]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
Merge from trunk.
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "except.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "libfuncs.h"
39 #include "recog.h"
40 #include "reload.h"
41 #include "ggc.h"
42 #include "basic-block.h"
43 #include "target.h"
44
45 struct target_optabs default_target_optabs;
46 struct target_libfuncs default_target_libfuncs;
47 struct target_optabs *this_fn_optabs = &default_target_optabs;
48 #if SWITCHABLE_TARGET
49 struct target_optabs *this_target_optabs = &default_target_optabs;
50 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
51 #endif
52
53 #define libfunc_hash \
54 (this_target_libfuncs->x_libfunc_hash)
55
56 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
57 enum machine_mode *);
58 static rtx expand_unop_direct (enum machine_mode, optab, rtx, rtx, int);
59 static void emit_libcall_block_1 (rtx, rtx, rtx, rtx, bool);
60
61 /* Debug facility for use in GDB. */
62 void debug_optab_libfuncs (void);
63
64 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
65 #if ENABLE_DECIMAL_BID_FORMAT
66 #define DECIMAL_PREFIX "bid_"
67 #else
68 #define DECIMAL_PREFIX "dpd_"
69 #endif
70 \f
71 /* Used for libfunc_hash. */
72
73 static hashval_t
74 hash_libfunc (const void *p)
75 {
76 const struct libfunc_entry *const e = (const struct libfunc_entry *) p;
77 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
78 }
79
80 /* Used for libfunc_hash. */
81
82 static int
83 eq_libfunc (const void *p, const void *q)
84 {
85 const struct libfunc_entry *const e1 = (const struct libfunc_entry *) p;
86 const struct libfunc_entry *const e2 = (const struct libfunc_entry *) q;
87 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
88 }
89
90 /* Return libfunc corresponding operation defined by OPTAB converting
91 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
92 if no libfunc is available. */
93 rtx
94 convert_optab_libfunc (convert_optab optab, enum machine_mode mode1,
95 enum machine_mode mode2)
96 {
97 struct libfunc_entry e;
98 struct libfunc_entry **slot;
99
100 /* ??? This ought to be an assert, but not all of the places
101 that we expand optabs know about the optabs that got moved
102 to being direct. */
103 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
104 return NULL_RTX;
105
106 e.op = optab;
107 e.mode1 = mode1;
108 e.mode2 = mode2;
109 slot = (struct libfunc_entry **)
110 htab_find_slot (libfunc_hash, &e, NO_INSERT);
111 if (!slot)
112 {
113 const struct convert_optab_libcall_d *d
114 = &convlib_def[optab - FIRST_CONV_OPTAB];
115
116 if (d->libcall_gen == NULL)
117 return NULL;
118
119 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
120 slot = (struct libfunc_entry **)
121 htab_find_slot (libfunc_hash, &e, NO_INSERT);
122 if (!slot)
123 return NULL;
124 }
125 return (*slot)->libfunc;
126 }
127
128 /* Return libfunc corresponding operation defined by OPTAB in MODE.
129 Trigger lazy initialization if needed, return NULL if no libfunc is
130 available. */
131 rtx
132 optab_libfunc (optab optab, enum machine_mode mode)
133 {
134 struct libfunc_entry e;
135 struct libfunc_entry **slot;
136
137 /* ??? This ought to be an assert, but not all of the places
138 that we expand optabs know about the optabs that got moved
139 to being direct. */
140 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
141 return NULL_RTX;
142
143 e.op = optab;
144 e.mode1 = mode;
145 e.mode2 = VOIDmode;
146 slot = (struct libfunc_entry **)
147 htab_find_slot (libfunc_hash, &e, NO_INSERT);
148 if (!slot)
149 {
150 const struct optab_libcall_d *d
151 = &normlib_def[optab - FIRST_NORM_OPTAB];
152
153 if (d->libcall_gen == NULL)
154 return NULL;
155
156 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
157 slot = (struct libfunc_entry **)
158 htab_find_slot (libfunc_hash, &e, NO_INSERT);
159 if (!slot)
160 return NULL;
161 }
162 return (*slot)->libfunc;
163 }
164
165 \f
166 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
167 the result of operation CODE applied to OP0 (and OP1 if it is a binary
168 operation).
169
170 If the last insn does not set TARGET, don't do anything, but return 1.
171
172 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
173 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
174 try again, ensuring that TARGET is not one of the operands. */
175
176 static int
177 add_equal_note (rtx insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
178 {
179 rtx last_insn, set;
180 rtx note;
181
182 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
183
184 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
185 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
186 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
187 && GET_RTX_CLASS (code) != RTX_COMPARE
188 && GET_RTX_CLASS (code) != RTX_UNARY)
189 return 1;
190
191 if (GET_CODE (target) == ZERO_EXTRACT)
192 return 1;
193
194 for (last_insn = insns;
195 NEXT_INSN (last_insn) != NULL_RTX;
196 last_insn = NEXT_INSN (last_insn))
197 ;
198
199 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
200 a value changing in the insn, so the note would be invalid for CSE. */
201 if (reg_overlap_mentioned_p (target, op0)
202 || (op1 && reg_overlap_mentioned_p (target, op1)))
203 {
204 if (MEM_P (target)
205 && (rtx_equal_p (target, op0)
206 || (op1 && rtx_equal_p (target, op1))))
207 {
208 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
209 over expanding it as temp = MEM op X, MEM = temp. If the target
210 supports MEM = MEM op X instructions, it is sometimes too hard
211 to reconstruct that form later, especially if X is also a memory,
212 and due to multiple occurrences of addresses the address might
213 be forced into register unnecessarily.
214 Note that not emitting the REG_EQUIV note might inhibit
215 CSE in some cases. */
216 set = single_set (last_insn);
217 if (set
218 && GET_CODE (SET_SRC (set)) == code
219 && MEM_P (SET_DEST (set))
220 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
221 || (op1 && rtx_equal_p (SET_DEST (set),
222 XEXP (SET_SRC (set), 1)))))
223 return 1;
224 }
225 return 0;
226 }
227
228 set = single_set (last_insn);
229 if (set == NULL_RTX)
230 return 1;
231
232 if (! rtx_equal_p (SET_DEST (set), target)
233 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
234 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
235 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
236 return 1;
237
238 if (GET_RTX_CLASS (code) == RTX_UNARY)
239 switch (code)
240 {
241 case FFS:
242 case CLZ:
243 case CTZ:
244 case CLRSB:
245 case POPCOUNT:
246 case PARITY:
247 case BSWAP:
248 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
249 {
250 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
251 if (GET_MODE_SIZE (GET_MODE (op0))
252 > GET_MODE_SIZE (GET_MODE (target)))
253 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
254 note, GET_MODE (op0));
255 else
256 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
257 note, GET_MODE (op0));
258 break;
259 }
260 /* FALLTHRU */
261 default:
262 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
263 break;
264 }
265 else
266 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
267
268 set_unique_reg_note (last_insn, REG_EQUAL, note);
269
270 return 1;
271 }
272 \f
273 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
274 for a widening operation would be. In most cases this would be OP0, but if
275 that's a constant it'll be VOIDmode, which isn't useful. */
276
277 static enum machine_mode
278 widened_mode (enum machine_mode to_mode, rtx op0, rtx op1)
279 {
280 enum machine_mode m0 = GET_MODE (op0);
281 enum machine_mode m1 = GET_MODE (op1);
282 enum machine_mode result;
283
284 if (m0 == VOIDmode && m1 == VOIDmode)
285 return to_mode;
286 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
287 result = m1;
288 else
289 result = m0;
290
291 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
292 return to_mode;
293
294 return result;
295 }
296 \f
297 /* Find a widening optab even if it doesn't widen as much as we want.
298 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
299 direct HI->SI insn, then return SI->DI, if that exists.
300 If PERMIT_NON_WIDENING is non-zero then this can be used with
301 non-widening optabs also. */
302
303 enum insn_code
304 find_widening_optab_handler_and_mode (optab op, enum machine_mode to_mode,
305 enum machine_mode from_mode,
306 int permit_non_widening,
307 enum machine_mode *found_mode)
308 {
309 for (; (permit_non_widening || from_mode != to_mode)
310 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
311 && from_mode != VOIDmode;
312 from_mode = GET_MODE_WIDER_MODE (from_mode))
313 {
314 enum insn_code handler = widening_optab_handler (op, to_mode,
315 from_mode);
316
317 if (handler != CODE_FOR_nothing)
318 {
319 if (found_mode)
320 *found_mode = from_mode;
321 return handler;
322 }
323 }
324
325 return CODE_FOR_nothing;
326 }
327 \f
328 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
329 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
330 not actually do a sign-extend or zero-extend, but can leave the
331 higher-order bits of the result rtx undefined, for example, in the case
332 of logical operations, but not right shifts. */
333
334 static rtx
335 widen_operand (rtx op, enum machine_mode mode, enum machine_mode oldmode,
336 int unsignedp, int no_extend)
337 {
338 rtx result;
339
340 /* If we don't have to extend and this is a constant, return it. */
341 if (no_extend && GET_MODE (op) == VOIDmode)
342 return op;
343
344 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
345 extend since it will be more efficient to do so unless the signedness of
346 a promoted object differs from our extension. */
347 if (! no_extend
348 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
349 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
350 return convert_modes (mode, oldmode, op, unsignedp);
351
352 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
353 SUBREG. */
354 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
355 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
356
357 /* Otherwise, get an object of MODE, clobber it, and set the low-order
358 part to OP. */
359
360 result = gen_reg_rtx (mode);
361 emit_clobber (result);
362 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
363 return result;
364 }
365 \f
366 /* Return the optab used for computing the operation given by the tree code,
367 CODE and the tree EXP. This function is not always usable (for example, it
368 cannot give complete results for multiplication or division) but probably
369 ought to be relied on more widely throughout the expander. */
370 optab
371 optab_for_tree_code (enum tree_code code, const_tree type,
372 enum optab_subtype subtype)
373 {
374 bool trapv;
375 switch (code)
376 {
377 case BIT_AND_EXPR:
378 return and_optab;
379
380 case BIT_IOR_EXPR:
381 return ior_optab;
382
383 case BIT_NOT_EXPR:
384 return one_cmpl_optab;
385
386 case BIT_XOR_EXPR:
387 return xor_optab;
388
389 case MULT_HIGHPART_EXPR:
390 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
391
392 case TRUNC_MOD_EXPR:
393 case CEIL_MOD_EXPR:
394 case FLOOR_MOD_EXPR:
395 case ROUND_MOD_EXPR:
396 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
397
398 case RDIV_EXPR:
399 case TRUNC_DIV_EXPR:
400 case CEIL_DIV_EXPR:
401 case FLOOR_DIV_EXPR:
402 case ROUND_DIV_EXPR:
403 case EXACT_DIV_EXPR:
404 if (TYPE_SATURATING (type))
405 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
406 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
407
408 case LSHIFT_EXPR:
409 if (TREE_CODE (type) == VECTOR_TYPE)
410 {
411 if (subtype == optab_vector)
412 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
413
414 gcc_assert (subtype == optab_scalar);
415 }
416 if (TYPE_SATURATING (type))
417 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
418 return ashl_optab;
419
420 case RSHIFT_EXPR:
421 if (TREE_CODE (type) == VECTOR_TYPE)
422 {
423 if (subtype == optab_vector)
424 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
425
426 gcc_assert (subtype == optab_scalar);
427 }
428 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
429
430 case LROTATE_EXPR:
431 if (TREE_CODE (type) == VECTOR_TYPE)
432 {
433 if (subtype == optab_vector)
434 return vrotl_optab;
435
436 gcc_assert (subtype == optab_scalar);
437 }
438 return rotl_optab;
439
440 case RROTATE_EXPR:
441 if (TREE_CODE (type) == VECTOR_TYPE)
442 {
443 if (subtype == optab_vector)
444 return vrotr_optab;
445
446 gcc_assert (subtype == optab_scalar);
447 }
448 return rotr_optab;
449
450 case MAX_EXPR:
451 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
452
453 case MIN_EXPR:
454 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
455
456 case REALIGN_LOAD_EXPR:
457 return vec_realign_load_optab;
458
459 case WIDEN_SUM_EXPR:
460 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
461
462 case DOT_PROD_EXPR:
463 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
464
465 case WIDEN_MULT_PLUS_EXPR:
466 return (TYPE_UNSIGNED (type)
467 ? (TYPE_SATURATING (type)
468 ? usmadd_widen_optab : umadd_widen_optab)
469 : (TYPE_SATURATING (type)
470 ? ssmadd_widen_optab : smadd_widen_optab));
471
472 case WIDEN_MULT_MINUS_EXPR:
473 return (TYPE_UNSIGNED (type)
474 ? (TYPE_SATURATING (type)
475 ? usmsub_widen_optab : umsub_widen_optab)
476 : (TYPE_SATURATING (type)
477 ? ssmsub_widen_optab : smsub_widen_optab));
478
479 case FMA_EXPR:
480 return fma_optab;
481
482 case REDUC_MAX_EXPR:
483 return TYPE_UNSIGNED (type) ? reduc_umax_optab : reduc_smax_optab;
484
485 case REDUC_MIN_EXPR:
486 return TYPE_UNSIGNED (type) ? reduc_umin_optab : reduc_smin_optab;
487
488 case REDUC_PLUS_EXPR:
489 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
490
491 case VEC_LSHIFT_EXPR:
492 return vec_shl_optab;
493
494 case VEC_RSHIFT_EXPR:
495 return vec_shr_optab;
496
497 case VEC_WIDEN_MULT_HI_EXPR:
498 return TYPE_UNSIGNED (type) ?
499 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
500
501 case VEC_WIDEN_MULT_LO_EXPR:
502 return TYPE_UNSIGNED (type) ?
503 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
504
505 case VEC_WIDEN_MULT_EVEN_EXPR:
506 return TYPE_UNSIGNED (type) ?
507 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
508
509 case VEC_WIDEN_MULT_ODD_EXPR:
510 return TYPE_UNSIGNED (type) ?
511 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
512
513 case VEC_WIDEN_LSHIFT_HI_EXPR:
514 return TYPE_UNSIGNED (type) ?
515 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
516
517 case VEC_WIDEN_LSHIFT_LO_EXPR:
518 return TYPE_UNSIGNED (type) ?
519 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
520
521 case VEC_UNPACK_HI_EXPR:
522 return TYPE_UNSIGNED (type) ?
523 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
524
525 case VEC_UNPACK_LO_EXPR:
526 return TYPE_UNSIGNED (type) ?
527 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
528
529 case VEC_UNPACK_FLOAT_HI_EXPR:
530 /* The signedness is determined from input operand. */
531 return TYPE_UNSIGNED (type) ?
532 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
533
534 case VEC_UNPACK_FLOAT_LO_EXPR:
535 /* The signedness is determined from input operand. */
536 return TYPE_UNSIGNED (type) ?
537 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
538
539 case VEC_PACK_TRUNC_EXPR:
540 return vec_pack_trunc_optab;
541
542 case VEC_PACK_SAT_EXPR:
543 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
544
545 case VEC_PACK_FIX_TRUNC_EXPR:
546 /* The signedness is determined from output operand. */
547 return TYPE_UNSIGNED (type) ?
548 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
549
550 default:
551 break;
552 }
553
554 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
555 switch (code)
556 {
557 case POINTER_PLUS_EXPR:
558 case PLUS_EXPR:
559 if (TYPE_SATURATING (type))
560 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
561 return trapv ? addv_optab : add_optab;
562
563 case MINUS_EXPR:
564 if (TYPE_SATURATING (type))
565 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
566 return trapv ? subv_optab : sub_optab;
567
568 case MULT_EXPR:
569 if (TYPE_SATURATING (type))
570 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
571 return trapv ? smulv_optab : smul_optab;
572
573 case NEGATE_EXPR:
574 if (TYPE_SATURATING (type))
575 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
576 return trapv ? negv_optab : neg_optab;
577
578 case ABS_EXPR:
579 return trapv ? absv_optab : abs_optab;
580
581 default:
582 return unknown_optab;
583 }
584 }
585 \f
586
587 /* Expand vector widening operations.
588
589 There are two different classes of operations handled here:
590 1) Operations whose result is wider than all the arguments to the operation.
591 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
592 In this case OP0 and optionally OP1 would be initialized,
593 but WIDE_OP wouldn't (not relevant for this case).
594 2) Operations whose result is of the same size as the last argument to the
595 operation, but wider than all the other arguments to the operation.
