == 0)
1724 break;
1725
1726 if (target_piece != x)
1727 emit_move_insn (target_piece, x);
1728 }
1729
1730 insns = get_insns ();
1731 end_sequence ();
1732
1733 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1734 {
1735 emit_insn (insns);
1736 return target;
1737 }
1738 }
1739
1740 /* Synthesize double word shifts from single word shifts. */
1741 if ((binoptab == lshr_optab || binoptab == ashl_optab
1742 || binoptab == ashr_optab)
1743 && mclass == MODE_INT
1744 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1745 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1746 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1747 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1748 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1749 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1750 {
1751 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1752 enum machine_mode op1_mode;
1753
1754 double_shift_mask = targetm.shift_truncation_mask (mode);
1755 shift_mask = targetm.shift_truncation_mask (word_mode);
1756 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1757
1758 /* Apply the truncation to constant shifts. */
1759 if (double_shift_mask > 0 && CONST_INT_P (op1))
1760 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1761
1762 if (op1 == CONST0_RTX (op1_mode))
1763 return op0;
1764
1765 /* Make sure that this is a combination that expand_doubleword_shift
1766 can handle. See the comments there for details. */
1767 if (double_shift_mask == 0
1768 || (shift_mask == BITS_PER_WORD - 1
1769 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1770 {
1771 rtx insns;
1772 rtx into_target, outof_target;
1773 rtx into_input, outof_input;
1774 int left_shift, outof_word;
1775
1776 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1777 won't be accurate, so use a new target. */
1778 if (target == 0
1779 || target == op0
1780 || target == op1
1781 || !valid_multiword_target_p (target))
1782 target = gen_reg_rtx (mode);
1783
1784 start_sequence ();
1785
1786 /* OUTOF_* is the word we are shifting bits away from, and
1787 INTO_* is the word that we are shifting bits towards, thus
1788 they differ depending on the direction of the shift and
1789 WORDS_BIG_ENDIAN. */
1790
1791 left_shift = binoptab == ashl_optab;
1792 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1793
1794 outof_target = operand_subword (target, outof_word, 1, mode);
1795 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1796
1797 outof_input = operand_subword_force (op0, outof_word, mode);
1798 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1799
1800 if (expand_doubleword_shift (op1_mode, binoptab,
1801 outof_input, into_input, op1,
1802 outof_target, into_target,
1803 unsignedp, next_methods, shift_mask))
1804 {
1805 insns = get_insns ();
1806 end_sequence ();
1807
1808 emit_insn (insns);
1809 return target;
1810 }
1811 end_sequence ();
1812 }
1813 }
1814
1815 /* Synthesize double word rotates from single word shifts. */
1816 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1817 && mclass == MODE_INT
1818 && CONST_INT_P (op1)
1819 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1820 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1821 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1822 {
1823 rtx insns;
1824 rtx into_target, outof_target;
1825 rtx into_input, outof_input;
1826 rtx inter;
1827 int shift_count, left_shift, outof_word;
1828
1829 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1830 won't be accurate, so use a new target. Do this also if target is not
1831 a REG, first because having a register instead may open optimization
1832 opportunities, and second because if target and op0 happen to be MEMs
1833 designating the same location, we would risk clobbering it too early
1834 in the code sequence we generate below. */
1835 if (target == 0
1836 || target == op0
1837 || target == op1
1838 || !REG_P (target)
1839 || !valid_multiword_target_p (target))
1840 target = gen_reg_rtx (mode);
1841
1842 start_sequence ();
1843
1844 shift_count = INTVAL (op1);
1845
1846 /* OUTOF_* is the word we are shifting bits away from, and
1847 INTO_* is the word that we are shifting bits towards, thus
1848 they differ depending on the direction of the shift and
1849 WORDS_BIG_ENDIAN. */
1850
1851 left_shift = (binoptab == rotl_optab);
1852 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1853
1854 outof_target = operand_subword (target, outof_word, 1, mode);
1855 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1856
1857 outof_input = operand_subword_force (op0, outof_word, mode);
1858 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1859
1860 if (shift_count == BITS_PER_WORD)
1861 {
1862 /* This is just a word swap. */
1863 emit_move_insn (outof_target, into_input);
1864 emit_move_insn (into_target, outof_input);
1865 inter = const0_rtx;
1866 }
1867 else
1868 {
1869 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1870 rtx first_shift_count, second_shift_count;
1871 optab reverse_unsigned_shift, unsigned_shift;
1872
1873 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1874 ? lshr_optab : ashl_optab);
1875
1876 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1877 ? ashl_optab : lshr_optab);
1878
1879 if (shift_count > BITS_PER_WORD)
1880 {
1881 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1882 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1883 }
1884 else
1885 {
1886 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1887 second_shift_count = GEN_INT (shift_count);
1888 }
1889
1890 into_temp1 = expand_binop (word_mode, unsigned_shift,
1891 outof_input, first_shift_count,
1892 NULL_RTX, unsignedp, next_methods);
1893 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1894 into_input, second_shift_count,
1895 NULL_RTX, unsignedp, next_methods);
1896
1897 if (into_temp1 != 0 && into_temp2 != 0)
1898 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1899 into_target, unsignedp, next_methods);
1900 else
1901 inter = 0;
1902
1903 if (inter != 0 && inter != into_target)
1904 emit_move_insn (into_target, inter);
1905
1906 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1907 into_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 outof_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1912
1913 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab,
1915 outof_temp1, outof_temp2,
1916 outof_target, unsignedp, next_methods);
1917
1918 if (inter != 0 && inter != outof_target)
1919 emit_move_insn (outof_target, inter);
1920 }
1921
1922 insns = get_insns ();
1923 end_sequence ();
1924
1925 if (inter != 0)
1926 {
1927 emit_insn (insns);
1928 return target;
1929 }
1930 }
1931
1932 /* These can be done a word at a time by propagating carries. */
1933 if ((binoptab == add_optab || binoptab == sub_optab)
1934 && mclass == MODE_INT
1935 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1936 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1937 {
1938 unsigned int i;
1939 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1940 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1941 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1942 rtx xop0, xop1, xtarget;
1943
1944 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1945 value is one of those, use it. Otherwise, use 1 since it is the
1946 one easiest to get. */
1947 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1948 int normalizep = STORE_FLAG_VALUE;
1949 #else
1950 int normalizep = 1;
1951 #endif
1952
1953 /* Prepare the operands. */
1954 xop0 = force_reg (mode, op0);
1955 xop1 = force_reg (mode, op1);
1956
1957 xtarget = gen_reg_rtx (mode);
1958
1959 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1960 target = xtarget;
1961
1962 /* Indicate for flow that the entire target reg is being set. */
1963 if (REG_P (target))
1964 emit_clobber (xtarget);
1965
1966 /* Do the actual arithmetic. */
1967 for (i = 0; i < nwords; i++)
1968 {
1969 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1970 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1971 rtx op0_piece = operand_subword_force (xop0, index, mode);
1972 rtx op1_piece = operand_subword_force (xop1, index, mode);
1973 rtx x;
1974
1975 /* Main add/subtract of the input operands. */
1976 x = expand_binop (word_mode, binoptab,
1977 op0_piece, op1_piece,
1978 target_piece, unsignedp, next_methods);
1979 if (x == 0)
1980 break;
1981
1982 if (i + 1 < nwords)
1983 {
1984 /* Store carry from main add/subtract. */
1985 carry_out = gen_reg_rtx (word_mode);
1986 carry_out = emit_store_flag_force (carry_out,
1987 (binoptab == add_optab
1988 ? LT : GT),
1989 x, op0_piece,
1990 word_mode, 1, normalizep);
1991 }
1992
1993 if (i > 0)
1994 {
1995 rtx newx;
1996
1997 /* Add/subtract previous carry to main result. */
1998 newx = expand_binop (word_mode,
1999 normalizep == 1 ? binoptab : otheroptab,
2000 x, carry_in,
2001 NULL_RTX, 1, next_methods);
2002
2003 if (i + 1 < nwords)
2004 {
2005 /* Get out carry from adding/subtracting carry in. */
2006 rtx carry_tmp = gen_reg_rtx (word_mode);
2007 carry_tmp = emit_store_flag_force (carry_tmp,
2008 (binoptab == add_optab
2009 ? LT : GT),
2010 newx, x,
2011 word_mode, 1, normalizep);
2012
2013 /* Logical-ior the two poss. carry together. */
2014 carry_out = expand_binop (word_mode, ior_optab,
2015 carry_out, carry_tmp,
2016 carry_out, 0, next_methods);
2017 if (carry_out == 0)
2018 break;
2019 }
2020 emit_move_insn (target_piece, newx);
2021 }
2022 else
2023 {
2024 if (x != target_piece)
2025 emit_move_insn (target_piece, x);
2026 }
2027
2028 carry_in = carry_out;
2029 }
2030
2031 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2032 {
2033 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2034 || ! rtx_equal_p (target, xtarget))
2035 {
2036 rtx temp = emit_move_insn (target, xtarget);
2037
2038 set_dst_reg_note (temp, REG_EQUAL,
2039 gen_rtx_fmt_ee (optab_to_code (binoptab),
2040 mode, copy_rtx (xop0),
2041 copy_rtx (xop1)),
2042 target);
2043 }
2044 else
2045 target = xtarget;
2046
2047 return target;
2048 }
2049
2050 else
2051 delete_insns_since (last);
2052 }
2053
2054 /* Attempt to synthesize double word multiplies using a sequence of word
2055 mode multiplications. We first attempt to generate a sequence using a
2056 more efficient unsigned widening multiply, and if that fails we then
2057 try using a signed widening multiply. */
2058
2059 if (binoptab == smul_optab
2060 && mclass == MODE_INT
2061 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2062 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2063 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2064 {
2065 rtx product = NULL_RTX;
2066 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2067 != CODE_FOR_nothing)
2068 {
2069 product = expand_doubleword_mult (mode, op0, op1, target,
2070 true, methods);
2071 if (!product)
2072 delete_insns_since (last);
2073 }
2074
2075 if (product == NULL_RTX
2076 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2077 != CODE_FOR_nothing)
2078 {
2079 product = expand_doubleword_mult (mode, op0, op1, target,
2080 false, methods);
2081 if (!product)
2082 delete_insns_since (last);
2083 }
2084
2085 if (product != NULL_RTX)
2086 {
2087 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2088 {
2089 temp = emit_move_insn (target ? target : product, product);
2090 set_dst_reg_note (temp,
2091 REG_EQUAL,
2092 gen_rtx_fmt_ee (MULT, mode,
2093 copy_rtx (op0),
2094 copy_rtx (op1)),
2095 target ? target : product);
2096 }
2097 return product;
2098 }
2099 }
2100
2101 /* It can't be open-coded in this mode.
2102 Use a library call if one is available and caller says that's ok. */
2103
2104 libfunc = optab_libfunc (binoptab, mode);
2105 if (libfunc
2106 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2107 {
2108 rtx insns;
2109 rtx op1x = op1;
2110 enum machine_mode op1_mode = mode;
2111 rtx value;
2112
2113 start_sequence ();
2114
2115 if (shift_optab_p (binoptab))
2116 {
2117 op1_mode = targetm.libgcc_shift_count_mode ();
2118 /* Specify unsigned here,
2119 since negative shift counts are meaningless. */
2120 op1x = convert_to_mode (op1_mode, op1, 1);
2121 }
2122
2123 if (GET_MODE (op0) != VOIDmode
2124 && GET_MODE (op0) != mode)
2125 op0 = convert_to_mode (mode, op0, unsignedp);
2126
2127 /* Pass 1 for NO_QUEUE so we don't lose any increments
2128 if the libcall is cse'd or moved. */
2129 value = emit_library_call_value (libfunc,
2130 NULL_RTX, LCT_CONST, mode, 2,
2131 op0, mode, op1x, op1_mode);
2132
2133 insns = get_insns ();
2134 end_sequence ();
2135
2136 target = gen_reg_rtx (mode);
2137 emit_libcall_block_1 (insns, target, value,
2138 gen_rtx_fmt_ee (optab_to_code (binoptab),
2139 mode, op0, op1),
2140 trapv_binoptab_p (binoptab));
2141
2142 return target;
2143 }
2144
2145 delete_insns_since (last);
2146
2147 /* It can't be done in this mode. Can we do it in a wider mode? */
2148
2149 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2150 || methods == OPTAB_MUST_WIDEN))
2151 {
2152 /* Caller says, don't even try. */
2153 delete_insns_since (entry_last);
2154 return 0;
2155 }
2156
2157 /* Compute the value of METHODS to pass to recursive calls.
2158 Don't allow widening to be tried recursively. */
2159
2160 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2161
2162 /* Look for a wider mode of the same class for which it appears we can do
2163 the operation. */
2164
2165 if (CLASS_HAS_WIDER_MODES_P (mclass))
2166 {
2167 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2168 wider_mode != VOIDmode;
2169 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2170 {
2171 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2172 != CODE_FOR_nothing
2173 || (methods == OPTAB_LIB
2174 && optab_libfunc (binoptab, wider_mode)))
2175 {
2176 rtx xop0 = op0, xop1 = op1;
2177 int no_extend = 0;
2178
2179 /* For certain integer operations, we need not actually extend
2180 the narrow operands, as long as we will truncate
2181 the results to the same narrowness. */
2182
2183 if ((binoptab == ior_optab || binoptab == and_optab
2184 || binoptab == xor_optab
2185 || binoptab == add_optab || binoptab == sub_optab
2186 || binoptab == smul_optab || binoptab == ashl_optab)
2187 && mclass == MODE_INT)
2188 no_extend = 1;
2189
2190 xop0 = widen_operand (xop0, wider_mode, mode,
2191 unsignedp, no_extend);
2192
2193 /* The second operand of a shift must always be extended. */
2194 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2195 no_extend && binoptab != ashl_optab);
2196
2197 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2198 unsignedp, methods);
2199 if (temp)
2200 {
2201 if (mclass != MODE_INT
2202 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2203 {
2204 if (target == 0)
2205 target = gen_reg_rtx (mode);
2206 convert_move (target, temp, 0);
2207 return target;
2208 }
2209 else
2210 return gen_lowpart (mode, temp);
2211 }
2212 else
2213 delete_insns_since (last);
2214 }
2215 }
2216 }
2217
2218 delete_insns_since (entry_last);
2219 return 0;
2220 }
2221 \f
2222 /* Expand a binary operator which has both signed and unsigned forms.
2223 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2224 signed operations.
2225
2226 If we widen unsigned operands, we may use a signed wider operation instead
2227 of an unsigned wider operation, since the result would be the same. */
2228
2229 rtx
2230 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2231 rtx op0, rtx op1, rtx target, int unsignedp,
2232 enum optab_methods methods)
2233 {
2234 rtx temp;
2235 optab direct_optab = unsignedp ? uoptab : soptab;
2236 bool save_enable;
2237
2238 /* Do it without widening, if possible. */
2239 temp = expand_binop (mode, direct_optab, op0, op1, target,
2240 unsignedp, OPTAB_DIRECT);
2241 if (temp || methods == OPTAB_DIRECT)
2242 return temp;
2243
2244 /* Try widening to a signed int. Disable any direct use of any
2245 signed insn in the current mode. */
2246 save_enable = swap_optab_enable (soptab, mode, false);
2247
2248 temp = expand_binop (mode, soptab, op0, op1, target,
2249 unsignedp, OPTAB_WIDEN);
2250
2251 /* For unsigned operands, try widening to an unsigned int. */
2252 if (!temp && unsignedp)
2253 temp = expand_binop (mode, uoptab, op0, op1, target,
2254 unsignedp, OPTAB_WIDEN);
2255 if (temp || methods == OPTAB_WIDEN)
2256 goto egress;
2257
2258 /* Use the right width libcall if that exists. */
2259 temp = expand_binop (mode, direct_optab, op0, op1, target,
2260 unsignedp, OPTAB_LIB);
2261 if (temp || methods == OPTAB_LIB)
2262 goto egress;
2263
2264 /* Must widen and use a libcall, use either signed or unsigned. */
2265 temp = expand_binop (mode, soptab, op0, op1, target,
2266 unsignedp, methods);
2267 if (!temp && unsignedp)
2268 temp = expand_binop (mode, uoptab, op0, op1, target,
2269 unsignedp, methods);
2270
2271 egress:
2272 /* Undo the fiddling above. */
2273 if (save_enable)
2274 swap_optab_enable (soptab, mode, true);
2275 return temp;
2276 }
2277 \f
2278 /* Generate code to perform an operation specified by UNOPPTAB
2279 on operand OP0, with two results to TARG0 and TARG1.
2280 We assume that the order of the operands for the instruction
2281 is TARG0, TARG1, OP0.
2282
2283 Either TARG0 or TARG1 may be zero, but what that means is that
2284 the result is not actually wanted. We will generate it into
2285 a dummy pseudo-reg and discard it. They may not both be zero.
2286
2287 Returns 1 if this operation can be performed; 0 if not. */
2288
2289 int
2290 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2291 int unsignedp)
2292 {
2293 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2294 enum mode_class mclass;
2295 enum machine_mode wider_mode;
2296 rtx entry_last = get_last_insn ();
2297 rtx last;
2298
2299 mclass = GET_MODE_CLASS (mode);
2300
2301 if (!targ0)
2302 targ0 = gen_reg_rtx (mode);
2303 if (!targ1)
2304 targ1 = gen_reg_rtx (mode);
2305
2306 /* Record where to go back to if we fail. */
2307 last = get_last_insn ();
2308
2309 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2310 {
2311 struct expand_operand ops[3];
2312 enum insn_code icode = optab_handler (unoptab, mode);
2313
2314 create_fixed_operand (&ops[0], targ0);
2315 create_fixed_operand (&ops[1], targ1);
2316 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2317 if (maybe_expand_insn (icode, 3, ops))
2318 return 1;
2319 }
2320
2321 /* It can't be done in this mode. Can we do it in a wider mode? */
2322
2323 if (CLASS_HAS_WIDER_MODES_P (mclass))
2324 {
2325 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2326 wider_mode != VOIDmode;
2327 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2328 {
2329 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2330 {
2331 rtx t0 = gen_reg_rtx (wider_mode);
2332 rtx t1 = gen_reg_rtx (wider_mode);
2333 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2334
2335 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2336 {
2337 convert_move (targ0, t0, unsignedp);
2338 convert_move (targ1, t1, unsignedp);
2339 return 1;
2340 }
2341 else
2342 delete_insns_since (last);
2343 }
2344 }
2345 }
2346
2347 delete_insns_since (entry_last);
2348 return 0;
2349 }
2350 \f
2351 /* Generate code to perform an operation specified by BINOPTAB
2352 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2353 We assume that the order of the operands for the instruction
2354 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2355 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2356
2357 Either TARG0 or TARG1 may be zero, but what that means is that
2358 the result is not actually wanted. We will generate it into
2359 a dummy pseudo-reg and discard it. They may not both be zero.
