]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
Merge in trunk.
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "libfuncs.h"
39 #include "recog.h"
40 #include "reload.h"
41 #include "ggc.h"
42 #include "basic-block.h"
43 #include "target.h"
44
45 struct target_optabs default_target_optabs;
46 struct target_libfuncs default_target_libfuncs;
47 struct target_optabs *this_fn_optabs = &default_target_optabs;
48 #if SWITCHABLE_TARGET
49 struct target_optabs *this_target_optabs = &default_target_optabs;
50 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
51 #endif
52
53 #define libfunc_hash \
54 (this_target_libfuncs->x_libfunc_hash)
55
56 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
57 enum machine_mode *);
58 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
59 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
60
61 /* Debug facility for use in GDB. */
62 void debug_optab_libfuncs (void);
63
64 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
65 #if ENABLE_DECIMAL_BID_FORMAT
66 #define DECIMAL_PREFIX "bid_"
67 #else
68 #define DECIMAL_PREFIX "dpd_"
69 #endif
70 \f
71 /* Used for libfunc_hash. */
72
73 static hashval_t
74 hash_libfunc (const void *p)
75 {
76 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
77 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
78 }
79
80 /* Used for libfunc_hash. */
81
82 static int
83 eq_libfunc (const void *p, const void *q)
84 {
85 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
86 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
87 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
88 }
89
90 /* Return libfunc corresponding operation defined by OPTAB converting
91 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
92 if no libfunc is available. */
93 rtx
94 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
95 enum machine_mode mode2)
96 {
97 struct libfunc_entry e;
98 struct libfunc_entry **slot;
99
100 /* ??? This ought to be an assert, but not all of the places
101 that we expand optabs know about the optabs that got moved
102 to being direct. */
103 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
104 return NULL_RTX;
105
106 e.op = optab;
107 e.mode1 = mode1;
108 e.mode2 = mode2;
109 slot = (struct libfunc_entry **)
110 htab_find_slot (libfunc_hash, &e, NO_INSERT);
111 if (!slot)
112 {
113 const struct convert_optab_libcall_d *d
114 = &convlib_def[optab - FIRST_CONV_OPTAB];
115
116 if (d->libcall_gen == NULL)
117 return NULL;
118
119 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
120 slot = (struct libfunc_entry **)
121 htab_find_slot (libfunc_hash, &e, NO_INSERT);
122 if (!slot)
123 return NULL;
124 }
125 return (*slot)->libfunc;
126 }
127
128 /* Return libfunc corresponding operation defined by OPTAB in MODE.
129 Trigger lazy initialization if needed, return NULL if no libfunc is
130 available. */
131 rtx
132 optab_libfunc (optab optab, enum machine_mode mode)
133 {
134 struct libfunc_entry e;
135 struct libfunc_entry **slot;
136
137 /* ??? This ought to be an assert, but not all of the places
138 that we expand optabs know about the optabs that got moved
139 to being direct. */
140 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
141 return NULL_RTX;
142
143 e.op = optab;
144 e.mode1 = mode;
145 e.mode2 = VOIDmode;
146 slot = (struct libfunc_entry **)
147 htab_find_slot (libfunc_hash, &e, NO_INSERT);
148 if (!slot)
149 {
150 const struct optab_libcall_d *d
151 = &normlib_def[optab - FIRST_NORM_OPTAB];
152
153 if (d->libcall_gen == NULL)
154 return NULL;
155
156 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
157 slot = (struct libfunc_entry **)
158 htab_find_slot (libfunc_hash, &e, NO_INSERT);
159 if (!slot)
160 return NULL;
161 }
162 return (*slot)->libfunc;
163 }
164
165 \f
166 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
167 the result of operation CODE applied to OP0 (and OP1 if it is a binary
168 operation).
169
170 If the last insn does not set TARGET, don't do anything, but return 1.
171
172 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
173 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
174 try again, ensuring that TARGET is not one of the operands. */
175
176 static int
177 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
178 {
179 rtx last_insn, set;
180 rtx note;
181
182 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
183
184 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
185 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
186 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
187 && GET_RTX_CLASS (code) != RTX_COMPARE
188 && GET_RTX_CLASS (code) != RTX_UNARY)
189 return 1;
190
191 if (GET_CODE (target) == ZERO_EXTRACT)
192 return 1;
193
194 for (last_insn = insns;
195 NEXT_INSN (last_insn) != NULL_RTX;
196 last_insn = NEXT_INSN (last_insn))
197 ;
198
199 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
200 a value changing in the insn, so the note would be invalid for CSE. */
201 if (reg_overlap_mentioned_p (target, op0)
202 || (op1 && reg_overlap_mentioned_p (target, op1)))
203 {
204 if (MEM_P (target)
205 && (rtx_equal_p (target, op0)
206 || (op1 && rtx_equal_p (target, op1))))
207 {
208 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
209 over expanding it as temp = MEM op X, MEM = temp. If the target
210 supports MEM = MEM op X instructions, it is sometimes too hard
211 to reconstruct that form later, especially if X is also a memory,
212 and due to multiple occurrences of addresses the address might
213 be forced into register unnecessarily.
214 Note that not emitting the REG_EQUIV note might inhibit
215 CSE in some cases. */
216 set = single_set (last_insn);
217 if (set
218 && GET_CODE (SET_SRC (set)) == code
219 && MEM_P (SET_DEST (set))
220 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
221 || (op1 && rtx_equal_p (SET_DEST (set),
222 XEXP (SET_SRC (set), 1)))))
223 return 1;
224 }
225 return 0;
226 }
227
228 set = single_set (last_insn);
229 if (set == NULL_RTX)
230 return 1;
231
232 if (! rtx_equal_p (SET_DEST (set), target)
233 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
234 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
235 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
236 return 1;
237
238 if (GET_RTX_CLASS (code) == RTX_UNARY)
239 switch (code)
240 {
241 case FFS:
242 case CLZ:
243 case CTZ:
244 case CLRSB:
245 case POPCOUNT:
246 case PARITY:
247 case BSWAP:
248 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
249 {
250 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
251 if (GET_MODE_SIZE (GET_MODE (op0))
252 > GET_MODE_SIZE (GET_MODE (target)))
253 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
254 note, GET_MODE (op0));
255 else
256 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
257 note, GET_MODE (op0));
258 break;
259 }
260 /* FALLTHRU */
261 default:
262 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
263 break;
264 }
265 else
266 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
267
268 set_unique_reg_note (last_insn, REG_EQUAL, note);
269
270 return 1;
271 }
272 \f
273 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
274 for a widening operation would be. In most cases this would be OP0, but if
275 that's a constant it'll be VOIDmode, which isn't useful. */
276
277 static enum machine_mode
278 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
279 {
280 enum machine_mode m0 = GET_MODE (op0);
281 enum machine_mode m1 = GET_MODE (op1);
282 enum machine_mode result;
283
284 if (m0 == VOIDmode && m1 == VOIDmode)
285 return to_mode;
286 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
287 result = m1;
288 else
289 result = m0;
290
291 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
292 return to_mode;
293
294 return result;
295 }
296 \f
297 /* Find a widening optab even if it doesn't widen as much as we want.
298 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
299 direct HI->SI insn, then return SI->DI, if that exists.
300 If PERMIT_NON_WIDENING is non-zero then this can be used with
301 non-widening optabs also. */
302
303 enum insn_code
304 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
305 enum machine_mode from_mode,
306 int permit_non_widening,
307 enum machine_mode *found_mode)
308 {
309 for (; (permit_non_widening || from_mode != to_mode)
310 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
311 && from_mode != VOIDmode;
312 from_mode = GET_MODE_WIDER_MODE (from_mode))
313 {
314 enum insn_code handler = widening_optab_handler (op, to_mode,
315 from_mode);
316
317 if (handler != CODE_FOR_nothing)
318 {
319 if (found_mode)
320 *found_mode = from_mode;
321 return handler;
322 }
323 }
324
325 return CODE_FOR_nothing;
326 }
327 \f
328 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
329 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
330 not actually do a sign-extend or zero-extend, but can leave the
331 higher-order bits of the result rtx undefined, for example, in the case
332 of logical operations, but not right shifts. */
333
334 static rtx
335 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
336 int unsignedp, int no_extend)
337 {
338 rtx result;
339
340 /* If we don't have to extend and this is a constant, return it. */
341 if (no_extend && GET_MODE (op) == VOIDmode)
342 return op;
343
344 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
345 extend since it will be more efficient to do so unless the signedness of
346 a promoted object differs from our extension. */
347 if (! no_extend
348 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
349 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
350 return convert_modes (mode, oldmode, op, unsignedp);
351
352 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
353 SUBREG. */
354 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
355 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
356
357 /* Otherwise, get an object of MODE, clobber it, and set the low-order
358 part to OP. */
359
360 result = gen_reg_rtx (mode);
361 emit_clobber (result);
362 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
363 return result;
364 }
365 \f
366 /* Return the optab used for computing the operation given by the tree code,
367 CODE and the tree EXP. This function is not always usable (for example, it
368 cannot give complete results for multiplication or division) but probably
369 ought to be relied on more widely throughout the expander. */
370 optab
371 optab_for_tree_code (enum tree_code code, const_tree type,
372 enum optab_subtype subtype)
373 {
374 bool trapv;
375 switch (code)
376 {
377 case BIT_AND_EXPR:
378 return and_optab;
379
380 case BIT_IOR_EXPR:
381 return ior_optab;
382
383 case BIT_NOT_EXPR:
384 return one_cmpl_optab;
385
386 case BIT_XOR_EXPR:
387 return xor_optab;
388
389 case MULT_HIGHPART_EXPR:
390 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
391
392 case TRUNC_MOD_EXPR:
393 case CEIL_MOD_EXPR:
394 case FLOOR_MOD_EXPR:
395 case ROUND_MOD_EXPR:
396 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
397
398 case RDIV_EXPR:
399 case TRUNC_DIV_EXPR:
400 case CEIL_DIV_EXPR:
401 case FLOOR_DIV_EXPR:
402 case ROUND_DIV_EXPR:
403 case EXACT_DIV_EXPR:
404 if (TYPE_SATURATING (type))
405 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
406 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
407
408 case LSHIFT_EXPR:
409 if (TREE_CODE (type) == VECTOR_TYPE)
410 {
411 if (subtype == optab_vector)
412 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
413
414 gcc_assert (subtype == optab_scalar);
415 }
416 if (TYPE_SATURATING (type))
417 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
418 return ashl_optab;
419
420 case RSHIFT_EXPR:
421 if (TREE_CODE (type) == VECTOR_TYPE)
422 {
423 if (subtype == optab_vector)
424 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
425
426 gcc_assert (subtype == optab_scalar);
427 }
428 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
429
430 case LROTATE_EXPR:
431 if (TREE_CODE (type) == VECTOR_TYPE)
432 {
433 if (subtype == optab_vector)
434 return vrotl_optab;
435
436 gcc_assert (subtype == optab_scalar);
437 }
438 return rotl_optab;
439
440 case RROTATE_EXPR:
441 if (TREE_CODE (type) == VECTOR_TYPE)
442 {
443 if (subtype == optab_vector)
444 return vrotr_optab;
445
446 gcc_assert (subtype == optab_scalar);
447 }
448 return rotr_optab;
449
450 case MAX_EXPR:
451 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
452
453 case MIN_EXPR:
454 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
455
456 case REALIGN_LOAD_EXPR:
457 return vec_realign_load_optab;
458
459 case WIDEN_SUM_EXPR:
460 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
461
462 case DOT_PROD_EXPR:
463 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
464
465 case WIDEN_MULT_PLUS_EXPR:
466 return (TYPE_UNSIGNED (type)
467 ? (TYPE_SATURATING (type)
468 ? usmadd_widen_optab : umadd_widen_optab)
469 : (TYPE_SATURATING (type)
470 ? ssmadd_widen_optab : smadd_widen_optab));
471
472 case WIDEN_MULT_MINUS_EXPR:
473 return (TYPE_UNSIGNED (type)
474 ? (TYPE_SATURATING (type)
475 ? usmsub_widen_optab : umsub_widen_optab)
476 : (TYPE_SATURATING (type)
477 ? ssmsub_widen_optab : smsub_widen_optab));
478
479 case FMA_EXPR:
480 return fma_optab;
481
482 case REDUC_MAX_EXPR:
483 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
484
485 case REDUC_MIN_EXPR:
486 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
487
488 case REDUC_PLUS_EXPR:
489 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
490
491 case VEC_LSHIFT_EXPR:
492 return vec_shl_optab;
493
494 case VEC_RSHIFT_EXPR:
495 return vec_shr_optab;
496
497 case VEC_WIDEN_MULT_HI_EXPR:
498 return TYPE_UNSIGNED (type) ?
499 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
500
501 case VEC_WIDEN_MULT_LO_EXPR:
502 return TYPE_UNSIGNED (type) ?
503 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
504
505 case VEC_WIDEN_MULT_EVEN_EXPR:
506 return TYPE_UNSIGNED (type) ?
507 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
508
509 case VEC_WIDEN_MULT_ODD_EXPR:
510 return TYPE_UNSIGNED (type) ?
511 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
512
513 case VEC_WIDEN_LSHIFT_HI_EXPR:
514 return TYPE_UNSIGNED (type) ?
515 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
516
517 case VEC_WIDEN_LSHIFT_LO_EXPR:
518 return TYPE_UNSIGNED (type) ?
519 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
520
521 case VEC_UNPACK_HI_EXPR:
522 return TYPE_UNSIGNED (type) ?
523 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
524
525 case VEC_UNPACK_LO_EXPR:
526 return TYPE_UNSIGNED (type) ?
527 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
528
529 case VEC_UNPACK_FLOAT_HI_EXPR:
530 /* The signedness is determined from input operand. */
531 return TYPE_UNSIGNED (type) ?
532 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
533
534 case VEC_UNPACK_FLOAT_LO_EXPR:
535 /* The signedness is determined from input operand. */
536 return TYPE_UNSIGNED (type) ?
537 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
538
539 case VEC_PACK_TRUNC_EXPR:
540 return vec_pack_trunc_optab;
541
542 case VEC_PACK_SAT_EXPR:
543 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
544
545 case VEC_PACK_FIX_TRUNC_EXPR:
546 /* The signedness is determined from output operand. */
547 return TYPE_UNSIGNED (type) ?
548 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
549
550 default:
551 break;
552 }
553
554 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
555 switch (code)
556 {
557 case POINTER_PLUS_EXPR:
558 case PLUS_EXPR:
559 if (TYPE_SATURATING (type))
560 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
561 return trapv ? addv_optab : add_optab;
562
563 case MINUS_EXPR:
564 if (TYPE_SATURATING (type))
565 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
566 return trapv ? subv_optab : sub_optab;
567
568 case MULT_EXPR:
569 if (TYPE_SATURATING (type))
570 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
571 return trapv ? smulv_optab : smul_optab;
572
573 case NEGATE_EXPR:
574 if (TYPE_SATURATING (type))
575 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
576 return trapv ? negv_optab : neg_optab;
577
578 case ABS_EXPR:
579 return trapv ? absv_optab : abs_optab;
580
581 default:
582 return unknown_optab;
583 }
584 }
585 \f
586
587 /* Expand vector widening operations.
588
589 There are two different classes of operations handled here:
590 1) Operations whose result is wider than all the arguments to the operation.
591 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
592 In this case OP0 and optionally OP1 would be initialized,
593 but WIDE_OP wouldn't (not relevant for this case).
594 2) Operations whose result is of the same size as the last argument to the
595 operation, but wider than all the other arguments to the operation.
596 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
597 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
598
599 E.g, when called to expand the following operations, this is how
600 the arguments will be initialized:
601 nops OP0 OP1 WIDE_OP
602 widening-sum 2 oprnd0 - oprnd1
603 widening-dot-product 3 oprnd0 oprnd1 oprnd2
604 widening-mult 2 oprnd0 oprnd1 -
605 type-promotion (vec-unpack) 1 oprnd0 - - */
606
607 rtx
608 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
609 rtx target, int unsignedp)
610 {
611 struct expand_operand eops[4];
612 tree oprnd0, oprnd1, oprnd2;
613 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
614 optab widen_pattern_optab;
615 enum insn_code icode;
616 int nops = TREE_CODE_LENGTH (ops->code);
617 int op;
618
619 oprnd0 = ops->op0;
620 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
621 widen_pattern_optab =
622 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
623 if (ops->code == WIDEN_MULT_PLUS_EXPR
624 || ops->code == WIDEN_MULT_MINUS_EXPR)
625 icode = find_widening_optab_handler (widen_pattern_optab,
626 TYPE_MODE (TREE_TYPE (ops->op2)),
627 tmode0, 0);
628 else
629 icode = optab_handler (widen_pattern_optab, tmode0);
630 gcc_assert (icode != CODE_FOR_nothing);
631
632 if (nops >= 2)
633 {
634 oprnd1 = ops->op1;
635 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
636 }
637
638 /* The last operand is of a wider mode than the rest of the operands. */
639 if (nops == 2)
640 wmode = tmode1;
641 else if (nops == 3)
642 {
643 gcc_assert (tmode1 == tmode0);
644 gcc_assert (op1);
645 oprnd2 = ops->op2;
646 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
647 }
648
649 op = 0;
650 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
651 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
652 if (op1)
653 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
654 if (wide_op)
655 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
656 expand_insn (icode, op, eops);
657 return eops[0].value;
658 }
659
660 /* Generate code to perform an operation specified by TERNARY_OPTAB
661 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
662
663 UNSIGNEDP is for the case where we have to widen the operands
664 to perform the operation. It says to use zero-extension.
665
666 If TARGET is nonzero, the value
667 is generated there, if it is convenient to do so.
668 In all cases an rtx is returned for the locus of the value;
669 this may or may not be TARGET. */
670
671 rtx
672 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
673 rtx op1, rtx op2, rtx target, int unsignedp)
674 {
675 struct expand_operand ops[4];
676 enum insn_code icode = optab_handler (ternary_optab, mode);
677
678 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
679
680 create_output_operand (&ops[0], target, mode);
681 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
682 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
683 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
684 expand_insn (icode, 4, ops);
685 return ops[0].value;
686 }
687
688
689 /* Like expand_binop, but return a constant rtx if the result can be
690 calculated at compile time. The arguments and return value are
691 otherwise the same as for expand_binop. */
692
693 rtx
694 simplify_expand_binop (enum machine_mode mode, optab binoptab,
695 rtx op0, rtx op1, rtx target, int unsignedp,
696 enum optab_methods methods)
697 {
698 if (CONSTANT_P (op0) && CONSTANT_P (op1))
699 {
700 rtx x = simplify_binary_operation (optab_to_code (binoptab),
701 mode, op0, op1);
702 if (x)
703 return x;
704 }
705
706 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
707 }
708
709 /* Like simplify_expand_binop, but always put the result in TARGET.
710 Return true if the expansion succeeded. */
711
712 bool
713 force_expand_binop (enum machine_mode mode, optab binoptab,
714 rtx op0, rtx op1, rtx target, int unsignedp,
715 enum optab_methods methods)
716 {
717 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
718 target, unsignedp, methods);
719 if (x == 0)
720 return false;
721 if (x != target)
722 emit_move_insn (target, x);
723 return true;
724 }
725
726 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
727
728 rtx
729 expand_vec_shift_expr (sepops ops, rtx target)
730 {
731 struct expand_operand eops[3];
732 enum insn_code icode;
733 rtx rtx_op1, rtx_op2;
734 enum machine_mode mode = TYPE_MODE (ops->type);
735 tree vec_oprnd = ops->op0;
736 tree shift_oprnd = ops->op1;
737 optab shift_optab;
738
739 switch (ops->code)
740 {
741 case VEC_RSHIFT_EXPR:
742 shift_optab = vec_shr_optab;
743 break;
744 case VEC_LSHIFT_EXPR:
745 shift_optab = vec_shl_optab;
746 break;
747 default:
748 gcc_unreachable ();
749 }
750
751 icode = optab_handler (shift_optab, mode);
752 gcc_assert (icode != CODE_FOR_nothing);
753
754 rtx_op1 = expand_normal (vec_oprnd);
755 rtx_op2 = expand_normal (shift_oprnd);
756
757 create_output_operand (&eops[0], target, mode);
758 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
759 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
760 expand_insn (icode, 3, eops);
761
762 return eops[0].value;
763 }
764
765 /* Create a new vector value in VMODE with all elements set to OP. The
766 mode of OP must be the element mode of VMODE. If OP is a constant,
767 then the return value will be a constant. */
768
769 static rtx
770 expand_vector_broadcast (enum machine_mode vmode, rtx op)
771 {
772 enum insn_code icode;
773 rtvec vec;
774 rtx ret;
775 int i, n;
776
777 gcc_checking_assert (VECTOR_MODE_P (vmode));
778
779 n = GET_MODE_NUNITS (vmode);
780 vec = rtvec_alloc (n);
781 for (i = 0; i < n; ++i)
782 RTVEC_ELT (vec, i) = op;
783
784 if (CONSTANT_P (op))
785 return gen_rtx_CONST_VECTOR (vmode, vec);
786
787 /* ??? If the target doesn't have a vec_init, then we have no easy way
788 of performing this operation. Most of this sort of generic support
789 is hidden away in the vector lowering support in gimple. */
790 icode = optab_handler (vec_init_optab, vmode);
791 if (icode == CODE_FOR_nothing)
792 return NULL;
793
794 ret = gen_reg_rtx (vmode);
795 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
796
797 return ret;
798 }
799
800 /* This subroutine of expand_doubleword_shift handles the cases in which
801 the effective shift value is >= BITS_PER_WORD. The arguments and return
802 value are the same as for the parent routine, except that SUPERWORD_OP1
803 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
804 INTO_TARGET may be null if the caller has decided to calculate it. */
805
806 static bool
807 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
808 rtx outof_target, rtx into_target,
809 int unsignedp, enum optab_methods methods)
810 {
811 if (into_target != 0)
812 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
813 into_target, unsignedp, methods))
814 return false;
815
816 if (outof_target != 0)
817 {
818 /* For a signed right shift, we must fill OUTOF_TARGET with copies
819 of the sign bit, otherwise we must fill it with zeros. */
820 if (binoptab != ashr_optab)
821 emit_move_insn (outof_target, CONST0_RTX (word_mode));
822 else
823 if (!force_expand_binop (word_mode, binoptab,
824 outof_input, GEN_INT (BITS_PER_WORD - 1),
825 outof_target, unsignedp, methods))
826 return false;
827 }
828 return true;
829 }
830
831 /* This subroutine of expand_doubleword_shift handles the cases in which
832 the effective shift value is < BITS_PER_WORD. The arguments and return
833 value are the same as for the parent routine. */
834
835 static bool
836 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
837 rtx outof_input, rtx into_input, rtx op1,
838 rtx outof_target, rtx into_target,
839 int unsignedp, enum optab_methods methods,
840 unsigned HOST_WIDE_INT shift_mask)
841 {
842 optab reverse_unsigned_shift, unsigned_shift;
843 rtx tmp, carries;
844
845 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
846 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
847
848 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
849 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
850 the opposite direction to BINOPTAB. */
851 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
852 {
853 carries = outof_input;
854 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
855 op1_mode), op1_mode);
856 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
857 0, true, methods);
858 }
859 else
860 {
861 /* We must avoid shifting by BITS_PER_WORD bits since that is either
862 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
863 has unknown behavior. Do a single shift first, then shift by the
864 remainder. It's OK to use ~OP1 as the remainder if shift counts
865 are truncated to the mode size. */
866 carries = expand_binop (word_mode, reverse_unsigned_shift,
867 outof_input, const1_rtx, 0, unsignedp, methods);
868 if (shift_mask == BITS_PER_WORD - 1)
869 {
870 tmp = immed_wide_int_const
871 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
872 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
873 0, true, methods);
874 }
875 else
876 {
877 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
878 op1_mode), op1_mode);
879 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
880 0, true, methods);
881 }
882 }
883 if (tmp == 0 || carries == 0)
884 return false;
885 carries = expand_binop (word_mode, reverse_unsigned_shift,
886 carries, tmp, 0, unsignedp, methods);
887 if (carries == 0)
888 return false;
889
890 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
891 so the result can go directly into INTO_TARGET if convenient. */
892 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
893 into_target, unsignedp, methods);
894 if (tmp == 0)
895 return false;
896
897 /* Now OR in the bits carried over from OUTOF_INPUT. */
898 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
899 into_target, unsignedp, methods))
900 return false;
901
902 /* Use a standard word_mode shift for the out-of half. */
903 if (outof_target != 0)
904 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
905 outof_target, unsignedp, methods))
906 return false;
907
908 return true;
909 }
910
911
912 #ifdef HAVE_conditional_move
913 /* Try implementing expand_doubleword_shift using conditional moves.
914 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
915 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
916 are the shift counts to use in the former and latter case. All other
917 arguments are the same as the parent routine. */
918
919 static bool
920 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
921 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
922 rtx outof_input, rtx into_input,
923 rtx subword_op1, rtx superword_op1,
924 rtx outof_target, rtx into_target,
925 int unsignedp, enum optab_methods methods,
926 unsigned HOST_WIDE_INT shift_mask)
927 {
928 rtx outof_superword, into_superword;
929
930 /* Put the superword version of the output into OUTOF_SUPERWORD and
931 INTO_SUPERWORD. */
932 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
933 if (outof_target != 0 && subword_op1 == superword_op1)
934 {
935 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
936 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
937 into_superword = outof_target;
938 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
939 outof_superword, 0, unsignedp, methods))
940 return false;
941 }
942 else
943 {
944 into_superword = gen_reg_rtx (word_mode);
945 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
946 outof_superword, into_superword,
947 unsignedp, methods))
948 return false;
949 }
950
951 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
952 if (!expand_subword_shift (op1_mode, binoptab,
953 outof_input, into_input, subword_op1,
954 outof_target, into_target,
955 unsignedp, methods, shift_mask))
956 return false;
957
958 /* Select between them. Do the INTO half first because INTO_SUPERWORD
959 might be the current value of OUTOF_TARGET. */
960 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
961 into_target, into_superword, word_mode, false))
962 return false;
963
964 if (outof_target != 0)
965 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
966 outof_target, outof_superword,
967 word_mode, false))
968 return false;
969
970 return true;
971 }
972 #endif
973
974 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
975 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
976 input operand; the shift moves bits in the direction OUTOF_INPUT->
977 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
978 of the target. OP1 is the shift count and OP1_MODE is its mode.
979 If OP1 is constant, it will have been truncated as appropriate
980 and is known to be nonzero.
981
982 If SHIFT_MASK is zero, the result of word shifts is undefined when the
983 shift count is outside the range [0, BITS_PER_WORD). This routine must
984 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
985
986 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
987 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
988 fill with zeros or sign bits as appropriate.
989
990 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
991 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
992 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
993 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
994 are undefined.
995
996 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
997 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
998 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
999 function wants to calculate it itself.
1000
1001 Return true if the shift could be successfully synthesized. */
1002
1003 static bool
1004 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1005 rtx outof_input, rtx into_input, rtx op1,
1006 rtx outof_target, rtx into_target,
1007 int unsignedp, enum optab_methods methods,
1008 unsigned HOST_WIDE_INT shift_mask)
1009 {
1010 rtx superword_op1, tmp, cmp1, cmp2;
1011 rtx subword_label, done_label;
1012 enum rtx_code cmp_code;
1013
1014 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1015 fill the result with sign or zero bits as appropriate. If so, the value
1016 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1017 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1018 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1019
1020 This isn't worthwhile for constant shifts since the optimizers will
1021 cope better with in-range shift counts. */
1022 if (shift_mask >= BITS_PER_WORD
1023 && outof_target != 0
1024 && !CONSTANT_P (op1))
1025 {
1026 if (!expand_doubleword_shift (op1_mode, binoptab,
1027 outof_input, into_input, op1,
1028 0, into_target,
1029 unsignedp, methods, shift_mask))
1030 return false;
1031 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1032 outof_target, unsignedp, methods))
1033 return false;
1034 return true;
1035 }
1036
1037 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1038 is true when the effective shift value is less than BITS_PER_WORD.
1039 Set SUPERWORD_OP1 to the shift count that should be used to shift
1040 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1041 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
1042 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1043 {
1044 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1045 is a subword shift count. */
1046 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1047 0, true, methods);
1048 cmp2 = CONST0_RTX (op1_mode);
1049 cmp_code = EQ;
1050 superword_op1 = op1;
1051 }
1052 else
1053 {
1054 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1055 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1056 0, true, methods);
1057 cmp2 = CONST0_RTX (op1_mode);
1058 cmp_code = LT;
1059 superword_op1 = cmp1;
1060 }
1061 if (cmp1 == 0)
1062 return false;
1063
1064 /* If we can compute the condition at compile time, pick the
1065 appropriate subroutine. */
1066 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1067 if (tmp != 0 && CONST_INT_P (tmp))
1068 {
1069 if (tmp == const0_rtx)
1070 return expand_superword_shift (binoptab, outof_input, superword_op1,
1071 outof_target, into_target,
1072 unsignedp, methods);
1073 else
1074 return expand_subword_shift (op1_mode, binoptab,
1075 outof_input, into_input, op1,
1076 outof_target, into_target,
1077 unsignedp, methods, shift_mask);
1078 }
1079
1080 #ifdef HAVE_conditional_move
1081 /* Try using conditional moves to generate straight-line code. */
1082 {
1083 rtx start = get_last_insn ();
1084 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1085 cmp_code, cmp1, cmp2,
1086 outof_input, into_input,
1087 op1, superword_op1,
1088 outof_target, into_target,
1089 unsignedp, methods, shift_mask))
1090 return true;
1091 delete_insns_since (start);
1092 }
1093 #endif
1094
1095 /* As a last resort, use branches to select the correct alternative. */
1096 subword_label = gen_label_rtx ();
1097 done_label = gen_label_rtx ();
1098
1099 NO_DEFER_POP;
1100 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1101 0, 0, subword_label, -1);
1102 OK_DEFER_POP;
1103
1104 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1105 outof_target, into_target,
1106 unsignedp, methods))
1107 return false;
1108
1109 emit_jump_insn (gen_jump (done_label));
1110 emit_barrier ();
1111 emit_label (subword_label);
1112
1113 if (!expand_subword_shift (op1_mode, binoptab,
1114 outof_input, into_input, op1,
1115 outof_target, into_target,
1116 unsignedp, methods, shift_mask))
1117 return false;
1118
1119 emit_label (done_label);
1120 return true;
1121 }
1122 \f
1123 /* Subroutine of expand_binop. Perform a double word multiplication of
1124 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1125 as the target's word_mode. This function return NULL_RTX if anything
1126 goes wrong, in which case it may have already emitted instructions
1127 which need to be deleted.