596 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
597 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
598
599 E.g, when called to expand the following operations, this is how
600 the arguments will be initialized:
601 nops OP0 OP1 WIDE_OP
602 widening-sum 2 oprnd0 - oprnd1
603 widening-dot-product 3 oprnd0 oprnd1 oprnd2
604 widening-mult 2 oprnd0 oprnd1 -
605 type-promotion (vec-unpack) 1 oprnd0 - - */
606
607 rtx
608 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
609 rtx target, int unsignedp)
610 {
611 struct expand_operand eops[4];
612 tree oprnd0, oprnd1, oprnd2;
613 enum machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
614 optab widen_pattern_optab;
615 enum insn_code icode;
616 int nops = TREE_CODE_LENGTH (ops->code);
617 int op;
618
619 oprnd0 = ops->op0;
620 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
621 widen_pattern_optab =
622 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
623 if (ops->code == WIDEN_MULT_PLUS_EXPR
624 || ops->code == WIDEN_MULT_MINUS_EXPR)
625 icode = find_widening_optab_handler (widen_pattern_optab,
626 TYPE_MODE (TREE_TYPE (ops->op2)),
627 tmode0, 0);
628 else
629 icode = optab_handler (widen_pattern_optab, tmode0);
630 gcc_assert (icode != CODE_FOR_nothing);
631
632 if (nops >= 2)
633 {
634 oprnd1 = ops->op1;
635 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
636 }
637
638 /* The last operand is of a wider mode than the rest of the operands. */
639 if (nops == 2)
640 wmode = tmode1;
641 else if (nops == 3)
642 {
643 gcc_assert (tmode1 == tmode0);
644 gcc_assert (op1);
645 oprnd2 = ops->op2;
646 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
647 }
648
649 op = 0;
650 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
651 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
652 if (op1)
653 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
654 if (wide_op)
655 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
656 expand_insn (icode, op, eops);
657 return eops[0].value;
658 }
659
660 /* Generate code to perform an operation specified by TERNARY_OPTAB
661 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
662
663 UNSIGNEDP is for the case where we have to widen the operands
664 to perform the operation. It says to use zero-extension.
665
666 If TARGET is nonzero, the value
667 is generated there, if it is convenient to do so.
668 In all cases an rtx is returned for the locus of the value;
669 this may or may not be TARGET. */
670
671 rtx
672 expand_ternary_op (enum machine_mode mode, optab ternary_optab, rtx op0,
673 rtx op1, rtx op2, rtx target, int unsignedp)
674 {
675 struct expand_operand ops[4];
676 enum insn_code icode = optab_handler (ternary_optab, mode);
677
678 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
679
680 create_output_operand (&ops[0], target, mode);
681 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
682 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
683 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
684 expand_insn (icode, 4, ops);
685 return ops[0].value;
686 }
687
688
689 /* Like expand_binop, but return a constant rtx if the result can be
690 calculated at compile time. The arguments and return value are
691 otherwise the same as for expand_binop. */
692
693 rtx
694 simplify_expand_binop (enum machine_mode mode, optab binoptab,
695 rtx op0, rtx op1, rtx target, int unsignedp,
696 enum optab_methods methods)
697 {
698 if (CONSTANT_P (op0) && CONSTANT_P (op1))
699 {
700 rtx x = simplify_binary_operation (optab_to_code (binoptab),
701 mode, op0, op1);
702 if (x)
703 return x;
704 }
705
706 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
707 }
708
709 /* Like simplify_expand_binop, but always put the result in TARGET.
710 Return true if the expansion succeeded. */
711
712 bool
713 force_expand_binop (enum machine_mode mode, optab binoptab,
714 rtx op0, rtx op1, rtx target, int unsignedp,
715 enum optab_methods methods)
716 {
717 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
718 target, unsignedp, methods);
719 if (x == 0)
720 return false;
721 if (x != target)
722 emit_move_insn (target, x);
723 return true;
724 }
725
726 /* Generate insns for VEC_LSHIFT_EXPR, VEC_RSHIFT_EXPR. */
727
728 rtx
729 expand_vec_shift_expr (sepops ops, rtx target)
730 {
731 struct expand_operand eops[3];
732 enum insn_code icode;
733 rtx rtx_op1, rtx_op2;
734 enum machine_mode mode = TYPE_MODE (ops->type);
735 tree vec_oprnd = ops->op0;
736 tree shift_oprnd = ops->op1;
737 optab shift_optab;
738
739 switch (ops->code)
740 {
741 case VEC_RSHIFT_EXPR:
742 shift_optab = vec_shr_optab;
743 break;
744 case VEC_LSHIFT_EXPR:
745 shift_optab = vec_shl_optab;
746 break;
747 default:
748 gcc_unreachable ();
749 }
750
751 icode = optab_handler (shift_optab, mode);
752 gcc_assert (icode != CODE_FOR_nothing);
753
754 rtx_op1 = expand_normal (vec_oprnd);
755 rtx_op2 = expand_normal (shift_oprnd);
756
757 create_output_operand (&eops[0], target, mode);
758 create_input_operand (&eops[1], rtx_op1, GET_MODE (rtx_op1));
759 create_convert_operand_from_type (&eops[2], rtx_op2, TREE_TYPE (shift_oprnd));
760 expand_insn (icode, 3, eops);
761
762 return eops[0].value;
763 }
764
765 /* Create a new vector value in VMODE with all elements set to OP. The
766 mode of OP must be the element mode of VMODE. If OP is a constant,
767 then the return value will be a constant. */
768
769 static rtx
770 expand_vector_broadcast (enum machine_mode vmode, rtx op)
771 {
772 enum insn_code icode;
773 rtvec vec;
774 rtx ret;
775 int i, n;
776
777 gcc_checking_assert (VECTOR_MODE_P (vmode));
778
779 n = GET_MODE_NUNITS (vmode);
780 vec = rtvec_alloc (n);
781 for (i = 0; i < n; ++i)
782 RTVEC_ELT (vec, i) = op;
783
784 if (CONSTANT_P (op))
785 return gen_rtx_CONST_VECTOR (vmode, vec);
786
787 /* ??? If the target doesn't have a vec_init, then we have no easy way
788 of performing this operation. Most of this sort of generic support
789 is hidden away in the vector lowering support in gimple. */
790 icode = optab_handler (vec_init_optab, vmode);
791 if (icode == CODE_FOR_nothing)
792 return NULL;
793
794 ret = gen_reg_rtx (vmode);
795 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
796
797 return ret;
798 }
799
800 /* This subroutine of expand_doubleword_shift handles the cases in which
801 the effective shift value is >= BITS_PER_WORD. The arguments and return
802 value are the same as for the parent routine, except that SUPERWORD_OP1
803 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
804 INTO_TARGET may be null if the caller has decided to calculate it. */
805
806 static bool
807 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
808 rtx outof_target, rtx into_target,
809 int unsignedp, enum optab_methods methods)
810 {
811 if (into_target != 0)
812 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
813 into_target, unsignedp, methods))
814 return false;
815
816 if (outof_target != 0)
817 {
818 /* For a signed right shift, we must fill OUTOF_TARGET with copies
819 of the sign bit, otherwise we must fill it with zeros. */
820 if (binoptab != ashr_optab)
821 emit_move_insn (outof_target, CONST0_RTX (word_mode));
822 else
823 if (!force_expand_binop (word_mode, binoptab,
824 outof_input, GEN_INT (BITS_PER_WORD - 1),
825 outof_target, unsignedp, methods))
826 return false;
827 }
828 return true;
829 }
830
831 /* This subroutine of expand_doubleword_shift handles the cases in which
832 the effective shift value is < BITS_PER_WORD. The arguments and return
833 value are the same as for the parent routine. */
834
835 static bool
836 expand_subword_shift (enum machine_mode op1_mode, optab binoptab,
837 rtx outof_input, rtx into_input, rtx op1,
838 rtx outof_target, rtx into_target,
839 int unsignedp, enum optab_methods methods,
840 unsigned HOST_WIDE_INT shift_mask)
841 {
842 optab reverse_unsigned_shift, unsigned_shift;
843 rtx tmp, carries;
844
845 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
846 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
847
848 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
849 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
850 the opposite direction to BINOPTAB. */
851 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
852 {
853 carries = outof_input;
854 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
855 op1_mode), op1_mode);
856 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
857 0, true, methods);
858 }
859 else
860 {
861 /* We must avoid shifting by BITS_PER_WORD bits since that is either
862 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
863 has unknown behavior. Do a single shift first, then shift by the
864 remainder. It's OK to use ~OP1 as the remainder if shift counts
865 are truncated to the mode size. */
866 carries = expand_binop (word_mode, reverse_unsigned_shift,
867 outof_input, const1_rtx, 0, unsignedp, methods);
868 if (shift_mask == BITS_PER_WORD - 1)
869 {
870 tmp = immed_wide_int_const
871 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
872 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
873 0, true, methods);
874 }
875 else
876 {
877 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
878 op1_mode), op1_mode);
879 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
880 0, true, methods);
881 }
882 }
883 if (tmp == 0 || carries == 0)
884 return false;
885 carries = expand_binop (word_mode, reverse_unsigned_shift,
886 carries, tmp, 0, unsignedp, methods);
887 if (carries == 0)
888 return false;
889
890 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
891 so the result can go directly into INTO_TARGET if convenient. */
892 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
893 into_target, unsignedp, methods);
894 if (tmp == 0)
895 return false;
896
897 /* Now OR in the bits carried over from OUTOF_INPUT. */
898 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
899 into_target, unsignedp, methods))
900 return false;
901
902 /* Use a standard word_mode shift for the out-of half. */
903 if (outof_target != 0)
904 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
905 outof_target, unsignedp, methods))
906 return false;
907
908 return true;
909 }
910
911
912 #ifdef HAVE_conditional_move
913 /* Try implementing expand_doubleword_shift using conditional moves.
914 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
915 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
916 are the shift counts to use in the former and latter case. All other
917 arguments are the same as the parent routine. */
918
919 static bool
920 expand_doubleword_shift_condmove (enum machine_mode op1_mode, optab binoptab,
921 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
922 rtx outof_input, rtx into_input,
923 rtx subword_op1, rtx superword_op1,
924 rtx outof_target, rtx into_target,
925 int unsignedp, enum optab_methods methods,
926 unsigned HOST_WIDE_INT shift_mask)
927 {
928 rtx outof_superword, into_superword;
929
930 /* Put the superword version of the output into OUTOF_SUPERWORD and
931 INTO_SUPERWORD. */
932 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
933 if (outof_target != 0 && subword_op1 == superword_op1)
934 {
935 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
936 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
937 into_superword = outof_target;
938 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
939 outof_superword, 0, unsignedp, methods))
940 return false;
941 }
942 else
943 {
944 into_superword = gen_reg_rtx (word_mode);
945 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
946 outof_superword, into_superword,
947 unsignedp, methods))
948 return false;
949 }
950
951 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
952 if (!expand_subword_shift (op1_mode, binoptab,
953 outof_input, into_input, subword_op1,
954 outof_target, into_target,
955 unsignedp, methods, shift_mask))
956 return false;
957
958 /* Select between them. Do the INTO half first because INTO_SUPERWORD
959 might be the current value of OUTOF_TARGET. */
960 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
961 into_target, into_superword, word_mode, false))
962 return false;
963
964 if (outof_target != 0)
965 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
966 outof_target, outof_superword,
967 word_mode, false))
968 return false;
969
970 return true;
971 }
972 #endif
973
974 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
975 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
976 input operand; the shift moves bits in the direction OUTOF_INPUT->
977 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
978 of the target. OP1 is the shift count and OP1_MODE is its mode.
979 If OP1 is constant, it will have been truncated as appropriate
980 and is known to be nonzero.
981
982 If SHIFT_MASK is zero, the result of word shifts is undefined when the
983 shift count is outside the range [0, BITS_PER_WORD). This routine must
984 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
985
986 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
987 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
988 fill with zeros or sign bits as appropriate.
989
990 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
991 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
992 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
993 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
994 are undefined.
995
996 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
997 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
998 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
999 function wants to calculate it itself.
1000
1001 Return true if the shift could be successfully synthesized. */
1002
1003 static bool
1004 expand_doubleword_shift (enum machine_mode op1_mode, optab binoptab,
1005 rtx outof_input, rtx into_input, rtx op1,
1006 rtx outof_target, rtx into_target,
1007 int unsignedp, enum optab_methods methods,
1008 unsigned HOST_WIDE_INT shift_mask)
1009 {
1010 rtx superword_op1, tmp, cmp1, cmp2;
1011 rtx subword_label, done_label;
1012 enum rtx_code cmp_code;
1013
1014 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1015 fill the result with sign or zero bits as appropriate. If so, the value
1016 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1017 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1018 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1019
1020 This isn't worthwhile for constant shifts since the optimizers will
1021 cope better with in-range shift counts. */
1022 if (shift_mask >= BITS_PER_WORD
1023 && outof_target != 0
1024 && !CONSTANT_P (op1))
1025 {
1026 if (!expand_doubleword_shift (op1_mode, binoptab,
1027 outof_input, into_input, op1,
1028 0, into_target,
1029 unsignedp, methods, shift_mask))
1030 return false;
1031 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1032 outof_target, unsignedp, methods))
1033 return false;
1034 return true;
1035 }
1036
1037 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1038 is true when the effective shift value is less than BITS_PER_WORD.
1039 Set SUPERWORD_OP1 to the shift count that should be used to shift
1040 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1041 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
1042 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1043 {
1044 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1045 is a subword shift count. */
1046 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1047 0, true, methods);
1048 cmp2 = CONST0_RTX (op1_mode);
1049 cmp_code = EQ;
1050 superword_op1 = op1;
1051 }
1052 else
1053 {
1054 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1055 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1056 0, true, methods);
1057 cmp2 = CONST0_RTX (op1_mode);
1058 cmp_code = LT;
1059 superword_op1 = cmp1;
1060 }
1061 if (cmp1 == 0)
1062 return false;
1063
1064 /* If we can compute the condition at compile time, pick the
1065 appropriate subroutine. */
1066 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1067 if (tmp != 0 && CONST_INT_P (tmp))
1068 {
1069 if (tmp == const0_rtx)
1070 return expand_superword_shift (binoptab, outof_input, superword_op1,
1071 outof_target, into_target,
1072 unsignedp, methods);
1073 else
1074 return expand_subword_shift (op1_mode, binoptab,
1075 outof_input, into_input, op1,
1076 outof_target, into_target,
1077 unsignedp, methods, shift_mask);
1078 }
1079
1080 #ifdef HAVE_conditional_move
1081 /* Try using conditional moves to generate straight-line code. */
1082 {
1083 rtx start = get_last_insn ();
1084 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1085 cmp_code, cmp1, cmp2,
1086 outof_input, into_input,
1087 op1, superword_op1,
1088 outof_target, into_target,
1089 unsignedp, methods, shift_mask))
1090 return true;
1091 delete_insns_since (start);
1092 }
1093 #endif
1094
1095 /* As a last resort, use branches to select the correct alternative. */
1096 subword_label = gen_label_rtx ();
1097 done_label = gen_label_rtx ();
1098
1099 NO_DEFER_POP;
1100 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1101 0, 0, subword_label, -1);
1102 OK_DEFER_POP;
1103
1104 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1105 outof_target, into_target,
1106 unsignedp, methods))
1107 return false;
1108
1109 emit_jump_insn (gen_jump (done_label));
1110 emit_barrier ();
1111 emit_label (subword_label);
1112
1113 if (!expand_subword_shift (op1_mode, binoptab,
1114 outof_input, into_input, op1,
1115 outof_target, into_target,
1116 unsignedp, methods, shift_mask))
1117 return false;
1118
1119 emit_label (done_label);
1120 return true;
1121 }
1122 \f
1123 /* Subroutine of expand_binop. Perform a double word multiplication of
1124 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1125 as the target's word_mode. This function return NULL_RTX if anything
1126 goes wrong, in which case it may have already emitted instructions
1127 which need to be deleted.
1128
1129 If we want to multiply two two-word values and have normal and widening
1130 multiplies of single-word values, we can do this with three smaller
1131 multiplications.
1132
1133 The multiplication proceeds as follows:
1134 _______________________
1135 [__op0_high_|__op0_low__]
1136 _______________________
1137 * [__op1_high_|__op1_low__]
1138 _______________________________________________
1139 _______________________
1140 (1) [__op0_low__*__op1_low__]
1141 _______________________
1142 (2a) [__op0_low__*__op1_high_]
1143 _______________________
1144 (2b) [__op0_high_*__op1_low__]
1145 _______________________
1146 (3) [__op0_high_*__op1_high_]
1147
1148
1149 This gives a 4-word result. Since we are only interested in the
1150 lower 2 words, partial result (3) and the upper words of (2a) and
1151 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1152 calculated using non-widening multiplication.
1153
1154 (1), however, needs to be calculated with an unsigned widening
1155 multiplication. If this operation is not directly supported we
1156 try using a signed widening multiplication and adjust the result.
1157 This adjustment works as follows:
1158
1159 If both operands are positive then no adjustment is needed.
1160
1161 If the operands have different signs, for example op0_low < 0 and
1162 op1_low >= 0, the instruction treats the most significant bit of
1163 op0_low as a sign bit instead of a bit with significance
1164 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1165 with 2**BITS_PER_WORD - op0_low, and two's complements the
1166 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1167 the result.