2360
2361 Returns 1 if this operation can be performed; 0 if not. */
2362
2363 int
2364 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2365 int unsignedp)
2366 {
2367 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2368 enum mode_class mclass;
2369 enum machine_mode wider_mode;
2370 rtx entry_last = get_last_insn ();
2371 rtx last;
2372
2373 mclass = GET_MODE_CLASS (mode);
2374
2375 if (!targ0)
2376 targ0 = gen_reg_rtx (mode);
2377 if (!targ1)
2378 targ1 = gen_reg_rtx (mode);
2379
2380 /* Record where to go back to if we fail. */
2381 last = get_last_insn ();
2382
2383 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2384 {
2385 struct expand_operand ops[4];
2386 enum insn_code icode = optab_handler (binoptab, mode);
2387 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2388 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2389 rtx xop0 = op0, xop1 = op1;
2390
2391 /* If we are optimizing, force expensive constants into a register. */
2392 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2393 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2394
2395 create_fixed_operand (&ops[0], targ0);
2396 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2397 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2398 create_fixed_operand (&ops[3], targ1);
2399 if (maybe_expand_insn (icode, 4, ops))
2400 return 1;
2401 delete_insns_since (last);
2402 }
2403
2404 /* It can't be done in this mode. Can we do it in a wider mode? */
2405
2406 if (CLASS_HAS_WIDER_MODES_P (mclass))
2407 {
2408 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2409 wider_mode != VOIDmode;
2410 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2411 {
2412 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2413 {
2414 rtx t0 = gen_reg_rtx (wider_mode);
2415 rtx t1 = gen_reg_rtx (wider_mode);
2416 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2417 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2418
2419 if (expand_twoval_binop (binoptab, cop0, cop1,
2420 t0, t1, unsignedp))
2421 {
2422 convert_move (targ0, t0, unsignedp);
2423 convert_move (targ1, t1, unsignedp);
2424 return 1;
2425 }
2426 else
2427 delete_insns_since (last);
2428 }
2429 }
2430 }
2431
2432 delete_insns_since (entry_last);
2433 return 0;
2434 }
2435
2436 /* Expand the two-valued library call indicated by BINOPTAB, but
2437 preserve only one of the values. If TARG0 is non-NULL, the first
2438 value is placed into TARG0; otherwise the second value is placed
2439 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2440 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2441 This routine assumes that the value returned by the library call is
2442 as if the return value was of an integral mode twice as wide as the
2443 mode of OP0. Returns 1 if the call was successful. */
2444
2445 bool
2446 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2447 rtx targ0, rtx targ1, enum rtx_code code)
2448 {
2449 enum machine_mode mode;
2450 enum machine_mode libval_mode;
2451 rtx libval;
2452 rtx insns;
2453 rtx libfunc;
2454
2455 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2456 gcc_assert (!targ0 != !targ1);
2457
2458 mode = GET_MODE (op0);
2459 libfunc = optab_libfunc (binoptab, mode);
2460 if (!libfunc)
2461 return false;
2462
2463 /* The value returned by the library function will have twice as
2464 many bits as the nominal MODE. */
2465 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2466 MODE_INT);
2467 start_sequence ();
2468 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2469 libval_mode, 2,
2470 op0, mode,
2471 op1, mode);
2472 /* Get the part of VAL containing the value that we want. */
2473 libval = simplify_gen_subreg (mode, libval, libval_mode,
2474 targ0 ? 0 : GET_MODE_SIZE (mode));
2475 insns = get_insns ();
2476 end_sequence ();
2477 /* Move the into the desired location. */
2478 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2479 gen_rtx_fmt_ee (code, mode, op0, op1));
2480
2481 return true;
2482 }
2483
2484 \f
2485 /* Wrapper around expand_unop which takes an rtx code to specify
2486 the operation to perform, not an optab pointer. All other
2487 arguments are the same. */
2488 rtx
2489 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2490 rtx target, int unsignedp)
2491 {
2492 optab unop = code_to_optab (code);
2493 gcc_assert (unop);
2494
2495 return expand_unop (mode, unop, op0, target, unsignedp);
2496 }
2497
2498 /* Try calculating
2499 (clz:narrow x)
2500 as
2501 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2502
2503 A similar operation can be used for clrsb. UNOPTAB says which operation
2504 we are trying to expand. */
2505 static rtx
2506 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2507 {
2508 enum mode_class mclass = GET_MODE_CLASS (mode);
2509 if (CLASS_HAS_WIDER_MODES_P (mclass))
2510 {
2511 enum machine_mode wider_mode;
2512 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2513 wider_mode != VOIDmode;
2514 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2515 {
2516 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2517 {
2518 rtx xop0, temp, last;
2519
2520 last = get_last_insn ();
2521
2522 if (target == 0)
2523 target = gen_reg_rtx (mode);
2524 xop0 = widen_operand (op0, wider_mode, mode,
2525 unoptab != clrsb_optab, false);
2526 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2527 unoptab != clrsb_optab);
2528 if (temp != 0)
2529 temp = expand_binop (wider_mode, sub_optab, temp,
2530 GEN_INT (GET_MODE_PRECISION (wider_mode)
2531 - GET_MODE_PRECISION (mode)),
2532 target, true, OPTAB_DIRECT);
2533 if (temp == 0)
2534 delete_insns_since (last);
2535
2536 return temp;
2537 }
2538 }
2539 }
2540 return 0;
2541 }
2542
2543 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2544 quantities, choosing which based on whether the high word is nonzero. */
2545 static rtx
2546 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2547 {
2548 rtx xop0 = force_reg (mode, op0);
2549 rtx subhi = gen_highpart (word_mode, xop0);
2550 rtx sublo = gen_lowpart (word_mode, xop0);
2551 rtx hi0_label = gen_label_rtx ();
2552 rtx after_label = gen_label_rtx ();
2553 rtx seq, temp, result;
2554
2555 /* If we were not given a target, use a word_mode register, not a
2556 'mode' register. The result will fit, and nobody is expecting
2557 anything bigger (the return type of __builtin_clz* is int). */
2558 if (!target)
2559 target = gen_reg_rtx (word_mode);
2560
2561 /* In any case, write to a word_mode scratch in both branches of the
2562 conditional, so we can ensure there is a single move insn setting
2563 'target' to tag a REG_EQUAL note on. */
2564 result = gen_reg_rtx (word_mode);
2565
2566 start_sequence ();
2567
2568 /* If the high word is not equal to zero,
2569 then clz of the full value is clz of the high word. */
2570 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2571 word_mode, true, hi0_label);
2572
2573 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2574 if (!temp)
2575 goto fail;
2576
2577 if (temp != result)
2578 convert_move (result, temp, true);
2579
2580 emit_jump_insn (gen_jump (after_label));
2581 emit_barrier ();
2582
2583 /* Else clz of the full value is clz of the low word plus the number
2584 of bits in the high word. */
2585 emit_label (hi0_label);
2586
2587 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2588 if (!temp)
2589 goto fail;
2590 temp = expand_binop (word_mode, add_optab, temp,
2591 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2592 result, true, OPTAB_DIRECT);
2593 if (!temp)
2594 goto fail;
2595 if (temp != result)
2596 convert_move (result, temp, true);
2597
2598 emit_label (after_label);
2599 convert_move (target, result, true);
2600
2601 seq = get_insns ();
2602 end_sequence ();
2603
2604 add_equal_note (seq, target, CLZ, xop0, 0);
2605 emit_insn (seq);
2606 return target;
2607
2608 fail:
2609 end_sequence ();
2610 return 0;
2611 }
2612
2613 /* Try calculating
2614 (bswap:narrow x)
2615 as
2616 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2617 static rtx
2618 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2619 {
2620 enum mode_class mclass = GET_MODE_CLASS (mode);
2621 enum machine_mode wider_mode;
2622 rtx x, last;
2623
2624 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2625 return NULL_RTX;
2626
2627 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2628 wider_mode != VOIDmode;
2629 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2630 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2631 goto found;
2632 return NULL_RTX;
2633
2634 found:
2635 last = get_last_insn ();
2636
2637 x = widen_operand (op0, wider_mode, mode, true, true);
2638 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2639
2640 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2641 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2642 if (x != 0)
2643 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2644 GET_MODE_BITSIZE (wider_mode)
2645 - GET_MODE_BITSIZE (mode),
2646 NULL_RTX, true);
2647
2648 if (x != 0)
2649 {
2650 if (target == 0)
2651 target = gen_reg_rtx (mode);
2652 emit_move_insn (target, gen_lowpart (mode, x));
2653 }
2654 else
2655 delete_insns_since (last);
2656
2657 return target;
2658 }
2659
2660 /* Try calculating bswap as two bswaps of two word-sized operands. */
2661
2662 static rtx
2663 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2664 {
2665 rtx t0, t1;
2666
2667 t1 = expand_unop (word_mode, bswap_optab,
2668 operand_subword_force (op, 0, mode), NULL_RTX, true);
2669 t0 = expand_unop (word_mode, bswap_optab,
2670 operand_subword_force (op, 1, mode), NULL_RTX, true);
2671
2672 if (target == 0 || !valid_multiword_target_p (target))
2673 target = gen_reg_rtx (mode);
2674 if (REG_P (target))
2675 emit_clobber (target);
2676 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2677 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2678
2679 return target;
2680 }
2681
2682 /* Try calculating (parity x) as (and (popcount x) 1), where
2683 popcount can also be done in a wider mode. */
2684 static rtx
2685 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2686 {
2687 enum mode_class mclass = GET_MODE_CLASS (mode);
2688 if (CLASS_HAS_WIDER_MODES_P (mclass))
2689 {
2690 enum machine_mode wider_mode;
2691 for (wider_mode = mode; wider_mode != VOIDmode;
2692 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2693 {
2694 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2695 {
2696 rtx xop0, temp, last;
2697
2698 last = get_last_insn ();
2699
2700 if (target == 0)
2701 target = gen_reg_rtx (mode);
2702 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2703 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2704 true);
2705 if (temp != 0)
2706 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2707 target, true, OPTAB_DIRECT);
2708 if (temp == 0)
2709 delete_insns_since (last);
2710
2711 return temp;
2712 }
2713 }
2714 }
2715 return 0;
2716 }
2717
2718 /* Try calculating ctz(x) as K - clz(x & -x) ,
2719 where K is GET_MODE_PRECISION(mode) - 1.
2720
2721 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2722 don't have to worry about what the hardware does in that case. (If
2723 the clz instruction produces the usual value at 0, which is K, the
2724 result of this code sequence will be -1; expand_ffs, below, relies
2725 on this. It might be nice to have it be K instead, for consistency
2726 with the (very few) processors that provide a ctz with a defined
2727 value, but that would take one more instruction, and it would be
2728 less convenient for expand_ffs anyway. */
2729
2730 static rtx
2731 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2732 {
2733 rtx seq, temp;
2734
2735 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2736 return 0;
2737
2738 start_sequence ();
2739
2740 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2741 if (temp)
2742 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2743 true, OPTAB_DIRECT);
2744 if (temp)
2745 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2746 if (temp)
2747 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_PRECISION (mode) - 1),
2748 temp, target,
2749 true, OPTAB_DIRECT);
2750 if (temp == 0)
2751 {
2752 end_sequence ();
2753 return 0;
2754 }
2755
2756 seq = get_insns ();
2757 end_sequence ();
2758
2759 add_equal_note (seq, temp, CTZ, op0, 0);
2760 emit_insn (seq);
2761 return temp;
2762 }
2763
2764
2765 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2766 else with the sequence used by expand_clz.
2767
2768 The ffs builtin promises to return zero for a zero value and ctz/clz
2769 may have an undefined value in that case. If they do not give us a
2770 convenient value, we have to generate a test and branch. */
2771 static rtx
2772 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2773 {
2774 HOST_WIDE_INT val = 0;
2775 bool defined_at_zero = false;
2776 rtx temp, seq;
2777
2778 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2779 {
2780 start_sequence ();
2781
2782 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2783 if (!temp)
2784 goto fail;
2785
2786 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2787 }
2788 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2789 {
2790 start_sequence ();
2791 temp = expand_ctz (mode, op0, 0);
2792 if (!temp)
2793 goto fail;
2794
2795 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2796 {
2797 defined_at_zero = true;
2798 val = (GET_MODE_PRECISION (mode) - 1) - val;
2799 }
2800 }
2801 else
2802 return 0;
2803
2804 if (defined_at_zero && val == -1)
2805 /* No correction needed at zero. */;
2806 else
2807 {
2808 /* We don't try to do anything clever with the situation found
2809 on some processors (eg Alpha) where ctz(0:mode) ==
2810 bitsize(mode). If someone can think of a way to send N to -1
2811 and leave alone all values in the range 0..N-1 (where N is a
2812 power of two), cheaper than this test-and-branch, please add it.
2813
2814 The test-and-branch is done after the operation itself, in case
2815 the operation sets condition codes that can be recycled for this.
2816 (This is true on i386, for instance.) */
2817
2818 rtx nonzero_label = gen_label_rtx ();
2819 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2820 mode, true, nonzero_label);
2821
2822 convert_move (temp, GEN_INT (-1), false);
2823 emit_label (nonzero_label);
2824 }
2825
2826 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2827 to produce a value in the range 0..bitsize. */
2828 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2829 target, false, OPTAB_DIRECT);
2830 if (!temp)
2831 goto fail;
2832
2833 seq = get_insns ();
2834 end_sequence ();
2835
2836 add_equal_note (seq, temp, FFS, op0, 0);
2837 emit_insn (seq);
2838 return temp;
2839
2840 fail:
2841 end_sequence ();
2842 return 0;
2843 }
2844
2845 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2846 conditions, VAL may already be a SUBREG against which we cannot generate
2847 a further SUBREG. In this case, we expect forcing the value into a
2848 register will work around the situation. */
2849
2850 static rtx
2851 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2852 enum machine_mode imode)
2853 {
2854 rtx ret;
2855 ret = lowpart_subreg (omode, val, imode);
2856 if (ret == NULL)
2857 {
2858 val = force_reg (imode, val);
2859 ret = lowpart_subreg (omode, val, imode);
2860 gcc_assert (ret != NULL);
2861 }
2862 return ret;
2863 }
2864
2865 /* Expand a floating point absolute value or negation operation via a
2866 logical operation on the sign bit. */
2867
2868 static rtx
2869 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2870 rtx op0, rtx target)
2871 {
2872 const struct real_format *fmt;
2873 int bitpos, word, nwords, i;
2874 enum machine_mode imode;
2875 double_int mask;
2876 rtx temp, insns;
2877
2878 /* The format has to have a simple sign bit. */
2879 fmt = REAL_MODE_FORMAT (mode);
2880 if (fmt == NULL)
2881 return NULL_RTX;
2882
2883 bitpos = fmt->signbit_rw;
2884 if (bitpos < 0)
2885 return NULL_RTX;
2886
2887 /* Don't create negative zeros if the format doesn't support them. */
2888 if (code == NEG && !fmt->has_signed_zero)
2889 return NULL_RTX;
2890
2891 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2892 {
2893 imode = int_mode_for_mode (mode);
2894 if (imode == BLKmode)
2895 return NULL_RTX;
2896 word = 0;
2897 nwords = 1;
2898 }
2899 else
2900 {
2901 imode = word_mode;
2902
2903 if (FLOAT_WORDS_BIG_ENDIAN)
2904 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2905 else
2906 word = bitpos / BITS_PER_WORD;
2907 bitpos = bitpos % BITS_PER_WORD;
2908 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2909 }
2910
2911 mask = double_int_zero.set_bit (bitpos);
2912 if (code == ABS)
2913 mask = ~mask;
2914
2915 if (target == 0
2916 || target == op0
2917 || (nwords > 1 && !valid_multiword_target_p (target)))
2918 target = gen_reg_rtx (mode);
2919
2920 if (nwords > 1)
2921 {
2922 start_sequence ();
2923
2924 for (i = 0; i < nwords; ++i)
2925 {
2926 rtx targ_piece = operand_subword (target, i, 1, mode);
2927 rtx op0_piece = operand_subword_force (op0, i, mode);
2928
2929 if (i == word)
2930 {
2931 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2932 op0_piece,
2933 immed_double_int_const (mask, imode),
2934 targ_piece, 1, OPTAB_LIB_WIDEN);
2935 if (temp != targ_piece)
2936 emit_move_insn (targ_piece, temp);
2937 }
2938 else
2939 emit_move_insn (targ_piece, op0_piece);
2940 }
2941
2942 insns = get_insns ();
2943 end_sequence ();
2944
2945 emit_insn (insns);
2946 }
2947 else
2948 {
2949 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2950 gen_lowpart (imode, op0),
2951 immed_double_int_const (mask, imode),
2952 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2953 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2954
2955 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2956 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2957 target);
2958 }
2959
2960 return target;
2961 }
2962
2963 /* As expand_unop, but will fail rather than attempt the operation in a
2964 different mode or with a libcall. */
2965 static rtx
2966 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2967 int unsignedp)
2968 {
2969 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2970 {
2971 struct expand_operand ops[2];
2972 enum insn_code icode = optab_handler (unoptab, mode);
2973 rtx last = get_last_insn ();
2974 rtx pat;
2975
2976 create_output_operand (&ops[0], target, mode);
2977 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2978 pat = maybe_gen_insn (icode, 2, ops);
2979 if (pat)
2980 {
2981 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2982 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
2983 ops[1].value, NULL_RTX))
2984 {
2985 delete_insns_since (last);
2986 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2987 }
2988
2989 emit_insn (pat);
2990
2991 return ops[0].value;
2992 }
2993 }
2994 return 0;
2995 }
2996
2997 /* Generate code to perform an operation specified by UNOPTAB
2998 on operand OP0, with result having machine-mode MODE.
2999
3000 UNSIGNEDP is for the case where we have to widen the operands
3001 to perform the operation. It says to use zero-extension.
3002
3003 If TARGET is nonzero, the value
3004 is generated there, if it is convenient to do so.
3005 In all cases an rtx is returned for the locus of the value;
3006 this may or may not be TARGET. */
3007
3008 rtx
3009 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3010 int unsignedp)
3011 {
3012 enum mode_class mclass = GET_MODE_CLASS (mode);
3013 enum machine_mode wider_mode;
3014 rtx temp;
3015 rtx libfunc;
3016
3017 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3018 if (temp)
3019 return temp;
3020
3021 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3022
3023 /* Widening (or narrowing) clz needs special treatment. */
3024 if (unoptab == clz_optab)
3025 {
3026 temp = widen_leading (mode, op0, target, unoptab);
3027 if (temp)
3028 return temp;
3029
3030 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3031 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3032 {
3033 temp = expand_doubleword_clz (mode, op0, target);
3034 if (temp)
3035 return temp;
3036 }
3037
3038 goto try_libcall;
3039 }
3040
3041 if (unoptab == clrsb_optab)
3042 {
3043 temp = widen_leading (mode, op0, target, unoptab);
3044 if (temp)
3045 return temp;
3046 goto try_libcall;
3047 }
3048
3049 /* Widening (or narrowing) bswap needs special treatment. */
3050 if (unoptab == bswap_optab)
3051 {
3052 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3053 or ROTATERT. First try these directly; if this fails, then try the
3054 obvious pair of shifts with allowed widening, as this will probably
3055 be always more efficient than the other fallback methods. */
3056 if (mode == HImode)
3057 {
3058 rtx last, temp1, temp2;
3059
3060 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3061 {
3062 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3063 unsignedp, OPTAB_DIRECT);
3064 if (temp)
3065 return temp;
3066 }
3067
3068 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3069 {
3070 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3071 unsignedp, OPTAB_DIRECT);
3072 if (temp)
3073 return temp;
3074 }
3075
3076 last = get_last_insn ();
3077
3078 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3079 unsignedp, OPTAB_WIDEN);
3080 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3081 unsignedp, OPTAB_WIDEN);
3082 if (temp1 && temp2)
3083 {
3084 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3085 unsignedp, OPTAB_WIDEN);
3086 if (temp)
3087 return temp;
3088 }
3089
3090 delete_insns_since (last);
3091 }
3092
3093 temp = widen_bswap (mode, op0, target);
3094 if (temp)
3095 return temp;
3096
3097 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3098 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3099 {
3100 temp = expand_doubleword_bswap (mode, op0, target);
3101 if (temp)
3102 return temp;
3103 }
3104
3105 goto try_libcall;
3106 }
3107
3108 if (CLASS_HAS_WIDER_MODES_P (mclass))
3109 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3110 wider_mode != VOIDmode;
3111 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3112 {
3113 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3114 {
3115 rtx xop0 = op0;
3116 rtx last = get_last_insn ();
3117
3118 /* For certain operations, we need not actually extend
3119 the narrow operand, as long as we will truncate the
3120 results to the same narrowness. */
3121
3122 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3123 (unoptab == neg_optab
3124 || unoptab == one_cmpl_optab)
3125 && mclass == MODE_INT);
3126
3127 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3128 unsignedp);
3129
3130 if (temp)
3131 {
3132 if (mclass != MODE_INT
3133 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3134 {
3135 if (target == 0)
3136 target = gen_reg_rtx (mode);
3137 convert_move (target, temp, 0);
3138 return target;
3139 }
3140 else
3141 return gen_lowpart (mode, temp);
3142 }
3143 else
3144 delete_insns_since (last);
3145 }
3146 }
3147
3148 /* These can be done a word at a time. */
3149 if (unoptab == one_cmpl_optab
3150 && mclass == MODE_INT
3151 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3152 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3153 {
3154 int i;
3155 rtx insns;
3156
3157 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3158 target = gen_reg_rtx (mode);
3159
3160 start_sequence ();
3161
3162 /* Do the actual arithmetic. */
3163 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3164 {
3165 rtx target_piece = operand_subword (target, i, 1, mode);
3166 rtx x = expand_unop (word_mode, unoptab,
3167 operand_subword_force (op0, i, mode),
3168 target_piece, unsignedp);
3169
3170 if (target_piece != x)
3171 emit_move_insn (target_piece, x);
3172 }
3173
3174 insns = get_insns ();
3175 end_sequence ();
3176
3177 emit_insn (insns);
3178 return target;
3179 }
3180
3181 if (optab_to_code (unoptab) == NEG)
3182 {
3183 /* Try negating floating point values by flipping the sign bit. */
3184 if (SCALAR_FLOAT_MODE_P (mode))
3185 {
3186 temp = expand_absneg_bit (NEG, mode, op0, target);
3187 if (temp)
3188 return temp;
3189 }
3190
3191 /* If there is no negation pattern, and we have no negative zero,
3192 try subtracting from zero. */
3193 if (!HONOR_SIGNED_ZEROS (mode))
3194 {
3195 temp = expand_binop (mode, (unoptab == negv_optab
3196 ? subv_optab : sub_optab),
3197 CONST0_RTX (mode), op0, target,
3198 unsignedp, OPTAB_DIRECT);
3199 if (temp)
3200 return temp;
3201 }
3202 }
3203
3204 /* Try calculating parity (x) as popcount (x) % 2. */
3205 if (unoptab == parity_optab)
3206 {
3207 temp = expand_parity (mode, op0, target);
3208 if (temp)
3209 return temp;
3210 }
3211
3212 /* Try implementing ffs (x) in terms of clz (x). */
3213 if (unoptab == ffs_optab)
3214 {
3215 temp = expand_ffs (mode, op0, target);
3216 if (temp)
3217 return temp;
3218 }
3219
3220 /* Try implementing ctz (x) in terms of clz (x). */
3221 if (unoptab == ctz_optab)
3222 {
3223 temp = expand_ctz (mode, op0, target);
3224 if (temp)
3225 return temp;
3226 }
3227
3228 try_libcall:
3229 /* Now try a library call in this mode. */
3230 libfunc = optab_libfunc (unoptab, mode);
3231 if (libfunc)
3232 {
3233 rtx insns;
3234 rtx value;
3235 rtx eq_value;
3236 enum machine_mode outmode = mode;
3237
3238 /* All of these functions return small values. Thus we choose to
3239 have them return something that isn't a double-word. */
3240 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3241 || unoptab == clrsb_optab || unoptab == popcount_optab
3242 || unoptab == parity_optab)
3243 outmode
3244 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3245 optab_libfunc (unoptab, mode)));
3246
3247 start_sequence ();
3248
3249 /* Pass 1 for NO_QUEUE so we don't lose any increments
3250 if the libcall is cse'd or moved. */
3251 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3252 1, op0, mode);
3253 insns = get_insns ();
3254 end_sequence ();
3255
3256 target = gen_reg_rtx (outmode);
3257 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3258 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3259 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3260 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3261 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3262 emit_libcall_block_1 (insns, target, value, eq_value,
3263 trapv_unoptab_p (unoptab));
3264
3265 return target;
3266 }
3267
3268 /* It can't be done in this mode. Can we do it in a wider mode? */
3269
3270 if (CLASS_HAS_WIDER_MODES_P (mclass))
3271 {
3272 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3273 wider_mode != VOIDmode;
3274 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3275 {
3276 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3277 || optab_libfunc (unoptab, wider_mode))
3278 {
3279 rtx xop0 = op0;
3280 rtx last = get_last_insn ();
3281
3282 /* For certain operations, we need not actually extend
3283 the narrow operand, as long as we will truncate the
3284 results to the same narrowness. */
3285 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3286 (unoptab == neg_optab
3287 || unoptab == one_cmpl_optab
3288 || unoptab == bswap_optab)
3289 && mclass == MODE_INT);
3290
3291 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3292 unsignedp);
3293
3294 /* If we are generating clz using wider mode, adjust the
3295 result. Similarly for clrsb. */
3296 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3297 && temp != 0)
3298 temp = expand_binop (wider_mode, sub_optab, temp,
3299 GEN_INT (GET_MODE_PRECISION (wider_mode)
3300 - GET_MODE_PRECISION (mode)),
3301 target, true, OPTAB_DIRECT);
3302
3303 /* Likewise for bswap. */
3304 if (unoptab == bswap_optab && temp != 0)
3305 {
3306 gcc_assert (GET_MODE_PRECISION (wider_mode)
3307 == GET_MODE_BITSIZE (wider_mode)
3308 && GET_MODE_PRECISION (mode)
3309 == GET_MODE_BITSIZE (mode));
3310
3311 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3312 GET_MODE_BITSIZE (wider_mode)
3313 - GET_MODE_BITSIZE (mode),
3314 NULL_RTX, true);
3315 }
3316
3317 if (temp)
3318 {
3319 if (mclass != MODE_INT)
3320 {
3321 if (target == 0)
3322 target = gen_reg_rtx (mode);
3323 convert_move (target, temp, 0);
3324 return target;
3325 }
3326 else
3327 return gen_lowpart (mode, temp);
3328 }
3329 else
3330 delete_insns_since (last);
3331 }
3332 }
3333 }
3334
3335 /* One final attempt at implementing negation via subtraction,
3336 this time allowing widening of the operand. */
3337 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3338 {
3339 rtx temp;
3340 temp = expand_binop (mode,
3341 unoptab == negv_optab ? subv_optab : sub_optab,
3342 CONST0_RTX (mode), op0,
3343 target, unsignedp, OPTAB_LIB_WIDEN);
3344 if (temp)
3345 return temp;
3346 }
3347
3348 return 0;
3349 }
3350 \f
3351 /* Emit code to compute the absolute value of OP0, with result to
3352 TARGET if convenient. (TARGET may be 0.) The return value says
3353 where the result actually is to be found.
3354
3355 MODE is the mode of the operand; the mode of the result is
3356 different but can be deduced from MODE.