1128
1129 If we want to multiply two two-word values and have normal and widening
1130 multiplies of single-word values, we can do this with three smaller
1131 multiplications.
1132
1133 The multiplication proceeds as follows:
1134 _______________________
1135 [__op0_high_|__op0_low__]
1136 _______________________
1137 * [__op1_high_|__op1_low__]
1138 _______________________________________________
1139 _______________________
1140 (1) [__op0_low__*__op1_low__]
1141 _______________________
1142 (2a) [__op0_low__*__op1_high_]
1143 _______________________
1144 (2b) [__op0_high_*__op1_low__]
1145 _______________________
1146 (3) [__op0_high_*__op1_high_]
1147
1148
1149 This gives a 4-word result. Since we are only interested in the
1150 lower 2 words, partial result (3) and the upper words of (2a) and
1151 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1152 calculated using non-widening multiplication.
1153
1154 (1), however, needs to be calculated with an unsigned widening
1155 multiplication. If this operation is not directly supported we
1156 try using a signed widening multiplication and adjust the result.
1157 This adjustment works as follows:
1158
1159 If both operands are positive then no adjustment is needed.
1160
1161 If the operands have different signs, for example op0_low < 0 and
1162 op1_low >= 0, the instruction treats the most significant bit of
1163 op0_low as a sign bit instead of a bit with significance
1164 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1165 with 2**BITS_PER_WORD - op0_low, and two's complements the
1166 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1167 the result.
1168
1169 Similarly, if both operands are negative, we need to add
1170 (op0_low + op1_low) * 2**BITS_PER_WORD.
1171
1172 We use a trick to adjust quickly. We logically shift op0_low right
1173 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1174 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1175 logical shift exists, we do an arithmetic right shift and subtract
1176 the 0 or -1. */
1177
1178 static rtx
1179 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1180 bool umulp, enum optab_methods methods)
1181 {
1182 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1183 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1184 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1185 rtx product, adjust, product_high, temp;
1186
1187 rtx op0_high = operand_subword_force (op0, high, mode);
1188 rtx op0_low = operand_subword_force (op0, low, mode);
1189 rtx op1_high = operand_subword_force (op1, high, mode);
1190 rtx op1_low = operand_subword_force (op1, low, mode);
1191
1192 /* If we're using an unsigned multiply to directly compute the product
1193 of the low-order words of the operands and perform any required
1194 adjustments of the operands, we begin by trying two more multiplications
1195 and then computing the appropriate sum.
1196
1197 We have checked above that the required addition is provided.
1198 Full-word addition will normally always succeed, especially if
1199 it is provided at all, so we don't worry about its failure. The
1200 multiplication may well fail, however, so we do handle that. */
1201
1202 if (!umulp)
1203 {
1204 /* ??? This could be done with emit_store_flag where available. */
1205 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1206 NULL_RTX, 1, methods);
1207 if (temp)
1208 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1209 NULL_RTX, 0, OPTAB_DIRECT);
1210 else
1211 {
1212 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1213 NULL_RTX, 0, methods);
1214 if (!temp)
1215 return NULL_RTX;
1216 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1217 NULL_RTX, 0, OPTAB_DIRECT);
1218 }
1219
1220 if (!op0_high)
1221 return NULL_RTX;
1222 }
1223
1224 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1225 NULL_RTX, 0, OPTAB_DIRECT);
1226 if (!adjust)
1227 return NULL_RTX;
1228
1229 /* OP0_HIGH should now be dead. */
1230
1231 if (!umulp)
1232 {
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1240 {
1241 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1247 }
1248
1249 if (!op1_high)
1250 return NULL_RTX;
1251 }
1252
1253 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!temp)
1256 return NULL_RTX;
1257
1258 /* OP1_HIGH should now be dead. */
1259
1260 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1261 NULL_RTX, 0, OPTAB_DIRECT);
1262
1263 if (target && !REG_P (target))
1264 target = NULL_RTX;
1265
1266 if (umulp)
1267 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1268 target, 1, OPTAB_DIRECT);
1269 else
1270 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1271 target, 1, OPTAB_DIRECT);
1272
1273 if (!product)
1274 return NULL_RTX;
1275
1276 product_high = operand_subword (product, high, 1, mode);
1277 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1278 NULL_RTX, 0, OPTAB_DIRECT);
1279 emit_move_insn (product_high, adjust);
1280 return product;
1281 }
1282 \f
1283 /* Wrapper around expand_binop which takes an rtx code to specify
1284 the operation to perform, not an optab pointer. All other
1285 arguments are the same. */
1286 rtx
1287 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1288 rtx op1, rtx target, int unsignedp,
1289 enum optab_methods methods)
1290 {
1291 optab binop = code_to_optab (code);
1292 gcc_assert (binop);
1293
1294 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1295 }
1296
1297 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1298 binop. Order them according to commutative_operand_precedence and, if
1299 possible, try to put TARGET or a pseudo first. */
1300 static bool
1301 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1302 {
1303 int op0_prec = commutative_operand_precedence (op0);
1304 int op1_prec = commutative_operand_precedence (op1);
1305
1306 if (op0_prec < op1_prec)
1307 return true;
1308
1309 if (op0_prec > op1_prec)
1310 return false;
1311
1312 /* With equal precedence, both orders are ok, but it is better if the
1313 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1314 if (target == 0 || REG_P (target))
1315 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1316 else
1317 return rtx_equal_p (op1, target);
1318 }
1319
1320 /* Return true if BINOPTAB implements a shift operation. */
1321
1322 static bool
1323 shift_optab_p (optab binoptab)
1324 {
1325 switch (optab_to_code (binoptab))
1326 {
1327 case ASHIFT:
1328 case SS_ASHIFT:
1329 case US_ASHIFT:
1330 case ASHIFTRT:
1331 case LSHIFTRT:
1332 case ROTATE:
1333 case ROTATERT:
1334 return true;
1335
1336 default:
1337 return false;
1338 }
1339 }
1340
1341 /* Return true if BINOPTAB implements a commutative binary operation. */
1342
1343 static bool
1344 commutative_optab_p (optab binoptab)
1345 {
1346 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1347 || binoptab == smul_widen_optab
1348 || binoptab == umul_widen_optab
1349 || binoptab == smul_highpart_optab
1350 || binoptab == umul_highpart_optab);
1351 }
1352
1353 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1354 optimizing, and if the operand is a constant that costs more than
1355 1 instruction, force the constant into a register and return that
1356 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1357
1358 static rtx
1359 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1360 int opn, rtx x, bool unsignedp)
1361 {
1362 bool speed = optimize_insn_for_speed_p ();
1363
1364 if (mode != VOIDmode
1365 && optimize
1366 && CONSTANT_P (x)
1367 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1368 > set_src_cost (x, speed)))
1369 {
1370 if (CONST_INT_P (x))
1371 {
1372 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1373 if (intval != INTVAL (x))
1374 x = GEN_INT (intval);
1375 }
1376 else
1377 x = convert_modes (mode, VOIDmode, x, unsignedp);
1378 x = force_reg (mode, x);
1379 }
1380 return x;
1381 }
1382
1383 /* Helper function for expand_binop: handle the case where there
1384 is an insn that directly implements the indicated operation.
1385 Returns null if this is not possible. */
1386 static rtx
1387 expand_binop_directly (enum machine_mode mode, optab binoptab,
1388 rtx op0, rtx op1,
1389 rtx target, int unsignedp, enum optab_methods methods,
1390 rtx last)
1391 {
1392 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1393 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1394 from_mode, 1);
1395 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1396 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1397 enum machine_mode mode0, mode1, tmp_mode;
1398 struct expand_operand ops[3];
1399 bool commutative_p;
1400 rtx pat;
1401 rtx xop0 = op0, xop1 = op1;
1402 rtx swap;
1403
1404 /* If it is a commutative operator and the modes would match
1405 if we would swap the operands, we can save the conversions. */
1406 commutative_p = commutative_optab_p (binoptab);
1407 if (commutative_p
1408 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1409 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1410 {
1411 swap = xop0;
1412 xop0 = xop1;
1413 xop1 = swap;
1414 }
1415
1416 /* If we are optimizing, force expensive constants into a register. */
1417 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1418 if (!shift_optab_p (binoptab))
1419 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1420
1421 /* In case the insn wants input operands in modes different from
1422 those of the actual operands, convert the operands. It would
1423 seem that we don't need to convert CONST_INTs, but we do, so
1424 that they're properly zero-extended, sign-extended or truncated
1425 for their mode. */
1426
1427 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1428 if (xmode0 != VOIDmode && xmode0 != mode0)
1429 {
1430 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1431 mode0 = xmode0;
1432 }
1433
1434 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1435 if (xmode1 != VOIDmode && xmode1 != mode1)
1436 {
1437 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1438 mode1 = xmode1;
1439 }
1440
1441 /* If operation is commutative,
1442 try to make the first operand a register.
1443 Even better, try to make it the same as the target.
1444 Also try to make the last operand a constant. */
1445 if (commutative_p
1446 && swap_commutative_operands_with_target (target, xop0, xop1))
1447 {
1448 swap = xop1;
1449 xop1 = xop0;
1450 xop0 = swap;
1451 }
1452
1453 /* Now, if insn's predicates don't allow our operands, put them into
1454 pseudo regs. */
1455
1456 if (binoptab == vec_pack_trunc_optab
1457 || binoptab == vec_pack_usat_optab
1458 || binoptab == vec_pack_ssat_optab
1459 || binoptab == vec_pack_ufix_trunc_optab
1460 || binoptab == vec_pack_sfix_trunc_optab)
1461 {
1462 /* The mode of the result is different then the mode of the
1463 arguments. */
1464 tmp_mode = insn_data[(int) icode].operand[0].mode;
1465 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1466 {
1467 delete_insns_since (last);
1468 return NULL_RTX;
1469 }
1470 }
1471 else
1472 tmp_mode = mode;
1473
1474 create_output_operand (&ops[0], target, tmp_mode);
1475 create_input_operand (&ops[1], xop0, mode0);
1476 create_input_operand (&ops[2], xop1, mode1);
1477 pat = maybe_gen_insn (icode, 3, ops);
1478 if (pat)
1479 {
1480 /* If PAT is composed of more than one insn, try to add an appropriate
1481 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1482 operand, call expand_binop again, this time without a target. */
1483 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1484 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1485 ops[1].value, ops[2].value))
1486 {
1487 delete_insns_since (last);
1488 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1489 unsignedp, methods);
1490 }
1491
1492 emit_insn (pat);
1493 return ops[0].value;
1494 }
1495 delete_insns_since (last);
1496 return NULL_RTX;
1497 }
1498
1499 /* Generate code to perform an operation specified by BINOPTAB
1500 on operands OP0 and OP1, with result having machine-mode MODE.
1501
1502 UNSIGNEDP is for the case where we have to widen the operands
1503 to perform the operation. It says to use zero-extension.
1504
1505 If TARGET is nonzero, the value
1506 is generated there, if it is convenient to do so.
1507 In all cases an rtx is returned for the locus of the value;
1508 this may or may not be TARGET. */
1509
1510 rtx
1511 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1512 rtx target, int unsignedp, enum optab_methods methods)
1513 {
1514 enum optab_methods next_methods
1515 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1516 ? OPTAB_WIDEN : methods);
1517 enum mode_class mclass;
1518 enum machine_mode wider_mode;
1519 rtx libfunc;
1520 rtx temp;
1521 rtx entry_last = get_last_insn ();
1522 rtx last;
1523
1524 mclass = GET_MODE_CLASS (mode);
1525
1526 /* If subtracting an integer constant, convert this into an addition of
1527 the negated constant. */
1528
1529 if (binoptab == sub_optab && CONST_INT_P (op1))
1530 {
1531 op1 = negate_rtx (mode, op1);
1532 binoptab = add_optab;
1533 }
1534
1535 /* Record where to delete back to if we backtrack. */
1536 last = get_last_insn ();
1537
1538 /* If we can do it with a three-operand insn, do so. */
1539
1540 if (methods != OPTAB_MUST_WIDEN
1541 && find_widening_optab_handler (binoptab, mode,
1542 widened_mode (mode, op0, op1), 1)
1543 != CODE_FOR_nothing)
1544 {
1545 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1546 unsignedp, methods, last);
1547 if (temp)
1548 return temp;
1549 }
1550
1551 /* If we were trying to rotate, and that didn't work, try rotating
1552 the other direction before falling back to shifts and bitwise-or. */
1553 if (((binoptab == rotl_optab
1554 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1555 || (binoptab == rotr_optab
1556 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1557 && mclass == MODE_INT)
1558 {
1559 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1560 rtx newop1;
1561 unsigned int bits = GET_MODE_PRECISION (mode);
1562
1563 if (CONST_INT_P (op1))
1564 newop1 = GEN_INT (bits - INTVAL (op1));
1565 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1566 newop1 = negate_rtx (GET_MODE (op1), op1);
1567 else
1568 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1569 gen_int_mode (bits, GET_MODE (op1)), op1,
1570 NULL_RTX, unsignedp, OPTAB_DIRECT);
1571
1572 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1573 target, unsignedp, methods, last);
1574 if (temp)
1575 return temp;
1576 }
1577
1578 /* If this is a multiply, see if we can do a widening operation that
1579 takes operands of this mode and makes a wider mode. */
1580
1581 if (binoptab == smul_optab
1582 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1583 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1584 : smul_widen_optab),
1585 GET_MODE_2XWIDER_MODE (mode), mode)
1586 != CODE_FOR_nothing))
1587 {
1588 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1589 unsignedp ? umul_widen_optab : smul_widen_optab,
1590 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1591
1592 if (temp != 0)
1593 {
1594 if (GET_MODE_CLASS (mode) == MODE_INT
1595 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1596 return gen_lowpart (mode, temp);
1597 else
1598 return convert_to_mode (mode, temp, unsignedp);
1599 }
1600 }
1601
1602 /* If this is a vector shift by a scalar, see if we can do a vector
1603 shift by a vector. If so, broadcast the scalar into a vector. */
1604 if (mclass == MODE_VECTOR_INT)
1605 {
1606 optab otheroptab = unknown_optab;
1607
1608 if (binoptab == ashl_optab)
1609 otheroptab = vashl_optab;
1610 else if (binoptab == ashr_optab)
1611 otheroptab = vashr_optab;
1612 else if (binoptab == lshr_optab)
1613 otheroptab = vlshr_optab;
1614 else if (binoptab == rotl_optab)
1615 otheroptab = vrotl_optab;
1616 else if (binoptab == rotr_optab)
1617 otheroptab = vrotr_optab;
1618
1619 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1620 {
1621 rtx vop1 = expand_vector_broadcast (mode, op1);
1622 if (vop1)
1623 {
1624 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1625 target, unsignedp, methods, last);
1626 if (temp)
1627 return temp;
1628 }
1629 }
1630 }
1631
1632 /* Look for a wider mode of the same class for which we think we
1633 can open-code the operation. Check for a widening multiply at the
1634 wider mode as well. */
1635
1636 if (CLASS_HAS_WIDER_MODES_P (mclass)
1637 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1638 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1639 wider_mode != VOIDmode;
1640 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1641 {
1642 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1643 || (binoptab == smul_optab
1644 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1645 && (find_widening_optab_handler ((unsignedp
1646 ? umul_widen_optab
1647 : smul_widen_optab),
1648 GET_MODE_WIDER_MODE (wider_mode),
1649 mode, 0)
1650 != CODE_FOR_nothing)))
1651 {
1652 rtx xop0 = op0, xop1 = op1;
1653 int no_extend = 0;
1654
1655 /* For certain integer operations, we need not actually extend
1656 the narrow operands, as long as we will truncate
1657 the results to the same narrowness. */
1658
1659 if ((binoptab == ior_optab || binoptab == and_optab
1660 || binoptab == xor_optab
1661 || binoptab == add_optab || binoptab == sub_optab
1662 || binoptab == smul_optab || binoptab == ashl_optab)
1663 && mclass == MODE_INT)
1664 {
1665 no_extend = 1;
1666 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1667 xop0, unsignedp);
1668 if (binoptab != ashl_optab)
1669 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1670 xop1, unsignedp);
1671 }
1672
1673 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1674
1675 /* The second operand of a shift must always be extended. */
1676 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1677 no_extend && binoptab != ashl_optab);
1678
1679 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1680 unsignedp, OPTAB_DIRECT);
1681 if (temp)
1682 {
1683 if (mclass != MODE_INT
1684 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1685 {
1686 if (target == 0)
1687 target = gen_reg_rtx (mode);
1688 convert_move (target, temp, 0);
1689 return target;
1690 }
1691 else
1692 return gen_lowpart (mode, temp);
1693 }
1694 else
1695 delete_insns_since (last);
1696 }
1697 }
1698
1699 /* If operation is commutative,
1700 try to make the first operand a register.
1701 Even better, try to make it the same as the target.
1702 Also try to make the last operand a constant. */
1703 if (commutative_optab_p (binoptab)
1704 && swap_commutative_operands_with_target (target, op0, op1))
1705 {
1706 temp = op1;
1707 op1 = op0;
1708 op0 = temp;
1709 }
1710
1711 /* These can be done a word at a time. */
1712 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1713 && mclass == MODE_INT
1714 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1715 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1716 {
1717 int i;
1718 rtx insns;
1719
1720 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1721 won't be accurate, so use a new target. */
1722 if (target == 0
1723 || target == op0
1724 || target == op1
1725 || !valid_multiword_target_p (target))
1726 target = gen_reg_rtx (mode);
1727
1728 start_sequence ();
1729
1730 /* Do the actual arithmetic. */
1731 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1732 {
1733 rtx target_piece = operand_subword (target, i, 1, mode);
1734 rtx x = expand_binop (word_mode, binoptab,
1735 operand_subword_force (op0, i, mode),
1736 operand_subword_force (op1, i, mode),
1737 target_piece, unsignedp, next_methods);
1738
1739 if (x == 0)
1740 break;
1741
1742 if (target_piece != x)
1743 emit_move_insn (target_piece, x);
1744 }
1745
1746 insns = get_insns ();
1747 end_sequence ();
1748
1749 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1750 {
1751 emit_insn (insns);
1752 return target;
1753 }
1754 }
1755
1756 /* Synthesize double word shifts from single word shifts. */
1757 if ((binoptab == lshr_optab || binoptab == ashl_optab
1758 || binoptab == ashr_optab)
1759 && mclass == MODE_INT
1760 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1761 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1762 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1763 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1765 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1766 {
1767 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1768 enum machine_mode op1_mode;
1769
1770 double_shift_mask = targetm.shift_truncation_mask (mode);
1771 shift_mask = targetm.shift_truncation_mask (word_mode);
1772 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1773
1774 /* Apply the truncation to constant shifts. */
1775 if (double_shift_mask > 0 && CONST_INT_P (op1))
1776 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1777
1778 if (op1 == CONST0_RTX (op1_mode))
1779 return op0;
1780
1781 /* Make sure that this is a combination that expand_doubleword_shift
1782 can handle. See the comments there for details. */
1783 if (double_shift_mask == 0
1784 || (shift_mask == BITS_PER_WORD - 1
1785 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1786 {
1787 rtx insns;
1788 rtx into_target, outof_target;
1789 rtx into_input, outof_input;
1790 int left_shift, outof_word;
1791
1792 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1793 won't be accurate, so use a new target. */
1794 if (target == 0
1795 || target == op0
1796 || target == op1
1797 || !valid_multiword_target_p (target))
1798 target = gen_reg_rtx (mode);
1799
1800 start_sequence ();
1801
1802 /* OUTOF_* is the word we are shifting bits away from, and
1803 INTO_* is the word that we are shifting bits towards, thus
1804 they differ depending on the direction of the shift and
1805 WORDS_BIG_ENDIAN. */
1806
1807 left_shift = binoptab == ashl_optab;
1808 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1809
1810 outof_target = operand_subword (target, outof_word, 1, mode);
1811 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1812
1813 outof_input = operand_subword_force (op0, outof_word, mode);
1814 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1815
1816 if (expand_doubleword_shift (op1_mode, binoptab,
1817 outof_input, into_input, op1,
1818 outof_target, into_target,
1819 unsignedp, next_methods, shift_mask))
1820 {
1821 insns = get_insns ();
1822 end_sequence ();
1823
1824 emit_insn (insns);
1825 return target;
1826 }
1827 end_sequence ();
1828 }
1829 }
1830
1831 /* Synthesize double word rotates from single word shifts. */
1832 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1833 && mclass == MODE_INT
1834 && CONST_INT_P (op1)
1835 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1836 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1837 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1838 {
1839 rtx insns;
1840 rtx into_target, outof_target;
1841 rtx into_input, outof_input;
1842 rtx inter;
1843 int shift_count, left_shift, outof_word;
1844
1845 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1846 won't be accurate, so use a new target. Do this also if target is not
1847 a REG, first because having a register instead may open optimization
1848 opportunities, and second because if target and op0 happen to be MEMs
1849 designating the same location, we would risk clobbering it too early
1850 in the code sequence we generate below. */
1851 if (target == 0
1852 || target == op0
1853 || target == op1
1854 || !REG_P (target)
1855 || !valid_multiword_target_p (target))
1856 target = gen_reg_rtx (mode);
1857
1858 start_sequence ();
1859
1860 shift_count = INTVAL (op1);
1861
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1866
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1869
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1872
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1875
1876 if (shift_count == BITS_PER_WORD)
1877 {
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1882 }
1883 else
1884 {
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1888
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1891
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1894
1895 if (shift_count > BITS_PER_WORD)
1896 {
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1899 }
1900 else
1901 {
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1904 }
1905
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1912
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1918
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1921
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1928
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1933
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1936 }
1937
1938 insns = get_insns ();
1939 end_sequence ();
1940
1941 if (inter != 0)
1942 {
1943 emit_insn (insns);
1944 return target;
1945 }
1946 }
1947
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1953 {
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1959
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1968
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1972
1973 xtarget = gen_reg_rtx (mode);
1974
1975 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1976 target = xtarget;
1977
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1981
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1984 {
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1990
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1997
1998 if (i + 1 < nwords)
1999 {
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2007 }
2008
2009 if (i > 0)
2010 {
2011 rtx newx;
2012
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2018
2019 if (i + 1 < nwords)
2020 {
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2028
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2035 }
2036 emit_move_insn (target_piece, newx);
2037 }
2038 else
2039 {
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2042 }
2043
2044 carry_in = carry_out;
2045 }
2046
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2048 {
2049 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2051 {
2052 rtx temp = emit_move_insn (target, xtarget);
2053
2054 set_dst_reg_note (temp, REG_EQUAL,
2055 gen_rtx_fmt_ee (optab_to_code (binoptab),
2056 mode, copy_rtx (xop0),
2057 copy_rtx (xop1)),
2058 target);
2059 }
2060 else
2061 target = xtarget;
2062
2063 return target;
2064 }
2065
2066 else
2067 delete_insns_since (last);
2068 }
2069
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2074
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2080 {
2081 rtx product = NULL_RTX;
2082 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2083 != CODE_FOR_nothing)
2084 {
2085 product = expand_doubleword_mult (mode, op0, op1, target,
2086 true, methods);
2087 if (!product)
2088 delete_insns_since (last);
2089 }
2090
2091 if (product == NULL_RTX
2092 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2093 != CODE_FOR_nothing)
2094 {
2095 product = expand_doubleword_mult (mode, op0, op1, target,
2096 false, methods);
2097 if (!product)
2098 delete_insns_since (last);
2099 }
2100
2101 if (product != NULL_RTX)
2102 {
2103 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2104 {
2105 temp = emit_move_insn (target ? target : product, product);
2106 set_dst_reg_note (temp,
2107 REG_EQUAL,
2108 gen_rtx_fmt_ee (MULT, mode,
2109 copy_rtx (op0),
2110 copy_rtx (op1)),
2111 target ? target : product);
2112 }
2113 return product;
2114 }
2115 }
2116
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2119
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2123 {
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2128
2129 start_sequence ();
2130
2131 if (shift_optab_p (binoptab))
2132 {
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2137 }
2138
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2142
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2148
2149 insns = get_insns ();
2150 end_sequence ();
2151
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block_1 (insns, target, value,
2154 gen_rtx_fmt_ee (optab_to_code (binoptab),
2155 mode, op0, op1),
2156 trapv_binoptab_p (binoptab));
2157
2158 return target;
2159 }
2160
2161 delete_insns_since (last);
2162
2163 /* It can't be done in this mode. Can we do it in a wider mode? */
2164
2165 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2166 || methods == OPTAB_MUST_WIDEN))
2167 {
2168 /* Caller says, don't even try. */
2169 delete_insns_since (entry_last);
2170 return 0;
2171 }
2172
2173 /* Compute the value of METHODS to pass to recursive calls.
2174 Don't allow widening to be tried recursively. */
2175
2176 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2177
2178 /* Look for a wider mode of the same class for which it appears we can do
2179 the operation. */
2180
2181 if (CLASS_HAS_WIDER_MODES_P (mclass))
2182 {
2183 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2184 wider_mode != VOIDmode;
2185 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2186 {
2187 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2188 != CODE_FOR_nothing
2189 || (methods == OPTAB_LIB
2190 && optab_libfunc (binoptab, wider_mode)))
2191 {
2192 rtx xop0 = op0, xop1 = op1;
2193 int no_extend = 0;
2194
2195 /* For certain integer operations, we need not actually extend
2196 the narrow operands, as long as we will truncate
2197 the results to the same narrowness. */
2198
2199 if ((binoptab == ior_optab || binoptab == and_optab
2200 || binoptab == xor_optab
2201 || binoptab == add_optab || binoptab == sub_optab
2202 || binoptab == smul_optab || binoptab == ashl_optab)
2203 && mclass == MODE_INT)
2204 no_extend = 1;
2205
2206 xop0 = widen_operand (xop0, wider_mode, mode,
2207 unsignedp, no_extend);
2208
2209 /* The second operand of a shift must always be extended. */
2210 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2211 no_extend && binoptab != ashl_optab);
2212
2213 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2214 unsignedp, methods);
2215 if (temp)
2216 {
2217 if (mclass != MODE_INT
2218 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2219 {
2220 if (target == 0)
2221 target = gen_reg_rtx (mode);
2222 convert_move (target, temp, 0);
2223 return target;
2224 }
2225 else
2226 return gen_lowpart (mode, temp);
2227 }
2228 else
2229 delete_insns_since (last);
2230 }
2231 }
2232 }
2233
2234 delete_insns_since (entry_last);
2235 return 0;
2236 }
2237 \f
2238 /* Expand a binary operator which has both signed and unsigned forms.
2239 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2240 signed operations.
2241
2242 If we widen unsigned operands, we may use a signed wider operation instead
2243 of an unsigned wider operation, since the result would be the same. */
2244
2245 rtx
2246 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2247 rtx op0, rtx op1, rtx target, int unsignedp,
2248 enum optab_methods methods)
2249 {
2250 rtx temp;
2251 optab direct_optab = unsignedp ? uoptab : soptab;
2252 bool save_enable;
2253
2254 /* Do it without widening, if possible. */
2255 temp = expand_binop (mode, direct_optab, op0, op1, target,
2256 unsignedp, OPTAB_DIRECT);
2257 if (temp || methods == OPTAB_DIRECT)
2258 return temp;
2259
2260 /* Try widening to a signed int. Disable any direct use of any
2261 signed insn in the current mode. */
2262 save_enable = swap_optab_enable (soptab, mode, false);
2263
2264 temp = expand_binop (mode, soptab, op0, op1, target,
2265 unsignedp, OPTAB_WIDEN);
2266
2267 /* For unsigned operands, try widening to an unsigned int. */
2268 if (!temp && unsignedp)
2269 temp = expand_binop (mode, uoptab, op0, op1, target,
2270 unsignedp, OPTAB_WIDEN);
2271 if (temp || methods == OPTAB_WIDEN)
2272 goto egress;
2273
2274 /* Use the right width libcall if that exists. */
2275 temp = expand_binop (mode, direct_optab, op0, op1, target,
2276 unsignedp, OPTAB_LIB);
2277 if (temp || methods == OPTAB_LIB)
2278 goto egress;
2279
2280 /* Must widen and use a libcall, use either signed or unsigned. */
2281 temp = expand_binop (mode, soptab, op0, op1, target,
2282 unsignedp, methods);
2283 if (!temp && unsignedp)
2284 temp = expand_binop (mode, uoptab, op0, op1, target,
2285 unsignedp, methods);
2286
2287 egress:
2288 /* Undo the fiddling above. */
2289 if (save_enable)
2290 swap_optab_enable (soptab, mode, true);
2291 return temp;
2292 }
2293 \f
2294 /* Generate code to perform an operation specified by UNOPPTAB
2295 on operand OP0, with two results to TARG0 and TARG1.