1168
1169 Similarly, if both operands are negative, we need to add
1170 (op0_low + op1_low) * 2**BITS_PER_WORD.
1171
1172 We use a trick to adjust quickly. We logically shift op0_low right
1173 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1174 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1175 logical shift exists, we do an arithmetic right shift and subtract
1176 the 0 or -1. */
1177
1178 static rtx
1179 expand_doubleword_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
1180 bool umulp, enum optab_methods methods)
1181 {
1182 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1183 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1184 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1185 rtx product, adjust, product_high, temp;
1186
1187 rtx op0_high = operand_subword_force (op0, high, mode);
1188 rtx op0_low = operand_subword_force (op0, low, mode);
1189 rtx op1_high = operand_subword_force (op1, high, mode);
1190 rtx op1_low = operand_subword_force (op1, low, mode);
1191
1192 /* If we're using an unsigned multiply to directly compute the product
1193 of the low-order words of the operands and perform any required
1194 adjustments of the operands, we begin by trying two more multiplications
1195 and then computing the appropriate sum.
1196
1197 We have checked above that the required addition is provided.
1198 Full-word addition will normally always succeed, especially if
1199 it is provided at all, so we don't worry about its failure. The
1200 multiplication may well fail, however, so we do handle that. */
1201
1202 if (!umulp)
1203 {
1204 /* ??? This could be done with emit_store_flag where available. */
1205 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1206 NULL_RTX, 1, methods);
1207 if (temp)
1208 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1209 NULL_RTX, 0, OPTAB_DIRECT);
1210 else
1211 {
1212 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1213 NULL_RTX, 0, methods);
1214 if (!temp)
1215 return NULL_RTX;
1216 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1217 NULL_RTX, 0, OPTAB_DIRECT);
1218 }
1219
1220 if (!op0_high)
1221 return NULL_RTX;
1222 }
1223
1224 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1225 NULL_RTX, 0, OPTAB_DIRECT);
1226 if (!adjust)
1227 return NULL_RTX;
1228
1229 /* OP0_HIGH should now be dead. */
1230
1231 if (!umulp)
1232 {
1233 /* ??? This could be done with emit_store_flag where available. */
1234 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1235 NULL_RTX, 1, methods);
1236 if (temp)
1237 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1238 NULL_RTX, 0, OPTAB_DIRECT);
1239 else
1240 {
1241 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1242 NULL_RTX, 0, methods);
1243 if (!temp)
1244 return NULL_RTX;
1245 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1246 NULL_RTX, 0, OPTAB_DIRECT);
1247 }
1248
1249 if (!op1_high)
1250 return NULL_RTX;
1251 }
1252
1253 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1254 NULL_RTX, 0, OPTAB_DIRECT);
1255 if (!temp)
1256 return NULL_RTX;
1257
1258 /* OP1_HIGH should now be dead. */
1259
1260 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1261 NULL_RTX, 0, OPTAB_DIRECT);
1262
1263 if (target && !REG_P (target))
1264 target = NULL_RTX;
1265
1266 if (umulp)
1267 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1268 target, 1, OPTAB_DIRECT);
1269 else
1270 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1271 target, 1, OPTAB_DIRECT);
1272
1273 if (!product)
1274 return NULL_RTX;
1275
1276 product_high = operand_subword (product, high, 1, mode);
1277 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1278 NULL_RTX, 0, OPTAB_DIRECT);
1279 emit_move_insn (product_high, adjust);
1280 return product;
1281 }
1282 \f
1283 /* Wrapper around expand_binop which takes an rtx code to specify
1284 the operation to perform, not an optab pointer. All other
1285 arguments are the same. */
1286 rtx
1287 expand_simple_binop (enum machine_mode mode, enum rtx_code code, rtx op0,
1288 rtx op1, rtx target, int unsignedp,
1289 enum optab_methods methods)
1290 {
1291 optab binop = code_to_optab (code);
1292 gcc_assert (binop);
1293
1294 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1295 }
1296
1297 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1298 binop. Order them according to commutative_operand_precedence and, if
1299 possible, try to put TARGET or a pseudo first. */
1300 static bool
1301 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1302 {
1303 int op0_prec = commutative_operand_precedence (op0);
1304 int op1_prec = commutative_operand_precedence (op1);
1305
1306 if (op0_prec < op1_prec)
1307 return true;
1308
1309 if (op0_prec > op1_prec)
1310 return false;
1311
1312 /* With equal precedence, both orders are ok, but it is better if the
1313 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1314 if (target == 0 || REG_P (target))
1315 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1316 else
1317 return rtx_equal_p (op1, target);
1318 }
1319
1320 /* Return true if BINOPTAB implements a shift operation. */
1321
1322 static bool
1323 shift_optab_p (optab binoptab)
1324 {
1325 switch (optab_to_code (binoptab))
1326 {
1327 case ASHIFT:
1328 case SS_ASHIFT:
1329 case US_ASHIFT:
1330 case ASHIFTRT:
1331 case LSHIFTRT:
1332 case ROTATE:
1333 case ROTATERT:
1334 return true;
1335
1336 default:
1337 return false;
1338 }
1339 }
1340
1341 /* Return true if BINOPTAB implements a commutative binary operation. */
1342
1343 static bool
1344 commutative_optab_p (optab binoptab)
1345 {
1346 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1347 || binoptab == smul_widen_optab
1348 || binoptab == umul_widen_optab
1349 || binoptab == smul_highpart_optab
1350 || binoptab == umul_highpart_optab);
1351 }
1352
1353 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1354 optimizing, and if the operand is a constant that costs more than
1355 1 instruction, force the constant into a register and return that
1356 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1357
1358 static rtx
1359 avoid_expensive_constant (enum machine_mode mode, optab binoptab,
1360 int opn, rtx x, bool unsignedp)
1361 {
1362 bool speed = optimize_insn_for_speed_p ();
1363
1364 if (mode != VOIDmode
1365 && optimize
1366 && CONSTANT_P (x)
1367 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1368 > set_src_cost (x, speed)))
1369 {
1370 if (CONST_INT_P (x))
1371 {
1372 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1373 if (intval != INTVAL (x))
1374 x = GEN_INT (intval);
1375 }
1376 else
1377 x = convert_modes (mode, VOIDmode, x, unsignedp);
1378 x = force_reg (mode, x);
1379 }
1380 return x;
1381 }
1382
1383 /* Helper function for expand_binop: handle the case where there
1384 is an insn that directly implements the indicated operation.
1385 Returns null if this is not possible. */
1386 static rtx
1387 expand_binop_directly (enum machine_mode mode, optab binoptab,
1388 rtx op0, rtx op1,
1389 rtx target, int unsignedp, enum optab_methods methods,
1390 rtx last)
1391 {
1392 enum machine_mode from_mode = widened_mode (mode, op0, op1);
1393 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1394 from_mode, 1);
1395 enum machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1396 enum machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1397 enum machine_mode mode0, mode1, tmp_mode;
1398 struct expand_operand ops[3];
1399 bool commutative_p;
1400 rtx pat;
1401 rtx xop0 = op0, xop1 = op1;
1402 rtx swap;
1403
1404 /* If it is a commutative operator and the modes would match
1405 if we would swap the operands, we can save the conversions. */
1406 commutative_p = commutative_optab_p (binoptab);
1407 if (commutative_p
1408 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1409 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1410 {
1411 swap = xop0;
1412 xop0 = xop1;
1413 xop1 = swap;
1414 }
1415
1416 /* If we are optimizing, force expensive constants into a register. */
1417 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1418 if (!shift_optab_p (binoptab))
1419 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1420
1421 /* In case the insn wants input operands in modes different from
1422 those of the actual operands, convert the operands. It would
1423 seem that we don't need to convert CONST_INTs, but we do, so
1424 that they're properly zero-extended, sign-extended or truncated
1425 for their mode. */
1426
1427 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1428 if (xmode0 != VOIDmode && xmode0 != mode0)
1429 {
1430 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1431 mode0 = xmode0;
1432 }
1433
1434 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1435 if (xmode1 != VOIDmode && xmode1 != mode1)
1436 {
1437 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1438 mode1 = xmode1;
1439 }
1440
1441 /* If operation is commutative,
1442 try to make the first operand a register.
1443 Even better, try to make it the same as the target.
1444 Also try to make the last operand a constant. */
1445 if (commutative_p
1446 && swap_commutative_operands_with_target (target, xop0, xop1))
1447 {
1448 swap = xop1;
1449 xop1 = xop0;
1450 xop0 = swap;
1451 }
1452
1453 /* Now, if insn's predicates don't allow our operands, put them into
1454 pseudo regs. */
1455
1456 if (binoptab == vec_pack_trunc_optab
1457 || binoptab == vec_pack_usat_optab
1458 || binoptab == vec_pack_ssat_optab
1459 || binoptab == vec_pack_ufix_trunc_optab
1460 || binoptab == vec_pack_sfix_trunc_optab)
1461 {
1462 /* The mode of the result is different then the mode of the
1463 arguments. */
1464 tmp_mode = insn_data[(int) icode].operand[0].mode;
1465 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1466 {
1467 delete_insns_since (last);
1468 return NULL_RTX;
1469 }
1470 }
1471 else
1472 tmp_mode = mode;
1473
1474 create_output_operand (&ops[0], target, tmp_mode);
1475 create_input_operand (&ops[1], xop0, mode0);
1476 create_input_operand (&ops[2], xop1, mode1);
1477 pat = maybe_gen_insn (icode, 3, ops);
1478 if (pat)
1479 {
1480 /* If PAT is composed of more than one insn, try to add an appropriate
1481 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1482 operand, call expand_binop again, this time without a target. */
1483 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1484 && ! add_equal_note (pat, ops[0].value, optab_to_code (binoptab),
1485 ops[1].value, ops[2].value))
1486 {
1487 delete_insns_since (last);
1488 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1489 unsignedp, methods);
1490 }
1491
1492 emit_insn (pat);
1493 return ops[0].value;
1494 }
1495 delete_insns_since (last);
1496 return NULL_RTX;
1497 }
1498
1499 /* Generate code to perform an operation specified by BINOPTAB
1500 on operands OP0 and OP1, with result having machine-mode MODE.
1501
1502 UNSIGNEDP is for the case where we have to widen the operands
1503 to perform the operation. It says to use zero-extension.
1504
1505 If TARGET is nonzero, the value
1506 is generated there, if it is convenient to do so.
1507 In all cases an rtx is returned for the locus of the value;
1508 this may or may not be TARGET. */
1509
1510 rtx
1511 expand_binop (enum machine_mode mode, optab binoptab, rtx op0, rtx op1,
1512 rtx target, int unsignedp, enum optab_methods methods)
1513 {
1514 enum optab_methods next_methods
1515 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1516 ? OPTAB_WIDEN : methods);
1517 enum mode_class mclass;
1518 enum machine_mode wider_mode;
1519 rtx libfunc;
1520 rtx temp;
1521 rtx entry_last = get_last_insn ();
1522 rtx last;
1523
1524 mclass = GET_MODE_CLASS (mode);
1525
1526 /* If subtracting an integer constant, convert this into an addition of
1527 the negated constant. */
1528
1529 if (binoptab == sub_optab && CONST_INT_P (op1))
1530 {
1531 op1 = negate_rtx (mode, op1);
1532 binoptab = add_optab;
1533 }
1534
1535 /* Record where to delete back to if we backtrack. */
1536 last = get_last_insn ();
1537
1538 /* If we can do it with a three-operand insn, do so. */
1539
1540 if (methods != OPTAB_MUST_WIDEN
1541 && find_widening_optab_handler (binoptab, mode,
1542 widened_mode (mode, op0, op1), 1)
1543 != CODE_FOR_nothing)
1544 {
1545 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1546 unsignedp, methods, last);
1547 if (temp)
1548 return temp;
1549 }
1550
1551 /* If we were trying to rotate, and that didn't work, try rotating
1552 the other direction before falling back to shifts and bitwise-or. */
1553 if (((binoptab == rotl_optab
1554 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1555 || (binoptab == rotr_optab
1556 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1557 && mclass == MODE_INT)
1558 {
1559 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1560 rtx newop1;
1561 unsigned int bits = GET_MODE_PRECISION (mode);
1562
1563 if (CONST_INT_P (op1))
1564 newop1 = GEN_INT (bits - INTVAL (op1));
1565 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1566 newop1 = negate_rtx (GET_MODE (op1), op1);
1567 else
1568 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1569 gen_int_mode (bits, GET_MODE (op1)), op1,
1570 NULL_RTX, unsignedp, OPTAB_DIRECT);
1571
1572 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1573 target, unsignedp, methods, last);
1574 if (temp)
1575 return temp;
1576 }
1577
1578 /* If this is a multiply, see if we can do a widening operation that
1579 takes operands of this mode and makes a wider mode. */
1580
1581 if (binoptab == smul_optab
1582 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1583 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1584 : smul_widen_optab),
1585 GET_MODE_2XWIDER_MODE (mode), mode)
1586 != CODE_FOR_nothing))
1587 {
1588 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1589 unsignedp ? umul_widen_optab : smul_widen_optab,
1590 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1591
1592 if (temp != 0)
1593 {
1594 if (GET_MODE_CLASS (mode) == MODE_INT
1595 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1596 return gen_lowpart (mode, temp);
1597 else
1598 return convert_to_mode (mode, temp, unsignedp);
1599 }
1600 }
1601
1602 /* If this is a vector shift by a scalar, see if we can do a vector
1603 shift by a vector. If so, broadcast the scalar into a vector. */
1604 if (mclass == MODE_VECTOR_INT)
1605 {
1606 optab otheroptab = unknown_optab;
1607
1608 if (binoptab == ashl_optab)
1609 otheroptab = vashl_optab;
1610 else if (binoptab == ashr_optab)
1611 otheroptab = vashr_optab;
1612 else if (binoptab == lshr_optab)
1613 otheroptab = vlshr_optab;
1614 else if (binoptab == rotl_optab)
1615 otheroptab = vrotl_optab;
1616 else if (binoptab == rotr_optab)
1617 otheroptab = vrotr_optab;
1618
1619 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1620 {
1621 rtx vop1 = expand_vector_broadcast (mode, op1);
1622 if (vop1)
1623 {
1624 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1625 target, unsignedp, methods, last);
1626 if (temp)
1627 return temp;
1628 }
1629 }
1630 }
1631
1632 /* Look for a wider mode of the same class for which we think we
1633 can open-code the operation. Check for a widening multiply at the
1634 wider mode as well. */
1635
1636 if (CLASS_HAS_WIDER_MODES_P (mclass)
1637 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1638 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1639 wider_mode != VOIDmode;
1640 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1641 {
1642 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1643 || (binoptab == smul_optab
1644 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1645 && (find_widening_optab_handler ((unsignedp
1646 ? umul_widen_optab
1647 : smul_widen_optab),
1648 GET_MODE_WIDER_MODE (wider_mode),
1649 mode, 0)
1650 != CODE_FOR_nothing)))
1651 {
1652 rtx xop0 = op0, xop1 = op1;
1653 int no_extend = 0;
1654
1655 /* For certain integer operations, we need not actually extend
1656 the narrow operands, as long as we will truncate
1657 the results to the same narrowness. */
1658
1659 if ((binoptab == ior_optab || binoptab == and_optab
1660 || binoptab == xor_optab
1661 || binoptab == add_optab || binoptab == sub_optab
1662 || binoptab == smul_optab || binoptab == ashl_optab)
1663 && mclass == MODE_INT)
1664 {
1665 no_extend = 1;
1666 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1667 xop0, unsignedp);
1668 if (binoptab != ashl_optab)
1669 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1670 xop1, unsignedp);
1671 }
1672
1673 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1674
1675 /* The second operand of a shift must always be extended. */
1676 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1677 no_extend && binoptab != ashl_optab);
1678
1679 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1680 unsignedp, OPTAB_DIRECT);
1681 if (temp)
1682 {
1683 if (mclass != MODE_INT
1684 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1685 {
1686 if (target == 0)
1687 target = gen_reg_rtx (mode);
1688 convert_move (target, temp, 0);
1689 return target;
1690 }
1691 else
1692 return gen_lowpart (mode, temp);
1693 }
1694 else
1695 delete_insns_since (last);
1696 }
1697 }
1698
1699 /* If operation is commutative,
1700 try to make the first operand a register.