3357
3358 */
3359
3360 rtx
3361 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3362 int result_unsignedp)
3363 {
3364 rtx temp;
3365
3366 if (! flag_trapv)
3367 result_unsignedp = 1;
3368
3369 /* First try to do it with a special abs instruction. */
3370 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3371 op0, target, 0);
3372 if (temp != 0)
3373 return temp;
3374
3375 /* For floating point modes, try clearing the sign bit. */
3376 if (SCALAR_FLOAT_MODE_P (mode))
3377 {
3378 temp = expand_absneg_bit (ABS, mode, op0, target);
3379 if (temp)
3380 return temp;
3381 }
3382
3383 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3384 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3385 && !HONOR_SIGNED_ZEROS (mode))
3386 {
3387 rtx last = get_last_insn ();
3388
3389 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3390 if (temp != 0)
3391 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3392 OPTAB_WIDEN);
3393
3394 if (temp != 0)
3395 return temp;
3396
3397 delete_insns_since (last);
3398 }
3399
3400 /* If this machine has expensive jumps, we can do integer absolute
3401 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3402 where W is the width of MODE. */
3403
3404 if (GET_MODE_CLASS (mode) == MODE_INT
3405 && BRANCH_COST (optimize_insn_for_speed_p (),
3406 false) >= 2)
3407 {
3408 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3409 GET_MODE_PRECISION (mode) - 1,
3410 NULL_RTX, 0);
3411
3412 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3413 OPTAB_LIB_WIDEN);
3414 if (temp != 0)
3415 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3416 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3417
3418 if (temp != 0)
3419 return temp;
3420 }
3421
3422 return NULL_RTX;
3423 }
3424
3425 rtx
3426 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3427 int result_unsignedp, int safe)
3428 {
3429 rtx temp, op1;
3430
3431 if (! flag_trapv)
3432 result_unsignedp = 1;
3433
3434 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3435 if (temp != 0)
3436 return temp;
3437
3438 /* If that does not win, use conditional jump and negate. */
3439
3440 /* It is safe to use the target if it is the same
3441 as the source if this is also a pseudo register */
3442 if (op0 == target && REG_P (op0)
3443 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3444 safe = 1;
3445
3446 op1 = gen_label_rtx ();
3447 if (target == 0 || ! safe
3448 || GET_MODE (target) != mode
3449 || (MEM_P (target) && MEM_VOLATILE_P (target))
3450 || (REG_P (target)
3451 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3452 target = gen_reg_rtx (mode);
3453
3454 emit_move_insn (target, op0);
3455 NO_DEFER_POP;
3456
3457 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3458 NULL_RTX, NULL_RTX, op1, -1);
3459
3460 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3461 target, target, 0);
3462 if (op0 != target)
3463 emit_move_insn (target, op0);
3464 emit_label (op1);
3465 OK_DEFER_POP;
3466 return target;
3467 }
3468
3469 /* Emit code to compute the one's complement absolute value of OP0
3470 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3471 (TARGET may be NULL_RTX.) The return value says where the result
3472 actually is to be found.
3473
3474 MODE is the mode of the operand; the mode of the result is
3475 different but can be deduced from MODE. */
3476
3477 rtx
3478 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3479 {
3480 rtx temp;
3481
3482 /* Not applicable for floating point modes. */
3483 if (FLOAT_MODE_P (mode))
3484 return NULL_RTX;
3485
3486 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3487 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3488 {
3489 rtx last = get_last_insn ();
3490
3491 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3492 if (temp != 0)
3493 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3494 OPTAB_WIDEN);
3495
3496 if (temp != 0)
3497 return temp;
3498
3499 delete_insns_since (last);
3500 }
3501
3502 /* If this machine has expensive jumps, we can do one's complement
3503 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3504
3505 if (GET_MODE_CLASS (mode) == MODE_INT
3506 && BRANCH_COST (optimize_insn_for_speed_p (),
3507 false) >= 2)
3508 {
3509 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3510 GET_MODE_PRECISION (mode) - 1,
3511 NULL_RTX, 0);
3512
3513 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3514 OPTAB_LIB_WIDEN);
3515
3516 if (temp != 0)
3517 return temp;
3518 }
3519
3520 return NULL_RTX;
3521 }
3522
3523 /* A subroutine of expand_copysign, perform the copysign operation using the
3524 abs and neg primitives advertised to exist on the target. The assumption
3525 is that we have a split register file, and leaving op0 in fp registers,
3526 and not playing with subregs so much, will help the register allocator. */
3527
3528 static rtx
3529 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3530 int bitpos, bool op0_is_abs)
3531 {
3532 enum machine_mode imode;
3533 enum insn_code icode;
3534 rtx sign, label;
3535
3536 if (target == op1)
3537 target = NULL_RTX;
3538
3539 /* Check if the back end provides an insn that handles signbit for the
3540 argument's mode. */
3541 icode = optab_handler (signbit_optab, mode);
3542 if (icode != CODE_FOR_nothing)
3543 {
3544 imode = insn_data[(int) icode].operand[0].mode;
3545 sign = gen_reg_rtx (imode);
3546 emit_unop_insn (icode, sign, op1, UNKNOWN);
3547 }
3548 else
3549 {
3550 double_int mask;
3551
3552 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3553 {
3554 imode = int_mode_for_mode (mode);
3555 if (imode == BLKmode)
3556 return NULL_RTX;
3557 op1 = gen_lowpart (imode, op1);
3558 }
3559 else
3560 {
3561 int word;
3562
3563 imode = word_mode;
3564 if (FLOAT_WORDS_BIG_ENDIAN)
3565 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3566 else
3567 word = bitpos / BITS_PER_WORD;
3568 bitpos = bitpos % BITS_PER_WORD;
3569 op1 = operand_subword_force (op1, word, mode);
3570 }
3571
3572 mask = double_int_zero.set_bit (bitpos);
3573
3574 sign = expand_binop (imode, and_optab, op1,
3575 immed_double_int_const (mask, imode),
3576 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3577 }
3578
3579 if (!op0_is_abs)
3580 {
3581 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3582 if (op0 == NULL)
3583 return NULL_RTX;
3584 target = op0;
3585 }
3586 else
3587 {
3588 if (target == NULL_RTX)
3589 target = copy_to_reg (op0);
3590 else
3591 emit_move_insn (target, op0);
3592 }
3593
3594 label = gen_label_rtx ();
3595 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3596
3597 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3598 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3599 else
3600 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3601 if (op0 != target)
3602 emit_move_insn (target, op0);
3603
3604 emit_label (label);
3605
3606 return target;
3607 }
3608
3609
3610 /* A subroutine of expand_copysign, perform the entire copysign operation
3611 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3612 is true if op0 is known to have its sign bit clear. */
3613
3614 static rtx
3615 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3616 int bitpos, bool op0_is_abs)
3617 {
3618 enum machine_mode imode;
3619 double_int mask;
3620 int word, nwords, i;
3621 rtx temp, insns;
3622
3623 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3624 {
3625 imode = int_mode_for_mode (mode);
3626 if (imode == BLKmode)
3627 return NULL_RTX;
3628 word = 0;
3629 nwords = 1;
3630 }
3631 else
3632 {
3633 imode = word_mode;
3634
3635 if (FLOAT_WORDS_BIG_ENDIAN)
3636 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3637 else
3638 word = bitpos / BITS_PER_WORD;
3639 bitpos = bitpos % BITS_PER_WORD;
3640 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3641 }
3642
3643 mask = double_int_zero.set_bit (bitpos);
3644
3645 if (target == 0
3646 || target == op0
3647 || target == op1
3648 || (nwords > 1 && !valid_multiword_target_p (target)))
3649 target = gen_reg_rtx (mode);
3650
3651 if (nwords > 1)
3652 {
3653 start_sequence ();
3654
3655 for (i = 0; i < nwords; ++i)
3656 {
3657 rtx targ_piece = operand_subword (target, i, 1, mode);
3658 rtx op0_piece = operand_subword_force (op0, i, mode);
3659
3660 if (i == word)
3661 {
3662 if (!op0_is_abs)
3663 op0_piece
3664 = expand_binop (imode, and_optab, op0_piece,
3665 immed_double_int_const (~mask, imode),
3666 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3667
3668 op1 = expand_binop (imode, and_optab,
3669 operand_subword_force (op1, i, mode),
3670 immed_double_int_const (mask, imode),
3671 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3672
3673 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3674 targ_piece, 1, OPTAB_LIB_WIDEN);
3675 if (temp != targ_piece)
3676 emit_move_insn (targ_piece, temp);
3677 }
3678 else
3679 emit_move_insn (targ_piece, op0_piece);
3680 }
3681
3682 insns = get_insns ();
3683 end_sequence ();
3684
3685 emit_insn (insns);
3686 }
3687 else
3688 {
3689 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3690 immed_double_int_const (mask, imode),
3691 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3692
3693 op0 = gen_lowpart (imode, op0);
3694 if (!op0_is_abs)
3695 op0 = expand_binop (imode, and_optab, op0,
3696 immed_double_int_const (~mask, imode),
3697 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3698
3699 temp = expand_binop (imode, ior_optab, op0, op1,
3700 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3701 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3702 }
3703
3704 return target;
3705 }
3706
3707 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3708 scalar floating point mode. Return NULL if we do not know how to
3709 expand the operation inline. */
3710
3711 rtx
3712 expand_copysign (rtx op0, rtx op1, rtx target)
3713 {
3714 enum machine_mode mode = GET_MODE (op0);
3715 const struct real_format *fmt;
3716 bool op0_is_abs;
3717 rtx temp;
3718
3719 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3720 gcc_assert (GET_MODE (op1) == mode);
3721
3722 /* First try to do it with a special instruction. */
3723 temp = expand_binop (mode, copysign_optab, op0, op1,
3724 target, 0, OPTAB_DIRECT);
3725 if (temp)
3726 return temp;
3727
3728 fmt = REAL_MODE_FORMAT (mode);
3729 if (fmt == NULL || !fmt->has_signed_zero)
3730 return NULL_RTX;
3731
3732 op0_is_abs = false;
3733 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3734 {
3735 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3736 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3737 op0_is_abs = true;
3738 }
3739
3740 if (fmt->signbit_ro >= 0
3741 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3742 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3743 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3744 {
3745 temp = expand_copysign_absneg (mode, op0, op1, target,
3746 fmt->signbit_ro, op0_is_abs);
3747 if (temp)
3748 return temp;
3749 }
3750
3751 if (fmt->signbit_rw < 0)
3752 return NULL_RTX;
3753 return expand_copysign_bit (mode, op0, op1, target,
3754 fmt->signbit_rw, op0_is_abs);
3755 }
3756 \f
3757 /* Generate an instruction whose insn-code is INSN_CODE,
3758 with two operands: an output TARGET and an input OP0.
3759 TARGET *must* be nonzero, and the output is always stored there.
3760 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3761 the value that is stored into TARGET.
3762
3763 Return false if expansion failed. */
3764
3765 bool
3766 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3767 enum rtx_code code)
3768 {
3769 struct expand_operand ops[2];
3770 rtx pat;
3771
3772 create_output_operand (&ops[0], target, GET_MODE (target));
3773 create_input_operand (&ops[1], op0, GET_MODE (op0));
3774 pat = maybe_gen_insn (icode, 2, ops);
3775 if (!pat)
3776 return false;
3777
3778 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3779 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3780
3781 emit_insn (pat);
3782
3783 if (ops[0].value != target)
3784 emit_move_insn (target, ops[0].value);
3785 return true;
3786 }
3787 /* Generate an instruction whose insn-code is INSN_CODE,
3788 with two operands: an output TARGET and an input OP0.
3789 TARGET *must* be nonzero, and the output is always stored there.
3790 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3791 the value that is stored into TARGET. */
3792
3793 void
3794 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3795 {
3796 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3797 gcc_assert (ok);
3798 }
3799 \f
3800 struct no_conflict_data
3801 {
3802 rtx target, first, insn;
3803 bool must_stay;
3804 };
3805
3806 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3807 the currently examined clobber / store has to stay in the list of
3808 insns that constitute the actual libcall block. */
3809 static void
3810 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3811 {
3812 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3813
3814 /* If this inns directly contributes to setting the target, it must stay. */
3815 if (reg_overlap_mentioned_p (p->target, dest))
3816 p->must_stay = true;
3817 /* If we haven't committed to keeping any other insns in the list yet,
3818 there is nothing more to check. */
3819 else if (p->insn == p->first)
3820 return;
3821 /* If this insn sets / clobbers a register that feeds one of the insns
3822 already in the list, this insn has to stay too. */
3823 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3824 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3825 || reg_used_between_p (dest, p->first, p->insn)
3826 /* Likewise if this insn depends on a register set by a previous
3827 insn in the list, or if it sets a result (presumably a hard
3828 register) that is set or clobbered by a previous insn.
3829 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3830 SET_DEST perform the former check on the address, and the latter
3831 check on the MEM. */
3832 || (GET_CODE (set) == SET
3833 && (modified_in_p (SET_SRC (set), p->first)
3834 || modified_in_p (SET_DEST (set), p->first)
3835 || modified_between_p (SET_SRC (set), p->first, p->insn)
3836 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3837 p->must_stay = true;
3838 }
3839
3840 \f
3841 /* Emit code to make a call to a constant function or a library call.
3842
3843 INSNS is a list containing all insns emitted in the call.
3844 These insns leave the result in RESULT. Our block is to copy RESULT
3845 to TARGET, which is logically equivalent to EQUIV.
3846
3847 We first emit any insns that set a pseudo on the assumption that these are
3848 loading constants into registers; doing so allows them to be safely cse'ed
3849 between blocks. Then we emit all the other insns in the block, followed by
3850 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3851 note with an operand of EQUIV. */
3852
3853 static void
3854 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3855 bool equiv_may_trap)
3856 {
3857 rtx final_dest = target;
3858 rtx next, last, insn;
3859
3860 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3861 into a MEM later. Protect the libcall block from this change. */
3862 if (! REG_P (target) || REG_USERVAR_P (target))
3863 target = gen_reg_rtx (GET_MODE (target));
3864
3865 /* If we're using non-call exceptions, a libcall corresponding to an
3866 operation that may trap may also trap. */
3867 /* ??? See the comment in front of make_reg_eh_region_note. */
3868 if (cfun->can_throw_non_call_exceptions
3869 && (equiv_may_trap || may_trap_p (equiv)))
3870 {
3871 for (insn = insns; insn; insn = NEXT_INSN (insn))
3872 if (CALL_P (insn))
3873 {
3874 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3875 if (note)
3876 {
3877 int lp_nr = INTVAL (XEXP (note, 0));
3878 if (lp_nr == 0 || lp_nr == INT_MIN)
3879 remove_note (insn, note);
3880 }
3881 }
3882 }
3883 else
3884 {
3885 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3886 reg note to indicate that this call cannot throw or execute a nonlocal
3887 goto (unless there is already a REG_EH_REGION note, in which case
3888 we update it). */
3889 for (insn = insns; insn; insn = NEXT_INSN (insn))
3890 if (CALL_P (insn))
3891 make_reg_eh_region_note_nothrow_nononlocal (insn);
3892 }
3893
3894 /* First emit all insns that set pseudos. Remove them from the list as
3895 we go. Avoid insns that set pseudos which were referenced in previous
3896 insns. These can be generated by move_by_pieces, for example,
3897 to update an address. Similarly, avoid insns that reference things
3898 set in previous insns. */
3899
3900 for (insn = insns; insn; insn = next)
3901 {
3902 rtx set = single_set (insn);
3903
3904 next = NEXT_INSN (insn);
3905
3906 if (set != 0 && REG_P (SET_DEST (set))
3907 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3908 {
3909 struct no_conflict_data data;
3910
3911 data.target = const0_rtx;
3912 data.first = insns;
3913 data.insn = insn;
3914 data.must_stay = 0;
3915 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3916 if (! data.must_stay)
3917 {
3918 if (PREV_INSN (insn))
3919 NEXT_INSN (PREV_INSN (insn)) = next;
3920 else
3921 insns = next;
3922
3923 if (next)
3924 PREV_INSN (next) = PREV_INSN (insn);
3925
3926 add_insn (insn);
3927 }
3928 }
3929
3930 /* Some ports use a loop to copy large arguments onto the stack.
3931 Don't move anything outside such a loop. */
3932 if (LABEL_P (insn))
3933 break;
3934 }
3935
3936 /* Write the remaining insns followed by the final copy. */
3937 for (insn = insns; insn; insn = next)
3938 {
3939 next = NEXT_INSN (insn);
3940
3941 add_insn (insn);
3942 }
3943
3944 last = emit_move_insn (target, result);
3945 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3946
3947 if (final_dest != target)
3948 emit_move_insn (final_dest, target);
3949 }
3950
3951 void
3952 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3953 {
3954 emit_libcall_block_1 (insns, target, result, equiv, false);
3955 }
3956 \f
3957 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3958 PURPOSE describes how this comparison will be used. CODE is the rtx
3959 comparison code we will be using.
3960
3961 ??? Actually, CODE is slightly weaker than that. A target is still
3962 required to implement all of the normal bcc operations, but not
3963 required to implement all (or any) of the unordered bcc operations. */
3964
3965 int
3966 can_compare_p (enum rtx_code code, enum machine_mode mode,
3967 enum can_compare_purpose purpose)
3968 {
3969 rtx test;
3970 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3971 do
3972 {
3973 enum insn_code icode;
3974
3975 if (purpose == ccp_jump
3976 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3977 && insn_operand_matches (icode, 0, test))
3978 return 1;
3979 if (purpose == ccp_store_flag
3980 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3981 && insn_operand_matches (icode, 1, test))
3982 return 1;
3983 if (purpose == ccp_cmov
3984 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3985 return 1;
3986
3987 mode = GET_MODE_WIDER_MODE (mode);
3988 PUT_MODE (test, mode);
3989 }
3990 while (mode != VOIDmode);
3991
3992 return 0;
3993 }
3994
3995 /* This function is called when we are going to emit a compare instruction that
3996 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3997
3998 *PMODE is the mode of the inputs (in case they are const_int).
3999 *PUNSIGNEDP nonzero says that the operands are unsigned;
4000 this matters if they need to be widened (as given by METHODS).
4001
4002 If they have mode BLKmode, then SIZE specifies the size of both operands.
4003
4004 This function performs all the setup necessary so that the caller only has
4005 to emit a single comparison insn. This setup can involve doing a BLKmode
4006 comparison or emitting a library call to perform the comparison if no insn
4007 is available to handle it.
4008 The values which are passed in through pointers can be modified; the caller
4009 should perform the comparison on the modified values. Constant
4010 comparisons must have already been folded. */
4011
4012 static void
4013 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4014 int unsignedp, enum optab_methods methods,
4015 rtx *ptest, enum machine_mode *pmode)
4016 {
4017 enum machine_mode mode = *pmode;
4018 rtx libfunc, test;
4019 enum machine_mode cmp_mode;
4020 enum mode_class mclass;
4021
4022 /* The other methods are not needed. */
4023 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4024 || methods == OPTAB_LIB_WIDEN);
4025
4026 /* If we are optimizing, force expensive constants into a register. */
4027 if (CONSTANT_P (x) && optimize
4028 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4029 > COSTS_N_INSNS (1)))
4030 x = force_reg (mode, x);
4031
4032 if (CONSTANT_P (y) && optimize
4033 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4034 > COSTS_N_INSNS (1)))
4035 y = force_reg (mode, y);
4036
4037 #ifdef HAVE_cc0
4038 /* Make sure if we have a canonical comparison. The RTL
4039 documentation states that canonical comparisons are required only
4040 for targets which have cc0. */
4041 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4042 #endif
4043
4044 /* Don't let both operands fail to indicate the mode. */
4045 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4046 x = force_reg (mode, x);
4047 if (mode == VOIDmode)
4048 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4049
4050 /* Handle all BLKmode compares. */
4051
4052 if (mode == BLKmode)
4053 {
4054 enum machine_mode result_mode;
4055 enum insn_code cmp_code;
4056 tree length_type;
4057 rtx libfunc;
4058 rtx result;
4059 rtx opalign
4060 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4061
4062 gcc_assert (size);
4063
4064 /* Try to use a memory block compare insn - either cmpstr
4065 or cmpmem will do. */
4066 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4067 cmp_mode != VOIDmode;
4068 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4069 {
4070 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4071 if (cmp_code == CODE_FOR_nothing)
4072 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4073 if (cmp_code == CODE_FOR_nothing)
4074 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4075 if (cmp_code == CODE_FOR_nothing)
4076 continue;
4077
4078 /* Must make sure the size fits the insn's mode. */
4079 if ((CONST_INT_P (size)
4080 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4081 || (GET_MODE_BITSIZE (GET_MODE (size))
4082 > GET_MODE_BITSIZE (cmp_mode)))
4083 continue;
4084
4085 result_mode = insn_data[cmp_code].operand[0].mode;
4086 result = gen_reg_rtx (result_mode);
4087 size = convert_to_mode (cmp_mode, size, 1);
4088 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4089
4090 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4091 *pmode = result_mode;
4092 return;
4093 }
4094
4095 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4096 goto fail;
4097
4098 /* Otherwise call a library function, memcmp. */
4099 libfunc = memcmp_libfunc;
4100 length_type = sizetype;
4101 result_mode = TYPE_MODE (integer_type_node);
4102 cmp_mode = TYPE_MODE (length_type);
4103 size = convert_to_mode (TYPE_MODE (length_type), size,
4104 TYPE_UNSIGNED (length_type));
4105
4106 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4107 result_mode, 3,
4108 XEXP (x, 0), Pmode,
4109 XEXP (y, 0), Pmode,
4110 size, cmp_mode);
4111 x = result;
4112 y = const0_rtx;
4113 mode = result_mode;
4114 methods = OPTAB_LIB_WIDEN;
4115 unsignedp = false;
4116 }
4117
4118 /* Don't allow operands to the compare to trap, as that can put the
4119 compare and branch in different basic blocks. */
4120 if (cfun->can_throw_non_call_exceptions)
4121 {
4122 if (may_trap_p (x))
4123 x = force_reg (mode, x);
4124 if (may_trap_p (y))
4125 y = force_reg (mode, y);
4126 }
4127
4128 if (GET_MODE_CLASS (mode) == MODE_CC)
4129 {
4130 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4131 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4132 return;
4133 }
4134
4135 mclass = GET_MODE_CLASS (mode);
4136 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4137 cmp_mode = mode;
4138 do
4139 {
4140 enum insn_code icode;
4141 icode = optab_handler (cbranch_optab, cmp_mode);
4142 if (icode != CODE_FOR_nothing
4143 && insn_operand_matches (icode, 0, test))
4144 {
4145 rtx last = get_last_insn ();
4146 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4147 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4148 if (op0 && op1
4149 && insn_operand_matches (icode, 1, op0)
4150 && insn_operand_matches (icode, 2, op1))
4151 {
4152 XEXP (test, 0) = op0;
4153 XEXP (test, 1) = op1;
4154 *ptest = test;
4155 *pmode = cmp_mode;
4156 return;
4157 }
4158 delete_insns_since (last);
4159 }
4160
4161 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4162 break;
4163 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4164 }
4165 while (cmp_mode != VOIDmode);
4166
4167 if (methods != OPTAB_LIB_WIDEN)
4168 goto fail;
4169
4170 if (!SCALAR_FLOAT_MODE_P (mode))
4171 {
4172 rtx result;
4173 enum machine_mode ret_mode;
4174
4175 /* Handle a libcall just for the mode we are using. */
4176 libfunc = optab_libfunc (cmp_optab, mode);
4177 gcc_assert (libfunc);
4178
4179 /* If we want unsigned, and this mode has a distinct unsigned
4180 comparison routine, use that. */
4181 if (unsignedp)
4182 {
4183 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4184 if (ulibfunc)
4185 libfunc = ulibfunc;
4186 }
4187
4188 ret_mode = targetm.libgcc_cmp_return_mode ();
4189 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4190 ret_mode, 2, x, mode, y, mode);
4191
4192 /* There are two kinds of comparison routines. Biased routines
4193 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4194 of gcc expect that the comparison operation is equivalent
4195 to the modified comparison. For signed comparisons compare the
4196 result against 1 in the biased case, and zero in the unbiased
4197 case. For unsigned comparisons always compare against 1 after
4198 biasing the unbiased result by adding 1. This gives us a way to
4199 represent LTU.