2296 We assume that the order of the operands for the instruction
2297 is TARG0, TARG1, OP0.
2298
2299 Either TARG0 or TARG1 may be zero, but what that means is that
2300 the result is not actually wanted. We will generate it into
2301 a dummy pseudo-reg and discard it. They may not both be zero.
2302
2303 Returns 1 if this operation can be performed; 0 if not. */
2304
2305 int
2306 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2307 int unsignedp)
2308 {
2309 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2310 enum mode_class mclass;
2311 enum machine_mode wider_mode;
2312 rtx entry_last = get_last_insn ();
2313 rtx last;
2314
2315 mclass = GET_MODE_CLASS (mode);
2316
2317 if (!targ0)
2318 targ0 = gen_reg_rtx (mode);
2319 if (!targ1)
2320 targ1 = gen_reg_rtx (mode);
2321
2322 /* Record where to go back to if we fail. */
2323 last = get_last_insn ();
2324
2325 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2326 {
2327 struct expand_operand ops[3];
2328 enum insn_code icode = optab_handler (unoptab, mode);
2329
2330 create_fixed_operand (&ops[0], targ0);
2331 create_fixed_operand (&ops[1], targ1);
2332 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2333 if (maybe_expand_insn (icode, 3, ops))
2334 return 1;
2335 }
2336
2337 /* It can't be done in this mode. Can we do it in a wider mode? */
2338
2339 if (CLASS_HAS_WIDER_MODES_P (mclass))
2340 {
2341 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2342 wider_mode != VOIDmode;
2343 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2344 {
2345 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2346 {
2347 rtx t0 = gen_reg_rtx (wider_mode);
2348 rtx t1 = gen_reg_rtx (wider_mode);
2349 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2350
2351 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2352 {
2353 convert_move (targ0, t0, unsignedp);
2354 convert_move (targ1, t1, unsignedp);
2355 return 1;
2356 }
2357 else
2358 delete_insns_since (last);
2359 }
2360 }
2361 }
2362
2363 delete_insns_since (entry_last);
2364 return 0;
2365 }
2366 \f
2367 /* Generate code to perform an operation specified by BINOPTAB
2368 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2369 We assume that the order of the operands for the instruction
2370 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2371 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2372
2373 Either TARG0 or TARG1 may be zero, but what that means is that
2374 the result is not actually wanted. We will generate it into
2375 a dummy pseudo-reg and discard it. They may not both be zero.
2376
2377 Returns 1 if this operation can be performed; 0 if not. */
2378
2379 int
2380 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2381 int unsignedp)
2382 {
2383 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2384 enum mode_class mclass;
2385 enum machine_mode wider_mode;
2386 rtx entry_last = get_last_insn ();
2387 rtx last;
2388
2389 mclass = GET_MODE_CLASS (mode);
2390
2391 if (!targ0)
2392 targ0 = gen_reg_rtx (mode);
2393 if (!targ1)
2394 targ1 = gen_reg_rtx (mode);
2395
2396 /* Record where to go back to if we fail. */
2397 last = get_last_insn ();
2398
2399 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2400 {
2401 struct expand_operand ops[4];
2402 enum insn_code icode = optab_handler (binoptab, mode);
2403 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2404 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2405 rtx xop0 = op0, xop1 = op1;
2406
2407 /* If we are optimizing, force expensive constants into a register. */
2408 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2409 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2410
2411 create_fixed_operand (&ops[0], targ0);
2412 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2413 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2414 create_fixed_operand (&ops[3], targ1);
2415 if (maybe_expand_insn (icode, 4, ops))
2416 return 1;
2417 delete_insns_since (last);
2418 }
2419
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2421
2422 if (CLASS_HAS_WIDER_MODES_P (mclass))
2423 {
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2425 wider_mode != VOIDmode;
2426 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2427 {
2428 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2429 {
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2434
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2437 {
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2441 }
2442 else
2443 delete_insns_since (last);
2444 }
2445 }
2446 }
2447
2448 delete_insns_since (entry_last);
2449 return 0;
2450 }
2451
2452 /* Expand the two-valued library call indicated by BINOPTAB, but
2453 preserve only one of the values. If TARG0 is non-NULL, the first
2454 value is placed into TARG0; otherwise the second value is placed
2455 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2456 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2457 This routine assumes that the value returned by the library call is
2458 as if the return value was of an integral mode twice as wide as the
2459 mode of OP0. Returns 1 if the call was successful. */
2460
2461 bool
2462 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2463 rtx targ0, rtx targ1, enum rtx_code code)
2464 {
2465 enum machine_mode mode;
2466 enum machine_mode libval_mode;
2467 rtx libval;
2468 rtx insns;
2469 rtx libfunc;
2470
2471 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2472 gcc_assert (!targ0 != !targ1);
2473
2474 mode = GET_MODE (op0);
2475 libfunc = optab_libfunc (binoptab, mode);
2476 if (!libfunc)
2477 return false;
2478
2479 /* The value returned by the library function will have twice as
2480 many bits as the nominal MODE. */
2481 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2482 MODE_INT);
2483 start_sequence ();
2484 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2485 libval_mode, 2,
2486 op0, mode,
2487 op1, mode);
2488 /* Get the part of VAL containing the value that we want. */
2489 libval = simplify_gen_subreg (mode, libval, libval_mode,
2490 targ0 ? 0 : GET_MODE_SIZE (mode));
2491 insns = get_insns ();
2492 end_sequence ();
2493 /* Move the into the desired location. */
2494 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2495 gen_rtx_fmt_ee (code, mode, op0, op1));
2496
2497 return true;
2498 }
2499
2500 \f
2501 /* Wrapper around expand_unop which takes an rtx code to specify
2502 the operation to perform, not an optab pointer. All other
2503 arguments are the same. */
2504 rtx
2505 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2506 rtx target, int unsignedp)
2507 {
2508 optab unop = code_to_optab (code);
2509 gcc_assert (unop);
2510
2511 return expand_unop (mode, unop, op0, target, unsignedp);
2512 }
2513
2514 /* Try calculating
2515 (clz:narrow x)
2516 as
2517 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2518
2519 A similar operation can be used for clrsb. UNOPTAB says which operation
2520 we are trying to expand. */
2521 static rtx
2522 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2523 {
2524 enum mode_class mclass = GET_MODE_CLASS (mode);
2525 if (CLASS_HAS_WIDER_MODES_P (mclass))
2526 {
2527 enum machine_mode wider_mode;
2528 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2529 wider_mode != VOIDmode;
2530 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2531 {
2532 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2533 {
2534 rtx xop0, temp, last;
2535
2536 last = get_last_insn ();
2537
2538 if (target == 0)
2539 target = gen_reg_rtx (mode);
2540 xop0 = widen_operand (op0, wider_mode, mode,
2541 unoptab != clrsb_optab, false);
2542 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2543 unoptab != clrsb_optab);
2544 if (temp != 0)
2545 temp = expand_binop
2546 (wider_mode, sub_optab, temp,
2547 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2548 - GET_MODE_PRECISION (mode),
2549 wider_mode),
2550 target, true, OPTAB_DIRECT);
2551 if (temp == 0)
2552 delete_insns_since (last);
2553
2554 return temp;
2555 }
2556 }
2557 }
2558 return 0;
2559 }
2560
2561 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2562 quantities, choosing which based on whether the high word is nonzero. */
2563 static rtx
2564 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2565 {
2566 rtx xop0 = force_reg (mode, op0);
2567 rtx subhi = gen_highpart (word_mode, xop0);
2568 rtx sublo = gen_lowpart (word_mode, xop0);
2569 rtx hi0_label = gen_label_rtx ();
2570 rtx after_label = gen_label_rtx ();
2571 rtx seq, temp, result;
2572
2573 /* If we were not given a target, use a word_mode register, not a
2574 'mode' register. The result will fit, and nobody is expecting
2575 anything bigger (the return type of __builtin_clz* is int). */
2576 if (!target)
2577 target = gen_reg_rtx (word_mode);
2578
2579 /* In any case, write to a word_mode scratch in both branches of the
2580 conditional, so we can ensure there is a single move insn setting
2581 'target' to tag a REG_EQUAL note on. */
2582 result = gen_reg_rtx (word_mode);
2583
2584 start_sequence ();
2585
2586 /* If the high word is not equal to zero,
2587 then clz of the full value is clz of the high word. */
2588 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2589 word_mode, true, hi0_label);
2590
2591 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2592 if (!temp)
2593 goto fail;
2594
2595 if (temp != result)
2596 convert_move (result, temp, true);
2597
2598 emit_jump_insn (gen_jump (after_label));
2599 emit_barrier ();
2600
2601 /* Else clz of the full value is clz of the low word plus the number
2602 of bits in the high word. */
2603 emit_label (hi0_label);
2604
2605 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2606 if (!temp)
2607 goto fail;
2608 temp = expand_binop (word_mode, add_optab, temp,
2609 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2610 result, true, OPTAB_DIRECT);
2611 if (!temp)
2612 goto fail;
2613 if (temp != result)
2614 convert_move (result, temp, true);
2615
2616 emit_label (after_label);
2617 convert_move (target, result, true);
2618
2619 seq = get_insns ();
2620 end_sequence ();
2621
2622 add_equal_note (seq, target, CLZ, xop0, 0);
2623 emit_insn (seq);
2624 return target;
2625
2626 fail:
2627 end_sequence ();
2628 return 0;
2629 }
2630
2631 /* Try calculating
2632 (bswap:narrow x)
2633 as
2634 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2635 static rtx
2636 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2637 {
2638 enum mode_class mclass = GET_MODE_CLASS (mode);
2639 enum machine_mode wider_mode;
2640 rtx x, last;
2641
2642 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2643 return NULL_RTX;
2644
2645 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2646 wider_mode != VOIDmode;
2647 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2648 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2649 goto found;
2650 return NULL_RTX;
2651
2652 found:
2653 last = get_last_insn ();
2654
2655 x = widen_operand (op0, wider_mode, mode, true, true);
2656 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2657
2658 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2659 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2660 if (x != 0)
2661 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2662 GET_MODE_BITSIZE (wider_mode)
2663 - GET_MODE_BITSIZE (mode),
2664 NULL_RTX, true);
2665
2666 if (x != 0)
2667 {
2668 if (target == 0)
2669 target = gen_reg_rtx (mode);
2670 emit_move_insn (target, gen_lowpart (mode, x));
2671 }
2672 else
2673 delete_insns_since (last);
2674
2675 return target;
2676 }
2677
2678 /* Try calculating bswap as two bswaps of two word-sized operands. */
2679
2680 static rtx
2681 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2682 {
2683 rtx t0, t1;
2684
2685 t1 = expand_unop (word_mode, bswap_optab,
2686 operand_subword_force (op, 0, mode), NULL_RTX, true);
2687 t0 = expand_unop (word_mode, bswap_optab,
2688 operand_subword_force (op, 1, mode), NULL_RTX, true);
2689
2690 if (target == 0 || !valid_multiword_target_p (target))
2691 target = gen_reg_rtx (mode);
2692 if (REG_P (target))
2693 emit_clobber (target);
2694 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2695 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2696
2697 return target;
2698 }
2699
2700 /* Try calculating (parity x) as (and (popcount x) 1), where
2701 popcount can also be done in a wider mode. */
2702 static rtx
2703 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2704 {
2705 enum mode_class mclass = GET_MODE_CLASS (mode);
2706 if (CLASS_HAS_WIDER_MODES_P (mclass))
2707 {
2708 enum machine_mode wider_mode;
2709 for (wider_mode = mode; wider_mode != VOIDmode;
2710 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2711 {
2712 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2713 {
2714 rtx xop0, temp, last;
2715
2716 last = get_last_insn ();
2717
2718 if (target == 0)
2719 target = gen_reg_rtx (mode);
2720 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2721 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2722 true);
2723 if (temp != 0)
2724 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2725 target, true, OPTAB_DIRECT);
2726 if (temp == 0)
2727 delete_insns_since (last);
2728
2729 return temp;
2730 }
2731 }
2732 }
2733 return 0;
2734 }
2735
2736 /* Try calculating ctz(x) as K - clz(x & -x) ,
2737 where K is GET_MODE_PRECISION(mode) - 1.
2738
2739 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2740 don't have to worry about what the hardware does in that case. (If
2741 the clz instruction produces the usual value at 0, which is K, the
2742 result of this code sequence will be -1; expand_ffs, below, relies
2743 on this. It might be nice to have it be K instead, for consistency
2744 with the (very few) processors that provide a ctz with a defined
2745 value, but that would take one more instruction, and it would be
2746 less convenient for expand_ffs anyway. */
2747
2748 static rtx
2749 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2750 {
2751 rtx seq, temp;
2752
2753 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2754 return 0;
2755
2756 start_sequence ();
2757
2758 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2759 if (temp)
2760 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2761 true, OPTAB_DIRECT);
2762 if (temp)
2763 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2764 if (temp)
2765 temp = expand_binop (mode, sub_optab,
2766 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2767 temp, target,
2768 true, OPTAB_DIRECT);
2769 if (temp == 0)
2770 {
2771 end_sequence ();
2772 return 0;
2773 }
2774
2775 seq = get_insns ();
2776 end_sequence ();
2777
2778 add_equal_note (seq, temp, CTZ, op0, 0);
2779 emit_insn (seq);
2780 return temp;
2781 }
2782
2783
2784 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2785 else with the sequence used by expand_clz.
2786
2787 The ffs builtin promises to return zero for a zero value and ctz/clz
2788 may have an undefined value in that case. If they do not give us a
2789 convenient value, we have to generate a test and branch. */
2790 static rtx
2791 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2792 {
2793 HOST_WIDE_INT val = 0;
2794 bool defined_at_zero = false;
2795 rtx temp, seq;
2796
2797 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2798 {
2799 start_sequence ();
2800
2801 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2802 if (!temp)
2803 goto fail;
2804
2805 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2806 }
2807 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2808 {
2809 start_sequence ();
2810 temp = expand_ctz (mode, op0, 0);
2811 if (!temp)
2812 goto fail;
2813
2814 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2815 {
2816 defined_at_zero = true;
2817 val = (GET_MODE_PRECISION (mode) - 1) - val;
2818 }
2819 }
2820 else
2821 return 0;
2822
2823 if (defined_at_zero && val == -1)
2824 /* No correction needed at zero. */;
2825 else
2826 {
2827 /* We don't try to do anything clever with the situation found
2828 on some processors (eg Alpha) where ctz(0:mode) ==
2829 bitsize(mode). If someone can think of a way to send N to -1
2830 and leave alone all values in the range 0..N-1 (where N is a
2831 power of two), cheaper than this test-and-branch, please add it.
2832
2833 The test-and-branch is done after the operation itself, in case
2834 the operation sets condition codes that can be recycled for this.
2835 (This is true on i386, for instance.) */
2836
2837 rtx nonzero_label = gen_label_rtx ();
2838 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2839 mode, true, nonzero_label);
2840
2841 convert_move (temp, GEN_INT (-1), false);
2842 emit_label (nonzero_label);
2843 }
2844
2845 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2846 to produce a value in the range 0..bitsize. */
2847 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2848 target, false, OPTAB_DIRECT);
2849 if (!temp)
2850 goto fail;
2851
2852 seq = get_insns ();
2853 end_sequence ();
2854
2855 add_equal_note (seq, temp, FFS, op0, 0);
2856 emit_insn (seq);
2857 return temp;
2858
2859 fail:
2860 end_sequence ();
2861 return 0;
2862 }
2863
2864 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2865 conditions, VAL may already be a SUBREG against which we cannot generate
2866 a further SUBREG. In this case, we expect forcing the value into a
2867 register will work around the situation. */
2868
2869 static rtx
2870 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2871 enum machine_mode imode)
2872 {
2873 rtx ret;
2874 ret = lowpart_subreg (omode, val, imode);
2875 if (ret == NULL)
2876 {
2877 val = force_reg (imode, val);
2878 ret = lowpart_subreg (omode, val, imode);
2879 gcc_assert (ret != NULL);
2880 }
2881 return ret;
2882 }
2883
2884 /* Expand a floating point absolute value or negation operation via a
2885 logical operation on the sign bit. */
2886
2887 static rtx
2888 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2889 rtx op0, rtx target)
2890 {
2891 const struct real_format *fmt;
2892 int bitpos, word, nwords, i;
2893 enum machine_mode imode;
2894 wide_int mask;
2895 rtx temp, insns;
2896
2897 /* The format has to have a simple sign bit. */
2898 fmt = REAL_MODE_FORMAT (mode);
2899 if (fmt == NULL)
2900 return NULL_RTX;
2901
2902 bitpos = fmt->signbit_rw;
2903 if (bitpos < 0)
2904 return NULL_RTX;
2905
2906 /* Don't create negative zeros if the format doesn't support them. */
2907 if (code == NEG && !fmt->has_signed_zero)
2908 return NULL_RTX;
2909
2910 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2911 {
2912 imode = int_mode_for_mode (mode);
2913 if (imode == BLKmode)
2914 return NULL_RTX;
2915 word = 0;
2916 nwords = 1;
2917 }
2918 else
2919 {
2920 imode = word_mode;
2921
2922 if (FLOAT_WORDS_BIG_ENDIAN)
2923 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2924 else
2925 word = bitpos / BITS_PER_WORD;
2926 bitpos = bitpos % BITS_PER_WORD;
2927 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2928 }
2929
2930 mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2931 if (code == ABS)
2932 mask = ~mask;
2933
2934 if (target == 0
2935 || target == op0
2936 || (nwords > 1 && !valid_multiword_target_p (target)))
2937 target = gen_reg_rtx (mode);
2938
2939 if (nwords > 1)
2940 {
2941 start_sequence ();
2942
2943 for (i = 0; i < nwords; ++i)
2944 {
2945 rtx targ_piece = operand_subword (target, i, 1, mode);
2946 rtx op0_piece = operand_subword_force (op0, i, mode);
2947
2948 if (i == word)
2949 {
2950 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2951 op0_piece,
2952 immed_wide_int_const (mask, imode),
2953 targ_piece, 1, OPTAB_LIB_WIDEN);
2954 if (temp != targ_piece)
2955 emit_move_insn (targ_piece, temp);
2956 }
2957 else
2958 emit_move_insn (targ_piece, op0_piece);
2959 }
2960
2961 insns = get_insns ();
2962 end_sequence ();
2963
2964 emit_insn (insns);
2965 }
2966 else
2967 {
2968 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2969 gen_lowpart (imode, op0),
2970 immed_wide_int_const (mask, imode),
2971 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2972 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2973
2974 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2975 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2976 target);
2977 }
2978
2979 return target;
2980 }
2981
2982 /* As expand_unop, but will fail rather than attempt the operation in a
2983 different mode or with a libcall. */
2984 static rtx
2985 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2986 int unsignedp)
2987 {
2988 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2989 {
2990 struct expand_operand ops[2];
2991 enum insn_code icode = optab_handler (unoptab, mode);
2992 rtx last = get_last_insn ();
2993 rtx pat;
2994
2995 create_output_operand (&ops[0], target, mode);
2996 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2997 pat = maybe_gen_insn (icode, 2, ops);
2998 if (pat)
2999 {
3000 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3001 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
3002 ops[1].value, NULL_RTX))
3003 {
3004 delete_insns_since (last);
3005 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3006 }
3007
3008 emit_insn (pat);
3009
3010 return ops[0].value;
3011 }
3012 }
3013 return 0;
3014 }
3015
3016 /* Generate code to perform an operation specified by UNOPTAB
3017 on operand OP0, with result having machine-mode MODE.
3018
3019 UNSIGNEDP is for the case where we have to widen the operands
3020 to perform the operation. It says to use zero-extension.
3021
3022 If TARGET is nonzero, the value
3023 is generated there, if it is convenient to do so.
3024 In all cases an rtx is returned for the locus of the value;
3025 this may or may not be TARGET. */
3026
3027 rtx
3028 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3029 int unsignedp)
3030 {
3031 enum mode_class mclass = GET_MODE_CLASS (mode);
3032 enum machine_mode wider_mode;
3033 rtx temp;
3034 rtx libfunc;
3035
3036 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3037 if (temp)
3038 return temp;
3039
3040 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3041
3042 /* Widening (or narrowing) clz needs special treatment. */
3043 if (unoptab == clz_optab)
3044 {
3045 temp = widen_leading (mode, op0, target, unoptab);
3046 if (temp)
3047 return temp;
3048
3049 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3050 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3051 {
3052 temp = expand_doubleword_clz (mode, op0, target);
3053 if (temp)
3054 return temp;
3055 }
3056
3057 goto try_libcall;
3058 }
3059
3060 if (unoptab == clrsb_optab)
3061 {
3062 temp = widen_leading (mode, op0, target, unoptab);
3063 if (temp)
3064 return temp;
3065 goto try_libcall;
3066 }
3067
3068 /* Widening (or narrowing) bswap needs special treatment. */
3069 if (unoptab == bswap_optab)
3070 {
3071 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3072 or ROTATERT. First try these directly; if this fails, then try the
3073 obvious pair of shifts with allowed widening, as this will probably
3074 be always more efficient than the other fallback methods. */
3075 if (mode == HImode)
3076 {
3077 rtx last, temp1, temp2;
3078
3079 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3080 {
3081 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3082 unsignedp, OPTAB_DIRECT);
3083 if (temp)
3084 return temp;
3085 }
3086
3087 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3088 {
3089 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3090 unsignedp, OPTAB_DIRECT);
3091 if (temp)
3092 return temp;
3093 }
3094
3095 last = get_last_insn ();
3096
3097 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3098 unsignedp, OPTAB_WIDEN);
3099 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3100 unsignedp, OPTAB_WIDEN);
3101 if (temp1 && temp2)
3102 {
3103 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3104 unsignedp, OPTAB_WIDEN);
3105 if (temp)
3106 return temp;
3107 }
3108
3109 delete_insns_since (last);
3110 }
3111
3112 temp = widen_bswap (mode, op0, target);
3113 if (temp)
3114 return temp;
3115
3116 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3117 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3118 {
3119 temp = expand_doubleword_bswap (mode, op0, target);
3120 if (temp)
3121 return temp;
3122 }
3123
3124 goto try_libcall;
3125 }
3126
3127 if (CLASS_HAS_WIDER_MODES_P (mclass))
3128 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3129 wider_mode != VOIDmode;
3130 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3131 {
3132 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3133 {
3134 rtx xop0 = op0;
3135 rtx last = get_last_insn ();
3136
3137 /* For certain operations, we need not actually extend
3138 the narrow operand, as long as we will truncate the
3139 results to the same narrowness. */
3140
3141 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3142 (unoptab == neg_optab
3143 || unoptab == one_cmpl_optab)
3144 && mclass == MODE_INT);
3145
3146 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3147 unsignedp);
3148
3149 if (temp)
3150 {
3151 if (mclass != MODE_INT
3152 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3153 {
3154 if (target == 0)
3155 target = gen_reg_rtx (mode);
3156 convert_move (target, temp, 0);
3157 return target;
3158 }
3159 else
3160 return gen_lowpart (mode, temp);
3161 }
3162 else
3163 delete_insns_since (last);
3164 }
3165 }
3166
3167 /* These can be done a word at a time. */
3168 if (unoptab == one_cmpl_optab
3169 && mclass == MODE_INT
3170 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3171 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3172 {
3173 int i;
3174 rtx insns;
3175
3176 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3177 target = gen_reg_rtx (mode);
3178
3179 start_sequence ();
3180
3181 /* Do the actual arithmetic. */
3182 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3183 {
3184 rtx target_piece = operand_subword (target, i, 1, mode);
3185 rtx x = expand_unop (word_mode, unoptab,
3186 operand_subword_force (op0, i, mode),
3187 target_piece, unsignedp);
3188
3189 if (target_piece != x)
3190 emit_move_insn (target_piece, x);
3191 }
3192
3193 insns = get_insns ();
3194 end_sequence ();
3195
3196 emit_insn (insns);
3197 return target;
3198 }
3199
3200 if (optab_to_code (unoptab) == NEG)
3201 {
3202 /* Try negating floating point values by flipping the sign bit. */
3203 if (SCALAR_FLOAT_MODE_P (mode))
3204 {
3205 temp = expand_absneg_bit (NEG, mode, op0, target);
3206 if (temp)
3207 return temp;
3208 }
3209
3210 /* If there is no negation pattern, and we have no negative zero,
3211 try subtracting from zero. */
3212 if (!HONOR_SIGNED_ZEROS (mode))
3213 {
3214 temp = expand_binop (mode, (unoptab == negv_optab
3215 ? subv_optab : sub_optab),
3216 CONST0_RTX (mode), op0, target,
3217 unsignedp, OPTAB_DIRECT);
3218 if (temp)
3219 return temp;
3220 }
3221 }
3222
3223 /* Try calculating parity (x) as popcount (x) % 2. */
3224 if (unoptab == parity_optab)
3225 {
3226 temp = expand_parity (mode, op0, target);
3227 if (temp)
3228 return temp;
3229 }
3230
3231 /* Try implementing ffs (x) in terms of clz (x). */
3232 if (unoptab == ffs_optab)
3233 {
3234 temp = expand_ffs (mode, op0, target);
3235 if (temp)
3236 return temp;
3237 }
3238
3239 /* Try implementing ctz (x) in terms of clz (x). */
3240 if (unoptab == ctz_optab)
3241 {
3242 temp = expand_ctz (mode, op0, target);
3243 if (temp)
3244 return temp;
3245 }
3246
3247 try_libcall:
3248 /* Now try a library call in this mode. */
3249 libfunc = optab_libfunc (unoptab, mode);
3250 if (libfunc)
3251 {
3252 rtx insns;
3253 rtx value;
3254 rtx eq_value;
3255 enum machine_mode outmode = mode;
3256
3257 /* All of these functions return small values. Thus we choose to
3258 have them return something that isn't a double-word. */
3259 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3260 || unoptab == clrsb_optab || unoptab == popcount_optab
3261 || unoptab == parity_optab)
3262 outmode
3263 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3264 optab_libfunc (unoptab, mode)));
3265
3266 start_sequence ();
3267
3268 /* Pass 1 for NO_QUEUE so we don't lose any increments
3269 if the libcall is cse'd or moved. */
3270 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3271 1, op0, mode);
3272 insns = get_insns ();
3273 end_sequence ();
3274
3275 target = gen_reg_rtx (outmode);
3276 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3277 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3278 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3279 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3280 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3281 emit_libcall_block_1 (insns, target, value, eq_value,
3282 trapv_unoptab_p (unoptab));
3283
3284 return target;
3285 }
3286
3287 /* It can't be done in this mode. Can we do it in a wider mode? */
3288
3289 if (CLASS_HAS_WIDER_MODES_P (mclass))
3290 {
3291 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3292 wider_mode != VOIDmode;
3293 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3294 {
3295 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3296 || optab_libfunc (unoptab, wider_mode))
3297 {
3298 rtx xop0 = op0;
3299 rtx last = get_last_insn ();
3300
3301 /* For certain operations, we need not actually extend
3302 the narrow operand, as long as we will truncate the
3303 results to the same narrowness. */
3304 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3305 (unoptab == neg_optab
3306 || unoptab == one_cmpl_optab
3307 || unoptab == bswap_optab)
3308 && mclass == MODE_INT);
3309
3310 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3311 unsignedp);
3312
3313 /* If we are generating clz using wider mode, adjust the
3314 result. Similarly for clrsb. */
3315 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3316 && temp != 0)
3317 temp = expand_binop
3318 (wider_mode, sub_optab, temp,
3319 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3320 - GET_MODE_PRECISION (mode),
3321 wider_mode),
3322 target, true, OPTAB_DIRECT);
3323
3324 /* Likewise for bswap. */
3325 if (unoptab == bswap_optab && temp != 0)
3326 {
3327 gcc_assert (GET_MODE_PRECISION (wider_mode)
3328 == GET_MODE_BITSIZE (wider_mode)
3329 && GET_MODE_PRECISION (mode)
3330 == GET_MODE_BITSIZE (mode));
3331
3332 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3333 GET_MODE_BITSIZE (wider_mode)
3334 - GET_MODE_BITSIZE (mode),
3335 NULL_RTX, true);
3336 }
3337
3338 if (temp)
3339 {
3340 if (mclass != MODE_INT)
3341 {
3342 if (target == 0)
3343 target = gen_reg_rtx (mode);
3344 convert_move (target, temp, 0);
3345 return target;
3346 }
3347 else
3348 return gen_lowpart (mode, temp);
3349 }
3350 else
3351 delete_insns_since (last);
3352 }
3353 }
3354 }
3355
3356 /* One final attempt at implementing negation via subtraction,
3357 this time allowing widening of the operand. */
3358 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3359 {
3360 rtx temp;
3361 temp = expand_binop (mode,
3362 unoptab == negv_optab ? subv_optab : sub_optab,
3363 CONST0_RTX (mode), op0,
3364 target, unsignedp, OPTAB_LIB_WIDEN);
3365 if (temp)
3366 return temp;
3367 }
3368
3369 return 0;
3370 }
3371 \f
3372 /* Emit code to compute the absolute value of OP0, with result to
3373 TARGET if convenient. (TARGET may be 0.) The return value says
3374 where the result actually is to be found.
3375
3376 MODE is the mode of the operand; the mode of the result is
3377 different but can be deduced from MODE.