1701 Even better, try to make it the same as the target.
1702 Also try to make the last operand a constant. */
1703 if (commutative_optab_p (binoptab)
1704 && swap_commutative_operands_with_target (target, op0, op1))
1705 {
1706 temp = op1;
1707 op1 = op0;
1708 op0 = temp;
1709 }
1710
1711 /* These can be done a word at a time. */
1712 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1713 && mclass == MODE_INT
1714 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1715 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1716 {
1717 int i;
1718 rtx insns;
1719
1720 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1721 won't be accurate, so use a new target. */
1722 if (target == 0
1723 || target == op0
1724 || target == op1
1725 || !valid_multiword_target_p (target))
1726 target = gen_reg_rtx (mode);
1727
1728 start_sequence ();
1729
1730 /* Do the actual arithmetic. */
1731 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1732 {
1733 rtx target_piece = operand_subword (target, i, 1, mode);
1734 rtx x = expand_binop (word_mode, binoptab,
1735 operand_subword_force (op0, i, mode),
1736 operand_subword_force (op1, i, mode),
1737 target_piece, unsignedp, next_methods);
1738
1739 if (x == 0)
1740 break;
1741
1742 if (target_piece != x)
1743 emit_move_insn (target_piece, x);
1744 }
1745
1746 insns = get_insns ();
1747 end_sequence ();
1748
1749 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1750 {
1751 emit_insn (insns);
1752 return target;
1753 }
1754 }
1755
1756 /* Synthesize double word shifts from single word shifts. */
1757 if ((binoptab == lshr_optab || binoptab == ashl_optab
1758 || binoptab == ashr_optab)
1759 && mclass == MODE_INT
1760 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1761 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1762 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1763 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1765 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1766 {
1767 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1768 enum machine_mode op1_mode;
1769
1770 double_shift_mask = targetm.shift_truncation_mask (mode);
1771 shift_mask = targetm.shift_truncation_mask (word_mode);
1772 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1773
1774 /* Apply the truncation to constant shifts. */
1775 if (double_shift_mask > 0 && CONST_INT_P (op1))
1776 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1777
1778 if (op1 == CONST0_RTX (op1_mode))
1779 return op0;
1780
1781 /* Make sure that this is a combination that expand_doubleword_shift
1782 can handle. See the comments there for details. */
1783 if (double_shift_mask == 0
1784 || (shift_mask == BITS_PER_WORD - 1
1785 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1786 {
1787 rtx insns;
1788 rtx into_target, outof_target;
1789 rtx into_input, outof_input;
1790 int left_shift, outof_word;
1791
1792 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1793 won't be accurate, so use a new target. */
1794 if (target == 0
1795 || target == op0
1796 || target == op1
1797 || !valid_multiword_target_p (target))
1798 target = gen_reg_rtx (mode);
1799
1800 start_sequence ();
1801
1802 /* OUTOF_* is the word we are shifting bits away from, and
1803 INTO_* is the word that we are shifting bits towards, thus
1804 they differ depending on the direction of the shift and
1805 WORDS_BIG_ENDIAN. */
1806
1807 left_shift = binoptab == ashl_optab;
1808 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1809
1810 outof_target = operand_subword (target, outof_word, 1, mode);
1811 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1812
1813 outof_input = operand_subword_force (op0, outof_word, mode);
1814 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1815
1816 if (expand_doubleword_shift (op1_mode, binoptab,
1817 outof_input, into_input, op1,
1818 outof_target, into_target,
1819 unsignedp, next_methods, shift_mask))
1820 {
1821 insns = get_insns ();
1822 end_sequence ();
1823
1824 emit_insn (insns);
1825 return target;
1826 }
1827 end_sequence ();
1828 }
1829 }
1830
1831 /* Synthesize double word rotates from single word shifts. */
1832 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1833 && mclass == MODE_INT
1834 && CONST_INT_P (op1)
1835 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1836 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1837 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1838 {
1839 rtx insns;
1840 rtx into_target, outof_target;
1841 rtx into_input, outof_input;
1842 rtx inter;
1843 int shift_count, left_shift, outof_word;
1844
1845 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1846 won't be accurate, so use a new target. Do this also if target is not
1847 a REG, first because having a register instead may open optimization
1848 opportunities, and second because if target and op0 happen to be MEMs
1849 designating the same location, we would risk clobbering it too early
1850 in the code sequence we generate below. */
1851 if (target == 0
1852 || target == op0
1853 || target == op1
1854 || !REG_P (target)
1855 || !valid_multiword_target_p (target))
1856 target = gen_reg_rtx (mode);
1857
1858 start_sequence ();
1859
1860 shift_count = INTVAL (op1);
1861
1862 /* OUTOF_* is the word we are shifting bits away from, and
1863 INTO_* is the word that we are shifting bits towards, thus
1864 they differ depending on the direction of the shift and
1865 WORDS_BIG_ENDIAN. */
1866
1867 left_shift = (binoptab == rotl_optab);
1868 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1869
1870 outof_target = operand_subword (target, outof_word, 1, mode);
1871 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1872
1873 outof_input = operand_subword_force (op0, outof_word, mode);
1874 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1875
1876 if (shift_count == BITS_PER_WORD)
1877 {
1878 /* This is just a word swap. */
1879 emit_move_insn (outof_target, into_input);
1880 emit_move_insn (into_target, outof_input);
1881 inter = const0_rtx;
1882 }
1883 else
1884 {
1885 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1886 rtx first_shift_count, second_shift_count;
1887 optab reverse_unsigned_shift, unsigned_shift;
1888
1889 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1890 ? lshr_optab : ashl_optab);
1891
1892 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1893 ? ashl_optab : lshr_optab);
1894
1895 if (shift_count > BITS_PER_WORD)
1896 {
1897 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1898 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1899 }
1900 else
1901 {
1902 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1903 second_shift_count = GEN_INT (shift_count);
1904 }
1905
1906 into_temp1 = expand_binop (word_mode, unsigned_shift,
1907 outof_input, first_shift_count,
1908 NULL_RTX, unsignedp, next_methods);
1909 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1910 into_input, second_shift_count,
1911 NULL_RTX, unsignedp, next_methods);
1912
1913 if (into_temp1 != 0 && into_temp2 != 0)
1914 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1915 into_target, unsignedp, next_methods);
1916 else
1917 inter = 0;
1918
1919 if (inter != 0 && inter != into_target)
1920 emit_move_insn (into_target, inter);
1921
1922 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1923 into_input, first_shift_count,
1924 NULL_RTX, unsignedp, next_methods);
1925 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1926 outof_input, second_shift_count,
1927 NULL_RTX, unsignedp, next_methods);
1928
1929 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1930 inter = expand_binop (word_mode, ior_optab,
1931 outof_temp1, outof_temp2,
1932 outof_target, unsignedp, next_methods);
1933
1934 if (inter != 0 && inter != outof_target)
1935 emit_move_insn (outof_target, inter);
1936 }
1937
1938 insns = get_insns ();
1939 end_sequence ();
1940
1941 if (inter != 0)
1942 {
1943 emit_insn (insns);
1944 return target;
1945 }
1946 }
1947
1948 /* These can be done a word at a time by propagating carries. */
1949 if ((binoptab == add_optab || binoptab == sub_optab)
1950 && mclass == MODE_INT
1951 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1952 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1953 {
1954 unsigned int i;
1955 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1956 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1957 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1958 rtx xop0, xop1, xtarget;
1959
1960 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1961 value is one of those, use it. Otherwise, use 1 since it is the
1962 one easiest to get. */
1963 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1964 int normalizep = STORE_FLAG_VALUE;
1965 #else
1966 int normalizep = 1;
1967 #endif
1968
1969 /* Prepare the operands. */
1970 xop0 = force_reg (mode, op0);
1971 xop1 = force_reg (mode, op1);
1972
1973 xtarget = gen_reg_rtx (mode);
1974
1975 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1976 target = xtarget;
1977
1978 /* Indicate for flow that the entire target reg is being set. */
1979 if (REG_P (target))
1980 emit_clobber (xtarget);
1981
1982 /* Do the actual arithmetic. */
1983 for (i = 0; i < nwords; i++)
1984 {
1985 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1986 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1987 rtx op0_piece = operand_subword_force (xop0, index, mode);
1988 rtx op1_piece = operand_subword_force (xop1, index, mode);
1989 rtx x;
1990
1991 /* Main add/subtract of the input operands. */
1992 x = expand_binop (word_mode, binoptab,
1993 op0_piece, op1_piece,
1994 target_piece, unsignedp, next_methods);
1995 if (x == 0)
1996 break;
1997
1998 if (i + 1 < nwords)
1999 {
2000 /* Store carry from main add/subtract. */
2001 carry_out = gen_reg_rtx (word_mode);
2002 carry_out = emit_store_flag_force (carry_out,
2003 (binoptab == add_optab
2004 ? LT : GT),
2005 x, op0_piece,
2006 word_mode, 1, normalizep);
2007 }
2008
2009 if (i > 0)
2010 {
2011 rtx newx;
2012
2013 /* Add/subtract previous carry to main result. */
2014 newx = expand_binop (word_mode,
2015 normalizep == 1 ? binoptab : otheroptab,
2016 x, carry_in,
2017 NULL_RTX, 1, next_methods);
2018
2019 if (i + 1 < nwords)
2020 {
2021 /* Get out carry from adding/subtracting carry in. */
2022 rtx carry_tmp = gen_reg_rtx (word_mode);
2023 carry_tmp = emit_store_flag_force (carry_tmp,
2024 (binoptab == add_optab
2025 ? LT : GT),
2026 newx, x,
2027 word_mode, 1, normalizep);
2028
2029 /* Logical-ior the two poss. carry together. */
2030 carry_out = expand_binop (word_mode, ior_optab,
2031 carry_out, carry_tmp,
2032 carry_out, 0, next_methods);
2033 if (carry_out == 0)
2034 break;
2035 }
2036 emit_move_insn (target_piece, newx);
2037 }
2038 else
2039 {
2040 if (x != target_piece)
2041 emit_move_insn (target_piece, x);
2042 }
2043
2044 carry_in = carry_out;
2045 }
2046
2047 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2048 {
2049 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2050 || ! rtx_equal_p (target, xtarget))
2051 {
2052 rtx temp = emit_move_insn (target, xtarget);
2053
2054 set_dst_reg_note (temp, REG_EQUAL,
2055 gen_rtx_fmt_ee (optab_to_code (binoptab),
2056 mode, copy_rtx (xop0),
2057 copy_rtx (xop1)),
2058 target);
2059 }
2060 else
2061 target = xtarget;
2062
2063 return target;
2064 }
2065
2066 else
2067 delete_insns_since (last);
2068 }
2069
2070 /* Attempt to synthesize double word multiplies using a sequence of word
2071 mode multiplications. We first attempt to generate a sequence using a
2072 more efficient unsigned widening multiply, and if that fails we then
2073 try using a signed widening multiply. */
2074
2075 if (binoptab == smul_optab
2076 && mclass == MODE_INT
2077 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2078 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2079 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2080 {
2081 rtx product = NULL_RTX;
2082 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2083 != CODE_FOR_nothing)
2084 {
2085 product = expand_doubleword_mult (mode, op0, op1, target,
2086 true, methods);
2087 if (!product)
2088 delete_insns_since (last);
2089 }
2090
2091 if (product == NULL_RTX
2092 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2093 != CODE_FOR_nothing)
2094 {
2095 product = expand_doubleword_mult (mode, op0, op1, target,
2096 false, methods);
2097 if (!product)
2098 delete_insns_since (last);
2099 }
2100
2101 if (product != NULL_RTX)
2102 {
2103 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2104 {
2105 temp = emit_move_insn (target ? target : product, product);
2106 set_dst_reg_note (temp,
2107 REG_EQUAL,
2108 gen_rtx_fmt_ee (MULT, mode,
2109 copy_rtx (op0),
2110 copy_rtx (op1)),
2111 target ? target : product);
2112 }
2113 return product;
2114 }
2115 }
2116
2117 /* It can't be open-coded in this mode.
2118 Use a library call if one is available and caller says that's ok. */
2119
2120 libfunc = optab_libfunc (binoptab, mode);
2121 if (libfunc
2122 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2123 {
2124 rtx insns;
2125 rtx op1x = op1;
2126 enum machine_mode op1_mode = mode;
2127 rtx value;
2128
2129 start_sequence ();
2130
2131 if (shift_optab_p (binoptab))
2132 {
2133 op1_mode = targetm.libgcc_shift_count_mode ();
2134 /* Specify unsigned here,
2135 since negative shift counts are meaningless. */
2136 op1x = convert_to_mode (op1_mode, op1, 1);
2137 }
2138
2139 if (GET_MODE (op0) != VOIDmode
2140 && GET_MODE (op0) != mode)
2141 op0 = convert_to_mode (mode, op0, unsignedp);
2142
2143 /* Pass 1 for NO_QUEUE so we don't lose any increments
2144 if the libcall is cse'd or moved. */
2145 value = emit_library_call_value (libfunc,
2146 NULL_RTX, LCT_CONST, mode, 2,
2147 op0, mode, op1x, op1_mode);
2148
2149 insns = get_insns ();
2150 end_sequence ();
2151
2152 target = gen_reg_rtx (mode);
2153 emit_libcall_block_1 (insns, target, value,
2154 gen_rtx_fmt_ee (optab_to_code (binoptab),
2155 mode, op0, op1),
2156 trapv_binoptab_p (binoptab));
2157
2158 return target;
2159 }
2160
2161 delete_insns_since (last);
2162
2163 /* It can't be done in this mode. Can we do it in a wider mode? */
2164
2165 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2166 || methods == OPTAB_MUST_WIDEN))
2167 {
2168 /* Caller says, don't even try. */
2169 delete_insns_since (entry_last);
2170 return 0;
2171 }
2172
2173 /* Compute the value of METHODS to pass to recursive calls.
2174 Don't allow widening to be tried recursively. */
2175
2176 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2177
2178 /* Look for a wider mode of the same class for which it appears we can do
2179 the operation. */
2180
2181 if (CLASS_HAS_WIDER_MODES_P (mclass))
2182 {
2183 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2184 wider_mode != VOIDmode;
2185 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2186 {
2187 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2188 != CODE_FOR_nothing
2189 || (methods == OPTAB_LIB
2190 && optab_libfunc (binoptab, wider_mode)))
2191 {
2192 rtx xop0 = op0, xop1 = op1;
2193 int no_extend = 0;
2194
2195 /* For certain integer operations, we need not actually extend
2196 the narrow operands, as long as we will truncate
2197 the results to the same narrowness. */
2198
2199 if ((binoptab == ior_optab || binoptab == and_optab
2200 || binoptab == xor_optab
2201 || binoptab == add_optab || binoptab == sub_optab
2202 || binoptab == smul_optab || binoptab == ashl_optab)
2203 && mclass == MODE_INT)
2204 no_extend = 1;
2205
2206 xop0 = widen_operand (xop0, wider_mode, mode,
2207 unsignedp, no_extend);
2208
2209 /* The second operand of a shift must always be extended. */
2210 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2211 no_extend && binoptab != ashl_optab);
2212
2213 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2214 unsignedp, methods);
2215 if (temp)
2216 {
2217 if (mclass != MODE_INT
2218 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2219 {
2220 if (target == 0)
2221 target = gen_reg_rtx (mode);
2222 convert_move (target, temp, 0);
2223 return target;
2224 }
2225 else
2226 return gen_lowpart (mode, temp);
2227 }
2228 else
2229 delete_insns_since (last);
2230 }
2231 }
2232 }
2233
2234 delete_insns_since (entry_last);
2235 return 0;
2236 }
2237 \f
2238 /* Expand a binary operator which has both signed and unsigned forms.
2239 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2240 signed operations.
2241
2242 If we widen unsigned operands, we may use a signed wider operation instead
2243 of an unsigned wider operation, since the result would be the same. */
2244
2245 rtx
2246 sign_expand_binop (enum machine_mode mode, optab uoptab, optab soptab,
2247 rtx op0, rtx op1, rtx target, int unsignedp,
2248 enum optab_methods methods)
2249 {
2250 rtx temp;
2251 optab direct_optab = unsignedp ? uoptab : soptab;
2252 bool save_enable;
2253
2254 /* Do it without widening, if possible. */
2255 temp = expand_binop (mode, direct_optab, op0, op1, target,
2256 unsignedp, OPTAB_DIRECT);
2257 if (temp || methods == OPTAB_DIRECT)
2258 return temp;
2259
2260 /* Try widening to a signed int. Disable any direct use of any
2261 signed insn in the current mode. */
2262 save_enable = swap_optab_enable (soptab, mode, false);
2263
2264 temp = expand_binop (mode, soptab, op0, op1, target,
2265 unsignedp, OPTAB_WIDEN);
2266
2267 /* For unsigned operands, try widening to an unsigned int. */
2268 if (!temp && unsignedp)
2269 temp = expand_binop (mode, uoptab, op0, op1, target,
2270 unsignedp, OPTAB_WIDEN);
2271 if (temp || methods == OPTAB_WIDEN)
2272 goto egress;
2273
2274 /* Use the right width libcall if that exists. */
2275 temp = expand_binop (mode, direct_optab, op0, op1, target,
2276 unsignedp, OPTAB_LIB);
2277 if (temp || methods == OPTAB_LIB)
2278 goto egress;
2279
2280 /* Must widen and use a libcall, use either signed or unsigned. */
2281 temp = expand_binop (mode, soptab, op0, op1, target,
2282 unsignedp, methods);
2283 if (!temp && unsignedp)
2284 temp = expand_binop (mode, uoptab, op0, op1, target,
2285 unsignedp, methods);
2286
2287 egress:
2288 /* Undo the fiddling above. */
2289 if (save_enable)
2290 swap_optab_enable (soptab, mode, true);
2291 return temp;
2292 }
2293 \f
2294 /* Generate code to perform an operation specified by UNOPPTAB
2295 on operand OP0, with two results to TARG0 and TARG1.