4200 The comparisons in the fixed-point helper library are always
4201 biased. */
4202 x = result;
4203 y = const1_rtx;
4204
4205 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4206 {
4207 if (unsignedp)
4208 x = plus_constant (ret_mode, result, 1);
4209 else
4210 y = const0_rtx;
4211 }
4212
4213 *pmode = word_mode;
4214 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4215 ptest, pmode);
4216 }
4217 else
4218 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4219
4220 return;
4221
4222 fail:
4223 *ptest = NULL_RTX;
4224 }
4225
4226 /* Before emitting an insn with code ICODE, make sure that X, which is going
4227 to be used for operand OPNUM of the insn, is converted from mode MODE to
4228 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4229 that it is accepted by the operand predicate. Return the new value. */
4230
4231 rtx
4232 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4233 enum machine_mode wider_mode, int unsignedp)
4234 {
4235 if (mode != wider_mode)
4236 x = convert_modes (wider_mode, mode, x, unsignedp);
4237
4238 if (!insn_operand_matches (icode, opnum, x))
4239 {
4240 if (reload_completed)
4241 return NULL_RTX;
4242 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4243 }
4244
4245 return x;
4246 }
4247
4248 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4249 we can do the branch. */
4250
4251 static void
4252 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
4253 {
4254 enum machine_mode optab_mode;
4255 enum mode_class mclass;
4256 enum insn_code icode;
4257
4258 mclass = GET_MODE_CLASS (mode);
4259 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4260 icode = optab_handler (cbranch_optab, optab_mode);
4261
4262 gcc_assert (icode != CODE_FOR_nothing);
4263 gcc_assert (insn_operand_matches (icode, 0, test));
4264 emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
4265 }
4266
4267 /* Generate code to compare X with Y so that the condition codes are
4268 set and to jump to LABEL if the condition is true. If X is a
4269 constant and Y is not a constant, then the comparison is swapped to
4270 ensure that the comparison RTL has the canonical form.
4271
4272 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4273 need to be widened. UNSIGNEDP is also used to select the proper
4274 branch condition code.
4275
4276 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4277
4278 MODE is the mode of the inputs (in case they are const_int).
4279
4280 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4281 It will be potentially converted into an unsigned variant based on
4282 UNSIGNEDP to select a proper jump instruction. */
4283
4284 void
4285 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4286 enum machine_mode mode, int unsignedp, rtx label)
4287 {
4288 rtx op0 = x, op1 = y;
4289 rtx test;
4290
4291 /* Swap operands and condition to ensure canonical RTL. */
4292 if (swap_commutative_operands_p (x, y)
4293 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4294 {
4295 op0 = y, op1 = x;
4296 comparison = swap_condition (comparison);
4297 }
4298
4299 /* If OP0 is still a constant, then both X and Y must be constants
4300 or the opposite comparison is not supported. Force X into a register
4301 to create canonical RTL. */
4302 if (CONSTANT_P (op0))
4303 op0 = force_reg (mode, op0);
4304
4305 if (unsignedp)
4306 comparison = unsigned_condition (comparison);
4307
4308 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4309 &test, &mode);
4310 emit_cmp_and_jump_insn_1 (test, mode, label);
4311 }
4312
4313 \f
4314 /* Emit a library call comparison between floating point X and Y.
4315 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4316
4317 static void
4318 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4319 rtx *ptest, enum machine_mode *pmode)
4320 {
4321 enum rtx_code swapped = swap_condition (comparison);
4322 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4323 enum machine_mode orig_mode = GET_MODE (x);
4324 enum machine_mode mode, cmp_mode;
4325 rtx true_rtx, false_rtx;
4326 rtx value, target, insns, equiv;
4327 rtx libfunc = 0;
4328 bool reversed_p = false;
4329 cmp_mode = targetm.libgcc_cmp_return_mode ();
4330
4331 for (mode = orig_mode;
4332 mode != VOIDmode;
4333 mode = GET_MODE_WIDER_MODE (mode))
4334 {
4335 if (code_to_optab (comparison)
4336 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4337 break;
4338
4339 if (code_to_optab (swapped)
4340 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4341 {
4342 rtx tmp;
4343 tmp = x; x = y; y = tmp;
4344 comparison = swapped;
4345 break;
4346 }
4347
4348 if (code_to_optab (reversed)
4349 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4350 {
4351 comparison = reversed;
4352 reversed_p = true;
4353 break;
4354 }
4355 }
4356
4357 gcc_assert (mode != VOIDmode);
4358
4359 if (mode != orig_mode)
4360 {
4361 x = convert_to_mode (mode, x, 0);
4362 y = convert_to_mode (mode, y, 0);
4363 }
4364
4365 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4366 the RTL. The allows the RTL optimizers to delete the libcall if the
4367 condition can be determined at compile-time. */
4368 if (comparison == UNORDERED
4369 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4370 {
4371 true_rtx = const_true_rtx;
4372 false_rtx = const0_rtx;
4373 }
4374 else
4375 {
4376 switch (comparison)
4377 {
4378 case EQ:
4379 true_rtx = const0_rtx;
4380 false_rtx = const_true_rtx;
4381 break;
4382
4383 case NE:
4384 true_rtx = const_true_rtx;
4385 false_rtx = const0_rtx;
4386 break;
4387
4388 case GT:
4389 true_rtx = const1_rtx;
4390 false_rtx = const0_rtx;
4391 break;
4392
4393 case GE:
4394 true_rtx = const0_rtx;
4395 false_rtx = constm1_rtx;
4396 break;
4397
4398 case LT:
4399 true_rtx = constm1_rtx;
4400 false_rtx = const0_rtx;
4401 break;
4402
4403 case LE:
4404 true_rtx = const0_rtx;
4405 false_rtx = const1_rtx;
4406 break;
4407
4408 default:
4409 gcc_unreachable ();
4410 }
4411 }
4412
4413 if (comparison == UNORDERED)
4414 {
4415 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4416 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4417 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4418 temp, const_true_rtx, equiv);
4419 }
4420 else
4421 {
4422 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4423 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4424 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4425 equiv, true_rtx, false_rtx);
4426 }
4427
4428 start_sequence ();
4429 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4430 cmp_mode, 2, x, mode, y, mode);
4431 insns = get_insns ();
4432 end_sequence ();
4433
4434 target = gen_reg_rtx (cmp_mode);
4435 emit_libcall_block (insns, target, value, equiv);
4436
4437 if (comparison == UNORDERED
4438 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4439 || reversed_p)
4440 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4441 else
4442 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4443
4444 *pmode = cmp_mode;
4445 }
4446 \f
4447 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4448
4449 void
4450 emit_indirect_jump (rtx loc)
4451 {
4452 struct expand_operand ops[1];
4453
4454 create_address_operand (&ops[0], loc);
4455 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4456 emit_barrier ();
4457 }
4458 \f
4459 #ifdef HAVE_conditional_move
4460
4461 /* Emit a conditional move instruction if the machine supports one for that
4462 condition and machine mode.
4463
4464 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4465 the mode to use should they be constants. If it is VOIDmode, they cannot
4466 both be constants.
4467
4468 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4469 should be stored there. MODE is the mode to use should they be constants.
4470 If it is VOIDmode, they cannot both be constants.
4471
4472 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4473 is not supported. */
4474
4475 rtx
4476 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4477 enum machine_mode cmode, rtx op2, rtx op3,
4478 enum machine_mode mode, int unsignedp)
4479 {
4480 rtx tem, comparison, last;
4481 enum insn_code icode;
4482 enum rtx_code reversed;
4483
4484 /* If one operand is constant, make it the second one. Only do this
4485 if the other operand is not constant as well. */
4486
4487 if (swap_commutative_operands_p (op0, op1))
4488 {
4489 tem = op0;
4490 op0 = op1;
4491 op1 = tem;
4492 code = swap_condition (code);
4493 }
4494
4495 /* get_condition will prefer to generate LT and GT even if the old
4496 comparison was against zero, so undo that canonicalization here since
4497 comparisons against zero are cheaper. */
4498 if (code == LT && op1 == const1_rtx)
4499 code = LE, op1 = const0_rtx;
4500 else if (code == GT && op1 == constm1_rtx)
4501 code = GE, op1 = const0_rtx;
4502
4503 if (cmode == VOIDmode)
4504 cmode = GET_MODE (op0);
4505
4506 if (swap_commutative_operands_p (op2, op3)
4507 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4508 != UNKNOWN))
4509 {
4510 tem = op2;
4511 op2 = op3;
4512 op3 = tem;
4513 code = reversed;
4514 }
4515
4516 if (mode == VOIDmode)
4517 mode = GET_MODE (op2);
4518
4519 icode = direct_optab_handler (movcc_optab, mode);
4520
4521 if (icode == CODE_FOR_nothing)
4522 return 0;
4523
4524 if (!target)
4525 target = gen_reg_rtx (mode);
4526
4527 code = unsignedp ? unsigned_condition (code) : code;
4528 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4529
4530 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4531 return NULL and let the caller figure out how best to deal with this
4532 situation. */
4533 if (!COMPARISON_P (comparison))
4534 return NULL_RTX;
4535
4536 do_pending_stack_adjust ();
4537 last = get_last_insn ();
4538 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4539 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4540 &comparison, &cmode);
4541 if (comparison)
4542 {
4543 struct expand_operand ops[4];
4544
4545 create_output_operand (&ops[0], target, mode);
4546 create_fixed_operand (&ops[1], comparison);
4547 create_input_operand (&ops[2], op2, mode);
4548 create_input_operand (&ops[3], op3, mode);
4549 if (maybe_expand_insn (icode, 4, ops))
4550 {
4551 if (ops[0].value != target)
4552 convert_move (target, ops[0].value, false);
4553 return target;
4554 }
4555 }
4556 delete_insns_since (last);
4557 return NULL_RTX;
4558 }
4559
4560 /* Return nonzero if a conditional move of mode MODE is supported.
4561
4562 This function is for combine so it can tell whether an insn that looks
4563 like a conditional move is actually supported by the hardware. If we
4564 guess wrong we lose a bit on optimization, but that's it. */
4565 /* ??? sparc64 supports conditionally moving integers values based on fp
4566 comparisons, and vice versa. How do we handle them? */
4567
4568 int
4569 can_conditionally_move_p (enum machine_mode mode)
4570 {
4571 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4572 return 1;
4573
4574 return 0;
4575 }
4576
4577 #endif /* HAVE_conditional_move */
4578
4579 /* Emit a conditional addition instruction if the machine supports one for that
4580 condition and machine mode.
4581
4582 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4583 the mode to use should they be constants. If it is VOIDmode, they cannot
4584 both be constants.
4585
4586 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4587 should be stored there. MODE is the mode to use should they be constants.
4588 If it is VOIDmode, they cannot both be constants.
4589
4590 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4591 is not supported. */
4592
4593 rtx
4594 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4595 enum machine_mode cmode, rtx op2, rtx op3,
4596 enum machine_mode mode, int unsignedp)
4597 {
4598 rtx tem, comparison, last;
4599 enum insn_code icode;
4600
4601 /* If one operand is constant, make it the second one. Only do this
4602 if the other operand is not constant as well. */
4603
4604 if (swap_commutative_operands_p (op0, op1))
4605 {
4606 tem = op0;
4607 op0 = op1;
4608 op1 = tem;
4609 code = swap_condition (code);
4610 }
4611
4612 /* get_condition will prefer to generate LT and GT even if the old
4613 comparison was against zero, so undo that canonicalization here since
4614 comparisons against zero are cheaper. */
4615 if (code == LT && op1 == const1_rtx)
4616 code = LE, op1 = const0_rtx;
4617 else if (code == GT && op1 == constm1_rtx)
4618 code = GE, op1 = const0_rtx;
4619
4620 if (cmode == VOIDmode)
4621 cmode = GET_MODE (op0);
4622
4623 if (mode == VOIDmode)
4624 mode = GET_MODE (op2);
4625
4626 icode = optab_handler (addcc_optab, mode);
4627
4628 if (icode == CODE_FOR_nothing)
4629 return 0;
4630
4631 if (!target)
4632 target = gen_reg_rtx (mode);
4633
4634 code = unsignedp ? unsigned_condition (code) : code;
4635 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4636
4637 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4638 return NULL and let the caller figure out how best to deal with this
4639 situation. */
4640 if (!COMPARISON_P (comparison))
4641 return NULL_RTX;
4642
4643 do_pending_stack_adjust ();
4644 last = get_last_insn ();
4645 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4646 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4647 &comparison, &cmode);
4648 if (comparison)
4649 {
4650 struct expand_operand ops[4];
4651
4652 create_output_operand (&ops[0], target, mode);
4653 create_fixed_operand (&ops[1], comparison);
4654 create_input_operand (&ops[2], op2, mode);
4655 create_input_operand (&ops[3], op3, mode);
4656 if (maybe_expand_insn (icode, 4, ops))
4657 {
4658 if (ops[0].value != target)
4659 convert_move (target, ops[0].value, false);
4660 return target;
4661 }
4662 }
4663 delete_insns_since (last);
4664 return NULL_RTX;
4665 }
4666 \f
4667 /* These functions attempt to generate an insn body, rather than
4668 emitting the insn, but if the gen function already emits them, we
4669 make no attempt to turn them back into naked patterns. */
4670
4671 /* Generate and return an insn body to add Y to X. */
4672
4673 rtx
4674 gen_add2_insn (rtx x, rtx y)
4675 {
4676 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4677
4678 gcc_assert (insn_operand_matches (icode, 0, x));
4679 gcc_assert (insn_operand_matches (icode, 1, x));
4680 gcc_assert (insn_operand_matches (icode, 2, y));
4681
4682 return GEN_FCN (icode) (x, x, y);
4683 }
4684
4685 /* Generate and return an insn body to add r1 and c,
4686 storing the result in r0. */
4687
4688 rtx
4689 gen_add3_insn (rtx r0, rtx r1, rtx c)
4690 {
4691 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4692
4693 if (icode == CODE_FOR_nothing
4694 || !insn_operand_matches (icode, 0, r0)
4695 || !insn_operand_matches (icode, 1, r1)
4696 || !insn_operand_matches (icode, 2, c))
4697 return NULL_RTX;
4698
4699 return GEN_FCN (icode) (r0, r1, c);
4700 }
4701
4702 int
4703 have_add2_insn (rtx x, rtx y)
4704 {
4705 enum insn_code icode;
4706
4707 gcc_assert (GET_MODE (x) != VOIDmode);
4708
4709 icode = optab_handler (add_optab, GET_MODE (x));
4710
4711 if (icode == CODE_FOR_nothing)
4712 return 0;
4713
4714 if (!insn_operand_matches (icode, 0, x)
4715 || !insn_operand_matches (icode, 1, x)
4716 || !insn_operand_matches (icode, 2, y))
4717 return 0;
4718
4719 return 1;
4720 }
4721
4722 /* Generate and return an insn body to subtract Y from X. */
4723
4724 rtx
4725 gen_sub2_insn (rtx x, rtx y)
4726 {
4727 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4728
4729 gcc_assert (insn_operand_matches (icode, 0, x));
4730 gcc_assert (insn_operand_matches (icode, 1, x));
4731 gcc_assert (insn_operand_matches (icode, 2, y));
4732
4733 return GEN_FCN (icode) (x, x, y);
4734 }
4735
4736 /* Generate and return an insn body to subtract r1 and c,
4737 storing the result in r0. */
4738
4739 rtx
4740 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4741 {
4742 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4743
4744 if (icode == CODE_FOR_nothing
4745 || !insn_operand_matches (icode, 0, r0)
4746 || !insn_operand_matches (icode, 1, r1)
4747 || !insn_operand_matches (icode, 2, c))
4748 return NULL_RTX;
4749
4750 return GEN_FCN (icode) (r0, r1, c);
4751 }
4752
4753 int
4754 have_sub2_insn (rtx x, rtx y)
4755 {
4756 enum insn_code icode;
4757
4758 gcc_assert (GET_MODE (x) != VOIDmode);
4759
4760 icode = optab_handler (sub_optab, GET_MODE (x));
4761
4762 if (icode == CODE_FOR_nothing)
4763 return 0;
4764
4765 if (!insn_operand_matches (icode, 0, x)
4766 || !insn_operand_matches (icode, 1, x)
4767 || !insn_operand_matches (icode, 2, y))
4768 return 0;
4769
4770 return 1;
4771 }
4772
4773 /* Generate the body of an instruction to copy Y into X.
4774 It may be a list of insns, if one insn isn't enough. */
4775
4776 rtx
4777 gen_move_insn (rtx x, rtx y)
4778 {
4779 rtx seq;
4780
4781 start_sequence ();
4782 emit_move_insn_1 (x, y);
4783 seq = get_insns ();
4784 end_sequence ();
4785 return seq;
4786 }
4787 \f
4788 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4789 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4790 no such operation exists, CODE_FOR_nothing will be returned. */
4791
4792 enum insn_code
4793 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4794 int unsignedp)
4795 {
4796 convert_optab tab;
4797 #ifdef HAVE_ptr_extend
4798 if (unsignedp < 0)
4799 return CODE_FOR_ptr_extend;
4800 #endif
4801
4802 tab = unsignedp ? zext_optab : sext_optab;
4803 return convert_optab_handler (tab, to_mode, from_mode);
4804 }
4805
4806 /* Generate the body of an insn to extend Y (with mode MFROM)
4807 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4808
4809 rtx
4810 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4811 enum machine_mode mfrom, int unsignedp)
4812 {
4813 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4814 return GEN_FCN (icode) (x, y);
4815 }
4816 \f
4817 /* can_fix_p and can_float_p say whether the target machine
4818 can directly convert a given fixed point type to
4819 a given floating point type, or vice versa.
4820 The returned value is the CODE_FOR_... value to use,
4821 or CODE_FOR_nothing if these modes cannot be directly converted.
4822
4823 *TRUNCP_PTR is set to 1 if it is necessary to output
4824 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4825
4826 static enum insn_code
4827 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4828 int unsignedp, int *truncp_ptr)
4829 {
4830 convert_optab tab;
4831 enum insn_code icode;
4832
4833 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4834 icode = convert_optab_handler (tab, fixmode, fltmode);
4835 if (icode != CODE_FOR_nothing)
4836 {
4837 *truncp_ptr = 0;
4838 return icode;
4839 }
4840
4841 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4842 for this to work. We need to rework the fix* and ftrunc* patterns
4843 and documentation. */
4844 tab = unsignedp ? ufix_optab : sfix_optab;
4845 icode = convert_optab_handler (tab, fixmode, fltmode);
4846 if (icode != CODE_FOR_nothing
4847 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4848 {
4849 *truncp_ptr = 1;
4850 return icode;
4851 }
4852
4853 *truncp_ptr = 0;
4854 return CODE_FOR_nothing;
4855 }
4856
4857 enum insn_code
4858 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4859 int unsignedp)
4860 {
4861 convert_optab tab;
4862
4863 tab = unsignedp ? ufloat_optab : sfloat_optab;
4864 return convert_optab_handler (tab, fltmode, fixmode);
4865 }
4866
4867 /* Function supportable_convert_operation
4868
4869 Check whether an operation represented by the code CODE is a
4870 convert operation that is supported by the target platform in
4871 vector form (i.e., when operating on arguments of type VECTYPE_IN
4872 producing a result of type VECTYPE_OUT).
4873
4874 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4875 This function checks if these operations are supported
4876 by the target platform either directly (via vector tree-codes), or via
4877 target builtins.
4878
4879 Output:
4880 - CODE1 is code of vector operation to be used when
4881 vectorizing the operation, if available.
4882 - DECL is decl of target builtin functions to be used
4883 when vectorizing the operation, if available. In this case,
4884 CODE1 is CALL_EXPR. */
4885
4886 bool
4887 supportable_convert_operation (enum tree_code code,
4888 tree vectype_out, tree vectype_in,
4889 tree *decl, enum tree_code *code1)
4890 {
4891 enum machine_mode m1,m2;
4892 int truncp;
4893
4894 m1 = TYPE_MODE (vectype_out);
4895 m2 = TYPE_MODE (vectype_in);
4896
4897 /* First check if we can done conversion directly. */
4898 if ((code == FIX_TRUNC_EXPR
4899 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4900 != CODE_FOR_nothing)
4901 || (code == FLOAT_EXPR
4902 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4903 != CODE_FOR_nothing))
4904 {
4905 *code1 = code;
4906 return true;
4907 }
4908
4909 /* Now check for builtin. */
4910 if (targetm.vectorize.builtin_conversion
4911 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4912 {
4913 *code1 = CALL_EXPR;
4914 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4915 return true;
4916 }
4917 return false;
4918 }
4919
4920 \f
4921 /* Generate code to convert FROM to floating point
4922 and store in TO. FROM must be fixed point and not VOIDmode.
