]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
* optabs.c (expand_atomic_load): Do not assume compare_and_swap will
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "basic-block.h"
45 #include "target.h"
46
47 struct target_optabs default_target_optabs;
48 struct target_libfuncs default_target_libfuncs;
49 #if SWITCHABLE_TARGET
50 struct target_optabs *this_target_optabs = &default_target_optabs;
51 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
52 #endif
53
54 #define libfunc_hash \
55 (this_target_libfuncs->x_libfunc_hash)
56
57 /* Contains the optab used for each rtx code. */
58 optab code_to_optab[NUM_RTX_CODE + 1];
59
60 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
61 enum machine_mode *);
62 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
63
64 /* Debug facility for use in GDB. */
65 void debug_optab_libfuncs (void);
66
67 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
68 #if ENABLE_DECIMAL_BID_FORMAT
69 #define DECIMAL_PREFIX "bid_"
70 #else
71 #define DECIMAL_PREFIX "dpd_"
72 #endif
73 \f
74 /* Used for libfunc_hash. */
75
76 static hashval_t
77 hash_libfunc (const void *p)
78 {
79 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
80
81 return (((int) e->mode1 + (int) e->mode2 * NUM_MACHINE_MODES)
82 ^ e->optab);
83 }
84
85 /* Used for libfunc_hash. */
86
87 static int
88 eq_libfunc (const void *p, const void *q)
89 {
90 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
91 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
92
93 return (e1->optab == e2->optab
94 && e1->mode1 == e2->mode1
95 && e1->mode2 == e2->mode2);
96 }
97
98 /* Return libfunc corresponding operation defined by OPTAB converting
99 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
100 if no libfunc is available. */
101 rtx
102 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
103 enum machine_mode mode2)
104 {
105 struct libfunc_entry e;
106 struct libfunc_entry **slot;
107
108 e.optab = (size_t) (optab - &convert_optab_table[0]);
109 e.mode1 = mode1;
110 e.mode2 = mode2;
111 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
112 if (!slot)
113 {
114 if (optab->libcall_gen)
115 {
116 optab->libcall_gen (optab, optab->libcall_basename, mode1, mode2);
117 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
118 if (slot)
119 return (*slot)->libfunc;
120 else
121 return NULL;
122 }
123 return NULL;
124 }
125 return (*slot)->libfunc;
126 }
127
128 /* Return libfunc corresponding operation defined by OPTAB in MODE.
129 Trigger lazy initialization if needed, return NULL if no libfunc is
130 available. */
131 rtx
132 optab_libfunc (optab optab, enum machine_mode mode)
133 {
134 struct libfunc_entry e;
135 struct libfunc_entry **slot;
136
137 e.optab = (size_t) (optab - &optab_table[0]);
138 e.mode1 = mode;
139 e.mode2 = VOIDmode;
140 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, NO_INSERT);
141 if (!slot)
142 {
143 if (optab->libcall_gen)
144 {
145 optab->libcall_gen (optab, optab->libcall_basename,
146 optab->libcall_suffix, mode);
147 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash,
148 &e, NO_INSERT);
149 if (slot)
150 return (*slot)->libfunc;
151 else
152 return NULL;
153 }
154 return NULL;
155 }
156 return (*slot)->libfunc;
157 }
158
159 \f
160 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
161 the result of operation CODE applied to OP0 (and OP1 if it is a binary
162 operation).
163
164 If the last insn does not set TARGET, don't do anything, but return 1.
165
166 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
167 don't add the REG_EQUAL note but return 0. Our caller can then try
168 again, ensuring that TARGET is not one of the operands. */
169
170 static int
171 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
172 {
173 rtx last_insn, insn, set;
174 rtx note;
175
176 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
177
178 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
179 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
180 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
181 && GET_RTX_CLASS (code) != RTX_COMPARE
182 && GET_RTX_CLASS (code) != RTX_UNARY)
183 return 1;
184
185 if (GET_CODE (target) == ZERO_EXTRACT)
186 return 1;
187
188 for (last_insn = insns;
189 NEXT_INSN (last_insn) != NULL_RTX;
190 last_insn = NEXT_INSN (last_insn))
191 ;
192
193 set = single_set (last_insn);
194 if (set == NULL_RTX)
195 return 1;
196
197 if (! rtx_equal_p (SET_DEST (set), target)
198 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
199 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
200 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
201 return 1;
202
203 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
204 besides the last insn. */
205 if (reg_overlap_mentioned_p (target, op0)
206 || (op1 && reg_overlap_mentioned_p (target, op1)))
207 {
208 insn = PREV_INSN (last_insn);
209 while (insn != NULL_RTX)
210 {
211 if (reg_set_p (target, insn))
212 return 0;
213
214 insn = PREV_INSN (insn);
215 }
216 }
217
218 if (GET_RTX_CLASS (code) == RTX_UNARY)
219 switch (code)
220 {
221 case FFS:
222 case CLZ:
223 case CTZ:
224 case CLRSB:
225 case POPCOUNT:
226 case PARITY:
227 case BSWAP:
228 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
229 {
230 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
231 if (GET_MODE_SIZE (GET_MODE (op0))
232 > GET_MODE_SIZE (GET_MODE (target)))
233 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
234 note, GET_MODE (op0));
235 else
236 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
237 note, GET_MODE (op0));
238 break;
239 }
240 /* FALLTHRU */
241 default:
242 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
243 break;
244 }
245 else
246 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
247
248 set_unique_reg_note (last_insn, REG_EQUAL, note);
249
250 return 1;
251 }
252 \f
253 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
254 for a widening operation would be. In most cases this would be OP0, but if
255 that's a constant it'll be VOIDmode, which isn't useful. */
256
257 static enum machine_mode
258 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
259 {
260 enum machine_mode m0 = GET_MODE (op0);
261 enum machine_mode m1 = GET_MODE (op1);
262 enum machine_mode result;
263
264 if (m0 == VOIDmode && m1 == VOIDmode)
265 return to_mode;
266 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
267 result = m1;
268 else
269 result = m0;
270
271 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
272 return to_mode;
273
274 return result;
275 }
276 \f
277 /* Find a widening optab even if it doesn't widen as much as we want.
278 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
279 direct HI->SI insn, then return SI->DI, if that exists.
280 If PERMIT_NON_WIDENING is non-zero then this can be used with
281 non-widening optabs also. */
282
283 enum insn_code
284 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
285 enum machine_mode from_mode,
286 int permit_non_widening,
287 enum machine_mode *found_mode)
288 {
289 for (; (permit_non_widening || from_mode != to_mode)
290 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
291 && from_mode != VOIDmode;
292 from_mode = GET_MODE_WIDER_MODE (from_mode))
293 {
294 enum insn_code handler = widening_optab_handler (op, to_mode,
295 from_mode);
296
297 if (handler != CODE_FOR_nothing)
298 {
299 if (found_mode)
300 *found_mode = from_mode;
301 return handler;
302 }
303 }
304
305 return CODE_FOR_nothing;
306 }
307 \f
308 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
309 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
310 not actually do a sign-extend or zero-extend, but can leave the
311 higher-order bits of the result rtx undefined, for example, in the case
312 of logical operations, but not right shifts. */
313
314 static rtx
315 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
316 int unsignedp, int no_extend)
317 {
318 rtx result;
319
320 /* If we don't have to extend and this is a constant, return it. */
321 if (no_extend && GET_MODE (op) == VOIDmode)
322 return op;
323
324 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
325 extend since it will be more efficient to do so unless the signedness of
326 a promoted object differs from our extension. */
327 if (! no_extend
328 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
329 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
330 return convert_modes (mode, oldmode, op, unsignedp);
331
332 /* If MODE is no wider than a single word, we return a paradoxical
333 SUBREG. */
334 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
335 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
336
337 /* Otherwise, get an object of MODE, clobber it, and set the low-order
338 part to OP. */
339
340 result = gen_reg_rtx (mode);
341 emit_clobber (result);
342 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
343 return result;
344 }
345 \f
346 /* Return the optab used for computing the operation given by the tree code,
347 CODE and the tree EXP. This function is not always usable (for example, it
348 cannot give complete results for multiplication or division) but probably
349 ought to be relied on more widely throughout the expander. */
350 optab
351 optab_for_tree_code (enum tree_code code, const_tree type,
352 enum optab_subtype subtype)
353 {
354 bool trapv;
355 switch (code)
356 {
357 case BIT_AND_EXPR:
358 return and_optab;
359
360 case BIT_IOR_EXPR:
361 return ior_optab;
362
363 case BIT_NOT_EXPR:
364 return one_cmpl_optab;
365
366 case BIT_XOR_EXPR:
367 return xor_optab;
368
369 case TRUNC_MOD_EXPR:
370 case CEIL_MOD_EXPR:
371 case FLOOR_MOD_EXPR:
372 case ROUND_MOD_EXPR:
373 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
374
375 case RDIV_EXPR:
376 case TRUNC_DIV_EXPR:
377 case CEIL_DIV_EXPR:
378 case FLOOR_DIV_EXPR:
379 case ROUND_DIV_EXPR:
380 case EXACT_DIV_EXPR:
381 if (TYPE_SATURATING(type))
382 return TYPE_UNSIGNED(type) ? usdiv_optab : ssdiv_optab;
383 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
384
385 case LSHIFT_EXPR:
386 if (TREE_CODE (type) == VECTOR_TYPE)
387 {
388 if (subtype == optab_vector)
389 return TYPE_SATURATING (type) ? NULL : vashl_optab;
390
391 gcc_assert (subtype == optab_scalar);
392 }
393 if (TYPE_SATURATING(type))
394 return TYPE_UNSIGNED(type) ? usashl_optab : ssashl_optab;
395 return ashl_optab;
396
397 case RSHIFT_EXPR:
398 if (TREE_CODE (type) == VECTOR_TYPE)
399 {
400 if (subtype == optab_vector)
401 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
402
403 gcc_assert (subtype == optab_scalar);
404 }
405 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
406
407 case LROTATE_EXPR:
408 if (TREE_CODE (type) == VECTOR_TYPE)
409 {
410 if (subtype == optab_vector)
411 return vrotl_optab;
412
413 gcc_assert (subtype == optab_scalar);
414 }
415 return rotl_optab;
416
417 case RROTATE_EXPR:
418 if (TREE_CODE (type) == VECTOR_TYPE)
419 {
420 if (subtype == optab_vector)
421 return vrotr_optab;
422
423 gcc_assert (subtype == optab_scalar);
424 }
425 return rotr_optab;
426
427 case MAX_EXPR:
428 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
429
430 case MIN_EXPR:
431 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
432
433 case REALIGN_LOAD_EXPR:
434 return vec_realign_load_optab;
435
436 case WIDEN_SUM_EXPR:
437 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
438
439 case DOT_PROD_EXPR:
440 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
441
442 case WIDEN_MULT_PLUS_EXPR:
443 return (TYPE_UNSIGNED (type)
444 ? (TYPE_SATURATING (type)
445 ? usmadd_widen_optab : umadd_widen_optab)
446 : (TYPE_SATURATING (type)
447 ? ssmadd_widen_optab : smadd_widen_optab));
448
449 case WIDEN_MULT_MINUS_EXPR:
450 return (TYPE_UNSIGNED (type)
451 ? (TYPE_SATURATING (type)
452 ? usmsub_widen_optab : umsub_widen_optab)
453 : (TYPE_SATURATING (type)
454 ? ssmsub_widen_optab : smsub_widen_optab));
455
456 case FMA_EXPR:
457 return fma_optab;
458
459 case REDUC_MAX_EXPR:
460 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
461
462 case REDUC_MIN_EXPR:
463 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
464
465 case REDUC_PLUS_EXPR:
466 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
467
468 case VEC_LSHIFT_EXPR:
469 return vec_shl_optab;
470
471 case VEC_RSHIFT_EXPR:
472 return vec_shr_optab;
473
474 case VEC_WIDEN_MULT_HI_EXPR:
475 return TYPE_UNSIGNED (type) ?
476 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
477
478 case VEC_WIDEN_MULT_LO_EXPR:
479 return TYPE_UNSIGNED (type) ?
480 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
481
482 case VEC_WIDEN_LSHIFT_HI_EXPR:
483 return TYPE_UNSIGNED (type) ?
484 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
485
486 case VEC_WIDEN_LSHIFT_LO_EXPR:
487 return TYPE_UNSIGNED (type) ?
488 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
489
490 case VEC_UNPACK_HI_EXPR:
491 return TYPE_UNSIGNED (type) ?
492 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
493
494 case VEC_UNPACK_LO_EXPR:
495 return TYPE_UNSIGNED (type) ?
496 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
497
498 case VEC_UNPACK_FLOAT_HI_EXPR:
499 /* The signedness is determined from input operand. */
500 return TYPE_UNSIGNED (type) ?
501 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
502
503 case VEC_UNPACK_FLOAT_LO_EXPR:
504 /* The signedness is determined from input operand. */
505 return TYPE_UNSIGNED (type) ?
506 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
507
508 case VEC_PACK_TRUNC_EXPR:
509 return vec_pack_trunc_optab;
510
511 case VEC_PACK_SAT_EXPR:
512 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
513
514 case VEC_PACK_FIX_TRUNC_EXPR:
515 /* The signedness is determined from output operand. */
516 return TYPE_UNSIGNED (type) ?
517 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
518
519 default:
520 break;
521 }
522
523 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
524 switch (code)
525 {
526 case POINTER_PLUS_EXPR:
527 case PLUS_EXPR:
528 if (TYPE_SATURATING(type))
529 return TYPE_UNSIGNED(type) ? usadd_optab : ssadd_optab;
530 return trapv ? addv_optab : add_optab;
531
532 case MINUS_EXPR:
533 if (TYPE_SATURATING(type))
534 return TYPE_UNSIGNED(type) ? ussub_optab : sssub_optab;
535 return trapv ? subv_optab : sub_optab;
536
537 case MULT_EXPR:
538 if (TYPE_SATURATING(type))
539 return TYPE_UNSIGNED(type) ? usmul_optab : ssmul_optab;
540 return trapv ? smulv_optab : smul_optab;
541
542 case NEGATE_EXPR:
543 if (TYPE_SATURATING(type))
544 return TYPE_UNSIGNED(type) ? usneg_optab : ssneg_optab;
545 return trapv ? negv_optab : neg_optab;
546
547 case ABS_EXPR:
548 return trapv ? absv_optab : abs_optab;
549
550 default:
551 return NULL;
552 }
553 }
554 \f
555
556 /* Expand vector widening operations.
557
558 There are two different classes of operations handled here:
559 1) Operations whose result is wider than all the arguments to the operation.
560 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
561 In this case OP0 and optionally OP1 would be initialized,
562 but WIDE_OP wouldn't (not relevant for this case).
563 2) Operations whose result is of the same size as the last argument to the
564 operation, but wider than all the other arguments to the operation.
565 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
566 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
567
568 E.g, when called to expand the following operations, this is how
569 the arguments will be initialized:
570 nops OP0 OP1 WIDE_OP
571 widening-sum 2 oprnd0 - oprnd1
572 widening-dot-product 3 oprnd0 oprnd1 oprnd2
573 widening-mult 2 oprnd0 oprnd1 -
574 type-promotion (vec-unpack) 1 oprnd0 - - */
575
576 rtx
577 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
578 rtx target, int unsignedp)
579 {
580 struct expand_operand eops[4];
581 tree oprnd0, oprnd1, oprnd2;
582 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
583 optab widen_pattern_optab;
584 enum insn_code icode;
585 int nops = TREE_CODE_LENGTH (ops->code);
586 int op;
587
588 oprnd0 = ops->op0;
589 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
590 widen_pattern_optab =
591 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
592 if (ops->code == WIDEN_MULT_PLUS_EXPR
593 || ops->code == WIDEN_MULT_MINUS_EXPR)
594 icode = find_widening_optab_handler (widen_pattern_optab,
595 TYPE_MODE (TREE_TYPE (ops->op2)),
596 tmode0, 0);
597 else
598 icode = optab_handler (widen_pattern_optab, tmode0);
599 gcc_assert (icode != CODE_FOR_nothing);
600
601 if (nops >= 2)
602 {
603 oprnd1 = ops->op1;
604 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
605 }
606
607 /* The last operand is of a wider mode than the rest of the operands. */
608 if (nops == 2)
609 wmode = tmode1;
610 else if (nops == 3)
611 {
612 gcc_assert (tmode1 == tmode0);
613 gcc_assert (op1);
614 oprnd2 = ops->op2;
615 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
616 }
617
618 op = 0;
619 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
620 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
621 if (op1)
622 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
623 if (wide_op)
624 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
625 expand_insn (icode, op, eops);
626 return eops[0].value;
627 }
628
629 /* Generate code to perform an operation specified by TERNARY_OPTAB
630 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
631
632 UNSIGNEDP is for the case where we have to widen the operands
633 to perform the operation. It says to use zero-extension.
634
635 If TARGET is nonzero, the value
636 is generated there, if it is convenient to do so.
637 In all cases an rtx is returned for the locus of the value;
638 this may or may not be TARGET. */
639
640 rtx
641 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
642 rtx op1, rtx op2, rtx target, int unsignedp)
643 {
644 struct expand_operand ops[4];
645 enum insn_code icode = optab_handler (ternary_optab, mode);
646
647 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
648
649 create_output_operand (&ops[0], target, mode);
650 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
651 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
652 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
653 expand_insn (icode, 4, ops);
654 return ops[0].value;
655 }
656
657
658 /* Like expand_binop, but return a constant rtx if the result can be
659 calculated at compile time. The arguments and return value are
660 otherwise the same as for expand_binop. */
661
662 rtx
663 simplify_expand_binop (enum machine_mode mode, optab binoptab,
664 rtx op0, rtx op1, rtx target, int unsignedp,
665 enum optab_methods methods)
666 {
667 if (CONSTANT_P (op0) && CONSTANT_P (op1))
668 {
669 rtx x = simplify_binary_operation (binoptab->code, mode, op0, op1);
670
671 if (x)
672 return x;
673 }
674
675 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
676 }
677
678 /* Like simplify_expand_binop, but always put the result in TARGET.
679 Return true if the expansion succeeded. */
680
681 bool
682 force_expand_binop (enum machine_mode mode, optab binoptab,
683 rtx op0, rtx op1, rtx target, int unsignedp,
684 enum optab_methods methods)
685 {
686 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
687 target, unsignedp, methods);
688 if (x == 0)
689 return false;
690 if (x != target)
691 emit_move_insn (target, x);
692 return true;
693 }
694
695 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
696
697 rtx
698 expand_vec_shift_expr (sepops ops, rtx target)
699 {
700 struct expand_operand eops[3];
701 enum insn_code icode;
702 rtx rtx_op1, rtx_op2;
703 enum machine_mode mode = TYPE_MODE (ops->type);
704 tree vec_oprnd = ops->op0;
705 tree shift_oprnd = ops->op1;
706 optab shift_optab;
707
708 switch (ops->code)
709 {
710 case VEC_RSHIFT_EXPR:
711 shift_optab = vec_shr_optab;
712 break;
713 case VEC_LSHIFT_EXPR:
714 shift_optab = vec_shl_optab;
715 break;
716 default:
717 gcc_unreachable ();
718 }
719
720 icode = optab_handler (shift_optab, mode);
721 gcc_assert (icode != CODE_FOR_nothing);
722
723 rtx_op1 = expand_normal (vec_oprnd);
724 rtx_op2 = expand_normal (shift_oprnd);
725
726 create_output_operand (&eops[0], target, mode);
727 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
728 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
729 expand_insn (icode, 3, eops);
730
731 return eops[0].value;
732 }
733
734 /* Create a new vector value in VMODE with all elements set to OP. The
735 mode of OP must be the element mode of VMODE. If OP is a constant,
736 then the return value will be a constant. */
737
738 static rtx
739 expand_vector_broadcast (enum machine_mode vmode, rtx op)
740 {
741 enum insn_code icode;
742 rtvec vec;
743 rtx ret;
744 int i, n;
745
746 gcc_checking_assert (VECTOR_MODE_P (vmode));
747
748 n = GET_MODE_NUNITS (vmode);
749 vec = rtvec_alloc (n);
750 for (i = 0; i < n; ++i)
751 RTVEC_ELT (vec, i) = op;
752
753 if (CONSTANT_P (op))
754 return gen_rtx_CONST_VECTOR (vmode, vec);
755
756 /* ??? If the target doesn't have a vec_init, then we have no easy way
757 of performing this operation. Most of this sort of generic support
758 is hidden away in the vector lowering support in gimple. */
759 icode = optab_handler (vec_init_optab, vmode);
760 if (icode == CODE_FOR_nothing)
761 return NULL;
762
763 ret = gen_reg_rtx (vmode);
764 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
765
766 return ret;
767 }
768
769 /* This subroutine of expand_doubleword_shift handles the cases in which
770 the effective shift value is >= BITS_PER_WORD. The arguments and return
771 value are the same as for the parent routine, except that SUPERWORD_OP1
772 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
773 INTO_TARGET may be null if the caller has decided to calculate it. */
774
775 static bool
776 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
777 rtx outof_target, rtx into_target,
778 int unsignedp, enum optab_methods methods)
779 {
780 if (into_target != 0)
781 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
782 into_target, unsignedp, methods))
783 return false;
784
785 if (outof_target != 0)
786 {
787 /* For a signed right shift, we must fill OUTOF_TARGET with copies
788 of the sign bit, otherwise we must fill it with zeros. */
789 if (binoptab != ashr_optab)
790 emit_move_insn (outof_target, CONST0_RTX (word_mode));
791 else
792 if (!force_expand_binop (word_mode, binoptab,
793 outof_input, GEN_INT (BITS_PER_WORD - 1),
794 outof_target, unsignedp, methods))
795 return false;
796 }
797 return true;
798 }
799
800 /* This subroutine of expand_doubleword_shift handles the cases in which
801 the effective shift value is < BITS_PER_WORD. The arguments and return
802 value are the same as for the parent routine. */
803
804 static bool
805 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
806 rtx outof_input, rtx into_input, rtx op1,
807 rtx outof_target, rtx into_target,
808 int unsignedp, enum optab_methods methods,
809 unsigned HOST_WIDE_INT shift_mask)
810 {
811 optab reverse_unsigned_shift, unsigned_shift;
812 rtx tmp, carries;
813
814 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
815 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
816
817 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
818 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
819 the opposite direction to BINOPTAB. */
820 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
821 {
822 carries = outof_input;
823 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
824 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
825 0, true, methods);
826 }
827 else
828 {
829 /* We must avoid shifting by BITS_PER_WORD bits since that is either
830 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
831 has unknown behavior. Do a single shift first, then shift by the
832 remainder. It's OK to use ~OP1 as the remainder if shift counts
833 are truncated to the mode size. */
834 carries = expand_binop (word_mode, reverse_unsigned_shift,
835 outof_input, const1_rtx, 0, unsignedp, methods);
836 if (shift_mask == BITS_PER_WORD - 1)
837 {
838 tmp = immed_double_const (-1, -1, op1_mode);
839 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
840 0, true, methods);
841 }
842 else
843 {
844 tmp = immed_double_const (BITS_PER_WORD - 1, 0, op1_mode);
845 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
846 0, true, methods);
847 }
848 }
849 if (tmp == 0 || carries == 0)
850 return false;
851 carries = expand_binop (word_mode, reverse_unsigned_shift,
852 carries, tmp, 0, unsignedp, methods);
853 if (carries == 0)
854 return false;
855
856 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
857 so the result can go directly into INTO_TARGET if convenient. */
858 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
859 into_target, unsignedp, methods);
860 if (tmp == 0)
861 return false;
862
863 /* Now OR in the bits carried over from OUTOF_INPUT. */
864 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
865 into_target, unsignedp, methods))
866 return false;
867
868 /* Use a standard word_mode shift for the out-of half. */
869 if (outof_target != 0)
870 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
871 outof_target, unsignedp, methods))
872 return false;
873
874 return true;
875 }
876
877
878 #ifdef HAVE_conditional_move
879 /* Try implementing expand_doubleword_shift using conditional moves.
880 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
881 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
882 are the shift counts to use in the former and latter case. All other
883 arguments are the same as the parent routine. */
884
885 static bool
886 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
887 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
888 rtx outof_input, rtx into_input,
889 rtx subword_op1, rtx superword_op1,
890 rtx outof_target, rtx into_target,
891 int unsignedp, enum optab_methods methods,
892 unsigned HOST_WIDE_INT shift_mask)
893 {
894 rtx outof_superword, into_superword;
895
896 /* Put the superword version of the output into OUTOF_SUPERWORD and
897 INTO_SUPERWORD. */
898 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
899 if (outof_target != 0 && subword_op1 == superword_op1)
900 {
901 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
902 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
903 into_superword = outof_target;
904 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
905 outof_superword, 0, unsignedp, methods))
906 return false;
907 }
908 else
909 {
910 into_superword = gen_reg_rtx (word_mode);
911 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
912 outof_superword, into_superword,
913 unsignedp, methods))
914 return false;
915 }
916
917 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
918 if (!expand_subword_shift (op1_mode, binoptab,
919 outof_input, into_input, subword_op1,
920 outof_target, into_target,
921 unsignedp, methods, shift_mask))
922 return false;
923
924 /* Select between them. Do the INTO half first because INTO_SUPERWORD
925 might be the current value of OUTOF_TARGET. */
926 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
927 into_target, into_superword, word_mode, false))
928 return false;
929
930 if (outof_target != 0)
931 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
932 outof_target, outof_superword,
933 word_mode, false))
934 return false;
935
936 return true;
937 }
938 #endif
939
940 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
941 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
942 input operand; the shift moves bits in the direction OUTOF_INPUT->
943 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
944 of the target. OP1 is the shift count and OP1_MODE is its mode.
945 If OP1 is constant, it will have been truncated as appropriate
946 and is known to be nonzero.
947
948 If SHIFT_MASK is zero, the result of word shifts is undefined when the
949 shift count is outside the range [0, BITS_PER_WORD). This routine must
950 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
951
952 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
953 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
954 fill with zeros or sign bits as appropriate.
955
956 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
957 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
958 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
959 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
960 are undefined.
961
962 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
963 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
964 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
965 function wants to calculate it itself.
966
967 Return true if the shift could be successfully synthesized. */
968
969 static bool
970 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
971 rtx outof_input, rtx into_input, rtx op1,
972 rtx outof_target, rtx into_target,
973 int unsignedp, enum optab_methods methods,
974 unsigned HOST_WIDE_INT shift_mask)
975 {
976 rtx superword_op1, tmp, cmp1, cmp2;
977 rtx subword_label, done_label;
978 enum rtx_code cmp_code;
979
980 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
981 fill the result with sign or zero bits as appropriate. If so, the value
982 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
983 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
984 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
985
986 This isn't worthwhile for constant shifts since the optimizers will
987 cope better with in-range shift counts. */
988 if (shift_mask >= BITS_PER_WORD
989 && outof_target != 0
990 && !CONSTANT_P (op1))
991 {
992 if (!expand_doubleword_shift (op1_mode, binoptab,
993 outof_input, into_input, op1,
994 0, into_target,
995 unsignedp, methods, shift_mask))
996 return false;
997 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
998 outof_target, unsignedp, methods))
999 return false;
1000 return true;
1001 }
1002
1003 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1004 is true when the effective shift value is less than BITS_PER_WORD.
1005 Set SUPERWORD_OP1 to the shift count that should be used to shift
1006 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1007 tmp = immed_double_const (BITS_PER_WORD, 0, op1_mode);
1008 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1009 {
1010 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1011 is a subword shift count. */
1012 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1013 0, true, methods);
1014 cmp2 = CONST0_RTX (op1_mode);
1015 cmp_code = EQ;
1016 superword_op1 = op1;
1017 }
1018 else
1019 {
1020 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1021 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1022 0, true, methods);
1023 cmp2 = CONST0_RTX (op1_mode);
1024 cmp_code = LT;
1025 superword_op1 = cmp1;
1026 }
1027 if (cmp1 == 0)
1028 return false;
1029
1030 /* If we can compute the condition at compile time, pick the
1031 appropriate subroutine. */
1032 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1033 if (tmp != 0 && CONST_INT_P (tmp))
1034 {
1035 if (tmp == const0_rtx)
1036 return expand_superword_shift (binoptab, outof_input, superword_op1,
1037 outof_target, into_target,
1038 unsignedp, methods);
1039 else
1040 return expand_subword_shift (op1_mode, binoptab,
1041 outof_input, into_input, op1,
1042 outof_target, into_target,
1043 unsignedp, methods, shift_mask);
1044 }
1045
1046 #ifdef HAVE_conditional_move
1047 /* Try using conditional moves to generate straight-line code. */
1048 {
1049 rtx start = get_last_insn ();
1050 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1051 cmp_code, cmp1, cmp2,
1052 outof_input, into_input,
1053 op1, superword_op1,
1054 outof_target, into_target,
1055 unsignedp, methods, shift_mask))
1056 return true;
1057 delete_insns_since (start);
1058 }
1059 #endif
1060
1061 /* As a last resort, use branches to select the correct alternative. */
1062 subword_label = gen_label_rtx ();
1063 done_label = gen_label_rtx ();
1064
1065 NO_DEFER_POP;
1066 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1067 0, 0, subword_label, -1);
1068 OK_DEFER_POP;
1069
1070 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1071 outof_target, into_target,
1072 unsignedp, methods))
1073 return false;
1074
1075 emit_jump_insn (gen_jump (done_label));
1076 emit_barrier ();
1077 emit_label (subword_label);
1078
1079 if (!expand_subword_shift (op1_mode, binoptab,
1080 outof_input, into_input, op1,
1081 outof_target, into_target,
1082 unsignedp, methods, shift_mask))
1083 return false;
1084
1085 emit_label (done_label);
1086 return true;
1087 }
1088 \f
1089 /* Subroutine of expand_binop. Perform a double word multiplication of
1090 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1091 as the target's word_mode. This function return NULL_RTX if anything
1092 goes wrong, in which case it may have already emitted instructions
1093 which need to be deleted.
1094
1095 If we want to multiply two two-word values and have normal and widening
1096 multiplies of single-word values, we can do this with three smaller
1097 multiplications.
1098
1099 The multiplication proceeds as follows:
1100 _______________________
1101 [__op0_high_|__op0_low__]
1102 _______________________
1103 * [__op1_high_|__op1_low__]
1104 _______________________________________________
1105 _______________________
1106 (1) [__op0_low__*__op1_low__]
1107 _______________________
1108 (2a) [__op0_low__*__op1_high_]
1109 _______________________
1110 (2b) [__op0_high_*__op1_low__]
1111 _______________________
1112 (3) [__op0_high_*__op1_high_]
1113
1114
1115 This gives a 4-word result. Since we are only interested in the
1116 lower 2 words, partial result (3) and the upper words of (2a) and
1117 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1118 calculated using non-widening multiplication.
1119
1120 (1), however, needs to be calculated with an unsigned widening
1121 multiplication. If this operation is not directly supported we
1122 try using a signed widening multiplication and adjust the result.
1123 This adjustment works as follows:
1124
1125 If both operands are positive then no adjustment is needed.
1126
1127 If the operands have different signs, for example op0_low < 0 and
1128 op1_low >= 0, the instruction treats the most significant bit of
1129 op0_low as a sign bit instead of a bit with significance
1130 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1131 with 2**BITS_PER_WORD - op0_low, and two's complements the
1132 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1133 the result.
1134
1135 Similarly, if both operands are negative, we need to add
1136 (op0_low + op1_low) * 2**BITS_PER_WORD.