3378
3379 */
3380
3381 rtx
3382 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3383 int result_unsignedp)
3384 {
3385 rtx temp;
3386
3387 if (! flag_trapv)
3388 result_unsignedp = 1;
3389
3390 /* First try to do it with a special abs instruction. */
3391 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3392 op0, target, 0);
3393 if (temp != 0)
3394 return temp;
3395
3396 /* For floating point modes, try clearing the sign bit. */
3397 if (SCALAR_FLOAT_MODE_P (mode))
3398 {
3399 temp = expand_absneg_bit (ABS, mode, op0, target);
3400 if (temp)
3401 return temp;
3402 }
3403
3404 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3405 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3406 && !HONOR_SIGNED_ZEROS (mode))
3407 {
3408 rtx last = get_last_insn ();
3409
3410 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3411 if (temp != 0)
3412 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3413 OPTAB_WIDEN);
3414
3415 if (temp != 0)
3416 return temp;
3417
3418 delete_insns_since (last);
3419 }
3420
3421 /* If this machine has expensive jumps, we can do integer absolute
3422 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3423 where W is the width of MODE. */
3424
3425 if (GET_MODE_CLASS (mode) == MODE_INT
3426 && BRANCH_COST (optimize_insn_for_speed_p (),
3427 false) >= 2)
3428 {
3429 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3430 GET_MODE_PRECISION (mode) - 1,
3431 NULL_RTX, 0);
3432
3433 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3434 OPTAB_LIB_WIDEN);
3435 if (temp != 0)
3436 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3437 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3438
3439 if (temp != 0)
3440 return temp;
3441 }
3442
3443 return NULL_RTX;
3444 }
3445
3446 rtx
3447 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3448 int result_unsignedp, int safe)
3449 {
3450 rtx temp, op1;
3451
3452 if (! flag_trapv)
3453 result_unsignedp = 1;
3454
3455 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3456 if (temp != 0)
3457 return temp;
3458
3459 /* If that does not win, use conditional jump and negate. */
3460
3461 /* It is safe to use the target if it is the same
3462 as the source if this is also a pseudo register */
3463 if (op0 == target && REG_P (op0)
3464 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3465 safe = 1;
3466
3467 op1 = gen_label_rtx ();
3468 if (target == 0 || ! safe
3469 || GET_MODE (target) != mode
3470 || (MEM_P (target) && MEM_VOLATILE_P (target))
3471 || (REG_P (target)
3472 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3473 target = gen_reg_rtx (mode);
3474
3475 emit_move_insn (target, op0);
3476 NO_DEFER_POP;
3477
3478 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3479 NULL_RTX, NULL_RTX, op1, -1);
3480
3481 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3482 target, target, 0);
3483 if (op0 != target)
3484 emit_move_insn (target, op0);
3485 emit_label (op1);
3486 OK_DEFER_POP;
3487 return target;
3488 }
3489
3490 /* Emit code to compute the one's complement absolute value of OP0
3491 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3492 (TARGET may be NULL_RTX.) The return value says where the result
3493 actually is to be found.
3494
3495 MODE is the mode of the operand; the mode of the result is
3496 different but can be deduced from MODE. */
3497
3498 rtx
3499 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3500 {
3501 rtx temp;
3502
3503 /* Not applicable for floating point modes. */
3504 if (FLOAT_MODE_P (mode))
3505 return NULL_RTX;
3506
3507 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3508 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3509 {
3510 rtx last = get_last_insn ();
3511
3512 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3513 if (temp != 0)
3514 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3515 OPTAB_WIDEN);
3516
3517 if (temp != 0)
3518 return temp;
3519
3520 delete_insns_since (last);
3521 }
3522
3523 /* If this machine has expensive jumps, we can do one's complement
3524 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3525
3526 if (GET_MODE_CLASS (mode) == MODE_INT
3527 && BRANCH_COST (optimize_insn_for_speed_p (),
3528 false) >= 2)
3529 {
3530 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3531 GET_MODE_PRECISION (mode) - 1,
3532 NULL_RTX, 0);
3533
3534 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3535 OPTAB_LIB_WIDEN);
3536
3537 if (temp != 0)
3538 return temp;
3539 }
3540
3541 return NULL_RTX;
3542 }
3543
3544 /* A subroutine of expand_copysign, perform the copysign operation using the
3545 abs and neg primitives advertised to exist on the target. The assumption
3546 is that we have a split register file, and leaving op0 in fp registers,
3547 and not playing with subregs so much, will help the register allocator. */
3548
3549 static rtx
3550 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3551 int bitpos, bool op0_is_abs)
3552 {
3553 enum machine_mode imode;
3554 enum insn_code icode;
3555 rtx sign, label;
3556
3557 if (target == op1)
3558 target = NULL_RTX;
3559
3560 /* Check if the back end provides an insn that handles signbit for the
3561 argument's mode. */
3562 icode = optab_handler (signbit_optab, mode);
3563 if (icode != CODE_FOR_nothing)
3564 {
3565 imode = insn_data[(int) icode].operand[0].mode;
3566 sign = gen_reg_rtx (imode);
3567 emit_unop_insn (icode, sign, op1, UNKNOWN);
3568 }
3569 else
3570 {
3571 wide_int mask;
3572
3573 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3574 {
3575 imode = int_mode_for_mode (mode);
3576 if (imode == BLKmode)
3577 return NULL_RTX;
3578 op1 = gen_lowpart (imode, op1);
3579 }
3580 else
3581 {
3582 int word;
3583
3584 imode = word_mode;
3585 if (FLOAT_WORDS_BIG_ENDIAN)
3586 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3587 else
3588 word = bitpos / BITS_PER_WORD;
3589 bitpos = bitpos % BITS_PER_WORD;
3590 op1 = operand_subword_force (op1, word, mode);
3591 }
3592
3593 mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3594 sign = expand_binop (imode, and_optab, op1,
3595 immed_wide_int_const (mask, imode),
3596 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3597 }
3598
3599 if (!op0_is_abs)
3600 {
3601 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3602 if (op0 == NULL)
3603 return NULL_RTX;
3604 target = op0;
3605 }
3606 else
3607 {
3608 if (target == NULL_RTX)
3609 target = copy_to_reg (op0);
3610 else
3611 emit_move_insn (target, op0);
3612 }
3613
3614 label = gen_label_rtx ();
3615 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3616
3617 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3618 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3619 else
3620 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3621 if (op0 != target)
3622 emit_move_insn (target, op0);
3623
3624 emit_label (label);
3625
3626 return target;
3627 }
3628
3629
3630 /* A subroutine of expand_copysign, perform the entire copysign operation
3631 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3632 is true if op0 is known to have its sign bit clear. */
3633
3634 static rtx
3635 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3636 int bitpos, bool op0_is_abs)
3637 {
3638 enum machine_mode imode;
3639 wide_int mask, nmask;
3640 int word, nwords, i;
3641 rtx temp, insns;
3642
3643 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3644 {
3645 imode = int_mode_for_mode (mode);
3646 if (imode == BLKmode)
3647 return NULL_RTX;
3648 word = 0;
3649 nwords = 1;
3650 }
3651 else
3652 {
3653 imode = word_mode;
3654
3655 if (FLOAT_WORDS_BIG_ENDIAN)
3656 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3657 else
3658 word = bitpos / BITS_PER_WORD;
3659 bitpos = bitpos % BITS_PER_WORD;
3660 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3661 }
3662
3663 mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3664
3665 if (target == 0
3666 || target == op0
3667 || target == op1
3668 || (nwords > 1 && !valid_multiword_target_p (target)))
3669 target = gen_reg_rtx (mode);
3670
3671 if (nwords > 1)
3672 {
3673 start_sequence ();
3674
3675 for (i = 0; i < nwords; ++i)
3676 {
3677 rtx targ_piece = operand_subword (target, i, 1, mode);
3678 rtx op0_piece = operand_subword_force (op0, i, mode);
3679
3680 if (i == word)
3681 {
3682 if (!op0_is_abs)
3683 {
3684 nmask = ~mask;
3685 op0_piece
3686 = expand_binop (imode, and_optab, op0_piece,
3687 immed_wide_int_const (nmask, imode),
3688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3689 }
3690 op1 = expand_binop (imode, and_optab,
3691 operand_subword_force (op1, i, mode),
3692 immed_wide_int_const (mask, imode),
3693 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3694
3695 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3696 targ_piece, 1, OPTAB_LIB_WIDEN);
3697 if (temp != targ_piece)
3698 emit_move_insn (targ_piece, temp);
3699 }
3700 else
3701 emit_move_insn (targ_piece, op0_piece);
3702 }
3703
3704 insns = get_insns ();
3705 end_sequence ();
3706
3707 emit_insn (insns);
3708 }
3709 else
3710 {
3711 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3712 immed_wide_int_const (mask, imode),
3713 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3714
3715 op0 = gen_lowpart (imode, op0);
3716 if (!op0_is_abs)
3717 {
3718 nmask = ~mask;
3719 op0 = expand_binop (imode, and_optab, op0,
3720 immed_wide_int_const (nmask, imode),
3721 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3722 }
3723 temp = expand_binop (imode, ior_optab, op0, op1,
3724 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3725 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3726 }
3727
3728 return target;
3729 }
3730
3731 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3732 scalar floating point mode. Return NULL if we do not know how to
3733 expand the operation inline. */
3734
3735 rtx
3736 expand_copysign (rtx op0, rtx op1, rtx target)
3737 {
3738 enum machine_mode mode = GET_MODE (op0);
3739 const struct real_format *fmt;
3740 bool op0_is_abs;
3741 rtx temp;
3742
3743 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3744 gcc_assert (GET_MODE (op1) == mode);
3745
3746 /* First try to do it with a special instruction. */
3747 temp = expand_binop (mode, copysign_optab, op0, op1,
3748 target, 0, OPTAB_DIRECT);
3749 if (temp)
3750 return temp;
3751
3752 fmt = REAL_MODE_FORMAT (mode);
3753 if (fmt == NULL || !fmt->has_signed_zero)
3754 return NULL_RTX;
3755
3756 op0_is_abs = false;
3757 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3758 {
3759 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3760 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3761 op0_is_abs = true;
3762 }
3763
3764 if (fmt->signbit_ro >= 0
3765 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3766 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3767 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3768 {
3769 temp = expand_copysign_absneg (mode, op0, op1, target,
3770 fmt->signbit_ro, op0_is_abs);
3771 if (temp)
3772 return temp;
3773 }
3774
3775 if (fmt->signbit_rw < 0)
3776 return NULL_RTX;
3777 return expand_copysign_bit (mode, op0, op1, target,
3778 fmt->signbit_rw, op0_is_abs);
3779 }
3780 \f
3781 /* Generate an instruction whose insn-code is INSN_CODE,
3782 with two operands: an output TARGET and an input OP0.
3783 TARGET *must* be nonzero, and the output is always stored there.
3784 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3785 the value that is stored into TARGET.
3786
3787 Return false if expansion failed. */
3788
3789 bool
3790 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3791 enum rtx_code code)
3792 {
3793 struct expand_operand ops[2];
3794 rtx pat;
3795
3796 create_output_operand (&ops[0], target, GET_MODE (target));
3797 create_input_operand (&ops[1], op0, GET_MODE (op0));
3798 pat = maybe_gen_insn (icode, 2, ops);
3799 if (!pat)
3800 return false;
3801
3802 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3803 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3804
3805 emit_insn (pat);
3806
3807 if (ops[0].value != target)
3808 emit_move_insn (target, ops[0].value);
3809 return true;
3810 }
3811 /* Generate an instruction whose insn-code is INSN_CODE,
3812 with two operands: an output TARGET and an input OP0.
3813 TARGET *must* be nonzero, and the output is always stored there.
3814 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3815 the value that is stored into TARGET. */
3816
3817 void
3818 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3819 {
3820 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3821 gcc_assert (ok);
3822 }
3823 \f
3824 struct no_conflict_data
3825 {
3826 rtx target, first, insn;
3827 bool must_stay;
3828 };
3829
3830 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3831 the currently examined clobber / store has to stay in the list of
3832 insns that constitute the actual libcall block. */
3833 static void
3834 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3835 {
3836 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3837
3838 /* If this inns directly contributes to setting the target, it must stay. */
3839 if (reg_overlap_mentioned_p (p->target, dest))
3840 p->must_stay = true;
3841 /* If we haven't committed to keeping any other insns in the list yet,
3842 there is nothing more to check. */
3843 else if (p->insn == p->first)
3844 return;
3845 /* If this insn sets / clobbers a register that feeds one of the insns
3846 already in the list, this insn has to stay too. */
3847 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3848 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3849 || reg_used_between_p (dest, p->first, p->insn)
3850 /* Likewise if this insn depends on a register set by a previous
3851 insn in the list, or if it sets a result (presumably a hard
3852 register) that is set or clobbered by a previous insn.
3853 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3854 SET_DEST perform the former check on the address, and the latter
3855 check on the MEM. */
3856 || (GET_CODE (set) == SET
3857 && (modified_in_p (SET_SRC (set), p->first)
3858 || modified_in_p (SET_DEST (set), p->first)
3859 || modified_between_p (SET_SRC (set), p->first, p->insn)
3860 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3861 p->must_stay = true;
3862 }
3863
3864 \f
3865 /* Emit code to make a call to a constant function or a library call.
3866
3867 INSNS is a list containing all insns emitted in the call.
3868 These insns leave the result in RESULT. Our block is to copy RESULT
3869 to TARGET, which is logically equivalent to EQUIV.
3870
3871 We first emit any insns that set a pseudo on the assumption that these are
3872 loading constants into registers; doing so allows them to be safely cse'ed
3873 between blocks. Then we emit all the other insns in the block, followed by
3874 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3875 note with an operand of EQUIV. */
3876
3877 static void
3878 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3879 bool equiv_may_trap)
3880 {
3881 rtx final_dest = target;
3882 rtx next, last, insn;
3883
3884 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3885 into a MEM later. Protect the libcall block from this change. */
3886 if (! REG_P (target) || REG_USERVAR_P (target))
3887 target = gen_reg_rtx (GET_MODE (target));
3888
3889 /* If we're using non-call exceptions, a libcall corresponding to an
3890 operation that may trap may also trap. */
3891 /* ??? See the comment in front of make_reg_eh_region_note. */
3892 if (cfun->can_throw_non_call_exceptions
3893 && (equiv_may_trap || may_trap_p (equiv)))
3894 {
3895 for (insn = insns; insn; insn = NEXT_INSN (insn))
3896 if (CALL_P (insn))
3897 {
3898 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3899 if (note)
3900 {
3901 int lp_nr = INTVAL (XEXP (note, 0));
3902 if (lp_nr == 0 || lp_nr == INT_MIN)
3903 remove_note (insn, note);
3904 }
3905 }
3906 }
3907 else
3908 {
3909 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3910 reg note to indicate that this call cannot throw or execute a nonlocal
3911 goto (unless there is already a REG_EH_REGION note, in which case
3912 we update it). */
3913 for (insn = insns; insn; insn = NEXT_INSN (insn))
3914 if (CALL_P (insn))
3915 make_reg_eh_region_note_nothrow_nononlocal (insn);
3916 }
3917
3918 /* First emit all insns that set pseudos. Remove them from the list as
3919 we go. Avoid insns that set pseudos which were referenced in previous
3920 insns. These can be generated by move_by_pieces, for example,
3921 to update an address. Similarly, avoid insns that reference things
3922 set in previous insns. */
3923
3924 for (insn = insns; insn; insn = next)
3925 {
3926 rtx set = single_set (insn);
3927
3928 next = NEXT_INSN (insn);
3929
3930 if (set != 0 && REG_P (SET_DEST (set))
3931 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3932 {
3933 struct no_conflict_data data;
3934
3935 data.target = const0_rtx;
3936 data.first = insns;
3937 data.insn = insn;
3938 data.must_stay = 0;
3939 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3940 if (! data.must_stay)
3941 {
3942 if (PREV_INSN (insn))
3943 NEXT_INSN (PREV_INSN (insn)) = next;
3944 else
3945 insns = next;
3946
3947 if (next)
3948 PREV_INSN (next) = PREV_INSN (insn);
3949
3950 add_insn (insn);
3951 }
3952 }
3953
3954 /* Some ports use a loop to copy large arguments onto the stack.
3955 Don't move anything outside such a loop. */
3956 if (LABEL_P (insn))
3957 break;
3958 }
3959
3960 /* Write the remaining insns followed by the final copy. */
3961 for (insn = insns; insn; insn = next)
3962 {
3963 next = NEXT_INSN (insn);
3964
3965 add_insn (insn);
3966 }
3967
3968 last = emit_move_insn (target, result);
3969 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3970
3971 if (final_dest != target)
3972 emit_move_insn (final_dest, target);
3973 }
3974
3975 void
3976 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3977 {
3978 emit_libcall_block_1 (insns, target, result, equiv, false);
3979 }
3980 \f
3981 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3982 PURPOSE describes how this comparison will be used. CODE is the rtx
3983 comparison code we will be using.
3984
3985 ??? Actually, CODE is slightly weaker than that. A target is still
3986 required to implement all of the normal bcc operations, but not
3987 required to implement all (or any) of the unordered bcc operations. */
3988
3989 int
3990 can_compare_p (enum rtx_code code, enum machine_mode mode,
3991 enum can_compare_purpose purpose)
3992 {
3993 rtx test;
3994 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3995 do
3996 {
3997 enum insn_code icode;
3998
3999 if (purpose == ccp_jump
4000 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
4001 && insn_operand_matches (icode, 0, test))
4002 return 1;
4003 if (purpose == ccp_store_flag
4004 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4005 && insn_operand_matches (icode, 1, test))
4006 return 1;
4007 if (purpose == ccp_cmov
4008 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4009 return 1;
4010
4011 mode = GET_MODE_WIDER_MODE (mode);
4012 PUT_MODE (test, mode);
4013 }
4014 while (mode != VOIDmode);
4015
4016 return 0;
4017 }
4018
4019 /* This function is called when we are going to emit a compare instruction that
4020 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4021
4022 *PMODE is the mode of the inputs (in case they are const_int).
4023 *PUNSIGNEDP nonzero says that the operands are unsigned;
4024 this matters if they need to be widened (as given by METHODS).
4025
4026 If they have mode BLKmode, then SIZE specifies the size of both operands.
4027
4028 This function performs all the setup necessary so that the caller only has
4029 to emit a single comparison insn. This setup can involve doing a BLKmode
4030 comparison or emitting a library call to perform the comparison if no insn
4031 is available to handle it.
4032 The values which are passed in through pointers can be modified; the caller
4033 should perform the comparison on the modified values. Constant
4034 comparisons must have already been folded. */
4035
4036 static void
4037 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4038 int unsignedp, enum optab_methods methods,
4039 rtx *ptest, enum machine_mode *pmode)
4040 {
4041 enum machine_mode mode = *pmode;
4042 rtx libfunc, test;
4043 enum machine_mode cmp_mode;
4044 enum mode_class mclass;
4045
4046 /* The other methods are not needed. */
4047 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4048 || methods == OPTAB_LIB_WIDEN);
4049
4050 /* If we are optimizing, force expensive constants into a register. */
4051 if (CONSTANT_P (x) && optimize
4052 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4053 > COSTS_N_INSNS (1)))
4054 x = force_reg (mode, x);
4055
4056 if (CONSTANT_P (y) && optimize
4057 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4058 > COSTS_N_INSNS (1)))
4059 y = force_reg (mode, y);
4060
4061 #ifdef HAVE_cc0
4062 /* Make sure if we have a canonical comparison. The RTL
4063 documentation states that canonical comparisons are required only
4064 for targets which have cc0. */
4065 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4066 #endif
4067
4068 /* Don't let both operands fail to indicate the mode. */
4069 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4070 x = force_reg (mode, x);
4071 if (mode == VOIDmode)
4072 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4073
4074 /* Handle all BLKmode compares. */
4075
4076 if (mode == BLKmode)
4077 {
4078 enum machine_mode result_mode;
4079 enum insn_code cmp_code;
4080 tree length_type;
4081 rtx libfunc;
4082 rtx result;
4083 rtx opalign
4084 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4085
4086 gcc_assert (size);
4087
4088 /* Try to use a memory block compare insn - either cmpstr
4089 or cmpmem will do. */
4090 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4091 cmp_mode != VOIDmode;
4092 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4093 {
4094 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4095 if (cmp_code == CODE_FOR_nothing)
4096 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4097 if (cmp_code == CODE_FOR_nothing)
4098 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4099 if (cmp_code == CODE_FOR_nothing)
4100 continue;
4101
4102 /* Must make sure the size fits the insn's mode. */
4103 if ((CONST_INT_P (size)
4104 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4105 || (GET_MODE_BITSIZE (GET_MODE (size))
4106 > GET_MODE_BITSIZE (cmp_mode)))
4107 continue;
4108
4109 result_mode = insn_data[cmp_code].operand[0].mode;
4110 result = gen_reg_rtx (result_mode);
4111 size = convert_to_mode (cmp_mode, size, 1);
4112 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4113
4114 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4115 *pmode = result_mode;
4116 return;
4117 }
4118
4119 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4120 goto fail;
4121
4122 /* Otherwise call a library function, memcmp. */
4123 libfunc = memcmp_libfunc;
4124 length_type = sizetype;
4125 result_mode = TYPE_MODE (integer_type_node);
4126 cmp_mode = TYPE_MODE (length_type);
4127 size = convert_to_mode (TYPE_MODE (length_type), size,
4128 TYPE_UNSIGNED (length_type));
4129
4130 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4131 result_mode, 3,
4132 XEXP (x, 0), Pmode,
4133 XEXP (y, 0), Pmode,
4134 size, cmp_mode);
4135 x = result;
4136 y = const0_rtx;
4137 mode = result_mode;
4138 methods = OPTAB_LIB_WIDEN;
4139 unsignedp = false;
4140 }
4141
4142 /* Don't allow operands to the compare to trap, as that can put the
4143 compare and branch in different basic blocks. */
4144 if (cfun->can_throw_non_call_exceptions)
4145 {
4146 if (may_trap_p (x))
4147 x = force_reg (mode, x);
4148 if (may_trap_p (y))
4149 y = force_reg (mode, y);
4150 }
4151
4152 if (GET_MODE_CLASS (mode) == MODE_CC)
4153 {
4154 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4155 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4156 return;
4157 }
4158
4159 mclass = GET_MODE_CLASS (mode);
4160 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4161 cmp_mode = mode;
4162 do
4163 {
4164 enum insn_code icode;
4165 icode = optab_handler (cbranch_optab, cmp_mode);
4166 if (icode != CODE_FOR_nothing
4167 && insn_operand_matches (icode, 0, test))
4168 {
4169 rtx last = get_last_insn ();
4170 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4171 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4172 if (op0 && op1
4173 && insn_operand_matches (icode, 1, op0)
4174 && insn_operand_matches (icode, 2, op1))
4175 {
4176 XEXP (test, 0) = op0;
4177 XEXP (test, 1) = op1;
4178 *ptest = test;
4179 *pmode = cmp_mode;
4180 return;
4181 }
4182 delete_insns_since (last);
4183 }
4184
4185 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4186 break;
4187 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4188 }
4189 while (cmp_mode != VOIDmode);
4190
4191 if (methods != OPTAB_LIB_WIDEN)
4192 goto fail;
4193
4194 if (!SCALAR_FLOAT_MODE_P (mode))
4195 {
4196 rtx result;
4197 enum machine_mode ret_mode;
4198
4199 /* Handle a libcall just for the mode we are using. */
4200 libfunc = optab_libfunc (cmp_optab, mode);
4201 gcc_assert (libfunc);
4202
4203 /* If we want unsigned, and this mode has a distinct unsigned
4204 comparison routine, use that. */
4205 if (unsignedp)
4206 {
4207 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4208 if (ulibfunc)
4209 libfunc = ulibfunc;
4210 }
4211
4212 ret_mode = targetm.libgcc_cmp_return_mode ();
4213 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4214 ret_mode, 2, x, mode, y, mode);
4215
4216 /* There are two kinds of comparison routines. Biased routines
4217 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4218 of gcc expect that the comparison operation is equivalent
4219 to the modified comparison. For signed comparisons compare the
4220 result against 1 in the biased case, and zero in the unbiased
4221 case. For unsigned comparisons always compare against 1 after
4222 biasing the unbiased result by adding 1. This gives us a way to
4223 represent LTU.
4224 The comparisons in the fixed-point helper library are always
4225 biased. */
4226 x = result;
4227 y = const1_rtx;
4228
4229 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4230 {
4231 if (unsignedp)
4232 x = plus_constant (ret_mode, result, 1);
4233 else
4234 y = const0_rtx;
4235 }
4236
4237 *pmode = word_mode;
4238 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4239 ptest, pmode);
4240 }
4241 else
4242 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4243
4244 return;
4245
4246 fail:
4247 *ptest = NULL_RTX;
4248 }
4249
4250 /* Before emitting an insn with code ICODE, make sure that X, which is going
4251 to be used for operand OPNUM of the insn, is converted from mode MODE to
4252 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4253 that it is accepted by the operand predicate. Return the new value. */
4254
4255 rtx
4256 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4257 enum machine_mode wider_mode, int unsignedp)
4258 {
4259 if (mode != wider_mode)
4260 x = convert_modes (wider_mode, mode, x, unsignedp);
4261
4262 if (!insn_operand_matches (icode, opnum, x))
4263 {
4264 if (reload_completed)
4265 return NULL_RTX;
4266 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4267 }
4268
4269 return x;
4270 }
4271
4272 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4273 we can do the branch. */
4274
4275 static void
4276 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4277 {
4278 enum machine_mode optab_mode;
4279 enum mode_class mclass;
4280 enum insn_code icode;
4281 rtx insn;
4282
4283 mclass = GET_MODE_CLASS (mode);
4284 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4285 icode = optab_handler (cbranch_optab, optab_mode);
4286
4287 gcc_assert (icode != CODE_FOR_nothing);
4288 gcc_assert (insn_operand_matches (icode, 0, test));
4289 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4290 XEXP (test, 1), label));
4291 if (prob != -1
4292 && profile_status != PROFILE_ABSENT
4293 && insn
4294 && JUMP_P (insn)
4295 && any_condjump_p (insn)
4296 && !find_reg_note (insn, REG_BR_PROB, 0))
4297 add_int_reg_note (insn, REG_BR_PROB, prob);
4298 }
4299
4300 /* Generate code to compare X with Y so that the condition codes are
4301 set and to jump to LABEL if the condition is true. If X is a
4302 constant and Y is not a constant, then the comparison is swapped to
4303 ensure that the comparison RTL has the canonical form.
4304
4305 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4306 need to be widened. UNSIGNEDP is also used to select the proper
4307 branch condition code.
4308
4309 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4310
4311 MODE is the mode of the inputs (in case they are const_int).
4312
4313 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4314 It will be potentially converted into an unsigned variant based on
4315 UNSIGNEDP to select a proper jump instruction.
4316
4317 PROB is the probability of jumping to LABEL. */
4318
4319 void
4320 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4321 enum machine_mode mode, int unsignedp, rtx label,
4322 int prob)
4323 {
4324 rtx op0 = x, op1 = y;
4325 rtx test;
4326
4327 /* Swap operands and condition to ensure canonical RTL. */
4328 if (swap_commutative_operands_p (x, y)
4329 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4330 {
4331 op0 = y, op1 = x;
4332 comparison = swap_condition (comparison);
4333 }
4334
4335 /* If OP0 is still a constant, then both X and Y must be constants
4336 or the opposite comparison is not supported. Force X into a register
4337 to create canonical RTL. */
4338 if (CONSTANT_P (op0))
4339 op0 = force_reg (mode, op0);
4340
4341 if (unsignedp)
4342 comparison = unsigned_condition (comparison);
4343
4344 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4345 &test, &mode);
4346 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4347 }
4348
4349 \f
4350 /* Emit a library call comparison between floating point X and Y.
4351 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4352
4353 static void
4354 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4355 rtx *ptest, enum machine_mode *pmode)
4356 {
4357 enum rtx_code swapped = swap_condition (comparison);
4358 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4359 enum machine_mode orig_mode = GET_MODE (x);
4360 enum machine_mode mode, cmp_mode;
4361 rtx true_rtx, false_rtx;
4362 rtx value, target, insns, equiv;
4363 rtx libfunc = 0;
4364 bool reversed_p = false;
4365 cmp_mode = targetm.libgcc_cmp_return_mode ();
4366
4367 for (mode = orig_mode;
4368 mode != VOIDmode;
4369 mode = GET_MODE_WIDER_MODE (mode))
4370 {
4371 if (code_to_optab (comparison)
4372 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4373 break;
4374
4375 if (code_to_optab (swapped)
4376 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4377 {
4378 rtx tmp;
4379 tmp = x; x = y; y = tmp;
4380 comparison = swapped;
4381 break;
4382 }
4383
4384 if (code_to_optab (reversed)
4385 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4386 {
4387 comparison = reversed;
4388 reversed_p = true;
4389 break;
4390 }
4391 }
4392
4393 gcc_assert (mode != VOIDmode);
4394
4395 if (mode != orig_mode)
4396 {
4397 x = convert_to_mode (mode, x, 0);
4398 y = convert_to_mode (mode, y, 0);
4399 }
4400
4401 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4402 the RTL. The allows the RTL optimizers to delete the libcall if the
4403 condition can be determined at compile-time. */
4404 if (comparison == UNORDERED
4405 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4406 {
4407 true_rtx = const_true_rtx;
4408 false_rtx = const0_rtx;
4409 }
4410 else
4411 {
4412 switch (comparison)
4413 {
4414 case EQ:
4415 true_rtx = const0_rtx;
4416 false_rtx = const_true_rtx;
4417 break;
4418
4419 case NE:
4420 true_rtx = const_true_rtx;
4421 false_rtx = const0_rtx;
4422 break;
4423
4424 case GT:
4425 true_rtx = const1_rtx;
4426 false_rtx = const0_rtx;
4427 break;
4428
4429 case GE:
4430 true_rtx = const0_rtx;
4431 false_rtx = constm1_rtx;
4432 break;
4433
4434 case LT:
4435 true_rtx = constm1_rtx;
4436 false_rtx = const0_rtx;
4437 break;
4438
4439 case LE:
4440 true_rtx = const0_rtx;
4441 false_rtx = const1_rtx;
4442 break;
4443
4444 default:
4445 gcc_unreachable ();
4446 }
4447 }
4448
4449 if (comparison == UNORDERED)
4450 {
4451 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4452 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4453 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4454 temp, const_true_rtx, equiv);
4455 }
4456 else
4457 {
4458 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4459 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4460 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4461 equiv, true_rtx, false_rtx);
4462 }
4463
4464 start_sequence ();
4465 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4466 cmp_mode, 2, x, mode, y, mode);
4467 insns = get_insns ();
4468 end_sequence ();
4469
4470 target = gen_reg_rtx (cmp_mode);
4471 emit_libcall_block (insns, target, value, equiv);
4472
4473 if (comparison == UNORDERED
4474 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4475 || reversed_p)
4476 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4477 else
4478 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4479
4480 *pmode = cmp_mode;
4481 }
4482 \f
4483 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4484
4485 void
4486 emit_indirect_jump (rtx loc)
4487 {
4488 struct expand_operand ops[1];
4489
4490 create_address_operand (&ops[0], loc);
4491 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4492 emit_barrier ();
4493 }
4494 \f
4495 #ifdef HAVE_conditional_move
4496
4497 /* Emit a conditional move instruction if the machine supports one for that
4498 condition and machine mode.