4923 UNSIGNEDP nonzero means regard FROM as unsigned.
4924 Normally this is done by correcting the final value
4925 if it is negative. */
4926
4927 void
4928 expand_float (rtx to, rtx from, int unsignedp)
4929 {
4930 enum insn_code icode;
4931 rtx target = to;
4932 enum machine_mode fmode, imode;
4933 bool can_do_signed = false;
4934
4935 /* Crash now, because we won't be able to decide which mode to use. */
4936 gcc_assert (GET_MODE (from) != VOIDmode);
4937
4938 /* Look for an insn to do the conversion. Do it in the specified
4939 modes if possible; otherwise convert either input, output or both to
4940 wider mode. If the integer mode is wider than the mode of FROM,
4941 we can do the conversion signed even if the input is unsigned. */
4942
4943 for (fmode = GET_MODE (to); fmode != VOIDmode;
4944 fmode = GET_MODE_WIDER_MODE (fmode))
4945 for (imode = GET_MODE (from); imode != VOIDmode;
4946 imode = GET_MODE_WIDER_MODE (imode))
4947 {
4948 int doing_unsigned = unsignedp;
4949
4950 if (fmode != GET_MODE (to)
4951 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4952 continue;
4953
4954 icode = can_float_p (fmode, imode, unsignedp);
4955 if (icode == CODE_FOR_nothing && unsignedp)
4956 {
4957 enum insn_code scode = can_float_p (fmode, imode, 0);
4958 if (scode != CODE_FOR_nothing)
4959 can_do_signed = true;
4960 if (imode != GET_MODE (from))
4961 icode = scode, doing_unsigned = 0;
4962 }
4963
4964 if (icode != CODE_FOR_nothing)
4965 {
4966 if (imode != GET_MODE (from))
4967 from = convert_to_mode (imode, from, unsignedp);
4968
4969 if (fmode != GET_MODE (to))
4970 target = gen_reg_rtx (fmode);
4971
4972 emit_unop_insn (icode, target, from,
4973 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4974
4975 if (target != to)
4976 convert_move (to, target, 0);
4977 return;
4978 }
4979 }
4980
4981 /* Unsigned integer, and no way to convert directly. Convert as signed,
4982 then unconditionally adjust the result. */
4983 if (unsignedp && can_do_signed)
4984 {
4985 rtx label = gen_label_rtx ();
4986 rtx temp;
4987 REAL_VALUE_TYPE offset;
4988
4989 /* Look for a usable floating mode FMODE wider than the source and at
4990 least as wide as the target. Using FMODE will avoid rounding woes
4991 with unsigned values greater than the signed maximum value. */
4992
4993 for (fmode = GET_MODE (to); fmode != VOIDmode;
4994 fmode = GET_MODE_WIDER_MODE (fmode))
4995 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4996 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4997 break;
4998
4999 if (fmode == VOIDmode)
5000 {
5001 /* There is no such mode. Pretend the target is wide enough. */
5002 fmode = GET_MODE (to);
5003
5004 /* Avoid double-rounding when TO is narrower than FROM. */
5005 if ((significand_size (fmode) + 1)
5006 < GET_MODE_PRECISION (GET_MODE (from)))
5007 {
5008 rtx temp1;
5009 rtx neglabel = gen_label_rtx ();
5010
5011 /* Don't use TARGET if it isn't a register, is a hard register,
5012 or is the wrong mode. */
5013 if (!REG_P (target)
5014 || REGNO (target) < FIRST_PSEUDO_REGISTER
5015 || GET_MODE (target) != fmode)
5016 target = gen_reg_rtx (fmode);
5017
5018 imode = GET_MODE (from);
5019 do_pending_stack_adjust ();
5020
5021 /* Test whether the sign bit is set. */
5022 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5023 0, neglabel);
5024
5025 /* The sign bit is not set. Convert as signed. */
5026 expand_float (target, from, 0);
5027 emit_jump_insn (gen_jump (label));
5028 emit_barrier ();
5029
5030 /* The sign bit is set.
5031 Convert to a usable (positive signed) value by shifting right
5032 one bit, while remembering if a nonzero bit was shifted
5033 out; i.e., compute (from & 1) | (from >> 1). */
5034
5035 emit_label (neglabel);
5036 temp = expand_binop (imode, and_optab, from, const1_rtx,
5037 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5038 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5039 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5040 OPTAB_LIB_WIDEN);
5041 expand_float (target, temp, 0);
5042
5043 /* Multiply by 2 to undo the shift above. */
5044 temp = expand_binop (fmode, add_optab, target, target,
5045 target, 0, OPTAB_LIB_WIDEN);
5046 if (temp != target)
5047 emit_move_insn (target, temp);
5048
5049 do_pending_stack_adjust ();
5050 emit_label (label);
5051 goto done;
5052 }
5053 }
5054
5055 /* If we are about to do some arithmetic to correct for an
5056 unsigned operand, do it in a pseudo-register. */
5057
5058 if (GET_MODE (to) != fmode
5059 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5060 target = gen_reg_rtx (fmode);
5061
5062 /* Convert as signed integer to floating. */
5063 expand_float (target, from, 0);
5064
5065 /* If FROM is negative (and therefore TO is negative),
5066 correct its value by 2**bitwidth. */
5067
5068 do_pending_stack_adjust ();
5069 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5070 0, label);
5071
5072
5073 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5074 temp = expand_binop (fmode, add_optab, target,
5075 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5076 target, 0, OPTAB_LIB_WIDEN);
5077 if (temp != target)
5078 emit_move_insn (target, temp);
5079
5080 do_pending_stack_adjust ();
5081 emit_label (label);
5082 goto done;
5083 }
5084
5085 /* No hardware instruction available; call a library routine. */
5086 {
5087 rtx libfunc;
5088 rtx insns;
5089 rtx value;
5090 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5091
5092 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5093 from = convert_to_mode (SImode, from, unsignedp);
5094
5095 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5096 gcc_assert (libfunc);
5097
5098 start_sequence ();
5099
5100 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5101 GET_MODE (to), 1, from,
5102 GET_MODE (from));
5103 insns = get_insns ();
5104 end_sequence ();
5105
5106 emit_libcall_block (insns, target, value,
5107 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5108 GET_MODE (to), from));
5109 }
5110
5111 done:
5112
5113 /* Copy result to requested destination
5114 if we have been computing in a temp location. */
5115
5116 if (target != to)
5117 {
5118 if (GET_MODE (target) == GET_MODE (to))
5119 emit_move_insn (to, target);
5120 else
5121 convert_move (to, target, 0);
5122 }
5123 }
5124 \f
5125 /* Generate code to convert FROM to fixed point and store in TO. FROM
5126 must be floating point. */
5127
5128 void
5129 expand_fix (rtx to, rtx from, int unsignedp)
5130 {
5131 enum insn_code icode;
5132 rtx target = to;
5133 enum machine_mode fmode, imode;
5134 int must_trunc = 0;
5135
5136 /* We first try to find a pair of modes, one real and one integer, at
5137 least as wide as FROM and TO, respectively, in which we can open-code
5138 this conversion. If the integer mode is wider than the mode of TO,
5139 we can do the conversion either signed or unsigned. */
5140
5141 for (fmode = GET_MODE (from); fmode != VOIDmode;
5142 fmode = GET_MODE_WIDER_MODE (fmode))
5143 for (imode = GET_MODE (to); imode != VOIDmode;
5144 imode = GET_MODE_WIDER_MODE (imode))
5145 {
5146 int doing_unsigned = unsignedp;
5147
5148 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5149 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5150 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5151
5152 if (icode != CODE_FOR_nothing)
5153 {
5154 rtx last = get_last_insn ();
5155 if (fmode != GET_MODE (from))
5156 from = convert_to_mode (fmode, from, 0);
5157
5158 if (must_trunc)
5159 {
5160 rtx temp = gen_reg_rtx (GET_MODE (from));
5161 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5162 temp, 0);
5163 }
5164
5165 if (imode != GET_MODE (to))
5166 target = gen_reg_rtx (imode);
5167
5168 if (maybe_emit_unop_insn (icode, target, from,
5169 doing_unsigned ? UNSIGNED_FIX : FIX))
5170 {
5171 if (target != to)
5172 convert_move (to, target, unsignedp);
5173 return;
5174 }
5175 delete_insns_since (last);
5176 }
5177 }
5178
5179 /* For an unsigned conversion, there is one more way to do it.
5180 If we have a signed conversion, we generate code that compares
5181 the real value to the largest representable positive number. If if
5182 is smaller, the conversion is done normally. Otherwise, subtract
5183 one plus the highest signed number, convert, and add it back.
5184
5185 We only need to check all real modes, since we know we didn't find
5186 anything with a wider integer mode.
5187
5188 This code used to extend FP value into mode wider than the destination.
5189 This is needed for decimal float modes which cannot accurately
5190 represent one plus the highest signed number of the same size, but
5191 not for binary modes. Consider, for instance conversion from SFmode
5192 into DImode.
5193
5194 The hot path through the code is dealing with inputs smaller than 2^63
5195 and doing just the conversion, so there is no bits to lose.
5196
5197 In the other path we know the value is positive in the range 2^63..2^64-1
5198 inclusive. (as for other input overflow happens and result is undefined)
5199 So we know that the most important bit set in mantissa corresponds to
5200 2^63. The subtraction of 2^63 should not generate any rounding as it
5201 simply clears out that bit. The rest is trivial. */
5202
5203 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5204 for (fmode = GET_MODE (from); fmode != VOIDmode;
5205 fmode = GET_MODE_WIDER_MODE (fmode))
5206 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5207 && (!DECIMAL_FLOAT_MODE_P (fmode)
5208 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5209 {
5210 int bitsize;
5211 REAL_VALUE_TYPE offset;
5212 rtx limit, lab1, lab2, insn;
5213
5214 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5215 real_2expN (&offset, bitsize - 1, fmode);
5216 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5217 lab1 = gen_label_rtx ();
5218 lab2 = gen_label_rtx ();
5219
5220 if (fmode != GET_MODE (from))
5221 from = convert_to_mode (fmode, from, 0);
5222
5223 /* See if we need to do the subtraction. */
5224 do_pending_stack_adjust ();
5225 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5226 0, lab1);
5227
5228 /* If not, do the signed "fix" and branch around fixup code. */
5229 expand_fix (to, from, 0);
5230 emit_jump_insn (gen_jump (lab2));
5231 emit_barrier ();
5232
5233 /* Otherwise, subtract 2**(N-1), convert to signed number,
5234 then add 2**(N-1). Do the addition using XOR since this
5235 will often generate better code. */
5236 emit_label (lab1);
5237 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5238 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5239 expand_fix (to, target, 0);
5240 target = expand_binop (GET_MODE (to), xor_optab, to,
5241 gen_int_mode
5242 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5243 GET_MODE (to)),
5244 to, 1, OPTAB_LIB_WIDEN);
5245
5246 if (target != to)
5247 emit_move_insn (to, target);
5248
5249 emit_label (lab2);
5250
5251 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5252 {
5253 /* Make a place for a REG_NOTE and add it. */
5254 insn = emit_move_insn (to, to);
5255 set_dst_reg_note (insn, REG_EQUAL,
5256 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5257 copy_rtx (from)),
5258 to);
5259 }
5260
5261 return;
5262 }
5263
5264 /* We can't do it with an insn, so use a library call. But first ensure
5265 that the mode of TO is at least as wide as SImode, since those are the
5266 only library calls we know about. */
5267
5268 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5269 {
5270 target = gen_reg_rtx (SImode);
5271
5272 expand_fix (target, from, unsignedp);
5273 }
5274 else
5275 {
5276 rtx insns;
5277 rtx value;
5278 rtx libfunc;
5279
5280 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5281 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5282 gcc_assert (libfunc);
5283
5284 start_sequence ();
5285
5286 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5287 GET_MODE (to), 1, from,
5288 GET_MODE (from));
5289 insns = get_insns ();
5290 end_sequence ();
5291
5292 emit_libcall_block (insns, target, value,
5293 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5294 GET_MODE (to), from));
5295 }
5296
5297 if (target != to)
5298 {
5299 if (GET_MODE (to) == GET_MODE (target))
5300 emit_move_insn (to, target);
5301 else
5302 convert_move (to, target, 0);
5303 }
5304 }
5305
5306 /* Generate code to convert FROM or TO a fixed-point.
5307 If UINTP is true, either TO or FROM is an unsigned integer.
5308 If SATP is true, we need to saturate the result. */
5309
5310 void
5311 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5312 {
5313 enum machine_mode to_mode = GET_MODE (to);
5314 enum machine_mode from_mode = GET_MODE (from);
5315 convert_optab tab;
5316 enum rtx_code this_code;
5317 enum insn_code code;
5318 rtx insns, value;
5319 rtx libfunc;
5320
5321 if (to_mode == from_mode)
5322 {
5323 emit_move_insn (to, from);
5324 return;
5325 }
5326
5327 if (uintp)
5328 {
5329 tab = satp ? satfractuns_optab : fractuns_optab;
5330 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5331 }
5332 else
5333 {
5334 tab = satp ? satfract_optab : fract_optab;
5335 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5336 }
5337 code = convert_optab_handler (tab, to_mode, from_mode);
5338 if (code != CODE_FOR_nothing)
5339 {
5340 emit_unop_insn (code, to, from, this_code);
5341 return;
5342 }
5343
5344 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5345 gcc_assert (libfunc);
5346
5347 start_sequence ();
5348 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5349 1, from, from_mode);
5350 insns = get_insns ();
5351 end_sequence ();
5352
5353 emit_libcall_block (insns, to, value,
5354 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5355 }
5356
5357 /* Generate code to convert FROM to fixed point and store in TO. FROM
5358 must be floating point, TO must be signed. Use the conversion optab
5359 TAB to do the conversion. */
5360
5361 bool
5362 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5363 {
5364 enum insn_code icode;
5365 rtx target = to;
5366 enum machine_mode fmode, imode;
5367
5368 /* We first try to find a pair of modes, one real and one integer, at
5369 least as wide as FROM and TO, respectively, in which we can open-code
5370 this conversion. If the integer mode is wider than the mode of TO,
5371 we can do the conversion either signed or unsigned. */
5372
5373 for (fmode = GET_MODE (from); fmode != VOIDmode;
5374 fmode = GET_MODE_WIDER_MODE (fmode))
5375 for (imode = GET_MODE (to); imode != VOIDmode;
5376 imode = GET_MODE_WIDER_MODE (imode))
5377 {
5378 icode = convert_optab_handler (tab, imode, fmode);
5379 if (icode != CODE_FOR_nothing)
5380 {
5381 rtx last = get_last_insn ();
5382 if (fmode != GET_MODE (from))
5383 from = convert_to_mode (fmode, from, 0);
5384
5385 if (imode != GET_MODE (to))
5386 target = gen_reg_rtx (imode);
5387
5388 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5389 {
5390 delete_insns_since (last);
5391 continue;
5392 }
5393 if (target != to)
5394 convert_move (to, target, 0);
5395 return true;
5396 }
5397 }
5398
5399 return false;
5400 }
5401 \f
5402 /* Report whether we have an instruction to perform the operation
5403 specified by CODE on operands of mode MODE. */
5404 int
5405 have_insn_for (enum rtx_code code, enum machine_mode mode)
5406 {
5407 return (code_to_optab (code)
5408 && (optab_handler (code_to_optab (code), mode)
5409 != CODE_FOR_nothing));
5410 }
5411
5412 /* Initialize the libfunc fields of an entire group of entries in some
5413 optab. Each entry is set equal to a string consisting of a leading
5414 pair of underscores followed by a generic operation name followed by
5415 a mode name (downshifted to lowercase) followed by a single character
5416 representing the number of operands for the given operation (which is
5417 usually one of the characters '2', '3', or '4').
5418
5419 OPTABLE is the table in which libfunc fields are to be initialized.
5420 OPNAME is the generic (string) name of the operation.
5421 SUFFIX is the character which specifies the number of operands for
5422 the given generic operation.
5423 MODE is the mode to generate for.
5424 */
5425
5426 static void
5427 gen_libfunc (optab optable, const char *opname, int suffix,
5428 enum machine_mode mode)
5429 {
5430 unsigned opname_len = strlen (opname);
5431 const char *mname = GET_MODE_NAME (mode);
5432 unsigned mname_len = strlen (mname);
5433 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5434 int len = prefix_len + opname_len + mname_len + 1 + 1;
5435 char *libfunc_name = XALLOCAVEC (char, len);
5436 char *p;
5437 const char *q;
5438
5439 p = libfunc_name;
5440 *p++ = '_';
5441 *p++ = '_';
5442 if (targetm.libfunc_gnu_prefix)
5443 {
5444 *p++ = 'g';
5445 *p++ = 'n';
5446 *p++ = 'u';
5447 *p++ = '_';
5448 }
5449 for (q = opname; *q; )
5450 *p++ = *q++;
5451 for (q = mname; *q; q++)
5452 *p++ = TOLOWER (*q);
5453 *p++ = suffix;
5454 *p = '\0';
5455
5456 set_optab_libfunc (optable, mode,
5457 ggc_alloc_string (libfunc_name, p - libfunc_name));
5458 }
5459
5460 /* Like gen_libfunc, but verify that integer operation is involved. */
5461
5462 void
5463 gen_int_libfunc (optab optable, const char *opname, char suffix,
5464 enum machine_mode mode)
5465 {
5466 int maxsize = 2 * BITS_PER_WORD;
5467
5468 if (GET_MODE_CLASS (mode) != MODE_INT)
5469 return;
5470 if (maxsize < LONG_LONG_TYPE_SIZE)
5471 maxsize = LONG_LONG_TYPE_SIZE;
5472 if (GET_MODE_CLASS (mode) != MODE_INT
5473 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5474 return;
5475 gen_libfunc (optable, opname, suffix, mode);
5476 }
5477
5478 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5479
5480 void
5481 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5482 enum machine_mode mode)
5483 {
5484 char *dec_opname;
5485
5486 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5487 gen_libfunc (optable, opname, suffix, mode);
5488 if (DECIMAL_FLOAT_MODE_P (mode))
5489 {
5490 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5491 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5492 depending on the low level floating format used. */
5493 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5494 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5495 gen_libfunc (optable, dec_opname, suffix, mode);
5496 }
5497 }
5498
5499 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5500
5501 void
5502 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5503 enum machine_mode mode)
5504 {
5505 if (!ALL_FIXED_POINT_MODE_P (mode))
5506 return;
5507 gen_libfunc (optable, opname, suffix, mode);
5508 }
5509
5510 /* Like gen_libfunc, but verify that signed fixed-point operation is
5511 involved. */
5512
5513 void
5514 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5515 enum machine_mode mode)
5516 {
5517 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5518 return;
5519 gen_libfunc (optable, opname, suffix, mode);
5520 }
5521
5522 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5523 involved. */
5524
5525 void
5526 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5527 enum machine_mode mode)
5528 {
5529 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5530 return;
5531 gen_libfunc (optable, opname, suffix, mode);
5532 }
5533
5534 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5535
5536 void
5537 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5538 enum machine_mode mode)
5539 {
5540 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5541 gen_fp_libfunc (optable, name, suffix, mode);
5542 if (INTEGRAL_MODE_P (mode))
5543 gen_int_libfunc (optable, name, suffix, mode);
5544 }
5545
5546 /* Like gen_libfunc, but verify that FP or INT operation is involved
5547 and add 'v' suffix for integer operation. */
5548
5549 void
5550 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5551 enum machine_mode mode)
5552 {
5553 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5554 gen_fp_libfunc (optable, name, suffix, mode);
5555 if (GET_MODE_CLASS (mode) == MODE_INT)
5556 {
5557 int len = strlen (name);
5558 char *v_name = XALLOCAVEC (char, len + 2);
5559 strcpy (v_name, name);
5560 v_name[len] = 'v';
5561 v_name[len + 1] = 0;
5562 gen_int_libfunc (optable, v_name, suffix, mode);
5563 }
5564 }
5565
5566 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5567 involved. */
5568
5569 void
5570 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5571 enum machine_mode mode)
5572 {
5573 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5574 gen_fp_libfunc (optable, name, suffix, mode);
5575 if (INTEGRAL_MODE_P (mode))
5576 gen_int_libfunc (optable, name, suffix, mode);
5577 if (ALL_FIXED_POINT_MODE_P (mode))
5578 gen_fixed_libfunc (optable, name, suffix, mode);
5579 }
5580
5581 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5582 involved. */
5583
5584 void
5585 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5586 enum machine_mode mode)
5587 {
5588 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5589 gen_fp_libfunc (optable, name, suffix, mode);
5590 if (INTEGRAL_MODE_P (mode))
5591 gen_int_libfunc (optable, name, suffix, mode);
5592 if (SIGNED_FIXED_POINT_MODE_P (mode))
5593 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5594 }
5595
5596 /* Like gen_libfunc, but verify that INT or FIXED operation is
5597 involved. */
5598
5599 void
5600 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5601 enum machine_mode mode)
5602 {
5603 if (INTEGRAL_MODE_P (mode))
5604 gen_int_libfunc (optable, name, suffix, mode);
5605 if (ALL_FIXED_POINT_MODE_P (mode))
5606 gen_fixed_libfunc (optable, name, suffix, mode);
5607 }
5608
5609 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5610 involved. */
5611
5612 void
5613 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5614 enum machine_mode mode)
5615 {
5616 if (INTEGRAL_MODE_P (mode))
5617 gen_int_libfunc (optable, name, suffix, mode);
5618 if (SIGNED_FIXED_POINT_MODE_P (mode))
5619 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5620 }
5621
5622 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5623 involved. */
5624
5625 void
5626 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5627 enum machine_mode mode)
5628 {
5629 if (INTEGRAL_MODE_P (mode))
5630 gen_int_libfunc (optable, name, suffix, mode);
5631 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5632 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5633 }
5634
5635 /* Initialize the libfunc fields of an entire group of entries of an
5636 inter-mode-class conversion optab. The string formation rules are
5637 similar to the ones for init_libfuncs, above, but instead of having
5638 a mode name and an operand count these functions have two mode names
5639 and no operand count. */
5640
5641 void
5642 gen_interclass_conv_libfunc (convert_optab tab,
5643 const char *opname,
5644 enum machine_mode tmode,
5645 enum machine_mode fmode)
5646 {
5647 size_t opname_len = strlen (opname);
5648 size_t mname_len = 0;
5649
5650 const char *fname, *tname;
5651 const char *q;
5652 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5653 char *libfunc_name, *suffix;
5654 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5655 char *p;
5656
5657 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5658 depends on which underlying decimal floating point format is used. */
5659 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5660
5661 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5662
5663 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5664 nondec_name[0] = '_';
5665 nondec_name[1] = '_';
5666 if (targetm.libfunc_gnu_prefix)
5667 {
5668 nondec_name[2] = 'g';
5669 nondec_name[3] = 'n';
5670 nondec_name[4] = 'u';
5671 nondec_name[5] = '_';
5672 }
5673
5674 memcpy (&nondec_name[prefix_len], opname, opname_len);
5675 nondec_suffix = nondec_name + opname_len + prefix_len;
5676
5677 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5678 dec_name[0] = '_';
5679 dec_name[1] = '_';
5680 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5681 memcpy (&dec_name[2+dec_len], opname, opname_len);
5682 dec_suffix = dec_name + dec_len + opname_len + 2;
5683
5684 fname = GET_MODE_NAME (fmode);
5685 tname = GET_MODE_NAME (tmode);
5686
5687 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5688 {
5689 libfunc_name = dec_name;
5690 suffix = dec_suffix;
5691 }
5692 else
5693 {
5694 libfunc_name = nondec_name;