1137
1138 We use a trick to adjust quickly. We logically shift op0_low right
1139 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1140 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1141 logical shift exists, we do an arithmetic right shift and subtract
1142 the 0 or -1. */
1143
1144 static rtx
1145 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1146 bool umulp, enum optab_methods methods)
1147 {
1148 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1149 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1150 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1151 rtx product, adjust, product_high, temp;
1152
1153 rtx op0_high = operand_subword_force (op0, high, mode);
1154 rtx op0_low = operand_subword_force (op0, low, mode);
1155 rtx op1_high = operand_subword_force (op1, high, mode);
1156 rtx op1_low = operand_subword_force (op1, low, mode);
1157
1158 /* If we're using an unsigned multiply to directly compute the product
1159 of the low-order words of the operands and perform any required
1160 adjustments of the operands, we begin by trying two more multiplications
1161 and then computing the appropriate sum.
1162
1163 We have checked above that the required addition is provided.
1164 Full-word addition will normally always succeed, especially if
1165 it is provided at all, so we don't worry about its failure. The
1166 multiplication may well fail, however, so we do handle that. */
1167
1168 if (!umulp)
1169 {
1170 /* ??? This could be done with emit_store_flag where available. */
1171 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1172 NULL_RTX, 1, methods);
1173 if (temp)
1174 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1175 NULL_RTX, 0, OPTAB_DIRECT);
1176 else
1177 {
1178 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1179 NULL_RTX, 0, methods);
1180 if (!temp)
1181 return NULL_RTX;
1182 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1183 NULL_RTX, 0, OPTAB_DIRECT);
1184 }
1185
1186 if (!op0_high)
1187 return NULL_RTX;
1188 }
1189
1190 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1191 NULL_RTX, 0, OPTAB_DIRECT);
1192 if (!adjust)
1193 return NULL_RTX;
1194
1195 /* OP0_HIGH should now be dead. */
1196
1197 if (!umulp)
1198 {
1199 /* ??? This could be done with emit_store_flag where available. */
1200 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1201 NULL_RTX, 1, methods);
1202 if (temp)
1203 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1204 NULL_RTX, 0, OPTAB_DIRECT);
1205 else
1206 {
1207 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1208 NULL_RTX, 0, methods);
1209 if (!temp)
1210 return NULL_RTX;
1211 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1212 NULL_RTX, 0, OPTAB_DIRECT);
1213 }
1214
1215 if (!op1_high)
1216 return NULL_RTX;
1217 }
1218
1219 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1220 NULL_RTX, 0, OPTAB_DIRECT);
1221 if (!temp)
1222 return NULL_RTX;
1223
1224 /* OP1_HIGH should now be dead. */
1225
1226 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1227 NULL_RTX, 0, OPTAB_DIRECT);
1228
1229 if (target && !REG_P (target))
1230 target = NULL_RTX;
1231
1232 if (umulp)
1233 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1234 target, 1, OPTAB_DIRECT);
1235 else
1236 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1237 target, 1, OPTAB_DIRECT);
1238
1239 if (!product)
1240 return NULL_RTX;
1241
1242 product_high = operand_subword (product, high, 1, mode);
1243 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1244 NULL_RTX, 0, OPTAB_DIRECT);
1245 emit_move_insn (product_high, adjust);
1246 return product;
1247 }
1248 \f
1249 /* Wrapper around expand_binop which takes an rtx code to specify
1250 the operation to perform, not an optab pointer. All other
1251 arguments are the same. */
1252 rtx
1253 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1254 rtx op1, rtx target, int unsignedp,
1255 enum optab_methods methods)
1256 {
1257 optab binop = code_to_optab[(int) code];
1258 gcc_assert (binop);
1259
1260 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1261 }
1262
1263 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1264 binop. Order them according to commutative_operand_precedence and, if
1265 possible, try to put TARGET or a pseudo first. */
1266 static bool
1267 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1268 {
1269 int op0_prec = commutative_operand_precedence (op0);
1270 int op1_prec = commutative_operand_precedence (op1);
1271
1272 if (op0_prec < op1_prec)
1273 return true;
1274
1275 if (op0_prec > op1_prec)
1276 return false;
1277
1278 /* With equal precedence, both orders are ok, but it is better if the
1279 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1280 if (target == 0 || REG_P (target))
1281 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1282 else
1283 return rtx_equal_p (op1, target);
1284 }
1285
1286 /* Return true if BINOPTAB implements a shift operation. */
1287
1288 static bool
1289 shift_optab_p (optab binoptab)
1290 {
1291 switch (binoptab->code)
1292 {
1293 case ASHIFT:
1294 case SS_ASHIFT:
1295 case US_ASHIFT:
1296 case ASHIFTRT:
1297 case LSHIFTRT:
1298 case ROTATE:
1299 case ROTATERT:
1300 return true;
1301
1302 default:
1303 return false;
1304 }
1305 }
1306
1307 /* Return true if BINOPTAB implements a commutative binary operation. */
1308
1309 static bool
1310 commutative_optab_p (optab binoptab)
1311 {
1312 return (GET_RTX_CLASS (binoptab->code) == RTX_COMM_ARITH
1313 || binoptab == smul_widen_optab
1314 || binoptab == umul_widen_optab
1315 || binoptab == smul_highpart_optab
1316 || binoptab == umul_highpart_optab);
1317 }
1318
1319 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1320 optimizing, and if the operand is a constant that costs more than
1321 1 instruction, force the constant into a register and return that
1322 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1323
1324 static rtx
1325 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1326 int opn, rtx x, bool unsignedp)
1327 {
1328 bool speed = optimize_insn_for_speed_p ();
1329
1330 if (mode != VOIDmode
1331 && optimize
1332 && CONSTANT_P (x)
1333 && rtx_cost (x, binoptab->code, opn, speed) > set_src_cost (x, speed))
1334 {
1335 if (CONST_INT_P (x))
1336 {
1337 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1338 if (intval != INTVAL (x))
1339 x = GEN_INT (intval);
1340 }
1341 else
1342 x = convert_modes (mode, VOIDmode, x, unsignedp);
1343 x = force_reg (mode, x);
1344 }
1345 return x;
1346 }
1347
1348 /* Helper function for expand_binop: handle the case where there
1349 is an insn that directly implements the indicated operation.
1350 Returns null if this is not possible. */
1351 static rtx
1352 expand_binop_directly (enum machine_mode mode, optab binoptab,
1353 rtx op0, rtx op1,
1354 rtx target, int unsignedp, enum optab_methods methods,
1355 rtx last)
1356 {
1357 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1358 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1359 from_mode, 1);
1360 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1361 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1362 enum machine_mode mode0, mode1, tmp_mode;
1363 struct expand_operand ops[3];
1364 bool commutative_p;
1365 rtx pat;
1366 rtx xop0 = op0, xop1 = op1;
1367 rtx swap;
1368
1369 /* If it is a commutative operator and the modes would match
1370 if we would swap the operands, we can save the conversions. */
1371 commutative_p = commutative_optab_p (binoptab);
1372 if (commutative_p
1373 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1374 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1375 {
1376 swap = xop0;
1377 xop0 = xop1;
1378 xop1 = swap;
1379 }
1380
1381 /* If we are optimizing, force expensive constants into a register. */
1382 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1383 if (!shift_optab_p (binoptab))
1384 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1385
1386 /* In case the insn wants input operands in modes different from
1387 those of the actual operands, convert the operands. It would
1388 seem that we don't need to convert CONST_INTs, but we do, so
1389 that they're properly zero-extended, sign-extended or truncated
1390 for their mode. */
1391
1392 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1393 if (xmode0 != VOIDmode && xmode0 != mode0)
1394 {
1395 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1396 mode0 = xmode0;
1397 }
1398
1399 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1400 if (xmode1 != VOIDmode && xmode1 != mode1)
1401 {
1402 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1403 mode1 = xmode1;
1404 }
1405
1406 /* If operation is commutative,
1407 try to make the first operand a register.
1408 Even better, try to make it the same as the target.
1409 Also try to make the last operand a constant. */
1410 if (commutative_p
1411 && swap_commutative_operands_with_target (target, xop0, xop1))
1412 {
1413 swap = xop1;
1414 xop1 = xop0;
1415 xop0 = swap;
1416 }
1417
1418 /* Now, if insn's predicates don't allow our operands, put them into
1419 pseudo regs. */
1420
1421 if (binoptab == vec_pack_trunc_optab
1422 || binoptab == vec_pack_usat_optab
1423 || binoptab == vec_pack_ssat_optab
1424 || binoptab == vec_pack_ufix_trunc_optab
1425 || binoptab == vec_pack_sfix_trunc_optab)
1426 {
1427 /* The mode of the result is different then the mode of the
1428 arguments. */
1429 tmp_mode = insn_data[(int) icode].operand[0].mode;
1430 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1431 {
1432 delete_insns_since (last);
1433 return NULL_RTX;
1434 }
1435 }
1436 else
1437 tmp_mode = mode;
1438
1439 create_output_operand (&ops[0], target, tmp_mode);
1440 create_input_operand (&ops[1], xop0, mode0);
1441 create_input_operand (&ops[2], xop1, mode1);
1442 pat = maybe_gen_insn (icode, 3, ops);
1443 if (pat)
1444 {
1445 /* If PAT is composed of more than one insn, try to add an appropriate
1446 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1447 operand, call expand_binop again, this time without a target. */
1448 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1449 && ! add_equal_note (pat, ops[0].value, binoptab->code,
1450 ops[1].value, ops[2].value))
1451 {
1452 delete_insns_since (last);
1453 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1454 unsignedp, methods);
1455 }
1456
1457 emit_insn (pat);
1458 return ops[0].value;
1459 }
1460 delete_insns_since (last);
1461 return NULL_RTX;
1462 }
1463
1464 /* Generate code to perform an operation specified by BINOPTAB
1465 on operands OP0 and OP1, with result having machine-mode MODE.
1466
1467 UNSIGNEDP is for the case where we have to widen the operands
1468 to perform the operation. It says to use zero-extension.
1469
1470 If TARGET is nonzero, the value
1471 is generated there, if it is convenient to do so.
1472 In all cases an rtx is returned for the locus of the value;
1473 this may or may not be TARGET. */
1474
1475 rtx
1476 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1477 rtx target, int unsignedp, enum optab_methods methods)
1478 {
1479 enum optab_methods next_methods
1480 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1481 ? OPTAB_WIDEN : methods);
1482 enum mode_class mclass;
1483 enum machine_mode wider_mode;
1484 rtx libfunc;
1485 rtx temp;
1486 rtx entry_last = get_last_insn ();
1487 rtx last;
1488
1489 mclass = GET_MODE_CLASS (mode);
1490
1491 /* If subtracting an integer constant, convert this into an addition of
1492 the negated constant. */
1493
1494 if (binoptab == sub_optab && CONST_INT_P (op1))
1495 {
1496 op1 = negate_rtx (mode, op1);
1497 binoptab = add_optab;
1498 }
1499
1500 /* Record where to delete back to if we backtrack. */
1501 last = get_last_insn ();
1502
1503 /* If we can do it with a three-operand insn, do so. */
1504
1505 if (methods != OPTAB_MUST_WIDEN
1506 && find_widening_optab_handler (binoptab, mode,
1507 widened_mode (mode, op0, op1), 1)
1508 != CODE_FOR_nothing)
1509 {
1510 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1511 unsignedp, methods, last);
1512 if (temp)
1513 return temp;
1514 }
1515
1516 /* If we were trying to rotate, and that didn't work, try rotating
1517 the other direction before falling back to shifts and bitwise-or. */
1518 if (((binoptab == rotl_optab
1519 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1520 || (binoptab == rotr_optab
1521 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1522 && mclass == MODE_INT)
1523 {
1524 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1525 rtx newop1;
1526 unsigned int bits = GET_MODE_PRECISION (mode);
1527
1528 if (CONST_INT_P (op1))
1529 newop1 = GEN_INT (bits - INTVAL (op1));
1530 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1531 newop1 = negate_rtx (GET_MODE (op1), op1);
1532 else
1533 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1534 GEN_INT (bits), op1,
1535 NULL_RTX, unsignedp, OPTAB_DIRECT);
1536
1537 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1538 target, unsignedp, methods, last);
1539 if (temp)
1540 return temp;
1541 }
1542
1543 /* If this is a multiply, see if we can do a widening operation that
1544 takes operands of this mode and makes a wider mode. */
1545
1546 if (binoptab == smul_optab
1547 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1548 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1549 : smul_widen_optab),
1550 GET_MODE_2XWIDER_MODE (mode), mode)
1551 != CODE_FOR_nothing))
1552 {
1553 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1554 unsignedp ? umul_widen_optab : smul_widen_optab,
1555 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1556
1557 if (temp != 0)
1558 {
1559 if (GET_MODE_CLASS (mode) == MODE_INT
1560 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1561 return gen_lowpart (mode, temp);
1562 else
1563 return convert_to_mode (mode, temp, unsignedp);
1564 }
1565 }
1566
1567 /* If this is a vector shift by a scalar, see if we can do a vector
1568 shift by a vector. If so, broadcast the scalar into a vector. */
1569 if (mclass == MODE_VECTOR_INT)
1570 {
1571 optab otheroptab = NULL;
1572
1573 if (binoptab == ashl_optab)
1574 otheroptab = vashl_optab;
1575 else if (binoptab == ashr_optab)
1576 otheroptab = vashr_optab;
1577 else if (binoptab == lshr_optab)
1578 otheroptab = vlshr_optab;
1579 else if (binoptab == rotl_optab)
1580 otheroptab = vrotl_optab;
1581 else if (binoptab == rotr_optab)
1582 otheroptab = vrotr_optab;
1583
1584 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1585 {
1586 rtx vop1 = expand_vector_broadcast (mode, op1);
1587 if (vop1)
1588 {
1589 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1590 target, unsignedp, methods, last);
1591 if (temp)
1592 return temp;
1593 }
1594 }
1595 }
1596
1597 /* Look for a wider mode of the same class for which we think we
1598 can open-code the operation. Check for a widening multiply at the
1599 wider mode as well. */
1600
1601 if (CLASS_HAS_WIDER_MODES_P (mclass)
1602 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1603 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1604 wider_mode != VOIDmode;
1605 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1606 {
1607 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1608 || (binoptab == smul_optab
1609 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1610 && (find_widening_optab_handler ((unsignedp
1611 ? umul_widen_optab
1612 : smul_widen_optab),
1613 GET_MODE_WIDER_MODE (wider_mode),
1614 mode, 0)
1615 != CODE_FOR_nothing)))
1616 {
1617 rtx xop0 = op0, xop1 = op1;
1618 int no_extend = 0;
1619
1620 /* For certain integer operations, we need not actually extend
1621 the narrow operands, as long as we will truncate
1622 the results to the same narrowness. */
1623
1624 if ((binoptab == ior_optab || binoptab == and_optab
1625 || binoptab == xor_optab
1626 || binoptab == add_optab || binoptab == sub_optab
1627 || binoptab == smul_optab || binoptab == ashl_optab)
1628 && mclass == MODE_INT)
1629 {
1630 no_extend = 1;
1631 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1632 xop0, unsignedp);
1633 if (binoptab != ashl_optab)
1634 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1635 xop1, unsignedp);
1636 }
1637
1638 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1639
1640 /* The second operand of a shift must always be extended. */
1641 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1642 no_extend && binoptab != ashl_optab);
1643
1644 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1645 unsignedp, OPTAB_DIRECT);
1646 if (temp)
1647 {
1648 if (mclass != MODE_INT
1649 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1650 {
1651 if (target == 0)
1652 target = gen_reg_rtx (mode);
1653 convert_move (target, temp, 0);
1654 return target;
1655 }
1656 else
1657 return gen_lowpart (mode, temp);
1658 }
1659 else
1660 delete_insns_since (last);
1661 }
1662 }
1663
1664 /* If operation is commutative,
1665 try to make the first operand a register.
1666 Even better, try to make it the same as the target.
1667 Also try to make the last operand a constant. */
1668 if (commutative_optab_p (binoptab)
1669 && swap_commutative_operands_with_target (target, op0, op1))
1670 {
1671 temp = op1;
1672 op1 = op0;
1673 op0 = temp;
1674 }
1675
1676 /* These can be done a word at a time. */
1677 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1678 && mclass == MODE_INT
1679 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1680 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1681 {
1682 int i;
1683 rtx insns;
1684
1685 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1686 won't be accurate, so use a new target. */
1687 if (target == 0
1688 || target == op0
1689 || target == op1
1690 || !valid_multiword_target_p (target))
1691 target = gen_reg_rtx (mode);
1692
1693 start_sequence ();
1694
1695 /* Do the actual arithmetic. */
1696 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1697 {
1698 rtx target_piece = operand_subword (target, i, 1, mode);
1699 rtx x = expand_binop (word_mode, binoptab,
1700 operand_subword_force (op0, i, mode),
1701 operand_subword_force (op1, i, mode),
1702 target_piece, unsignedp, next_methods);
1703
1704 if (x == 0)
1705 break;
1706
1707 if (target_piece != x)
1708 emit_move_insn (target_piece, x);
1709 }
1710
1711 insns = get_insns ();
1712 end_sequence ();
1713
1714 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1715 {
1716 emit_insn (insns);
1717 return target;
1718 }
1719 }
1720
1721 /* Synthesize double word shifts from single word shifts. */
1722 if ((binoptab == lshr_optab || binoptab == ashl_optab
1723 || binoptab == ashr_optab)
1724 && mclass == MODE_INT
1725 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1726 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1727 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1728 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1729 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1730 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1731 {
1732 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1733 enum machine_mode op1_mode;
1734
1735 double_shift_mask = targetm.shift_truncation_mask (mode);
1736 shift_mask = targetm.shift_truncation_mask (word_mode);
1737 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1738
1739 /* Apply the truncation to constant shifts. */
1740 if (double_shift_mask > 0 && CONST_INT_P (op1))
1741 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1742
1743 if (op1 == CONST0_RTX (op1_mode))
1744 return op0;
1745
1746 /* Make sure that this is a combination that expand_doubleword_shift
1747 can handle. See the comments there for details. */
1748 if (double_shift_mask == 0
1749 || (shift_mask == BITS_PER_WORD - 1
1750 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1751 {
1752 rtx insns;
1753 rtx into_target, outof_target;
1754 rtx into_input, outof_input;
1755 int left_shift, outof_word;
1756
1757 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1758 won't be accurate, so use a new target. */
1759 if (target == 0
1760 || target == op0
1761 || target == op1
1762 || !valid_multiword_target_p (target))
1763 target = gen_reg_rtx (mode);
1764
1765 start_sequence ();
1766
1767 /* OUTOF_* is the word we are shifting bits away from, and
1768 INTO_* is the word that we are shifting bits towards, thus
1769 they differ depending on the direction of the shift and
1770 WORDS_BIG_ENDIAN. */
1771
1772 left_shift = binoptab == ashl_optab;
1773 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1774
1775 outof_target = operand_subword (target, outof_word, 1, mode);
1776 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1777
1778 outof_input = operand_subword_force (op0, outof_word, mode);
1779 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1780
1781 if (expand_doubleword_shift (op1_mode, binoptab,
1782 outof_input, into_input, op1,
1783 outof_target, into_target,
1784 unsignedp, next_methods, shift_mask))
1785 {
1786 insns = get_insns ();
1787 end_sequence ();
1788
1789 emit_insn (insns);
1790 return target;
1791 }
1792 end_sequence ();
1793 }
1794 }
1795
1796 /* Synthesize double word rotates from single word shifts. */
1797 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1798 && mclass == MODE_INT
1799 && CONST_INT_P (op1)
1800 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1801 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1802 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1803 {
1804 rtx insns;
1805 rtx into_target, outof_target;
1806 rtx into_input, outof_input;
1807 rtx inter;
1808 int shift_count, left_shift, outof_word;
1809
1810 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1811 won't be accurate, so use a new target. Do this also if target is not
1812 a REG, first because having a register instead may open optimization
1813 opportunities, and second because if target and op0 happen to be MEMs
1814 designating the same location, we would risk clobbering it too early
1815 in the code sequence we generate below. */
1816 if (target == 0
1817 || target == op0
1818 || target == op1
1819 || !REG_P (target)
1820 || !valid_multiword_target_p (target))
1821 target = gen_reg_rtx (mode);
1822
1823 start_sequence ();
1824
1825 shift_count = INTVAL (op1);
1826
1827 /* OUTOF_* is the word we are shifting bits away from, and
1828 INTO_* is the word that we are shifting bits towards, thus
1829 they differ depending on the direction of the shift and
1830 WORDS_BIG_ENDIAN. */
1831
1832 left_shift = (binoptab == rotl_optab);
1833 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1834
1835 outof_target = operand_subword (target, outof_word, 1, mode);
1836 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1837
1838 outof_input = operand_subword_force (op0, outof_word, mode);
1839 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1840
1841 if (shift_count == BITS_PER_WORD)
1842 {
1843 /* This is just a word swap. */
1844 emit_move_insn (outof_target, into_input);
1845 emit_move_insn (into_target, outof_input);
1846 inter = const0_rtx;
1847 }
1848 else
1849 {
1850 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1851 rtx first_shift_count, second_shift_count;
1852 optab reverse_unsigned_shift, unsigned_shift;
1853
1854 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1855 ? lshr_optab : ashl_optab);
1856
1857 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1858 ? ashl_optab : lshr_optab);
1859
1860 if (shift_count > BITS_PER_WORD)
1861 {
1862 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1863 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1864 }
1865 else
1866 {
1867 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1868 second_shift_count = GEN_INT (shift_count);
1869 }
1870
1871 into_temp1 = expand_binop (word_mode, unsigned_shift,
1872 outof_input, first_shift_count,
1873 NULL_RTX, unsignedp, next_methods);
1874 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1875 into_input, second_shift_count,
1876 NULL_RTX, unsignedp, next_methods);
1877
1878 if (into_temp1 != 0 && into_temp2 != 0)
1879 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1880 into_target, unsignedp, next_methods);
1881 else
1882 inter = 0;
1883
1884 if (inter != 0 && inter != into_target)
1885 emit_move_insn (into_target, inter);
1886
1887 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1888 into_input, first_shift_count,
1889 NULL_RTX, unsignedp, next_methods);
1890 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1891 outof_input, second_shift_count,
1892 NULL_RTX, unsignedp, next_methods);
1893
1894 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1895 inter = expand_binop (word_mode, ior_optab,
1896 outof_temp1, outof_temp2,
1897 outof_target, unsignedp, next_methods);
1898
1899 if (inter != 0 && inter != outof_target)
1900 emit_move_insn (outof_target, inter);
1901 }
1902
1903 insns = get_insns ();
1904 end_sequence ();
1905
1906 if (inter != 0)
1907 {
1908 emit_insn (insns);
1909 return target;
1910 }
1911 }
1912
1913 /* These can be done a word at a time by propagating carries. */
1914 if ((binoptab == add_optab || binoptab == sub_optab)
1915 && mclass == MODE_INT
1916 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1917 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1918 {
1919 unsigned int i;
1920 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1921 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1922 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1923 rtx xop0, xop1, xtarget;
1924
1925 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1926 value is one of those, use it. Otherwise, use 1 since it is the
1927 one easiest to get. */
1928 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1929 int normalizep = STORE_FLAG_VALUE;
1930 #else
1931 int normalizep = 1;
1932 #endif
1933
1934 /* Prepare the operands. */
1935 xop0 = force_reg (mode, op0);
1936 xop1 = force_reg (mode, op1);
1937
1938 xtarget = gen_reg_rtx (mode);
1939
1940 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1941 target = xtarget;
1942
1943 /* Indicate for flow that the entire target reg is being set. */
1944 if (REG_P (target))
1945 emit_clobber (xtarget);
1946
1947 /* Do the actual arithmetic. */
1948 for (i = 0; i < nwords; i++)
1949 {
1950 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1951 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1952 rtx op0_piece = operand_subword_force (xop0, index, mode);
1953 rtx op1_piece = operand_subword_force (xop1, index, mode);
1954 rtx x;
1955
1956 /* Main add/subtract of the input operands. */
1957 x = expand_binop (word_mode, binoptab,
1958 op0_piece, op1_piece,
1959 target_piece, unsignedp, next_methods);
1960 if (x == 0)
1961 break;
1962
1963 if (i + 1 < nwords)
1964 {
1965 /* Store carry from main add/subtract. */
1966 carry_out = gen_reg_rtx (word_mode);
1967 carry_out = emit_store_flag_force (carry_out,
1968 (binoptab == add_optab
1969 ? LT : GT),
1970 x, op0_piece,
1971 word_mode, 1, normalizep);
1972 }
1973
1974 if (i > 0)
1975 {
1976 rtx newx;
1977
1978 /* Add/subtract previous carry to main result. */
1979 newx = expand_binop (word_mode,
1980 normalizep == 1 ? binoptab : otheroptab,
1981 x, carry_in,
1982 NULL_RTX, 1, next_methods);
1983
1984 if (i + 1 < nwords)
1985 {
1986 /* Get out carry from adding/subtracting carry in. */
1987 rtx carry_tmp = gen_reg_rtx (word_mode);
1988 carry_tmp = emit_store_flag_force (carry_tmp,
1989 (binoptab == add_optab
1990 ? LT : GT),
1991 newx, x,
1992 word_mode, 1, normalizep);
1993
1994 /* Logical-ior the two poss. carry together. */
1995 carry_out = expand_binop (word_mode, ior_optab,
1996 carry_out, carry_tmp,
1997 carry_out, 0, next_methods);
1998 if (carry_out == 0)
1999 break;
2000 }
2001 emit_move_insn (target_piece, newx);
2002 }
2003 else
2004 {
2005 if (x != target_piece)
2006 emit_move_insn (target_piece, x);
2007 }
2008
2009 carry_in = carry_out;
2010 }
2011
2012 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2013 {
2014 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2015 || ! rtx_equal_p (target, xtarget))
2016 {
2017 rtx temp = emit_move_insn (target, xtarget);
2018
2019 set_dst_reg_note (temp, REG_EQUAL,
2020 gen_rtx_fmt_ee (binoptab->code, mode,
2021 copy_rtx (xop0),
2022 copy_rtx (xop1)),
2023 target);
2024 }
2025 else
2026 target = xtarget;
2027
2028 return target;
2029 }
2030
2031 else
2032 delete_insns_since (last);
2033 }
2034
2035 /* Attempt to synthesize double word multiplies using a sequence of word
2036 mode multiplications. We first attempt to generate a sequence using a
2037 more efficient unsigned widening multiply, and if that fails we then
2038 try using a signed widening multiply. */
2039
2040 if (binoptab == smul_optab
2041 && mclass == MODE_INT
2042 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2043 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2044 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2045 {
2046 rtx product = NULL_RTX;
2047 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2048 != CODE_FOR_nothing)
2049 {
2050 product = expand_doubleword_mult (mode, op0, op1, target,
2051 true, methods);
2052 if (!product)
2053 delete_insns_since (last);
2054 }
2055
2056 if (product == NULL_RTX
2057 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2058 != CODE_FOR_nothing)
2059 {
2060 product = expand_doubleword_mult (mode, op0, op1, target,
2061 false, methods);
2062 if (!product)
2063 delete_insns_since (last);
2064 }
2065
2066 if (product != NULL_RTX)
2067 {
2068 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2069 {
2070 temp = emit_move_insn (target ? target : product, product);
2071 set_dst_reg_note (temp,
2072 REG_EQUAL,
2073 gen_rtx_fmt_ee (MULT, mode,
2074 copy_rtx (op0),
2075 copy_rtx (op1)),
2076 target ? target : product);
2077 }
2078 return product;
2079 }
2080 }
2081
2082 /* It can't be open-coded in this mode.
2083 Use a library call if one is available and caller says that's ok. */
2084
2085 libfunc = optab_libfunc (binoptab, mode);
2086 if (libfunc
2087 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2088 {
2089 rtx insns;
2090 rtx op1x = op1;
2091 enum machine_mode op1_mode = mode;
2092 rtx value;
2093
2094 start_sequence ();
2095
2096 if (shift_optab_p (binoptab))
2097 {
2098 op1_mode = targetm.libgcc_shift_count_mode ();
2099 /* Specify unsigned here,
2100 since negative shift counts are meaningless. */
2101 op1x = convert_to_mode (op1_mode, op1, 1);
2102 }
2103
2104 if (GET_MODE (op0) != VOIDmode
2105 && GET_MODE (op0) != mode)
2106 op0 = convert_to_mode (mode, op0, unsignedp);
2107
2108 /* Pass 1 for NO_QUEUE so we don't lose any increments
2109 if the libcall is cse'd or moved. */
2110 value = emit_library_call_value (libfunc,
2111 NULL_RTX, LCT_CONST, mode, 2,
2112 op0, mode, op1x, op1_mode);
2113
2114 insns = get_insns ();
2115 end_sequence ();
2116
2117 target = gen_reg_rtx (mode);
2118 emit_libcall_block (insns, target, value,
2119 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
2120
2121 return target;
2122 }
2123
2124 delete_insns_since (last);
2125
2126 /* It can't be done in this mode. Can we do it in a wider mode? */
2127
2128 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2129 || methods == OPTAB_MUST_WIDEN))
2130 {
2131 /* Caller says, don't even try. */
2132 delete_insns_since (entry_last);
2133 return 0;
2134 }
2135
2136 /* Compute the value of METHODS to pass to recursive calls.
2137 Don't allow widening to be tried recursively. */
2138
2139 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2140
2141 /* Look for a wider mode of the same class for which it appears we can do
2142 the operation. */
2143
2144 if (CLASS_HAS_WIDER_MODES_P (mclass))
2145 {
2146 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2147 wider_mode != VOIDmode;
2148 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2149 {
2150 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2151 != CODE_FOR_nothing
2152 || (methods == OPTAB_LIB
2153 && optab_libfunc (binoptab, wider_mode)))
2154 {
2155 rtx xop0 = op0, xop1 = op1;
2156 int no_extend = 0;
2157
2158 /* For certain integer operations, we need not actually extend
2159 the narrow operands, as long as we will truncate
2160 the results to the same narrowness. */
2161
2162 if ((binoptab == ior_optab || binoptab == and_optab
2163 || binoptab == xor_optab
2164 || binoptab == add_optab || binoptab == sub_optab
2165 || binoptab == smul_optab || binoptab == ashl_optab)
2166 && mclass == MODE_INT)
2167 no_extend = 1;
2168
2169 xop0 = widen_operand (xop0, wider_mode, mode,
2170 unsignedp, no_extend);
2171
2172 /* The second operand of a shift must always be extended. */
2173 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2174 no_extend && binoptab != ashl_optab);
2175
2176 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2177 unsignedp, methods);
2178 if (temp)
2179 {
2180 if (mclass != MODE_INT
2181 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2182 {
2183 if (target == 0)
2184 target = gen_reg_rtx (mode);
2185 convert_move (target, temp, 0);
2186 return target;
2187 }
2188 else
2189 return gen_lowpart (mode, temp);
2190 }
2191 else
2192 delete_insns_since (last);
2193 }
2194 }
2195 }
2196
2197 delete_insns_since (entry_last);
2198 return 0;
2199 }
2200 \f
2201 /* Expand a binary operator which has both signed and unsigned forms.
2202 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2203 signed operations.