4499
4500 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4501 the mode to use should they be constants. If it is VOIDmode, they cannot
4502 both be constants.
4503
4504 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4505 should be stored there. MODE is the mode to use should they be constants.
4506 If it is VOIDmode, they cannot both be constants.
4507
4508 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4509 is not supported. */
4510
4511 rtx
4512 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4513 enum machine_mode cmode, rtx op2, rtx op3,
4514 enum machine_mode mode, int unsignedp)
4515 {
4516 rtx tem, comparison, last;
4517 enum insn_code icode;
4518 enum rtx_code reversed;
4519
4520 /* If one operand is constant, make it the second one. Only do this
4521 if the other operand is not constant as well. */
4522
4523 if (swap_commutative_operands_p (op0, op1))
4524 {
4525 tem = op0;
4526 op0 = op1;
4527 op1 = tem;
4528 code = swap_condition (code);
4529 }
4530
4531 /* get_condition will prefer to generate LT and GT even if the old
4532 comparison was against zero, so undo that canonicalization here since
4533 comparisons against zero are cheaper. */
4534 if (code == LT && op1 == const1_rtx)
4535 code = LE, op1 = const0_rtx;
4536 else if (code == GT && op1 == constm1_rtx)
4537 code = GE, op1 = const0_rtx;
4538
4539 if (cmode == VOIDmode)
4540 cmode = GET_MODE (op0);
4541
4542 if (swap_commutative_operands_p (op2, op3)
4543 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4544 != UNKNOWN))
4545 {
4546 tem = op2;
4547 op2 = op3;
4548 op3 = tem;
4549 code = reversed;
4550 }
4551
4552 if (mode == VOIDmode)
4553 mode = GET_MODE (op2);
4554
4555 icode = direct_optab_handler (movcc_optab, mode);
4556
4557 if (icode == CODE_FOR_nothing)
4558 return 0;
4559
4560 if (!target)
4561 target = gen_reg_rtx (mode);
4562
4563 code = unsignedp ? unsigned_condition (code) : code;
4564 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4565
4566 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4567 return NULL and let the caller figure out how best to deal with this
4568 situation. */
4569 if (!COMPARISON_P (comparison))
4570 return NULL_RTX;
4571
4572 do_pending_stack_adjust ();
4573 last = get_last_insn ();
4574 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4575 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4576 &comparison, &cmode);
4577 if (comparison)
4578 {
4579 struct expand_operand ops[4];
4580
4581 create_output_operand (&ops[0], target, mode);
4582 create_fixed_operand (&ops[1], comparison);
4583 create_input_operand (&ops[2], op2, mode);
4584 create_input_operand (&ops[3], op3, mode);
4585 if (maybe_expand_insn (icode, 4, ops))
4586 {
4587 if (ops[0].value != target)
4588 convert_move (target, ops[0].value, false);
4589 return target;
4590 }
4591 }
4592 delete_insns_since (last);
4593 return NULL_RTX;
4594 }
4595
4596 /* Return nonzero if a conditional move of mode MODE is supported.
4597
4598 This function is for combine so it can tell whether an insn that looks
4599 like a conditional move is actually supported by the hardware. If we
4600 guess wrong we lose a bit on optimization, but that's it. */
4601 /* ??? sparc64 supports conditionally moving integers values based on fp
4602 comparisons, and vice versa. How do we handle them? */
4603
4604 int
4605 can_conditionally_move_p (enum machine_mode mode)
4606 {
4607 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4608 return 1;
4609
4610 return 0;
4611 }
4612
4613 #endif /* HAVE_conditional_move */
4614
4615 /* Emit a conditional addition instruction if the machine supports one for that
4616 condition and machine mode.
4617
4618 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4619 the mode to use should they be constants. If it is VOIDmode, they cannot
4620 both be constants.
4621
4622 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4623 should be stored there. MODE is the mode to use should they be constants.
4624 If it is VOIDmode, they cannot both be constants.
4625
4626 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4627 is not supported. */
4628
4629 rtx
4630 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4631 enum machine_mode cmode, rtx op2, rtx op3,
4632 enum machine_mode mode, int unsignedp)
4633 {
4634 rtx tem, comparison, last;
4635 enum insn_code icode;
4636
4637 /* If one operand is constant, make it the second one. Only do this
4638 if the other operand is not constant as well. */
4639
4640 if (swap_commutative_operands_p (op0, op1))
4641 {
4642 tem = op0;
4643 op0 = op1;
4644 op1 = tem;
4645 code = swap_condition (code);
4646 }
4647
4648 /* get_condition will prefer to generate LT and GT even if the old
4649 comparison was against zero, so undo that canonicalization here since
4650 comparisons against zero are cheaper. */
4651 if (code == LT && op1 == const1_rtx)
4652 code = LE, op1 = const0_rtx;
4653 else if (code == GT && op1 == constm1_rtx)
4654 code = GE, op1 = const0_rtx;
4655
4656 if (cmode == VOIDmode)
4657 cmode = GET_MODE (op0);
4658
4659 if (mode == VOIDmode)
4660 mode = GET_MODE (op2);
4661
4662 icode = optab_handler (addcc_optab, mode);
4663
4664 if (icode == CODE_FOR_nothing)
4665 return 0;
4666
4667 if (!target)
4668 target = gen_reg_rtx (mode);
4669
4670 code = unsignedp ? unsigned_condition (code) : code;
4671 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4672
4673 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4674 return NULL and let the caller figure out how best to deal with this
4675 situation. */
4676 if (!COMPARISON_P (comparison))
4677 return NULL_RTX;
4678
4679 do_pending_stack_adjust ();
4680 last = get_last_insn ();
4681 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4682 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4683 &comparison, &cmode);
4684 if (comparison)
4685 {
4686 struct expand_operand ops[4];
4687
4688 create_output_operand (&ops[0], target, mode);
4689 create_fixed_operand (&ops[1], comparison);
4690 create_input_operand (&ops[2], op2, mode);
4691 create_input_operand (&ops[3], op3, mode);
4692 if (maybe_expand_insn (icode, 4, ops))
4693 {
4694 if (ops[0].value != target)
4695 convert_move (target, ops[0].value, false);
4696 return target;
4697 }
4698 }
4699 delete_insns_since (last);
4700 return NULL_RTX;
4701 }
4702 \f
4703 /* These functions attempt to generate an insn body, rather than
4704 emitting the insn, but if the gen function already emits them, we
4705 make no attempt to turn them back into naked patterns. */
4706
4707 /* Generate and return an insn body to add Y to X. */
4708
4709 rtx
4710 gen_add2_insn (rtx x, rtx y)
4711 {
4712 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4713
4714 gcc_assert (insn_operand_matches (icode, 0, x));
4715 gcc_assert (insn_operand_matches (icode, 1, x));
4716 gcc_assert (insn_operand_matches (icode, 2, y));
4717
4718 return GEN_FCN (icode) (x, x, y);
4719 }
4720
4721 /* Generate and return an insn body to add r1 and c,
4722 storing the result in r0. */
4723
4724 rtx
4725 gen_add3_insn (rtx r0, rtx r1, rtx c)
4726 {
4727 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4728
4729 if (icode == CODE_FOR_nothing
4730 || !insn_operand_matches (icode, 0, r0)
4731 || !insn_operand_matches (icode, 1, r1)
4732 || !insn_operand_matches (icode, 2, c))
4733 return NULL_RTX;
4734
4735 return GEN_FCN (icode) (r0, r1, c);
4736 }
4737
4738 int
4739 have_add2_insn (rtx x, rtx y)
4740 {
4741 enum insn_code icode;
4742
4743 gcc_assert (GET_MODE (x) != VOIDmode);
4744
4745 icode = optab_handler (add_optab, GET_MODE (x));
4746
4747 if (icode == CODE_FOR_nothing)
4748 return 0;
4749
4750 if (!insn_operand_matches (icode, 0, x)
4751 || !insn_operand_matches (icode, 1, x)
4752 || !insn_operand_matches (icode, 2, y))
4753 return 0;
4754
4755 return 1;
4756 }
4757
4758 /* Generate and return an insn body to subtract Y from X. */
4759
4760 rtx
4761 gen_sub2_insn (rtx x, rtx y)
4762 {
4763 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4764
4765 gcc_assert (insn_operand_matches (icode, 0, x));
4766 gcc_assert (insn_operand_matches (icode, 1, x));
4767 gcc_assert (insn_operand_matches (icode, 2, y));
4768
4769 return GEN_FCN (icode) (x, x, y);
4770 }
4771
4772 /* Generate and return an insn body to subtract r1 and c,
4773 storing the result in r0. */
4774
4775 rtx
4776 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4777 {
4778 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4779
4780 if (icode == CODE_FOR_nothing
4781 || !insn_operand_matches (icode, 0, r0)
4782 || !insn_operand_matches (icode, 1, r1)
4783 || !insn_operand_matches (icode, 2, c))
4784 return NULL_RTX;
4785
4786 return GEN_FCN (icode) (r0, r1, c);
4787 }
4788
4789 int
4790 have_sub2_insn (rtx x, rtx y)
4791 {
4792 enum insn_code icode;
4793
4794 gcc_assert (GET_MODE (x) != VOIDmode);
4795
4796 icode = optab_handler (sub_optab, GET_MODE (x));
4797
4798 if (icode == CODE_FOR_nothing)
4799 return 0;
4800
4801 if (!insn_operand_matches (icode, 0, x)
4802 || !insn_operand_matches (icode, 1, x)
4803 || !insn_operand_matches (icode, 2, y))
4804 return 0;
4805
4806 return 1;
4807 }
4808
4809 /* Generate the body of an instruction to copy Y into X.
4810 It may be a list of insns, if one insn isn't enough. */
4811
4812 rtx
4813 gen_move_insn (rtx x, rtx y)
4814 {
4815 rtx seq;
4816
4817 start_sequence ();
4818 emit_move_insn_1 (x, y);
4819 seq = get_insns ();
4820 end_sequence ();
4821 return seq;
4822 }
4823 \f
4824 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4825 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4826 no such operation exists, CODE_FOR_nothing will be returned. */
4827
4828 enum insn_code
4829 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4830 int unsignedp)
4831 {
4832 convert_optab tab;
4833 #ifdef HAVE_ptr_extend
4834 if (unsignedp < 0)
4835 return CODE_FOR_ptr_extend;
4836 #endif
4837
4838 tab = unsignedp ? zext_optab : sext_optab;
4839 return convert_optab_handler (tab, to_mode, from_mode);
4840 }
4841
4842 /* Generate the body of an insn to extend Y (with mode MFROM)
4843 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4844
4845 rtx
4846 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4847 enum machine_mode mfrom, int unsignedp)
4848 {
4849 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4850 return GEN_FCN (icode) (x, y);
4851 }
4852 \f
4853 /* can_fix_p and can_float_p say whether the target machine
4854 can directly convert a given fixed point type to
4855 a given floating point type, or vice versa.
4856 The returned value is the CODE_FOR_... value to use,
4857 or CODE_FOR_nothing if these modes cannot be directly converted.
4858
4859 *TRUNCP_PTR is set to 1 if it is necessary to output
4860 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4861
4862 static enum insn_code
4863 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4864 int unsignedp, int *truncp_ptr)
4865 {
4866 convert_optab tab;
4867 enum insn_code icode;
4868
4869 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4870 icode = convert_optab_handler (tab, fixmode, fltmode);
4871 if (icode != CODE_FOR_nothing)
4872 {
4873 *truncp_ptr = 0;
4874 return icode;
4875 }
4876
4877 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4878 for this to work. We need to rework the fix* and ftrunc* patterns
4879 and documentation. */
4880 tab = unsignedp ? ufix_optab : sfix_optab;
4881 icode = convert_optab_handler (tab, fixmode, fltmode);
4882 if (icode != CODE_FOR_nothing
4883 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4884 {
4885 *truncp_ptr = 1;
4886 return icode;
4887 }
4888
4889 *truncp_ptr = 0;
4890 return CODE_FOR_nothing;
4891 }
4892
4893 enum insn_code
4894 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4895 int unsignedp)
4896 {
4897 convert_optab tab;
4898
4899 tab = unsignedp ? ufloat_optab : sfloat_optab;
4900 return convert_optab_handler (tab, fltmode, fixmode);
4901 }
4902
4903 /* Function supportable_convert_operation
4904
4905 Check whether an operation represented by the code CODE is a
4906 convert operation that is supported by the target platform in
4907 vector form (i.e., when operating on arguments of type VECTYPE_IN
4908 producing a result of type VECTYPE_OUT).
4909
4910 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4911 This function checks if these operations are supported
4912 by the target platform either directly (via vector tree-codes), or via
4913 target builtins.
4914
4915 Output:
4916 - CODE1 is code of vector operation to be used when
4917 vectorizing the operation, if available.
4918 - DECL is decl of target builtin functions to be used
4919 when vectorizing the operation, if available. In this case,
4920 CODE1 is CALL_EXPR. */
4921
4922 bool
4923 supportable_convert_operation (enum tree_code code,
4924 tree vectype_out, tree vectype_in,
4925 tree *decl, enum tree_code *code1)
4926 {
4927 enum machine_mode m1,m2;
4928 int truncp;
4929
4930 m1 = TYPE_MODE (vectype_out);
4931 m2 = TYPE_MODE (vectype_in);
4932
4933 /* First check if we can done conversion directly. */
4934 if ((code == FIX_TRUNC_EXPR
4935 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4936 != CODE_FOR_nothing)
4937 || (code == FLOAT_EXPR
4938 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4939 != CODE_FOR_nothing))
4940 {
4941 *code1 = code;
4942 return true;
4943 }
4944
4945 /* Now check for builtin. */
4946 if (targetm.vectorize.builtin_conversion
4947 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4948 {
4949 *code1 = CALL_EXPR;
4950 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4951 return true;
4952 }
4953 return false;
4954 }
4955
4956 \f
4957 /* Generate code to convert FROM to floating point
4958 and store in TO. FROM must be fixed point and not VOIDmode.
4959 UNSIGNEDP nonzero means regard FROM as unsigned.
4960 Normally this is done by correcting the final value
4961 if it is negative. */
4962
4963 void
4964 expand_float (rtx to, rtx from, int unsignedp)
4965 {
4966 enum insn_code icode;
4967 rtx target = to;
4968 enum machine_mode fmode, imode;
4969 bool can_do_signed = false;
4970
4971 /* Crash now, because we won't be able to decide which mode to use. */
4972 gcc_assert (GET_MODE (from) != VOIDmode);
4973
4974 /* Look for an insn to do the conversion. Do it in the specified
4975 modes if possible; otherwise convert either input, output or both to
4976 wider mode. If the integer mode is wider than the mode of FROM,
4977 we can do the conversion signed even if the input is unsigned. */
4978
4979 for (fmode = GET_MODE (to); fmode != VOIDmode;
4980 fmode = GET_MODE_WIDER_MODE (fmode))
4981 for (imode = GET_MODE (from); imode != VOIDmode;
4982 imode = GET_MODE_WIDER_MODE (imode))
4983 {
4984 int doing_unsigned = unsignedp;
4985
4986 if (fmode != GET_MODE (to)
4987 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4988 continue;
4989
4990 icode = can_float_p (fmode, imode, unsignedp);
4991 if (icode == CODE_FOR_nothing && unsignedp)
4992 {
4993 enum insn_code scode = can_float_p (fmode, imode, 0);
4994 if (scode != CODE_FOR_nothing)
4995 can_do_signed = true;
4996 if (imode != GET_MODE (from))
4997 icode = scode, doing_unsigned = 0;
4998 }
4999
5000 if (icode != CODE_FOR_nothing)
5001 {
5002 if (imode != GET_MODE (from))
5003 from = convert_to_mode (imode, from, unsignedp);
5004
5005 if (fmode != GET_MODE (to))
5006 target = gen_reg_rtx (fmode);
5007
5008 emit_unop_insn (icode, target, from,
5009 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5010
5011 if (target != to)
5012 convert_move (to, target, 0);
5013 return;
5014 }
5015 }
5016
5017 /* Unsigned integer, and no way to convert directly. Convert as signed,
5018 then unconditionally adjust the result. */
5019 if (unsignedp && can_do_signed)
5020 {
5021 rtx label = gen_label_rtx ();
5022 rtx temp;
5023 REAL_VALUE_TYPE offset;
5024
5025 /* Look for a usable floating mode FMODE wider than the source and at
5026 least as wide as the target. Using FMODE will avoid rounding woes
5027 with unsigned values greater than the signed maximum value. */
5028
5029 for (fmode = GET_MODE (to); fmode != VOIDmode;
5030 fmode = GET_MODE_WIDER_MODE (fmode))
5031 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5032 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5033 break;
5034
5035 if (fmode == VOIDmode)
5036 {
5037 /* There is no such mode. Pretend the target is wide enough. */
5038 fmode = GET_MODE (to);
5039
5040 /* Avoid double-rounding when TO is narrower than FROM. */
5041 if ((significand_size (fmode) + 1)
5042 < GET_MODE_PRECISION (GET_MODE (from)))
5043 {
5044 rtx temp1;
5045 rtx neglabel = gen_label_rtx ();
5046
5047 /* Don't use TARGET if it isn't a register, is a hard register,
5048 or is the wrong mode. */
5049 if (!REG_P (target)
5050 || REGNO (target) < FIRST_PSEUDO_REGISTER
5051 || GET_MODE (target) != fmode)
5052 target = gen_reg_rtx (fmode);
5053
5054 imode = GET_MODE (from);
5055 do_pending_stack_adjust ();
5056
5057 /* Test whether the sign bit is set. */
5058 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5059 0, neglabel);
5060
5061 /* The sign bit is not set. Convert as signed. */
5062 expand_float (target, from, 0);
5063 emit_jump_insn (gen_jump (label));
5064 emit_barrier ();
5065
5066 /* The sign bit is set.
5067 Convert to a usable (positive signed) value by shifting right
5068 one bit, while remembering if a nonzero bit was shifted
5069 out; i.e., compute (from & 1) | (from >> 1). */
5070
5071 emit_label (neglabel);
5072 temp = expand_binop (imode, and_optab, from, const1_rtx,
5073 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5074 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5075 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5076 OPTAB_LIB_WIDEN);
5077 expand_float (target, temp, 0);
5078
5079 /* Multiply by 2 to undo the shift above. */
5080 temp = expand_binop (fmode, add_optab, target, target,
5081 target, 0, OPTAB_LIB_WIDEN);
5082 if (temp != target)
5083 emit_move_insn (target, temp);
5084
5085 do_pending_stack_adjust ();
5086 emit_label (label);
5087 goto done;
5088 }
5089 }
5090
5091 /* If we are about to do some arithmetic to correct for an
5092 unsigned operand, do it in a pseudo-register. */
5093
5094 if (GET_MODE (to) != fmode
5095 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5096 target = gen_reg_rtx (fmode);
5097
5098 /* Convert as signed integer to floating. */
5099 expand_float (target, from, 0);
5100
5101 /* If FROM is negative (and therefore TO is negative),
5102 correct its value by 2**bitwidth. */
5103
5104 do_pending_stack_adjust ();
5105 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5106 0, label);
5107
5108
5109 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5110 temp = expand_binop (fmode, add_optab, target,
5111 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5112 target, 0, OPTAB_LIB_WIDEN);
5113 if (temp != target)
5114 emit_move_insn (target, temp);
5115
5116 do_pending_stack_adjust ();
5117 emit_label (label);
5118 goto done;
5119 }
5120
5121 /* No hardware instruction available; call a library routine. */
5122 {
5123 rtx libfunc;
5124 rtx insns;
5125 rtx value;
5126 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5127
5128 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5129 from = convert_to_mode (SImode, from, unsignedp);
5130
5131 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5132 gcc_assert (libfunc);
5133
5134 start_sequence ();
5135
5136 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5137 GET_MODE (to), 1, from,
5138 GET_MODE (from));
5139 insns = get_insns ();
5140 end_sequence ();
5141
5142 emit_libcall_block (insns, target, value,
5143 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5144 GET_MODE (to), from));
5145 }
5146
5147 done:
5148
5149 /* Copy result to requested destination
5150 if we have been computing in a temp location. */
5151
5152 if (target != to)
5153 {
5154 if (GET_MODE (target) == GET_MODE (to))
5155 emit_move_insn (to, target);
5156 else
5157 convert_move (to, target, 0);
5158 }
5159 }
5160 \f
5161 /* Generate code to convert FROM to fixed point and store in TO. FROM
5162 must be floating point. */
5163
5164 void
5165 expand_fix (rtx to, rtx from, int unsignedp)
5166 {
5167 enum insn_code icode;
5168 rtx target = to;
5169 enum machine_mode fmode, imode;
5170 int must_trunc = 0;
5171
5172 /* We first try to find a pair of modes, one real and one integer, at
5173 least as wide as FROM and TO, respectively, in which we can open-code
5174 this conversion. If the integer mode is wider than the mode of TO,
5175 we can do the conversion either signed or unsigned. */
5176
5177 for (fmode = GET_MODE (from); fmode != VOIDmode;
5178 fmode = GET_MODE_WIDER_MODE (fmode))
5179 for (imode = GET_MODE (to); imode != VOIDmode;
5180 imode = GET_MODE_WIDER_MODE (imode))
5181 {
5182 int doing_unsigned = unsignedp;
5183
5184 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5185 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5186 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5187
5188 if (icode != CODE_FOR_nothing)
5189 {
5190 rtx last = get_last_insn ();
5191 if (fmode != GET_MODE (from))
5192 from = convert_to_mode (fmode, from, 0);
5193
5194 if (must_trunc)
5195 {
5196 rtx temp = gen_reg_rtx (GET_MODE (from));
5197 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5198 temp, 0);
5199 }
5200
5201 if (imode != GET_MODE (to))
5202 target = gen_reg_rtx (imode);
5203
5204 if (maybe_emit_unop_insn (icode, target, from,
5205 doing_unsigned ? UNSIGNED_FIX : FIX))
5206 {
5207 if (target != to)
5208 convert_move (to, target, unsignedp);
5209 return;
5210 }
5211 delete_insns_since (last);
5212 }
5213 }
5214
5215 /* For an unsigned conversion, there is one more way to do it.
5216 If we have a signed conversion, we generate code that compares
5217 the real value to the largest representable positive number. If if
5218 is smaller, the conversion is done normally. Otherwise, subtract
5219 one plus the highest signed number, convert, and add it back.
5220
5221 We only need to check all real modes, since we know we didn't find
5222 anything with a wider integer mode.
5223
5224 This code used to extend FP value into mode wider than the destination.
5225 This is needed for decimal float modes which cannot accurately
5226 represent one plus the highest signed number of the same size, but
5227 not for binary modes. Consider, for instance conversion from SFmode
5228 into DImode.
5229
5230 The hot path through the code is dealing with inputs smaller than 2^63
5231 and doing just the conversion, so there is no bits to lose.
5232
5233 In the other path we know the value is positive in the range 2^63..2^64-1
5234 inclusive. (as for other input overflow happens and result is undefined)
5235 So we know that the most important bit set in mantissa corresponds to
5236 2^63. The subtraction of 2^63 should not generate any rounding as it
5237 simply clears out that bit. The rest is trivial. */
5238
5239 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5240 for (fmode = GET_MODE (from); fmode != VOIDmode;
5241 fmode = GET_MODE_WIDER_MODE (fmode))
5242 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5243 && (!DECIMAL_FLOAT_MODE_P (fmode)
5244 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5245 {
5246 int bitsize;
5247 REAL_VALUE_TYPE offset;
5248 rtx limit, lab1, lab2, insn;
5249
5250 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5251 real_2expN (&offset, bitsize - 1, fmode);
5252 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5253 lab1 = gen_label_rtx ();
5254 lab2 = gen_label_rtx ();
5255
5256 if (fmode != GET_MODE (from))
5257 from = convert_to_mode (fmode, from, 0);
5258
5259 /* See if we need to do the subtraction. */
5260 do_pending_stack_adjust ();
5261 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5262 0, lab1);
5263
5264 /* If not, do the signed "fix" and branch around fixup code. */
5265 expand_fix (to, from, 0);
5266 emit_jump_insn (gen_jump (lab2));
5267 emit_barrier ();
5268
5269 /* Otherwise, subtract 2**(N-1), convert to signed number,
5270 then add 2**(N-1). Do the addition using XOR since this
5271 will often generate better code. */
5272 emit_label (lab1);
5273 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5274 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5275 expand_fix (to, target, 0);
5276 target = expand_binop (GET_MODE (to), xor_optab, to,
5277 gen_int_mode
5278 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5279 GET_MODE (to)),
5280 to, 1, OPTAB_LIB_WIDEN);
5281
5282 if (target != to)
5283 emit_move_insn (to, target);
5284
5285 emit_label (lab2);
5286
5287 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5288 {
5289 /* Make a place for a REG_NOTE and add it. */
5290 insn = emit_move_insn (to, to);
5291 set_dst_reg_note (insn, REG_EQUAL,
5292 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5293 copy_rtx (from)),
5294 to);
5295 }
5296
5297 return;
5298 }
5299
5300 /* We can't do it with an insn, so use a library call. But first ensure
5301 that the mode of TO is at least as wide as SImode, since those are the
5302 only library calls we know about. */
5303
5304 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5305 {
5306 target = gen_reg_rtx (SImode);
5307
5308 expand_fix (target, from, unsignedp);
5309 }
5310 else
5311 {
5312 rtx insns;
5313 rtx value;
5314 rtx libfunc;
5315
5316 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5317 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5318 gcc_assert (libfunc);
5319
5320 start_sequence ();
5321
5322 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5323 GET_MODE (to), 1, from,
5324 GET_MODE (from));
5325 insns = get_insns ();
5326 end_sequence ();
5327
5328 emit_libcall_block (insns, target, value,
5329 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5330 GET_MODE (to), from));
5331 }
5332
5333 if (target != to)
5334 {
5335 if (GET_MODE (to) == GET_MODE (target))
5336 emit_move_insn (to, target);
5337 else
5338 convert_move (to, target, 0);
5339 }
5340 }
5341
5342 /* Generate code to convert FROM or TO a fixed-point.
5343 If UINTP is true, either TO or FROM is an unsigned integer.
5344 If SATP is true, we need to saturate the result. */
5345
5346 void
5347 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5348 {
5349 enum machine_mode to_mode = GET_MODE (to);
5350 enum machine_mode from_mode = GET_MODE (from);
5351 convert_optab tab;
5352 enum rtx_code this_code;
5353 enum insn_code code;
5354 rtx insns, value;
5355 rtx libfunc;
5356
5357 if (to_mode == from_mode)
5358 {
5359 emit_move_insn (to, from);
5360 return;
5361 }
5362
5363 if (uintp)
5364 {
5365 tab = satp ? satfractuns_optab : fractuns_optab;
5366 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5367 }
5368 else
5369 {
5370 tab = satp ? satfract_optab : fract_optab;
5371 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5372 }
5373 code = convert_optab_handler (tab, to_mode, from_mode);
5374 if (code != CODE_FOR_nothing)
5375 {
5376 emit_unop_insn (code, to, from, this_code);
5377 return;
5378 }
5379
5380 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5381 gcc_assert (libfunc);
5382
5383 start_sequence ();
5384 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5385 1, from, from_mode);
5386 insns = get_insns ();
5387 end_sequence ();
5388
5389 emit_libcall_block (insns, to, value,
5390 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5391 }
5392
5393 /* Generate code to convert FROM to fixed point and store in TO. FROM
5394 must be floating point, TO must be signed. Use the conversion optab
5395 TAB to do the conversion. */
5396
5397 bool
5398 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5399 {
5400 enum insn_code icode;
5401 rtx target = to;
5402 enum machine_mode fmode, imode;
5403
5404 /* We first try to find a pair of modes, one real and one integer, at
5405 least as wide as FROM and TO, respectively, in which we can open-code
5406 this conversion. If the integer mode is wider than the mode of TO,
5407 we can do the conversion either signed or unsigned. */
5408
5409 for (fmode = GET_MODE (from); fmode != VOIDmode;
5410 fmode = GET_MODE_WIDER_MODE (fmode))
5411 for (imode = GET_MODE (to); imode != VOIDmode;
5412 imode = GET_MODE_WIDER_MODE (imode))
5413 {
5414 icode = convert_optab_handler (tab, imode, fmode);
5415 if (icode != CODE_FOR_nothing)
5416 {
5417 rtx last = get_last_insn ();
5418 if (fmode != GET_MODE (from))
5419 from = convert_to_mode (fmode, from, 0);
5420
5421 if (imode != GET_MODE (to))
5422 target = gen_reg_rtx (imode);
5423
5424 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5425 {
5426 delete_insns_since (last);
5427 continue;
5428 }
5429 if (target != to)
5430 convert_move (to, target, 0);
5431 return true;
5432 }
5433 }
5434
5435 return false;
5436 }
5437 \f
5438 /* Report whether we have an instruction to perform the operation
5439 specified by CODE on operands of mode MODE. */
5440 int
5441 have_insn_for (enum rtx_code code, enum machine_mode mode)
5442 {
5443 return (code_to_optab (code)
5444 && (optab_handler (code_to_optab (code), mode)
5445 != CODE_FOR_nothing));
5446 }
5447
5448 /* Initialize the libfunc fields of an entire group of entries in some
5449 optab. Each entry is set equal to a string consisting of a leading
5450 pair of underscores followed by a generic operation name followed by
5451 a mode name (downshifted to lowercase) followed by a single character
5452 representing the number of operands for the given operation (which is
5453 usually one of the characters '2', '3', or '4').