5695 suffix = nondec_suffix;
5696 }
5697
5698 p = suffix;
5699 for (q = fname; *q; p++, q++)
5700 *p = TOLOWER (*q);
5701 for (q = tname; *q; p++, q++)
5702 *p = TOLOWER (*q);
5703
5704 *p = '\0';
5705
5706 set_conv_libfunc (tab, tmode, fmode,
5707 ggc_alloc_string (libfunc_name, p - libfunc_name));
5708 }
5709
5710 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5711 int->fp conversion. */
5712
5713 void
5714 gen_int_to_fp_conv_libfunc (convert_optab tab,
5715 const char *opname,
5716 enum machine_mode tmode,
5717 enum machine_mode fmode)
5718 {
5719 if (GET_MODE_CLASS (fmode) != MODE_INT)
5720 return;
5721 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5722 return;
5723 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5724 }
5725
5726 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5727 naming scheme. */
5728
5729 void
5730 gen_ufloat_conv_libfunc (convert_optab tab,
5731 const char *opname ATTRIBUTE_UNUSED,
5732 enum machine_mode tmode,
5733 enum machine_mode fmode)
5734 {
5735 if (DECIMAL_FLOAT_MODE_P (tmode))
5736 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5737 else
5738 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5739 }
5740
5741 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5742 fp->int conversion. */
5743
5744 void
5745 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5746 const char *opname,
5747 enum machine_mode tmode,
5748 enum machine_mode fmode)
5749 {
5750 if (GET_MODE_CLASS (fmode) != MODE_INT)
5751 return;
5752 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5753 return;
5754 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5755 }
5756
5757 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5758 fp->int conversion with no decimal floating point involved. */
5759
5760 void
5761 gen_fp_to_int_conv_libfunc (convert_optab tab,
5762 const char *opname,
5763 enum machine_mode tmode,
5764 enum machine_mode fmode)
5765 {
5766 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5767 return;
5768 if (GET_MODE_CLASS (tmode) != MODE_INT)
5769 return;
5770 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5771 }
5772
5773 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5774 The string formation rules are
5775 similar to the ones for init_libfunc, above. */
5776
5777 void
5778 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5779 enum machine_mode tmode, enum machine_mode fmode)
5780 {
5781 size_t opname_len = strlen (opname);
5782 size_t mname_len = 0;
5783
5784 const char *fname, *tname;
5785 const char *q;
5786 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5787 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5788 char *libfunc_name, *suffix;
5789 char *p;
5790
5791 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5792 depends on which underlying decimal floating point format is used. */
5793 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5794
5795 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5796
5797 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5798 nondec_name[0] = '_';
5799 nondec_name[1] = '_';
5800 if (targetm.libfunc_gnu_prefix)
5801 {
5802 nondec_name[2] = 'g';
5803 nondec_name[3] = 'n';
5804 nondec_name[4] = 'u';
5805 nondec_name[5] = '_';
5806 }
5807 memcpy (&nondec_name[prefix_len], opname, opname_len);
5808 nondec_suffix = nondec_name + opname_len + prefix_len;
5809
5810 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5811 dec_name[0] = '_';
5812 dec_name[1] = '_';
5813 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5814 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5815 dec_suffix = dec_name + dec_len + opname_len + 2;
5816
5817 fname = GET_MODE_NAME (fmode);
5818 tname = GET_MODE_NAME (tmode);
5819
5820 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5821 {
5822 libfunc_name = dec_name;
5823 suffix = dec_suffix;
5824 }
5825 else
5826 {
5827 libfunc_name = nondec_name;
5828 suffix = nondec_suffix;
5829 }
5830
5831 p = suffix;
5832 for (q = fname; *q; p++, q++)
5833 *p = TOLOWER (*q);
5834 for (q = tname; *q; p++, q++)
5835 *p = TOLOWER (*q);
5836
5837 *p++ = '2';
5838 *p = '\0';
5839
5840 set_conv_libfunc (tab, tmode, fmode,
5841 ggc_alloc_string (libfunc_name, p - libfunc_name));
5842 }
5843
5844 /* Pick proper libcall for trunc_optab. We need to chose if we do
5845 truncation or extension and interclass or intraclass. */
5846
5847 void
5848 gen_trunc_conv_libfunc (convert_optab tab,
5849 const char *opname,
5850 enum machine_mode tmode,
5851 enum machine_mode fmode)
5852 {
5853 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5854 return;
5855 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5856 return;
5857 if (tmode == fmode)
5858 return;
5859
5860 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5861 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5862 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5863
5864 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5865 return;
5866
5867 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5868 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5869 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5870 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5871 }
5872
5873 /* Pick proper libcall for extend_optab. We need to chose if we do
5874 truncation or extension and interclass or intraclass. */
5875
5876 void
5877 gen_extend_conv_libfunc (convert_optab tab,
5878 const char *opname ATTRIBUTE_UNUSED,
5879 enum machine_mode tmode,
5880 enum machine_mode fmode)
5881 {
5882 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5883 return;
5884 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5885 return;
5886 if (tmode == fmode)
5887 return;
5888
5889 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5890 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5891 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5892
5893 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5894 return;
5895
5896 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5897 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5898 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5899 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5900 }
5901
5902 /* Pick proper libcall for fract_optab. We need to chose if we do
5903 interclass or intraclass. */
5904
5905 void
5906 gen_fract_conv_libfunc (convert_optab tab,
5907 const char *opname,
5908 enum machine_mode tmode,
5909 enum machine_mode fmode)
5910 {
5911 if (tmode == fmode)
5912 return;
5913 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5914 return;
5915
5916 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5917 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5918 else
5919 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5920 }
5921
5922 /* Pick proper libcall for fractuns_optab. */
5923
5924 void
5925 gen_fractuns_conv_libfunc (convert_optab tab,
5926 const char *opname,
5927 enum machine_mode tmode,
5928 enum machine_mode fmode)
5929 {
5930 if (tmode == fmode)
5931 return;
5932 /* One mode must be a fixed-point mode, and the other must be an integer
5933 mode. */
5934 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5935 || (ALL_FIXED_POINT_MODE_P (fmode)
5936 && GET_MODE_CLASS (tmode) == MODE_INT)))
5937 return;
5938
5939 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5940 }
5941
5942 /* Pick proper libcall for satfract_optab. We need to chose if we do
5943 interclass or intraclass. */
5944
5945 void
5946 gen_satfract_conv_libfunc (convert_optab tab,
5947 const char *opname,
5948 enum machine_mode tmode,
5949 enum machine_mode fmode)
5950 {
5951 if (tmode == fmode)
5952 return;
5953 /* TMODE must be a fixed-point mode. */
5954 if (!ALL_FIXED_POINT_MODE_P (tmode))
5955 return;
5956
5957 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5958 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5959 else
5960 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5961 }
5962
5963 /* Pick proper libcall for satfractuns_optab. */
5964
5965 void
5966 gen_satfractuns_conv_libfunc (convert_optab tab,
5967 const char *opname,
5968 enum machine_mode tmode,
5969 enum machine_mode fmode)
5970 {
5971 if (tmode == fmode)
5972 return;
5973 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5974 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
5975 return;
5976
5977 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5978 }
5979
5980 /* A table of previously-created libfuncs, hashed by name. */
5981 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
5982
5983 /* Hashtable callbacks for libfunc_decls. */
5984
5985 static hashval_t
5986 libfunc_decl_hash (const void *entry)
5987 {
5988 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
5989 }
5990
5991 static int
5992 libfunc_decl_eq (const void *entry1, const void *entry2)
5993 {
5994 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
5995 }
5996
5997 /* Build a decl for a libfunc named NAME. */
5998
5999 tree
6000 build_libfunc_function (const char *name)
6001 {
6002 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6003 get_identifier (name),
6004 build_function_type (integer_type_node, NULL_TREE));
6005 /* ??? We don't have any type information except for this is
6006 a function. Pretend this is "int foo()". */
6007 DECL_ARTIFICIAL (decl) = 1;
6008 DECL_EXTERNAL (decl) = 1;
6009 TREE_PUBLIC (decl) = 1;
6010 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6011
6012 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6013 are the flags assigned by targetm.encode_section_info. */
6014 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6015
6016 return decl;
6017 }
6018
6019 rtx
6020 init_one_libfunc (const char *name)
6021 {
6022 tree id, decl;
6023 void **slot;
6024 hashval_t hash;
6025
6026 if (libfunc_decls == NULL)
6027 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6028 libfunc_decl_eq, NULL);
6029
6030 /* See if we have already created a libfunc decl for this function. */
6031 id = get_identifier (name);
6032 hash = IDENTIFIER_HASH_VALUE (id);
6033 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6034 decl = (tree) *slot;
6035 if (decl == NULL)
6036 {
6037 /* Create a new decl, so that it can be passed to
6038 targetm.encode_section_info. */
6039 decl = build_libfunc_function (name);
6040 *slot = decl;
6041 }
6042 return XEXP (DECL_RTL (decl), 0);
6043 }
6044
6045 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6046
6047 rtx
6048 set_user_assembler_libfunc (const char *name, const char *asmspec)
6049 {
6050 tree id, decl;
6051 void **slot;
6052 hashval_t hash;
6053
6054 id = get_identifier (name);
6055 hash = IDENTIFIER_HASH_VALUE (id);
6056 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6057 gcc_assert (slot);
6058 decl = (tree) *slot;
6059 set_user_assembler_name (decl, asmspec);
6060 return XEXP (DECL_RTL (decl), 0);
6061 }
6062
6063 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6064 MODE to NAME, which should be either 0 or a string constant. */
6065 void
6066 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6067 {
6068 rtx val;
6069 struct libfunc_entry e;
6070 struct libfunc_entry **slot;
6071
6072 e.op = op;
6073 e.mode1 = mode;
6074 e.mode2 = VOIDmode;
6075
6076 if (name)
6077 val = init_one_libfunc (name);
6078 else
6079 val = 0;
6080 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6081 if (*slot == NULL)
6082 *slot = ggc_alloc_libfunc_entry ();
6083 (*slot)->op = op;
6084 (*slot)->mode1 = mode;
6085 (*slot)->mode2 = VOIDmode;
6086 (*slot)->libfunc = val;
6087 }
6088
6089 /* Call this to reset the function entry for one conversion optab
6090 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6091 either 0 or a string constant. */
6092 void
6093 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6094 enum machine_mode fmode, const char *name)
6095 {
6096 rtx val;
6097 struct libfunc_entry e;
6098 struct libfunc_entry **slot;
6099
6100 e.op = optab;
6101 e.mode1 = tmode;
6102 e.mode2 = fmode;
6103
6104 if (name)
6105 val = init_one_libfunc (name);
6106 else
6107 val = 0;
6108 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6109 if (*slot == NULL)
6110 *slot = ggc_alloc_libfunc_entry ();
6111 (*slot)->op = optab;
6112 (*slot)->mode1 = tmode;
6113 (*slot)->mode2 = fmode;
6114 (*slot)->libfunc = val;
6115 }
6116
6117 /* Call this to initialize the contents of the optabs
6118 appropriately for the current target machine. */
6119
6120 void
6121 init_optabs (void)
6122 {
6123 if (libfunc_hash)
6124 htab_empty (libfunc_hash);
6125 else
6126 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6127
6128 /* Fill in the optabs with the insns we support. */
6129 init_all_optabs ();
6130
6131 /* The ffs function operates on `int'. Fall back on it if we do not
6132 have a libgcc2 function for that width. */
6133 if (INT_TYPE_SIZE < BITS_PER_WORD)
6134 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6135 "ffs");
6136
6137 /* Explicitly initialize the bswap libfuncs since we need them to be
6138 valid for things other than word_mode. */
6139 if (targetm.libfunc_gnu_prefix)
6140 {
6141 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6142 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6143 }
6144 else
6145 {
6146 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6147 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6148 }
6149
6150 /* Use cabs for double complex abs, since systems generally have cabs.
6151 Don't define any libcall for float complex, so that cabs will be used. */
6152 if (complex_double_type_node)
6153 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6154 "cabs");
6155
6156 abort_libfunc = init_one_libfunc ("abort");
6157 memcpy_libfunc = init_one_libfunc ("memcpy");
6158 memmove_libfunc = init_one_libfunc ("memmove");
6159 memcmp_libfunc = init_one_libfunc ("memcmp");
6160 memset_libfunc = init_one_libfunc ("memset");
6161 setbits_libfunc = init_one_libfunc ("__setbits");
6162
6163 #ifndef DONT_USE_BUILTIN_SETJMP
6164 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6165 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6166 #else
6167 setjmp_libfunc = init_one_libfunc ("setjmp");
6168 longjmp_libfunc = init_one_libfunc ("longjmp");
6169 #endif
6170 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6171 unwind_sjlj_unregister_libfunc
6172 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6173
6174 /* For function entry/exit instrumentation. */
6175 profile_function_entry_libfunc
6176 = init_one_libfunc ("__cyg_profile_func_enter");
6177 profile_function_exit_libfunc
6178 = init_one_libfunc ("__cyg_profile_func_exit");
6179
6180 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6181
6182 /* Allow the target to add more libcalls or rename some, etc. */
6183 targetm.init_libfuncs ();
6184 }
6185
6186 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6187 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6188
6189 static void
6190 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6191 {
6192 enum machine_mode mode;
6193 char buf[64];
6194 size_t len = strlen (base);
6195 int i;
6196
6197 gcc_assert (max <= 8);
6198 gcc_assert (len + 3 < sizeof (buf));
6199
6200 memcpy (buf, base, len);
6201 buf[len] = '_';
6202 buf[len + 1] = '0';
6203 buf[len + 2] = '\0';
6204
6205 mode = QImode;
6206 for (i = 1; i <= max; i *= 2)
6207 {
6208 buf[len + 1] = '0' + i;
6209 set_optab_libfunc (tab, mode, buf);
6210 mode = GET_MODE_2XWIDER_MODE (mode);
6211 }
6212 }
6213
6214 void
6215 init_sync_libfuncs (int max)
6216 {
6217 if (!flag_sync_libcalls)
6218 return;
6219
6220 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6221 "__sync_val_compare_and_swap", max);
6222 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6223 "__sync_lock_test_and_set", max);
6224
6225 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6226 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6227 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6228 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6229 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6230 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6231
6232 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6233 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6234 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6235 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6236 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6237 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6238 }
6239
6240 /* Print information about the current contents of the optabs on
6241 STDERR. */
6242
6243 DEBUG_FUNCTION void
6244 debug_optab_libfuncs (void)
6245 {
6246 int i, j, k;
6247
6248 /* Dump the arithmetic optabs. */
6249 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6250 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6251 {
6252 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6253 if (l)
6254 {
6255 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6256 fprintf (stderr, "%s\t%s:\t%s\n",
6257 GET_RTX_NAME (optab_to_code ((optab) i)),
6258 GET_MODE_NAME (j),
6259 XSTR (l, 0));
6260 }
6261 }
6262
6263 /* Dump the conversion optabs. */
6264 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6265 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6266 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6267 {
6268 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6269 (enum machine_mode) k);
6270 if (l)
6271 {
6272 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6273 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6274 GET_RTX_NAME (optab_to_code ((optab) i)),
6275 GET_MODE_NAME (j),
6276 GET_MODE_NAME (k),
6277 XSTR (l, 0));
6278 }
6279 }
6280 }
6281
6282 \f
6283 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6284 CODE. Return 0 on failure. */
6285
6286 rtx
6287 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6288 {
6289 enum machine_mode mode = GET_MODE (op1);
6290 enum insn_code icode;
6291 rtx insn;
6292 rtx trap_rtx;
6293
6294 if (mode == VOIDmode)
6295 return 0;
6296
6297 icode = optab_handler (ctrap_optab, mode);
6298 if (icode == CODE_FOR_nothing)
6299 return 0;
6300
6301 /* Some targets only accept a zero trap code. */
6302 if (!insn_operand_matches (icode, 3, tcode))
6303 return 0;
6304
6305 do_pending_stack_adjust ();
6306 start_sequence ();
6307 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6308 &trap_rtx, &mode);
6309 if (!trap_rtx)
6310 insn = NULL_RTX;
6311 else
6312 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6313 tcode);
6314
6315 /* If that failed, then give up. */
6316 if (insn == 0)
6317 {
6318 end_sequence ();
6319 return 0;
6320 }
6321
6322 emit_insn (insn);
6323 insn = get_insns ();
6324 end_sequence ();
6325 return insn;
6326 }
6327
6328 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6329 or unsigned operation code. */
6330
6331 static enum rtx_code
6332 get_rtx_code (enum tree_code tcode, bool unsignedp)
6333 {
6334 enum rtx_code code;
6335 switch (tcode)
6336 {
6337 case EQ_EXPR:
6338 code = EQ;
6339 break;
6340 case NE_EXPR:
6341 code = NE;
6342 break;
6343 case LT_EXPR:
6344 code = unsignedp ? LTU : LT;
6345 break;
6346 case LE_EXPR:
6347 code = unsignedp ? LEU : LE;
6348 break;
6349 case GT_EXPR:
6350 code = unsignedp ? GTU : GT;
6351 break;
6352 case GE_EXPR:
6353 code = unsignedp ? GEU : GE;
6354 break;
6355
6356 case UNORDERED_EXPR:
6357 code = UNORDERED;
6358 break;
6359 case ORDERED_EXPR:
6360 code = ORDERED;
6361 break;
6362 case UNLT_EXPR:
6363 code = UNLT;
6364 break;
6365 case UNLE_EXPR:
6366 code = UNLE;
6367 break;
6368 case UNGT_EXPR:
6369 code = UNGT;
6370 break;
6371 case UNGE_EXPR:
6372 code = UNGE;
6373 break;
6374 case UNEQ_EXPR:
6375 code = UNEQ;
6376 break;
6377 case LTGT_EXPR:
6378 code = LTGT;
6379 break;
6380
6381 default:
6382 gcc_unreachable ();
6383 }
6384 return code;
6385 }
6386
6387 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6388 unsigned operators. Do not generate compare instruction. */
6389
6390 static rtx
6391 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6392 {
6393 struct expand_operand ops[2];
6394 enum rtx_code rcode;
6395 tree t_op0, t_op1;
6396 rtx rtx_op0, rtx_op1;
6397
6398 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6399 ensures that condition is a relational operation. */
6400 gcc_assert (COMPARISON_CLASS_P (cond));
6401
6402 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6403 t_op0 = TREE_OPERAND (cond, 0);
6404 t_op1 = TREE_OPERAND (cond, 1);
6405
6406 /* Expand operands. */
6407 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6408 EXPAND_STACK_PARM);
6409 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6410 EXPAND_STACK_PARM);
6411
6412 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6413 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6414 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6415 gcc_unreachable ();
6416 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6417 }
6418
6419 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6420 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6421
6422 bool
6423 can_vec_perm_p (enum machine_mode mode, bool variable,
6424 const unsigned char *sel)
6425 {
6426 enum machine_mode qimode;
6427
6428 /* If the target doesn't implement a vector mode for the vector type,
6429 then no operations are supported. */
6430 if (!VECTOR_MODE_P (mode))
6431 return false;
6432
6433 if (!variable)
6434 {
6435 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6436 && (sel == NULL
6437 || targetm.vectorize.vec_perm_const_ok == NULL
6438 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6439 return true;
6440 }
6441
6442 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6443 return true;
6444
6445 /* We allow fallback to a QI vector mode, and adjust the mask. */
6446 if (GET_MODE_INNER (mode) == QImode)
6447 return false;
6448 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6449 if (!VECTOR_MODE_P (qimode))
6450 return false;
6451
6452 /* ??? For completeness, we ought to check the QImode version of
6453 vec_perm_const_optab. But all users of this implicit lowering
6454 feature implement the variable vec_perm_optab. */
6455 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6456 return false;
6457
6458 /* In order to support the lowering of variable permutations,
6459 we need to support shifts and adds. */
6460 if (variable)
6461 {
6462 if (GET_MODE_UNIT_SIZE (mode) > 2
6463 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6464 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6465 return false;
6466 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6467 return false;
6468 }
6469
6470 return true;
6471 }
6472
6473 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6474
6475 static rtx
6476 expand_vec_perm_1 (enum insn_code icode, rtx target,
6477 rtx v0, rtx v1, rtx sel)
6478 {
6479 enum machine_mode tmode = GET_MODE (target);
6480 enum machine_mode smode = GET_MODE (sel);
6481 struct expand_operand ops[4];
6482
6483 create_output_operand (&ops[0], target, tmode);
6484 create_input_operand (&ops[3], sel, smode);
6485
6486 /* Make an effort to preserve v0 == v1. The target expander is able to
6487 rely on this to determine if we're permuting a single input operand. */
6488 if (rtx_equal_p (v0, v1))
6489 {
6490 if (!insn_operand_matches (icode, 1, v0))
6491 v0 = force_reg (tmode, v0);
6492 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6493 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6494
6495 create_fixed_operand (&ops[1], v0);
6496 create_fixed_operand (&ops[2], v0);
6497 }
6498 else
6499 {
6500 create_input_operand (&ops[1], v0, tmode);
6501 create_input_operand (&ops[2], v1, tmode);
6502 }
6503
6504 if (maybe_expand_insn (icode, 4, ops))
6505 return ops[0].value;
6506 return NULL_RTX;
6507 }
6508
6509 /* Generate instructions for vec_perm optab given its mode
6510 and three operands. */
6511
6512 rtx
6513 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6514 {
6515 enum insn_code icode;
6516 enum machine_mode qimode;
6517 unsigned int i, w, e, u;
6518 rtx tmp, sel_qi = NULL;
6519 rtvec vec;
6520
6521 if (!target || GET_MODE (target) != mode)
6522 target = gen_reg_rtx (mode);
6523
6524 w = GET_MODE_SIZE (mode);
6525 e = GET_MODE_NUNITS (mode);
6526 u = GET_MODE_UNIT_SIZE (mode);
6527
6528 /* Set QIMODE to a different vector mode with byte elements.