2296 We assume that the order of the operands for the instruction
2297 is TARG0, TARG1, OP0.
2298
2299 Either TARG0 or TARG1 may be zero, but what that means is that
2300 the result is not actually wanted. We will generate it into
2301 a dummy pseudo-reg and discard it. They may not both be zero.
2302
2303 Returns 1 if this operation can be performed; 0 if not. */
2304
2305 int
2306 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2307 int unsignedp)
2308 {
2309 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2310 enum mode_class mclass;
2311 enum machine_mode wider_mode;
2312 rtx entry_last = get_last_insn ();
2313 rtx last;
2314
2315 mclass = GET_MODE_CLASS (mode);
2316
2317 if (!targ0)
2318 targ0 = gen_reg_rtx (mode);
2319 if (!targ1)
2320 targ1 = gen_reg_rtx (mode);
2321
2322 /* Record where to go back to if we fail. */
2323 last = get_last_insn ();
2324
2325 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2326 {
2327 struct expand_operand ops[3];
2328 enum insn_code icode = optab_handler (unoptab, mode);
2329
2330 create_fixed_operand (&ops[0], targ0);
2331 create_fixed_operand (&ops[1], targ1);
2332 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2333 if (maybe_expand_insn (icode, 3, ops))
2334 return 1;
2335 }
2336
2337 /* It can't be done in this mode. Can we do it in a wider mode? */
2338
2339 if (CLASS_HAS_WIDER_MODES_P (mclass))
2340 {
2341 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2342 wider_mode != VOIDmode;
2343 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2344 {
2345 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2346 {
2347 rtx t0 = gen_reg_rtx (wider_mode);
2348 rtx t1 = gen_reg_rtx (wider_mode);
2349 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2350
2351 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2352 {
2353 convert_move (targ0, t0, unsignedp);
2354 convert_move (targ1, t1, unsignedp);
2355 return 1;
2356 }
2357 else
2358 delete_insns_since (last);
2359 }
2360 }
2361 }
2362
2363 delete_insns_since (entry_last);
2364 return 0;
2365 }
2366 \f
2367 /* Generate code to perform an operation specified by BINOPTAB
2368 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2369 We assume that the order of the operands for the instruction
2370 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2371 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2372
2373 Either TARG0 or TARG1 may be zero, but what that means is that
2374 the result is not actually wanted. We will generate it into
2375 a dummy pseudo-reg and discard it. They may not both be zero.
2376
2377 Returns 1 if this operation can be performed; 0 if not. */
2378
2379 int
2380 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2381 int unsignedp)
2382 {
2383 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2384 enum mode_class mclass;
2385 enum machine_mode wider_mode;
2386 rtx entry_last = get_last_insn ();
2387 rtx last;
2388
2389 mclass = GET_MODE_CLASS (mode);
2390
2391 if (!targ0)
2392 targ0 = gen_reg_rtx (mode);
2393 if (!targ1)
2394 targ1 = gen_reg_rtx (mode);
2395
2396 /* Record where to go back to if we fail. */
2397 last = get_last_insn ();
2398
2399 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2400 {
2401 struct expand_operand ops[4];
2402 enum insn_code icode = optab_handler (binoptab, mode);
2403 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2404 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2405 rtx xop0 = op0, xop1 = op1;
2406
2407 /* If we are optimizing, force expensive constants into a register. */
2408 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2409 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2410
2411 create_fixed_operand (&ops[0], targ0);
2412 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2413 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2414 create_fixed_operand (&ops[3], targ1);
2415 if (maybe_expand_insn (icode, 4, ops))
2416 return 1;
2417 delete_insns_since (last);
2418 }
2419
2420 /* It can't be done in this mode. Can we do it in a wider mode? */
2421
2422 if (CLASS_HAS_WIDER_MODES_P (mclass))
2423 {
2424 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2425 wider_mode != VOIDmode;
2426 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2427 {
2428 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2429 {
2430 rtx t0 = gen_reg_rtx (wider_mode);
2431 rtx t1 = gen_reg_rtx (wider_mode);
2432 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2433 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2434
2435 if (expand_twoval_binop (binoptab, cop0, cop1,
2436 t0, t1, unsignedp))
2437 {
2438 convert_move (targ0, t0, unsignedp);
2439 convert_move (targ1, t1, unsignedp);
2440 return 1;
2441 }
2442 else
2443 delete_insns_since (last);
2444 }
2445 }
2446 }
2447
2448 delete_insns_since (entry_last);
2449 return 0;
2450 }
2451
2452 /* Expand the two-valued library call indicated by BINOPTAB, but
2453 preserve only one of the values. If TARG0 is non-NULL, the first
2454 value is placed into TARG0; otherwise the second value is placed
2455 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2456 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2457 This routine assumes that the value returned by the library call is
2458 as if the return value was of an integral mode twice as wide as the
2459 mode of OP0. Returns 1 if the call was successful. */
2460
2461 bool
2462 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2463 rtx targ0, rtx targ1, enum rtx_code code)
2464 {
2465 enum machine_mode mode;
2466 enum machine_mode libval_mode;
2467 rtx libval;
2468 rtx insns;
2469 rtx libfunc;
2470
2471 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2472 gcc_assert (!targ0 != !targ1);
2473
2474 mode = GET_MODE (op0);
2475 libfunc = optab_libfunc (binoptab, mode);
2476 if (!libfunc)
2477 return false;
2478
2479 /* The value returned by the library function will have twice as
2480 many bits as the nominal MODE. */
2481 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2482 MODE_INT);
2483 start_sequence ();
2484 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2485 libval_mode, 2,
2486 op0, mode,
2487 op1, mode);
2488 /* Get the part of VAL containing the value that we want. */
2489 libval = simplify_gen_subreg (mode, libval, libval_mode,
2490 targ0 ? 0 : GET_MODE_SIZE (mode));
2491 insns = get_insns ();
2492 end_sequence ();
2493 /* Move the into the desired location. */
2494 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2495 gen_rtx_fmt_ee (code, mode, op0, op1));
2496
2497 return true;
2498 }
2499
2500 \f
2501 /* Wrapper around expand_unop which takes an rtx code to specify
2502 the operation to perform, not an optab pointer. All other
2503 arguments are the same. */
2504 rtx
2505 expand_simple_unop (enum machine_mode mode, enum rtx_code code, rtx op0,
2506 rtx target, int unsignedp)
2507 {
2508 optab unop = code_to_optab (code);
2509 gcc_assert (unop);
2510
2511 return expand_unop (mode, unop, op0, target, unsignedp);
2512 }
2513
2514 /* Try calculating
2515 (clz:narrow x)
2516 as
2517 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2518
2519 A similar operation can be used for clrsb. UNOPTAB says which operation
2520 we are trying to expand. */
2521 static rtx
2522 widen_leading (enum machine_mode mode, rtx op0, rtx target, optab unoptab)
2523 {
2524 enum mode_class mclass = GET_MODE_CLASS (mode);
2525 if (CLASS_HAS_WIDER_MODES_P (mclass))
2526 {
2527 enum machine_mode wider_mode;
2528 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2529 wider_mode != VOIDmode;
2530 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2531 {
2532 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2533 {
2534 rtx xop0, temp, last;
2535
2536 last = get_last_insn ();
2537
2538 if (target == 0)
2539 target = gen_reg_rtx (mode);
2540 xop0 = widen_operand (op0, wider_mode, mode,
2541 unoptab != clrsb_optab, false);
2542 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2543 unoptab != clrsb_optab);
2544 if (temp != 0)
2545 temp = expand_binop
2546 (wider_mode, sub_optab, temp,
2547 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2548 - GET_MODE_PRECISION (mode),
2549 wider_mode),
2550 target, true, OPTAB_DIRECT);
2551 if (temp == 0)
2552 delete_insns_since (last);
2553
2554 return temp;
2555 }
2556 }
2557 }
2558 return 0;
2559 }
2560
2561 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2562 quantities, choosing which based on whether the high word is nonzero. */
2563 static rtx
2564 expand_doubleword_clz (enum machine_mode mode, rtx op0, rtx target)
2565 {
2566 rtx xop0 = force_reg (mode, op0);
2567 rtx subhi = gen_highpart (word_mode, xop0);
2568 rtx sublo = gen_lowpart (word_mode, xop0);
2569 rtx hi0_label = gen_label_rtx ();
2570 rtx after_label = gen_label_rtx ();
2571 rtx seq, temp, result;
2572
2573 /* If we were not given a target, use a word_mode register, not a
2574 'mode' register. The result will fit, and nobody is expecting
2575 anything bigger (the return type of __builtin_clz* is int). */
2576 if (!target)
2577 target = gen_reg_rtx (word_mode);
2578
2579 /* In any case, write to a word_mode scratch in both branches of the
2580 conditional, so we can ensure there is a single move insn setting
2581 'target' to tag a REG_EQUAL note on. */
2582 result = gen_reg_rtx (word_mode);
2583
2584 start_sequence ();
2585
2586 /* If the high word is not equal to zero,
2587 then clz of the full value is clz of the high word. */
2588 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2589 word_mode, true, hi0_label);
2590
2591 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2592 if (!temp)
2593 goto fail;
2594
2595 if (temp != result)
2596 convert_move (result, temp, true);
2597
2598 emit_jump_insn (gen_jump (after_label));
2599 emit_barrier ();
2600
2601 /* Else clz of the full value is clz of the low word plus the number
2602 of bits in the high word. */
2603 emit_label (hi0_label);
2604
2605 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2606 if (!temp)
2607 goto fail;
2608 temp = expand_binop (word_mode, add_optab, temp,
2609 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2610 result, true, OPTAB_DIRECT);
2611 if (!temp)
2612 goto fail;
2613 if (temp != result)
2614 convert_move (result, temp, true);
2615
2616 emit_label (after_label);
2617 convert_move (target, result, true);
2618
2619 seq = get_insns ();
2620 end_sequence ();
2621
2622 add_equal_note (seq, target, CLZ, xop0, 0);
2623 emit_insn (seq);
2624 return target;
2625
2626 fail:
2627 end_sequence ();
2628 return 0;
2629 }
2630
2631 /* Try calculating
2632 (bswap:narrow x)
2633 as
2634 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2635 static rtx
2636 widen_bswap (enum machine_mode mode, rtx op0, rtx target)
2637 {
2638 enum mode_class mclass = GET_MODE_CLASS (mode);
2639 enum machine_mode wider_mode;
2640 rtx x, last;
2641
2642 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2643 return NULL_RTX;
2644
2645 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2646 wider_mode != VOIDmode;
2647 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2648 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2649 goto found;
2650 return NULL_RTX;
2651
2652 found:
2653 last = get_last_insn ();
2654
2655 x = widen_operand (op0, wider_mode, mode, true, true);
2656 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2657
2658 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2659 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2660 if (x != 0)
2661 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2662 GET_MODE_BITSIZE (wider_mode)
2663 - GET_MODE_BITSIZE (mode),
2664 NULL_RTX, true);
2665
2666 if (x != 0)
2667 {
2668 if (target == 0)
2669 target = gen_reg_rtx (mode);
2670 emit_move_insn (target, gen_lowpart (mode, x));
2671 }
2672 else
2673 delete_insns_since (last);
2674
2675 return target;
2676 }
2677
2678 /* Try calculating bswap as two bswaps of two word-sized operands. */
2679
2680 static rtx
2681 expand_doubleword_bswap (enum machine_mode mode, rtx op, rtx target)
2682 {
2683 rtx t0, t1;
2684
2685 t1 = expand_unop (word_mode, bswap_optab,
2686 operand_subword_force (op, 0, mode), NULL_RTX, true);
2687 t0 = expand_unop (word_mode, bswap_optab,
2688 operand_subword_force (op, 1, mode), NULL_RTX, true);
2689
2690 if (target == 0 || !valid_multiword_target_p (target))
2691 target = gen_reg_rtx (mode);
2692 if (REG_P (target))
2693 emit_clobber (target);
2694 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2695 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2696
2697 return target;
2698 }
2699
2700 /* Try calculating (parity x) as (and (popcount x) 1), where
2701 popcount can also be done in a wider mode. */
2702 static rtx
2703 expand_parity (enum machine_mode mode, rtx op0, rtx target)
2704 {
2705 enum mode_class mclass = GET_MODE_CLASS (mode);
2706 if (CLASS_HAS_WIDER_MODES_P (mclass))
2707 {
2708 enum machine_mode wider_mode;
2709 for (wider_mode = mode; wider_mode != VOIDmode;
2710 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2711 {
2712 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2713 {
2714 rtx xop0, temp, last;
2715
2716 last = get_last_insn ();
2717
2718 if (target == 0)
2719 target = gen_reg_rtx (mode);
2720 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2721 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2722 true);
2723 if (temp != 0)
2724 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2725 target, true, OPTAB_DIRECT);
2726 if (temp == 0)
2727 delete_insns_since (last);
2728
2729 return temp;
2730 }
2731 }
2732 }
2733 return 0;
2734 }
2735
2736 /* Try calculating ctz(x) as K - clz(x & -x) ,
2737 where K is GET_MODE_PRECISION(mode) - 1.
2738
2739 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2740 don't have to worry about what the hardware does in that case. (If
2741 the clz instruction produces the usual value at 0, which is K, the
2742 result of this code sequence will be -1; expand_ffs, below, relies
2743 on this. It might be nice to have it be K instead, for consistency
2744 with the (very few) processors that provide a ctz with a defined
2745 value, but that would take one more instruction, and it would be
2746 less convenient for expand_ffs anyway. */
2747
2748 static rtx
2749 expand_ctz (enum machine_mode mode, rtx op0, rtx target)
2750 {
2751 rtx seq, temp;
2752
2753 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2754 return 0;
2755
2756 start_sequence ();
2757
2758 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2759 if (temp)
2760 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2761 true, OPTAB_DIRECT);
2762 if (temp)
2763 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2764 if (temp)
2765 temp = expand_binop (mode, sub_optab,
2766 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2767 temp, target,
2768 true, OPTAB_DIRECT);
2769 if (temp == 0)
2770 {
2771 end_sequence ();
2772 return 0;
2773 }
2774
2775 seq = get_insns ();
2776 end_sequence ();
2777
2778 add_equal_note (seq, temp, CTZ, op0, 0);
2779 emit_insn (seq);
2780 return temp;
2781 }
2782
2783
2784 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2785 else with the sequence used by expand_clz.
2786
2787 The ffs builtin promises to return zero for a zero value and ctz/clz
2788 may have an undefined value in that case. If they do not give us a
2789 convenient value, we have to generate a test and branch. */
2790 static rtx
2791 expand_ffs (enum machine_mode mode, rtx op0, rtx target)
2792 {
2793 HOST_WIDE_INT val = 0;
2794 bool defined_at_zero = false;
2795 rtx temp, seq;
2796
2797 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2798 {
2799 start_sequence ();
2800
2801 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2802 if (!temp)
2803 goto fail;
2804
2805 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2806 }
2807 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2808 {
2809 start_sequence ();
2810 temp = expand_ctz (mode, op0, 0);
2811 if (!temp)
2812 goto fail;
2813
2814 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2815 {
2816 defined_at_zero = true;
2817 val = (GET_MODE_PRECISION (mode) - 1) - val;
2818 }
2819 }
2820 else
2821 return 0;
2822
2823 if (defined_at_zero && val == -1)
2824 /* No correction needed at zero. */;
2825 else
2826 {
2827 /* We don't try to do anything clever with the situation found
2828 on some processors (eg Alpha) where ctz(0:mode) ==
2829 bitsize(mode). If someone can think of a way to send N to -1
2830 and leave alone all values in the range 0..N-1 (where N is a
2831 power of two), cheaper than this test-and-branch, please add it.
2832
2833 The test-and-branch is done after the operation itself, in case
2834 the operation sets condition codes that can be recycled for this.