2204
2205 If we widen unsigned operands, we may use a signed wider operation instead
2206 of an unsigned wider operation, since the result would be the same. */
2207
2208 rtx
2209 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2210 rtx op0, rtx op1, rtx target, int unsignedp,
2211 enum optab_methods methods)
2212 {
2213 rtx temp;
2214 optab direct_optab = unsignedp ? uoptab : soptab;
2215 struct optab_d wide_soptab;
2216
2217 /* Do it without widening, if possible. */
2218 temp = expand_binop (mode, direct_optab, op0, op1, target,
2219 unsignedp, OPTAB_DIRECT);
2220 if (temp || methods == OPTAB_DIRECT)
2221 return temp;
2222
2223 /* Try widening to a signed int. Make a fake signed optab that
2224 hides any signed insn for direct use. */
2225 wide_soptab = *soptab;
2226 set_optab_handler (&wide_soptab, mode, CODE_FOR_nothing);
2227 /* We don't want to generate new hash table entries from this fake
2228 optab. */
2229 wide_soptab.libcall_gen = NULL;
2230
2231 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2232 unsignedp, OPTAB_WIDEN);
2233
2234 /* For unsigned operands, try widening to an unsigned int. */
2235 if (temp == 0 && unsignedp)
2236 temp = expand_binop (mode, uoptab, op0, op1, target,
2237 unsignedp, OPTAB_WIDEN);
2238 if (temp || methods == OPTAB_WIDEN)
2239 return temp;
2240
2241 /* Use the right width libcall if that exists. */
2242 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2243 if (temp || methods == OPTAB_LIB)
2244 return temp;
2245
2246 /* Must widen and use a libcall, use either signed or unsigned. */
2247 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2248 unsignedp, methods);
2249 if (temp != 0)
2250 return temp;
2251 if (unsignedp)
2252 return expand_binop (mode, uoptab, op0, op1, target,
2253 unsignedp, methods);
2254 return 0;
2255 }
2256 \f
2257 /* Generate code to perform an operation specified by UNOPPTAB
2258 on operand OP0, with two results to TARG0 and TARG1.
2259 We assume that the order of the operands for the instruction
2260 is TARG0, TARG1, OP0.
2261
2262 Either TARG0 or TARG1 may be zero, but what that means is that
2263 the result is not actually wanted. We will generate it into
2264 a dummy pseudo-reg and discard it. They may not both be zero.
2265
2266 Returns 1 if this operation can be performed; 0 if not. */
2267
2268 int
2269 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2270 int unsignedp)
2271 {
2272 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2273 enum mode_class mclass;
2274 enum machine_mode wider_mode;
2275 rtx entry_last = get_last_insn ();
2276 rtx last;
2277
2278 mclass = GET_MODE_CLASS (mode);
2279
2280 if (!targ0)
2281 targ0 = gen_reg_rtx (mode);
2282 if (!targ1)
2283 targ1 = gen_reg_rtx (mode);
2284
2285 /* Record where to go back to if we fail. */
2286 last = get_last_insn ();
2287
2288 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2289 {
2290 struct expand_operand ops[3];
2291 enum insn_code icode = optab_handler (unoptab, mode);
2292
2293 create_fixed_operand (&ops[0], targ0);
2294 create_fixed_operand (&ops[1], targ1);
2295 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2296 if (maybe_expand_insn (icode, 3, ops))
2297 return 1;
2298 }
2299
2300 /* It can't be done in this mode. Can we do it in a wider mode? */
2301
2302 if (CLASS_HAS_WIDER_MODES_P (mclass))
2303 {
2304 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2305 wider_mode != VOIDmode;
2306 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2307 {
2308 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2309 {
2310 rtx t0 = gen_reg_rtx (wider_mode);
2311 rtx t1 = gen_reg_rtx (wider_mode);
2312 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2313
2314 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2315 {
2316 convert_move (targ0, t0, unsignedp);
2317 convert_move (targ1, t1, unsignedp);
2318 return 1;
2319 }
2320 else
2321 delete_insns_since (last);
2322 }
2323 }
2324 }
2325
2326 delete_insns_since (entry_last);
2327 return 0;
2328 }
2329 \f
2330 /* Generate code to perform an operation specified by BINOPTAB
2331 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2332 We assume that the order of the operands for the instruction
2333 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2334 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2335
2336 Either TARG0 or TARG1 may be zero, but what that means is that
2337 the result is not actually wanted. We will generate it into
2338 a dummy pseudo-reg and discard it. They may not both be zero.
2339
2340 Returns 1 if this operation can be performed; 0 if not. */
2341
2342 int
2343 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2344 int unsignedp)
2345 {
2346 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2347 enum mode_class mclass;
2348 enum machine_mode wider_mode;
2349 rtx entry_last = get_last_insn ();
2350 rtx last;
2351
2352 mclass = GET_MODE_CLASS (mode);
2353
2354 if (!targ0)
2355 targ0 = gen_reg_rtx (mode);
2356 if (!targ1)
2357 targ1 = gen_reg_rtx (mode);
2358
2359 /* Record where to go back to if we fail. */
2360 last = get_last_insn ();
2361
2362 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2363 {
2364 struct expand_operand ops[4];
2365 enum insn_code icode = optab_handler (binoptab, mode);
2366 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2367 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2368 rtx xop0 = op0, xop1 = op1;
2369
2370 /* If we are optimizing, force expensive constants into a register. */
2371 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2372 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2373
2374 create_fixed_operand (&ops[0], targ0);
2375 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2376 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2377 create_fixed_operand (&ops[3], targ1);
2378 if (maybe_expand_insn (icode, 4, ops))
2379 return 1;
2380 delete_insns_since (last);
2381 }
2382
2383 /* It can't be done in this mode. Can we do it in a wider mode? */
2384
2385 if (CLASS_HAS_WIDER_MODES_P (mclass))
2386 {
2387 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2388 wider_mode != VOIDmode;
2389 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2390 {
2391 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2392 {
2393 rtx t0 = gen_reg_rtx (wider_mode);
2394 rtx t1 = gen_reg_rtx (wider_mode);
2395 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2396 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2397
2398 if (expand_twoval_binop (binoptab, cop0, cop1,
2399 t0, t1, unsignedp))
2400 {
2401 convert_move (targ0, t0, unsignedp);
2402 convert_move (targ1, t1, unsignedp);
2403 return 1;
2404 }
2405 else
2406 delete_insns_since (last);
2407 }
2408 }
2409 }
2410
2411 delete_insns_since (entry_last);
2412 return 0;
2413 }
2414
2415 /* Expand the two-valued library call indicated by BINOPTAB, but
2416 preserve only one of the values. If TARG0 is non-NULL, the first
2417 value is placed into TARG0; otherwise the second value is placed
2418 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2419 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2420 This routine assumes that the value returned by the library call is
2421 as if the return value was of an integral mode twice as wide as the
2422 mode of OP0. Returns 1 if the call was successful. */
2423
2424 bool
2425 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2426 rtx targ0, rtx targ1, enum rtx_code code)
2427 {
2428 enum machine_mode mode;
2429 enum machine_mode libval_mode;
2430 rtx libval;
2431 rtx insns;
2432 rtx libfunc;
2433
2434 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2435 gcc_assert (!targ0 != !targ1);
2436
2437 mode = GET_MODE (op0);
2438 libfunc = optab_libfunc (binoptab, mode);
2439 if (!libfunc)
2440 return false;
2441
2442 /* The value returned by the library function will have twice as
2443 many bits as the nominal MODE. */
2444 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2445 MODE_INT);
2446 start_sequence ();
2447 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2448 libval_mode, 2,
2449 op0, mode,
2450 op1, mode);
2451 /* Get the part of VAL containing the value that we want. */
2452 libval = simplify_gen_subreg (mode, libval, libval_mode,
2453 targ0 ? 0 : GET_MODE_SIZE (mode));
2454 insns = get_insns ();
2455 end_sequence ();
2456 /* Move the into the desired location. */
2457 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2458 gen_rtx_fmt_ee (code, mode, op0, op1));
2459
2460 return true;
2461 }
2462
2463 \f
2464 /* Wrapper around expand_unop which takes an rtx code to specify
2465 the operation to perform, not an optab pointer. All other
2466 arguments are the same. */
2467 rtx
2468 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2469 rtx target, int unsignedp)
2470 {
2471 optab unop = code_to_optab[(int) code];
2472 gcc_assert (unop);
2473
2474 return expand_unop (mode, unop, op0, target, unsignedp);
2475 }
2476
2477 /* Try calculating
2478 (clz:narrow x)
2479 as
2480 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2481
2482 A similar operation can be used for clrsb. UNOPTAB says which operation
2483 we are trying to expand. */
2484 static rtx
2485 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2486 {
2487 enum mode_class mclass = GET_MODE_CLASS (mode);
2488 if (CLASS_HAS_WIDER_MODES_P (mclass))
2489 {
2490 enum machine_mode wider_mode;
2491 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2492 wider_mode != VOIDmode;
2493 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2494 {
2495 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2496 {
2497 rtx xop0, temp, last;
2498
2499 last = get_last_insn ();
2500
2501 if (target == 0)
2502 target = gen_reg_rtx (mode);
2503 xop0 = widen_operand (op0, wider_mode, mode,
2504 unoptab != clrsb_optab, false);
2505 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2506 unoptab != clrsb_optab);
2507 if (temp != 0)
2508 temp = expand_binop (wider_mode, sub_optab, temp,
2509 GEN_INT (GET_MODE_PRECISION (wider_mode)
2510 - GET_MODE_PRECISION (mode)),
2511 target, true, OPTAB_DIRECT);
2512 if (temp == 0)
2513 delete_insns_since (last);
2514
2515 return temp;
2516 }
2517 }
2518 }
2519 return 0;
2520 }
2521
2522 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2523 quantities, choosing which based on whether the high word is nonzero. */
2524 static rtx
2525 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2526 {
2527 rtx xop0 = force_reg (mode, op0);
2528 rtx subhi = gen_highpart (word_mode, xop0);
2529 rtx sublo = gen_lowpart (word_mode, xop0);
2530 rtx hi0_label = gen_label_rtx ();
2531 rtx after_label = gen_label_rtx ();
2532 rtx seq, temp, result;
2533
2534 /* If we were not given a target, use a word_mode register, not a
2535 'mode' register. The result will fit, and nobody is expecting
2536 anything bigger (the return type of __builtin_clz* is int). */
2537 if (!target)
2538 target = gen_reg_rtx (word_mode);
2539
2540 /* In any case, write to a word_mode scratch in both branches of the
2541 conditional, so we can ensure there is a single move insn setting
2542 'target' to tag a REG_EQUAL note on. */
2543 result = gen_reg_rtx (word_mode);
2544
2545 start_sequence ();
2546
2547 /* If the high word is not equal to zero,
2548 then clz of the full value is clz of the high word. */
2549 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2550 word_mode, true, hi0_label);
2551
2552 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2553 if (!temp)
2554 goto fail;
2555
2556 if (temp != result)
2557 convert_move (result, temp, true);
2558
2559 emit_jump_insn (gen_jump (after_label));
2560 emit_barrier ();
2561
2562 /* Else clz of the full value is clz of the low word plus the number
2563 of bits in the high word. */
2564 emit_label (hi0_label);
2565
2566 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2567 if (!temp)
2568 goto fail;
2569 temp = expand_binop (word_mode, add_optab, temp,
2570 GEN_INT (GET_MODE_BITSIZE (word_mode)),
2571 result, true, OPTAB_DIRECT);
2572 if (!temp)
2573 goto fail;
2574 if (temp != result)
2575 convert_move (result, temp, true);
2576
2577 emit_label (after_label);
2578 convert_move (target, result, true);
2579
2580 seq = get_insns ();
2581 end_sequence ();
2582
2583 add_equal_note (seq, target, CLZ, xop0, 0);
2584 emit_insn (seq);
2585 return target;
2586
2587 fail:
2588 end_sequence ();
2589 return 0;
2590 }
2591
2592 /* Try calculating
2593 (bswap:narrow x)
2594 as
2595 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2596 static rtx
2597 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2598 {
2599 enum mode_class mclass = GET_MODE_CLASS (mode);
2600 enum machine_mode wider_mode;
2601 rtx x, last;
2602
2603 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2604 return NULL_RTX;
2605
2606 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2607 wider_mode != VOIDmode;
2608 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2609 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2610 goto found;
2611 return NULL_RTX;
2612
2613 found:
2614 last = get_last_insn ();
2615
2616 x = widen_operand (op0, wider_mode, mode, true, true);
2617 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2618
2619 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2620 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2621 if (x != 0)
2622 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2623 GET_MODE_BITSIZE (wider_mode)
2624 - GET_MODE_BITSIZE (mode),
2625 NULL_RTX, true);
2626
2627 if (x != 0)
2628 {
2629 if (target == 0)
2630 target = gen_reg_rtx (mode);
2631 emit_move_insn (target, gen_lowpart (mode, x));
2632 }
2633 else
2634 delete_insns_since (last);
2635
2636 return target;
2637 }
2638
2639 /* Try calculating bswap as two bswaps of two word-sized operands. */
2640
2641 static rtx
2642 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2643 {
2644 rtx t0, t1;
2645
2646 t1 = expand_unop (word_mode, bswap_optab,
2647 operand_subword_force (op, 0, mode), NULL_RTX, true);
2648 t0 = expand_unop (word_mode, bswap_optab,
2649 operand_subword_force (op, 1, mode), NULL_RTX, true);
2650
2651 if (target == 0 || !valid_multiword_target_p (target))
2652 target = gen_reg_rtx (mode);
2653 if (REG_P (target))
2654 emit_clobber (target);
2655 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2656 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2657
2658 return target;
2659 }
2660
2661 /* Try calculating (parity x) as (and (popcount x) 1), where
2662 popcount can also be done in a wider mode. */
2663 static rtx
2664 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2665 {
2666 enum mode_class mclass = GET_MODE_CLASS (mode);
2667 if (CLASS_HAS_WIDER_MODES_P (mclass))
2668 {
2669 enum machine_mode wider_mode;
2670 for (wider_mode = mode; wider_mode != VOIDmode;
2671 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2672 {
2673 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2674 {
2675 rtx xop0, temp, last;
2676
2677 last = get_last_insn ();
2678
2679 if (target == 0)
2680 target = gen_reg_rtx (mode);
2681 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2682 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2683 true);
2684 if (temp != 0)
2685 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2686 target, true, OPTAB_DIRECT);
2687 if (temp == 0)
2688 delete_insns_since (last);
2689
2690 return temp;
2691 }
2692 }
2693 }
2694 return 0;
2695 }
2696
2697 /* Try calculating ctz(x) as K - clz(x & -x) ,
2698 where K is GET_MODE_PRECISION(mode) - 1.
2699
2700 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2701 don't have to worry about what the hardware does in that case. (If
2702 the clz instruction produces the usual value at 0, which is K, the
2703 result of this code sequence will be -1; expand_ffs, below, relies
2704 on this. It might be nice to have it be K instead, for consistency
2705 with the (very few) processors that provide a ctz with a defined
2706 value, but that would take one more instruction, and it would be
2707 less convenient for expand_ffs anyway. */
2708
2709 static rtx
2710 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2711 {
2712 rtx seq, temp;
2713
2714 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2715 return 0;
2716
2717 start_sequence ();
2718
2719 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2720 if (temp)
2721 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2722 true, OPTAB_DIRECT);
2723 if (temp)
2724 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2725 if (temp)
2726 temp = expand_binop (mode, sub_optab, GEN_INT (GET_MODE_PRECISION (mode) - 1),
2727 temp, target,
2728 true, OPTAB_DIRECT);
2729 if (temp == 0)
2730 {
2731 end_sequence ();
2732 return 0;
2733 }
2734
2735 seq = get_insns ();
2736 end_sequence ();
2737
2738 add_equal_note (seq, temp, CTZ, op0, 0);
2739 emit_insn (seq);
2740 return temp;
2741 }
2742
2743
2744 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2745 else with the sequence used by expand_clz.
2746
2747 The ffs builtin promises to return zero for a zero value and ctz/clz
2748 may have an undefined value in that case. If they do not give us a
2749 convenient value, we have to generate a test and branch. */
2750 static rtx
2751 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2752 {
2753 HOST_WIDE_INT val = 0;
2754 bool defined_at_zero = false;
2755 rtx temp, seq;
2756
2757 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2758 {
2759 start_sequence ();
2760
2761 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2762 if (!temp)
2763 goto fail;
2764
2765 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2766 }
2767 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2768 {
2769 start_sequence ();
2770 temp = expand_ctz (mode, op0, 0);
2771 if (!temp)
2772 goto fail;
2773
2774 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2775 {
2776 defined_at_zero = true;
2777 val = (GET_MODE_PRECISION (mode) - 1) - val;
2778 }
2779 }
2780 else
2781 return 0;
2782
2783 if (defined_at_zero && val == -1)
2784 /* No correction needed at zero. */;
2785 else
2786 {
2787 /* We don't try to do anything clever with the situation found
2788 on some processors (eg Alpha) where ctz(0:mode) ==
2789 bitsize(mode). If someone can think of a way to send N to -1
2790 and leave alone all values in the range 0..N-1 (where N is a
2791 power of two), cheaper than this test-and-branch, please add it.
2792
2793 The test-and-branch is done after the operation itself, in case
2794 the operation sets condition codes that can be recycled for this.
2795 (This is true on i386, for instance.) */
2796
2797 rtx nonzero_label = gen_label_rtx ();
2798 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2799 mode, true, nonzero_label);
2800
2801 convert_move (temp, GEN_INT (-1), false);
2802 emit_label (nonzero_label);
2803 }
2804
2805 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2806 to produce a value in the range 0..bitsize. */
2807 temp = expand_binop (mode, add_optab, temp, GEN_INT (1),
2808 target, false, OPTAB_DIRECT);
2809 if (!temp)
2810 goto fail;
2811
2812 seq = get_insns ();
2813 end_sequence ();
2814
2815 add_equal_note (seq, temp, FFS, op0, 0);
2816 emit_insn (seq);
2817 return temp;
2818
2819 fail:
2820 end_sequence ();
2821 return 0;
2822 }
2823
2824 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2825 conditions, VAL may already be a SUBREG against which we cannot generate
2826 a further SUBREG. In this case, we expect forcing the value into a
2827 register will work around the situation. */
2828
2829 static rtx
2830 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2831 enum machine_mode imode)
2832 {
2833 rtx ret;
2834 ret = lowpart_subreg (omode, val, imode);
2835 if (ret == NULL)
2836 {
2837 val = force_reg (imode, val);
2838 ret = lowpart_subreg (omode, val, imode);
2839 gcc_assert (ret != NULL);
2840 }
2841 return ret;
2842 }
2843
2844 /* Expand a floating point absolute value or negation operation via a
2845 logical operation on the sign bit. */
2846
2847 static rtx
2848 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2849 rtx op0, rtx target)
2850 {
2851 const struct real_format *fmt;
2852 int bitpos, word, nwords, i;
2853 enum machine_mode imode;
2854 double_int mask;
2855 rtx temp, insns;
2856
2857 /* The format has to have a simple sign bit. */
2858 fmt = REAL_MODE_FORMAT (mode);
2859 if (fmt == NULL)
2860 return NULL_RTX;
2861
2862 bitpos = fmt->signbit_rw;
2863 if (bitpos < 0)
2864 return NULL_RTX;
2865
2866 /* Don't create negative zeros if the format doesn't support them. */
2867 if (code == NEG && !fmt->has_signed_zero)
2868 return NULL_RTX;
2869
2870 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2871 {
2872 imode = int_mode_for_mode (mode);
2873 if (imode == BLKmode)
2874 return NULL_RTX;
2875 word = 0;
2876 nwords = 1;
2877 }
2878 else
2879 {
2880 imode = word_mode;
2881
2882 if (FLOAT_WORDS_BIG_ENDIAN)
2883 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2884 else
2885 word = bitpos / BITS_PER_WORD;
2886 bitpos = bitpos % BITS_PER_WORD;
2887 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2888 }
2889
2890 mask = double_int_setbit (double_int_zero, bitpos);
2891 if (code == ABS)
2892 mask = double_int_not (mask);
2893
2894 if (target == 0
2895 || target == op0
2896 || (nwords > 1 && !valid_multiword_target_p (target)))
2897 target = gen_reg_rtx (mode);
2898
2899 if (nwords > 1)
2900 {
2901 start_sequence ();
2902
2903 for (i = 0; i < nwords; ++i)
2904 {
2905 rtx targ_piece = operand_subword (target, i, 1, mode);
2906 rtx op0_piece = operand_subword_force (op0, i, mode);
2907
2908 if (i == word)
2909 {
2910 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2911 op0_piece,
2912 immed_double_int_const (mask, imode),
2913 targ_piece, 1, OPTAB_LIB_WIDEN);
2914 if (temp != targ_piece)
2915 emit_move_insn (targ_piece, temp);
2916 }
2917 else
2918 emit_move_insn (targ_piece, op0_piece);
2919 }
2920
2921 insns = get_insns ();
2922 end_sequence ();
2923
2924 emit_insn (insns);
2925 }
2926 else
2927 {
2928 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2929 gen_lowpart (imode, op0),
2930 immed_double_int_const (mask, imode),
2931 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2932 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2933
2934 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2935 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2936 target);
2937 }
2938
2939 return target;
2940 }
2941
2942 /* As expand_unop, but will fail rather than attempt the operation in a
2943 different mode or with a libcall. */
2944 static rtx
2945 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2946 int unsignedp)
2947 {
2948 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2949 {
2950 struct expand_operand ops[2];
2951 enum insn_code icode = optab_handler (unoptab, mode);
2952 rtx last = get_last_insn ();
2953 rtx pat;
2954
2955 create_output_operand (&ops[0], target, mode);
2956 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2957 pat = maybe_gen_insn (icode, 2, ops);
2958 if (pat)
2959 {
2960 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2961 && ! add_equal_note (pat, ops[0].value, unoptab->code,
2962 ops[1].value, NULL_RTX))
2963 {
2964 delete_insns_since (last);
2965 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2966 }
2967
2968 emit_insn (pat);
2969
2970 return ops[0].value;
2971 }
2972 }
2973 return 0;
2974 }
2975
2976 /* Generate code to perform an operation specified by UNOPTAB
2977 on operand OP0, with result having machine-mode MODE.
2978
2979 UNSIGNEDP is for the case where we have to widen the operands
2980 to perform the operation. It says to use zero-extension.
2981
2982 If TARGET is nonzero, the value
2983 is generated there, if it is convenient to do so.
2984 In all cases an rtx is returned for the locus of the value;
2985 this may or may not be TARGET. */
2986
2987 rtx
2988 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2989 int unsignedp)
2990 {
2991 enum mode_class mclass = GET_MODE_CLASS (mode);
2992 enum machine_mode wider_mode;
2993 rtx temp;
2994 rtx libfunc;
2995
2996 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2997 if (temp)
2998 return temp;
2999
3000 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3001
3002 /* Widening (or narrowing) clz needs special treatment. */
3003 if (unoptab == clz_optab)
3004 {
3005 temp = widen_leading (mode, op0, target, unoptab);
3006 if (temp)
3007 return temp;
3008
3009 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3010 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3011 {
3012 temp = expand_doubleword_clz (mode, op0, target);
3013 if (temp)
3014 return temp;
3015 }
3016
3017 goto try_libcall;
3018 }
3019
3020 if (unoptab == clrsb_optab)
3021 {
3022 temp = widen_leading (mode, op0, target, unoptab);
3023 if (temp)
3024 return temp;
3025 goto try_libcall;
3026 }
3027
3028 /* Widening (or narrowing) bswap needs special treatment. */
3029 if (unoptab == bswap_optab)
3030 {
3031 temp = widen_bswap (mode, op0, target);
3032 if (temp)
3033 return temp;
3034
3035 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3036 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3037 {
3038 temp = expand_doubleword_bswap (mode, op0, target);
3039 if (temp)
3040 return temp;
3041 }
3042
3043 goto try_libcall;
3044 }
3045
3046 if (CLASS_HAS_WIDER_MODES_P (mclass))
3047 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3048 wider_mode != VOIDmode;
3049 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3050 {
3051 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3052 {
3053 rtx xop0 = op0;
3054 rtx last = get_last_insn ();
3055
3056 /* For certain operations, we need not actually extend
3057 the narrow operand, as long as we will truncate the
3058 results to the same narrowness. */
3059
3060 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3061 (unoptab == neg_optab
3062 || unoptab == one_cmpl_optab)
3063 && mclass == MODE_INT);
3064
3065 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3066 unsignedp);
3067
3068 if (temp)
3069 {
3070 if (mclass != MODE_INT
3071 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3072 {
3073 if (target == 0)
3074 target = gen_reg_rtx (mode);
3075 convert_move (target, temp, 0);
3076 return target;
3077 }
3078 else
3079 return gen_lowpart (mode, temp);
3080 }
3081 else
3082 delete_insns_since (last);
3083 }
3084 }
3085
3086 /* These can be done a word at a time. */
3087 if (unoptab == one_cmpl_optab
3088 && mclass == MODE_INT
3089 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3090 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3091 {
3092 int i;
3093 rtx insns;
3094
3095 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3096 target = gen_reg_rtx (mode);
3097
3098 start_sequence ();
3099
3100 /* Do the actual arithmetic. */
3101 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3102 {
3103 rtx target_piece = operand_subword (target, i, 1, mode);
3104 rtx x = expand_unop (word_mode, unoptab,
3105 operand_subword_force (op0, i, mode),
3106 target_piece, unsignedp);
3107
3108 if (target_piece != x)
3109 emit_move_insn (target_piece, x);
3110 }
3111
3112 insns = get_insns ();
3113 end_sequence ();
3114
3115 emit_insn (insns);
3116 return target;
3117 }
3118
3119 if (unoptab->code == NEG)
3120 {
3121 /* Try negating floating point values by flipping the sign bit. */
3122 if (SCALAR_FLOAT_MODE_P (mode))
3123 {
3124 temp = expand_absneg_bit (NEG, mode, op0, target);
3125 if (temp)
3126 return temp;
3127 }
3128
3129 /* If there is no negation pattern, and we have no negative zero,
3130 try subtracting from zero. */
3131 if (!HONOR_SIGNED_ZEROS (mode))
3132 {
3133 temp = expand_binop (mode, (unoptab == negv_optab
3134 ? subv_optab : sub_optab),
3135 CONST0_RTX (mode), op0, target,
3136 unsignedp, OPTAB_DIRECT);
3137 if (temp)
3138 return temp;
3139 }
3140 }
3141
3142 /* Try calculating parity (x) as popcount (x) % 2. */
3143 if (unoptab == parity_optab)
3144 {
3145 temp = expand_parity (mode, op0, target);
3146 if (temp)
3147 return temp;
3148 }
3149
3150 /* Try implementing ffs (x) in terms of clz (x). */
3151 if (unoptab == ffs_optab)
3152 {
3153 temp = expand_ffs (mode, op0, target);
3154 if (temp)
3155 return temp;
3156 }
3157
3158 /* Try implementing ctz (x) in terms of clz (x). */
3159 if (unoptab == ctz_optab)
3160 {
3161 temp = expand_ctz (mode, op0, target);
3162 if (temp)
3163 return temp;
3164 }
3165
3166 try_libcall:
3167 /* Now try a library call in this mode. */
3168 libfunc = optab_libfunc (unoptab, mode);
3169 if (libfunc)
3170 {
3171 rtx insns;
3172 rtx value;
3173 rtx eq_value;
3174 enum machine_mode outmode = mode;
3175
3176 /* All of these functions return small values. Thus we choose to
3177 have them return something that isn't a double-word. */
3178 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3179 || unoptab == clrsb_optab || unoptab == popcount_optab
3180 || unoptab == parity_optab)
3181 outmode
3182 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3183 optab_libfunc (unoptab, mode)));
3184
3185 start_sequence ();
3186
3187 /* Pass 1 for NO_QUEUE so we don't lose any increments
3188 if the libcall is cse'd or moved. */
3189 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3190 1, op0, mode);
3191 insns = get_insns ();
3192 end_sequence ();
3193
3194 target = gen_reg_rtx (outmode);
3195 eq_value = gen_rtx_fmt_e (unoptab->code, mode, op0);
3196 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3197 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3198 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3199 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3200 emit_libcall_block (insns, target, value, eq_value);
3201
3202 return target;
3203 }
3204
3205 /* It can't be done in this mode. Can we do it in a wider mode? */
3206
3207 if (CLASS_HAS_WIDER_MODES_P (mclass))
3208 {
3209 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3210 wider_mode != VOIDmode;
3211 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3212 {
3213 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3214 || optab_libfunc (unoptab, wider_mode))
3215 {
3216 rtx xop0 = op0;
3217 rtx last = get_last_insn ();
3218
3219 /* For certain operations, we need not actually extend
3220 the narrow operand, as long as we will truncate the
3221 results to the same narrowness. */
3222
3223 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3224 (unoptab == neg_optab
3225 || unoptab == one_cmpl_optab)
3226 && mclass == MODE_INT);
3227
3228 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3229 unsignedp);
3230
3231 /* If we are generating clz using wider mode, adjust the
3232 result. Similarly for clrsb. */
3233 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3234 && temp != 0)
3235 temp = expand_binop (wider_mode, sub_optab, temp,
3236 GEN_INT (GET_MODE_PRECISION (wider_mode)
3237 - GET_MODE_PRECISION (mode)),
3238 target, true, OPTAB_DIRECT);
3239
3240 if (temp)
3241 {
3242 if (mclass != MODE_INT)
3243 {
3244 if (target == 0)
3245 target = gen_reg_rtx (mode);
3246 convert_move (target, temp, 0);
3247 return target;
3248 }
3249 else
3250 return gen_lowpart (mode, temp);
3251 }
3252 else
3253 delete_insns_since (last);
3254 }
3255 }
3256 }
3257
3258 /* One final attempt at implementing negation via subtraction,
3259 this time allowing widening of the operand. */
3260 if (unoptab->code == NEG && !HONOR_SIGNED_ZEROS (mode))
3261 {
3262 rtx temp;
3263 temp = expand_binop (mode,
3264 unoptab == negv_optab ? subv_optab : sub_optab,
3265 CONST0_RTX (mode), op0,
3266 target, unsignedp, OPTAB_LIB_WIDEN);
3267 if (temp)
3268 return temp;
3269 }
3270
3271 return 0;
3272 }
3273 \f
3274 /* Emit code to compute the absolute value of OP0, with result to
3275 TARGET if convenient. (TARGET may be 0.) The return value says
3276 where the result actually is to be found.
3277
3278 MODE is the mode of the operand; the mode of the result is
3279 different but can be deduced from MODE.
3280
3281 */
3282
3283 rtx
3284 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3285 int result_unsignedp)
3286 {
3287 rtx temp;
3288
3289 if (! flag_trapv)
3290 result_unsignedp = 1;
3291
3292 /* First try to do it with a special abs instruction. */
3293 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3294 op0, target, 0);
3295 if (temp != 0)
3296 return temp;
3297
3298 /* For floating point modes, try clearing the sign bit. */
3299 if (SCALAR_FLOAT_MODE_P (mode))
3300 {
3301 temp = expand_absneg_bit (ABS, mode, op0, target);
3302 if (temp)
3303 return temp;
3304 }
3305
3306 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3307 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3308 && !HONOR_SIGNED_ZEROS (mode))
3309 {
3310 rtx last = get_last_insn ();
3311
3312 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3313 if (temp != 0)
3314 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3315 OPTAB_WIDEN);
3316
3317 if (temp != 0)
3318 return temp;
3319
3320 delete_insns_since (last);
3321 }
3322
3323 /* If this machine has expensive jumps, we can do integer absolute
3324 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3325 where W is the width of MODE. */
3326
3327 if (GET_MODE_CLASS (mode) == MODE_INT
3328 && BRANCH_COST (optimize_insn_for_speed_p (),
3329 false) >= 2)
3330 {
3331 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3332 GET_MODE_PRECISION (mode) - 1,
3333 NULL_RTX, 0);
3334
3335 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3336 OPTAB_LIB_WIDEN);
3337 if (temp != 0)
3338 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3339 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3340
3341 if (temp != 0)
3342 return temp;
3343 }
3344
3345 return NULL_RTX;
3346 }
3347
3348 rtx
3349 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3350 int result_unsignedp, int safe)
3351 {
3352 rtx temp, op1;
3353
3354 if (! flag_trapv)
3355 result_unsignedp = 1;
3356
3357 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3358 if (temp != 0)
3359 return temp;
3360
3361 /* If that does not win, use conditional jump and negate. */
3362
3363 /* It is safe to use the target if it is the same
3364 as the source if this is also a pseudo register */
3365 if (op0 == target && REG_P (op0)
3366 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3367 safe = 1;
3368
3369 op1 = gen_label_rtx ();
3370 if (target == 0 || ! safe
3371 || GET_MODE (target) != mode
3372 || (MEM_P (target) && MEM_VOLATILE_P (target))
3373 || (REG_P (target)
3374 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3375 target = gen_reg_rtx (mode);
3376
3377 emit_move_insn (target, op0);
3378 NO_DEFER_POP;
3379
3380 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3381 NULL_RTX, NULL_RTX, op1, -1);
3382
3383 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3384 target, target, 0);
3385 if (op0 != target)
3386 emit_move_insn (target, op0);
3387 emit_label (op1);
3388 OK_DEFER_POP;
3389 return target;
3390 }
3391
3392 /* Emit code to compute the one's complement absolute value of OP0
3393 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3394 (TARGET may be NULL_RTX.) The return value says where the result
3395 actually is to be found.