5454
5455 OPTABLE is the table in which libfunc fields are to be initialized.
5456 OPNAME is the generic (string) name of the operation.
5457 SUFFIX is the character which specifies the number of operands for
5458 the given generic operation.
5459 MODE is the mode to generate for.
5460 */
5461
5462 static void
5463 gen_libfunc (optab optable, const char *opname, int suffix,
5464 enum machine_mode mode)
5465 {
5466 unsigned opname_len = strlen (opname);
5467 const char *mname = GET_MODE_NAME (mode);
5468 unsigned mname_len = strlen (mname);
5469 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5470 int len = prefix_len + opname_len + mname_len + 1 + 1;
5471 char *libfunc_name = XALLOCAVEC (char, len);
5472 char *p;
5473 const char *q;
5474
5475 p = libfunc_name;
5476 *p++ = '_';
5477 *p++ = '_';
5478 if (targetm.libfunc_gnu_prefix)
5479 {
5480 *p++ = 'g';
5481 *p++ = 'n';
5482 *p++ = 'u';
5483 *p++ = '_';
5484 }
5485 for (q = opname; *q; )
5486 *p++ = *q++;
5487 for (q = mname; *q; q++)
5488 *p++ = TOLOWER (*q);
5489 *p++ = suffix;
5490 *p = '\0';
5491
5492 set_optab_libfunc (optable, mode,
5493 ggc_alloc_string (libfunc_name, p - libfunc_name));
5494 }
5495
5496 /* Like gen_libfunc, but verify that integer operation is involved. */
5497
5498 void
5499 gen_int_libfunc (optab optable, const char *opname, char suffix,
5500 enum machine_mode mode)
5501 {
5502 int maxsize = 2 * BITS_PER_WORD;
5503
5504 if (GET_MODE_CLASS (mode) != MODE_INT)
5505 return;
5506 if (maxsize < LONG_LONG_TYPE_SIZE)
5507 maxsize = LONG_LONG_TYPE_SIZE;
5508 if (GET_MODE_CLASS (mode) != MODE_INT
5509 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5510 return;
5511 gen_libfunc (optable, opname, suffix, mode);
5512 }
5513
5514 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5515
5516 void
5517 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5518 enum machine_mode mode)
5519 {
5520 char *dec_opname;
5521
5522 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5523 gen_libfunc (optable, opname, suffix, mode);
5524 if (DECIMAL_FLOAT_MODE_P (mode))
5525 {
5526 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5527 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5528 depending on the low level floating format used. */
5529 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5530 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5531 gen_libfunc (optable, dec_opname, suffix, mode);
5532 }
5533 }
5534
5535 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5536
5537 void
5538 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5539 enum machine_mode mode)
5540 {
5541 if (!ALL_FIXED_POINT_MODE_P (mode))
5542 return;
5543 gen_libfunc (optable, opname, suffix, mode);
5544 }
5545
5546 /* Like gen_libfunc, but verify that signed fixed-point operation is
5547 involved. */
5548
5549 void
5550 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5551 enum machine_mode mode)
5552 {
5553 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5554 return;
5555 gen_libfunc (optable, opname, suffix, mode);
5556 }
5557
5558 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5559 involved. */
5560
5561 void
5562 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5563 enum machine_mode mode)
5564 {
5565 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5566 return;
5567 gen_libfunc (optable, opname, suffix, mode);
5568 }
5569
5570 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5571
5572 void
5573 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5574 enum machine_mode mode)
5575 {
5576 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5577 gen_fp_libfunc (optable, name, suffix, mode);
5578 if (INTEGRAL_MODE_P (mode))
5579 gen_int_libfunc (optable, name, suffix, mode);
5580 }
5581
5582 /* Like gen_libfunc, but verify that FP or INT operation is involved
5583 and add 'v' suffix for integer operation. */
5584
5585 void
5586 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5587 enum machine_mode mode)
5588 {
5589 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5590 gen_fp_libfunc (optable, name, suffix, mode);
5591 if (GET_MODE_CLASS (mode) == MODE_INT)
5592 {
5593 int len = strlen (name);
5594 char *v_name = XALLOCAVEC (char, len + 2);
5595 strcpy (v_name, name);
5596 v_name[len] = 'v';
5597 v_name[len + 1] = 0;
5598 gen_int_libfunc (optable, v_name, suffix, mode);
5599 }
5600 }
5601
5602 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5603 involved. */
5604
5605 void
5606 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5607 enum machine_mode mode)
5608 {
5609 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5610 gen_fp_libfunc (optable, name, suffix, mode);
5611 if (INTEGRAL_MODE_P (mode))
5612 gen_int_libfunc (optable, name, suffix, mode);
5613 if (ALL_FIXED_POINT_MODE_P (mode))
5614 gen_fixed_libfunc (optable, name, suffix, mode);
5615 }
5616
5617 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5618 involved. */
5619
5620 void
5621 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5622 enum machine_mode mode)
5623 {
5624 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5625 gen_fp_libfunc (optable, name, suffix, mode);
5626 if (INTEGRAL_MODE_P (mode))
5627 gen_int_libfunc (optable, name, suffix, mode);
5628 if (SIGNED_FIXED_POINT_MODE_P (mode))
5629 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5630 }
5631
5632 /* Like gen_libfunc, but verify that INT or FIXED operation is
5633 involved. */
5634
5635 void
5636 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5637 enum machine_mode mode)
5638 {
5639 if (INTEGRAL_MODE_P (mode))
5640 gen_int_libfunc (optable, name, suffix, mode);
5641 if (ALL_FIXED_POINT_MODE_P (mode))
5642 gen_fixed_libfunc (optable, name, suffix, mode);
5643 }
5644
5645 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5646 involved. */
5647
5648 void
5649 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5650 enum machine_mode mode)
5651 {
5652 if (INTEGRAL_MODE_P (mode))
5653 gen_int_libfunc (optable, name, suffix, mode);
5654 if (SIGNED_FIXED_POINT_MODE_P (mode))
5655 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5656 }
5657
5658 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5659 involved. */
5660
5661 void
5662 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5663 enum machine_mode mode)
5664 {
5665 if (INTEGRAL_MODE_P (mode))
5666 gen_int_libfunc (optable, name, suffix, mode);
5667 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5668 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5669 }
5670
5671 /* Initialize the libfunc fields of an entire group of entries of an
5672 inter-mode-class conversion optab. The string formation rules are
5673 similar to the ones for init_libfuncs, above, but instead of having
5674 a mode name and an operand count these functions have two mode names
5675 and no operand count. */
5676
5677 void
5678 gen_interclass_conv_libfunc (convert_optab tab,
5679 const char *opname,
5680 enum machine_mode tmode,
5681 enum machine_mode fmode)
5682 {
5683 size_t opname_len = strlen (opname);
5684 size_t mname_len = 0;
5685
5686 const char *fname, *tname;
5687 const char *q;
5688 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5689 char *libfunc_name, *suffix;
5690 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5691 char *p;
5692
5693 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5694 depends on which underlying decimal floating point format is used. */
5695 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5696
5697 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5698
5699 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5700 nondec_name[0] = '_';
5701 nondec_name[1] = '_';
5702 if (targetm.libfunc_gnu_prefix)
5703 {
5704 nondec_name[2] = 'g';
5705 nondec_name[3] = 'n';
5706 nondec_name[4] = 'u';
5707 nondec_name[5] = '_';
5708 }
5709
5710 memcpy (&nondec_name[prefix_len], opname, opname_len);
5711 nondec_suffix = nondec_name + opname_len + prefix_len;
5712
5713 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5714 dec_name[0] = '_';
5715 dec_name[1] = '_';
5716 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5717 memcpy (&dec_name[2+dec_len], opname, opname_len);
5718 dec_suffix = dec_name + dec_len + opname_len + 2;
5719
5720 fname = GET_MODE_NAME (fmode);
5721 tname = GET_MODE_NAME (tmode);
5722
5723 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5724 {
5725 libfunc_name = dec_name;
5726 suffix = dec_suffix;
5727 }
5728 else
5729 {
5730 libfunc_name = nondec_name;
5731 suffix = nondec_suffix;
5732 }
5733
5734 p = suffix;
5735 for (q = fname; *q; p++, q++)
5736 *p = TOLOWER (*q);
5737 for (q = tname; *q; p++, q++)
5738 *p = TOLOWER (*q);
5739
5740 *p = '\0';
5741
5742 set_conv_libfunc (tab, tmode, fmode,
5743 ggc_alloc_string (libfunc_name, p - libfunc_name));
5744 }
5745
5746 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5747 int->fp conversion. */
5748
5749 void
5750 gen_int_to_fp_conv_libfunc (convert_optab tab,
5751 const char *opname,
5752 enum machine_mode tmode,
5753 enum machine_mode fmode)
5754 {
5755 if (GET_MODE_CLASS (fmode) != MODE_INT)
5756 return;
5757 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5758 return;
5759 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5760 }
5761
5762 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5763 naming scheme. */
5764
5765 void
5766 gen_ufloat_conv_libfunc (convert_optab tab,
5767 const char *opname ATTRIBUTE_UNUSED,
5768 enum machine_mode tmode,
5769 enum machine_mode fmode)
5770 {
5771 if (DECIMAL_FLOAT_MODE_P (tmode))
5772 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5773 else
5774 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5775 }
5776
5777 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5778 fp->int conversion. */
5779
5780 void
5781 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5782 const char *opname,
5783 enum machine_mode tmode,
5784 enum machine_mode fmode)
5785 {
5786 if (GET_MODE_CLASS (fmode) != MODE_INT)
5787 return;
5788 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5789 return;
5790 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5791 }
5792
5793 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5794 fp->int conversion with no decimal floating point involved. */
5795
5796 void
5797 gen_fp_to_int_conv_libfunc (convert_optab tab,
5798 const char *opname,
5799 enum machine_mode tmode,
5800 enum machine_mode fmode)
5801 {
5802 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5803 return;
5804 if (GET_MODE_CLASS (tmode) != MODE_INT)
5805 return;
5806 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5807 }
5808
5809 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5810 The string formation rules are
5811 similar to the ones for init_libfunc, above. */
5812
5813 void
5814 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5815 enum machine_mode tmode, enum machine_mode fmode)
5816 {
5817 size_t opname_len = strlen (opname);
5818 size_t mname_len = 0;
5819
5820 const char *fname, *tname;
5821 const char *q;
5822 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5823 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5824 char *libfunc_name, *suffix;
5825 char *p;
5826
5827 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5828 depends on which underlying decimal floating point format is used. */
5829 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5830
5831 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5832
5833 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5834 nondec_name[0] = '_';
5835 nondec_name[1] = '_';
5836 if (targetm.libfunc_gnu_prefix)
5837 {
5838 nondec_name[2] = 'g';
5839 nondec_name[3] = 'n';
5840 nondec_name[4] = 'u';
5841 nondec_name[5] = '_';
5842 }
5843 memcpy (&nondec_name[prefix_len], opname, opname_len);
5844 nondec_suffix = nondec_name + opname_len + prefix_len;
5845
5846 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5847 dec_name[0] = '_';
5848 dec_name[1] = '_';
5849 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5850 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5851 dec_suffix = dec_name + dec_len + opname_len + 2;
5852
5853 fname = GET_MODE_NAME (fmode);
5854 tname = GET_MODE_NAME (tmode);
5855
5856 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5857 {
5858 libfunc_name = dec_name;
5859 suffix = dec_suffix;
5860 }
5861 else
5862 {
5863 libfunc_name = nondec_name;
5864 suffix = nondec_suffix;
5865 }
5866
5867 p = suffix;
5868 for (q = fname; *q; p++, q++)
5869 *p = TOLOWER (*q);
5870 for (q = tname; *q; p++, q++)
5871 *p = TOLOWER (*q);
5872
5873 *p++ = '2';
5874 *p = '\0';
5875
5876 set_conv_libfunc (tab, tmode, fmode,
5877 ggc_alloc_string (libfunc_name, p - libfunc_name));
5878 }
5879
5880 /* Pick proper libcall for trunc_optab. We need to chose if we do
5881 truncation or extension and interclass or intraclass. */
5882
5883 void
5884 gen_trunc_conv_libfunc (convert_optab tab,
5885 const char *opname,
5886 enum machine_mode tmode,
5887 enum machine_mode fmode)
5888 {
5889 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5890 return;
5891 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5892 return;
5893 if (tmode == fmode)
5894 return;
5895
5896 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5897 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5898 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5899
5900 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5901 return;
5902
5903 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5904 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5905 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5906 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5907 }
5908
5909 /* Pick proper libcall for extend_optab. We need to chose if we do
5910 truncation or extension and interclass or intraclass. */
5911
5912 void
5913 gen_extend_conv_libfunc (convert_optab tab,
5914 const char *opname ATTRIBUTE_UNUSED,
5915 enum machine_mode tmode,
5916 enum machine_mode fmode)
5917 {
5918 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5919 return;
5920 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5921 return;
5922 if (tmode == fmode)
5923 return;
5924
5925 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5926 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5927 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5928
5929 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5930 return;
5931
5932 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5933 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5934 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5935 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5936 }
5937
5938 /* Pick proper libcall for fract_optab. We need to chose if we do
5939 interclass or intraclass. */
5940
5941 void
5942 gen_fract_conv_libfunc (convert_optab tab,
5943 const char *opname,
5944 enum machine_mode tmode,
5945 enum machine_mode fmode)
5946 {
5947 if (tmode == fmode)
5948 return;
5949 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5950 return;
5951
5952 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5953 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5954 else
5955 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5956 }
5957
5958 /* Pick proper libcall for fractuns_optab. */
5959
5960 void
5961 gen_fractuns_conv_libfunc (convert_optab tab,
5962 const char *opname,
5963 enum machine_mode tmode,
5964 enum machine_mode fmode)
5965 {
5966 if (tmode == fmode)
5967 return;
5968 /* One mode must be a fixed-point mode, and the other must be an integer
5969 mode. */
5970 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5971 || (ALL_FIXED_POINT_MODE_P (fmode)
5972 && GET_MODE_CLASS (tmode) == MODE_INT)))
5973 return;
5974
5975 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5976 }
5977
5978 /* Pick proper libcall for satfract_optab. We need to chose if we do
5979 interclass or intraclass. */
5980
5981 void
5982 gen_satfract_conv_libfunc (convert_optab tab,
5983 const char *opname,
5984 enum machine_mode tmode,
5985 enum machine_mode fmode)
5986 {
5987 if (tmode == fmode)
5988 return;
5989 /* TMODE must be a fixed-point mode. */
5990 if (!ALL_FIXED_POINT_MODE_P (tmode))
5991 return;
5992
5993 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5994 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5995 else
5996 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5997 }
5998
5999 /* Pick proper libcall for satfractuns_optab. */
6000
6001 void
6002 gen_satfractuns_conv_libfunc (convert_optab tab,
6003 const char *opname,
6004 enum machine_mode tmode,
6005 enum machine_mode fmode)
6006 {
6007 if (tmode == fmode)
6008 return;
6009 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6010 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6011 return;
6012
6013 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6014 }
6015
6016 /* A table of previously-created libfuncs, hashed by name. */
6017 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6018
6019 /* Hashtable callbacks for libfunc_decls. */
6020
6021 static hashval_t
6022 libfunc_decl_hash (const void *entry)
6023 {
6024 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6025 }
6026
6027 static int
6028 libfunc_decl_eq (const void *entry1, const void *entry2)
6029 {
6030 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6031 }
6032
6033 /* Build a decl for a libfunc named NAME. */
6034
6035 tree
6036 build_libfunc_function (const char *name)
6037 {
6038 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6039 get_identifier (name),
6040 build_function_type (integer_type_node, NULL_TREE));
6041 /* ??? We don't have any type information except for this is
6042 a function. Pretend this is "int foo()". */
6043 DECL_ARTIFICIAL (decl) = 1;
6044 DECL_EXTERNAL (decl) = 1;
6045 TREE_PUBLIC (decl) = 1;
6046 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6047
6048 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6049 are the flags assigned by targetm.encode_section_info. */
6050 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6051
6052 return decl;
6053 }
6054
6055 rtx
6056 init_one_libfunc (const char *name)
6057 {
6058 tree id, decl;
6059 void **slot;
6060 hashval_t hash;
6061
6062 if (libfunc_decls == NULL)
6063 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6064 libfunc_decl_eq, NULL);
6065
6066 /* See if we have already created a libfunc decl for this function. */
6067 id = get_identifier (name);
6068 hash = IDENTIFIER_HASH_VALUE (id);
6069 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6070 decl = (tree) *slot;
6071 if (decl == NULL)
6072 {
6073 /* Create a new decl, so that it can be passed to
6074 targetm.encode_section_info. */
6075 decl = build_libfunc_function (name);
6076 *slot = decl;
6077 }
6078 return XEXP (DECL_RTL (decl), 0);
6079 }
6080
6081 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6082
6083 rtx
6084 set_user_assembler_libfunc (const char *name, const char *asmspec)
6085 {
6086 tree id, decl;
6087 void **slot;
6088 hashval_t hash;
6089
6090 id = get_identifier (name);
6091 hash = IDENTIFIER_HASH_VALUE (id);
6092 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6093 gcc_assert (slot);
6094 decl = (tree) *slot;
6095 set_user_assembler_name (decl, asmspec);
6096 return XEXP (DECL_RTL (decl), 0);
6097 }
6098
6099 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6100 MODE to NAME, which should be either 0 or a string constant. */
6101 void
6102 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6103 {
6104 rtx val;
6105 struct libfunc_entry e;
6106 struct libfunc_entry **slot;
6107
6108 e.op = op;
6109 e.mode1 = mode;
6110 e.mode2 = VOIDmode;
6111
6112 if (name)
6113 val = init_one_libfunc (name);
6114 else
6115 val = 0;
6116 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6117 if (*slot == NULL)
6118 *slot = ggc_alloc_libfunc_entry ();
6119 (*slot)->op = op;
6120 (*slot)->mode1 = mode;
6121 (*slot)->mode2 = VOIDmode;
6122 (*slot)->libfunc = val;
6123 }
6124
6125 /* Call this to reset the function entry for one conversion optab
6126 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6127 either 0 or a string constant. */
6128 void
6129 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6130 enum machine_mode fmode, const char *name)
6131 {
6132 rtx val;
6133 struct libfunc_entry e;
6134 struct libfunc_entry **slot;
6135
6136 e.op = optab;
6137 e.mode1 = tmode;
6138 e.mode2 = fmode;
6139
6140 if (name)
6141 val = init_one_libfunc (name);
6142 else
6143 val = 0;
6144 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6145 if (*slot == NULL)
6146 *slot = ggc_alloc_libfunc_entry ();
6147 (*slot)->op = optab;
6148 (*slot)->mode1 = tmode;
6149 (*slot)->mode2 = fmode;
6150 (*slot)->libfunc = val;
6151 }
6152
6153 /* Call this to initialize the contents of the optabs
6154 appropriately for the current target machine. */
6155
6156 void
6157 init_optabs (void)
6158 {
6159 if (libfunc_hash)
6160 htab_empty (libfunc_hash);
6161 else
6162 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6163
6164 /* Fill in the optabs with the insns we support. */
6165 init_all_optabs (this_fn_optabs);
6166
6167 /* The ffs function operates on `int'. Fall back on it if we do not
6168 have a libgcc2 function for that width. */
6169 if (INT_TYPE_SIZE < BITS_PER_WORD)
6170 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6171 "ffs");
6172
6173 /* Explicitly initialize the bswap libfuncs since we need them to be
6174 valid for things other than word_mode. */
6175 if (targetm.libfunc_gnu_prefix)
6176 {
6177 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6178 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6179 }
6180 else
6181 {
6182 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6183 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6184 }
6185
6186 /* Use cabs for double complex abs, since systems generally have cabs.
6187 Don't define any libcall for float complex, so that cabs will be used. */
6188 if (complex_double_type_node)
6189 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6190 "cabs");
6191
6192 abort_libfunc = init_one_libfunc ("abort");
6193 memcpy_libfunc = init_one_libfunc ("memcpy");
6194 memmove_libfunc = init_one_libfunc ("memmove");
6195 memcmp_libfunc = init_one_libfunc ("memcmp");
6196 memset_libfunc = init_one_libfunc ("memset");
6197 setbits_libfunc = init_one_libfunc ("__setbits");
6198
6199 #ifndef DONT_USE_BUILTIN_SETJMP
6200 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6201 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6202 #else
6203 setjmp_libfunc = init_one_libfunc ("setjmp");
6204 longjmp_libfunc = init_one_libfunc ("longjmp");
6205 #endif
6206 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6207 unwind_sjlj_unregister_libfunc
6208 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6209
6210 /* For function entry/exit instrumentation. */
6211 profile_function_entry_libfunc
6212 = init_one_libfunc ("__cyg_profile_func_enter");
6213 profile_function_exit_libfunc
6214 = init_one_libfunc ("__cyg_profile_func_exit");
6215
6216 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6217
6218 /* Allow the target to add more libcalls or rename some, etc. */
6219 targetm.init_libfuncs ();
6220 }
6221
6222 /* Use the current target and options to initialize
6223 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6224
6225 void
6226 init_tree_optimization_optabs (tree optnode)
6227 {
6228 /* Quick exit if we have already computed optabs for this target. */
6229 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6230 return;
6231
6232 /* Forget any previous information and set up for the current target. */
6233 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6234 struct target_optabs *tmp_optabs = (struct target_optabs *)
6235 TREE_OPTIMIZATION_OPTABS (optnode);
6236 if (tmp_optabs)
6237 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6238 else
6239 tmp_optabs = (struct target_optabs *)
6240 ggc_alloc_atomic (sizeof (struct target_optabs));
6241
6242 /* Generate a new set of optabs into tmp_optabs. */
6243 init_all_optabs (tmp_optabs);
6244
6245 /* If the optabs changed, record it. */
6246 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6247 TREE_OPTIMIZATION_OPTABS (optnode) = (unsigned char *) tmp_optabs;
6248 else
6249 {
6250 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6251 ggc_free (tmp_optabs);
6252 }
6253 }
6254
6255 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6256 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6257
6258 static void
6259 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6260 {
6261 enum machine_mode mode;
6262 char buf[64];
6263 size_t len = strlen (base);
6264 int i;
6265
6266 gcc_assert (max <= 8);
6267 gcc_assert (len + 3 < sizeof (buf));
6268
6269 memcpy (buf, base, len);
6270 buf[len] = '_';
6271 buf[len + 1] = '0';
6272 buf[len + 2] = '\0';
6273
6274 mode = QImode;
6275 for (i = 1; i <= max; i *= 2)
6276 {
6277 buf[len + 1] = '0' + i;
6278 set_optab_libfunc (tab, mode, buf);
6279 mode = GET_MODE_2XWIDER_MODE (mode);
6280 }
6281 }
6282
6283 void
6284 init_sync_libfuncs (int max)
6285 {
6286 if (!flag_sync_libcalls)
6287 return;
6288
6289 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6290 "__sync_val_compare_and_swap", max);
6291 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6292 "__sync_lock_test_and_set", max);
6293
6294 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6295 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6296 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6297 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6298 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6299 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6300
6301 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6302 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6303 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6304 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6305 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6306 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6307 }
6308
6309 /* Print information about the current contents of the optabs on
6310 STDERR. */
6311
6312 DEBUG_FUNCTION void
6313 debug_optab_libfuncs (void)
6314 {
6315 int i, j, k;
6316
6317 /* Dump the arithmetic optabs. */
6318 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6319 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6320 {
6321 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6322 if (l)
6323 {
6324 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6325 fprintf (stderr, "%s\t%s:\t%s\n",
6326 GET_RTX_NAME (optab_to_code ((optab) i)),
6327 GET_MODE_NAME (j),
6328 XSTR (l, 0));
6329 }
6330 }
6331
6332 /* Dump the conversion optabs. */
6333 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6334 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6335 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6336 {
6337 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6338 (enum machine_mode) k);
6339 if (l)
6340 {
6341 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6342 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6343 GET_RTX_NAME (optab_to_code ((optab) i)),
6344 GET_MODE_NAME (j),
6345 GET_MODE_NAME (k),
6346 XSTR (l, 0));
6347 }
6348 }
6349 }
6350
6351 \f
6352 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6353 CODE. Return 0 on failure. */
6354
6355 rtx
6356 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6357 {
6358 enum machine_mode mode = GET_MODE (op1);
6359 enum insn_code icode;
6360 rtx insn;
6361 rtx trap_rtx;
6362
6363 if (mode == VOIDmode)
6364 return 0;
6365
6366 icode = optab_handler (ctrap_optab, mode);
6367 if (icode == CODE_FOR_nothing)
6368 return 0;
6369
6370 /* Some targets only accept a zero trap code. */
6371 if (!insn_operand_matches (icode, 3, tcode))
6372 return 0;
6373
6374 do_pending_stack_adjust ();
6375 start_sequence ();
6376 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6377 &trap_rtx, &mode);
6378 if (!trap_rtx)
6379 insn = NULL_RTX;
6380 else
6381 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6382 tcode);
6383
6384 /* If that failed, then give up. */
6385 if (insn == 0)
6386 {
6387 end_sequence ();
6388 return 0;
6389 }
6390
6391 emit_insn (insn);
6392 insn = get_insns ();
6393 end_sequence ();
6394 return insn;
6395 }
6396
6397 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6398 or unsigned operation code. */
6399
6400 static enum rtx_code
6401 get_rtx_code (enum tree_code tcode, bool unsignedp)
6402 {
6403 enum rtx_code code;
6404 switch (tcode)
6405 {
6406 case EQ_EXPR:
6407 code = EQ;
6408 break;
6409 case NE_EXPR:
6410 code = NE;
6411 break;
6412 case LT_EXPR:
6413 code = unsignedp ? LTU : LT;
6414 break;
6415 case LE_EXPR:
6416 code = unsignedp ? LEU : LE;
6417 break;
6418 case GT_EXPR:
6419 code = unsignedp ? GTU : GT;
6420 break;
6421 case GE_EXPR:
6422 code = unsignedp ? GEU : GE;
6423 break;
6424
6425 case UNORDERED_EXPR:
6426 code = UNORDERED;
6427 break;
6428 case ORDERED_EXPR:
6429 code = ORDERED;
6430 break;
6431 case UNLT_EXPR:
6432 code = UNLT;
6433 break;
6434 case UNLE_EXPR:
6435 code = UNLE;
6436 break;
6437 case UNGT_EXPR:
6438 code = UNGT;
6439 break;
6440 case UNGE_EXPR:
6441 code = UNGE;
6442 break;
6443 case UNEQ_EXPR:
6444 code = UNEQ;
6445 break;
6446 case LTGT_EXPR:
6447 code = LTGT;
6448 break;
6449
6450 default:
6451 gcc_unreachable ();
6452 }
6453 return code;
6454 }
6455
6456 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6457 unsigned operators. Do not generate compare instruction. */
6458
6459 static rtx
6460 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6461 bool unsignedp, enum insn_code icode)
6462 {
6463 struct expand_operand ops[2];
6464 rtx rtx_op0, rtx_op1;
6465 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6466
6467 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6468
6469 /* Expand operands. */
6470 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6471 EXPAND_STACK_PARM);
6472 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6473 EXPAND_STACK_PARM);
6474
6475 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6476 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6477 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6478 gcc_unreachable ();
6479 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6480 }
6481
6482 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6483 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6484
6485 bool
6486 can_vec_perm_p (enum machine_mode mode, bool variable,
6487 const unsigned char *sel)
6488 {
6489 enum machine_mode qimode;
6490
6491 /* If the target doesn't implement a vector mode for the vector type,
6492 then no operations are supported. */
6493 if (!VECTOR_MODE_P (mode))
6494 return false;
6495
6496 if (!variable)
6497 {
6498 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6499 && (sel == NULL
6500 || targetm.vectorize.vec_perm_const_ok == NULL
6501 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6502 return true;
6503 }
6504
6505 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6506 return true;
6507
6508 /* We allow fallback to a QI vector mode, and adjust the mask. */
6509 if (GET_MODE_INNER (mode) == QImode)
6510 return false;
6511 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6512 if (!VECTOR_MODE_P (qimode))
6513 return false;
6514
6515 /* ??? For completeness, we ought to check the QImode version of
6516 vec_perm_const_optab. But all users of this implicit lowering
6517 feature implement the variable vec_perm_optab. */
6518 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6519 return false;
6520
6521 /* In order to support the lowering of variable permutations,
6522 we need to support shifts and adds. */
6523 if (variable)
6524 {
6525 if (GET_MODE_UNIT_SIZE (mode) > 2
6526 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6527 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6528 return false;
6529 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6530 return false;
6531 }
6532
6533 return true;
6534 }
6535
6536 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6537
6538 static rtx
6539 expand_vec_perm_1 (enum insn_code icode, rtx target,
6540 rtx v0, rtx v1, rtx sel)
6541 {
6542 enum machine_mode tmode = GET_MODE (target);
6543 enum machine_mode smode = GET_MODE (sel);
6544 struct expand_operand ops[4];
6545
6546 create_output_operand (&ops[0], target, tmode);
6547 create_input_operand (&ops[3], sel, smode);
6548
6549 /* Make an effort to preserve v0 == v1. The target expander is able to
6550 rely on this to determine if we're permuting a single input operand. */
6551 if (rtx_equal_p (v0, v1))
6552 {
6553 if (!insn_operand_matches (icode, 1, v0))
6554 v0 = force_reg (tmode, v0);
6555 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6556 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6557
6558 create_fixed_operand (&ops[1], v0);
6559 create_fixed_operand (&ops[2], v0);
6560 }
6561 else
6562 {
6563 create_input_operand (&ops[1], v0, tmode);
6564 create_input_operand (&ops[2], v1, tmode);
6565 }
6566
6567 if (maybe_expand_insn (icode, 4, ops))
6568 return ops[0].value;
6569 return NULL_RTX;
6570 }
6571
6572 /* Generate instructions for vec_perm optab given its mode
6573 and three operands. */
6574
6575 rtx
6576 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6577 {
6578 enum insn_code icode;
6579 enum machine_mode qimode;
6580 unsigned int i, w, e, u;
6581 rtx tmp, sel_qi = NULL;
6582 rtvec vec;
6583
6584 if (!target || GET_MODE (target) != mode)
6585 target = gen_reg_rtx (mode);
6586
6587 w = GET_MODE_SIZE (mode);
6588 e = GET_MODE_NUNITS (mode);
6589 u = GET_MODE_UNIT_SIZE (mode);
6590
6591 /* Set QIMODE to a different vector mode with byte elements.