6529 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6530 qimode = VOIDmode;
6531 if (GET_MODE_INNER (mode) != QImode)
6532 {
6533 qimode = mode_for_vector (QImode, w);
6534 if (!VECTOR_MODE_P (qimode))
6535 qimode = VOIDmode;
6536 }
6537
6538 /* If the input is a constant, expand it specially. */
6539 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6540 if (GET_CODE (sel) == CONST_VECTOR)
6541 {
6542 icode = direct_optab_handler (vec_perm_const_optab, mode);
6543 if (icode != CODE_FOR_nothing)
6544 {
6545 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6546 if (tmp)
6547 return tmp;
6548 }
6549
6550 /* Fall back to a constant byte-based permutation. */
6551 if (qimode != VOIDmode)
6552 {
6553 vec = rtvec_alloc (w);
6554 for (i = 0; i < e; ++i)
6555 {
6556 unsigned int j, this_e;
6557
6558 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6559 this_e &= 2 * e - 1;
6560 this_e *= u;
6561
6562 for (j = 0; j < u; ++j)
6563 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6564 }
6565 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6566
6567 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6568 if (icode != CODE_FOR_nothing)
6569 {
6570 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6571 gen_lowpart (qimode, v0),
6572 gen_lowpart (qimode, v1), sel_qi);
6573 if (tmp)
6574 return gen_lowpart (mode, tmp);
6575 }
6576 }
6577 }
6578
6579 /* Otherwise expand as a fully variable permuation. */
6580 icode = direct_optab_handler (vec_perm_optab, mode);
6581 if (icode != CODE_FOR_nothing)
6582 {
6583 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6584 if (tmp)
6585 return tmp;
6586 }
6587
6588 /* As a special case to aid several targets, lower the element-based
6589 permutation to a byte-based permutation and try again. */
6590 if (qimode == VOIDmode)
6591 return NULL_RTX;
6592 icode = direct_optab_handler (vec_perm_optab, qimode);
6593 if (icode == CODE_FOR_nothing)
6594 return NULL_RTX;
6595
6596 if (sel_qi == NULL)
6597 {
6598 /* Multiply each element by its byte size. */
6599 enum machine_mode selmode = GET_MODE (sel);
6600 if (u == 2)
6601 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6602 sel, 0, OPTAB_DIRECT);
6603 else
6604 sel = expand_simple_binop (selmode, ASHIFT, sel,
6605 GEN_INT (exact_log2 (u)),
6606 sel, 0, OPTAB_DIRECT);
6607 gcc_assert (sel != NULL);
6608
6609 /* Broadcast the low byte each element into each of its bytes. */
6610 vec = rtvec_alloc (w);
6611 for (i = 0; i < w; ++i)
6612 {
6613 int this_e = i / u * u;
6614 if (BYTES_BIG_ENDIAN)
6615 this_e += u - 1;
6616 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6617 }
6618 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6619 sel = gen_lowpart (qimode, sel);
6620 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6621 gcc_assert (sel != NULL);
6622
6623 /* Add the byte offset to each byte element. */
6624 /* Note that the definition of the indicies here is memory ordering,
6625 so there should be no difference between big and little endian. */
6626 vec = rtvec_alloc (w);
6627 for (i = 0; i < w; ++i)
6628 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6629 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6630 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6631 sel, 0, OPTAB_DIRECT);
6632 gcc_assert (sel_qi != NULL);
6633 }
6634
6635 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6636 gen_lowpart (qimode, v0),
6637 gen_lowpart (qimode, v1), sel_qi);
6638 if (tmp)
6639 tmp = gen_lowpart (mode, tmp);
6640 return tmp;
6641 }
6642
6643 /* Return insn code for a conditional operator with a comparison in
6644 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6645
6646 static inline enum insn_code
6647 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6648 {
6649 enum insn_code icode = CODE_FOR_nothing;
6650 if (uns)
6651 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6652 else
6653 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6654 return icode;
6655 }
6656
6657 /* Return TRUE iff, appropriate vector insns are available
6658 for vector cond expr with vector type VALUE_TYPE and a comparison
6659 with operand vector types in CMP_OP_TYPE. */
6660
6661 bool
6662 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6663 {
6664 enum machine_mode value_mode = TYPE_MODE (value_type);
6665 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6666 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6667 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6668 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6669 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6670 return false;
6671 return true;
6672 }
6673
6674 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6675 three operands. */
6676
6677 rtx
6678 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6679 rtx target)
6680 {
6681 struct expand_operand ops[6];
6682 enum insn_code icode;
6683 rtx comparison, rtx_op1, rtx_op2;
6684 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6685 enum machine_mode cmp_op_mode;
6686 bool unsignedp;
6687
6688 gcc_assert (COMPARISON_CLASS_P (op0));
6689
6690 unsignedp = TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0)));
6691 cmp_op_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (op0, 0)));
6692
6693 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6694 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6695
6696 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6697 if (icode == CODE_FOR_nothing)
6698 return 0;
6699
6700 comparison = vector_compare_rtx (op0, unsignedp, icode);
6701 rtx_op1 = expand_normal (op1);
6702 rtx_op2 = expand_normal (op2);
6703
6704 create_output_operand (&ops[0], target, mode);
6705 create_input_operand (&ops[1], rtx_op1, mode);
6706 create_input_operand (&ops[2], rtx_op2, mode);
6707 create_fixed_operand (&ops[3], comparison);
6708 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6709 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6710 expand_insn (icode, 6, ops);
6711 return ops[0].value;
6712 }
6713
6714 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6715 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6716 2 for even/odd widening, and 3 for hi/lo widening. */
6717
6718 int
6719 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6720 {
6721 optab op;
6722 unsigned char *sel;
6723 unsigned i, nunits;
6724
6725 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6726 if (optab_handler (op, mode) != CODE_FOR_nothing)
6727 return 1;
6728
6729 /* If the mode is an integral vector, synth from widening operations. */
6730 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6731 return 0;
6732
6733 nunits = GET_MODE_NUNITS (mode);
6734 sel = XALLOCAVEC (unsigned char, nunits);
6735
6736 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6737 if (optab_handler (op, mode) != CODE_FOR_nothing)
6738 {
6739 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6740 if (optab_handler (op, mode) != CODE_FOR_nothing)
6741 {
6742 for (i = 0; i < nunits; ++i)
6743 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6744 if (can_vec_perm_p (mode, false, sel))
6745 return 2;
6746 }
6747 }
6748
6749 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6750 if (optab_handler (op, mode) != CODE_FOR_nothing)
6751 {
6752 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6753 if (optab_handler (op, mode) != CODE_FOR_nothing)
6754 {
6755 for (i = 0; i < nunits; ++i)
6756 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6757 if (can_vec_perm_p (mode, false, sel))
6758 return 3;
6759 }
6760 }
6761
6762 return 0;
6763 }
6764
6765 /* Expand a highpart multiply. */
6766
6767 rtx
6768 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6769 rtx target, bool uns_p)
6770 {
6771 struct expand_operand eops[3];
6772 enum insn_code icode;
6773 int method, i, nunits;
6774 enum machine_mode wmode;
6775 rtx m1, m2, perm;
6776 optab tab1, tab2;
6777 rtvec v;
6778
6779 method = can_mult_highpart_p (mode, uns_p);
6780 switch (method)
6781 {
6782 case 0:
6783 return NULL_RTX;
6784 case 1:
6785 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6786 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6787 OPTAB_LIB_WIDEN);
6788 case 2:
6789 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6790 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6791 break;
6792 case 3:
6793 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6794 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6795 if (BYTES_BIG_ENDIAN)
6796 {
6797 optab t = tab1;
6798 tab1 = tab2;
6799 tab2 = t;
6800 }
6801 break;
6802 default:
6803 gcc_unreachable ();
6804 }
6805
6806 icode = optab_handler (tab1, mode);
6807 nunits = GET_MODE_NUNITS (mode);
6808 wmode = insn_data[icode].operand[0].mode;
6809 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6810 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6811
6812 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6813 create_input_operand (&eops[1], op0, mode);
6814 create_input_operand (&eops[2], op1, mode);
6815 expand_insn (icode, 3, eops);
6816 m1 = gen_lowpart (mode, eops[0].value);
6817
6818 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6819 create_input_operand (&eops[1], op0, mode);
6820 create_input_operand (&eops[2], op1, mode);
6821 expand_insn (optab_handler (tab2, mode), 3, eops);
6822 m2 = gen_lowpart (mode, eops[0].value);
6823
6824 v = rtvec_alloc (nunits);
6825 if (method == 2)
6826 {
6827 for (i = 0; i < nunits; ++i)
6828 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6829 + ((i & 1) ? nunits : 0));
6830 }
6831 else
6832 {
6833 for (i = 0; i < nunits; ++i)
6834 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6835 }
6836 perm = gen_rtx_CONST_VECTOR (mode, v);
6837
6838 return expand_vec_perm (mode, m1, m2, perm, target);
6839 }
6840 \f
6841 /* Return true if there is a compare_and_swap pattern. */
6842
6843 bool
6844 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6845 {
6846 enum insn_code icode;
6847
6848 /* Check for __atomic_compare_and_swap. */
6849 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6850 if (icode != CODE_FOR_nothing)
6851 return true;
6852
6853 /* Check for __sync_compare_and_swap. */
6854 icode = optab_handler (sync_compare_and_swap_optab, mode);
6855 if (icode != CODE_FOR_nothing)
6856 return true;
6857 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6858 return true;
6859
6860 /* No inline compare and swap. */
6861 return false;
6862 }
6863
6864 /* Return true if an atomic exchange can be performed. */
6865
6866 bool
6867 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6868 {
6869 enum insn_code icode;
6870
6871 /* Check for __atomic_exchange. */
6872 icode = direct_optab_handler (atomic_exchange_optab, mode);
6873 if (icode != CODE_FOR_nothing)
6874 return true;
6875
6876 /* Don't check __sync_test_and_set, as on some platforms that
6877 has reduced functionality. Targets that really do support
6878 a proper exchange should simply be updated to the __atomics. */
6879
6880 return can_compare_and_swap_p (mode, allow_libcall);
6881 }
6882
6883
6884 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6885 pattern. */
6886
6887 static void
6888 find_cc_set (rtx x, const_rtx pat, void *data)
6889 {
6890 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6891 && GET_CODE (pat) == SET)
6892 {
6893 rtx *p_cc_reg = (rtx *) data;
6894 gcc_assert (!*p_cc_reg);
6895 *p_cc_reg = x;
6896 }
6897 }
6898
6899 /* This is a helper function for the other atomic operations. This function
6900 emits a loop that contains SEQ that iterates until a compare-and-swap
6901 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6902 a set of instructions that takes a value from OLD_REG as an input and
6903 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6904 set to the current contents of MEM. After SEQ, a compare-and-swap will
6905 attempt to update MEM with NEW_REG. The function returns true when the
6906 loop was generated successfully. */
6907
6908 static bool
6909 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6910 {
6911 enum machine_mode mode = GET_MODE (mem);
6912 rtx label, cmp_reg, success, oldval;
6913
6914 /* The loop we want to generate looks like
6915
6916 cmp_reg = mem;
6917 label:
6918 old_reg = cmp_reg;
6919 seq;
6920 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6921 if (success)
6922 goto label;
6923
6924 Note that we only do the plain load from memory once. Subsequent
6925 iterations use the value loaded by the compare-and-swap pattern. */
6926
6927 label = gen_label_rtx ();
6928 cmp_reg = gen_reg_rtx (mode);
6929
6930 emit_move_insn (cmp_reg, mem);
6931 emit_label (label);
6932 emit_move_insn (old_reg, cmp_reg);
6933 if (seq)
6934 emit_insn (seq);
6935
6936 success = NULL_RTX;
6937 oldval = cmp_reg;
6938 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
6939 new_reg, false, MEMMODEL_SEQ_CST,
6940 MEMMODEL_RELAXED))
6941 return false;
6942
6943 if (oldval != cmp_reg)
6944 emit_move_insn (cmp_reg, oldval);
6945
6946 /* ??? Mark this jump predicted not taken? */
6947 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
6948 GET_MODE (success), 1, label);
6949 return true;
6950 }
6951
6952
6953 /* This function tries to emit an atomic_exchange intruction. VAL is written
6954 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6955 using TARGET if possible. */
6956
6957 static rtx
6958 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6959 {
6960 enum machine_mode mode = GET_MODE (mem);
6961 enum insn_code icode;
6962
6963 /* If the target supports the exchange directly, great. */
6964 icode = direct_optab_handler (atomic_exchange_optab, mode);
6965 if (icode != CODE_FOR_nothing)
6966 {
6967 struct expand_operand ops[4];
6968
6969 create_output_operand (&ops[0], target, mode);
6970 create_fixed_operand (&ops[1], mem);
6971 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6972 create_convert_operand_to (&ops[2], val, mode, true);
6973 create_integer_operand (&ops[3], model);
6974 if (maybe_expand_insn (icode, 4, ops))
6975 return ops[0].value;
6976 }
6977
6978 return NULL_RTX;
6979 }
6980
6981 /* This function tries to implement an atomic exchange operation using
6982 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6983 The previous contents of *MEM are returned, using TARGET if possible.
6984 Since this instructionn is an acquire barrier only, stronger memory
6985 models may require additional barriers to be emitted. */
6986
6987 static rtx
6988 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
6989 enum memmodel model)
6990 {
6991 enum machine_mode mode = GET_MODE (mem);
6992 enum insn_code icode;
6993 rtx last_insn = get_last_insn ();
6994
6995 icode = optab_handler (sync_lock_test_and_set_optab, mode);
6996
6997 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6998 exists, and the memory model is stronger than acquire, add a release
6999 barrier before the instruction. */
7000
7001 if (model == MEMMODEL_SEQ_CST
7002 || model == MEMMODEL_RELEASE
7003 || model == MEMMODEL_ACQ_REL)
7004 expand_mem_thread_fence (model);
7005
7006 if (icode != CODE_FOR_nothing)
7007 {
7008 struct expand_operand ops[3];
7009 create_output_operand (&ops[0], target, mode);
7010 create_fixed_operand (&ops[1], mem);
7011 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7012 create_convert_operand_to (&ops[2], val, mode, true);
7013 if (maybe_expand_insn (icode, 3, ops))
7014 return ops[0].value;
7015 }
7016
7017 /* If an external test-and-set libcall is provided, use that instead of
7018 any external compare-and-swap that we might get from the compare-and-
7019 swap-loop expansion later. */
7020 if (!can_compare_and_swap_p (mode, false))
7021 {
7022 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7023 if (libfunc != NULL)
7024 {
7025 rtx addr;
7026
7027 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7028 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7029 mode, 2, addr, ptr_mode,
7030 val, mode);
7031 }
7032 }
7033
7034 /* If the test_and_set can't be emitted, eliminate any barrier that might
7035 have been emitted. */
7036 delete_insns_since (last_insn);
7037 return NULL_RTX;
7038 }
7039
7040 /* This function tries to implement an atomic exchange operation using a
7041 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7042 *MEM are returned, using TARGET if possible. No memory model is required
7043 since a compare_and_swap loop is seq-cst. */
7044
7045 static rtx
7046 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7047 {
7048 enum machine_mode mode = GET_MODE (mem);
7049
7050 if (can_compare_and_swap_p (mode, true))
7051 {
7052 if (!target || !register_operand (target, mode))
7053 target = gen_reg_rtx (mode);
7054 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7055 val = convert_modes (mode, GET_MODE (val), val, 1);
7056 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7057 return target;
7058 }
7059
7060 return NULL_RTX;
7061 }
7062
7063 /* This function tries to implement an atomic test-and-set operation
7064 using the atomic_test_and_set instruction pattern. A boolean value
7065 is returned from the operation, using TARGET if possible. */
7066
7067 #ifndef HAVE_atomic_test_and_set
7068 #define HAVE_atomic_test_and_set 0
7069 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7070 #endif
7071
7072 static rtx
7073 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7074 {
7075 enum machine_mode pat_bool_mode;
7076 struct expand_operand ops[3];
7077
7078 if (!HAVE_atomic_test_and_set)
7079 return NULL_RTX;
7080
7081 /* While we always get QImode from __atomic_test_and_set, we get
7082 other memory modes from __sync_lock_test_and_set. Note that we
7083 use no endian adjustment here. This matches the 4.6 behavior
7084 in the Sparc backend. */
7085 gcc_checking_assert
7086 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7087 if (GET_MODE (mem) != QImode)
7088 mem = adjust_address_nv (mem, QImode, 0);
7089
7090 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7091 create_output_operand (&ops[0], target, pat_bool_mode);
7092 create_fixed_operand (&ops[1], mem);
7093 create_integer_operand (&ops[2], model);
7094
7095 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7096 return ops[0].value;
7097 return NULL_RTX;
7098 }
7099
7100 /* This function expands the legacy _sync_lock test_and_set operation which is
7101 generally an atomic exchange. Some limited targets only allow the
7102 constant 1 to be stored. This is an ACQUIRE operation.
7103
7104 TARGET is an optional place to stick the return value.
7105 MEM is where VAL is stored. */
7106
7107 rtx
7108 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7109 {
7110 rtx ret;
7111
7112 /* Try an atomic_exchange first. */
7113 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7114 if (ret)
7115 return ret;
7116
7117 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7118 if (ret)
7119 return ret;
7120
7121 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7122 if (ret)
7123 return ret;
7124
7125 /* If there are no other options, try atomic_test_and_set if the value
7126 being stored is 1. */
7127 if (val == const1_rtx)
7128 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7129
7130 return ret;
7131 }
7132
7133 /* This function expands the atomic test_and_set operation:
7134 atomically store a boolean TRUE into MEM and return the previous value.
7135
7136 MEMMODEL is the memory model variant to use.
7137 TARGET is an optional place to stick the return value. */
7138
7139 rtx
7140 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7141 {
7142 enum machine_mode mode = GET_MODE (mem);
7143 rtx ret, trueval, subtarget;
7144
7145 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7146 if (ret)
7147 return ret;
7148
7149 /* Be binary compatible with non-default settings of trueval, and different
7150 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7151 another only has atomic-exchange. */
7152 if (targetm.atomic_test_and_set_trueval == 1)
7153 {
7154 trueval = const1_rtx;
7155 subtarget = target ? target : gen_reg_rtx (mode);
7156 }
7157 else
7158 {
7159 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7160 subtarget = gen_reg_rtx (mode);
7161 }
7162
7163 /* Try the atomic-exchange optab... */
7164 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7165
7166 /* ... then an atomic-compare-and-swap loop ... */
7167 if (!ret)
7168 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7169
7170 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7171 if (!ret)
7172 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7173
7174 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7175 things with the value 1. Thus we try again without trueval. */
7176 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7177 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7178
7179 /* Failing all else, assume a single threaded environment and simply
7180 perform the operation. */
7181 if (!ret)
7182 {
7183 emit_move_insn (subtarget, mem);
7184 emit_move_insn (mem, trueval);
7185 ret = subtarget;
7186 }
7187
7188 /* Recall that have to return a boolean value; rectify if trueval
7189 is not exactly one. */
7190 if (targetm.atomic_test_and_set_trueval != 1)
7191 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7192
7193 return ret;
7194 }
7195
7196 /* This function expands the atomic exchange operation:
7197 atomically store VAL in MEM and return the previous value in MEM.
7198
7199 MEMMODEL is the memory model variant to use.
7200 TARGET is an optional place to stick the return value. */
7201
7202 rtx
7203 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7204 {
7205 rtx ret;
7206
7207 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7208
7209 /* Next try a compare-and-swap loop for the exchange. */
7210 if (!ret)
7211 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7212
7213 return ret;
7214 }
7215
7216 /* This function expands the atomic compare exchange operation:
7217
7218 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7219 *PTARGET_OVAL is an optional place to store the old value from memory.
7220 Both target parameters may be NULL to indicate that we do not care about
7221 that return value. Both target parameters are updated on success to
7222 the actual location of the corresponding result.
7223
7224 MEMMODEL is the memory model variant to use.
7225
7226 The return value of the function is true for success. */
7227
7228 bool
7229 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7230 rtx mem, rtx expected, rtx desired,
7231 bool is_weak, enum memmodel succ_model,
7232 enum memmodel fail_model)
7233 {
7234 enum machine_mode mode = GET_MODE (mem);
7235 struct expand_operand ops[8];
7236 enum insn_code icode;
7237 rtx target_oval, target_bool = NULL_RTX;
7238 rtx libfunc;
7239
7240 /* Load expected into a register for the compare and swap. */
7241 if (MEM_P (expected))
7242 expected = copy_to_reg (expected);
7243
7244 /* Make sure we always have some place to put the return oldval.
7245 Further, make sure that place is distinct from the input expected,
7246 just in case we need that path down below. */
7247 if (ptarget_oval == NULL
7248 || (target_oval = *ptarget_oval) == NULL
7249 || reg_overlap_mentioned_p (expected, target_oval))
7250 target_oval = gen_reg_rtx (mode);
7251
7252 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7253 if (icode != CODE_FOR_nothing)
7254 {
7255 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7256
7257 /* Make sure we always have a place for the bool operand. */
7258 if (ptarget_bool == NULL
7259 || (target_bool = *ptarget_bool) == NULL
7260 || GET_MODE (target_bool) != bool_mode)
7261 target_bool = gen_reg_rtx (bool_mode);
7262
7263 /* Emit the compare_and_swap. */
7264 create_output_operand (&ops[0], target_bool, bool_mode);
7265 create_output_operand (&ops[1], target_oval, mode);
7266 create_fixed_operand (&ops[2], mem);
7267 create_convert_operand_to (&ops[3], expected, mode, true);
7268 create_convert_operand_to (&ops[4], desired, mode, true);
7269 create_integer_operand (&ops[5], is_weak);
7270 create_integer_operand (&ops[6], succ_model);
7271 create_integer_operand (&ops[7], fail_model);
7272 expand_insn (icode, 8, ops);
7273
7274 /* Return success/failure. */
7275 target_bool = ops[0].value;
7276 target_oval = ops[1].value;
7277 goto success;
7278 }
7279
7280 /* Otherwise fall back to the original __sync_val_compare_and_swap
7281 which is always seq-cst. */
7282 icode = optab_handler (sync_compare_and_swap_optab, mode);
7283 if (icode != CODE_FOR_nothing)
7284 {
7285 rtx cc_reg;
7286
7287 create_output_operand (&ops[0], target_oval, mode);
7288 create_fixed_operand (&ops[1], mem);
7289 create_convert_operand_to (&ops[2], expected, mode, true);
7290 create_convert_operand_to (&ops[3], desired, mode, true);
7291 if (!maybe_expand_insn (icode, 4, ops))
7292 return false;
7293
7294 target_oval = ops[0].value;
7295
7296 /* If the caller isn't interested in the boolean return value,
7297 skip the computation of it. */
7298 if (ptarget_bool == NULL)
7299 goto success;
7300
7301 /* Otherwise, work out if the compare-and-swap succeeded. */
7302 cc_reg = NULL_RTX;
7303 if (have_insn_for (COMPARE, CCmode))
7304 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7305 if (cc_reg)
7306 {
7307 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7308 const0_rtx, VOIDmode, 0, 1);
7309 goto success;
7310 }
7311 goto success_bool_from_val;
7312 }
7313
7314 /* Also check for library support for __sync_val_compare_and_swap. */
7315 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7316 if (libfunc != NULL)
7317 {
7318 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7319 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7320 mode, 3, addr, ptr_mode,
7321 expected, mode, desired, mode);
7322
7323 /* Compute the boolean return value only if requested. */
7324 if (ptarget_bool)
7325 goto success_bool_from_val;
7326 else
7327 goto success;
7328 }
7329
7330 /* Failure. */
7331 return false;
7332
7333 success_bool_from_val:
7334 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7335 expected, VOIDmode, 1, 1);
7336 success:
7337 /* Make sure that the oval output winds up where the caller asked. */
7338 if (ptarget_oval)
7339 *ptarget_oval = target_oval;
7340 if (ptarget_bool)
7341 *ptarget_bool = target_bool;
7342 return true;
7343 }
7344
7345 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7346
7347 static void
7348 expand_asm_memory_barrier (void)
7349 {
7350 rtx asm_op, clob;
7351
7352 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7353 rtvec_alloc (0), rtvec_alloc (0),
7354 rtvec_alloc (0), UNKNOWN_LOCATION);
7355 MEM_VOLATILE_P (asm_op) = 1;
7356
7357 clob = gen_rtx_SCRATCH (VOIDmode);
7358 clob = gen_rtx_MEM (BLKmode, clob);
7359 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7360
7361 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7362 }
7363
7364 /* This routine will either emit the mem_thread_fence pattern or issue a
7365 sync_synchronize to generate a fence for memory model MEMMODEL. */
7366
7367 #ifndef HAVE_mem_thread_fence
7368 # define HAVE_mem_thread_fence 0
7369 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7370 #endif
7371 #ifndef HAVE_memory_barrier
7372 # define HAVE_memory_barrier 0
7373 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7374 #endif
7375
7376 void
7377 expand_mem_thread_fence (enum memmodel model)
7378 {
7379 if (HAVE_mem_thread_fence)
7380 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7381 else if (model != MEMMODEL_RELAXED)
7382 {
7383 if (HAVE_memory_barrier)
7384 emit_insn (gen_memory_barrier ());
7385 else if (synchronize_libfunc != NULL_RTX)
7386 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7387 else
7388 expand_asm_memory_barrier ();
7389 }
7390 }
7391
7392 /* This routine will either emit the mem_signal_fence pattern or issue a
7393 sync_synchronize to generate a fence for memory model MEMMODEL. */
7394
7395 #ifndef HAVE_mem_signal_fence
7396 # define HAVE_mem_signal_fence 0
7397 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7398 #endif
7399
7400 void
7401 expand_mem_signal_fence (enum memmodel model)
7402 {
7403 if (HAVE_mem_signal_fence)
7404 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7405 else if (model != MEMMODEL_RELAXED)
7406 {
7407 /* By default targets are coherent between a thread and the signal
7408 handler running on the same thread. Thus this really becomes a
7409 compiler barrier, in that stores must not be sunk past
7410 (or raised above) a given point. */
7411 expand_asm_memory_barrier ();
7412 }
7413 }
7414
7415 /* This function expands the atomic load operation:
7416 return the atomically loaded value in MEM.