3396
3397 MODE is the mode of the operand; the mode of the result is
3398 different but can be deduced from MODE. */
3399
3400 rtx
3401 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3402 {
3403 rtx temp;
3404
3405 /* Not applicable for floating point modes. */
3406 if (FLOAT_MODE_P (mode))
3407 return NULL_RTX;
3408
3409 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3410 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3411 {
3412 rtx last = get_last_insn ();
3413
3414 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3415 if (temp != 0)
3416 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3417 OPTAB_WIDEN);
3418
3419 if (temp != 0)
3420 return temp;
3421
3422 delete_insns_since (last);
3423 }
3424
3425 /* If this machine has expensive jumps, we can do one's complement
3426 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3427
3428 if (GET_MODE_CLASS (mode) == MODE_INT
3429 && BRANCH_COST (optimize_insn_for_speed_p (),
3430 false) >= 2)
3431 {
3432 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3433 GET_MODE_PRECISION (mode) - 1,
3434 NULL_RTX, 0);
3435
3436 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3437 OPTAB_LIB_WIDEN);
3438
3439 if (temp != 0)
3440 return temp;
3441 }
3442
3443 return NULL_RTX;
3444 }
3445
3446 /* A subroutine of expand_copysign, perform the copysign operation using the
3447 abs and neg primitives advertised to exist on the target. The assumption
3448 is that we have a split register file, and leaving op0 in fp registers,
3449 and not playing with subregs so much, will help the register allocator. */
3450
3451 static rtx
3452 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3453 int bitpos, bool op0_is_abs)
3454 {
3455 enum machine_mode imode;
3456 enum insn_code icode;
3457 rtx sign, label;
3458
3459 if (target == op1)
3460 target = NULL_RTX;
3461
3462 /* Check if the back end provides an insn that handles signbit for the
3463 argument's mode. */
3464 icode = optab_handler (signbit_optab, mode);
3465 if (icode != CODE_FOR_nothing)
3466 {
3467 imode = insn_data[(int) icode].operand[0].mode;
3468 sign = gen_reg_rtx (imode);
3469 emit_unop_insn (icode, sign, op1, UNKNOWN);
3470 }
3471 else
3472 {
3473 double_int mask;
3474
3475 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3476 {
3477 imode = int_mode_for_mode (mode);
3478 if (imode == BLKmode)
3479 return NULL_RTX;
3480 op1 = gen_lowpart (imode, op1);
3481 }
3482 else
3483 {
3484 int word;
3485
3486 imode = word_mode;
3487 if (FLOAT_WORDS_BIG_ENDIAN)
3488 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3489 else
3490 word = bitpos / BITS_PER_WORD;
3491 bitpos = bitpos % BITS_PER_WORD;
3492 op1 = operand_subword_force (op1, word, mode);
3493 }
3494
3495 mask = double_int_setbit (double_int_zero, bitpos);
3496
3497 sign = expand_binop (imode, and_optab, op1,
3498 immed_double_int_const (mask, imode),
3499 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3500 }
3501
3502 if (!op0_is_abs)
3503 {
3504 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3505 if (op0 == NULL)
3506 return NULL_RTX;
3507 target = op0;
3508 }
3509 else
3510 {
3511 if (target == NULL_RTX)
3512 target = copy_to_reg (op0);
3513 else
3514 emit_move_insn (target, op0);
3515 }
3516
3517 label = gen_label_rtx ();
3518 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3519
3520 if (GET_CODE (op0) == CONST_DOUBLE)
3521 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3522 else
3523 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3524 if (op0 != target)
3525 emit_move_insn (target, op0);
3526
3527 emit_label (label);
3528
3529 return target;
3530 }
3531
3532
3533 /* A subroutine of expand_copysign, perform the entire copysign operation
3534 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3535 is true if op0 is known to have its sign bit clear. */
3536
3537 static rtx
3538 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3539 int bitpos, bool op0_is_abs)
3540 {
3541 enum machine_mode imode;
3542 double_int mask;
3543 int word, nwords, i;
3544 rtx temp, insns;
3545
3546 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3547 {
3548 imode = int_mode_for_mode (mode);
3549 if (imode == BLKmode)
3550 return NULL_RTX;
3551 word = 0;
3552 nwords = 1;
3553 }
3554 else
3555 {
3556 imode = word_mode;
3557
3558 if (FLOAT_WORDS_BIG_ENDIAN)
3559 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3560 else
3561 word = bitpos / BITS_PER_WORD;
3562 bitpos = bitpos % BITS_PER_WORD;
3563 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3564 }
3565
3566 mask = double_int_setbit (double_int_zero, bitpos);
3567
3568 if (target == 0
3569 || target == op0
3570 || target == op1
3571 || (nwords > 1 && !valid_multiword_target_p (target)))
3572 target = gen_reg_rtx (mode);
3573
3574 if (nwords > 1)
3575 {
3576 start_sequence ();
3577
3578 for (i = 0; i < nwords; ++i)
3579 {
3580 rtx targ_piece = operand_subword (target, i, 1, mode);
3581 rtx op0_piece = operand_subword_force (op0, i, mode);
3582
3583 if (i == word)
3584 {
3585 if (!op0_is_abs)
3586 op0_piece
3587 = expand_binop (imode, and_optab, op0_piece,
3588 immed_double_int_const (double_int_not (mask),
3589 imode),
3590 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3591
3592 op1 = expand_binop (imode, and_optab,
3593 operand_subword_force (op1, i, mode),
3594 immed_double_int_const (mask, imode),
3595 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3596
3597 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3598 targ_piece, 1, OPTAB_LIB_WIDEN);
3599 if (temp != targ_piece)
3600 emit_move_insn (targ_piece, temp);
3601 }
3602 else
3603 emit_move_insn (targ_piece, op0_piece);
3604 }
3605
3606 insns = get_insns ();
3607 end_sequence ();
3608
3609 emit_insn (insns);
3610 }
3611 else
3612 {
3613 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3614 immed_double_int_const (mask, imode),
3615 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3616
3617 op0 = gen_lowpart (imode, op0);
3618 if (!op0_is_abs)
3619 op0 = expand_binop (imode, and_optab, op0,
3620 immed_double_int_const (double_int_not (mask),
3621 imode),
3622 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3623
3624 temp = expand_binop (imode, ior_optab, op0, op1,
3625 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3626 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3627 }
3628
3629 return target;
3630 }
3631
3632 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3633 scalar floating point mode. Return NULL if we do not know how to
3634 expand the operation inline. */
3635
3636 rtx
3637 expand_copysign (rtx op0, rtx op1, rtx target)
3638 {
3639 enum machine_mode mode = GET_MODE (op0);
3640 const struct real_format *fmt;
3641 bool op0_is_abs;
3642 rtx temp;
3643
3644 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3645 gcc_assert (GET_MODE (op1) == mode);
3646
3647 /* First try to do it with a special instruction. */
3648 temp = expand_binop (mode, copysign_optab, op0, op1,
3649 target, 0, OPTAB_DIRECT);
3650 if (temp)
3651 return temp;
3652
3653 fmt = REAL_MODE_FORMAT (mode);
3654 if (fmt == NULL || !fmt->has_signed_zero)
3655 return NULL_RTX;
3656
3657 op0_is_abs = false;
3658 if (GET_CODE (op0) == CONST_DOUBLE)
3659 {
3660 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3661 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3662 op0_is_abs = true;
3663 }
3664
3665 if (fmt->signbit_ro >= 0
3666 && (GET_CODE (op0) == CONST_DOUBLE
3667 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3668 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3669 {
3670 temp = expand_copysign_absneg (mode, op0, op1, target,
3671 fmt->signbit_ro, op0_is_abs);
3672 if (temp)
3673 return temp;
3674 }
3675
3676 if (fmt->signbit_rw < 0)
3677 return NULL_RTX;
3678 return expand_copysign_bit (mode, op0, op1, target,
3679 fmt->signbit_rw, op0_is_abs);
3680 }
3681 \f
3682 /* Generate an instruction whose insn-code is INSN_CODE,
3683 with two operands: an output TARGET and an input OP0.
3684 TARGET *must* be nonzero, and the output is always stored there.
3685 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3686 the value that is stored into TARGET.
3687
3688 Return false if expansion failed. */
3689
3690 bool
3691 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3692 enum rtx_code code)
3693 {
3694 struct expand_operand ops[2];
3695 rtx pat;
3696
3697 create_output_operand (&ops[0], target, GET_MODE (target));
3698 create_input_operand (&ops[1], op0, GET_MODE (op0));
3699 pat = maybe_gen_insn (icode, 2, ops);
3700 if (!pat)
3701 return false;
3702
3703 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3704 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3705
3706 emit_insn (pat);
3707
3708 if (ops[0].value != target)
3709 emit_move_insn (target, ops[0].value);
3710 return true;
3711 }
3712 /* Generate an instruction whose insn-code is INSN_CODE,
3713 with two operands: an output TARGET and an input OP0.
3714 TARGET *must* be nonzero, and the output is always stored there.
3715 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3716 the value that is stored into TARGET. */
3717
3718 void
3719 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3720 {
3721 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3722 gcc_assert (ok);
3723 }
3724 \f
3725 struct no_conflict_data
3726 {
3727 rtx target, first, insn;
3728 bool must_stay;
3729 };
3730
3731 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3732 the currently examined clobber / store has to stay in the list of
3733 insns that constitute the actual libcall block. */
3734 static void
3735 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3736 {
3737 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3738
3739 /* If this inns directly contributes to setting the target, it must stay. */
3740 if (reg_overlap_mentioned_p (p->target, dest))
3741 p->must_stay = true;
3742 /* If we haven't committed to keeping any other insns in the list yet,
3743 there is nothing more to check. */
3744 else if (p->insn == p->first)
3745 return;
3746 /* If this insn sets / clobbers a register that feeds one of the insns
3747 already in the list, this insn has to stay too. */
3748 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3749 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3750 || reg_used_between_p (dest, p->first, p->insn)
3751 /* Likewise if this insn depends on a register set by a previous
3752 insn in the list, or if it sets a result (presumably a hard
3753 register) that is set or clobbered by a previous insn.
3754 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3755 SET_DEST perform the former check on the address, and the latter
3756 check on the MEM. */
3757 || (GET_CODE (set) == SET
3758 && (modified_in_p (SET_SRC (set), p->first)
3759 || modified_in_p (SET_DEST (set), p->first)
3760 || modified_between_p (SET_SRC (set), p->first, p->insn)
3761 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3762 p->must_stay = true;
3763 }
3764
3765 \f
3766 /* Emit code to make a call to a constant function or a library call.
3767
3768 INSNS is a list containing all insns emitted in the call.
3769 These insns leave the result in RESULT. Our block is to copy RESULT
3770 to TARGET, which is logically equivalent to EQUIV.
3771
3772 We first emit any insns that set a pseudo on the assumption that these are
3773 loading constants into registers; doing so allows them to be safely cse'ed
3774 between blocks. Then we emit all the other insns in the block, followed by
3775 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3776 note with an operand of EQUIV. */
3777
3778 void
3779 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3780 {
3781 rtx final_dest = target;
3782 rtx next, last, insn;
3783
3784 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3785 into a MEM later. Protect the libcall block from this change. */
3786 if (! REG_P (target) || REG_USERVAR_P (target))
3787 target = gen_reg_rtx (GET_MODE (target));
3788
3789 /* If we're using non-call exceptions, a libcall corresponding to an
3790 operation that may trap may also trap. */
3791 /* ??? See the comment in front of make_reg_eh_region_note. */
3792 if (cfun->can_throw_non_call_exceptions && may_trap_p (equiv))
3793 {
3794 for (insn = insns; insn; insn = NEXT_INSN (insn))
3795 if (CALL_P (insn))
3796 {
3797 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3798 if (note)
3799 {
3800 int lp_nr = INTVAL (XEXP (note, 0));
3801 if (lp_nr == 0 || lp_nr == INT_MIN)
3802 remove_note (insn, note);
3803 }
3804 }
3805 }
3806 else
3807 {
3808 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3809 reg note to indicate that this call cannot throw or execute a nonlocal
3810 goto (unless there is already a REG_EH_REGION note, in which case
3811 we update it). */
3812 for (insn = insns; insn; insn = NEXT_INSN (insn))
3813 if (CALL_P (insn))
3814 make_reg_eh_region_note_nothrow_nononlocal (insn);
3815 }
3816
3817 /* First emit all insns that set pseudos. Remove them from the list as
3818 we go. Avoid insns that set pseudos which were referenced in previous
3819 insns. These can be generated by move_by_pieces, for example,
3820 to update an address. Similarly, avoid insns that reference things
3821 set in previous insns. */
3822
3823 for (insn = insns; insn; insn = next)
3824 {
3825 rtx set = single_set (insn);
3826
3827 next = NEXT_INSN (insn);
3828
3829 if (set != 0 && REG_P (SET_DEST (set))
3830 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3831 {
3832 struct no_conflict_data data;
3833
3834 data.target = const0_rtx;
3835 data.first = insns;
3836 data.insn = insn;
3837 data.must_stay = 0;
3838 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3839 if (! data.must_stay)
3840 {
3841 if (PREV_INSN (insn))
3842 NEXT_INSN (PREV_INSN (insn)) = next;
3843 else
3844 insns = next;
3845
3846 if (next)
3847 PREV_INSN (next) = PREV_INSN (insn);
3848
3849 add_insn (insn);
3850 }
3851 }
3852
3853 /* Some ports use a loop to copy large arguments onto the stack.
3854 Don't move anything outside such a loop. */
3855 if (LABEL_P (insn))
3856 break;
3857 }
3858
3859 /* Write the remaining insns followed by the final copy. */
3860 for (insn = insns; insn; insn = next)
3861 {
3862 next = NEXT_INSN (insn);
3863
3864 add_insn (insn);
3865 }
3866
3867 last = emit_move_insn (target, result);
3868 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3869
3870 if (final_dest != target)
3871 emit_move_insn (final_dest, target);
3872 }
3873 \f
3874 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3875 PURPOSE describes how this comparison will be used. CODE is the rtx
3876 comparison code we will be using.
3877
3878 ??? Actually, CODE is slightly weaker than that. A target is still
3879 required to implement all of the normal bcc operations, but not
3880 required to implement all (or any) of the unordered bcc operations. */
3881
3882 int
3883 can_compare_p (enum rtx_code code, enum machine_mode mode,
3884 enum can_compare_purpose purpose)
3885 {
3886 rtx test;
3887 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3888 do
3889 {
3890 enum insn_code icode;
3891
3892 if (purpose == ccp_jump
3893 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3894 && insn_operand_matches (icode, 0, test))
3895 return 1;
3896 if (purpose == ccp_store_flag
3897 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3898 && insn_operand_matches (icode, 1, test))
3899 return 1;
3900 if (purpose == ccp_cmov
3901 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3902 return 1;
3903
3904 mode = GET_MODE_WIDER_MODE (mode);
3905 PUT_MODE (test, mode);
3906 }
3907 while (mode != VOIDmode);
3908
3909 return 0;
3910 }
3911
3912 /* This function is called when we are going to emit a compare instruction that
3913 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3914
3915 *PMODE is the mode of the inputs (in case they are const_int).
3916 *PUNSIGNEDP nonzero says that the operands are unsigned;
3917 this matters if they need to be widened (as given by METHODS).
3918
3919 If they have mode BLKmode, then SIZE specifies the size of both operands.
3920
3921 This function performs all the setup necessary so that the caller only has
3922 to emit a single comparison insn. This setup can involve doing a BLKmode
3923 comparison or emitting a library call to perform the comparison if no insn
3924 is available to handle it.
3925 The values which are passed in through pointers can be modified; the caller
3926 should perform the comparison on the modified values. Constant
3927 comparisons must have already been folded. */
3928
3929 static void
3930 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3931 int unsignedp, enum optab_methods methods,
3932 rtx *ptest, enum machine_mode *pmode)
3933 {
3934 enum machine_mode mode = *pmode;
3935 rtx libfunc, test;
3936 enum machine_mode cmp_mode;
3937 enum mode_class mclass;
3938
3939 /* The other methods are not needed. */
3940 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3941 || methods == OPTAB_LIB_WIDEN);
3942
3943 /* If we are optimizing, force expensive constants into a register. */
3944 if (CONSTANT_P (x) && optimize
3945 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
3946 > COSTS_N_INSNS (1)))
3947 x = force_reg (mode, x);
3948
3949 if (CONSTANT_P (y) && optimize
3950 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
3951 > COSTS_N_INSNS (1)))
3952 y = force_reg (mode, y);
3953
3954 #ifdef HAVE_cc0
3955 /* Make sure if we have a canonical comparison. The RTL
3956 documentation states that canonical comparisons are required only
3957 for targets which have cc0. */
3958 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3959 #endif
3960
3961 /* Don't let both operands fail to indicate the mode. */
3962 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3963 x = force_reg (mode, x);
3964 if (mode == VOIDmode)
3965 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3966
3967 /* Handle all BLKmode compares. */
3968
3969 if (mode == BLKmode)
3970 {
3971 enum machine_mode result_mode;
3972 enum insn_code cmp_code;
3973 tree length_type;
3974 rtx libfunc;
3975 rtx result;
3976 rtx opalign
3977 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3978
3979 gcc_assert (size);
3980
3981 /* Try to use a memory block compare insn - either cmpstr
3982 or cmpmem will do. */
3983 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3984 cmp_mode != VOIDmode;
3985 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
3986 {
3987 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3988 if (cmp_code == CODE_FOR_nothing)
3989 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3990 if (cmp_code == CODE_FOR_nothing)
3991 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3992 if (cmp_code == CODE_FOR_nothing)
3993 continue;
3994
3995 /* Must make sure the size fits the insn's mode. */
3996 if ((CONST_INT_P (size)
3997 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
3998 || (GET_MODE_BITSIZE (GET_MODE (size))
3999 > GET_MODE_BITSIZE (cmp_mode)))
4000 continue;
4001
4002 result_mode = insn_data[cmp_code].operand[0].mode;
4003 result = gen_reg_rtx (result_mode);
4004 size = convert_to_mode (cmp_mode, size, 1);
4005 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4006
4007 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4008 *pmode = result_mode;
4009 return;
4010 }
4011
4012 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4013 goto fail;
4014
4015 /* Otherwise call a library function, memcmp. */
4016 libfunc = memcmp_libfunc;
4017 length_type = sizetype;
4018 result_mode = TYPE_MODE (integer_type_node);
4019 cmp_mode = TYPE_MODE (length_type);
4020 size = convert_to_mode (TYPE_MODE (length_type), size,
4021 TYPE_UNSIGNED (length_type));
4022
4023 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4024 result_mode, 3,
4025 XEXP (x, 0), Pmode,
4026 XEXP (y, 0), Pmode,
4027 size, cmp_mode);
4028
4029 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4030 *pmode = result_mode;
4031 return;
4032 }
4033
4034 /* Don't allow operands to the compare to trap, as that can put the
4035 compare and branch in different basic blocks. */
4036 if (cfun->can_throw_non_call_exceptions)
4037 {
4038 if (may_trap_p (x))
4039 x = force_reg (mode, x);
4040 if (may_trap_p (y))
4041 y = force_reg (mode, y);
4042 }
4043
4044 if (GET_MODE_CLASS (mode) == MODE_CC)
4045 {
4046 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4047 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4048 return;
4049 }
4050
4051 mclass = GET_MODE_CLASS (mode);
4052 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4053 cmp_mode = mode;
4054 do
4055 {
4056 enum insn_code icode;
4057 icode = optab_handler (cbranch_optab, cmp_mode);
4058 if (icode != CODE_FOR_nothing
4059 && insn_operand_matches (icode, 0, test))
4060 {
4061 rtx last = get_last_insn ();
4062 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4063 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4064 if (op0 && op1
4065 && insn_operand_matches (icode, 1, op0)
4066 && insn_operand_matches (icode, 2, op1))
4067 {
4068 XEXP (test, 0) = op0;
4069 XEXP (test, 1) = op1;
4070 *ptest = test;
4071 *pmode = cmp_mode;
4072 return;
4073 }
4074 delete_insns_since (last);
4075 }
4076
4077 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4078 break;
4079 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4080 }
4081 while (cmp_mode != VOIDmode);
4082
4083 if (methods != OPTAB_LIB_WIDEN)
4084 goto fail;
4085
4086 if (!SCALAR_FLOAT_MODE_P (mode))
4087 {
4088 rtx result;
4089
4090 /* Handle a libcall just for the mode we are using. */
4091 libfunc = optab_libfunc (cmp_optab, mode);
4092 gcc_assert (libfunc);
4093
4094 /* If we want unsigned, and this mode has a distinct unsigned
4095 comparison routine, use that. */
4096 if (unsignedp)
4097 {
4098 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4099 if (ulibfunc)
4100 libfunc = ulibfunc;
4101 }
4102
4103 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4104 targetm.libgcc_cmp_return_mode (),
4105 2, x, mode, y, mode);
4106
4107 /* There are two kinds of comparison routines. Biased routines
4108 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4109 of gcc expect that the comparison operation is equivalent
4110 to the modified comparison. For signed comparisons compare the
4111 result against 1 in the biased case, and zero in the unbiased
4112 case. For unsigned comparisons always compare against 1 after
4113 biasing the unbiased result by adding 1. This gives us a way to
4114 represent LTU.
4115 The comparisons in the fixed-point helper library are always
4116 biased. */
4117 x = result;
4118 y = const1_rtx;
4119
4120 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4121 {
4122 if (unsignedp)
4123 x = plus_constant (result, 1);
4124 else
4125 y = const0_rtx;
4126 }
4127
4128 *pmode = word_mode;
4129 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4130 ptest, pmode);
4131 }
4132 else
4133 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4134
4135 return;
4136
4137 fail:
4138 *ptest = NULL_RTX;
4139 }
4140
4141 /* Before emitting an insn with code ICODE, make sure that X, which is going
4142 to be used for operand OPNUM of the insn, is converted from mode MODE to
4143 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4144 that it is accepted by the operand predicate. Return the new value. */
4145
4146 rtx
4147 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4148 enum machine_mode wider_mode, int unsignedp)
4149 {
4150 if (mode != wider_mode)
4151 x = convert_modes (wider_mode, mode, x, unsignedp);
4152
4153 if (!insn_operand_matches (icode, opnum, x))
4154 {
4155 if (reload_completed)
4156 return NULL_RTX;
4157 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4158 }
4159
4160 return x;
4161 }
4162
4163 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4164 we can do the branch. */
4165
4166 static void
4167 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label)
4168 {
4169 enum machine_mode optab_mode;
4170 enum mode_class mclass;
4171 enum insn_code icode;
4172
4173 mclass = GET_MODE_CLASS (mode);
4174 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4175 icode = optab_handler (cbranch_optab, optab_mode);
4176
4177 gcc_assert (icode != CODE_FOR_nothing);
4178 gcc_assert (insn_operand_matches (icode, 0, test));
4179 emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0), XEXP (test, 1), label));
4180 }
4181
4182 /* Generate code to compare X with Y so that the condition codes are
4183 set and to jump to LABEL if the condition is true. If X is a
4184 constant and Y is not a constant, then the comparison is swapped to
4185 ensure that the comparison RTL has the canonical form.
4186
4187 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4188 need to be widened. UNSIGNEDP is also used to select the proper
4189 branch condition code.
4190
4191 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4192
4193 MODE is the mode of the inputs (in case they are const_int).
4194
4195 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4196 It will be potentially converted into an unsigned variant based on
4197 UNSIGNEDP to select a proper jump instruction. */
4198
4199 void
4200 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4201 enum machine_mode mode, int unsignedp, rtx label)
4202 {
4203 rtx op0 = x, op1 = y;
4204 rtx test;
4205
4206 /* Swap operands and condition to ensure canonical RTL. */
4207 if (swap_commutative_operands_p (x, y)
4208 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4209 {
4210 op0 = y, op1 = x;
4211 comparison = swap_condition (comparison);
4212 }
4213
4214 /* If OP0 is still a constant, then both X and Y must be constants
4215 or the opposite comparison is not supported. Force X into a register
4216 to create canonical RTL. */
4217 if (CONSTANT_P (op0))
4218 op0 = force_reg (mode, op0);
4219
4220 if (unsignedp)
4221 comparison = unsigned_condition (comparison);
4222
4223 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4224 &test, &mode);
4225 emit_cmp_and_jump_insn_1 (test, mode, label);
4226 }
4227
4228 \f
4229 /* Emit a library call comparison between floating point X and Y.
4230 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4231
4232 static void
4233 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4234 rtx *ptest, enum machine_mode *pmode)
4235 {
4236 enum rtx_code swapped = swap_condition (comparison);
4237 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4238 enum machine_mode orig_mode = GET_MODE (x);
4239 enum machine_mode mode, cmp_mode;
4240 rtx true_rtx, false_rtx;
4241 rtx value, target, insns, equiv;
4242 rtx libfunc = 0;
4243 bool reversed_p = false;
4244 cmp_mode = targetm.libgcc_cmp_return_mode ();
4245
4246 for (mode = orig_mode;
4247 mode != VOIDmode;
4248 mode = GET_MODE_WIDER_MODE (mode))
4249 {
4250 if (code_to_optab[comparison]
4251 && (libfunc = optab_libfunc (code_to_optab[comparison], mode)))
4252 break;
4253
4254 if (code_to_optab[swapped]
4255 && (libfunc = optab_libfunc (code_to_optab[swapped], mode)))
4256 {
4257 rtx tmp;
4258 tmp = x; x = y; y = tmp;
4259 comparison = swapped;
4260 break;
4261 }
4262
4263 if (code_to_optab[reversed]
4264 && (libfunc = optab_libfunc (code_to_optab[reversed], mode)))
4265 {
4266 comparison = reversed;
4267 reversed_p = true;
4268 break;
4269 }
4270 }
4271
4272 gcc_assert (mode != VOIDmode);
4273
4274 if (mode != orig_mode)
4275 {
4276 x = convert_to_mode (mode, x, 0);
4277 y = convert_to_mode (mode, y, 0);
4278 }
4279
4280 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4281 the RTL. The allows the RTL optimizers to delete the libcall if the
4282 condition can be determined at compile-time. */
4283 if (comparison == UNORDERED
4284 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4285 {
4286 true_rtx = const_true_rtx;
4287 false_rtx = const0_rtx;
4288 }
4289 else
4290 {
4291 switch (comparison)
4292 {
4293 case EQ:
4294 true_rtx = const0_rtx;
4295 false_rtx = const_true_rtx;
4296 break;
4297
4298 case NE:
4299 true_rtx = const_true_rtx;
4300 false_rtx = const0_rtx;
4301 break;
4302
4303 case GT:
4304 true_rtx = const1_rtx;
4305 false_rtx = const0_rtx;
4306 break;
4307
4308 case GE:
4309 true_rtx = const0_rtx;
4310 false_rtx = constm1_rtx;
4311 break;
4312
4313 case LT:
4314 true_rtx = constm1_rtx;
4315 false_rtx = const0_rtx;
4316 break;
4317
4318 case LE:
4319 true_rtx = const0_rtx;
4320 false_rtx = const1_rtx;
4321 break;
4322
4323 default:
4324 gcc_unreachable ();
4325 }
4326 }
4327
4328 if (comparison == UNORDERED)
4329 {
4330 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4331 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4332 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4333 temp, const_true_rtx, equiv);
4334 }
4335 else
4336 {
4337 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4338 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4339 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4340 equiv, true_rtx, false_rtx);
4341 }
4342
4343 start_sequence ();
4344 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4345 cmp_mode, 2, x, mode, y, mode);
4346 insns = get_insns ();
4347 end_sequence ();
4348
4349 target = gen_reg_rtx (cmp_mode);
4350 emit_libcall_block (insns, target, value, equiv);
4351
4352 if (comparison == UNORDERED
4353 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4354 || reversed_p)
4355 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4356 else
4357 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4358
4359 *pmode = cmp_mode;
4360 }
4361 \f
4362 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4363
4364 void
4365 emit_indirect_jump (rtx loc)
4366 {
4367 struct expand_operand ops[1];
4368
4369 create_address_operand (&ops[0], loc);
4370 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4371 emit_barrier ();
4372 }
4373 \f
4374 #ifdef HAVE_conditional_move
4375
4376 /* Emit a conditional move instruction if the machine supports one for that
4377 condition and machine mode.
4378
4379 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4380 the mode to use should they be constants. If it is VOIDmode, they cannot
4381 both be constants.
4382
4383 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4384 should be stored there. MODE is the mode to use should they be constants.
4385 If it is VOIDmode, they cannot both be constants.
4386
4387 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4388 is not supported. */
4389
4390 rtx
4391 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4392 enum machine_mode cmode, rtx op2, rtx op3,
4393 enum machine_mode mode, int unsignedp)
4394 {
4395 rtx tem, comparison, last;
4396 enum insn_code icode;
4397 enum rtx_code reversed;
4398
4399 /* If one operand is constant, make it the second one. Only do this
4400 if the other operand is not constant as well. */
4401
4402 if (swap_commutative_operands_p (op0, op1))
4403 {
4404 tem = op0;
4405 op0 = op1;
4406 op1 = tem;
4407 code = swap_condition (code);
4408 }
4409
4410 /* get_condition will prefer to generate LT and GT even if the old
4411 comparison was against zero, so undo that canonicalization here since
4412 comparisons against zero are cheaper. */
4413 if (code == LT && op1 == const1_rtx)
4414 code = LE, op1 = const0_rtx;
4415 else if (code == GT && op1 == constm1_rtx)
4416 code = GE, op1 = const0_rtx;
4417
4418 if (cmode == VOIDmode)
4419 cmode = GET_MODE (op0);
4420
4421 if (swap_commutative_operands_p (op2, op3)
4422 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4423 != UNKNOWN))
4424 {
4425 tem = op2;
4426 op2 = op3;
4427 op3 = tem;
4428 code = reversed;
4429 }
4430
4431 if (mode == VOIDmode)
4432 mode = GET_MODE (op2);
4433
4434 icode = direct_optab_handler (movcc_optab, mode);
4435
4436 if (icode == CODE_FOR_nothing)
4437 return 0;
4438
4439 if (!target)
4440 target = gen_reg_rtx (mode);
4441
4442 code = unsignedp ? unsigned_condition (code) : code;
4443 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4444
4445 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4446 return NULL and let the caller figure out how best to deal with this
4447 situation. */
4448 if (!COMPARISON_P (comparison))
4449 return NULL_RTX;
4450
4451 do_pending_stack_adjust ();
4452 last = get_last_insn ();
4453 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4454 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4455 &comparison, &cmode);
4456 if (comparison)
4457 {
4458 struct expand_operand ops[4];
4459
4460 create_output_operand (&ops[0], target, mode);
4461 create_fixed_operand (&ops[1], comparison);
4462 create_input_operand (&ops[2], op2, mode);
4463 create_input_operand (&ops[3], op3, mode);
4464 if (maybe_expand_insn (icode, 4, ops))
4465 {
4466 if (ops[0].value != target)
4467 convert_move (target, ops[0].value, false);
4468 return target;
4469 }
4470 }
4471 delete_insns_since (last);
4472 return NULL_RTX;
4473 }
4474
4475 /* Return nonzero if a conditional move of mode MODE is supported.