6592 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6593 qimode = VOIDmode;
6594 if (GET_MODE_INNER (mode) != QImode)
6595 {
6596 qimode = mode_for_vector (QImode, w);
6597 if (!VECTOR_MODE_P (qimode))
6598 qimode = VOIDmode;
6599 }
6600
6601 /* If the input is a constant, expand it specially. */
6602 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6603 if (GET_CODE (sel) == CONST_VECTOR)
6604 {
6605 icode = direct_optab_handler (vec_perm_const_optab, mode);
6606 if (icode != CODE_FOR_nothing)
6607 {
6608 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6609 if (tmp)
6610 return tmp;
6611 }
6612
6613 /* Fall back to a constant byte-based permutation. */
6614 if (qimode != VOIDmode)
6615 {
6616 vec = rtvec_alloc (w);
6617 for (i = 0; i < e; ++i)
6618 {
6619 unsigned int j, this_e;
6620
6621 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6622 this_e &= 2 * e - 1;
6623 this_e *= u;
6624
6625 for (j = 0; j < u; ++j)
6626 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6627 }
6628 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6629
6630 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6631 if (icode != CODE_FOR_nothing)
6632 {
6633 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6634 gen_lowpart (qimode, v0),
6635 gen_lowpart (qimode, v1), sel_qi);
6636 if (tmp)
6637 return gen_lowpart (mode, tmp);
6638 }
6639 }
6640 }
6641
6642 /* Otherwise expand as a fully variable permuation. */
6643 icode = direct_optab_handler (vec_perm_optab, mode);
6644 if (icode != CODE_FOR_nothing)
6645 {
6646 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6647 if (tmp)
6648 return tmp;
6649 }
6650
6651 /* As a special case to aid several targets, lower the element-based
6652 permutation to a byte-based permutation and try again. */
6653 if (qimode == VOIDmode)
6654 return NULL_RTX;
6655 icode = direct_optab_handler (vec_perm_optab, qimode);
6656 if (icode == CODE_FOR_nothing)
6657 return NULL_RTX;
6658
6659 if (sel_qi == NULL)
6660 {
6661 /* Multiply each element by its byte size. */
6662 enum machine_mode selmode = GET_MODE (sel);
6663 if (u == 2)
6664 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6665 sel, 0, OPTAB_DIRECT);
6666 else
6667 sel = expand_simple_binop (selmode, ASHIFT, sel,
6668 GEN_INT (exact_log2 (u)),
6669 sel, 0, OPTAB_DIRECT);
6670 gcc_assert (sel != NULL);
6671
6672 /* Broadcast the low byte each element into each of its bytes. */
6673 vec = rtvec_alloc (w);
6674 for (i = 0; i < w; ++i)
6675 {
6676 int this_e = i / u * u;
6677 if (BYTES_BIG_ENDIAN)
6678 this_e += u - 1;
6679 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6680 }
6681 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6682 sel = gen_lowpart (qimode, sel);
6683 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6684 gcc_assert (sel != NULL);
6685
6686 /* Add the byte offset to each byte element. */
6687 /* Note that the definition of the indicies here is memory ordering,
6688 so there should be no difference between big and little endian. */
6689 vec = rtvec_alloc (w);
6690 for (i = 0; i < w; ++i)
6691 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6692 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6693 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6694 sel, 0, OPTAB_DIRECT);
6695 gcc_assert (sel_qi != NULL);
6696 }
6697
6698 tmp = expand_vec_perm_1 (icode, gen_lowpart (qimode, target),
6699 gen_lowpart (qimode, v0),
6700 gen_lowpart (qimode, v1), sel_qi);
6701 if (tmp)
6702 tmp = gen_lowpart (mode, tmp);
6703 return tmp;
6704 }
6705
6706 /* Return insn code for a conditional operator with a comparison in
6707 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6708
6709 static inline enum insn_code
6710 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6711 {
6712 enum insn_code icode = CODE_FOR_nothing;
6713 if (uns)
6714 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6715 else
6716 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6717 return icode;
6718 }
6719
6720 /* Return TRUE iff, appropriate vector insns are available
6721 for vector cond expr with vector type VALUE_TYPE and a comparison
6722 with operand vector types in CMP_OP_TYPE. */
6723
6724 bool
6725 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6726 {
6727 enum machine_mode value_mode = TYPE_MODE (value_type);
6728 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6729 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6730 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6731 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6732 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6733 return false;
6734 return true;
6735 }
6736
6737 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6738 three operands. */
6739
6740 rtx
6741 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6742 rtx target)
6743 {
6744 struct expand_operand ops[6];
6745 enum insn_code icode;
6746 rtx comparison, rtx_op1, rtx_op2;
6747 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6748 enum machine_mode cmp_op_mode;
6749 bool unsignedp;
6750 tree op0a, op0b;
6751 enum tree_code tcode;
6752
6753 if (COMPARISON_CLASS_P (op0))
6754 {
6755 op0a = TREE_OPERAND (op0, 0);
6756 op0b = TREE_OPERAND (op0, 1);
6757 tcode = TREE_CODE (op0);
6758 }
6759 else
6760 {
6761 /* Fake op0 < 0. */
6762 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6763 op0a = op0;
6764 op0b = build_zero_cst (TREE_TYPE (op0));
6765 tcode = LT_EXPR;
6766 }
6767 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6768 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6769
6770
6771 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6772 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6773
6774 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6775 if (icode == CODE_FOR_nothing)
6776 return 0;
6777
6778 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6779 rtx_op1 = expand_normal (op1);
6780 rtx_op2 = expand_normal (op2);
6781
6782 create_output_operand (&ops[0], target, mode);
6783 create_input_operand (&ops[1], rtx_op1, mode);
6784 create_input_operand (&ops[2], rtx_op2, mode);
6785 create_fixed_operand (&ops[3], comparison);
6786 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6787 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6788 expand_insn (icode, 6, ops);
6789 return ops[0].value;
6790 }
6791
6792 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6793 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6794 2 for even/odd widening, and 3 for hi/lo widening. */
6795
6796 int
6797 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6798 {
6799 optab op;
6800 unsigned char *sel;
6801 unsigned i, nunits;
6802
6803 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6804 if (optab_handler (op, mode) != CODE_FOR_nothing)
6805 return 1;
6806
6807 /* If the mode is an integral vector, synth from widening operations. */
6808 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6809 return 0;
6810
6811 nunits = GET_MODE_NUNITS (mode);
6812 sel = XALLOCAVEC (unsigned char, nunits);
6813
6814 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6815 if (optab_handler (op, mode) != CODE_FOR_nothing)
6816 {
6817 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6818 if (optab_handler (op, mode) != CODE_FOR_nothing)
6819 {
6820 for (i = 0; i < nunits; ++i)
6821 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6822 if (can_vec_perm_p (mode, false, sel))
6823 return 2;
6824 }
6825 }
6826
6827 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6828 if (optab_handler (op, mode) != CODE_FOR_nothing)
6829 {
6830 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6831 if (optab_handler (op, mode) != CODE_FOR_nothing)
6832 {
6833 for (i = 0; i < nunits; ++i)
6834 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6835 if (can_vec_perm_p (mode, false, sel))
6836 return 3;
6837 }
6838 }
6839
6840 return 0;
6841 }
6842
6843 /* Expand a highpart multiply. */
6844
6845 rtx
6846 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6847 rtx target, bool uns_p)
6848 {
6849 struct expand_operand eops[3];
6850 enum insn_code icode;
6851 int method, i, nunits;
6852 enum machine_mode wmode;
6853 rtx m1, m2, perm;
6854 optab tab1, tab2;
6855 rtvec v;
6856
6857 method = can_mult_highpart_p (mode, uns_p);
6858 switch (method)
6859 {
6860 case 0:
6861 return NULL_RTX;
6862 case 1:
6863 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6864 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6865 OPTAB_LIB_WIDEN);
6866 case 2:
6867 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6868 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6869 break;
6870 case 3:
6871 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6872 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6873 if (BYTES_BIG_ENDIAN)
6874 {
6875 optab t = tab1;
6876 tab1 = tab2;
6877 tab2 = t;
6878 }
6879 break;
6880 default:
6881 gcc_unreachable ();
6882 }
6883
6884 icode = optab_handler (tab1, mode);
6885 nunits = GET_MODE_NUNITS (mode);
6886 wmode = insn_data[icode].operand[0].mode;
6887 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6888 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6889
6890 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6891 create_input_operand (&eops[1], op0, mode);
6892 create_input_operand (&eops[2], op1, mode);
6893 expand_insn (icode, 3, eops);
6894 m1 = gen_lowpart (mode, eops[0].value);
6895
6896 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6897 create_input_operand (&eops[1], op0, mode);
6898 create_input_operand (&eops[2], op1, mode);
6899 expand_insn (optab_handler (tab2, mode), 3, eops);
6900 m2 = gen_lowpart (mode, eops[0].value);
6901
6902 v = rtvec_alloc (nunits);
6903 if (method == 2)
6904 {
6905 for (i = 0; i < nunits; ++i)
6906 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6907 + ((i & 1) ? nunits : 0));
6908 }
6909 else
6910 {
6911 for (i = 0; i < nunits; ++i)
6912 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6913 }
6914 perm = gen_rtx_CONST_VECTOR (mode, v);
6915
6916 return expand_vec_perm (mode, m1, m2, perm, target);
6917 }
6918 \f
6919 /* Return true if there is a compare_and_swap pattern. */
6920
6921 bool
6922 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6923 {
6924 enum insn_code icode;
6925
6926 /* Check for __atomic_compare_and_swap. */
6927 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6928 if (icode != CODE_FOR_nothing)
6929 return true;
6930
6931 /* Check for __sync_compare_and_swap. */
6932 icode = optab_handler (sync_compare_and_swap_optab, mode);
6933 if (icode != CODE_FOR_nothing)
6934 return true;
6935 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6936 return true;
6937
6938 /* No inline compare and swap. */
6939 return false;
6940 }
6941
6942 /* Return true if an atomic exchange can be performed. */
6943
6944 bool
6945 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6946 {
6947 enum insn_code icode;
6948
6949 /* Check for __atomic_exchange. */
6950 icode = direct_optab_handler (atomic_exchange_optab, mode);
6951 if (icode != CODE_FOR_nothing)
6952 return true;
6953
6954 /* Don't check __sync_test_and_set, as on some platforms that
6955 has reduced functionality. Targets that really do support
6956 a proper exchange should simply be updated to the __atomics. */
6957
6958 return can_compare_and_swap_p (mode, allow_libcall);
6959 }
6960
6961
6962 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6963 pattern. */
6964
6965 static void
6966 find_cc_set (rtx x, const_rtx pat, void *data)
6967 {
6968 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6969 && GET_CODE (pat) == SET)
6970 {
6971 rtx *p_cc_reg = (rtx *) data;
6972 gcc_assert (!*p_cc_reg);
6973 *p_cc_reg = x;
6974 }
6975 }
6976
6977 /* This is a helper function for the other atomic operations. This function
6978 emits a loop that contains SEQ that iterates until a compare-and-swap
6979 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6980 a set of instructions that takes a value from OLD_REG as an input and
6981 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6982 set to the current contents of MEM. After SEQ, a compare-and-swap will
6983 attempt to update MEM with NEW_REG. The function returns true when the
6984 loop was generated successfully. */
6985
6986 static bool
6987 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6988 {
6989 enum machine_mode mode = GET_MODE (mem);
6990 rtx label, cmp_reg, success, oldval;
6991
6992 /* The loop we want to generate looks like
6993
6994 cmp_reg = mem;
6995 label:
6996 old_reg = cmp_reg;
6997 seq;
6998 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6999 if (success)
7000 goto label;
7001
7002 Note that we only do the plain load from memory once. Subsequent
7003 iterations use the value loaded by the compare-and-swap pattern. */
7004
7005 label = gen_label_rtx ();
7006 cmp_reg = gen_reg_rtx (mode);
7007
7008 emit_move_insn (cmp_reg, mem);
7009 emit_label (label);
7010 emit_move_insn (old_reg, cmp_reg);
7011 if (seq)
7012 emit_insn (seq);
7013
7014 success = NULL_RTX;
7015 oldval = cmp_reg;
7016 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7017 new_reg, false, MEMMODEL_SEQ_CST,
7018 MEMMODEL_RELAXED))
7019 return false;
7020
7021 if (oldval != cmp_reg)
7022 emit_move_insn (cmp_reg, oldval);
7023
7024 /* Mark this jump predicted not taken. */
7025 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7026 GET_MODE (success), 1, label, 0);
7027 return true;
7028 }
7029
7030
7031 /* This function tries to emit an atomic_exchange intruction. VAL is written
7032 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7033 using TARGET if possible. */
7034
7035 static rtx
7036 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7037 {
7038 enum machine_mode mode = GET_MODE (mem);
7039 enum insn_code icode;
7040
7041 /* If the target supports the exchange directly, great. */
7042 icode = direct_optab_handler (atomic_exchange_optab, mode);
7043 if (icode != CODE_FOR_nothing)
7044 {
7045 struct expand_operand ops[4];
7046
7047 create_output_operand (&ops[0], target, mode);
7048 create_fixed_operand (&ops[1], mem);
7049 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7050 create_convert_operand_to (&ops[2], val, mode, true);
7051 create_integer_operand (&ops[3], model);
7052 if (maybe_expand_insn (icode, 4, ops))
7053 return ops[0].value;
7054 }
7055
7056 return NULL_RTX;
7057 }
7058
7059 /* This function tries to implement an atomic exchange operation using
7060 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7061 The previous contents of *MEM are returned, using TARGET if possible.
7062 Since this instructionn is an acquire barrier only, stronger memory
7063 models may require additional barriers to be emitted. */
7064
7065 static rtx
7066 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7067 enum memmodel model)
7068 {
7069 enum machine_mode mode = GET_MODE (mem);
7070 enum insn_code icode;
7071 rtx last_insn = get_last_insn ();
7072
7073 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7074
7075 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7076 exists, and the memory model is stronger than acquire, add a release
7077 barrier before the instruction. */
7078
7079 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7080 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7081 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7082 expand_mem_thread_fence (model);
7083
7084 if (icode != CODE_FOR_nothing)
7085 {
7086 struct expand_operand ops[3];
7087 create_output_operand (&ops[0], target, mode);
7088 create_fixed_operand (&ops[1], mem);
7089 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7090 create_convert_operand_to (&ops[2], val, mode, true);
7091 if (maybe_expand_insn (icode, 3, ops))
7092 return ops[0].value;
7093 }
7094
7095 /* If an external test-and-set libcall is provided, use that instead of
7096 any external compare-and-swap that we might get from the compare-and-
7097 swap-loop expansion later. */
7098 if (!can_compare_and_swap_p (mode, false))
7099 {
7100 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7101 if (libfunc != NULL)
7102 {
7103 rtx addr;
7104
7105 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7106 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7107 mode, 2, addr, ptr_mode,
7108 val, mode);
7109 }
7110 }
7111
7112 /* If the test_and_set can't be emitted, eliminate any barrier that might
7113 have been emitted. */
7114 delete_insns_since (last_insn);
7115 return NULL_RTX;
7116 }
7117
7118 /* This function tries to implement an atomic exchange operation using a
7119 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7120 *MEM are returned, using TARGET if possible. No memory model is required
7121 since a compare_and_swap loop is seq-cst. */
7122
7123 static rtx
7124 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7125 {
7126 enum machine_mode mode = GET_MODE (mem);
7127
7128 if (can_compare_and_swap_p (mode, true))
7129 {
7130 if (!target || !register_operand (target, mode))
7131 target = gen_reg_rtx (mode);
7132 if (GET_MODE (val) != VOIDmode && GET_MODE (val) != mode)
7133 val = convert_modes (mode, GET_MODE (val), val, 1);
7134 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7135 return target;
7136 }
7137
7138 return NULL_RTX;
7139 }
7140
7141 /* This function tries to implement an atomic test-and-set operation
7142 using the atomic_test_and_set instruction pattern. A boolean value
7143 is returned from the operation, using TARGET if possible. */
7144
7145 #ifndef HAVE_atomic_test_and_set
7146 #define HAVE_atomic_test_and_set 0
7147 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7148 #endif
7149
7150 static rtx
7151 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7152 {
7153 enum machine_mode pat_bool_mode;
7154 struct expand_operand ops[3];
7155
7156 if (!HAVE_atomic_test_and_set)
7157 return NULL_RTX;
7158
7159 /* While we always get QImode from __atomic_test_and_set, we get
7160 other memory modes from __sync_lock_test_and_set. Note that we
7161 use no endian adjustment here. This matches the 4.6 behavior
7162 in the Sparc backend. */
7163 gcc_checking_assert
7164 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7165 if (GET_MODE (mem) != QImode)
7166 mem = adjust_address_nv (mem, QImode, 0);
7167
7168 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7169 create_output_operand (&ops[0], target, pat_bool_mode);
7170 create_fixed_operand (&ops[1], mem);
7171 create_integer_operand (&ops[2], model);
7172
7173 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7174 return ops[0].value;
7175 return NULL_RTX;
7176 }
7177
7178 /* This function expands the legacy _sync_lock test_and_set operation which is
7179 generally an atomic exchange. Some limited targets only allow the
7180 constant 1 to be stored. This is an ACQUIRE operation.
7181
7182 TARGET is an optional place to stick the return value.
7183 MEM is where VAL is stored. */
7184
7185 rtx
7186 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7187 {
7188 rtx ret;
7189
7190 /* Try an atomic_exchange first. */
7191 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7192 if (ret)
7193 return ret;
7194
7195 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7196 if (ret)
7197 return ret;
7198
7199 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7200 if (ret)
7201 return ret;
7202
7203 /* If there are no other options, try atomic_test_and_set if the value
7204 being stored is 1. */
7205 if (val == const1_rtx)
7206 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7207
7208 return ret;
7209 }
7210
7211 /* This function expands the atomic test_and_set operation:
7212 atomically store a boolean TRUE into MEM and return the previous value.
7213
7214 MEMMODEL is the memory model variant to use.
7215 TARGET is an optional place to stick the return value. */
7216
7217 rtx
7218 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7219 {
7220 enum machine_mode mode = GET_MODE (mem);
7221 rtx ret, trueval, subtarget;
7222
7223 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7224 if (ret)
7225 return ret;
7226
7227 /* Be binary compatible with non-default settings of trueval, and different
7228 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7229 another only has atomic-exchange. */
7230 if (targetm.atomic_test_and_set_trueval == 1)
7231 {
7232 trueval = const1_rtx;
7233 subtarget = target ? target : gen_reg_rtx (mode);
7234 }
7235 else
7236 {
7237 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7238 subtarget = gen_reg_rtx (mode);
7239 }
7240
7241 /* Try the atomic-exchange optab... */
7242 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7243
7244 /* ... then an atomic-compare-and-swap loop ... */
7245 if (!ret)
7246 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7247
7248 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7249 if (!ret)
7250 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7251
7252 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7253 things with the value 1. Thus we try again without trueval. */
7254 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7255 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7256
7257 /* Failing all else, assume a single threaded environment and simply
7258 perform the operation. */
7259 if (!ret)
7260 {
7261 emit_move_insn (subtarget, mem);
7262 emit_move_insn (mem, trueval);
7263 ret = subtarget;
7264 }
7265
7266 /* Recall that have to return a boolean value; rectify if trueval
7267 is not exactly one. */
7268 if (targetm.atomic_test_and_set_trueval != 1)
7269 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7270
7271 return ret;
7272 }
7273
7274 /* This function expands the atomic exchange operation:
7275 atomically store VAL in MEM and return the previous value in MEM.
7276
7277 MEMMODEL is the memory model variant to use.
7278 TARGET is an optional place to stick the return value. */
7279
7280 rtx
7281 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7282 {
7283 rtx ret;
7284
7285 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7286
7287 /* Next try a compare-and-swap loop for the exchange. */
7288 if (!ret)
7289 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7290
7291 return ret;
7292 }
7293
7294 /* This function expands the atomic compare exchange operation:
7295
7296 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7297 *PTARGET_OVAL is an optional place to store the old value from memory.
7298 Both target parameters may be NULL to indicate that we do not care about
7299 that return value. Both target parameters are updated on success to
7300 the actual location of the corresponding result.
7301
7302 MEMMODEL is the memory model variant to use.
7303
7304 The return value of the function is true for success. */
7305
7306 bool
7307 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7308 rtx mem, rtx expected, rtx desired,
7309 bool is_weak, enum memmodel succ_model,
7310 enum memmodel fail_model)
7311 {
7312 enum machine_mode mode = GET_MODE (mem);
7313 struct expand_operand ops[8];
7314 enum insn_code icode;
7315 rtx target_oval, target_bool = NULL_RTX;
7316 rtx libfunc;
7317
7318 /* Load expected into a register for the compare and swap. */
7319 if (MEM_P (expected))
7320 expected = copy_to_reg (expected);
7321
7322 /* Make sure we always have some place to put the return oldval.
7323 Further, make sure that place is distinct from the input expected,
7324 just in case we need that path down below. */
7325 if (ptarget_oval == NULL
7326 || (target_oval = *ptarget_oval) == NULL
7327 || reg_overlap_mentioned_p (expected, target_oval))
7328 target_oval = gen_reg_rtx (mode);
7329
7330 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7331 if (icode != CODE_FOR_nothing)
7332 {
7333 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7334
7335 /* Make sure we always have a place for the bool operand. */
7336 if (ptarget_bool == NULL
7337 || (target_bool = *ptarget_bool) == NULL
7338 || GET_MODE (target_bool) != bool_mode)
7339 target_bool = gen_reg_rtx (bool_mode);
7340
7341 /* Emit the compare_and_swap. */
7342 create_output_operand (&ops[0], target_bool, bool_mode);
7343 create_output_operand (&ops[1], target_oval, mode);
7344 create_fixed_operand (&ops[2], mem);
7345 create_convert_operand_to (&ops[3], expected, mode, true);
7346 create_convert_operand_to (&ops[4], desired, mode, true);
7347 create_integer_operand (&ops[5], is_weak);
7348 create_integer_operand (&ops[6], succ_model);
7349 create_integer_operand (&ops[7], fail_model);
7350 expand_insn (icode, 8, ops);
7351
7352 /* Return success/failure. */
7353 target_bool = ops[0].value;
7354 target_oval = ops[1].value;
7355 goto success;
7356 }
7357
7358 /* Otherwise fall back to the original __sync_val_compare_and_swap
7359 which is always seq-cst. */
7360 icode = optab_handler (sync_compare_and_swap_optab, mode);
7361 if (icode != CODE_FOR_nothing)
7362 {
7363 rtx cc_reg;
7364
7365 create_output_operand (&ops[0], target_oval, mode);
7366 create_fixed_operand (&ops[1], mem);
7367 create_convert_operand_to (&ops[2], expected, mode, true);
7368 create_convert_operand_to (&ops[3], desired, mode, true);
7369 if (!maybe_expand_insn (icode, 4, ops))
7370 return false;
7371
7372 target_oval = ops[0].value;
7373
7374 /* If the caller isn't interested in the boolean return value,
7375 skip the computation of it. */
7376 if (ptarget_bool == NULL)
7377 goto success;
7378
7379 /* Otherwise, work out if the compare-and-swap succeeded. */
7380 cc_reg = NULL_RTX;
7381 if (have_insn_for (COMPARE, CCmode))
7382 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7383 if (cc_reg)
7384 {
7385 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7386 const0_rtx, VOIDmode, 0, 1);
7387 goto success;
7388 }
7389 goto success_bool_from_val;
7390 }
7391
7392 /* Also check for library support for __sync_val_compare_and_swap. */
7393 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7394 if (libfunc != NULL)
7395 {
7396 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7397 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7398 mode, 3, addr, ptr_mode,
7399 expected, mode, desired, mode);
7400
7401 /* Compute the boolean return value only if requested. */
7402 if (ptarget_bool)
7403 goto success_bool_from_val;
7404 else
7405 goto success;
7406 }
7407
7408 /* Failure. */
7409 return false;
7410
7411 success_bool_from_val:
7412 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7413 expected, VOIDmode, 1, 1);
7414 success:
7415 /* Make sure that the oval output winds up where the caller asked. */
7416 if (ptarget_oval)
7417 *ptarget_oval = target_oval;
7418 if (ptarget_bool)
7419 *ptarget_bool = target_bool;
7420 return true;
7421 }
7422
7423 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7424
7425 static void
7426 expand_asm_memory_barrier (void)
7427 {
7428 rtx asm_op, clob;
7429
7430 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7431 rtvec_alloc (0), rtvec_alloc (0),
7432 rtvec_alloc (0), UNKNOWN_LOCATION);
7433 MEM_VOLATILE_P (asm_op) = 1;
7434
7435 clob = gen_rtx_SCRATCH (VOIDmode);
7436 clob = gen_rtx_MEM (BLKmode, clob);
7437 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7438
7439 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7440 }
7441
7442 /* This routine will either emit the mem_thread_fence pattern or issue a
7443 sync_synchronize to generate a fence for memory model MEMMODEL. */
7444
7445 #ifndef HAVE_mem_thread_fence
7446 # define HAVE_mem_thread_fence 0
7447 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7448 #endif
7449 #ifndef HAVE_memory_barrier
7450 # define HAVE_memory_barrier 0
7451 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7452 #endif
7453
7454 void
7455 expand_mem_thread_fence (enum memmodel model)
7456 {
7457 if (HAVE_mem_thread_fence)
7458 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7459 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7460 {
7461 if (HAVE_memory_barrier)
7462 emit_insn (gen_memory_barrier ());
7463 else if (synchronize_libfunc != NULL_RTX)
7464 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7465 else
7466 expand_asm_memory_barrier ();
7467 }
7468 }
7469
7470 /* This routine will either emit the mem_signal_fence pattern or issue a
7471 sync_synchronize to generate a fence for memory model MEMMODEL. */
7472
7473 #ifndef HAVE_mem_signal_fence
7474 # define HAVE_mem_signal_fence 0
7475 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7476 #endif
7477
7478 void
7479 expand_mem_signal_fence (enum memmodel model)
7480 {
7481 if (HAVE_mem_signal_fence)
7482 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7483 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7484 {
7485 /* By default targets are coherent between a thread and the signal
7486 handler running on the same thread. Thus this really becomes a
7487 compiler barrier, in that stores must not be sunk past
7488 (or raised above) a given point. */
7489 expand_asm_memory_barrier ();
7490 }
7491 }
7492
7493 /* This function expands the atomic load operation:
7494 return the atomically loaded value in MEM.
7495
7496 MEMMODEL is the memory model variant to use.
7497 TARGET is an option place to stick the return value. */
7498
7499 rtx
7500 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7501 {
7502 enum machine_mode mode = GET_MODE (mem);
7503 enum insn_code icode;
7504
7505 /* If the target supports the load directly, great. */
7506 icode = direct_optab_handler (atomic_load_optab, mode);
7507 if (icode != CODE_FOR_nothing)
7508 {
7509 struct expand_operand ops[3];
7510
7511 create_output_operand (&ops[0], target, mode);
7512 create_fixed_operand (&ops[1], mem);
7513 create_integer_operand (&ops[2], model);
7514 if (maybe_expand_insn (icode, 3, ops))
7515 return ops[0].value;
7516 }
7517
7518 /* If the size of the object is greater than word size on this target,
7519 then we assume that a load will not be atomic. */
7520 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7521 {
7522 /* Issue val = compare_and_swap (mem, 0, 0).