2835 (This is true on i386, for instance.) */
2836
2837 rtx nonzero_label = gen_label_rtx ();
2838 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2839 mode, true, nonzero_label);
2840
2841 convert_move (temp, GEN_INT (-1), false);
2842 emit_label (nonzero_label);
2843 }
2844
2845 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2846 to produce a value in the range 0..bitsize. */
2847 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2848 target, false, OPTAB_DIRECT);
2849 if (!temp)
2850 goto fail;
2851
2852 seq = get_insns ();
2853 end_sequence ();
2854
2855 add_equal_note (seq, temp, FFS, op0, 0);
2856 emit_insn (seq);
2857 return temp;
2858
2859 fail:
2860 end_sequence ();
2861 return 0;
2862 }
2863
2864 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2865 conditions, VAL may already be a SUBREG against which we cannot generate
2866 a further SUBREG. In this case, we expect forcing the value into a
2867 register will work around the situation. */
2868
2869 static rtx
2870 lowpart_subreg_maybe_copy (enum machine_mode omode, rtx val,
2871 enum machine_mode imode)
2872 {
2873 rtx ret;
2874 ret = lowpart_subreg (omode, val, imode);
2875 if (ret == NULL)
2876 {
2877 val = force_reg (imode, val);
2878 ret = lowpart_subreg (omode, val, imode);
2879 gcc_assert (ret != NULL);
2880 }
2881 return ret;
2882 }
2883
2884 /* Expand a floating point absolute value or negation operation via a
2885 logical operation on the sign bit. */
2886
2887 static rtx
2888 expand_absneg_bit (enum rtx_code code, enum machine_mode mode,
2889 rtx op0, rtx target)
2890 {
2891 const struct real_format *fmt;
2892 int bitpos, word, nwords, i;
2893 enum machine_mode imode;
2894 rtx temp, insns;
2895
2896 /* The format has to have a simple sign bit. */
2897 fmt = REAL_MODE_FORMAT (mode);
2898 if (fmt == NULL)
2899 return NULL_RTX;
2900
2901 bitpos = fmt->signbit_rw;
2902 if (bitpos < 0)
2903 return NULL_RTX;
2904
2905 /* Don't create negative zeros if the format doesn't support them. */
2906 if (code == NEG && !fmt->has_signed_zero)
2907 return NULL_RTX;
2908
2909 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2910 {
2911 imode = int_mode_for_mode (mode);
2912 if (imode == BLKmode)
2913 return NULL_RTX;
2914 word = 0;
2915 nwords = 1;
2916 }
2917 else
2918 {
2919 imode = word_mode;
2920
2921 if (FLOAT_WORDS_BIG_ENDIAN)
2922 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2923 else
2924 word = bitpos / BITS_PER_WORD;
2925 bitpos = bitpos % BITS_PER_WORD;
2926 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2927 }
2928
2929 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2930 if (code == ABS)
2931 mask = ~mask;
2932
2933 if (target == 0
2934 || target == op0
2935 || (nwords > 1 && !valid_multiword_target_p (target)))
2936 target = gen_reg_rtx (mode);
2937
2938 if (nwords > 1)
2939 {
2940 start_sequence ();
2941
2942 for (i = 0; i < nwords; ++i)
2943 {
2944 rtx targ_piece = operand_subword (target, i, 1, mode);
2945 rtx op0_piece = operand_subword_force (op0, i, mode);
2946
2947 if (i == word)
2948 {
2949 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2950 op0_piece,
2951 immed_wide_int_const (mask, imode),
2952 targ_piece, 1, OPTAB_LIB_WIDEN);
2953 if (temp != targ_piece)
2954 emit_move_insn (targ_piece, temp);
2955 }
2956 else
2957 emit_move_insn (targ_piece, op0_piece);
2958 }
2959
2960 insns = get_insns ();
2961 end_sequence ();
2962
2963 emit_insn (insns);
2964 }
2965 else
2966 {
2967 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2968 gen_lowpart (imode, op0),
2969 immed_wide_int_const (mask, imode),
2970 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2971 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2972
2973 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2974 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2975 target);
2976 }
2977
2978 return target;
2979 }
2980
2981 /* As expand_unop, but will fail rather than attempt the operation in a
2982 different mode or with a libcall. */
2983 static rtx
2984 expand_unop_direct (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
2985 int unsignedp)
2986 {
2987 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2988 {
2989 struct expand_operand ops[2];
2990 enum insn_code icode = optab_handler (unoptab, mode);
2991 rtx last = get_last_insn ();
2992 rtx pat;
2993
2994 create_output_operand (&ops[0], target, mode);
2995 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2996 pat = maybe_gen_insn (icode, 2, ops);
2997 if (pat)
2998 {
2999 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3000 && ! add_equal_note (pat, ops[0].value, optab_to_code (unoptab),
3001 ops[1].value, NULL_RTX))
3002 {
3003 delete_insns_since (last);
3004 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3005 }
3006
3007 emit_insn (pat);
3008
3009 return ops[0].value;
3010 }
3011 }
3012 return 0;
3013 }
3014
3015 /* Generate code to perform an operation specified by UNOPTAB
3016 on operand OP0, with result having machine-mode MODE.
3017
3018 UNSIGNEDP is for the case where we have to widen the operands
3019 to perform the operation. It says to use zero-extension.
3020
3021 If TARGET is nonzero, the value
3022 is generated there, if it is convenient to do so.
3023 In all cases an rtx is returned for the locus of the value;
3024 this may or may not be TARGET. */
3025
3026 rtx
3027 expand_unop (enum machine_mode mode, optab unoptab, rtx op0, rtx target,
3028 int unsignedp)
3029 {
3030 enum mode_class mclass = GET_MODE_CLASS (mode);
3031 enum machine_mode wider_mode;
3032 rtx temp;
3033 rtx libfunc;
3034
3035 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3036 if (temp)
3037 return temp;
3038
3039 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3040
3041 /* Widening (or narrowing) clz needs special treatment. */
3042 if (unoptab == clz_optab)
3043 {
3044 temp = widen_leading (mode, op0, target, unoptab);
3045 if (temp)
3046 return temp;
3047
3048 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3049 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3050 {
3051 temp = expand_doubleword_clz (mode, op0, target);
3052 if (temp)
3053 return temp;
3054 }
3055
3056 goto try_libcall;
3057 }
3058
3059 if (unoptab == clrsb_optab)
3060 {
3061 temp = widen_leading (mode, op0, target, unoptab);
3062 if (temp)
3063 return temp;
3064 goto try_libcall;
3065 }
3066
3067 /* Widening (or narrowing) bswap needs special treatment. */
3068 if (unoptab == bswap_optab)
3069 {
3070 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3071 or ROTATERT. First try these directly; if this fails, then try the
3072 obvious pair of shifts with allowed widening, as this will probably
3073 be always more efficient than the other fallback methods. */
3074 if (mode == HImode)
3075 {
3076 rtx last, temp1, temp2;
3077
3078 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3079 {
3080 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3081 unsignedp, OPTAB_DIRECT);
3082 if (temp)
3083 return temp;
3084 }
3085
3086 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3087 {
3088 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3089 unsignedp, OPTAB_DIRECT);
3090 if (temp)
3091 return temp;
3092 }
3093
3094 last = get_last_insn ();
3095
3096 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3097 unsignedp, OPTAB_WIDEN);
3098 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3099 unsignedp, OPTAB_WIDEN);
3100 if (temp1 && temp2)
3101 {
3102 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3103 unsignedp, OPTAB_WIDEN);
3104 if (temp)
3105 return temp;
3106 }
3107
3108 delete_insns_since (last);
3109 }
3110
3111 temp = widen_bswap (mode, op0, target);
3112 if (temp)
3113 return temp;
3114
3115 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3116 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3117 {
3118 temp = expand_doubleword_bswap (mode, op0, target);
3119 if (temp)
3120 return temp;
3121 }
3122
3123 goto try_libcall;
3124 }
3125
3126 if (CLASS_HAS_WIDER_MODES_P (mclass))
3127 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3128 wider_mode != VOIDmode;
3129 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3130 {
3131 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3132 {
3133 rtx xop0 = op0;
3134 rtx last = get_last_insn ();
3135
3136 /* For certain operations, we need not actually extend
3137 the narrow operand, as long as we will truncate the
3138 results to the same narrowness. */
3139
3140 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3141 (unoptab == neg_optab
3142 || unoptab == one_cmpl_optab)
3143 && mclass == MODE_INT);
3144
3145 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3146 unsignedp);
3147
3148 if (temp)
3149 {
3150 if (mclass != MODE_INT
3151 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3152 {
3153 if (target == 0)
3154 target = gen_reg_rtx (mode);
3155 convert_move (target, temp, 0);
3156 return target;
3157 }
3158 else
3159 return gen_lowpart (mode, temp);
3160 }
3161 else
3162 delete_insns_since (last);
3163 }
3164 }
3165
3166 /* These can be done a word at a time. */
3167 if (unoptab == one_cmpl_optab
3168 && mclass == MODE_INT
3169 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3170 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3171 {
3172 int i;
3173 rtx insns;
3174
3175 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3176 target = gen_reg_rtx (mode);
3177
3178 start_sequence ();
3179
3180 /* Do the actual arithmetic. */
3181 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3182 {
3183 rtx target_piece = operand_subword (target, i, 1, mode);
3184 rtx x = expand_unop (word_mode, unoptab,
3185 operand_subword_force (op0, i, mode),
3186 target_piece, unsignedp);
3187
3188 if (target_piece != x)
3189 emit_move_insn (target_piece, x);
3190 }
3191
3192 insns = get_insns ();
3193 end_sequence ();
3194
3195 emit_insn (insns);
3196 return target;
3197 }
3198
3199 if (optab_to_code (unoptab) == NEG)
3200 {
3201 /* Try negating floating point values by flipping the sign bit. */
3202 if (SCALAR_FLOAT_MODE_P (mode))
3203 {
3204 temp = expand_absneg_bit (NEG, mode, op0, target);
3205 if (temp)
3206 return temp;
3207 }
3208
3209 /* If there is no negation pattern, and we have no negative zero,
3210 try subtracting from zero. */
3211 if (!HONOR_SIGNED_ZEROS (mode))
3212 {
3213 temp = expand_binop (mode, (unoptab == negv_optab
3214 ? subv_optab : sub_optab),
3215 CONST0_RTX (mode), op0, target,
3216 unsignedp, OPTAB_DIRECT);
3217 if (temp)
3218 return temp;
3219 }
3220 }
3221
3222 /* Try calculating parity (x) as popcount (x) % 2. */
3223 if (unoptab == parity_optab)
3224 {
3225 temp = expand_parity (mode, op0, target);
3226 if (temp)
3227 return temp;
3228 }
3229
3230 /* Try implementing ffs (x) in terms of clz (x). */
3231 if (unoptab == ffs_optab)
3232 {
3233 temp = expand_ffs (mode, op0, target);
3234 if (temp)
3235 return temp;
3236 }
3237
3238 /* Try implementing ctz (x) in terms of clz (x). */
3239 if (unoptab == ctz_optab)
3240 {
3241 temp = expand_ctz (mode, op0, target);
3242 if (temp)
3243 return temp;
3244 }
3245
3246 try_libcall:
3247 /* Now try a library call in this mode. */
3248 libfunc = optab_libfunc (unoptab, mode);
3249 if (libfunc)
3250 {
3251 rtx insns;
3252 rtx value;
3253 rtx eq_value;
3254 enum machine_mode outmode = mode;
3255
3256 /* All of these functions return small values. Thus we choose to
3257 have them return something that isn't a double-word. */
3258 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3259 || unoptab == clrsb_optab || unoptab == popcount_optab
3260 || unoptab == parity_optab)
3261 outmode
3262 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3263 optab_libfunc (unoptab, mode)));
3264
3265 start_sequence ();
3266
3267 /* Pass 1 for NO_QUEUE so we don't lose any increments
3268 if the libcall is cse'd or moved. */
3269 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3270 1, op0, mode);
3271 insns = get_insns ();
3272 end_sequence ();
3273
3274 target = gen_reg_rtx (outmode);
3275 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3276 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3277 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3278 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3279 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3280 emit_libcall_block_1 (insns, target, value, eq_value,
3281 trapv_unoptab_p (unoptab));
3282
3283 return target;
3284 }
3285
3286 /* It can't be done in this mode. Can we do it in a wider mode? */
3287
3288 if (CLASS_HAS_WIDER_MODES_P (mclass))
3289 {
3290 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3291 wider_mode != VOIDmode;
3292 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3293 {
3294 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3295 || optab_libfunc (unoptab, wider_mode))
3296 {
3297 rtx xop0 = op0;
3298 rtx last = get_last_insn ();
3299
3300 /* For certain operations, we need not actually extend
3301 the narrow operand, as long as we will truncate the
3302 results to the same narrowness. */
3303 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3304 (unoptab == neg_optab
3305 || unoptab == one_cmpl_optab
3306 || unoptab == bswap_optab)
3307 && mclass == MODE_INT);
3308
3309 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3310 unsignedp);
3311
3312 /* If we are generating clz using wider mode, adjust the
3313 result. Similarly for clrsb. */
3314 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3315 && temp != 0)
3316 temp = expand_binop
3317 (wider_mode, sub_optab, temp,
3318 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3319 - GET_MODE_PRECISION (mode),
3320 wider_mode),
3321 target, true, OPTAB_DIRECT);
3322
3323 /* Likewise for bswap. */
3324 if (unoptab == bswap_optab && temp != 0)
3325 {
3326 gcc_assert (GET_MODE_PRECISION (wider_mode)
3327 == GET_MODE_BITSIZE (wider_mode)
3328 && GET_MODE_PRECISION (mode)
3329 == GET_MODE_BITSIZE (mode));
3330
3331 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3332 GET_MODE_BITSIZE (wider_mode)
3333 - GET_MODE_BITSIZE (mode),
3334 NULL_RTX, true);
3335 }
3336
3337 if (temp)
3338 {
3339 if (mclass != MODE_INT)
3340 {
3341 if (target == 0)
3342 target = gen_reg_rtx (mode);
3343 convert_move (target, temp, 0);
3344 return target;
3345 }
3346 else
3347 return gen_lowpart (mode, temp);
3348 }
3349 else
3350 delete_insns_since (last);
3351 }
3352 }
3353 }
3354
3355 /* One final attempt at implementing negation via subtraction,
3356 this time allowing widening of the operand. */
3357 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3358 {
3359 rtx temp;
3360 temp = expand_binop (mode,
3361 unoptab == negv_optab ? subv_optab : sub_optab,
3362 CONST0_RTX (mode), op0,
3363 target, unsignedp, OPTAB_LIB_WIDEN);
3364 if (temp)
3365 return temp;
3366 }
3367
3368 return 0;
3369 }
3370 \f
3371 /* Emit code to compute the absolute value of OP0, with result to
3372 TARGET if convenient. (TARGET may be 0.) The return value says
3373 where the result actually is to be found.
3374
3375 MODE is the mode of the operand; the mode of the result is
3376 different but can be deduced from MODE.
3377
3378 */
3379
3380 rtx
3381 expand_abs_nojump (enum machine_mode mode, rtx op0, rtx target,
3382 int result_unsignedp)
3383 {
3384 rtx temp;
3385
3386 if (! flag_trapv)
3387 result_unsignedp = 1;
3388
3389 /* First try to do it with a special abs instruction. */
3390 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3391 op0, target, 0);
3392 if (temp != 0)
3393 return temp;
3394
3395 /* For floating point modes, try clearing the sign bit. */
3396 if (SCALAR_FLOAT_MODE_P (mode))
3397 {
3398 temp = expand_absneg_bit (ABS, mode, op0, target);
3399 if (temp)
3400 return temp;
3401 }
3402
3403 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3404 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3405 && !HONOR_SIGNED_ZEROS (mode))
3406 {
3407 rtx last = get_last_insn ();
3408
3409 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
3410 if (temp != 0)
3411 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3412 OPTAB_WIDEN);
3413
3414 if (temp != 0)
3415 return temp;
3416
3417 delete_insns_since (last);
3418 }
3419
3420 /* If this machine has expensive jumps, we can do integer absolute
3421 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3422 where W is the width of MODE. */
3423
3424 if (GET_MODE_CLASS (mode) == MODE_INT
3425 && BRANCH_COST (optimize_insn_for_speed_p (),
3426 false) >= 2)
3427 {
3428 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3429 GET_MODE_PRECISION (mode) - 1,
3430 NULL_RTX, 0);
3431
3432 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3433 OPTAB_LIB_WIDEN);
3434 if (temp != 0)
3435 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3436 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3437
3438 if (temp != 0)
3439 return temp;
3440 }
3441
3442 return NULL_RTX;
3443 }
3444
3445 rtx
3446 expand_abs (enum machine_mode mode, rtx op0, rtx target,
3447 int result_unsignedp, int safe)
3448 {
3449 rtx temp, op1;
3450
3451 if (! flag_trapv)
3452 result_unsignedp = 1;
3453
3454 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3455 if (temp != 0)
3456 return temp;
3457
3458 /* If that does not win, use conditional jump and negate. */
3459
3460 /* It is safe to use the target if it is the same
3461 as the source if this is also a pseudo register */
3462 if (op0 == target && REG_P (op0)
3463 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3464 safe = 1;
3465
3466 op1 = gen_label_rtx ();
3467 if (target == 0 || ! safe
3468 || GET_MODE (target) != mode
3469 || (MEM_P (target) && MEM_VOLATILE_P (target))
3470 || (REG_P (target)
3471 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3472 target = gen_reg_rtx (mode);
3473
3474 emit_move_insn (target, op0);
3475 NO_DEFER_POP;
3476
3477 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3478 NULL_RTX, NULL_RTX, op1, -1);
3479
3480 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3481 target, target, 0);
3482 if (op0 != target)
3483 emit_move_insn (target, op0);
3484 emit_label (op1);
3485 OK_DEFER_POP;
3486 return target;
3487 }
3488
3489 /* Emit code to compute the one's complement absolute value of OP0
3490 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3491 (TARGET may be NULL_RTX.) The return value says where the result
3492 actually is to be found.