4476
4477 This function is for combine so it can tell whether an insn that looks
4478 like a conditional move is actually supported by the hardware. If we
4479 guess wrong we lose a bit on optimization, but that's it. */
4480 /* ??? sparc64 supports conditionally moving integers values based on fp
4481 comparisons, and vice versa. How do we handle them? */
4482
4483 int
4484 can_conditionally_move_p (enum machine_mode mode)
4485 {
4486 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4487 return 1;
4488
4489 return 0;
4490 }
4491
4492 #endif /* HAVE_conditional_move */
4493
4494 /* Emit a conditional addition instruction if the machine supports one for that
4495 condition and machine mode.
4496
4497 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4498 the mode to use should they be constants. If it is VOIDmode, they cannot
4499 both be constants.
4500
4501 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4502 should be stored there. MODE is the mode to use should they be constants.
4503 If it is VOIDmode, they cannot both be constants.
4504
4505 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4506 is not supported. */
4507
4508 rtx
4509 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4510 enum machine_mode cmode, rtx op2, rtx op3,
4511 enum machine_mode mode, int unsignedp)
4512 {
4513 rtx tem, comparison, last;
4514 enum insn_code icode;
4515 enum rtx_code reversed;
4516
4517 /* If one operand is constant, make it the second one. Only do this
4518 if the other operand is not constant as well. */
4519
4520 if (swap_commutative_operands_p (op0, op1))
4521 {
4522 tem = op0;
4523 op0 = op1;
4524 op1 = tem;
4525 code = swap_condition (code);
4526 }
4527
4528 /* get_condition will prefer to generate LT and GT even if the old
4529 comparison was against zero, so undo that canonicalization here since
4530 comparisons against zero are cheaper. */
4531 if (code == LT && op1 == const1_rtx)
4532 code = LE, op1 = const0_rtx;
4533 else if (code == GT && op1 == constm1_rtx)
4534 code = GE, op1 = const0_rtx;
4535
4536 if (cmode == VOIDmode)
4537 cmode = GET_MODE (op0);
4538
4539 if (swap_commutative_operands_p (op2, op3)
4540 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4541 != UNKNOWN))
4542 {
4543 tem = op2;
4544 op2 = op3;
4545 op3 = tem;
4546 code = reversed;
4547 }
4548
4549 if (mode == VOIDmode)
4550 mode = GET_MODE (op2);
4551
4552 icode = optab_handler (addcc_optab, mode);
4553
4554 if (icode == CODE_FOR_nothing)
4555 return 0;
4556
4557 if (!target)
4558 target = gen_reg_rtx (mode);
4559
4560 code = unsignedp ? unsigned_condition (code) : code;
4561 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4562
4563 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4564 return NULL and let the caller figure out how best to deal with this
4565 situation. */
4566 if (!COMPARISON_P (comparison))
4567 return NULL_RTX;
4568
4569 do_pending_stack_adjust ();
4570 last = get_last_insn ();
4571 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4572 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4573 &comparison, &cmode);
4574 if (comparison)
4575 {
4576 struct expand_operand ops[4];
4577
4578 create_output_operand (&ops[0], target, mode);
4579 create_fixed_operand (&ops[1], comparison);
4580 create_input_operand (&ops[2], op2, mode);
4581 create_input_operand (&ops[3], op3, mode);
4582 if (maybe_expand_insn (icode, 4, ops))
4583 {
4584 if (ops[0].value != target)
4585 convert_move (target, ops[0].value, false);
4586 return target;
4587 }
4588 }
4589 delete_insns_since (last);
4590 return NULL_RTX;
4591 }
4592 \f
4593 /* These functions attempt to generate an insn body, rather than
4594 emitting the insn, but if the gen function already emits them, we
4595 make no attempt to turn them back into naked patterns. */
4596
4597 /* Generate and return an insn body to add Y to X. */
4598
4599 rtx
4600 gen_add2_insn (rtx x, rtx y)
4601 {
4602 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4603
4604 gcc_assert (insn_operand_matches (icode, 0, x));
4605 gcc_assert (insn_operand_matches (icode, 1, x));
4606 gcc_assert (insn_operand_matches (icode, 2, y));
4607
4608 return GEN_FCN (icode) (x, x, y);
4609 }
4610
4611 /* Generate and return an insn body to add r1 and c,
4612 storing the result in r0. */
4613
4614 rtx
4615 gen_add3_insn (rtx r0, rtx r1, rtx c)
4616 {
4617 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4618
4619 if (icode == CODE_FOR_nothing
4620 || !insn_operand_matches (icode, 0, r0)
4621 || !insn_operand_matches (icode, 1, r1)
4622 || !insn_operand_matches (icode, 2, c))
4623 return NULL_RTX;
4624
4625 return GEN_FCN (icode) (r0, r1, c);
4626 }
4627
4628 int
4629 have_add2_insn (rtx x, rtx y)
4630 {
4631 enum insn_code icode;
4632
4633 gcc_assert (GET_MODE (x) != VOIDmode);
4634
4635 icode = optab_handler (add_optab, GET_MODE (x));
4636
4637 if (icode == CODE_FOR_nothing)
4638 return 0;
4639
4640 if (!insn_operand_matches (icode, 0, x)
4641 || !insn_operand_matches (icode, 1, x)
4642 || !insn_operand_matches (icode, 2, y))
4643 return 0;
4644
4645 return 1;
4646 }
4647
4648 /* Generate and return an insn body to subtract Y from X. */
4649
4650 rtx
4651 gen_sub2_insn (rtx x, rtx y)
4652 {
4653 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4654
4655 gcc_assert (insn_operand_matches (icode, 0, x));
4656 gcc_assert (insn_operand_matches (icode, 1, x));
4657 gcc_assert (insn_operand_matches (icode, 2, y));
4658
4659 return GEN_FCN (icode) (x, x, y);
4660 }
4661
4662 /* Generate and return an insn body to subtract r1 and c,
4663 storing the result in r0. */
4664
4665 rtx
4666 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4667 {
4668 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4669
4670 if (icode == CODE_FOR_nothing
4671 || !insn_operand_matches (icode, 0, r0)
4672 || !insn_operand_matches (icode, 1, r1)
4673 || !insn_operand_matches (icode, 2, c))
4674 return NULL_RTX;
4675
4676 return GEN_FCN (icode) (r0, r1, c);
4677 }
4678
4679 int
4680 have_sub2_insn (rtx x, rtx y)
4681 {
4682 enum insn_code icode;
4683
4684 gcc_assert (GET_MODE (x) != VOIDmode);
4685
4686 icode = optab_handler (sub_optab, GET_MODE (x));
4687
4688 if (icode == CODE_FOR_nothing)
4689 return 0;
4690
4691 if (!insn_operand_matches (icode, 0, x)
4692 || !insn_operand_matches (icode, 1, x)
4693 || !insn_operand_matches (icode, 2, y))
4694 return 0;
4695
4696 return 1;
4697 }
4698
4699 /* Generate the body of an instruction to copy Y into X.
4700 It may be a list of insns, if one insn isn't enough. */
4701
4702 rtx
4703 gen_move_insn (rtx x, rtx y)
4704 {
4705 rtx seq;
4706
4707 start_sequence ();
4708 emit_move_insn_1 (x, y);
4709 seq = get_insns ();
4710 end_sequence ();
4711 return seq;
4712 }
4713 \f
4714 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4715 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4716 no such operation exists, CODE_FOR_nothing will be returned. */
4717
4718 enum insn_code
4719 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4720 int unsignedp)
4721 {
4722 convert_optab tab;
4723 #ifdef HAVE_ptr_extend
4724 if (unsignedp < 0)
4725 return CODE_FOR_ptr_extend;
4726 #endif
4727
4728 tab = unsignedp ? zext_optab : sext_optab;
4729 return convert_optab_handler (tab, to_mode, from_mode);
4730 }
4731
4732 /* Generate the body of an insn to extend Y (with mode MFROM)
4733 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4734
4735 rtx
4736 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4737 enum machine_mode mfrom, int unsignedp)
4738 {
4739 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4740 return GEN_FCN (icode) (x, y);
4741 }
4742 \f
4743 /* can_fix_p and can_float_p say whether the target machine
4744 can directly convert a given fixed point type to
4745 a given floating point type, or vice versa.
4746 The returned value is the CODE_FOR_... value to use,
4747 or CODE_FOR_nothing if these modes cannot be directly converted.
4748
4749 *TRUNCP_PTR is set to 1 if it is necessary to output
4750 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4751
4752 static enum insn_code
4753 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4754 int unsignedp, int *truncp_ptr)
4755 {
4756 convert_optab tab;
4757 enum insn_code icode;
4758
4759 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4760 icode = convert_optab_handler (tab, fixmode, fltmode);
4761 if (icode != CODE_FOR_nothing)
4762 {
4763 *truncp_ptr = 0;
4764 return icode;
4765 }
4766
4767 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4768 for this to work. We need to rework the fix* and ftrunc* patterns
4769 and documentation. */
4770 tab = unsignedp ? ufix_optab : sfix_optab;
4771 icode = convert_optab_handler (tab, fixmode, fltmode);
4772 if (icode != CODE_FOR_nothing
4773 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4774 {
4775 *truncp_ptr = 1;
4776 return icode;
4777 }
4778
4779 *truncp_ptr = 0;
4780 return CODE_FOR_nothing;
4781 }
4782
4783 enum insn_code
4784 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4785 int unsignedp)
4786 {
4787 convert_optab tab;
4788
4789 tab = unsignedp ? ufloat_optab : sfloat_optab;
4790 return convert_optab_handler (tab, fltmode, fixmode);
4791 }
4792
4793 /* Function supportable_convert_operation
4794
4795 Check whether an operation represented by the code CODE is a
4796 convert operation that is supported by the target platform in
4797 vector form (i.e., when operating on arguments of type VECTYPE_IN
4798 producing a result of type VECTYPE_OUT).
4799
4800 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4801 This function checks if these operations are supported
4802 by the target platform either directly (via vector tree-codes), or via
4803 target builtins.
4804
4805 Output:
4806 - CODE1 is code of vector operation to be used when
4807 vectorizing the operation, if available.
4808 - DECL is decl of target builtin functions to be used
4809 when vectorizing the operation, if available. In this case,
4810 CODE1 is CALL_EXPR. */
4811
4812 bool
4813 supportable_convert_operation (enum tree_code code,
4814 tree vectype_out, tree vectype_in,
4815 tree *decl, enum tree_code *code1)
4816 {
4817 enum machine_mode m1,m2;
4818 int truncp;
4819
4820 m1 = TYPE_MODE (vectype_out);
4821 m2 = TYPE_MODE (vectype_in);
4822
4823 /* First check if we can done conversion directly. */
4824 if ((code == FIX_TRUNC_EXPR
4825 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4826 != CODE_FOR_nothing)
4827 || (code == FLOAT_EXPR
4828 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4829 != CODE_FOR_nothing))
4830 {
4831 *code1 = code;
4832 return true;
4833 }
4834
4835 /* Now check for builtin. */
4836 if (targetm.vectorize.builtin_conversion
4837 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4838 {
4839 *code1 = CALL_EXPR;
4840 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4841 return true;
4842 }
4843 return false;
4844 }
4845
4846 \f
4847 /* Generate code to convert FROM to floating point
4848 and store in TO. FROM must be fixed point and not VOIDmode.
4849 UNSIGNEDP nonzero means regard FROM as unsigned.
4850 Normally this is done by correcting the final value
4851 if it is negative. */
4852
4853 void
4854 expand_float (rtx to, rtx from, int unsignedp)
4855 {
4856 enum insn_code icode;
4857 rtx target = to;
4858 enum machine_mode fmode, imode;
4859 bool can_do_signed = false;
4860
4861 /* Crash now, because we won't be able to decide which mode to use. */
4862 gcc_assert (GET_MODE (from) != VOIDmode);
4863
4864 /* Look for an insn to do the conversion. Do it in the specified
4865 modes if possible; otherwise convert either input, output or both to
4866 wider mode. If the integer mode is wider than the mode of FROM,
4867 we can do the conversion signed even if the input is unsigned. */
4868
4869 for (fmode = GET_MODE (to); fmode != VOIDmode;
4870 fmode = GET_MODE_WIDER_MODE (fmode))
4871 for (imode = GET_MODE (from); imode != VOIDmode;
4872 imode = GET_MODE_WIDER_MODE (imode))
4873 {
4874 int doing_unsigned = unsignedp;
4875
4876 if (fmode != GET_MODE (to)
4877 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4878 continue;
4879
4880 icode = can_float_p (fmode, imode, unsignedp);
4881 if (icode == CODE_FOR_nothing && unsignedp)
4882 {
4883 enum insn_code scode = can_float_p (fmode, imode, 0);
4884 if (scode != CODE_FOR_nothing)
4885 can_do_signed = true;
4886 if (imode != GET_MODE (from))
4887 icode = scode, doing_unsigned = 0;
4888 }
4889
4890 if (icode != CODE_FOR_nothing)
4891 {
4892 if (imode != GET_MODE (from))
4893 from = convert_to_mode (imode, from, unsignedp);
4894
4895 if (fmode != GET_MODE (to))
4896 target = gen_reg_rtx (fmode);
4897
4898 emit_unop_insn (icode, target, from,
4899 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4900
4901 if (target != to)
4902 convert_move (to, target, 0);
4903 return;
4904 }
4905 }
4906
4907 /* Unsigned integer, and no way to convert directly. Convert as signed,
4908 then unconditionally adjust the result. */
4909 if (unsignedp && can_do_signed)
4910 {
4911 rtx label = gen_label_rtx ();
4912 rtx temp;
4913 REAL_VALUE_TYPE offset;
4914
4915 /* Look for a usable floating mode FMODE wider than the source and at
4916 least as wide as the target. Using FMODE will avoid rounding woes
4917 with unsigned values greater than the signed maximum value. */
4918
4919 for (fmode = GET_MODE (to); fmode != VOIDmode;
4920 fmode = GET_MODE_WIDER_MODE (fmode))
4921 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4922 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4923 break;
4924
4925 if (fmode == VOIDmode)
4926 {
4927 /* There is no such mode. Pretend the target is wide enough. */
4928 fmode = GET_MODE (to);
4929
4930 /* Avoid double-rounding when TO is narrower than FROM. */
4931 if ((significand_size (fmode) + 1)
4932 < GET_MODE_PRECISION (GET_MODE (from)))
4933 {
4934 rtx temp1;
4935 rtx neglabel = gen_label_rtx ();
4936
4937 /* Don't use TARGET if it isn't a register, is a hard register,
4938 or is the wrong mode. */
4939 if (!REG_P (target)
4940 || REGNO (target) < FIRST_PSEUDO_REGISTER
4941 || GET_MODE (target) != fmode)
4942 target = gen_reg_rtx (fmode);
4943
4944 imode = GET_MODE (from);
4945 do_pending_stack_adjust ();
4946
4947 /* Test whether the sign bit is set. */
4948 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4949 0, neglabel);
4950
4951 /* The sign bit is not set. Convert as signed. */
4952 expand_float (target, from, 0);
4953 emit_jump_insn (gen_jump (label));
4954 emit_barrier ();
4955
4956 /* The sign bit is set.
4957 Convert to a usable (positive signed) value by shifting right
4958 one bit, while remembering if a nonzero bit was shifted
4959 out; i.e., compute (from & 1) | (from >> 1). */
4960
4961 emit_label (neglabel);
4962 temp = expand_binop (imode, and_optab, from, const1_rtx,
4963 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4964 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
4965 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4966 OPTAB_LIB_WIDEN);
4967 expand_float (target, temp, 0);
4968
4969 /* Multiply by 2 to undo the shift above. */
4970 temp = expand_binop (fmode, add_optab, target, target,
4971 target, 0, OPTAB_LIB_WIDEN);
4972 if (temp != target)
4973 emit_move_insn (target, temp);
4974
4975 do_pending_stack_adjust ();
4976 emit_label (label);
4977 goto done;
4978 }
4979 }
4980
4981 /* If we are about to do some arithmetic to correct for an
4982 unsigned operand, do it in a pseudo-register. */
4983
4984 if (GET_MODE (to) != fmode
4985 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4986 target = gen_reg_rtx (fmode);
4987
4988 /* Convert as signed integer to floating. */
4989 expand_float (target, from, 0);
4990
4991 /* If FROM is negative (and therefore TO is negative),
4992 correct its value by 2**bitwidth. */
4993
4994 do_pending_stack_adjust ();
4995 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4996 0, label);
4997
4998
4999 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5000 temp = expand_binop (fmode, add_optab, target,
5001 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5002 target, 0, OPTAB_LIB_WIDEN);
5003 if (temp != target)
5004 emit_move_insn (target, temp);
5005
5006 do_pending_stack_adjust ();
5007 emit_label (label);
5008 goto done;
5009 }
5010
5011 /* No hardware instruction available; call a library routine. */
5012 {
5013 rtx libfunc;
5014 rtx insns;
5015 rtx value;
5016 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5017
5018 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5019 from = convert_to_mode (SImode, from, unsignedp);
5020
5021 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5022 gcc_assert (libfunc);
5023
5024 start_sequence ();
5025
5026 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5027 GET_MODE (to), 1, from,
5028 GET_MODE (from));
5029 insns = get_insns ();
5030 end_sequence ();
5031
5032 emit_libcall_block (insns, target, value,
5033 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5034 GET_MODE (to), from));
5035 }
5036
5037 done:
5038
5039 /* Copy result to requested destination
5040 if we have been computing in a temp location. */
5041
5042 if (target != to)
5043 {
5044 if (GET_MODE (target) == GET_MODE (to))
5045 emit_move_insn (to, target);
5046 else
5047 convert_move (to, target, 0);
5048 }
5049 }
5050 \f
5051 /* Generate code to convert FROM to fixed point and store in TO. FROM
5052 must be floating point. */
5053
5054 void
5055 expand_fix (rtx to, rtx from, int unsignedp)
5056 {
5057 enum insn_code icode;
5058 rtx target = to;
5059 enum machine_mode fmode, imode;
5060 int must_trunc = 0;
5061
5062 /* We first try to find a pair of modes, one real and one integer, at
5063 least as wide as FROM and TO, respectively, in which we can open-code
5064 this conversion. If the integer mode is wider than the mode of TO,
5065 we can do the conversion either signed or unsigned. */
5066
5067 for (fmode = GET_MODE (from); fmode != VOIDmode;
5068 fmode = GET_MODE_WIDER_MODE (fmode))
5069 for (imode = GET_MODE (to); imode != VOIDmode;
5070 imode = GET_MODE_WIDER_MODE (imode))
5071 {
5072 int doing_unsigned = unsignedp;
5073
5074 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5075 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5076 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5077
5078 if (icode != CODE_FOR_nothing)
5079 {
5080 rtx last = get_last_insn ();
5081 if (fmode != GET_MODE (from))
5082 from = convert_to_mode (fmode, from, 0);
5083
5084 if (must_trunc)
5085 {
5086 rtx temp = gen_reg_rtx (GET_MODE (from));
5087 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5088 temp, 0);
5089 }
5090
5091 if (imode != GET_MODE (to))
5092 target = gen_reg_rtx (imode);
5093
5094 if (maybe_emit_unop_insn (icode, target, from,
5095 doing_unsigned ? UNSIGNED_FIX : FIX))
5096 {
5097 if (target != to)
5098 convert_move (to, target, unsignedp);
5099 return;
5100 }
5101 delete_insns_since (last);
5102 }
5103 }
5104
5105 /* For an unsigned conversion, there is one more way to do it.
5106 If we have a signed conversion, we generate code that compares
5107 the real value to the largest representable positive number. If if
5108 is smaller, the conversion is done normally. Otherwise, subtract
5109 one plus the highest signed number, convert, and add it back.
5110
5111 We only need to check all real modes, since we know we didn't find
5112 anything with a wider integer mode.
5113
5114 This code used to extend FP value into mode wider than the destination.
5115 This is needed for decimal float modes which cannot accurately
5116 represent one plus the highest signed number of the same size, but
5117 not for binary modes. Consider, for instance conversion from SFmode
5118 into DImode.
5119
5120 The hot path through the code is dealing with inputs smaller than 2^63
5121 and doing just the conversion, so there is no bits to lose.
5122
5123 In the other path we know the value is positive in the range 2^63..2^64-1
5124 inclusive. (as for other input overflow happens and result is undefined)
5125 So we know that the most important bit set in mantissa corresponds to
5126 2^63. The subtraction of 2^63 should not generate any rounding as it
5127 simply clears out that bit. The rest is trivial. */
5128
5129 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5130 for (fmode = GET_MODE (from); fmode != VOIDmode;
5131 fmode = GET_MODE_WIDER_MODE (fmode))
5132 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5133 && (!DECIMAL_FLOAT_MODE_P (fmode)
5134 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5135 {
5136 int bitsize;
5137 REAL_VALUE_TYPE offset;
5138 rtx limit, lab1, lab2, insn;
5139
5140 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5141 real_2expN (&offset, bitsize - 1, fmode);
5142 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5143 lab1 = gen_label_rtx ();
5144 lab2 = gen_label_rtx ();
5145
5146 if (fmode != GET_MODE (from))
5147 from = convert_to_mode (fmode, from, 0);
5148
5149 /* See if we need to do the subtraction. */
5150 do_pending_stack_adjust ();
5151 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5152 0, lab1);
5153
5154 /* If not, do the signed "fix" and branch around fixup code. */
5155 expand_fix (to, from, 0);
5156 emit_jump_insn (gen_jump (lab2));
5157 emit_barrier ();
5158
5159 /* Otherwise, subtract 2**(N-1), convert to signed number,
5160 then add 2**(N-1). Do the addition using XOR since this
5161 will often generate better code. */
5162 emit_label (lab1);
5163 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5164 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5165 expand_fix (to, target, 0);
5166 target = expand_binop (GET_MODE (to), xor_optab, to,
5167 gen_int_mode
5168 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5169 GET_MODE (to)),
5170 to, 1, OPTAB_LIB_WIDEN);
5171
5172 if (target != to)
5173 emit_move_insn (to, target);
5174
5175 emit_label (lab2);
5176
5177 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5178 {
5179 /* Make a place for a REG_NOTE and add it. */
5180 insn = emit_move_insn (to, to);
5181 set_dst_reg_note (insn, REG_EQUAL,
5182 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5183 copy_rtx (from)),
5184 to);
5185 }
5186
5187 return;
5188 }
5189
5190 /* We can't do it with an insn, so use a library call. But first ensure
5191 that the mode of TO is at least as wide as SImode, since those are the
5192 only library calls we know about. */
5193
5194 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5195 {
5196 target = gen_reg_rtx (SImode);
5197
5198 expand_fix (target, from, unsignedp);
5199 }
5200 else
5201 {
5202 rtx insns;
5203 rtx value;
5204 rtx libfunc;
5205
5206 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5207 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5208 gcc_assert (libfunc);
5209
5210 start_sequence ();
5211
5212 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5213 GET_MODE (to), 1, from,
5214 GET_MODE (from));
5215 insns = get_insns ();
5216 end_sequence ();
5217
5218 emit_libcall_block (insns, target, value,
5219 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5220 GET_MODE (to), from));
5221 }
5222
5223 if (target != to)
5224 {
5225 if (GET_MODE (to) == GET_MODE (target))
5226 emit_move_insn (to, target);
5227 else
5228 convert_move (to, target, 0);
5229 }
5230 }
5231
5232 /* Generate code to convert FROM or TO a fixed-point.
5233 If UINTP is true, either TO or FROM is an unsigned integer.
5234 If SATP is true, we need to saturate the result. */
5235
5236 void
5237 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5238 {
5239 enum machine_mode to_mode = GET_MODE (to);
5240 enum machine_mode from_mode = GET_MODE (from);
5241 convert_optab tab;
5242 enum rtx_code this_code;
5243 enum insn_code code;
5244 rtx insns, value;
5245 rtx libfunc;
5246
5247 if (to_mode == from_mode)
5248 {
5249 emit_move_insn (to, from);
5250 return;
5251 }
5252
5253 if (uintp)
5254 {
5255 tab = satp ? satfractuns_optab : fractuns_optab;
5256 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5257 }
5258 else
5259 {
5260 tab = satp ? satfract_optab : fract_optab;
5261 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5262 }
5263 code = convert_optab_handler (tab, to_mode, from_mode);
5264 if (code != CODE_FOR_nothing)
5265 {
5266 emit_unop_insn (code, to, from, this_code);
5267 return;
5268 }
5269
5270 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5271 gcc_assert (libfunc);
5272
5273 start_sequence ();
5274 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5275 1, from, from_mode);
5276 insns = get_insns ();
5277 end_sequence ();
5278
5279 emit_libcall_block (insns, to, value,
5280 gen_rtx_fmt_e (tab->code, to_mode, from));
5281 }
5282
5283 /* Generate code to convert FROM to fixed point and store in TO. FROM
5284 must be floating point, TO must be signed. Use the conversion optab
5285 TAB to do the conversion. */
5286
5287 bool
5288 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5289 {
5290 enum insn_code icode;
5291 rtx target = to;
5292 enum machine_mode fmode, imode;
5293
5294 /* We first try to find a pair of modes, one real and one integer, at
5295 least as wide as FROM and TO, respectively, in which we can open-code
5296 this conversion. If the integer mode is wider than the mode of TO,
5297 we can do the conversion either signed or unsigned. */
5298
5299 for (fmode = GET_MODE (from); fmode != VOIDmode;
5300 fmode = GET_MODE_WIDER_MODE (fmode))
5301 for (imode = GET_MODE (to); imode != VOIDmode;
5302 imode = GET_MODE_WIDER_MODE (imode))
5303 {
5304 icode = convert_optab_handler (tab, imode, fmode);
5305 if (icode != CODE_FOR_nothing)
5306 {
5307 rtx last = get_last_insn ();
5308 if (fmode != GET_MODE (from))
5309 from = convert_to_mode (fmode, from, 0);
5310
5311 if (imode != GET_MODE (to))
5312 target = gen_reg_rtx (imode);
5313
5314 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5315 {
5316 delete_insns_since (last);
5317 continue;
5318 }
5319 if (target != to)
5320 convert_move (to, target, 0);
5321 return true;
5322 }
5323 }
5324
5325 return false;
5326 }
5327 \f
5328 /* Report whether we have an instruction to perform the operation
5329 specified by CODE on operands of mode MODE. */
5330 int
5331 have_insn_for (enum rtx_code code, enum machine_mode mode)
5332 {
5333 return (code_to_optab[(int) code] != 0
5334 && (optab_handler (code_to_optab[(int) code], mode)
5335 != CODE_FOR_nothing));
5336 }
5337
5338 /* Set all insn_code fields to CODE_FOR_nothing. */
5339
5340 static void
5341 init_insn_codes (void)
5342 {
5343 memset (optab_table, 0, sizeof (optab_table));
5344 memset (convert_optab_table, 0, sizeof (convert_optab_table));
5345 memset (direct_optab_table, 0, sizeof (direct_optab_table));
5346 }
5347
5348 /* Initialize OP's code to CODE, and write it into the code_to_optab table. */
5349 static inline void
5350 init_optab (optab op, enum rtx_code code)
5351 {
5352 op->code = code;
5353 code_to_optab[(int) code] = op;
5354 }
5355
5356 /* Same, but fill in its code as CODE, and do _not_ write it into
5357 the code_to_optab table. */
5358 static inline void
5359 init_optabv (optab op, enum rtx_code code)
5360 {
5361 op->code = code;
5362 }
5363
5364 /* Conversion optabs never go in the code_to_optab table. */
5365 static void
5366 init_convert_optab (convert_optab op, enum rtx_code code)
5367 {
5368 op->code = code;
5369 }
5370
5371 /* Initialize the libfunc fields of an entire group of entries in some
5372 optab. Each entry is set equal to a string consisting of a leading
5373 pair of underscores followed by a generic operation name followed by
5374 a mode name (downshifted to lowercase) followed by a single character
5375 representing the number of operands for the given operation (which is
5376 usually one of the characters '2', '3', or '4').
5377
5378 OPTABLE is the table in which libfunc fields are to be initialized.
5379 OPNAME is the generic (string) name of the operation.
5380 SUFFIX is the character which specifies the number of operands for
5381 the given generic operation.