7523 This may cause the occasional harmless store of 0 when the value is
7524 already 0, but it seems to be OK according to the standards guys. */
7525 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7526 const0_rtx, false, model, model))
7527 return target;
7528 else
7529 /* Otherwise there is no atomic load, leave the library call. */
7530 return NULL_RTX;
7531 }
7532
7533 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7534 if (!target || target == const0_rtx)
7535 target = gen_reg_rtx (mode);
7536
7537 /* For SEQ_CST, emit a barrier before the load. */
7538 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7539 expand_mem_thread_fence (model);
7540
7541 emit_move_insn (target, mem);
7542
7543 /* Emit the appropriate barrier after the load. */
7544 expand_mem_thread_fence (model);
7545
7546 return target;
7547 }
7548
7549 /* This function expands the atomic store operation:
7550 Atomically store VAL in MEM.
7551 MEMMODEL is the memory model variant to use.
7552 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7553 function returns const0_rtx if a pattern was emitted. */
7554
7555 rtx
7556 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7557 {
7558 enum machine_mode mode = GET_MODE (mem);
7559 enum insn_code icode;
7560 struct expand_operand ops[3];
7561
7562 /* If the target supports the store directly, great. */
7563 icode = direct_optab_handler (atomic_store_optab, mode);
7564 if (icode != CODE_FOR_nothing)
7565 {
7566 create_fixed_operand (&ops[0], mem);
7567 create_input_operand (&ops[1], val, mode);
7568 create_integer_operand (&ops[2], model);
7569 if (maybe_expand_insn (icode, 3, ops))
7570 return const0_rtx;
7571 }
7572
7573 /* If using __sync_lock_release is a viable alternative, try it. */
7574 if (use_release)
7575 {
7576 icode = direct_optab_handler (sync_lock_release_optab, mode);
7577 if (icode != CODE_FOR_nothing)
7578 {
7579 create_fixed_operand (&ops[0], mem);
7580 create_input_operand (&ops[1], const0_rtx, mode);
7581 if (maybe_expand_insn (icode, 2, ops))
7582 {
7583 /* lock_release is only a release barrier. */
7584 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7585 expand_mem_thread_fence (model);
7586 return const0_rtx;
7587 }
7588 }
7589 }
7590
7591 /* If the size of the object is greater than word size on this target,
7592 a default store will not be atomic, Try a mem_exchange and throw away
7593 the result. If that doesn't work, don't do anything. */
7594 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7595 {
7596 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7597 if (!target)
7598 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7599 if (target)
7600 return const0_rtx;
7601 else
7602 return NULL_RTX;
7603 }
7604
7605 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7606 expand_mem_thread_fence (model);
7607
7608 emit_move_insn (mem, val);
7609
7610 /* For SEQ_CST, also emit a barrier after the store. */
7611 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7612 expand_mem_thread_fence (model);
7613
7614 return const0_rtx;
7615 }
7616
7617
7618 /* Structure containing the pointers and values required to process the
7619 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7620
7621 struct atomic_op_functions
7622 {
7623 direct_optab mem_fetch_before;
7624 direct_optab mem_fetch_after;
7625 direct_optab mem_no_result;
7626 optab fetch_before;
7627 optab fetch_after;
7628 direct_optab no_result;
7629 enum rtx_code reverse_code;
7630 };
7631
7632
7633 /* Fill in structure pointed to by OP with the various optab entries for an
7634 operation of type CODE. */
7635
7636 static void
7637 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7638 {
7639 gcc_assert (op!= NULL);
7640
7641 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7642 in the source code during compilation, and the optab entries are not
7643 computable until runtime. Fill in the values at runtime. */
7644 switch (code)
7645 {
7646 case PLUS:
7647 op->mem_fetch_before = atomic_fetch_add_optab;
7648 op->mem_fetch_after = atomic_add_fetch_optab;
7649 op->mem_no_result = atomic_add_optab;
7650 op->fetch_before = sync_old_add_optab;
7651 op->fetch_after = sync_new_add_optab;
7652 op->no_result = sync_add_optab;
7653 op->reverse_code = MINUS;
7654 break;
7655 case MINUS:
7656 op->mem_fetch_before = atomic_fetch_sub_optab;
7657 op->mem_fetch_after = atomic_sub_fetch_optab;
7658 op->mem_no_result = atomic_sub_optab;
7659 op->fetch_before = sync_old_sub_optab;
7660 op->fetch_after = sync_new_sub_optab;
7661 op->no_result = sync_sub_optab;
7662 op->reverse_code = PLUS;
7663 break;
7664 case XOR:
7665 op->mem_fetch_before = atomic_fetch_xor_optab;
7666 op->mem_fetch_after = atomic_xor_fetch_optab;
7667 op->mem_no_result = atomic_xor_optab;
7668 op->fetch_before = sync_old_xor_optab;
7669 op->fetch_after = sync_new_xor_optab;
7670 op->no_result = sync_xor_optab;
7671 op->reverse_code = XOR;
7672 break;
7673 case AND:
7674 op->mem_fetch_before = atomic_fetch_and_optab;
7675 op->mem_fetch_after = atomic_and_fetch_optab;
7676 op->mem_no_result = atomic_and_optab;
7677 op->fetch_before = sync_old_and_optab;
7678 op->fetch_after = sync_new_and_optab;
7679 op->no_result = sync_and_optab;
7680 op->reverse_code = UNKNOWN;
7681 break;
7682 case IOR:
7683 op->mem_fetch_before = atomic_fetch_or_optab;
7684 op->mem_fetch_after = atomic_or_fetch_optab;
7685 op->mem_no_result = atomic_or_optab;
7686 op->fetch_before = sync_old_ior_optab;
7687 op->fetch_after = sync_new_ior_optab;
7688 op->no_result = sync_ior_optab;
7689 op->reverse_code = UNKNOWN;
7690 break;
7691 case NOT:
7692 op->mem_fetch_before = atomic_fetch_nand_optab;
7693 op->mem_fetch_after = atomic_nand_fetch_optab;
7694 op->mem_no_result = atomic_nand_optab;
7695 op->fetch_before = sync_old_nand_optab;
7696 op->fetch_after = sync_new_nand_optab;
7697 op->no_result = sync_nand_optab;
7698 op->reverse_code = UNKNOWN;
7699 break;
7700 default:
7701 gcc_unreachable ();
7702 }
7703 }
7704
7705 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7706 using memory order MODEL. If AFTER is true the operation needs to return
7707 the value of *MEM after the operation, otherwise the previous value.
7708 TARGET is an optional place to place the result. The result is unused if
7709 it is const0_rtx.
7710 Return the result if there is a better sequence, otherwise NULL_RTX. */
7711
7712 static rtx
7713 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7714 enum memmodel model, bool after)
7715 {
7716 /* If the value is prefetched, or not used, it may be possible to replace
7717 the sequence with a native exchange operation. */
7718 if (!after || target == const0_rtx)
7719 {
7720 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7721 if (code == AND && val == const0_rtx)
7722 {
7723 if (target == const0_rtx)
7724 target = gen_reg_rtx (GET_MODE (mem));
7725 return maybe_emit_atomic_exchange (target, mem, val, model);
7726 }
7727
7728 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7729 if (code == IOR && val == constm1_rtx)
7730 {
7731 if (target == const0_rtx)
7732 target = gen_reg_rtx (GET_MODE (mem));
7733 return maybe_emit_atomic_exchange (target, mem, val, model);
7734 }
7735 }
7736
7737 return NULL_RTX;
7738 }
7739
7740 /* Try to emit an instruction for a specific operation varaition.
7741 OPTAB contains the OP functions.
7742 TARGET is an optional place to return the result. const0_rtx means unused.
7743 MEM is the memory location to operate on.
7744 VAL is the value to use in the operation.
7745 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7746 MODEL is the memory model, if used.
7747 AFTER is true if the returned result is the value after the operation. */
7748
7749 static rtx
7750 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7751 rtx val, bool use_memmodel, enum memmodel model, bool after)
7752 {
7753 enum machine_mode mode = GET_MODE (mem);
7754 struct expand_operand ops[4];
7755 enum insn_code icode;
7756 int op_counter = 0;
7757 int num_ops;
7758
7759 /* Check to see if there is a result returned. */
7760 if (target == const0_rtx)
7761 {
7762 if (use_memmodel)
7763 {
7764 icode = direct_optab_handler (optab->mem_no_result, mode);
7765 create_integer_operand (&ops[2], model);
7766 num_ops = 3;
7767 }
7768 else
7769 {
7770 icode = direct_optab_handler (optab->no_result, mode);
7771 num_ops = 2;
7772 }
7773 }
7774 /* Otherwise, we need to generate a result. */
7775 else
7776 {
7777 if (use_memmodel)
7778 {
7779 icode = direct_optab_handler (after ? optab->mem_fetch_after
7780 : optab->mem_fetch_before, mode);
7781 create_integer_operand (&ops[3], model);
7782 num_ops = 4;
7783 }
7784 else
7785 {
7786 icode = optab_handler (after ? optab->fetch_after
7787 : optab->fetch_before, mode);
7788 num_ops = 3;
7789 }
7790 create_output_operand (&ops[op_counter++], target, mode);
7791 }
7792 if (icode == CODE_FOR_nothing)
7793 return NULL_RTX;
7794
7795 create_fixed_operand (&ops[op_counter++], mem);
7796 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7797 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7798
7799 if (maybe_expand_insn (icode, num_ops, ops))
7800 return (target == const0_rtx ? const0_rtx : ops[0].value);
7801
7802 return NULL_RTX;
7803 }
7804
7805
7806 /* This function expands an atomic fetch_OP or OP_fetch operation:
7807 TARGET is an option place to stick the return value. const0_rtx indicates
7808 the result is unused.
7809 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7810 CODE is the operation being performed (OP)
7811 MEMMODEL is the memory model variant to use.
7812 AFTER is true to return the result of the operation (OP_fetch).
7813 AFTER is false to return the value before the operation (fetch_OP).
7814
7815 This function will *only* generate instructions if there is a direct
7816 optab. No compare and swap loops or libcalls will be generated. */
7817
7818 static rtx
7819 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7820 enum rtx_code code, enum memmodel model,
7821 bool after)
7822 {
7823 enum machine_mode mode = GET_MODE (mem);
7824 struct atomic_op_functions optab;
7825 rtx result;
7826 bool unused_result = (target == const0_rtx);
7827
7828 get_atomic_op_for_code (&optab, code);
7829
7830 /* Check to see if there are any better instructions. */
7831 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7832 if (result)
7833 return result;
7834
7835 /* Check for the case where the result isn't used and try those patterns. */
7836 if (unused_result)
7837 {
7838 /* Try the memory model variant first. */
7839 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7840 if (result)
7841 return result;
7842
7843 /* Next try the old style withuot a memory model. */
7844 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7845 if (result)
7846 return result;
7847
7848 /* There is no no-result pattern, so try patterns with a result. */
7849 target = NULL_RTX;
7850 }
7851
7852 /* Try the __atomic version. */
7853 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7854 if (result)
7855 return result;
7856
7857 /* Try the older __sync version. */
7858 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7859 if (result)
7860 return result;
7861
7862 /* If the fetch value can be calculated from the other variation of fetch,
7863 try that operation. */
7864 if (after || unused_result || optab.reverse_code != UNKNOWN)
7865 {
7866 /* Try the __atomic version, then the older __sync version. */
7867 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7868 if (!result)
7869 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7870
7871 if (result)
7872 {
7873 /* If the result isn't used, no need to do compensation code. */
7874 if (unused_result)
7875 return result;
7876
7877 /* Issue compensation code. Fetch_after == fetch_before OP val.
7878 Fetch_before == after REVERSE_OP val. */
7879 if (!after)
7880 code = optab.reverse_code;
7881 if (code == NOT)
7882 {
7883 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7884 true, OPTAB_LIB_WIDEN);
7885 result = expand_simple_unop (mode, NOT, result, target, true);
7886 }
7887 else
7888 result = expand_simple_binop (mode, code, result, val, target,
7889 true, OPTAB_LIB_WIDEN);
7890 return result;
7891 }
7892 }
7893
7894 /* No direct opcode can be generated. */
7895 return NULL_RTX;
7896 }
7897
7898
7899
7900 /* This function expands an atomic fetch_OP or OP_fetch operation:
7901 TARGET is an option place to stick the return value. const0_rtx indicates
7902 the result is unused.
7903 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7904 CODE is the operation being performed (OP)
7905 MEMMODEL is the memory model variant to use.
7906 AFTER is true to return the result of the operation (OP_fetch).
7907 AFTER is false to return the value before the operation (fetch_OP). */
7908 rtx
7909 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7910 enum memmodel model, bool after)
7911 {
7912 enum machine_mode mode = GET_MODE (mem);
7913 rtx result;
7914 bool unused_result = (target == const0_rtx);
7915
7916 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7917 after);
7918
7919 if (result)
7920 return result;
7921
7922 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7923 if (code == PLUS || code == MINUS)
7924 {
7925 rtx tmp;
7926 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7927
7928 start_sequence ();
7929 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7930 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7931 model, after);
7932 if (result)
7933 {
7934 /* PLUS worked so emit the insns and return. */
7935 tmp = get_insns ();
7936 end_sequence ();
7937 emit_insn (tmp);
7938 return result;
7939 }
7940
7941 /* PLUS did not work, so throw away the negation code and continue. */
7942 end_sequence ();
7943 }
7944
7945 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7946 if (!can_compare_and_swap_p (mode, false))
7947 {
7948 rtx libfunc;
7949 bool fixup = false;
7950 enum rtx_code orig_code = code;
7951 struct atomic_op_functions optab;
7952
7953 get_atomic_op_for_code (&optab, code);
7954 libfunc = optab_libfunc (after ? optab.fetch_after
7955 : optab.fetch_before, mode);
7956 if (libfunc == NULL
7957 && (after || unused_result || optab.reverse_code != UNKNOWN))
7958 {
7959 fixup = true;
7960 if (!after)
7961 code = optab.reverse_code;
7962 libfunc = optab_libfunc (after ? optab.fetch_before
7963 : optab.fetch_after, mode);
7964 }
7965 if (libfunc != NULL)
7966 {
7967 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7968 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7969 2, addr, ptr_mode, val, mode);
7970
7971 if (!unused_result && fixup)
7972 result = expand_simple_binop (mode, code, result, val, target,
7973 true, OPTAB_LIB_WIDEN);
7974 return result;
7975 }
7976
7977 /* We need the original code for any further attempts. */
7978 code = orig_code;
7979 }
7980
7981 /* If nothing else has succeeded, default to a compare and swap loop. */
7982 if (can_compare_and_swap_p (mode, true))
7983 {
7984 rtx insn;
7985 rtx t0 = gen_reg_rtx (mode), t1;
7986
7987 start_sequence ();
7988
7989 /* If the result is used, get a register for it. */
7990 if (!unused_result)
7991 {
7992 if (!target || !register_operand (target, mode))
7993 target = gen_reg_rtx (mode);
7994 /* If fetch_before, copy the value now. */
7995 if (!after)
7996 emit_move_insn (target, t0);
7997 }
7998 else
7999 target = const0_rtx;
8000
8001 t1 = t0;
8002 if (code == NOT)
8003 {
8004 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8005 true, OPTAB_LIB_WIDEN);
8006 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8007 }
8008 else
8009 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8010 OPTAB_LIB_WIDEN);
8011
8012 /* For after, copy the value now. */
8013 if (!unused_result && after)
8014 emit_move_insn (target, t1);
8015 insn = get_insns ();
8016 end_sequence ();
8017
8018 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8019 return target;
8020 }
8021
8022 return NULL_RTX;
8023 }
8024 \f
8025 /* Return true if OPERAND is suitable for operand number OPNO of
8026 instruction ICODE. */
8027
8028 bool
8029 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8030 {
8031 return (!insn_data[(int) icode].operand[opno].predicate
8032 || (insn_data[(int) icode].operand[opno].predicate
8033 (operand, insn_data[(int) icode].operand[opno].mode)));
8034 }
8035 \f
8036 /* TARGET is a target of a multiword operation that we are going to
8037 implement as a series of word-mode operations. Return true if
8038 TARGET is suitable for this purpose. */
8039
8040 bool
8041 valid_multiword_target_p (rtx target)
8042 {
8043 enum machine_mode mode;
8044 int i;
8045
8046 mode = GET_MODE (target);
8047 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8048 if (!validate_subreg (word_mode, mode, target, i))
8049 return false;
8050 return true;
8051 }
8052
8053 /* Like maybe_legitimize_operand, but do not change the code of the
8054 current rtx value. */
8055
8056 static bool
8057 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8058 struct expand_operand *op)
8059 {
8060 /* See if the operand matches in its current form. */
8061 if (insn_operand_matches (icode, opno, op->value))
8062 return true;
8063
8064 /* If the operand is a memory whose address has no side effects,
8065 try forcing the address into a non-virtual pseudo register.
8066 The check for side effects is important because copy_to_mode_reg
8067 cannot handle things like auto-modified addresses. */
8068 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8069 {
8070 rtx addr, mem;
8071
8072 mem = op->value;
8073 addr = XEXP (mem, 0);
8074 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8075 && !side_effects_p (addr))
8076 {
8077 rtx last;
8078 enum machine_mode mode;
8079
8080 last = get_last_insn ();
8081 mode = get_address_mode (mem);
8082 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8083 if (insn_operand_matches (icode, opno, mem))
8084 {
8085 op->value = mem;
8086 return true;
8087 }
8088 delete_insns_since (last);
8089 }
8090 }
8091
8092 return false;
8093 }
8094
8095 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8096 on success, storing the new operand value back in OP. */
8097
8098 static bool
8099 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8100 struct expand_operand *op)
8101 {
8102 enum machine_mode mode, imode;
8103 bool old_volatile_ok, result;
8104
8105 mode = op->mode;
8106 switch (op->type)
8107 {
8108 case EXPAND_FIXED:
8109 old_volatile_ok = volatile_ok;
8110 volatile_ok = true;
8111 result = maybe_legitimize_operand_same_code (icode, opno, op);
8112 volatile_ok = old_volatile_ok;
8113 return result;
8114
8115 case EXPAND_OUTPUT:
8116 gcc_assert (mode != VOIDmode);
8117 if (op->value
8118 && op->value != const0_rtx
8119 && GET_MODE (op->value) == mode
8120 && maybe_legitimize_operand_same_code (icode, opno, op))
8121 return true;
8122
8123 op->value = gen_reg_rtx (mode);
8124 break;
8125
8126 case EXPAND_INPUT:
8127 input:
8128 gcc_assert (mode != VOIDmode);
8129 gcc_assert (GET_MODE (op->value) == VOIDmode
8130 || GET_MODE (op->value) == mode);
8131 if (maybe_legitimize_operand_same_code (icode, opno, op))
8132 return true;
8133
8134 op->value = copy_to_mode_reg (mode, op->value);
8135 break;
8136
8137 case EXPAND_CONVERT_TO:
8138 gcc_assert (mode != VOIDmode);
8139 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8140 goto input;
8141
8142 case EXPAND_CONVERT_FROM:
8143 if (GET_MODE (op->value) != VOIDmode)
8144 mode = GET_MODE (op->value);
8145 else
8146 /* The caller must tell us what mode this value has. */
8147 gcc_assert (mode != VOIDmode);
8148
8149 imode = insn_data[(int) icode].operand[opno].mode;
8150 if (imode != VOIDmode && imode != mode)
8151 {
8152 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8153 mode = imode;
8154 }
8155 goto input;
8156
8157 case EXPAND_ADDRESS:
8158 gcc_assert (mode != VOIDmode);
8159 op->value = convert_memory_address (mode, op->value);
8160 goto input;
8161
8162 case EXPAND_INTEGER:
8163 mode = insn_data[(int) icode].operand[opno].mode;
8164 if (mode != VOIDmode && const_int_operand (op->value, mode))
8165 goto input;
8166 break;
8167 }
8168 return insn_operand_matches (icode, opno, op->value);
8169 }
8170
8171 /* Make OP describe an input operand that should have the same value
8172 as VALUE, after any mode conversion that the target might request.
8173 TYPE is the type of VALUE. */
8174
8175 void
8176 create_convert_operand_from_type (struct expand_operand *op,
8177 rtx value, tree type)
8178 {
8179 create_convert_operand_from (op, value, TYPE_MODE (type),
8180 TYPE_UNSIGNED (type));
8181 }
8182
8183 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8184 of instruction ICODE. Return true on success, leaving the new operand
8185 values in the OPS themselves. Emit no code on failure. */
8186
8187 bool
8188 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8189 unsigned int nops, struct expand_operand *ops)
8190 {
8191 rtx last;
8192 unsigned int i;
8193
8194 last = get_last_insn ();
8195 for (i = 0; i < nops; i++)
8196 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8197 {
8198 delete_insns_since (last);
8199 return false;
8200 }
8201 return true;
8202 }
8203
8204 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8205 as its operands. Return the instruction pattern on success,
8206 and emit any necessary set-up code. Return null and emit no
8207 code on failure. */
8208
8209 rtx
8210 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8211 struct expand_operand *ops)
8212 {
8213 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8214 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8215 return NULL_RTX;
8216
8217 switch (nops)
8218 {
8219 case 1:
8220 return GEN_FCN (icode) (ops[0].value);
8221 case 2:
8222 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8223 case 3:
8224 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8225 case 4:
8226 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8227 ops[3].value);
8228 case 5:
8229 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8230 ops[3].value, ops[4].value);
8231 case 6:
8232 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8233 ops[3].value, ops[4].value, ops[5].value);
8234 case 7:
8235 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8236 ops[3].value, ops[4].value, ops[5].value,
8237 ops[6].value);
8238 case 8:
8239 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8240 ops[3].value, ops[4].value, ops[5].value,
8241 ops[6].value, ops[7].value);
8242 }
8243 gcc_unreachable ();
8244 }
8245
8246 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8247 as its operands. Return true on success and emit no code on failure. */
8248
8249 bool
8250 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8251 struct expand_operand *ops)
8252 {
8253 rtx pat = maybe_gen_insn (icode, nops, ops);
8254 if (pat)
8255 {
8256 emit_insn (pat);
8257 return true;
8258 }
8259 return false;
8260 }
8261
8262 /* Like maybe_expand_insn, but for jumps. */
8263
8264 bool
8265 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8266 struct expand_operand *ops)
8267 {
8268 rtx pat = maybe_gen_insn (icode, nops, ops);
8269 if (pat)
8270 {
8271 emit_jump_insn (pat);
8272 return true;
8273 }
8274 return false;
8275 }
8276
8277 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8278 as its operands. */
8279
8280 void
8281 expand_insn (enum insn_code icode, unsigned int nops,
8282 struct expand_operand *ops)
8283 {
8284 if (!maybe_expand_insn (icode, nops, ops))
8285 gcc_unreachable ();
8286 }
8287
8288 /* Like expand_insn, but for jumps. */
8289
8290 void
8291 expand_jump_insn (enum insn_code icode, unsigned int nops,
8292 struct expand_operand *ops)
8293 {
8294 if (!maybe_expand_jump_insn (icode, nops, ops))
8295 gcc_unreachable ();
8296 }
8297
8298 /* Reduce conditional compilation elsewhere. */
8299 #ifndef HAVE_insv
8300 #define HAVE_insv 0
8301 #define CODE_FOR_insv CODE_FOR_nothing
8302 #endif
8303 #ifndef HAVE_extv
8304 #define HAVE_extv 0
8305 #define CODE_FOR_extv CODE_FOR_nothing
8306 #endif
8307 #ifndef HAVE_extzv
8308 #define HAVE_extzv 0
8309 #define CODE_FOR_extzv CODE_FOR_nothing
8310 #endif
8311
8312 /* Enumerates the possible types of structure operand to an
8313 extraction_insn. */
8314 enum extraction_type { ET_unaligned_mem, ET_reg };
8315
8316 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8317 insertion or extraction of type TYPE on a structure of mode MODE.
8318 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8319 operand number of the structure (the first sign_extract or zero_extract
8320 operand) and FIELD_OP is the operand number of the field (the other
8321 side of the set from the sign_extract or zero_extract). */
8322
8323 static bool
8324 get_traditional_extraction_insn (extraction_insn *insn,
8325 enum extraction_type type,
8326 enum machine_mode mode,
8327 enum insn_code icode,
8328 int struct_op, int field_op)
8329 {
8330 const struct insn_data_d *data = &insn_data[icode];
8331
8332 enum machine_mode struct_mode = data->operand[struct_op].mode;
8333 if (struct_mode == VOIDmode)
8334 struct_mode = word_mode;
8335 if (mode != struct_mode)
8336 return false;
8337
8338 enum machine_mode field_mode = data->operand[field_op].mode;
8339 if (field_mode == VOIDmode)
8340 field_mode = word_mode;
8341
8342 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8343 if (pos_mode == VOIDmode)
8344 pos_mode = word_mode;
8345
8346 insn->icode = icode;
8347 insn->field_mode = field_mode;
8348 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8349 insn->pos_mode = pos_mode;
8350 return true;
8351 }
8352
8353 /* Return true if an optab exists to perform an insertion or extraction
8354 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8355
8356 REG_OPTAB is the optab to use for register structures and
8357 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8358 POS_OP is the operand number of the bit position. */
8359
8360 static bool
8361 get_optab_extraction_insn (struct extraction_insn *insn,
8362 enum extraction_type type,
8363 enum machine_mode mode, direct_optab reg_optab,
8364 direct_optab misalign_optab, int pos_op)
8365 {
8366 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8367 enum insn_code icode = direct_optab_handler (optab, mode);
8368 if (icode == CODE_FOR_nothing)
8369 return false;
8370
8371 const struct insn_data_d *data = &insn_data[icode];
8372
8373 insn->icode = icode;
8374 insn->field_mode = mode;
8375 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8376 insn->pos_mode = data->operand[pos_op].mode;
8377 if (insn->pos_mode == VOIDmode)
8378 insn->pos_mode = word_mode;
8379 return true;
8380 }
8381
8382 /* Return true if an instruction exists to perform an insertion or
8383 extraction (PATTERN says which) of type TYPE in mode MODE.
8384 Describe the instruction in *INSN if so. */
8385
8386 static bool
8387 get_extraction_insn (extraction_insn *insn,
8388 enum extraction_pattern pattern,
8389 enum extraction_type type,
8390 enum machine_mode mode)
8391 {
8392 switch (pattern)
8393 {
8394 case EP_insv:
8395 if (HAVE_insv
8396 && get_traditional_extraction_insn (insn, type, mode,
8397 CODE_FOR_insv, 0, 3))
8398 return true;
8399 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8400 insvmisalign_optab, 2);
8401
8402 case EP_extv:
8403 if (HAVE_extv
8404 && get_traditional_extraction_insn (insn, type, mode,
8405 CODE_FOR_extv, 1, 0))
8406 return true;
8407 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8408 extvmisalign_optab, 3);
8409
8410 case EP_extzv:
8411 if (HAVE_extzv
8412 && get_traditional_extraction_insn (insn, type, mode,
8413 CODE_FOR_extzv, 1, 0))
8414 return true;
8415 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8416 extzvmisalign_optab, 3);
8417
8418 default:
8419 gcc_unreachable ();
8420 }
8421 }
8422
8423 /* Return true if an instruction exists to access a field of mode
8424 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8425 Describe the "best" such instruction in *INSN if so. PATTERN and
8426 TYPE describe the type of insertion or extraction we want to perform.
8427
8428 For an insertion, the number of significant structure bits includes
8429 all bits of the target. For an extraction, it need only include the
8430 most significant bit of the field. Larger widths are acceptable
8431 in both cases. */
8432
8433 static bool
8434 get_best_extraction_insn (extraction_insn *insn,
8435 enum extraction_pattern pattern,
8436 enum extraction_type type,
8437 unsigned HOST_WIDE_INT struct_bits,
8438 enum machine_mode field_mode)
8439 {
8440 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8441 while (mode != VOIDmode)
8442 {
8443 if (get_extraction_insn (insn, pattern, type, mode))
8444 {
8445 while (mode != VOIDmode
8446 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8447 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8448 field_mode))
8449 {
8450 get_extraction_insn (insn, pattern, type, mode);
8451 mode = GET_MODE_WIDER_MODE (mode);
8452 }
8453 return true;
8454 }
8455 mode = GET_MODE_WIDER_MODE (mode);
8456 }
8457 return false;
8458 }
8459
8460 /* Return true if an instruction exists to access a field of mode
8461 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8462 Describe the "best" such instruction in *INSN if so. PATTERN describes
8463 the type of insertion or extraction we want to perform.
8464
8465 For an insertion, the number of significant structure bits includes
8466 all bits of the target. For an extraction, it need only include the
8467 most significant bit of the field. Larger widths are acceptable
8468 in both cases. */
8469
8470 bool
8471 get_best_reg_extraction_insn (extraction_insn *insn,
8472 enum extraction_pattern pattern,
8473 unsigned HOST_WIDE_INT struct_bits,
8474 enum machine_mode field_mode)
8475 {
8476 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8477 field_mode);
8478 }
8479
8480 /* Return true if an instruction exists to access a field of BITSIZE
8481 bits starting BITNUM bits into a memory structure. Describe the
8482 "best" such instruction in *INSN if so. PATTERN describes the type
8483 of insertion or extraction we want to perform and FIELDMODE is the
8484 natural mode of the extracted field.
8485
8486 The instructions considered here only access bytes that overlap
8487 the bitfield; they do not touch any surrounding bytes. */
8488
8489 bool
8490 get_best_mem_extraction_insn (extraction_insn *insn,
8491 enum extraction_pattern pattern,
8492 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8493 enum machine_mode field_mode)
8494 {
8495 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8496 + bitsize
8497 + BITS_PER_UNIT - 1);
8498 struct_bits -= struct_bits % BITS_PER_UNIT;
8499 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8500 struct_bits, field_mode);
8501 }
8502
8503 #include "gt-optabs.h"