3493
3494 MODE is the mode of the operand; the mode of the result is
3495 different but can be deduced from MODE. */
3496
3497 rtx
3498 expand_one_cmpl_abs_nojump (enum machine_mode mode, rtx op0, rtx target)
3499 {
3500 rtx temp;
3501
3502 /* Not applicable for floating point modes. */
3503 if (FLOAT_MODE_P (mode))
3504 return NULL_RTX;
3505
3506 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3507 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3508 {
3509 rtx last = get_last_insn ();
3510
3511 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3512 if (temp != 0)
3513 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3514 OPTAB_WIDEN);
3515
3516 if (temp != 0)
3517 return temp;
3518
3519 delete_insns_since (last);
3520 }
3521
3522 /* If this machine has expensive jumps, we can do one's complement
3523 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3524
3525 if (GET_MODE_CLASS (mode) == MODE_INT
3526 && BRANCH_COST (optimize_insn_for_speed_p (),
3527 false) >= 2)
3528 {
3529 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3530 GET_MODE_PRECISION (mode) - 1,
3531 NULL_RTX, 0);
3532
3533 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3534 OPTAB_LIB_WIDEN);
3535
3536 if (temp != 0)
3537 return temp;
3538 }
3539
3540 return NULL_RTX;
3541 }
3542
3543 /* A subroutine of expand_copysign, perform the copysign operation using the
3544 abs and neg primitives advertised to exist on the target. The assumption
3545 is that we have a split register file, and leaving op0 in fp registers,
3546 and not playing with subregs so much, will help the register allocator. */
3547
3548 static rtx
3549 expand_copysign_absneg (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3550 int bitpos, bool op0_is_abs)
3551 {
3552 enum machine_mode imode;
3553 enum insn_code icode;
3554 rtx sign, label;
3555
3556 if (target == op1)
3557 target = NULL_RTX;
3558
3559 /* Check if the back end provides an insn that handles signbit for the
3560 argument's mode. */
3561 icode = optab_handler (signbit_optab, mode);
3562 if (icode != CODE_FOR_nothing)
3563 {
3564 imode = insn_data[(int) icode].operand[0].mode;
3565 sign = gen_reg_rtx (imode);
3566 emit_unop_insn (icode, sign, op1, UNKNOWN);
3567 }
3568 else
3569 {
3570 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3571 {
3572 imode = int_mode_for_mode (mode);
3573 if (imode == BLKmode)
3574 return NULL_RTX;
3575 op1 = gen_lowpart (imode, op1);
3576 }
3577 else
3578 {
3579 int word;
3580
3581 imode = word_mode;
3582 if (FLOAT_WORDS_BIG_ENDIAN)
3583 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3584 else
3585 word = bitpos / BITS_PER_WORD;
3586 bitpos = bitpos % BITS_PER_WORD;
3587 op1 = operand_subword_force (op1, word, mode);
3588 }
3589
3590 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3591 sign = expand_binop (imode, and_optab, op1,
3592 immed_wide_int_const (mask, imode),
3593 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3594 }
3595
3596 if (!op0_is_abs)
3597 {
3598 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3599 if (op0 == NULL)
3600 return NULL_RTX;
3601 target = op0;
3602 }
3603 else
3604 {
3605 if (target == NULL_RTX)
3606 target = copy_to_reg (op0);
3607 else
3608 emit_move_insn (target, op0);
3609 }
3610
3611 label = gen_label_rtx ();
3612 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3613
3614 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3615 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3616 else
3617 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3618 if (op0 != target)
3619 emit_move_insn (target, op0);
3620
3621 emit_label (label);
3622
3623 return target;
3624 }
3625
3626
3627 /* A subroutine of expand_copysign, perform the entire copysign operation
3628 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3629 is true if op0 is known to have its sign bit clear. */
3630
3631 static rtx
3632 expand_copysign_bit (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3633 int bitpos, bool op0_is_abs)
3634 {
3635 enum machine_mode imode;
3636 int word, nwords, i;
3637 rtx temp, insns;
3638
3639 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3640 {
3641 imode = int_mode_for_mode (mode);
3642 if (imode == BLKmode)
3643 return NULL_RTX;
3644 word = 0;
3645 nwords = 1;
3646 }
3647 else
3648 {
3649 imode = word_mode;
3650
3651 if (FLOAT_WORDS_BIG_ENDIAN)
3652 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3653 else
3654 word = bitpos / BITS_PER_WORD;
3655 bitpos = bitpos % BITS_PER_WORD;
3656 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3657 }
3658
3659 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3660
3661 if (target == 0
3662 || target == op0
3663 || target == op1
3664 || (nwords > 1 && !valid_multiword_target_p (target)))
3665 target = gen_reg_rtx (mode);
3666
3667 if (nwords > 1)
3668 {
3669 start_sequence ();
3670
3671 for (i = 0; i < nwords; ++i)
3672 {
3673 rtx targ_piece = operand_subword (target, i, 1, mode);
3674 rtx op0_piece = operand_subword_force (op0, i, mode);
3675
3676 if (i == word)
3677 {
3678 if (!op0_is_abs)
3679 op0_piece
3680 = expand_binop (imode, and_optab, op0_piece,
3681 immed_wide_int_const (~mask, imode),
3682 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3683 op1 = expand_binop (imode, and_optab,
3684 operand_subword_force (op1, i, mode),
3685 immed_wide_int_const (mask, imode),
3686 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3687
3688 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3689 targ_piece, 1, OPTAB_LIB_WIDEN);
3690 if (temp != targ_piece)
3691 emit_move_insn (targ_piece, temp);
3692 }
3693 else
3694 emit_move_insn (targ_piece, op0_piece);
3695 }
3696
3697 insns = get_insns ();
3698 end_sequence ();
3699
3700 emit_insn (insns);
3701 }
3702 else
3703 {
3704 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3705 immed_wide_int_const (mask, imode),
3706 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3707
3708 op0 = gen_lowpart (imode, op0);
3709 if (!op0_is_abs)
3710 op0 = expand_binop (imode, and_optab, op0,
3711 immed_wide_int_const (~mask, imode),
3712 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3713
3714 temp = expand_binop (imode, ior_optab, op0, op1,
3715 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3716 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3717 }
3718
3719 return target;
3720 }
3721
3722 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3723 scalar floating point mode. Return NULL if we do not know how to
3724 expand the operation inline. */
3725
3726 rtx
3727 expand_copysign (rtx op0, rtx op1, rtx target)
3728 {
3729 enum machine_mode mode = GET_MODE (op0);
3730 const struct real_format *fmt;
3731 bool op0_is_abs;
3732 rtx temp;
3733
3734 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3735 gcc_assert (GET_MODE (op1) == mode);
3736
3737 /* First try to do it with a special instruction. */
3738 temp = expand_binop (mode, copysign_optab, op0, op1,
3739 target, 0, OPTAB_DIRECT);
3740 if (temp)
3741 return temp;
3742
3743 fmt = REAL_MODE_FORMAT (mode);
3744 if (fmt == NULL || !fmt->has_signed_zero)
3745 return NULL_RTX;
3746
3747 op0_is_abs = false;
3748 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3749 {
3750 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3751 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3752 op0_is_abs = true;
3753 }
3754
3755 if (fmt->signbit_ro >= 0
3756 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3757 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3758 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3759 {
3760 temp = expand_copysign_absneg (mode, op0, op1, target,
3761 fmt->signbit_ro, op0_is_abs);
3762 if (temp)
3763 return temp;
3764 }
3765
3766 if (fmt->signbit_rw < 0)
3767 return NULL_RTX;
3768 return expand_copysign_bit (mode, op0, op1, target,
3769 fmt->signbit_rw, op0_is_abs);
3770 }
3771 \f
3772 /* Generate an instruction whose insn-code is INSN_CODE,
3773 with two operands: an output TARGET and an input OP0.
3774 TARGET *must* be nonzero, and the output is always stored there.
3775 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3776 the value that is stored into TARGET.
3777
3778 Return false if expansion failed. */
3779
3780 bool
3781 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3782 enum rtx_code code)
3783 {
3784 struct expand_operand ops[2];
3785 rtx pat;
3786
3787 create_output_operand (&ops[0], target, GET_MODE (target));
3788 create_input_operand (&ops[1], op0, GET_MODE (op0));
3789 pat = maybe_gen_insn (icode, 2, ops);
3790 if (!pat)
3791 return false;
3792
3793 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3794 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX);
3795
3796 emit_insn (pat);
3797
3798 if (ops[0].value != target)
3799 emit_move_insn (target, ops[0].value);
3800 return true;
3801 }
3802 /* Generate an instruction whose insn-code is INSN_CODE,
3803 with two operands: an output TARGET and an input OP0.
3804 TARGET *must* be nonzero, and the output is always stored there.
3805 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3806 the value that is stored into TARGET. */
3807
3808 void
3809 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3810 {
3811 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3812 gcc_assert (ok);
3813 }
3814 \f
3815 struct no_conflict_data
3816 {
3817 rtx target, first, insn;
3818 bool must_stay;
3819 };
3820
3821 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3822 the currently examined clobber / store has to stay in the list of
3823 insns that constitute the actual libcall block. */
3824 static void
3825 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3826 {
3827 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3828
3829 /* If this inns directly contributes to setting the target, it must stay. */
3830 if (reg_overlap_mentioned_p (p->target, dest))
3831 p->must_stay = true;
3832 /* If we haven't committed to keeping any other insns in the list yet,
3833 there is nothing more to check. */
3834 else if (p->insn == p->first)
3835 return;
3836 /* If this insn sets / clobbers a register that feeds one of the insns
3837 already in the list, this insn has to stay too. */
3838 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3839 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3840 || reg_used_between_p (dest, p->first, p->insn)
3841 /* Likewise if this insn depends on a register set by a previous
3842 insn in the list, or if it sets a result (presumably a hard
3843 register) that is set or clobbered by a previous insn.
3844 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3845 SET_DEST perform the former check on the address, and the latter
3846 check on the MEM. */
3847 || (GET_CODE (set) == SET
3848 && (modified_in_p (SET_SRC (set), p->first)
3849 || modified_in_p (SET_DEST (set), p->first)
3850 || modified_between_p (SET_SRC (set), p->first, p->insn)
3851 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3852 p->must_stay = true;
3853 }
3854
3855 \f
3856 /* Emit code to make a call to a constant function or a library call.
3857
3858 INSNS is a list containing all insns emitted in the call.
3859 These insns leave the result in RESULT. Our block is to copy RESULT
3860 to TARGET, which is logically equivalent to EQUIV.
3861
3862 We first emit any insns that set a pseudo on the assumption that these are
3863 loading constants into registers; doing so allows them to be safely cse'ed
3864 between blocks. Then we emit all the other insns in the block, followed by
3865 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3866 note with an operand of EQUIV. */
3867
3868 static void
3869 emit_libcall_block_1 (rtx insns, rtx target, rtx result, rtx equiv,
3870 bool equiv_may_trap)
3871 {
3872 rtx final_dest = target;
3873 rtx next, last, insn;
3874
3875 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3876 into a MEM later. Protect the libcall block from this change. */
3877 if (! REG_P (target) || REG_USERVAR_P (target))
3878 target = gen_reg_rtx (GET_MODE (target));
3879
3880 /* If we're using non-call exceptions, a libcall corresponding to an
3881 operation that may trap may also trap. */
3882 /* ??? See the comment in front of make_reg_eh_region_note. */
3883 if (cfun->can_throw_non_call_exceptions
3884 && (equiv_may_trap || may_trap_p (equiv)))
3885 {
3886 for (insn = insns; insn; insn = NEXT_INSN (insn))
3887 if (CALL_P (insn))
3888 {
3889 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3890 if (note)
3891 {
3892 int lp_nr = INTVAL (XEXP (note, 0));
3893 if (lp_nr == 0 || lp_nr == INT_MIN)
3894 remove_note (insn, note);
3895 }
3896 }
3897 }
3898 else
3899 {
3900 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3901 reg note to indicate that this call cannot throw or execute a nonlocal
3902 goto (unless there is already a REG_EH_REGION note, in which case
3903 we update it). */
3904 for (insn = insns; insn; insn = NEXT_INSN (insn))
3905 if (CALL_P (insn))
3906 make_reg_eh_region_note_nothrow_nononlocal (insn);
3907 }
3908
3909 /* First emit all insns that set pseudos. Remove them from the list as
3910 we go. Avoid insns that set pseudos which were referenced in previous
3911 insns. These can be generated by move_by_pieces, for example,
3912 to update an address. Similarly, avoid insns that reference things
3913 set in previous insns. */
3914
3915 for (insn = insns; insn; insn = next)
3916 {
3917 rtx set = single_set (insn);
3918
3919 next = NEXT_INSN (insn);
3920
3921 if (set != 0 && REG_P (SET_DEST (set))
3922 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3923 {
3924 struct no_conflict_data data;
3925
3926 data.target = const0_rtx;
3927 data.first = insns;
3928 data.insn = insn;
3929 data.must_stay = 0;
3930 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3931 if (! data.must_stay)
3932 {
3933 if (PREV_INSN (insn))
3934 NEXT_INSN (PREV_INSN (insn)) = next;
3935 else
3936 insns = next;
3937
3938 if (next)
3939 PREV_INSN (next) = PREV_INSN (insn);
3940
3941 add_insn (insn);
3942 }
3943 }
3944
3945 /* Some ports use a loop to copy large arguments onto the stack.
3946 Don't move anything outside such a loop. */
3947 if (LABEL_P (insn))
3948 break;
3949 }
3950
3951 /* Write the remaining insns followed by the final copy. */
3952 for (insn = insns; insn; insn = next)
3953 {
3954 next = NEXT_INSN (insn);
3955
3956 add_insn (insn);
3957 }
3958
3959 last = emit_move_insn (target, result);
3960 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3961
3962 if (final_dest != target)
3963 emit_move_insn (final_dest, target);
3964 }
3965
3966 void
3967 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3968 {
3969 emit_libcall_block_1 (insns, target, result, equiv, false);
3970 }
3971 \f
3972 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3973 PURPOSE describes how this comparison will be used. CODE is the rtx
3974 comparison code we will be using.
3975
3976 ??? Actually, CODE is slightly weaker than that. A target is still
3977 required to implement all of the normal bcc operations, but not
3978 required to implement all (or any) of the unordered bcc operations. */
3979
3980 int
3981 can_compare_p (enum rtx_code code, enum machine_mode mode,
3982 enum can_compare_purpose purpose)
3983 {
3984 rtx test;
3985 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3986 do
3987 {
3988 enum insn_code icode;
3989
3990 if (purpose == ccp_jump
3991 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3992 && insn_operand_matches (icode, 0, test))
3993 return 1;
3994 if (purpose == ccp_store_flag
3995 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3996 && insn_operand_matches (icode, 1, test))
3997 return 1;
3998 if (purpose == ccp_cmov
3999 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4000 return 1;
4001
4002 mode = GET_MODE_WIDER_MODE (mode);
4003 PUT_MODE (test, mode);
4004 }
4005 while (mode != VOIDmode);
4006
4007 return 0;
4008 }
4009
4010 /* This function is called when we are going to emit a compare instruction that
4011 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4012
4013 *PMODE is the mode of the inputs (in case they are const_int).
4014 *PUNSIGNEDP nonzero says that the operands are unsigned;
4015 this matters if they need to be widened (as given by METHODS).
4016
4017 If they have mode BLKmode, then SIZE specifies the size of both operands.
4018
4019 This function performs all the setup necessary so that the caller only has
4020 to emit a single comparison insn. This setup can involve doing a BLKmode
4021 comparison or emitting a library call to perform the comparison if no insn
4022 is available to handle it.