5382 MODE is the mode to generate for.
5383 */
5384
5385 static void
5386 gen_libfunc (optab optable, const char *opname, int suffix, enum machine_mode mode)
5387 {
5388 unsigned opname_len = strlen (opname);
5389 const char *mname = GET_MODE_NAME (mode);
5390 unsigned mname_len = strlen (mname);
5391 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5392 int len = prefix_len + opname_len + mname_len + 1 + 1;
5393 char *libfunc_name = XALLOCAVEC (char, len);
5394 char *p;
5395 const char *q;
5396
5397 p = libfunc_name;
5398 *p++ = '_';
5399 *p++ = '_';
5400 if (targetm.libfunc_gnu_prefix)
5401 {
5402 *p++ = 'g';
5403 *p++ = 'n';
5404 *p++ = 'u';
5405 *p++ = '_';
5406 }
5407 for (q = opname; *q; )
5408 *p++ = *q++;
5409 for (q = mname; *q; q++)
5410 *p++ = TOLOWER (*q);
5411 *p++ = suffix;
5412 *p = '\0';
5413
5414 set_optab_libfunc (optable, mode,
5415 ggc_alloc_string (libfunc_name, p - libfunc_name));
5416 }
5417
5418 /* Like gen_libfunc, but verify that integer operation is involved. */
5419
5420 static void
5421 gen_int_libfunc (optab optable, const char *opname, char suffix,
5422 enum machine_mode mode)
5423 {
5424 int maxsize = 2 * BITS_PER_WORD;
5425
5426 if (GET_MODE_CLASS (mode) != MODE_INT)
5427 return;
5428 if (maxsize < LONG_LONG_TYPE_SIZE)
5429 maxsize = LONG_LONG_TYPE_SIZE;
5430 if (GET_MODE_CLASS (mode) != MODE_INT
5431 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5432 return;
5433 gen_libfunc (optable, opname, suffix, mode);
5434 }
5435
5436 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5437
5438 static void
5439 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5440 enum machine_mode mode)
5441 {
5442 char *dec_opname;
5443
5444 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5445 gen_libfunc (optable, opname, suffix, mode);
5446 if (DECIMAL_FLOAT_MODE_P (mode))
5447 {
5448 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5449 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5450 depending on the low level floating format used. */
5451 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5452 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5453 gen_libfunc (optable, dec_opname, suffix, mode);
5454 }
5455 }
5456
5457 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5458
5459 static void
5460 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5461 enum machine_mode mode)
5462 {
5463 if (!ALL_FIXED_POINT_MODE_P (mode))
5464 return;
5465 gen_libfunc (optable, opname, suffix, mode);
5466 }
5467
5468 /* Like gen_libfunc, but verify that signed fixed-point operation is
5469 involved. */
5470
5471 static void
5472 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5473 enum machine_mode mode)
5474 {
5475 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5476 return;
5477 gen_libfunc (optable, opname, suffix, mode);
5478 }
5479
5480 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5481 involved. */
5482
5483 static void
5484 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5485 enum machine_mode mode)
5486 {
5487 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5488 return;
5489 gen_libfunc (optable, opname, suffix, mode);
5490 }
5491
5492 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5493
5494 static void
5495 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5496 enum machine_mode mode)
5497 {
5498 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5499 gen_fp_libfunc (optable, name, suffix, mode);
5500 if (INTEGRAL_MODE_P (mode))
5501 gen_int_libfunc (optable, name, suffix, mode);
5502 }
5503
5504 /* Like gen_libfunc, but verify that FP or INT operation is involved
5505 and add 'v' suffix for integer operation. */
5506
5507 static void
5508 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5509 enum machine_mode mode)
5510 {
5511 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5512 gen_fp_libfunc (optable, name, suffix, mode);
5513 if (GET_MODE_CLASS (mode) == MODE_INT)
5514 {
5515 int len = strlen (name);
5516 char *v_name = XALLOCAVEC (char, len + 2);
5517 strcpy (v_name, name);
5518 v_name[len] = 'v';
5519 v_name[len + 1] = 0;
5520 gen_int_libfunc (optable, v_name, suffix, mode);
5521 }
5522 }
5523
5524 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5525 involved. */
5526
5527 static void
5528 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5529 enum machine_mode mode)
5530 {
5531 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5532 gen_fp_libfunc (optable, name, suffix, mode);
5533 if (INTEGRAL_MODE_P (mode))
5534 gen_int_libfunc (optable, name, suffix, mode);
5535 if (ALL_FIXED_POINT_MODE_P (mode))
5536 gen_fixed_libfunc (optable, name, suffix, mode);
5537 }
5538
5539 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5540 involved. */
5541
5542 static void
5543 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5544 enum machine_mode mode)
5545 {
5546 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5547 gen_fp_libfunc (optable, name, suffix, mode);
5548 if (INTEGRAL_MODE_P (mode))
5549 gen_int_libfunc (optable, name, suffix, mode);
5550 if (SIGNED_FIXED_POINT_MODE_P (mode))
5551 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5552 }
5553
5554 /* Like gen_libfunc, but verify that INT or FIXED operation is
5555 involved. */
5556
5557 static void
5558 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5559 enum machine_mode mode)
5560 {
5561 if (INTEGRAL_MODE_P (mode))
5562 gen_int_libfunc (optable, name, suffix, mode);
5563 if (ALL_FIXED_POINT_MODE_P (mode))
5564 gen_fixed_libfunc (optable, name, suffix, mode);
5565 }
5566
5567 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5568 involved. */
5569
5570 static void
5571 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5572 enum machine_mode mode)
5573 {
5574 if (INTEGRAL_MODE_P (mode))
5575 gen_int_libfunc (optable, name, suffix, mode);
5576 if (SIGNED_FIXED_POINT_MODE_P (mode))
5577 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5578 }
5579
5580 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5581 involved. */
5582
5583 static void
5584 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5585 enum machine_mode mode)
5586 {
5587 if (INTEGRAL_MODE_P (mode))
5588 gen_int_libfunc (optable, name, suffix, mode);
5589 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5590 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5591 }
5592
5593 /* Initialize the libfunc fields of an entire group of entries of an
5594 inter-mode-class conversion optab. The string formation rules are
5595 similar to the ones for init_libfuncs, above, but instead of having
5596 a mode name and an operand count these functions have two mode names
5597 and no operand count. */
5598
5599 static void
5600 gen_interclass_conv_libfunc (convert_optab tab,
5601 const char *opname,
5602 enum machine_mode tmode,
5603 enum machine_mode fmode)
5604 {
5605 size_t opname_len = strlen (opname);
5606 size_t mname_len = 0;
5607
5608 const char *fname, *tname;
5609 const char *q;
5610 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5611 char *libfunc_name, *suffix;
5612 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5613 char *p;
5614
5615 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5616 depends on which underlying decimal floating point format is used. */
5617 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5618
5619 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5620
5621 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5622 nondec_name[0] = '_';
5623 nondec_name[1] = '_';
5624 if (targetm.libfunc_gnu_prefix)
5625 {
5626 nondec_name[2] = 'g';
5627 nondec_name[3] = 'n';
5628 nondec_name[4] = 'u';
5629 nondec_name[5] = '_';
5630 }
5631
5632 memcpy (&nondec_name[prefix_len], opname, opname_len);
5633 nondec_suffix = nondec_name + opname_len + prefix_len;
5634
5635 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5636 dec_name[0] = '_';
5637 dec_name[1] = '_';
5638 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5639 memcpy (&dec_name[2+dec_len], opname, opname_len);
5640 dec_suffix = dec_name + dec_len + opname_len + 2;
5641
5642 fname = GET_MODE_NAME (fmode);
5643 tname = GET_MODE_NAME (tmode);
5644
5645 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5646 {
5647 libfunc_name = dec_name;
5648 suffix = dec_suffix;
5649 }
5650 else
5651 {
5652 libfunc_name = nondec_name;
5653 suffix = nondec_suffix;
5654 }
5655
5656 p = suffix;
5657 for (q = fname; *q; p++, q++)
5658 *p = TOLOWER (*q);
5659 for (q = tname; *q; p++, q++)
5660 *p = TOLOWER (*q);
5661
5662 *p = '\0';
5663
5664 set_conv_libfunc (tab, tmode, fmode,
5665 ggc_alloc_string (libfunc_name, p - libfunc_name));
5666 }
5667
5668 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5669 int->fp conversion. */
5670
5671 static void
5672 gen_int_to_fp_conv_libfunc (convert_optab tab,
5673 const char *opname,
5674 enum machine_mode tmode,
5675 enum machine_mode fmode)
5676 {
5677 if (GET_MODE_CLASS (fmode) != MODE_INT)
5678 return;
5679 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5680 return;
5681 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5682 }
5683
5684 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5685 naming scheme. */
5686
5687 static void
5688 gen_ufloat_conv_libfunc (convert_optab tab,
5689 const char *opname ATTRIBUTE_UNUSED,
5690 enum machine_mode tmode,
5691 enum machine_mode fmode)
5692 {
5693 if (DECIMAL_FLOAT_MODE_P (tmode))
5694 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5695 else
5696 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5697 }
5698
5699 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5700 fp->int conversion. */
5701
5702 static void
5703 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5704 const char *opname,
5705 enum machine_mode tmode,
5706 enum machine_mode fmode)
5707 {
5708 if (GET_MODE_CLASS (fmode) != MODE_INT)
5709 return;
5710 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5711 return;
5712 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5713 }
5714
5715 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5716 fp->int conversion with no decimal floating point involved. */
5717
5718 static void
5719 gen_fp_to_int_conv_libfunc (convert_optab tab,
5720 const char *opname,
5721 enum machine_mode tmode,
5722 enum machine_mode fmode)
5723 {
5724 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5725 return;
5726 if (GET_MODE_CLASS (tmode) != MODE_INT)
5727 return;
5728 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5729 }
5730
5731 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5732 The string formation rules are
5733 similar to the ones for init_libfunc, above. */
5734
5735 static void
5736 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5737 enum machine_mode tmode, enum machine_mode fmode)
5738 {
5739 size_t opname_len = strlen (opname);
5740 size_t mname_len = 0;
5741
5742 const char *fname, *tname;
5743 const char *q;
5744 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5745 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5746 char *libfunc_name, *suffix;
5747 char *p;
5748
5749 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5750 depends on which underlying decimal floating point format is used. */
5751 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5752
5753 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5754
5755 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5756 nondec_name[0] = '_';
5757 nondec_name[1] = '_';
5758 if (targetm.libfunc_gnu_prefix)
5759 {
5760 nondec_name[2] = 'g';
5761 nondec_name[3] = 'n';
5762 nondec_name[4] = 'u';
5763 nondec_name[5] = '_';
5764 }
5765 memcpy (&nondec_name[prefix_len], opname, opname_len);
5766 nondec_suffix = nondec_name + opname_len + prefix_len;
5767
5768 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5769 dec_name[0] = '_';
5770 dec_name[1] = '_';
5771 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5772 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5773 dec_suffix = dec_name + dec_len + opname_len + 2;
5774
5775 fname = GET_MODE_NAME (fmode);
5776 tname = GET_MODE_NAME (tmode);
5777
5778 if (DECIMAL_FLOAT_MODE_P(fmode) || DECIMAL_FLOAT_MODE_P(tmode))
5779 {
5780 libfunc_name = dec_name;
5781 suffix = dec_suffix;
5782 }
5783 else
5784 {
5785 libfunc_name = nondec_name;
5786 suffix = nondec_suffix;
5787 }
5788
5789 p = suffix;
5790 for (q = fname; *q; p++, q++)
5791 *p = TOLOWER (*q);
5792 for (q = tname; *q; p++, q++)
5793 *p = TOLOWER (*q);
5794
5795 *p++ = '2';
5796 *p = '\0';
5797
5798 set_conv_libfunc (tab, tmode, fmode,
5799 ggc_alloc_string (libfunc_name, p - libfunc_name));
5800 }
5801
5802 /* Pick proper libcall for trunc_optab. We need to chose if we do
5803 truncation or extension and interclass or intraclass. */
5804
5805 static void
5806 gen_trunc_conv_libfunc (convert_optab tab,
5807 const char *opname,
5808 enum machine_mode tmode,
5809 enum machine_mode fmode)
5810 {
5811 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5812 return;
5813 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5814 return;
5815 if (tmode == fmode)
5816 return;
5817
5818 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5819 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5820 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5821
5822 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5823 return;
5824
5825 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5826 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5827 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5828 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5829 }
5830
5831 /* Pick proper libcall for extend_optab. We need to chose if we do
5832 truncation or extension and interclass or intraclass. */
5833
5834 static void
5835 gen_extend_conv_libfunc (convert_optab tab,
5836 const char *opname ATTRIBUTE_UNUSED,
5837 enum machine_mode tmode,
5838 enum machine_mode fmode)
5839 {
5840 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5841 return;
5842 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5843 return;
5844 if (tmode == fmode)
5845 return;
5846
5847 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5848 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5849 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5850
5851 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5852 return;
5853
5854 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5855 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5856 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5857 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5858 }
5859
5860 /* Pick proper libcall for fract_optab. We need to chose if we do
5861 interclass or intraclass. */
5862
5863 static void
5864 gen_fract_conv_libfunc (convert_optab tab,
5865 const char *opname,
5866 enum machine_mode tmode,
5867 enum machine_mode fmode)
5868 {
5869 if (tmode == fmode)
5870 return;
5871 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5872 return;
5873
5874 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5875 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5876 else
5877 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5878 }
5879
5880 /* Pick proper libcall for fractuns_optab. */
5881
5882 static void
5883 gen_fractuns_conv_libfunc (convert_optab tab,
5884 const char *opname,
5885 enum machine_mode tmode,
5886 enum machine_mode fmode)
5887 {
5888 if (tmode == fmode)
5889 return;
5890 /* One mode must be a fixed-point mode, and the other must be an integer
5891 mode. */
5892 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5893 || (ALL_FIXED_POINT_MODE_P (fmode)
5894 && GET_MODE_CLASS (tmode) == MODE_INT)))
5895 return;
5896
5897 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5898 }
5899
5900 /* Pick proper libcall for satfract_optab. We need to chose if we do
5901 interclass or intraclass. */
5902
5903 static void
5904 gen_satfract_conv_libfunc (convert_optab tab,
5905 const char *opname,
5906 enum machine_mode tmode,
5907 enum machine_mode fmode)
5908 {
5909 if (tmode == fmode)
5910 return;
5911 /* TMODE must be a fixed-point mode. */
5912 if (!ALL_FIXED_POINT_MODE_P (tmode))
5913 return;
5914
5915 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5916 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5917 else
5918 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5919 }
5920
5921 /* Pick proper libcall for satfractuns_optab. */
5922
5923 static void
5924 gen_satfractuns_conv_libfunc (convert_optab tab,
5925 const char *opname,
5926 enum machine_mode tmode,
5927 enum machine_mode fmode)
5928 {
5929 if (tmode == fmode)
5930 return;
5931 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
5932 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
5933 return;
5934
5935 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5936 }
5937
5938 /* A table of previously-created libfuncs, hashed by name. */
5939 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
5940
5941 /* Hashtable callbacks for libfunc_decls. */
5942
5943 static hashval_t
5944 libfunc_decl_hash (const void *entry)
5945 {
5946 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
5947 }
5948
5949 static int
5950 libfunc_decl_eq (const void *entry1, const void *entry2)
5951 {
5952 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
5953 }
5954
5955 /* Build a decl for a libfunc named NAME. */
5956
5957 tree
5958 build_libfunc_function (const char *name)
5959 {
5960 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
5961 get_identifier (name),
5962 build_function_type (integer_type_node, NULL_TREE));
5963 /* ??? We don't have any type information except for this is
5964 a function. Pretend this is "int foo()". */
5965 DECL_ARTIFICIAL (decl) = 1;
5966 DECL_EXTERNAL (decl) = 1;
5967 TREE_PUBLIC (decl) = 1;
5968 gcc_assert (DECL_ASSEMBLER_NAME (decl));
5969
5970 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5971 are the flags assigned by targetm.encode_section_info. */
5972 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
5973
5974 return decl;
5975 }
5976
5977 rtx
5978 init_one_libfunc (const char *name)
5979 {
5980 tree id, decl;
5981 void **slot;
5982 hashval_t hash;
5983
5984 if (libfunc_decls == NULL)
5985 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
5986 libfunc_decl_eq, NULL);
5987
5988 /* See if we have already created a libfunc decl for this function. */
5989 id = get_identifier (name);
5990 hash = IDENTIFIER_HASH_VALUE (id);
5991 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
5992 decl = (tree) *slot;
5993 if (decl == NULL)
5994 {
5995 /* Create a new decl, so that it can be passed to
5996 targetm.encode_section_info. */
5997 decl = build_libfunc_function (name);
5998 *slot = decl;
5999 }
6000 return XEXP (DECL_RTL (decl), 0);
6001 }
6002
6003 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6004
6005 rtx
6006 set_user_assembler_libfunc (const char *name, const char *asmspec)
6007 {
6008 tree id, decl;
6009 void **slot;
6010 hashval_t hash;
6011
6012 id = get_identifier (name);
6013 hash = IDENTIFIER_HASH_VALUE (id);
6014 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6015 gcc_assert (slot);
6016 decl = (tree) *slot;
6017 set_user_assembler_name (decl, asmspec);
6018 return XEXP (DECL_RTL (decl), 0);
6019 }
6020
6021 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6022 MODE to NAME, which should be either 0 or a string constant. */
6023 void
6024 set_optab_libfunc (optab optable, enum machine_mode mode, const char *name)
6025 {
6026 rtx val;
6027 struct libfunc_entry e;
6028 struct libfunc_entry **slot;
6029 e.optab = (size_t) (optable - &optab_table[0]);
6030 e.mode1 = mode;
6031 e.mode2 = VOIDmode;
6032
6033 if (name)
6034 val = init_one_libfunc (name);
6035 else
6036 val = 0;
6037 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6038 if (*slot == NULL)
6039 *slot = ggc_alloc_libfunc_entry ();
6040 (*slot)->optab = (size_t) (optable - &optab_table[0]);
6041 (*slot)->mode1 = mode;
6042 (*slot)->mode2 = VOIDmode;
6043 (*slot)->libfunc = val;
6044 }
6045
6046 /* Call this to reset the function entry for one conversion optab
6047 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6048 either 0 or a string constant. */
6049 void
6050 set_conv_libfunc (convert_optab optable, enum machine_mode tmode,
6051 enum machine_mode fmode, const char *name)
6052 {
6053 rtx val;
6054 struct libfunc_entry e;
6055 struct libfunc_entry **slot;
6056 e.optab = (size_t) (optable - &convert_optab_table[0]);
6057 e.mode1 = tmode;
6058 e.mode2 = fmode;
6059
6060 if (name)
6061 val = init_one_libfunc (name);
6062 else
6063 val = 0;
6064 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6065 if (*slot == NULL)
6066 *slot = ggc_alloc_libfunc_entry ();
6067 (*slot)->optab = (size_t) (optable - &convert_optab_table[0]);
6068 (*slot)->mode1 = tmode;
6069 (*slot)->mode2 = fmode;
6070 (*slot)->libfunc = val;
6071 }
6072
6073 /* Call this to initialize the contents of the optabs
6074 appropriately for the current target machine. */
6075
6076 void
6077 init_optabs (void)
6078 {
6079 if (libfunc_hash)
6080 {
6081 htab_empty (libfunc_hash);
6082 /* We statically initialize the insn_codes with the equivalent of
6083 CODE_FOR_nothing. Repeat the process if reinitialising. */
6084 init_insn_codes ();
6085 }
6086 else
6087 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6088
6089 init_optab (add_optab, PLUS);
6090 init_optabv (addv_optab, PLUS);
6091 init_optab (sub_optab, MINUS);
6092 init_optabv (subv_optab, MINUS);
6093 init_optab (ssadd_optab, SS_PLUS);
6094 init_optab (usadd_optab, US_PLUS);
6095 init_optab (sssub_optab, SS_MINUS);
6096 init_optab (ussub_optab, US_MINUS);
6097 init_optab (smul_optab, MULT);
6098 init_optab (ssmul_optab, SS_MULT);
6099 init_optab (usmul_optab, US_MULT);
6100 init_optabv (smulv_optab, MULT);
6101 init_optab (smul_highpart_optab, UNKNOWN);
6102 init_optab (umul_highpart_optab, UNKNOWN);
6103 init_optab (smul_widen_optab, UNKNOWN);
6104 init_optab (umul_widen_optab, UNKNOWN);
6105 init_optab (usmul_widen_optab, UNKNOWN);
6106 init_optab (smadd_widen_optab, UNKNOWN);
6107 init_optab (umadd_widen_optab, UNKNOWN);
6108 init_optab (ssmadd_widen_optab, UNKNOWN);
6109 init_optab (usmadd_widen_optab, UNKNOWN);
6110 init_optab (smsub_widen_optab, UNKNOWN);
6111 init_optab (umsub_widen_optab, UNKNOWN);
6112 init_optab (ssmsub_widen_optab, UNKNOWN);
6113 init_optab (usmsub_widen_optab, UNKNOWN);
6114 init_optab (sdiv_optab, DIV);
6115 init_optab (ssdiv_optab, SS_DIV);
6116 init_optab (usdiv_optab, US_DIV);
6117 init_optabv (sdivv_optab, DIV);
6118 init_optab (sdivmod_optab, UNKNOWN);
6119 init_optab (udiv_optab, UDIV);
6120 init_optab (udivmod_optab, UNKNOWN);
6121 init_optab (smod_optab, MOD);
6122 init_optab (umod_optab, UMOD);
6123 init_optab (fmod_optab, UNKNOWN);
6124 init_optab (remainder_optab, UNKNOWN);
6125 init_optab (ftrunc_optab, UNKNOWN);
6126 init_optab (and_optab, AND);
6127 init_optab (ior_optab, IOR);
6128 init_optab (xor_optab, XOR);
6129 init_optab (ashl_optab, ASHIFT);
6130 init_optab (ssashl_optab, SS_ASHIFT);
6131 init_optab (usashl_optab, US_ASHIFT);
6132 init_optab (ashr_optab, ASHIFTRT);
6133 init_optab (lshr_optab, LSHIFTRT);
6134 init_optabv (vashl_optab, ASHIFT);
6135 init_optabv (vashr_optab, ASHIFTRT);
6136 init_optabv (vlshr_optab, LSHIFTRT);
6137 init_optab (rotl_optab, ROTATE);
6138 init_optab (rotr_optab, ROTATERT);
6139 init_optab (smin_optab, SMIN);
6140 init_optab (smax_optab, SMAX);
6141 init_optab (umin_optab, UMIN);
6142 init_optab (umax_optab, UMAX);
6143 init_optab (pow_optab, UNKNOWN);
6144 init_optab (atan2_optab, UNKNOWN);
6145 init_optab (fma_optab, FMA);
6146 init_optab (fms_optab, UNKNOWN);
6147 init_optab (fnma_optab, UNKNOWN);
6148 init_optab (fnms_optab, UNKNOWN);
6149
6150 /* These three have codes assigned exclusively for the sake of
6151 have_insn_for. */
6152 init_optab (mov_optab, SET);
6153 init_optab (movstrict_optab, STRICT_LOW_PART);
6154 init_optab (cbranch_optab, COMPARE);
6155
6156 init_optab (cmov_optab, UNKNOWN);
6157 init_optab (cstore_optab, UNKNOWN);
6158 init_optab (ctrap_optab, UNKNOWN);
6159
6160 init_optab (storent_optab, UNKNOWN);
6161
6162 init_optab (cmp_optab, UNKNOWN);
6163 init_optab (ucmp_optab, UNKNOWN);
6164
6165 init_optab (eq_optab, EQ);
6166 init_optab (ne_optab, NE);
6167 init_optab (gt_optab, GT);
6168 init_optab (ge_optab, GE);
6169 init_optab (lt_optab, LT);
6170 init_optab (le_optab, LE);
6171 init_optab (unord_optab, UNORDERED);
6172
6173 init_optab (neg_optab, NEG);
6174 init_optab (ssneg_optab, SS_NEG);
6175 init_optab (usneg_optab, US_NEG);
6176 init_optabv (negv_optab, NEG);
6177 init_optab (abs_optab, ABS);
6178 init_optabv (absv_optab, ABS);
6179 init_optab (addcc_optab, UNKNOWN);
6180 init_optab (one_cmpl_optab, NOT);
6181 init_optab (bswap_optab, BSWAP);
6182 init_optab (ffs_optab, FFS);
6183 init_optab (clz_optab, CLZ);
6184 init_optab (ctz_optab, CTZ);
6185 init_optab (clrsb_optab, CLRSB);
6186 init_optab (popcount_optab, POPCOUNT);
6187 init_optab (parity_optab, PARITY);
6188 init_optab (sqrt_optab, SQRT);
6189 init_optab (floor_optab, UNKNOWN);
6190 init_optab (ceil_optab, UNKNOWN);
6191 init_optab (round_optab, UNKNOWN);
6192 init_optab (btrunc_optab, UNKNOWN);
6193 init_optab (nearbyint_optab, UNKNOWN);
6194 init_optab (rint_optab, UNKNOWN);
6195 init_optab (sincos_optab, UNKNOWN);
6196 init_optab (sin_optab, UNKNOWN);
6197 init_optab (asin_optab, UNKNOWN);
6198 init_optab (cos_optab, UNKNOWN);
6199 init_optab (acos_optab, UNKNOWN);
6200 init_optab (exp_optab, UNKNOWN);
6201 init_optab (exp10_optab, UNKNOWN);
6202 init_optab (exp2_optab, UNKNOWN);
6203 init_optab (expm1_optab, UNKNOWN);
6204 init_optab (ldexp_optab, UNKNOWN);
6205 init_optab (scalb_optab, UNKNOWN);
6206 init_optab (significand_optab, UNKNOWN);
6207 init_optab (logb_optab, UNKNOWN);
6208 init_optab (ilogb_optab, UNKNOWN);
6209 init_optab (log_optab, UNKNOWN);
6210 init_optab (log10_optab, UNKNOWN);
6211 init_optab (log2_optab, UNKNOWN);
6212 init_optab (log1p_optab, UNKNOWN);
6213 init_optab (tan_optab, UNKNOWN);
6214 init_optab (atan_optab, UNKNOWN);
6215 init_optab (copysign_optab, UNKNOWN);
6216 init_optab (signbit_optab, UNKNOWN);
6217
6218 init_optab (isinf_optab, UNKNOWN);
6219
6220 init_optab (strlen_optab, UNKNOWN);
6221 init_optab (push_optab, UNKNOWN);
6222
6223 init_optab (reduc_smax_optab, UNKNOWN);
6224 init_optab (reduc_umax_optab, UNKNOWN);
6225 init_optab (reduc_smin_optab, UNKNOWN);
6226 init_optab (reduc_umin_optab, UNKNOWN);
6227 init_optab (reduc_splus_optab, UNKNOWN);
6228 init_optab (reduc_uplus_optab, UNKNOWN);
6229
6230 init_optab (ssum_widen_optab, UNKNOWN);
6231 init_optab (usum_widen_optab, UNKNOWN);
6232 init_optab (sdot_prod_optab, UNKNOWN);
6233 init_optab (udot_prod_optab, UNKNOWN);
6234
6235 init_optab (vec_extract_optab, UNKNOWN);
6236 init_optab (vec_set_optab, UNKNOWN);
6237 init_optab (vec_init_optab, UNKNOWN);
6238 init_optab (vec_shl_optab, UNKNOWN);
6239 init_optab (vec_shr_optab, UNKNOWN);
6240 init_optab (vec_realign_load_optab, UNKNOWN);
6241 init_optab (movmisalign_optab, UNKNOWN);
6242 init_optab (vec_widen_umult_hi_optab, UNKNOWN);
6243 init_optab (vec_widen_umult_lo_optab, UNKNOWN);
6244 init_optab (vec_widen_smult_hi_optab, UNKNOWN);
6245 init_optab (vec_widen_smult_lo_optab, UNKNOWN);
6246 init_optab (vec_widen_ushiftl_hi_optab, UNKNOWN);
6247 init_optab (vec_widen_ushiftl_lo_optab, UNKNOWN);
6248 init_optab (vec_widen_sshiftl_hi_optab, UNKNOWN);
6249 init_optab (vec_widen_sshiftl_lo_optab, UNKNOWN);
6250 init_optab (vec_unpacks_hi_optab, UNKNOWN);
6251 init_optab (vec_unpacks_lo_optab, UNKNOWN);
6252 init_optab (vec_unpacku_hi_optab, UNKNOWN);
6253 init_optab (vec_unpacku_lo_optab, UNKNOWN);
6254 init_optab (vec_unpacks_float_hi_optab, UNKNOWN);
6255 init_optab (vec_unpacks_float_lo_optab, UNKNOWN);
6256 init_optab (vec_unpacku_float_hi_optab, UNKNOWN);
6257 init_optab (vec_unpacku_float_lo_optab, UNKNOWN);
6258 init_optab (vec_pack_trunc_optab, UNKNOWN);
6259 init_optab (vec_pack_usat_optab, UNKNOWN);
6260 init_optab (vec_pack_ssat_optab, UNKNOWN);
6261 init_optab (vec_pack_ufix_trunc_optab, UNKNOWN);
6262 init_optab (vec_pack_sfix_trunc_optab, UNKNOWN);
6263
6264 init_optab (powi_optab, UNKNOWN);
6265
6266 /* Conversions. */
6267 init_convert_optab (sext_optab, SIGN_EXTEND);
6268 init_convert_optab (zext_optab, ZERO_EXTEND);
6269 init_convert_optab (trunc_optab, TRUNCATE);
6270 init_convert_optab (sfix_optab, FIX);
6271 init_convert_optab (ufix_optab, UNSIGNED_FIX);
6272 init_convert_optab (sfixtrunc_optab, UNKNOWN);
6273 init_convert_optab (ufixtrunc_optab, UNKNOWN);
6274 init_convert_optab (sfloat_optab, FLOAT);
6275 init_convert_optab (ufloat_optab, UNSIGNED_FLOAT);
6276 init_convert_optab (lrint_optab, UNKNOWN);
6277 init_convert_optab (lround_optab, UNKNOWN);
6278 init_convert_optab (lfloor_optab, UNKNOWN);
6279 init_convert_optab (lceil_optab, UNKNOWN);
6280
6281 init_convert_optab (fract_optab, FRACT_CONVERT);
6282 init_convert_optab (fractuns_optab, UNSIGNED_FRACT_CONVERT);
6283 init_convert_optab (satfract_optab, SAT_FRACT);
6284 init_convert_optab (satfractuns_optab, UNSIGNED_SAT_FRACT);
6285
6286 /* Fill in the optabs with the insns we support. */
6287 init_all_optabs ();
6288
6289 /* Initialize the optabs with the names of the library functions. */
6290 add_optab->libcall_basename = "add";
6291 add_optab->libcall_suffix = '3';
6292 add_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6293 addv_optab->libcall_basename = "add";
6294 addv_optab->libcall_suffix = '3';
6295 addv_optab->libcall_gen = gen_intv_fp_libfunc;
6296 ssadd_optab->libcall_basename = "ssadd";
6297 ssadd_optab->libcall_suffix = '3';
6298 ssadd_optab->libcall_gen = gen_signed_fixed_libfunc;
6299 usadd_optab->libcall_basename = "usadd";
6300 usadd_optab->libcall_suffix = '3';
6301 usadd_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6302 sub_optab->libcall_basename = "sub";
6303 sub_optab->libcall_suffix = '3';
6304 sub_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6305 subv_optab->libcall_basename = "sub";
6306 subv_optab->libcall_suffix = '3';
6307 subv_optab->libcall_gen = gen_intv_fp_libfunc;
6308 sssub_optab->libcall_basename = "sssub";
6309 sssub_optab->libcall_suffix = '3';
6310 sssub_optab->libcall_gen = gen_signed_fixed_libfunc;
6311 ussub_optab->libcall_basename = "ussub";
6312 ussub_optab->libcall_suffix = '3';
6313 ussub_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6314 smul_optab->libcall_basename = "mul";
6315 smul_optab->libcall_suffix = '3';
6316 smul_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6317 smulv_optab->libcall_basename = "mul";
6318 smulv_optab->libcall_suffix = '3';
6319 smulv_optab->libcall_gen = gen_intv_fp_libfunc;
6320 ssmul_optab->libcall_basename = "ssmul";
6321 ssmul_optab->libcall_suffix = '3';
6322 ssmul_optab->libcall_gen = gen_signed_fixed_libfunc;
6323 usmul_optab->libcall_basename = "usmul";
6324 usmul_optab->libcall_suffix = '3';
6325 usmul_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6326 sdiv_optab->libcall_basename = "div";
6327 sdiv_optab->libcall_suffix = '3';
6328 sdiv_optab->libcall_gen = gen_int_fp_signed_fixed_libfunc;
6329 sdivv_optab->libcall_basename = "divv";
6330 sdivv_optab->libcall_suffix = '3';
6331 sdivv_optab->libcall_gen = gen_int_libfunc;
6332 ssdiv_optab->libcall_basename = "ssdiv";
6333 ssdiv_optab->libcall_suffix = '3';
6334 ssdiv_optab->libcall_gen = gen_signed_fixed_libfunc;
6335 udiv_optab->libcall_basename = "udiv";
6336 udiv_optab->libcall_suffix = '3';
6337 udiv_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6338 usdiv_optab->libcall_basename = "usdiv";
6339 usdiv_optab->libcall_suffix = '3';
6340 usdiv_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6341 sdivmod_optab->libcall_basename = "divmod";
6342 sdivmod_optab->libcall_suffix = '4';
6343 sdivmod_optab->libcall_gen = gen_int_libfunc;
6344 udivmod_optab->libcall_basename = "udivmod";
6345 udivmod_optab->libcall_suffix = '4';
6346 udivmod_optab->libcall_gen = gen_int_libfunc;
6347 smod_optab->libcall_basename = "mod";
6348 smod_optab->libcall_suffix = '3';
6349 smod_optab->libcall_gen = gen_int_libfunc;
6350 umod_optab->libcall_basename = "umod";
6351 umod_optab->libcall_suffix = '3';
6352 umod_optab->libcall_gen = gen_int_libfunc;
6353 ftrunc_optab->libcall_basename = "ftrunc";
6354 ftrunc_optab->libcall_suffix = '2';
6355 ftrunc_optab->libcall_gen = gen_fp_libfunc;
6356 and_optab->libcall_basename = "and";
6357 and_optab->libcall_suffix = '3';
6358 and_optab->libcall_gen = gen_int_libfunc;
6359 ior_optab->libcall_basename = "ior";
6360 ior_optab->libcall_suffix = '3';
6361 ior_optab->libcall_gen = gen_int_libfunc;
6362 xor_optab->libcall_basename = "xor";
6363 xor_optab->libcall_suffix = '3';
6364 xor_optab->libcall_gen = gen_int_libfunc;
6365 ashl_optab->libcall_basename = "ashl";
6366 ashl_optab->libcall_suffix = '3';
6367 ashl_optab->libcall_gen = gen_int_fixed_libfunc;
6368 ssashl_optab->libcall_basename = "ssashl";
6369 ssashl_optab->libcall_suffix = '3';
6370 ssashl_optab->libcall_gen = gen_signed_fixed_libfunc;
6371 usashl_optab->libcall_basename = "usashl";
6372 usashl_optab->libcall_suffix = '3';
6373 usashl_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6374 ashr_optab->libcall_basename = "ashr";
6375 ashr_optab->libcall_suffix = '3';
6376 ashr_optab->libcall_gen = gen_int_signed_fixed_libfunc;
6377 lshr_optab->libcall_basename = "lshr";
6378 lshr_optab->libcall_suffix = '3';
6379 lshr_optab->libcall_gen = gen_int_unsigned_fixed_libfunc;
6380 smin_optab->libcall_basename = "min";
6381 smin_optab->libcall_suffix = '3';
6382 smin_optab->libcall_gen = gen_int_fp_libfunc;
6383 smax_optab->libcall_basename = "max";
6384 smax_optab->libcall_suffix = '3';
6385 smax_optab->libcall_gen = gen_int_fp_libfunc;
6386 umin_optab->libcall_basename = "umin";
6387 umin_optab->libcall_suffix = '3';
6388 umin_optab->libcall_gen = gen_int_libfunc;
6389 umax_optab->libcall_basename = "umax";
6390 umax_optab->libcall_suffix = '3';
6391 umax_optab->libcall_gen = gen_int_libfunc;
6392 neg_optab->libcall_basename = "neg";
6393 neg_optab->libcall_suffix = '2';
6394 neg_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6395 ssneg_optab->libcall_basename = "ssneg";
6396 ssneg_optab->libcall_suffix = '2';
6397 ssneg_optab->libcall_gen = gen_signed_fixed_libfunc;
6398 usneg_optab->libcall_basename = "usneg";
6399 usneg_optab->libcall_suffix = '2';
6400 usneg_optab->libcall_gen = gen_unsigned_fixed_libfunc;
6401 negv_optab->libcall_basename = "neg";
6402 negv_optab->libcall_suffix = '2';
6403 negv_optab->libcall_gen = gen_intv_fp_libfunc;
6404 one_cmpl_optab->libcall_basename = "one_cmpl";
6405 one_cmpl_optab->libcall_suffix = '2';
6406 one_cmpl_optab->libcall_gen = gen_int_libfunc;
6407 ffs_optab->libcall_basename = "ffs";
6408 ffs_optab->libcall_suffix = '2';
6409 ffs_optab->libcall_gen = gen_int_libfunc;
6410 clz_optab->libcall_basename = "clz";
6411 clz_optab->libcall_suffix = '2';
6412 clz_optab->libcall_gen = gen_int_libfunc;
6413 ctz_optab->libcall_basename = "ctz";
6414 ctz_optab->libcall_suffix = '2';
6415 ctz_optab->libcall_gen = gen_int_libfunc;
6416 clrsb_optab->libcall_basename = "clrsb";
6417 clrsb_optab->libcall_suffix = '2';
6418 clrsb_optab->libcall_gen = gen_int_libfunc;
6419 popcount_optab->libcall_basename = "popcount";
6420 popcount_optab->libcall_suffix = '2';
6421 popcount_optab->libcall_gen = gen_int_libfunc;
6422 parity_optab->libcall_basename = "parity";
6423 parity_optab->libcall_suffix = '2';
6424 parity_optab->libcall_gen = gen_int_libfunc;
6425
6426 /* Comparison libcalls for integers MUST come in pairs,
6427 signed/unsigned. */
6428 cmp_optab->libcall_basename = "cmp";
6429 cmp_optab->libcall_suffix = '2';
6430 cmp_optab->libcall_gen = gen_int_fp_fixed_libfunc;
6431 ucmp_optab->libcall_basename = "ucmp";
6432 ucmp_optab->libcall_suffix = '2';
6433 ucmp_optab->libcall_gen = gen_int_libfunc;
6434
6435 /* EQ etc are floating point only. */
6436 eq_optab->libcall_basename = "eq";
6437 eq_optab->libcall_suffix = '2';
6438 eq_optab->libcall_gen = gen_fp_libfunc;
6439 ne_optab->libcall_basename = "ne";
6440 ne_optab->libcall_suffix = '2';
6441 ne_optab->libcall_gen = gen_fp_libfunc;
6442 gt_optab->libcall_basename = "gt";
6443 gt_optab->libcall_suffix = '2';
6444 gt_optab->libcall_gen = gen_fp_libfunc;
6445 ge_optab->libcall_basename = "ge";
6446 ge_optab->libcall_suffix = '2';
6447 ge_optab->libcall_gen = gen_fp_libfunc;
6448 lt_optab->libcall_basename = "lt";
6449 lt_optab->libcall_suffix = '2';
6450 lt_optab->libcall_gen = gen_fp_libfunc;
6451 le_optab->libcall_basename = "le";
6452 le_optab->libcall_suffix = '2';
6453 le_optab->libcall_gen = gen_fp_libfunc;
6454 unord_optab->libcall_basename = "unord";
6455 unord_optab->libcall_suffix = '2';
6456 unord_optab->libcall_gen = gen_fp_libfunc;
6457
6458 powi_optab->libcall_basename = "powi";
6459 powi_optab->libcall_suffix = '2';
6460 powi_optab->libcall_gen = gen_fp_libfunc;
6461
6462 /* Conversions. */
6463 sfloat_optab->libcall_basename = "float";
6464 sfloat_optab->libcall_gen = gen_int_to_fp_conv_libfunc;
6465 ufloat_optab->libcall_gen = gen_ufloat_conv_libfunc;
6466 sfix_optab->libcall_basename = "fix";
6467 sfix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6468 ufix_optab->libcall_basename = "fixuns";
6469 ufix_optab->libcall_gen = gen_fp_to_int_conv_libfunc;
6470 lrint_optab->libcall_basename = "lrint";
6471 lrint_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6472 lround_optab->libcall_basename = "lround";
6473 lround_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6474 lfloor_optab->libcall_basename = "lfloor";
6475 lfloor_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6476 lceil_optab->libcall_basename = "lceil";
6477 lceil_optab->libcall_gen = gen_int_to_fp_nondecimal_conv_libfunc;
6478
6479 /* trunc_optab is also used for FLOAT_EXTEND. */
6480 sext_optab->libcall_basename = "extend";
6481 sext_optab->libcall_gen = gen_extend_conv_libfunc;
6482 trunc_optab->libcall_basename = "trunc";
6483 trunc_optab->libcall_gen = gen_trunc_conv_libfunc;
6484
6485 /* Conversions for fixed-point modes and other modes. */
6486 fract_optab->libcall_basename = "fract";
6487 fract_optab->libcall_gen = gen_fract_conv_libfunc;
6488 satfract_optab->libcall_basename = "satfract";
6489 satfract_optab->libcall_gen = gen_satfract_conv_libfunc;
6490 fractuns_optab->libcall_basename = "fractuns";
6491 fractuns_optab->libcall_gen = gen_fractuns_conv_libfunc;
6492 satfractuns_optab->libcall_basename = "satfractuns";
6493 satfractuns_optab->libcall_gen = gen_satfractuns_conv_libfunc;
6494
6495 /* The ffs function operates on `int'. Fall back on it if we do not
6496 have a libgcc2 function for that width. */
6497 if (INT_TYPE_SIZE < BITS_PER_WORD)
6498 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6499 "ffs");
6500
6501 /* Explicitly initialize the bswap libfuncs since we need them to be
6502 valid for things other than word_mode. */
6503 if (targetm.libfunc_gnu_prefix)
6504 {
6505 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6506 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6507 }
6508 else
6509 {
6510 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6511 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6512 }
6513
6514 /* Use cabs for double complex abs, since systems generally have cabs.