7417
7418 MEMMODEL is the memory model variant to use.
7419 TARGET is an option place to stick the return value. */
7420
7421 rtx
7422 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7423 {
7424 enum machine_mode mode = GET_MODE (mem);
7425 enum insn_code icode;
7426
7427 /* If the target supports the load directly, great. */
7428 icode = direct_optab_handler (atomic_load_optab, mode);
7429 if (icode != CODE_FOR_nothing)
7430 {
7431 struct expand_operand ops[3];
7432
7433 create_output_operand (&ops[0], target, mode);
7434 create_fixed_operand (&ops[1], mem);
7435 create_integer_operand (&ops[2], model);
7436 if (maybe_expand_insn (icode, 3, ops))
7437 return ops[0].value;
7438 }
7439
7440 /* If the size of the object is greater than word size on this target,
7441 then we assume that a load will not be atomic. */
7442 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7443 {
7444 /* Issue val = compare_and_swap (mem, 0, 0).
7445 This may cause the occasional harmless store of 0 when the value is
7446 already 0, but it seems to be OK according to the standards guys. */
7447 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7448 const0_rtx, false, model, model))
7449 return target;
7450 else
7451 /* Otherwise there is no atomic load, leave the library call. */
7452 return NULL_RTX;
7453 }
7454
7455 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7456 if (!target || target == const0_rtx)
7457 target = gen_reg_rtx (mode);
7458
7459 /* Emit the appropriate barrier before the load. */
7460 expand_mem_thread_fence (model);
7461
7462 emit_move_insn (target, mem);
7463
7464 /* For SEQ_CST, also emit a barrier after the load. */
7465 if (model == MEMMODEL_SEQ_CST)
7466 expand_mem_thread_fence (model);
7467
7468 return target;
7469 }
7470
7471 /* This function expands the atomic store operation:
7472 Atomically store VAL in MEM.
7473 MEMMODEL is the memory model variant to use.
7474 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7475 function returns const0_rtx if a pattern was emitted. */
7476
7477 rtx
7478 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7479 {
7480 enum machine_mode mode = GET_MODE (mem);
7481 enum insn_code icode;
7482 struct expand_operand ops[3];
7483
7484 /* If the target supports the store directly, great. */
7485 icode = direct_optab_handler (atomic_store_optab, mode);
7486 if (icode != CODE_FOR_nothing)
7487 {
7488 create_fixed_operand (&ops[0], mem);
7489 create_input_operand (&ops[1], val, mode);
7490 create_integer_operand (&ops[2], model);
7491 if (maybe_expand_insn (icode, 3, ops))
7492 return const0_rtx;
7493 }
7494
7495 /* If using __sync_lock_release is a viable alternative, try it. */
7496 if (use_release)
7497 {
7498 icode = direct_optab_handler (sync_lock_release_optab, mode);
7499 if (icode != CODE_FOR_nothing)
7500 {
7501 create_fixed_operand (&ops[0], mem);
7502 create_input_operand (&ops[1], const0_rtx, mode);
7503 if (maybe_expand_insn (icode, 2, ops))
7504 {
7505 /* lock_release is only a release barrier. */
7506 if (model == MEMMODEL_SEQ_CST)
7507 expand_mem_thread_fence (model);
7508 return const0_rtx;
7509 }
7510 }
7511 }
7512
7513 /* If the size of the object is greater than word size on this target,
7514 a default store will not be atomic, Try a mem_exchange and throw away
7515 the result. If that doesn't work, don't do anything. */
7516 if (GET_MODE_PRECISION(mode) > BITS_PER_WORD)
7517 {
7518 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7519 if (!target)
7520 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7521 if (target)
7522 return const0_rtx;
7523 else
7524 return NULL_RTX;
7525 }
7526
7527 /* If there is no mem_store, default to a move with barriers */
7528 if (model == MEMMODEL_SEQ_CST || model == MEMMODEL_RELEASE)
7529 expand_mem_thread_fence (model);
7530
7531 emit_move_insn (mem, val);
7532
7533 /* For SEQ_CST, also emit a barrier after the load. */
7534 if (model == MEMMODEL_SEQ_CST)
7535 expand_mem_thread_fence (model);
7536
7537 return const0_rtx;
7538 }
7539
7540
7541 /* Structure containing the pointers and values required to process the
7542 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7543
7544 struct atomic_op_functions
7545 {
7546 direct_optab mem_fetch_before;
7547 direct_optab mem_fetch_after;
7548 direct_optab mem_no_result;
7549 optab fetch_before;
7550 optab fetch_after;
7551 direct_optab no_result;
7552 enum rtx_code reverse_code;
7553 };
7554
7555
7556 /* Fill in structure pointed to by OP with the various optab entries for an
7557 operation of type CODE. */
7558
7559 static void
7560 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7561 {
7562 gcc_assert (op!= NULL);
7563
7564 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7565 in the source code during compilation, and the optab entries are not
7566 computable until runtime. Fill in the values at runtime. */
7567 switch (code)
7568 {
7569 case PLUS:
7570 op->mem_fetch_before = atomic_fetch_add_optab;
7571 op->mem_fetch_after = atomic_add_fetch_optab;
7572 op->mem_no_result = atomic_add_optab;
7573 op->fetch_before = sync_old_add_optab;
7574 op->fetch_after = sync_new_add_optab;
7575 op->no_result = sync_add_optab;
7576 op->reverse_code = MINUS;
7577 break;
7578 case MINUS:
7579 op->mem_fetch_before = atomic_fetch_sub_optab;
7580 op->mem_fetch_after = atomic_sub_fetch_optab;
7581 op->mem_no_result = atomic_sub_optab;
7582 op->fetch_before = sync_old_sub_optab;
7583 op->fetch_after = sync_new_sub_optab;
7584 op->no_result = sync_sub_optab;
7585 op->reverse_code = PLUS;
7586 break;
7587 case XOR:
7588 op->mem_fetch_before = atomic_fetch_xor_optab;
7589 op->mem_fetch_after = atomic_xor_fetch_optab;
7590 op->mem_no_result = atomic_xor_optab;
7591 op->fetch_before = sync_old_xor_optab;
7592 op->fetch_after = sync_new_xor_optab;
7593 op->no_result = sync_xor_optab;
7594 op->reverse_code = XOR;
7595 break;
7596 case AND:
7597 op->mem_fetch_before = atomic_fetch_and_optab;
7598 op->mem_fetch_after = atomic_and_fetch_optab;
7599 op->mem_no_result = atomic_and_optab;
7600 op->fetch_before = sync_old_and_optab;
7601 op->fetch_after = sync_new_and_optab;
7602 op->no_result = sync_and_optab;
7603 op->reverse_code = UNKNOWN;
7604 break;
7605 case IOR:
7606 op->mem_fetch_before = atomic_fetch_or_optab;
7607 op->mem_fetch_after = atomic_or_fetch_optab;
7608 op->mem_no_result = atomic_or_optab;
7609 op->fetch_before = sync_old_ior_optab;
7610 op->fetch_after = sync_new_ior_optab;
7611 op->no_result = sync_ior_optab;
7612 op->reverse_code = UNKNOWN;
7613 break;
7614 case NOT:
7615 op->mem_fetch_before = atomic_fetch_nand_optab;
7616 op->mem_fetch_after = atomic_nand_fetch_optab;
7617 op->mem_no_result = atomic_nand_optab;
7618 op->fetch_before = sync_old_nand_optab;
7619 op->fetch_after = sync_new_nand_optab;
7620 op->no_result = sync_nand_optab;
7621 op->reverse_code = UNKNOWN;
7622 break;
7623 default:
7624 gcc_unreachable ();
7625 }
7626 }
7627
7628 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7629 using memory order MODEL. If AFTER is true the operation needs to return
7630 the value of *MEM after the operation, otherwise the previous value.
7631 TARGET is an optional place to place the result. The result is unused if
7632 it is const0_rtx.
7633 Return the result if there is a better sequence, otherwise NULL_RTX. */
7634
7635 static rtx
7636 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7637 enum memmodel model, bool after)
7638 {
7639 /* If the value is prefetched, or not used, it may be possible to replace
7640 the sequence with a native exchange operation. */
7641 if (!after || target == const0_rtx)
7642 {
7643 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7644 if (code == AND && val == const0_rtx)
7645 {
7646 if (target == const0_rtx)
7647 target = gen_reg_rtx (GET_MODE (mem));
7648 return maybe_emit_atomic_exchange (target, mem, val, model);
7649 }
7650
7651 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7652 if (code == IOR && val == constm1_rtx)
7653 {
7654 if (target == const0_rtx)
7655 target = gen_reg_rtx (GET_MODE (mem));
7656 return maybe_emit_atomic_exchange (target, mem, val, model);
7657 }
7658 }
7659
7660 return NULL_RTX;
7661 }
7662
7663 /* Try to emit an instruction for a specific operation varaition.
7664 OPTAB contains the OP functions.
7665 TARGET is an optional place to return the result. const0_rtx means unused.
7666 MEM is the memory location to operate on.
7667 VAL is the value to use in the operation.
7668 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7669 MODEL is the memory model, if used.
7670 AFTER is true if the returned result is the value after the operation. */
7671
7672 static rtx
7673 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7674 rtx val, bool use_memmodel, enum memmodel model, bool after)
7675 {
7676 enum machine_mode mode = GET_MODE (mem);
7677 struct expand_operand ops[4];
7678 enum insn_code icode;
7679 int op_counter = 0;
7680 int num_ops;
7681
7682 /* Check to see if there is a result returned. */
7683 if (target == const0_rtx)
7684 {
7685 if (use_memmodel)
7686 {
7687 icode = direct_optab_handler (optab->mem_no_result, mode);
7688 create_integer_operand (&ops[2], model);
7689 num_ops = 3;
7690 }
7691 else
7692 {
7693 icode = direct_optab_handler (optab->no_result, mode);
7694 num_ops = 2;
7695 }
7696 }
7697 /* Otherwise, we need to generate a result. */
7698 else
7699 {
7700 if (use_memmodel)
7701 {
7702 icode = direct_optab_handler (after ? optab->mem_fetch_after
7703 : optab->mem_fetch_before, mode);
7704 create_integer_operand (&ops[3], model);
7705 num_ops = 4;
7706 }
7707 else
7708 {
7709 icode = optab_handler (after ? optab->fetch_after
7710 : optab->fetch_before, mode);
7711 num_ops = 3;
7712 }
7713 create_output_operand (&ops[op_counter++], target, mode);
7714 }
7715 if (icode == CODE_FOR_nothing)
7716 return NULL_RTX;
7717
7718 create_fixed_operand (&ops[op_counter++], mem);
7719 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7720 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7721
7722 if (maybe_expand_insn (icode, num_ops, ops))
7723 return (target == const0_rtx ? const0_rtx : ops[0].value);
7724
7725 return NULL_RTX;
7726 }
7727
7728
7729 /* This function expands an atomic fetch_OP or OP_fetch operation:
7730 TARGET is an option place to stick the return value. const0_rtx indicates
7731 the result is unused.
7732 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7733 CODE is the operation being performed (OP)
7734 MEMMODEL is the memory model variant to use.
7735 AFTER is true to return the result of the operation (OP_fetch).
7736 AFTER is false to return the value before the operation (fetch_OP). */
7737 rtx
7738 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7739 enum memmodel model, bool after)
7740 {
7741 enum machine_mode mode = GET_MODE (mem);
7742 struct atomic_op_functions optab;
7743 rtx result;
7744 bool unused_result = (target == const0_rtx);
7745
7746 get_atomic_op_for_code (&optab, code);
7747
7748 /* Check to see if there are any better instructions. */
7749 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7750 if (result)
7751 return result;
7752
7753 /* Check for the case where the result isn't used and try those patterns. */
7754 if (unused_result)
7755 {
7756 /* Try the memory model variant first. */
7757 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7758 if (result)
7759 return result;
7760
7761 /* Next try the old style withuot a memory model. */
7762 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7763 if (result)
7764 return result;
7765
7766 /* There is no no-result pattern, so try patterns with a result. */
7767 target = NULL_RTX;
7768 }
7769
7770 /* Try the __atomic version. */
7771 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7772 if (result)
7773 return result;
7774
7775 /* Try the older __sync version. */
7776 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7777 if (result)
7778 return result;
7779
7780 /* If the fetch value can be calculated from the other variation of fetch,
7781 try that operation. */
7782 if (after || unused_result || optab.reverse_code != UNKNOWN)
7783 {
7784 /* Try the __atomic version, then the older __sync version. */
7785 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7786 if (!result)
7787 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7788
7789 if (result)
7790 {
7791 /* If the result isn't used, no need to do compensation code. */
7792 if (unused_result)
7793 return result;
7794
7795 /* Issue compensation code. Fetch_after == fetch_before OP val.
7796 Fetch_before == after REVERSE_OP val. */
7797 if (!after)
7798 code = optab.reverse_code;
7799 if (code == NOT)
7800 {
7801 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7802 true, OPTAB_LIB_WIDEN);
7803 result = expand_simple_unop (mode, NOT, result, target, true);
7804 }
7805 else
7806 result = expand_simple_binop (mode, code, result, val, target,
7807 true, OPTAB_LIB_WIDEN);
7808 return result;
7809 }
7810 }
7811
7812 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7813 if (!can_compare_and_swap_p (mode, false))
7814 {
7815 rtx libfunc;
7816 bool fixup = false;
7817 enum rtx_code orig_code = code;
7818
7819 libfunc = optab_libfunc (after ? optab.fetch_after
7820 : optab.fetch_before, mode);
7821 if (libfunc == NULL
7822 && (after || unused_result || optab.reverse_code != UNKNOWN))
7823 {
7824 fixup = true;
7825 if (!after)
7826 code = optab.reverse_code;
7827 libfunc = optab_libfunc (after ? optab.fetch_before
7828 : optab.fetch_after, mode);
7829 }
7830 if (libfunc != NULL)
7831 {
7832 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7833 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7834 2, addr, ptr_mode, val, mode);
7835
7836 if (!unused_result && fixup)
7837 result = expand_simple_binop (mode, code, result, val, target,
7838 true, OPTAB_LIB_WIDEN);
7839 return result;
7840 }
7841
7842 /* We need the original code for any further attempts. */
7843 code = orig_code;
7844 }
7845
7846 /* If nothing else has succeeded, default to a compare and swap loop. */
7847 if (can_compare_and_swap_p (mode, true))
7848 {
7849 rtx insn;
7850 rtx t0 = gen_reg_rtx (mode), t1;
7851
7852 start_sequence ();
7853
7854 /* If the result is used, get a register for it. */
7855 if (!unused_result)
7856 {
7857 if (!target || !register_operand (target, mode))
7858 target = gen_reg_rtx (mode);
7859 /* If fetch_before, copy the value now. */
7860 if (!after)
7861 emit_move_insn (target, t0);
7862 }
7863 else
7864 target = const0_rtx;
7865
7866 t1 = t0;
7867 if (code == NOT)
7868 {
7869 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7870 true, OPTAB_LIB_WIDEN);
7871 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7872 }
7873 else
7874 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7875 OPTAB_LIB_WIDEN);
7876
7877 /* For after, copy the value now. */
7878 if (!unused_result && after)
7879 emit_move_insn (target, t1);
7880 insn = get_insns ();
7881 end_sequence ();
7882
7883 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7884 return target;
7885 }
7886
7887 return NULL_RTX;
7888 }
7889 \f
7890 /* Return true if OPERAND is suitable for operand number OPNO of
7891 instruction ICODE. */
7892
7893 bool
7894 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
7895 {
7896 return (!insn_data[(int) icode].operand[opno].predicate
7897 || (insn_data[(int) icode].operand[opno].predicate
7898 (operand, insn_data[(int) icode].operand[opno].mode)));
7899 }
7900 \f
7901 /* TARGET is a target of a multiword operation that we are going to
7902 implement as a series of word-mode operations. Return true if
7903 TARGET is suitable for this purpose. */
7904
7905 bool
7906 valid_multiword_target_p (rtx target)
7907 {
7908 enum machine_mode mode;
7909 int i;
7910
7911 mode = GET_MODE (target);
7912 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
7913 if (!validate_subreg (word_mode, mode, target, i))
7914 return false;
7915 return true;
7916 }
7917
7918 /* Like maybe_legitimize_operand, but do not change the code of the
7919 current rtx value. */
7920
7921 static bool
7922 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
7923 struct expand_operand *op)
7924 {
7925 /* See if the operand matches in its current form. */
7926 if (insn_operand_matches (icode, opno, op->value))
7927 return true;
7928
7929 /* If the operand is a memory whose address has no side effects,
7930 try forcing the address into a non-virtual pseudo register.
7931 The check for side effects is important because copy_to_mode_reg
7932 cannot handle things like auto-modified addresses. */
7933 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
7934 {
7935 rtx addr, mem;
7936
7937 mem = op->value;
7938 addr = XEXP (mem, 0);
7939 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
7940 && !side_effects_p (addr))
7941 {
7942 rtx last;
7943 enum machine_mode mode;
7944
7945 last = get_last_insn ();
7946 mode = get_address_mode (mem);
7947 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
7948 if (insn_operand_matches (icode, opno, mem))
7949 {
7950 op->value = mem;
7951 return true;
7952 }
7953 delete_insns_since (last);
7954 }
7955 }
7956
7957 return false;
7958 }
7959
7960 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7961 on success, storing the new operand value back in OP. */
7962
7963 static bool
7964 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
7965 struct expand_operand *op)
7966 {
7967 enum machine_mode mode, imode;
7968 bool old_volatile_ok, result;
7969
7970 mode = op->mode;
7971 switch (op->type)
7972 {
7973 case EXPAND_FIXED:
7974 old_volatile_ok = volatile_ok;
7975 volatile_ok = true;
7976 result = maybe_legitimize_operand_same_code (icode, opno, op);
7977 volatile_ok = old_volatile_ok;
7978 return result;
7979
7980 case EXPAND_OUTPUT:
7981 gcc_assert (mode != VOIDmode);
7982 if (op->value
7983 && op->value != const0_rtx
7984 && GET_MODE (op->value) == mode
7985 && maybe_legitimize_operand_same_code (icode, opno, op))
7986 return true;
7987
7988 op->value = gen_reg_rtx (mode);
7989 break;
7990
7991 case EXPAND_INPUT:
7992 input:
7993 gcc_assert (mode != VOIDmode);
7994 gcc_assert (GET_MODE (op->value) == VOIDmode
7995 || GET_MODE (op->value) == mode);
7996 if (maybe_legitimize_operand_same_code (icode, opno, op))
7997 return true;
7998
7999 op->value = copy_to_mode_reg (mode, op->value);
8000 break;
8001
8002 case EXPAND_CONVERT_TO:
8003 gcc_assert (mode != VOIDmode);
8004 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8005 goto input;
8006
8007 case EXPAND_CONVERT_FROM:
8008 if (GET_MODE (op->value) != VOIDmode)
8009 mode = GET_MODE (op->value);
8010 else
8011 /* The caller must tell us what mode this value has. */
8012 gcc_assert (mode != VOIDmode);
8013
8014 imode = insn_data[(int) icode].operand[opno].mode;
8015 if (imode != VOIDmode && imode != mode)
8016 {
8017 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8018 mode = imode;
8019 }
8020 goto input;
8021
8022 case EXPAND_ADDRESS:
8023 gcc_assert (mode != VOIDmode);
8024 op->value = convert_memory_address (mode, op->value);
8025 goto input;
8026
8027 case EXPAND_INTEGER:
8028 mode = insn_data[(int) icode].operand[opno].mode;
8029 if (mode != VOIDmode && const_int_operand (op->value, mode))
8030 goto input;
8031 break;
8032 }
8033 return insn_operand_matches (icode, opno, op->value);
8034 }
8035
8036 /* Make OP describe an input operand that should have the same value
8037 as VALUE, after any mode conversion that the target might request.
8038 TYPE is the type of VALUE. */
8039
8040 void
8041 create_convert_operand_from_type (struct expand_operand *op,
8042 rtx value, tree type)
8043 {
8044 create_convert_operand_from (op, value, TYPE_MODE (type),
8045 TYPE_UNSIGNED (type));
8046 }
8047
8048 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8049 of instruction ICODE. Return true on success, leaving the new operand
8050 values in the OPS themselves. Emit no code on failure. */
8051
8052 bool
8053 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8054 unsigned int nops, struct expand_operand *ops)
8055 {
8056 rtx last;
8057 unsigned int i;
8058
8059 last = get_last_insn ();
8060 for (i = 0; i < nops; i++)
8061 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8062 {
8063 delete_insns_since (last);
8064 return false;
8065 }
8066 return true;
8067 }
8068
8069 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8070 as its operands. Return the instruction pattern on success,
8071 and emit any necessary set-up code. Return null and emit no
8072 code on failure. */
8073
8074 rtx
8075 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8076 struct expand_operand *ops)
8077 {
8078 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8079 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8080 return NULL_RTX;
8081
8082 switch (nops)
8083 {
8084 case 1:
8085 return GEN_FCN (icode) (ops[0].value);
8086 case 2:
8087 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8088 case 3:
8089 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8090 case 4:
8091 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8092 ops[3].value);
8093 case 5:
8094 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8095 ops[3].value, ops[4].value);
8096 case 6:
8097 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8098 ops[3].value, ops[4].value, ops[5].value);
8099 case 7:
8100 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8101 ops[3].value, ops[4].value, ops[5].value,
8102 ops[6].value);
8103 case 8:
8104 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8105 ops[3].value, ops[4].value, ops[5].value,
8106 ops[6].value, ops[7].value);
8107 }
8108 gcc_unreachable ();
8109 }
8110
8111 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8112 as its operands. Return true on success and emit no code on failure. */
8113
8114 bool
8115 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8116 struct expand_operand *ops)
8117 {
8118 rtx pat = maybe_gen_insn (icode, nops, ops);
8119 if (pat)
8120 {
8121 emit_insn (pat);
8122 return true;
8123 }
8124 return false;
8125 }
8126
8127 /* Like maybe_expand_insn, but for jumps. */
8128
8129 bool
8130 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8131 struct expand_operand *ops)
8132 {
8133 rtx pat = maybe_gen_insn (icode, nops, ops);
8134 if (pat)
8135 {
8136 emit_jump_insn (pat);
8137 return true;
8138 }
8139 return false;
8140 }
8141
8142 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8143 as its operands. */
8144
8145 void
8146 expand_insn (enum insn_code icode, unsigned int nops,
8147 struct expand_operand *ops)
8148 {
8149 if (!maybe_expand_insn (icode, nops, ops))
8150 gcc_unreachable ();
8151 }
8152
8153 /* Like expand_insn, but for jumps. */
8154
8155 void
8156 expand_jump_insn (enum insn_code icode, unsigned int nops,
8157 struct expand_operand *ops)
8158 {
8159 if (!maybe_expand_jump_insn (icode, nops, ops))
8160 gcc_unreachable ();
8161 }
8162
8163 #include "gt-optabs.h"