6515 Don't define any libcall for float complex, so that cabs will be used. */
6516 if (complex_double_type_node)
6517 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node), "cabs");
6518
6519 abort_libfunc = init_one_libfunc ("abort");
6520 memcpy_libfunc = init_one_libfunc ("memcpy");
6521 memmove_libfunc = init_one_libfunc ("memmove");
6522 memcmp_libfunc = init_one_libfunc ("memcmp");
6523 memset_libfunc = init_one_libfunc ("memset");
6524 setbits_libfunc = init_one_libfunc ("__setbits");
6525
6526 #ifndef DONT_USE_BUILTIN_SETJMP
6527 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6528 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6529 #else
6530 setjmp_libfunc = init_one_libfunc ("setjmp");
6531 longjmp_libfunc = init_one_libfunc ("longjmp");
6532 #endif
6533 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6534 unwind_sjlj_unregister_libfunc
6535 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6536
6537 /* For function entry/exit instrumentation. */
6538 profile_function_entry_libfunc
6539 = init_one_libfunc ("__cyg_profile_func_enter");
6540 profile_function_exit_libfunc
6541 = init_one_libfunc ("__cyg_profile_func_exit");
6542
6543 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6544
6545 /* Allow the target to add more libcalls or rename some, etc. */
6546 targetm.init_libfuncs ();
6547 }
6548
6549 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6550 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6551
6552 static void
6553 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6554 {
6555 enum machine_mode mode;
6556 char buf[64];
6557 size_t len = strlen (base);
6558 int i;
6559
6560 gcc_assert (max <= 8);
6561 gcc_assert (len + 3 < sizeof (buf));
6562
6563 memcpy (buf, base, len);
6564 buf[len] = '_';
6565 buf[len + 1] = '0';
6566 buf[len + 2] = '\0';
6567
6568 mode = QImode;
6569 for (i = 1; i <= max; i *= 2)
6570 {
6571 buf[len + 1] = '0' + i;
6572 set_optab_libfunc (tab, mode, buf);
6573 mode = GET_MODE_2XWIDER_MODE (mode);
6574 }
6575 }
6576
6577 void
6578 init_sync_libfuncs (int max)
6579 {
6580 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6581 "__sync_val_compare_and_swap", max);
6582 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6583 "__sync_lock_test_and_set", max);
6584
6585 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6586 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6587 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6588 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6589 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6590 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6591
6592 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6593 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6594 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6595 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6596 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6597 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6598 }
6599
6600 /* Print information about the current contents of the optabs on
6601 STDERR. */
6602
6603 DEBUG_FUNCTION void
6604 debug_optab_libfuncs (void)
6605 {
6606 int i;
6607 int j;
6608 int k;
6609
6610 /* Dump the arithmetic optabs. */
6611 for (i = 0; i != (int) OTI_MAX; i++)
6612 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6613 {
6614 optab o;
6615 rtx l;
6616
6617 o = &optab_table[i];
6618 l = optab_libfunc (o, (enum machine_mode) j);
6619 if (l)
6620 {
6621 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6622 fprintf (stderr, "%s\t%s:\t%s\n",
6623 GET_RTX_NAME (o->code),
6624 GET_MODE_NAME (j),
6625 XSTR (l, 0));
6626 }
6627 }
6628
6629 /* Dump the conversion optabs. */
6630 for (i = 0; i < (int) COI_MAX; ++i)
6631 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6632 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6633 {
6634 convert_optab o;
6635 rtx l;
6636
6637 o = &convert_optab_table[i];
6638 l = convert_optab_libfunc (o, (enum machine_mode) j,
6639 (enum machine_mode) k);
6640 if (l)
6641 {
6642 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6643 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6644 GET_RTX_NAME (o->code),
6645 GET_MODE_NAME (j),
6646 GET_MODE_NAME (k),
6647 XSTR (l, 0));
6648 }
6649 }
6650 }
6651
6652 \f
6653 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6654 CODE. Return 0 on failure. */
6655
6656 rtx
6657 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6658 {
6659 enum machine_mode mode = GET_MODE (op1);
6660 enum insn_code icode;
6661 rtx insn;
6662 rtx trap_rtx;
6663
6664 if (mode == VOIDmode)
6665 return 0;
6666
6667 icode = optab_handler (ctrap_optab, mode);
6668 if (icode == CODE_FOR_nothing)
6669 return 0;
6670
6671 /* Some targets only accept a zero trap code. */
6672 if (!insn_operand_matches (icode, 3, tcode))
6673 return 0;
6674
6675 do_pending_stack_adjust ();
6676 start_sequence ();
6677 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6678 &trap_rtx, &mode);
6679 if (!trap_rtx)
6680 insn = NULL_RTX;
6681 else
6682 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6683 tcode);
6684
6685 /* If that failed, then give up. */
6686 if (insn == 0)
6687 {
6688 end_sequence ();
6689 return 0;
6690 }
6691
6692 emit_insn (insn);
6693 insn = get_insns ();
6694 end_sequence ();
6695 return insn;
6696 }
6697
6698 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6699 or unsigned operation code. */
6700
6701 static enum rtx_code
6702 get_rtx_code (enum tree_code tcode, bool unsignedp)
6703 {
6704 enum rtx_code code;
6705 switch (tcode)
6706 {
6707 case EQ_EXPR:
6708 code = EQ;
6709 break;
6710 case NE_EXPR:
6711 code = NE;
6712 break;
6713 case LT_EXPR:
6714 code = unsignedp ? LTU : LT;
6715 break;
6716 case LE_EXPR:
6717 code = unsignedp ? LEU : LE;
6718 break;
6719 case GT_EXPR:
6720 code = unsignedp ? GTU : GT;
6721 break;
6722 case GE_EXPR:
6723 code = unsignedp ? GEU : GE;
6724 break;
6725
6726 case UNORDERED_EXPR:
6727 code = UNORDERED;
6728 break;
6729 case ORDERED_EXPR:
6730 code = ORDERED;
6731 break;
6732 case UNLT_EXPR:
6733 code = UNLT;
6734 break;
6735 case UNLE_EXPR:
6736 code = UNLE;
6737 break;
6738 case UNGT_EXPR:
6739 code = UNGT;
6740 break;
6741 case UNGE_EXPR:
6742 code = UNGE;
6743 break;
6744 case UNEQ_EXPR:
6745 code = UNEQ;
6746 break;
6747 case LTGT_EXPR:
6748 code = LTGT;
6749 break;
6750
6751 default:
6752 gcc_unreachable ();
6753 }
6754 return code;
6755 }
6756
6757 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6758 unsigned operators. Do not generate compare instruction. */
6759
6760 static rtx
6761 vector_compare_rtx (tree cond, bool unsignedp, enum insn_code icode)
6762 {
6763 struct expand_operand ops[2];
6764 enum rtx_code rcode;
6765 tree t_op0, t_op1;
6766 rtx rtx_op0, rtx_op1;
6767
6768 /* This is unlikely. While generating VEC_COND_EXPR, auto vectorizer
6769 ensures that condition is a relational operation. */
6770 gcc_assert (COMPARISON_CLASS_P (cond));
6771
6772 rcode = get_rtx_code (TREE_CODE (cond), unsignedp);
6773 t_op0 = TREE_OPERAND (cond, 0);
6774 t_op1 = TREE_OPERAND (cond, 1);
6775
6776 /* Expand operands. */
6777 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6778 EXPAND_STACK_PARM);
6779 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6780 EXPAND_STACK_PARM);
6781
6782 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6783 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6784 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6785 gcc_unreachable ();
6786 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6787 }
6788
6789 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6790 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6791
6792 bool
6793 can_vec_perm_p (enum machine_mode mode, bool variable,
6794 const unsigned char *sel)
6795 {
6796 enum machine_mode qimode;
6797
6798 /* If the target doesn't implement a vector mode for the vector type,
6799 then no operations are supported. */
6800 if (!VECTOR_MODE_P (mode))
6801 return false;
6802
6803 if (!variable)
6804 {
6805 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6806 && (sel == NULL
6807 || targetm.vectorize.vec_perm_const_ok == NULL
6808 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6809 return true;
6810 }
6811
6812 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6813 return true;
6814
6815 /* We allow fallback to a QI vector mode, and adjust the mask. */
6816 if (GET_MODE_INNER (mode) == QImode)
6817 return false;
6818 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6819 if (!VECTOR_MODE_P (qimode))
6820 return false;
6821
6822 /* ??? For completeness, we ought to check the QImode version of
6823 vec_perm_const_optab. But all users of this implicit lowering
6824 feature implement the variable vec_perm_optab. */
6825 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6826 return false;
6827
6828 /* In order to support the lowering of variable permutations,
6829 we need to support shifts and adds. */
6830 if (variable)
6831 {
6832 if (GET_MODE_UNIT_SIZE (mode) > 2
6833 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6834 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6835 return false;
6836 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6837 return false;
6838 }
6839
6840 return true;
6841 }
6842
6843 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6844
6845 static rtx
6846 expand_vec_perm_1 (enum insn_code icode, rtx target,
6847 rtx v0, rtx v1, rtx sel)
6848 {
6849 enum machine_mode tmode = GET_MODE (target);
6850 enum machine_mode smode = GET_MODE (sel);
6851 struct expand_operand ops[4];
6852
6853 create_output_operand (&ops[0], target, tmode);
6854 create_input_operand (&ops[3], sel, smode);
6855
6856 /* Make an effort to preserve v0 == v1. The target expander is able to
6857 rely on this to determine if we're permuting a single input operand. */
6858 if (rtx_equal_p (v0, v1))
6859 {
6860 if (!insn_operand_matches (icode, 1, v0))
6861 v0 = force_reg (tmode, v0);
6862 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6863 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6864
6865 create_fixed_operand (&ops[1], v0);
6866 create_fixed_operand (&ops[2], v0);
6867 }
6868 else
6869 {
6870 create_input_operand (&ops[1], v0, tmode);
6871 create_input_operand (&ops[2], v1, tmode);
6872 }
6873
6874 if (maybe_expand_insn (icode, 4, ops))
6875 return ops[0].value;
6876 return NULL_RTX;
6877 }
6878
6879 /* Generate instructions for vec_perm optab given its mode
6880 and three operands. */
6881
6882 rtx
6883 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6884 {
6885 enum insn_code icode;
6886 enum machine_mode qimode;
6887 unsigned int i, w, e, u;
6888 rtx tmp, sel_qi = NULL;
6889 rtvec vec;
6890
6891 if (!target || GET_MODE (target) != mode)
6892 target = gen_reg_rtx (mode);
6893
6894 w = GET_MODE_SIZE (mode);
6895 e = GET_MODE_NUNITS (mode);
6896 u = GET_MODE_UNIT_SIZE (mode);
6897
6898 /* Set QIMODE to a different vector mode with byte elements.
6899 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6900 qimode = VOIDmode;
6901 if (GET_MODE_INNER (mode) != QImode)
6902 {
6903 qimode = mode_for_vector (QImode, w);
6904 if (!VECTOR_MODE_P (qimode))
6905 qimode = VOIDmode;
6906 }
6907
6908 /* If the input is a constant, expand it specially. */
6909 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6910 if (GET_CODE (sel) == CONST_VECTOR)
6911 {
6912 icode = direct_optab_handler (vec_perm_const_optab, mode);
6913 if (icode != CODE_FOR_nothing)
6914 {
6915 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6916 if (tmp)
6917 return tmp;
6918 }
6919
6920 /* Fall back to a constant byte-based permutation. */
6921 if (qimode != VOIDmode)
6922 {
6923 vec = rtvec_alloc (w);
6924 for (i = 0; i < e; ++i)
6925 {
6926 unsigned int j, this_e;
6927
6928 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6929 this_e &= 2 * e - 1;
6930 this_e *= u;
6931
6932 for (j = 0; j < u; ++j)
6933 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6934 }
6935 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6936
6937 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6938 if (icode != CODE_FOR_nothing)
6939 {
6940 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6941 gen_lowpart (qimode, v0),
6942 gen_lowpart (qimode, v1), sel_qi);
6943 if (tmp)
6944 return gen_lowpart (mode, tmp);
6945 }
6946 }
6947 }
6948
6949 /* Otherwise expand as a fully variable permuation. */
6950 icode = direct_optab_handler (vec_perm_optab, mode);
6951 if (icode != CODE_FOR_nothing)
6952 {
6953 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6954 if (tmp)
6955 return tmp;
6956 }
6957
6958 /* As a special case to aid several targets, lower the element-based
6959 permutation to a byte-based permutation and try again. */
6960 if (qimode == VOIDmode)
6961 return NULL_RTX;
6962 icode = direct_optab_handler (vec_perm_optab, qimode);
6963 if (icode == CODE_FOR_nothing)
6964 return NULL_RTX;
6965
6966 if (sel_qi == NULL)
6967 {
6968 /* Multiply each element by its byte size. */
6969 enum machine_mode selmode = GET_MODE (sel);
6970 if (u == 2)
6971 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6972 sel, 0, OPTAB_DIRECT);
6973 else
6974 sel = expand_simple_binop (selmode, ASHIFT, sel,
6975 GEN_INT (exact_log2 (u)),
6976 sel, 0, OPTAB_DIRECT);
6977 gcc_assert (sel != NULL);
6978
6979 /* Broadcast the low byte each element into each of its bytes. */
6980 vec = rtvec_alloc (w);
6981 for (i = 0; i < w; ++i)
6982 {
6983 int this_e = i / u * u;
6984 if (BYTES_BIG_ENDIAN)
6985 this_e += u - 1;
6986 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6987 }
6988 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6989 sel = gen_lowpart (qimode, sel);
6990 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6991 gcc_assert (sel != NULL);
6992
6993 /* Add the byte offset to each byte element. */
6994 /* Note that the definition of the indicies here is memory ordering,
6995 so there should be no difference between big and little endian. */
6996 vec = rtvec_alloc (w);
6997 for (i = 0; i < w; ++i)
6998 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6999 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
7000 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
7001 sel, 0, OPTAB_DIRECT);
7002 gcc_assert (sel_qi != NULL);
7003 }
7004
7005 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
7006 gen_lowpart (qimode, v0),
7007 gen_lowpart (qimode, v1), sel_qi);
7008 if (tmp)
7009 tmp = gen_lowpart (mode, tmp);
7010 return tmp;
7011 }
7012
7013 /* Return insn code for a conditional operator with a comparison in
7014 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
7015
7016 static inline enum insn_code
7017 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
7018 {
7019 enum insn_code icode = CODE_FOR_nothing;
7020 if (uns)
7021 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
7022 else
7023 icode = convert_optab_handler (vcond_optab, vmode, cmode);
7024 return icode;
7025 }
7026
7027 /* Return TRUE iff, appropriate vector insns are available
7028 for vector cond expr with vector type VALUE_TYPE and a comparison
7029 with operand vector types in CMP_OP_TYPE. */
7030
7031 bool
7032 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
7033 {
7034 enum machine_mode value_mode = TYPE_MODE (value_type);
7035 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
7036 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
7037 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
7038 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
7039 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
7040 return false;
7041 return true;
7042 }
7043
7044 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
7045 three operands. */
7046
7047 rtx
7048 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
7049 rtx target)
7050 {
7051 struct expand_operand ops[6];
7052 enum insn_code icode;
7053 rtx comparison, rtx_op1, rtx_op2;
7054 enum machine_mode mode = TYPE_MODE (vec_cond_type);
7055 enum machine_mode cmp_op_mode;
7056 bool unsignedp;
7057
7058 gcc_assert (COMPARISON_CLASS_P (op0));
7059
7060 unsignedp = TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0)));
7061 cmp_op_mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (op0, 0)));
7062
7063 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
7064 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
7065
7066 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
7067 if (icode == CODE_FOR_nothing)
7068 return 0;
7069
7070 comparison = vector_compare_rtx (op0, unsignedp, icode);
7071 rtx_op1 = expand_normal (op1);
7072 rtx_op2 = expand_normal (op2);
7073
7074 create_output_operand (&ops[0], target, mode);
7075 create_input_operand (&ops[1], rtx_op1, mode);
7076 create_input_operand (&ops[2], rtx_op2, mode);
7077 create_fixed_operand (&ops[3], comparison);
7078 create_fixed_operand (&ops[4], XEXP (comparison, 0));
7079 create_fixed_operand (&ops[5], XEXP (comparison, 1));
7080 expand_insn (icode, 6, ops);
7081 return ops[0].value;
7082 }
7083
7084 \f
7085 /* Return true if there is a compare_and_swap pattern. */
7086
7087 bool
7088 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
7089 {
7090 enum insn_code icode;
7091
7092 /* Check for __atomic_compare_and_swap. */
7093 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7094 if (icode != CODE_FOR_nothing)
7095 return true;
7096
7097 /* Check for __sync_compare_and_swap. */
7098 icode = optab_handler (sync_compare_and_swap_optab, mode);
7099 if (icode != CODE_FOR_nothing)
7100 return true;
7101 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
7102 return true;
7103
7104 /* No inline compare and swap. */
7105 return false;
7106 }
7107
7108 /* Return true if an atomic exchange can be performed. */
7109
7110 bool
7111 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
7112 {
7113 enum insn_code icode;
7114
7115 /* Check for __atomic_exchange. */
7116 icode = direct_optab_handler (atomic_exchange_optab, mode);
7117 if (icode != CODE_FOR_nothing)
7118 return true;
7119
7120 /* Don't check __sync_test_and_set, as on some platforms that
7121 has reduced functionality. Targets that really do support
7122 a proper exchange should simply be updated to the __atomics. */
7123
7124 return can_compare_and_swap_p (mode, allow_libcall);
7125 }
7126
7127
7128 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7129 pattern. */
7130
7131 static void
7132 find_cc_set (rtx x, const_rtx pat, void *data)
7133 {
7134 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7135 && GET_CODE (pat) == SET)
7136 {
7137 rtx *p_cc_reg = (rtx *) data;
7138 gcc_assert (!*p_cc_reg);
7139 *p_cc_reg = x;
7140 }
7141 }
7142
7143 /* This is a helper function for the other atomic operations. This function
7144 emits a loop that contains SEQ that iterates until a compare-and-swap
7145 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7146 a set of instructions that takes a value from OLD_REG as an input and
7147 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7148 set to the current contents of MEM. After SEQ, a compare-and-swap will
7149 attempt to update MEM with NEW_REG. The function returns true when the
7150 loop was generated successfully. */
7151
7152 static bool
7153 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7154 {
7155 enum machine_mode mode = GET_MODE (mem);
7156 rtx label, cmp_reg, success, oldval;
7157
7158 /* The loop we want to generate looks like
7159
7160 cmp_reg = mem;
7161 label:
7162 old_reg = cmp_reg;
7163 seq;
7164 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7165 if (success)
7166 goto label;
7167
7168 Note that we only do the plain load from memory once. Subsequent
7169 iterations use the value loaded by the compare-and-swap pattern. */
7170
7171 label = gen_label_rtx ();
7172 cmp_reg = gen_reg_rtx (mode);
7173
7174 emit_move_insn (cmp_reg, mem);
7175 emit_label (label);
7176 emit_move_insn (old_reg, cmp_reg);
7177 if (seq)
7178 emit_insn (seq);
7179
7180 success = NULL_RTX;
7181 oldval = cmp_reg;
7182 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7183 new_reg, false, MEMMODEL_SEQ_CST,
7184 MEMMODEL_RELAXED))
7185 return false;
7186
7187 if (oldval != cmp_reg)
7188 emit_move_insn (cmp_reg, oldval);
7189
7190 /* ??? Mark this jump predicted not taken? */
7191 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7192 GET_MODE (success), 1, label);
7193 return true;
7194 }
7195
7196
7197 /* This function tries to emit an atomic_exchange intruction. VAL is written
7198 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7199 using TARGET if possible. */
7200
7201 static rtx
7202 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7203 {
7204 enum machine_mode mode = GET_MODE (mem);
7205 enum insn_code icode;
7206
7207 /* If the target supports the exchange directly, great. */
7208 icode = direct_optab_handler (atomic_exchange_optab, mode);
7209 if (icode != CODE_FOR_nothing)
7210 {
7211 struct expand_operand ops[4];
7212
7213 create_output_operand (&ops[0], target, mode);
7214 create_fixed_operand (&ops[1], mem);
7215 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7216 create_convert_operand_to (&ops[2], val, mode, true);
7217 create_integer_operand (&ops[3], model);
7218 if (maybe_expand_insn (icode, 4, ops))
7219 return ops[0].value;
7220 }
7221
7222 return NULL_RTX;
7223 }
7224
7225 /* This function tries to implement an atomic exchange operation using
7226 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7227 The previous contents of *MEM are returned, using TARGET if possible.
7228 Since this instructionn is an acquire barrier only, stronger memory
7229 models may require additional barriers to be emitted. */
7230
7231 static rtx
7232 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7233 enum memmodel model)
7234 {
7235 enum machine_mode mode = GET_MODE (mem);
7236 enum insn_code icode;
7237 rtx last_insn = get_last_insn ();
7238
7239 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7240
7241 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7242 exists, and the memory model is stronger than acquire, add a release
7243 barrier before the instruction. */
7244
7245 if (model == MEMMODEL_SEQ_CST
7246 || model == MEMMODEL_RELEASE
7247 || model == MEMMODEL_ACQ_REL)
7248 expand_mem_thread_fence (model);
7249
7250 if (icode != CODE_FOR_nothing)
7251 {
7252 struct expand_operand ops[3];
7253 create_output_operand (&ops[0], target, mode);
7254 create_fixed_operand (&ops[1], mem);
7255 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7256 create_convert_operand_to (&ops[2], val, mode, true);
7257 if (maybe_expand_insn (icode, 3, ops))
7258 return ops[0].value;
7259 }
7260
7261 /* If an external test-and-set libcall is provided, use that instead of
7262 any external compare-and-swap that we might get from the compare-and-
7263 swap-loop expansion later. */
7264 if (!can_compare_and_swap_p (mode, false))
7265 {
7266 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7267 if (libfunc != NULL)
7268 {
7269 rtx addr;
7270
7271 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7272 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7273 mode, 2, addr, ptr_mode,
7274 val, mode);
7275 }
7276 }
7277
7278 /* If the test_and_set can't be emitted, eliminate any barrier that might
7279 have been emitted. */
7280 delete_insns_since (last_insn);
7281 return NULL_RTX;
7282 }
7283
7284 /* This function tries to implement an atomic exchange operation using a
7285 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7286 *MEM are returned, using TARGET if possible. No memory model is required
7287 since a compare_and_swap loop is seq-cst. */
7288
7289 static rtx
7290 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7291 {
7292 enum machine_mode mode = GET_MODE (mem);
7293
7294 if (can_compare_and_swap_p (mode, true))
7295 {
7296 if (!target || !register_operand (target, mode))
7297 target = gen_reg_rtx (mode);
7298 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7299 val = convert_modes (mode, GET_MODE (val), val, 1);
7300 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7301 return target;
7302 }
7303
7304 return NULL_RTX;
7305 }
7306
7307 /* This function tries to implement an atomic test-and-set operation
7308 using the atomic_test_and_set instruction pattern. A boolean value
7309 is returned from the operation, using TARGET if possible. */
7310
7311 #ifndef HAVE_atomic_test_and_set
7312 #define HAVE_atomic_test_and_set 0
7313 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7314 #endif
7315
7316 static rtx
7317 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7318 {
7319 enum machine_mode pat_bool_mode;
7320 struct expand_operand ops[3];
7321
7322 if (!HAVE_atomic_test_and_set)
7323 return NULL_RTX;
7324
7325 /* While we always get QImode from __atomic_test_and_set, we get
7326 other memory modes from __sync_lock_test_and_set. Note that we
7327 use no endian adjustment here. This matches the 4.6 behavior
7328 in the Sparc backend. */
7329 gcc_checking_assert
7330 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7331 if (GET_MODE (mem) != QImode)
7332 mem = adjust_address_nv (mem, QImode, 0);
7333
7334 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7335 create_output_operand (&ops[0], target, pat_bool_mode);
7336 create_fixed_operand (&ops[1], mem);
7337 create_integer_operand (&ops[2], model);
7338
7339 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7340 return ops[0].value;
7341 return NULL_RTX;
7342 }
7343
7344 /* This function expands the legacy _sync_lock test_and_set operation which is
7345 generally an atomic exchange. Some limited targets only allow the
7346 constant 1 to be stored. This is an ACQUIRE operation.
7347
7348 TARGET is an optional place to stick the return value.
7349 MEM is where VAL is stored. */
7350
7351 rtx
7352 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7353 {
7354 rtx ret;
7355
7356 /* Try an atomic_exchange first. */
7357 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7358 if (ret)
7359 return ret;
7360
7361 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7362 if (ret)
7363 return ret;
7364
7365 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7366 if (ret)
7367 return ret;
7368
7369 /* If there are no other options, try atomic_test_and_set if the value
7370 being stored is 1. */
7371 if (val == const1_rtx)
7372 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7373
7374 return ret;
7375 }
7376
7377 /* This function expands the atomic test_and_set operation:
7378 atomically store a boolean TRUE into MEM and return the previous value.
7379
7380 MEMMODEL is the memory model variant to use.
7381 TARGET is an optional place to stick the return value. */
7382
7383 rtx
7384 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7385 {
7386 enum machine_mode mode = GET_MODE (mem);
7387 rtx ret;
7388
7389 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7390 if (ret)
7391 return ret;
7392
7393 if (target == NULL_RTX)
7394 target = gen_reg_rtx (mode);
7395
7396 /* If there is no test and set, try exchange, then a compare_and_swap loop,
7397 then __sync_test_and_set. */
7398 ret = maybe_emit_atomic_exchange (target, mem, const1_rtx, model);
7399 if (ret)
7400 return ret;
7401
7402 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, const1_rtx);
7403 if (ret)
7404 return ret;
7405
7406 ret = maybe_emit_sync_lock_test_and_set (target, mem, const1_rtx, model);
7407 if (ret)
7408 return ret;
7409
7410 /* Failing all else, assume a single threaded environment and simply perform
7411 the operation. */
7412 emit_move_insn (target, mem);
7413 emit_move_insn (mem, const1_rtx);
7414 return target;
7415 }
7416
7417 /* This function expands the atomic exchange operation:
7418 atomically store VAL in MEM and return the previous value in MEM.
7419
7420 MEMMODEL is the memory model variant to use.
7421 TARGET is an optional place to stick the return value. */
7422
7423 rtx
7424 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7425 {
7426 rtx ret;
7427
7428 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7429
7430 /* Next try a compare-and-swap loop for the exchange. */
7431 if (!ret)
7432 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7433
7434 return ret;
7435 }
7436
7437 /* This function expands the atomic compare exchange operation:
7438
7439 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7440 *PTARGET_OVAL is an optional place to store the old value from memory.
7441 Both target parameters may be NULL to indicate that we do not care about
7442 that return value. Both target parameters are updated on success to
7443 the actual location of the corresponding result.
7444
7445 MEMMODEL is the memory model variant to use.
7446
7447 The return value of the function is true for success. */
7448
7449 bool
7450 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7451 rtx mem, rtx expected, rtx desired,
7452 bool is_weak, enum memmodel succ_model,
7453 enum memmodel fail_model)
7454 {
7455 enum machine_mode mode = GET_MODE (mem);
7456 struct expand_operand ops[8];
7457 enum insn_code icode;
7458 rtx target_oval, target_bool = NULL_RTX;
7459 rtx libfunc;
7460
7461 /* Load expected into a register for the compare and swap. */
7462 if (MEM_P (expected))
7463 expected = copy_to_reg (expected);
7464
7465 /* Make sure we always have some place to put the return oldval.
7466 Further, make sure that place is distinct from the input expected,
7467 just in case we need that path down below. */
7468 if (ptarget_oval == NULL
7469 || (target_oval = *ptarget_oval) == NULL
7470 || reg_overlap_mentioned_p (expected, target_oval))
7471 target_oval = gen_reg_rtx (mode);
7472
7473 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7474 if (icode != CODE_FOR_nothing)
7475 {
7476 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7477
7478 /* Make sure we always have a place for the bool operand. */
7479 if (ptarget_bool == NULL
7480 || (target_bool = *ptarget_bool) == NULL
7481 || GET_MODE (target_bool) != bool_mode)
7482 target_bool = gen_reg_rtx (bool_mode);
7483
7484 /* Emit the compare_and_swap. */
7485 create_output_operand (&ops[0], target_bool, bool_mode);
7486 create_output_operand (&ops[1], target_oval, mode);
7487 create_fixed_operand (&ops[2], mem);
7488 create_convert_operand_to (&ops[3], expected, mode, true);
7489 create_convert_operand_to (&ops[4], desired, mode, true);
7490 create_integer_operand (&ops[5], is_weak);
7491 create_integer_operand (&ops[6], succ_model);
7492 create_integer_operand (&ops[7], fail_model);
7493 expand_insn (icode, 8, ops);
7494
7495 /* Return success/failure. */
7496 target_bool = ops[0].value;
7497 target_oval = ops[1].value;
7498 goto success;
7499 }
7500
7501 /* Otherwise fall back to the original __sync_val_compare_and_swap
7502 which is always seq-cst. */
7503 icode = optab_handler (sync_compare_and_swap_optab, mode);
7504 if (icode != CODE_FOR_nothing)
7505 {
7506 rtx cc_reg;
7507
7508 create_output_operand (&ops[0], target_oval, mode);
7509 create_fixed_operand (&ops[1], mem);
7510 create_convert_operand_to (&ops[2], expected, mode, true);
7511 create_convert_operand_to (&ops[3], desired, mode, true);
7512 if (!maybe_expand_insn (icode, 4, ops))
7513 return false;
7514
7515 target_oval = ops[0].value;
7516
7517 /* If the caller isn't interested in the boolean return value,
7518 skip the computation of it. */
7519 if (ptarget_bool == NULL)
7520 goto success;
7521
7522 /* Otherwise, work out if the compare-and-swap succeeded. */
7523 cc_reg = NULL_RTX;
7524 if (have_insn_for (COMPARE, CCmode))
7525 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7526 if (cc_reg)
7527 {
7528 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7529 const0_rtx, VOIDmode, 0, 1);
7530 goto success;
7531 }
7532 goto success_bool_from_val;
7533 }
7534
7535 /* Also check for library support for __sync_val_compare_and_swap. */
7536 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7537 if (libfunc != NULL)
7538 {
7539 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7540 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7541 mode, 3, addr, ptr_mode,
7542 expected, mode, desired, mode);
7543
7544 /* Compute the boolean return value only if requested. */
7545 if (ptarget_bool)
7546 goto success_bool_from_val;
7547 else
7548 goto success;
7549 }
7550
7551 /* Failure. */
7552 return false;
7553
7554 success_bool_from_val:
7555 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7556 expected, VOIDmode, 1, 1);
7557 success:
7558 /* Make sure that the oval output winds up where the caller asked. */
7559 if (ptarget_oval)
7560 *ptarget_oval = target_oval;
7561 if (ptarget_bool)
7562 *ptarget_bool = target_bool;
7563 return true;
7564 }
7565
7566 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7567
7568 static void
7569 expand_asm_memory_barrier (void)
7570 {
7571 rtx asm_op, clob;
7572
7573 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7574 rtvec_alloc (0), rtvec_alloc (0),
7575 rtvec_alloc (0), UNKNOWN_LOCATION);
7576 MEM_VOLATILE_P (asm_op) = 1;
7577
7578 clob = gen_rtx_SCRATCH (VOIDmode);
7579 clob = gen_rtx_MEM (BLKmode, clob);
7580 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7581
7582 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7583 }
7584
7585 /* This routine will either emit the mem_thread_fence pattern or issue a
7586 sync_synchronize to generate a fence for memory model MEMMODEL. */
7587
7588 #ifndef HAVE_mem_thread_fence
7589 # define HAVE_mem_thread_fence 0
7590 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7591 #endif
7592 #ifndef HAVE_memory_barrier
7593 # define HAVE_memory_barrier 0
7594 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7595 #endif
7596
7597 void
7598 expand_mem_thread_fence (enum memmodel model)
7599 {
7600 if (HAVE_mem_thread_fence)
7601 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7602 else if (model != MEMMODEL_RELAXED)
7603 {
7604 if (HAVE_memory_barrier)
7605 emit_insn (gen_memory_barrier ());
7606 else if (synchronize_libfunc != NULL_RTX)
7607 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7608 else
7609 expand_asm_memory_barrier ();
7610 }
7611 }
7612
7613 /* This routine will either emit the mem_signal_fence pattern or issue a
7614 sync_synchronize to generate a fence for memory model MEMMODEL. */
7615
7616 #ifndef HAVE_mem_signal_fence
7617 # define HAVE_mem_signal_fence 0
7618 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7619 #endif
7620
7621 void
7622 expand_mem_signal_fence (enum memmodel model)
7623 {
7624 if (HAVE_mem_signal_fence)
7625 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7626 else if (model != MEMMODEL_RELAXED)
7627 {
7628 /* By default targets are coherent between a thread and the signal
7629 handler running on the same thread. Thus this really becomes a
7630 compiler barrier, in that stores must not be sunk past
7631 (or raised above) a given point. */
7632 expand_asm_memory_barrier ();
7633 }
7634 }
7635
7636 /* This function expands the atomic load operation:
7637 return the atomically loaded value in MEM.
7638
7639 MEMMODEL is the memory model variant to use.
7640 TARGET is an option place to stick the return value. */
7641
7642 rtx
7643 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7644 {
7645 enum machine_mode mode = GET_MODE (mem);
7646 enum insn_code icode;
7647
7648 /* If the target supports the load directly, great. */
7649 icode = direct_optab_handler (atomic_load_optab, mode);
7650 if (icode != CODE_FOR_nothing)
7651 {
7652 struct expand_operand ops[3];
7653
7654 create_output_operand (&ops[0], target, mode);
7655 create_fixed_operand (&ops[1], mem);
7656 create_integer_operand (&ops[2], model);
7657 if (maybe_expand_insn (icode, 3, ops))
7658 return ops[0].value;
7659 }
7660
7661 /* If the size of the object is greater than word size on this target,
7662 then we assume that a load will not be atomic. */
7663 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7664 {
7665 /* Issue val = compare_and_swap (mem, 0, 0).
7666 This may cause the occasional harmless store of 0 when the value is
7667 already 0, but it seems to be OK according to the standards guys. */
7668 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7669 const0_rtx, false, model, model))
7670 return target;
7671 else
7672 /* Otherwise there is no atomic load, leave the library call. */
7673 return NULL_RTX;
7674 }
7675
7676 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7677 if (!target || target == const0_rtx)
7678 target = gen_reg_rtx (mode);
7679
7680 /* Emit the appropriate barrier before the load. */
7681 expand_mem_thread_fence (model);
7682
7683 emit_move_insn (target, mem);
7684
7685 /* For SEQ_CST, also emit a barrier after the load. */
7686 if (model == MEMMODEL_SEQ_CST)
7687 expand_mem_thread_fence (model);
7688
7689 return target;
7690 }
7691
7692 /* This function expands the atomic store operation:
7693 Atomically store VAL in MEM.
7694 MEMMODEL is the memory model variant to use.
7695 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7696 function returns const0_rtx if a pattern was emitted. */
7697
7698 rtx
7699 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7700 {
7701 enum machine_mode mode = GET_MODE (mem);
7702 enum insn_code icode;
7703 struct expand_operand ops[3];
7704
7705 /* If the target supports the store directly, great. */
7706 icode = direct_optab_handler (atomic_store_optab, mode);
7707 if (icode != CODE_FOR_nothing)
7708 {
7709 create_fixed_operand (&ops[0], mem);
7710 create_input_operand (&ops[1], val, mode);
7711 create_integer_operand (&ops[2], model);
7712 if (maybe_expand_insn (icode, 3, ops))
7713 return const0_rtx;
7714 }
7715
7716 /* If using __sync_lock_release is a viable alternative, try it. */
7717 if (use_release)
7718 {
7719 icode = direct_optab_handler (sync_lock_release_optab, mode);
7720 if (icode != CODE_FOR_nothing)
7721 {
7722 create_fixed_operand (&ops[0], mem);
7723 create_input_operand (&ops[1], const0_rtx, mode);
7724 if (maybe_expand_insn (icode, 2, ops))
7725 {
7726 /* lock_release is only a release barrier. */
7727 if (model == MEMMODEL_SEQ_CST)
7728 expand_mem_thread_fence (model);
7729 return const0_rtx;
7730 }
7731 }
7732 }
7733
7734 /* If the size of the object is greater than word size on this target,
7735 a default store will not be atomic, Try a mem_exchange and throw away
7736 the result. If that doesn't work, don't do anything. */
7737 if (GET_MODE_PRECISION(mode) > BITS_PER_WORD)
7738 {
7739 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7740 if (!target)
7741 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7742 if (target)
7743 return const0_rtx;
7744 else
7745 return NULL_RTX;
7746 }
7747
7748 /* If there is no mem_store, default to a move with barriers */
7749 if (model == MEMMODEL_SEQ_CST || model == MEMMODEL_RELEASE)
7750 expand_mem_thread_fence (model);
7751
7752 emit_move_insn (mem, val);
7753
7754 /* For SEQ_CST, also emit a barrier after the load. */
7755 if (model == MEMMODEL_SEQ_CST)
7756 expand_mem_thread_fence (model);
7757
7758 return const0_rtx;
7759 }
7760
7761
7762 /* Structure containing the pointers and values required to process the
7763 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7764
7765 struct atomic_op_functions
7766 {
7767 direct_optab mem_fetch_before;
7768 direct_optab mem_fetch_after;
7769 direct_optab mem_no_result;
7770 optab fetch_before;
7771 optab fetch_after;
7772 direct_optab no_result;
7773 enum rtx_code reverse_code;
7774 };
7775
7776
7777 /* Fill in structure pointed to by OP with the various optab entries for an
7778 operation of type CODE. */
7779
7780 static void
7781 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7782 {
7783 gcc_assert (op!= NULL);
7784
7785 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7786 in the source code during compilation, and the optab entries are not
7787 computable until runtime. Fill in the values at runtime. */
7788 switch (code)
7789 {
7790 case PLUS:
7791 op->mem_fetch_before = atomic_fetch_add_optab;
7792 op->mem_fetch_after = atomic_add_fetch_optab;
7793 op->mem_no_result = atomic_add_optab;
7794 op->fetch_before = sync_old_add_optab;
7795 op->fetch_after = sync_new_add_optab;
7796 op->no_result = sync_add_optab;
7797 op->reverse_code = MINUS;
7798 break;
7799 case MINUS:
7800 op->mem_fetch_before = atomic_fetch_sub_optab;
7801 op->mem_fetch_after = atomic_sub_fetch_optab;
7802 op->mem_no_result = atomic_sub_optab;
7803 op->fetch_before = sync_old_sub_optab;
7804 op->fetch_after = sync_new_sub_optab;
7805 op->no_result = sync_sub_optab;
7806 op->reverse_code = PLUS;
7807 break;
7808 case XOR:
7809 op->mem_fetch_before = atomic_fetch_xor_optab;
7810 op->mem_fetch_after = atomic_xor_fetch_optab;
7811 op->mem_no_result = atomic_xor_optab;
7812 op->fetch_before = sync_old_xor_optab;
7813 op->fetch_after = sync_new_xor_optab;
7814 op->no_result = sync_xor_optab;
7815 op->reverse_code = XOR;
7816 break;
7817 case AND:
7818 op->mem_fetch_before = atomic_fetch_and_optab;
7819 op->mem_fetch_after = atomic_and_fetch_optab;
7820 op->mem_no_result = atomic_and_optab;
7821 op->fetch_before = sync_old_and_optab;
7822 op->fetch_after = sync_new_and_optab;
7823 op->no_result = sync_and_optab;
7824 op->reverse_code = UNKNOWN;
7825 break;
7826 case IOR:
7827 op->mem_fetch_before = atomic_fetch_or_optab;
7828 op->mem_fetch_after = atomic_or_fetch_optab;
7829 op->mem_no_result = atomic_or_optab;
7830 op->fetch_before = sync_old_ior_optab;
7831 op->fetch_after = sync_new_ior_optab;
7832 op->no_result = sync_ior_optab;
7833 op->reverse_code = UNKNOWN;
7834 break;
7835 case NOT:
7836 op->mem_fetch_before = atomic_fetch_nand_optab;
7837 op->mem_fetch_after = atomic_nand_fetch_optab;
7838 op->mem_no_result = atomic_nand_optab;
7839 op->fetch_before = sync_old_nand_optab;
7840 op->fetch_after = sync_new_nand_optab;
7841 op->no_result = sync_nand_optab;
7842 op->reverse_code = UNKNOWN;
7843 break;
7844 default:
7845 gcc_unreachable ();
7846 }
7847 }
7848
7849 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7850 using memory order MODEL. If AFTER is true the operation needs to return
7851 the value of *MEM after the operation, otherwise the previous value.
7852 TARGET is an optional place to place the result. The result is unused if
7853 it is const0_rtx.
7854 Return the result if there is a better sequence, otherwise NULL_RTX. */
7855
7856 static rtx
7857 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7858 enum memmodel model, bool after)
7859 {
7860 /* If the value is prefetched, or not used, it may be possible to replace
7861 the sequence with a native exchange operation. */
7862 if (!after || target == const0_rtx)
7863 {
7864 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7865 if (code == AND && val == const0_rtx)
7866 {
7867 if (target == const0_rtx)
7868 target = gen_reg_rtx (GET_MODE (mem));
7869 return maybe_emit_atomic_exchange (target, mem, val, model);
7870 }
7871
7872 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7873 if (code == IOR && val == constm1_rtx)
7874 {
7875 if (target == const0_rtx)
7876 target = gen_reg_rtx (GET_MODE (mem));
7877 return maybe_emit_atomic_exchange (target, mem, val, model);
7878 }
7879 }
7880
7881 return NULL_RTX;
7882 }
7883
7884 /* Try to emit an instruction for a specific operation varaition.
7885 OPTAB contains the OP functions.
7886 TARGET is an optional place to return the result. const0_rtx means unused.
7887 MEM is the memory location to operate on.
7888 VAL is the value to use in the operation.
7889 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7890 MODEL is the memory model, if used.
7891 AFTER is true if the returned result is the value after the operation. */
7892
7893 static rtx
7894 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7895 rtx val, bool use_memmodel, enum memmodel model, bool after)
7896 {
7897 enum machine_mode mode = GET_MODE (mem);
7898 struct expand_operand ops[4];
7899 enum insn_code icode;
7900 int op_counter = 0;
7901 int num_ops;
7902
7903 /* Check to see if there is a result returned. */
7904 if (target == const0_rtx)
7905 {
7906 if (use_memmodel)
7907 {
7908 icode = direct_optab_handler (optab->mem_no_result, mode);
7909 create_integer_operand (&ops[2], model);
7910 num_ops = 3;
7911 }
7912 else
7913 {
7914 icode = direct_optab_handler (optab->no_result, mode);
7915 num_ops = 2;
7916 }
7917 }
7918 /* Otherwise, we need to generate a result. */
7919 else
7920 {
7921 if (use_memmodel)
7922 {
7923 icode = direct_optab_handler (after ? optab->mem_fetch_after
7924 : optab->mem_fetch_before, mode);
7925 create_integer_operand (&ops[3], model);
7926 num_ops = 4;
7927 }
7928 else
7929 {
7930 icode = optab_handler (after ? optab->fetch_after
7931 : optab->fetch_before, mode);
7932 num_ops = 3;
7933 }
7934 create_output_operand (&ops[op_counter++], target, mode);
7935 }
7936 if (icode == CODE_FOR_nothing)
7937 return NULL_RTX;
7938
7939 create_fixed_operand (&ops[op_counter++], mem);
7940 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7941 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7942
7943 if (maybe_expand_insn (icode, num_ops, ops))
7944 return (target == const0_rtx ? const0_rtx : ops[0].value);
7945
7946 return NULL_RTX;
7947 }
7948
7949
7950 /* This function expands an atomic fetch_OP or OP_fetch operation:
7951 TARGET is an option place to stick the return value. const0_rtx indicates
7952 the result is unused.
7953 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7954 CODE is the operation being performed (OP)
7955 MEMMODEL is the memory model variant to use.
7956 AFTER is true to return the result of the operation (OP_fetch).
7957 AFTER is false to return the value before the operation (fetch_OP). */
7958 rtx
7959 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7960 enum memmodel model, bool after)
7961 {
7962 enum machine_mode mode = GET_MODE (mem);
7963 struct atomic_op_functions optab;
7964 rtx result;
7965 bool unused_result = (target == const0_rtx);
7966
7967 get_atomic_op_for_code (&optab, code);
7968
7969 /* Check to see if there are any better instructions. */
7970 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7971 if (result)
7972 return result;
7973
7974 /* Check for the case where the result isn't used and try those patterns. */
7975 if (unused_result)
7976 {
7977 /* Try the memory model variant first. */
7978 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7979 if (result)
7980 return result;
7981
7982 /* Next try the old style withuot a memory model. */
7983 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7984 if (result)
7985 return result;
7986
7987 /* There is no no-result pattern, so try patterns with a result. */
7988 target = NULL_RTX;
7989 }
7990
7991 /* Try the __atomic version. */
7992 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7993 if (result)
7994 return result;
7995
7996 /* Try the older __sync version. */
7997 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7998 if (result)
7999 return result;
8000
8001 /* If the fetch value can be calculated from the other variation of fetch,
8002 try that operation. */
8003 if (after || unused_result || optab.reverse_code != UNKNOWN)
8004 {
8005 /* Try the __atomic version, then the older __sync version. */
8006 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
8007 if (!result)
8008 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
8009
8010 if (result)
8011 {
8012 /* If the result isn't used, no need to do compensation code. */
8013 if (unused_result)
8014 return result;
8015
8016 /* Issue compensation code. Fetch_after == fetch_before OP val.
8017 Fetch_before == after REVERSE_OP val. */
8018 if (!after)
8019 code = optab.reverse_code;
8020 if (code == NOT)
8021 {
8022 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
8023 true, OPTAB_LIB_WIDEN);
8024 result = expand_simple_unop (mode, NOT, result, target, true);
8025 }
8026 else
8027 result = expand_simple_binop (mode, code, result, val, target,
8028 true, OPTAB_LIB_WIDEN);
8029 return result;
8030 }
8031 }
8032
8033 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8034 if (!can_compare_and_swap_p (mode, false))
8035 {
8036 rtx libfunc;
8037 bool fixup = false;
8038
8039 libfunc = optab_libfunc (after ? optab.fetch_after
8040 : optab.fetch_before, mode);
8041 if (libfunc == NULL
8042 && (after || unused_result || optab.reverse_code != UNKNOWN))
8043 {
8044 fixup = true;
8045 if (!after)
8046 code = optab.reverse_code;
8047 libfunc = optab_libfunc (after ? optab.fetch_before
8048 : optab.fetch_after, mode);
8049 }
8050 if (libfunc != NULL)
8051 {
8052 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8053 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8054 2, addr, ptr_mode, val, mode);
8055
8056 if (!unused_result && fixup)
8057 result = expand_simple_binop (mode, code, result, val, target,
8058 true, OPTAB_LIB_WIDEN);
8059 return result;
8060 }
8061 }
8062
8063 /* If nothing else has succeeded, default to a compare and swap loop. */
8064 if (can_compare_and_swap_p (mode, true))
8065 {
8066 rtx insn;
8067 rtx t0 = gen_reg_rtx (mode), t1;
8068
8069 start_sequence ();
8070
8071 /* If the result is used, get a register for it. */
8072 if (!unused_result)
8073 {
8074 if (!target || !register_operand (target, mode))
8075 target = gen_reg_rtx (mode);
8076 /* If fetch_before, copy the value now. */
8077 if (!after)
8078 emit_move_insn (target, t0);
8079 }
8080 else
8081 target = const0_rtx;
8082
8083 t1 = t0;
8084 if (code == NOT)
8085 {
8086 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8087 true, OPTAB_LIB_WIDEN);
8088 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8089 }
8090 else
8091 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8092 OPTAB_LIB_WIDEN);
8093
8094 /* For after, copy the value now. */
8095 if (!unused_result && after)
8096 emit_move_insn (target, t1);
8097 insn = get_insns ();
8098 end_sequence ();
8099
8100 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8101 return target;
8102 }
8103
8104 return NULL_RTX;
8105 }
8106 \f
8107 /* Return true if OPERAND is suitable for operand number OPNO of
8108 instruction ICODE. */
8109
8110 bool
8111 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8112 {
8113 return (!insn_data[(int) icode].operand[opno].predicate
8114 || (insn_data[(int) icode].operand[opno].predicate
8115 (operand, insn_data[(int) icode].operand[opno].mode)));
8116 }
8117 \f
8118 /* TARGET is a target of a multiword operation that we are going to
8119 implement as a series of word-mode operations. Return true if
8120 TARGET is suitable for this purpose. */
8121
8122 bool
8123 valid_multiword_target_p (rtx target)
8124 {
8125 enum machine_mode mode;
8126 int i;
8127
8128 mode = GET_MODE (target);
8129 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8130 if (!validate_subreg (word_mode, mode, target, i))
8131 return false;
8132 return true;
8133 }
8134
8135 /* Like maybe_legitimize_operand, but do not change the code of the
8136 current rtx value. */
8137
8138 static bool
8139 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8140 struct expand_operand *op)
8141 {
8142 /* See if the operand matches in its current form. */
8143 if (insn_operand_matches (icode, opno, op->value))
8144 return true;
8145
8146 /* If the operand is a memory whose address has no side effects,
8147 try forcing the address into a non-virtual pseudo register.
8148 The check for side effects is important because copy_to_mode_reg
8149 cannot handle things like auto-modified addresses. */
8150 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8151 {
8152 rtx addr, mem;
8153
8154 mem = op->value;
8155 addr = XEXP (mem, 0);
8156 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8157 && !side_effects_p (addr))
8158 {
8159 rtx last;
8160 enum machine_mode mode;
8161
8162 last = get_last_insn ();
8163 mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
8164 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8165 if (insn_operand_matches (icode, opno, mem))
8166 {
8167 op->value = mem;
8168 return true;
8169 }
8170 delete_insns_since (last);
8171 }
8172 }
8173
8174 return false;
8175 }
8176
8177 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8178 on success, storing the new operand value back in OP. */
8179
8180 static bool
8181 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8182 struct expand_operand *op)
8183 {
8184 enum machine_mode mode, imode;
8185 bool old_volatile_ok, result;
8186
8187 mode = op->mode;
8188 switch (op->type)
8189 {
8190 case EXPAND_FIXED:
8191 old_volatile_ok = volatile_ok;
8192 volatile_ok = true;
8193 result = maybe_legitimize_operand_same_code (icode, opno, op);
8194 volatile_ok = old_volatile_ok;
8195 return result;
8196
8197 case EXPAND_OUTPUT:
8198 gcc_assert (mode != VOIDmode);
8199 if (op->value
8200 && op->value != const0_rtx
8201 && GET_MODE (op->value) == mode
8202 && maybe_legitimize_operand_same_code (icode, opno, op))
8203 return true;
8204
8205 op->value = gen_reg_rtx (mode);
8206 break;
8207
8208 case EXPAND_INPUT:
8209 input:
8210 gcc_assert (mode != VOIDmode);
8211 gcc_assert (GET_MODE (op->value) == VOIDmode
8212 || GET_MODE (op->value) == mode);
8213 if (maybe_legitimize_operand_same_code (icode, opno, op))
8214 return true;
8215
8216 op->value = copy_to_mode_reg (mode, op->value);
8217 break;
8218
8219 case EXPAND_CONVERT_TO:
8220 gcc_assert (mode != VOIDmode);
8221 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8222 goto input;
8223
8224 case EXPAND_CONVERT_FROM:
8225 if (GET_MODE (op->value) != VOIDmode)
8226 mode = GET_MODE (op->value);
8227 else
8228 /* The caller must tell us what mode this value has. */
8229 gcc_assert (mode != VOIDmode);
8230
8231 imode = insn_data[(int) icode].operand[opno].mode;
8232 if (imode != VOIDmode && imode != mode)
8233 {
8234 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8235 mode = imode;
8236 }
8237 goto input;
8238
8239 case EXPAND_ADDRESS:
8240 gcc_assert (mode != VOIDmode);
8241 op->value = convert_memory_address (mode, op->value);
8242 goto input;
8243
8244 case EXPAND_INTEGER:
8245 mode = insn_data[(int) icode].operand[opno].mode;
8246 if (mode != VOIDmode && const_int_operand (op->value, mode))
8247 goto input;
8248 break;
8249 }
8250 return insn_operand_matches (icode, opno, op->value);
8251 }
8252
8253 /* Make OP describe an input operand that should have the same value
8254 as VALUE, after any mode conversion that the target might request.
8255 TYPE is the type of VALUE. */
8256
8257 void
8258 create_convert_operand_from_type (struct expand_operand *op,
8259 rtx value, tree type)
8260 {
8261 create_convert_operand_from (op, value, TYPE_MODE (type),
8262 TYPE_UNSIGNED (type));
8263 }
8264
8265 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8266 of instruction ICODE. Return true on success, leaving the new operand
8267 values in the OPS themselves. Emit no code on failure. */
8268
8269 bool
8270 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8271 unsigned int nops, struct expand_operand *ops)
8272 {
8273 rtx last;
8274 unsigned int i;
8275
8276 last = get_last_insn ();
8277 for (i = 0; i < nops; i++)
8278 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8279 {
8280 delete_insns_since (last);
8281 return false;
8282 }
8283 return true;
8284 }
8285
8286 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8287 as its operands. Return the instruction pattern on success,
8288 and emit any necessary set-up code. Return null and emit no
8289 code on failure. */
8290
8291 rtx
8292 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8293 struct expand_operand *ops)
8294 {
8295 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8296 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8297 return NULL_RTX;
8298
8299 switch (nops)
8300 {
8301 case 1:
8302 return GEN_FCN (icode) (ops[0].value);
8303 case 2:
8304 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8305 case 3:
8306 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8307 case 4:
8308 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8309 ops[3].value);
8310 case 5:
8311 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8312 ops[3].value, ops[4].value);
8313 case 6:
8314 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8315 ops[3].value, ops[4].value, ops[5].value);
8316 case 7:
8317 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8318 ops[3].value, ops[4].value, ops[5].value,
8319 ops[6].value);
8320 case 8:
8321 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8322 ops[3].value, ops[4].value, ops[5].value,
8323 ops[6].value, ops[7].value);
8324 }
8325 gcc_unreachable ();
8326 }
8327
8328 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8329 as its operands. Return true on success and emit no code on failure. */
8330
8331 bool
8332 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8333 struct expand_operand *ops)
8334 {
8335 rtx pat = maybe_gen_insn (icode, nops, ops);
8336 if (pat)
8337 {
8338 emit_insn (pat);
8339 return true;
8340 }
8341 return false;
8342 }
8343
8344 /* Like maybe_expand_insn, but for jumps. */
8345
8346 bool
8347 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8348 struct expand_operand *ops)
8349 {
8350 rtx pat = maybe_gen_insn (icode, nops, ops);
8351 if (pat)
8352 {
8353 emit_jump_insn (pat);
8354 return true;
8355 }
8356 return false;
8357 }
8358
8359 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8360 as its operands. */
8361
8362 void
8363 expand_insn (enum insn_code icode, unsigned int nops,
8364 struct expand_operand *ops)
8365 {
8366 if (!maybe_expand_insn (icode, nops, ops))
8367 gcc_unreachable ();
8368 }
8369
8370 /* Like expand_insn, but for jumps. */
8371
8372 void
8373 expand_jump_insn (enum insn_code icode, unsigned int nops,
8374 struct expand_operand *ops)
8375 {
8376 if (!maybe_expand_jump_insn (icode, nops, ops))
8377 gcc_unreachable ();
8378 }
8379
8380 #include "gt-optabs.h"