4023 The values which are passed in through pointers can be modified; the caller
4024 should perform the comparison on the modified values. Constant
4025 comparisons must have already been folded. */
4026
4027 static void
4028 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4029 int unsignedp, enum optab_methods methods,
4030 rtx *ptest, enum machine_mode *pmode)
4031 {
4032 enum machine_mode mode = *pmode;
4033 rtx libfunc, test;
4034 enum machine_mode cmp_mode;
4035 enum mode_class mclass;
4036
4037 /* The other methods are not needed. */
4038 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4039 || methods == OPTAB_LIB_WIDEN);
4040
4041 /* If we are optimizing, force expensive constants into a register. */
4042 if (CONSTANT_P (x) && optimize
4043 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4044 > COSTS_N_INSNS (1)))
4045 x = force_reg (mode, x);
4046
4047 if (CONSTANT_P (y) && optimize
4048 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4049 > COSTS_N_INSNS (1)))
4050 y = force_reg (mode, y);
4051
4052 #ifdef HAVE_cc0
4053 /* Make sure if we have a canonical comparison. The RTL
4054 documentation states that canonical comparisons are required only
4055 for targets which have cc0. */
4056 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4057 #endif
4058
4059 /* Don't let both operands fail to indicate the mode. */
4060 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4061 x = force_reg (mode, x);
4062 if (mode == VOIDmode)
4063 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4064
4065 /* Handle all BLKmode compares. */
4066
4067 if (mode == BLKmode)
4068 {
4069 enum machine_mode result_mode;
4070 enum insn_code cmp_code;
4071 tree length_type;
4072 rtx libfunc;
4073 rtx result;
4074 rtx opalign
4075 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4076
4077 gcc_assert (size);
4078
4079 /* Try to use a memory block compare insn - either cmpstr
4080 or cmpmem will do. */
4081 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4082 cmp_mode != VOIDmode;
4083 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4084 {
4085 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4086 if (cmp_code == CODE_FOR_nothing)
4087 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4088 if (cmp_code == CODE_FOR_nothing)
4089 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4090 if (cmp_code == CODE_FOR_nothing)
4091 continue;
4092
4093 /* Must make sure the size fits the insn's mode. */
4094 if ((CONST_INT_P (size)
4095 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4096 || (GET_MODE_BITSIZE (GET_MODE (size))
4097 > GET_MODE_BITSIZE (cmp_mode)))
4098 continue;
4099
4100 result_mode = insn_data[cmp_code].operand[0].mode;
4101 result = gen_reg_rtx (result_mode);
4102 size = convert_to_mode (cmp_mode, size, 1);
4103 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4104
4105 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4106 *pmode = result_mode;
4107 return;
4108 }
4109
4110 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4111 goto fail;
4112
4113 /* Otherwise call a library function, memcmp. */
4114 libfunc = memcmp_libfunc;
4115 length_type = sizetype;
4116 result_mode = TYPE_MODE (integer_type_node);
4117 cmp_mode = TYPE_MODE (length_type);
4118 size = convert_to_mode (TYPE_MODE (length_type), size,
4119 TYPE_UNSIGNED (length_type));
4120
4121 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4122 result_mode, 3,
4123 XEXP (x, 0), Pmode,
4124 XEXP (y, 0), Pmode,
4125 size, cmp_mode);
4126 x = result;
4127 y = const0_rtx;
4128 mode = result_mode;
4129 methods = OPTAB_LIB_WIDEN;
4130 unsignedp = false;
4131 }
4132
4133 /* Don't allow operands to the compare to trap, as that can put the
4134 compare and branch in different basic blocks. */
4135 if (cfun->can_throw_non_call_exceptions)
4136 {
4137 if (may_trap_p (x))
4138 x = force_reg (mode, x);
4139 if (may_trap_p (y))
4140 y = force_reg (mode, y);
4141 }
4142
4143 if (GET_MODE_CLASS (mode) == MODE_CC)
4144 {
4145 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4146 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4147 return;
4148 }
4149
4150 mclass = GET_MODE_CLASS (mode);
4151 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4152 cmp_mode = mode;
4153 do
4154 {
4155 enum insn_code icode;
4156 icode = optab_handler (cbranch_optab, cmp_mode);
4157 if (icode != CODE_FOR_nothing
4158 && insn_operand_matches (icode, 0, test))
4159 {
4160 rtx last = get_last_insn ();
4161 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4162 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4163 if (op0 && op1
4164 && insn_operand_matches (icode, 1, op0)
4165 && insn_operand_matches (icode, 2, op1))
4166 {
4167 XEXP (test, 0) = op0;
4168 XEXP (test, 1) = op1;
4169 *ptest = test;
4170 *pmode = cmp_mode;
4171 return;
4172 }
4173 delete_insns_since (last);
4174 }
4175
4176 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4177 break;
4178 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4179 }
4180 while (cmp_mode != VOIDmode);
4181
4182 if (methods != OPTAB_LIB_WIDEN)
4183 goto fail;
4184
4185 if (!SCALAR_FLOAT_MODE_P (mode))
4186 {
4187 rtx result;
4188 enum machine_mode ret_mode;
4189
4190 /* Handle a libcall just for the mode we are using. */
4191 libfunc = optab_libfunc (cmp_optab, mode);
4192 gcc_assert (libfunc);
4193
4194 /* If we want unsigned, and this mode has a distinct unsigned
4195 comparison routine, use that. */
4196 if (unsignedp)
4197 {
4198 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4199 if (ulibfunc)
4200 libfunc = ulibfunc;
4201 }
4202
4203 ret_mode = targetm.libgcc_cmp_return_mode ();
4204 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4205 ret_mode, 2, x, mode, y, mode);
4206
4207 /* There are two kinds of comparison routines. Biased routines
4208 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4209 of gcc expect that the comparison operation is equivalent
4210 to the modified comparison. For signed comparisons compare the
4211 result against 1 in the biased case, and zero in the unbiased
4212 case. For unsigned comparisons always compare against 1 after
4213 biasing the unbiased result by adding 1. This gives us a way to
4214 represent LTU.
4215 The comparisons in the fixed-point helper library are always
4216 biased. */
4217 x = result;
4218 y = const1_rtx;
4219
4220 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4221 {
4222 if (unsignedp)
4223 x = plus_constant (ret_mode, result, 1);
4224 else
4225 y = const0_rtx;
4226 }
4227
4228 *pmode = word_mode;
4229 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4230 ptest, pmode);
4231 }
4232 else
4233 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4234
4235 return;
4236
4237 fail:
4238 *ptest = NULL_RTX;
4239 }
4240
4241 /* Before emitting an insn with code ICODE, make sure that X, which is going
4242 to be used for operand OPNUM of the insn, is converted from mode MODE to
4243 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4244 that it is accepted by the operand predicate. Return the new value. */
4245
4246 rtx
4247 prepare_operand (enum insn_code icode, rtx x, int opnum, enum machine_mode mode,
4248 enum machine_mode wider_mode, int unsignedp)
4249 {
4250 if (mode != wider_mode)
4251 x = convert_modes (wider_mode, mode, x, unsignedp);
4252
4253 if (!insn_operand_matches (icode, opnum, x))
4254 {
4255 if (reload_completed)
4256 return NULL_RTX;
4257 x = copy_to_mode_reg (insn_data[(int) icode].operand[opnum].mode, x);
4258 }
4259
4260 return x;
4261 }
4262
4263 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4264 we can do the branch. */
4265
4266 static void
4267 emit_cmp_and_jump_insn_1 (rtx test, enum machine_mode mode, rtx label, int prob)
4268 {
4269 enum machine_mode optab_mode;
4270 enum mode_class mclass;
4271 enum insn_code icode;
4272 rtx insn;
4273
4274 mclass = GET_MODE_CLASS (mode);
4275 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4276 icode = optab_handler (cbranch_optab, optab_mode);
4277
4278 gcc_assert (icode != CODE_FOR_nothing);
4279 gcc_assert (insn_operand_matches (icode, 0, test));
4280 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4281 XEXP (test, 1), label));
4282 if (prob != -1
4283 && profile_status != PROFILE_ABSENT
4284 && insn
4285 && JUMP_P (insn)
4286 && any_condjump_p (insn)
4287 && !find_reg_note (insn, REG_BR_PROB, 0))
4288 add_int_reg_note (insn, REG_BR_PROB, prob);
4289 }
4290
4291 /* Generate code to compare X with Y so that the condition codes are
4292 set and to jump to LABEL if the condition is true. If X is a
4293 constant and Y is not a constant, then the comparison is swapped to
4294 ensure that the comparison RTL has the canonical form.
4295
4296 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4297 need to be widened. UNSIGNEDP is also used to select the proper
4298 branch condition code.
4299
4300 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4301
4302 MODE is the mode of the inputs (in case they are const_int).
4303
4304 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4305 It will be potentially converted into an unsigned variant based on
4306 UNSIGNEDP to select a proper jump instruction.
4307
4308 PROB is the probability of jumping to LABEL. */
4309
4310 void
4311 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4312 enum machine_mode mode, int unsignedp, rtx label,
4313 int prob)
4314 {
4315 rtx op0 = x, op1 = y;
4316 rtx test;
4317
4318 /* Swap operands and condition to ensure canonical RTL. */
4319 if (swap_commutative_operands_p (x, y)
4320 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4321 {
4322 op0 = y, op1 = x;
4323 comparison = swap_condition (comparison);
4324 }
4325
4326 /* If OP0 is still a constant, then both X and Y must be constants
4327 or the opposite comparison is not supported. Force X into a register
4328 to create canonical RTL. */
4329 if (CONSTANT_P (op0))
4330 op0 = force_reg (mode, op0);
4331
4332 if (unsignedp)
4333 comparison = unsigned_condition (comparison);
4334
4335 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4336 &test, &mode);
4337 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4338 }
4339
4340 \f
4341 /* Emit a library call comparison between floating point X and Y.
4342 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4343
4344 static void
4345 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4346 rtx *ptest, enum machine_mode *pmode)
4347 {
4348 enum rtx_code swapped = swap_condition (comparison);
4349 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4350 enum machine_mode orig_mode = GET_MODE (x);
4351 enum machine_mode mode, cmp_mode;
4352 rtx true_rtx, false_rtx;
4353 rtx value, target, insns, equiv;
4354 rtx libfunc = 0;
4355 bool reversed_p = false;
4356 cmp_mode = targetm.libgcc_cmp_return_mode ();
4357
4358 for (mode = orig_mode;
4359 mode != VOIDmode;
4360 mode = GET_MODE_WIDER_MODE (mode))
4361 {
4362 if (code_to_optab (comparison)
4363 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4364 break;
4365
4366 if (code_to_optab (swapped)
4367 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4368 {
4369 rtx tmp;
4370 tmp = x; x = y; y = tmp;
4371 comparison = swapped;
4372 break;
4373 }
4374
4375 if (code_to_optab (reversed)
4376 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4377 {
4378 comparison = reversed;
4379 reversed_p = true;
4380 break;
4381 }
4382 }
4383
4384 gcc_assert (mode != VOIDmode);
4385
4386 if (mode != orig_mode)
4387 {
4388 x = convert_to_mode (mode, x, 0);
4389 y = convert_to_mode (mode, y, 0);
4390 }
4391
4392 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4393 the RTL. The allows the RTL optimizers to delete the libcall if the
4394 condition can be determined at compile-time. */
4395 if (comparison == UNORDERED
4396 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4397 {
4398 true_rtx = const_true_rtx;
4399 false_rtx = const0_rtx;
4400 }
4401 else
4402 {
4403 switch (comparison)
4404 {
4405 case EQ:
4406 true_rtx = const0_rtx;
4407 false_rtx = const_true_rtx;
4408 break;
4409
4410 case NE:
4411 true_rtx = const_true_rtx;
4412 false_rtx = const0_rtx;
4413 break;
4414
4415 case GT:
4416 true_rtx = const1_rtx;
4417 false_rtx = const0_rtx;
4418 break;
4419
4420 case GE:
4421 true_rtx = const0_rtx;
4422 false_rtx = constm1_rtx;
4423 break;
4424
4425 case LT:
4426 true_rtx = constm1_rtx;
4427 false_rtx = const0_rtx;
4428 break;
4429
4430 case LE:
4431 true_rtx = const0_rtx;
4432 false_rtx = const1_rtx;
4433 break;
4434
4435 default:
4436 gcc_unreachable ();
4437 }
4438 }
4439
4440 if (comparison == UNORDERED)
4441 {
4442 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4443 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4444 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4445 temp, const_true_rtx, equiv);
4446 }
4447 else
4448 {
4449 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4450 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4451 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4452 equiv, true_rtx, false_rtx);
4453 }
4454
4455 start_sequence ();
4456 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4457 cmp_mode, 2, x, mode, y, mode);
4458 insns = get_insns ();
4459 end_sequence ();
4460
4461 target = gen_reg_rtx (cmp_mode);
4462 emit_libcall_block (insns, target, value, equiv);
4463
4464 if (comparison == UNORDERED
4465 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4466 || reversed_p)
4467 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4468 else
4469 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4470
4471 *pmode = cmp_mode;
4472 }
4473 \f
4474 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4475
4476 void
4477 emit_indirect_jump (rtx loc)
4478 {
4479 struct expand_operand ops[1];
4480
4481 create_address_operand (&ops[0], loc);
4482 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4483 emit_barrier ();
4484 }
4485 \f
4486 #ifdef HAVE_conditional_move
4487
4488 /* Emit a conditional move instruction if the machine supports one for that
4489 condition and machine mode.
4490
4491 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4492 the mode to use should they be constants. If it is VOIDmode, they cannot
4493 both be constants.
4494
4495 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4496 should be stored there. MODE is the mode to use should they be constants.
4497 If it is VOIDmode, they cannot both be constants.
4498
4499 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4500 is not supported. */
4501
4502 rtx
4503 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4504 enum machine_mode cmode, rtx op2, rtx op3,
4505 enum machine_mode mode, int unsignedp)
4506 {
4507 rtx tem, comparison, last;
4508 enum insn_code icode;
4509 enum rtx_code reversed;
4510
4511 /* If one operand is constant, make it the second one. Only do this
4512 if the other operand is not constant as well. */
4513
4514 if (swap_commutative_operands_p (op0, op1))
4515 {
4516 tem = op0;
4517 op0 = op1;
4518 op1 = tem;
4519 code = swap_condition (code);
4520 }
4521
4522 /* get_condition will prefer to generate LT and GT even if the old
4523 comparison was against zero, so undo that canonicalization here since
4524 comparisons against zero are cheaper. */
4525 if (code == LT && op1 == const1_rtx)
4526 code = LE, op1 = const0_rtx;
4527 else if (code == GT && op1 == constm1_rtx)
4528 code = GE, op1 = const0_rtx;
4529
4530 if (cmode == VOIDmode)
4531 cmode = GET_MODE (op0);
4532
4533 if (swap_commutative_operands_p (op2, op3)
4534 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4535 != UNKNOWN))
4536 {
4537 tem = op2;
4538 op2 = op3;
4539 op3 = tem;
4540 code = reversed;
4541 }
4542
4543 if (mode == VOIDmode)
4544 mode = GET_MODE (op2);
4545
4546 icode = direct_optab_handler (movcc_optab, mode);
4547
4548 if (icode == CODE_FOR_nothing)
4549 return 0;
4550
4551 if (!target)
4552 target = gen_reg_rtx (mode);
4553
4554 code = unsignedp ? unsigned_condition (code) : code;
4555 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4556
4557 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4558 return NULL and let the caller figure out how best to deal with this
4559 situation. */
4560 if (!COMPARISON_P (comparison))
4561 return NULL_RTX;
4562
4563 do_pending_stack_adjust ();
4564 last = get_last_insn ();
4565 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4566 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4567 &comparison, &cmode);
4568 if (comparison)
4569 {
4570 struct expand_operand ops[4];
4571
4572 create_output_operand (&ops[0], target, mode);
4573 create_fixed_operand (&ops[1], comparison);
4574 create_input_operand (&ops[2], op2, mode);
4575 create_input_operand (&ops[3], op3, mode);
4576 if (maybe_expand_insn (icode, 4, ops))
4577 {
4578 if (ops[0].value != target)
4579 convert_move (target, ops[0].value, false);
4580 return target;
4581 }
4582 }
4583 delete_insns_since (last);
4584 return NULL_RTX;
4585 }
4586
4587 /* Return nonzero if a conditional move of mode MODE is supported.
4588
4589 This function is for combine so it can tell whether an insn that looks
4590 like a conditional move is actually supported by the hardware. If we
4591 guess wrong we lose a bit on optimization, but that's it. */
4592 /* ??? sparc64 supports conditionally moving integers values based on fp
4593 comparisons, and vice versa. How do we handle them? */
4594
4595 int
4596 can_conditionally_move_p (enum machine_mode mode)
4597 {
4598 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4599 return 1;
4600
4601 return 0;
4602 }
4603
4604 #endif /* HAVE_conditional_move */
4605
4606 /* Emit a conditional addition instruction if the machine supports one for that
4607 condition and machine mode.
4608
4609 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4610 the mode to use should they be constants. If it is VOIDmode, they cannot
4611 both be constants.
4612
4613 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4614 should be stored there. MODE is the mode to use should they be constants.
4615 If it is VOIDmode, they cannot both be constants.
4616
4617 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4618 is not supported. */
4619
4620 rtx
4621 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4622 enum machine_mode cmode, rtx op2, rtx op3,
4623 enum machine_mode mode, int unsignedp)
4624 {
4625 rtx tem, comparison, last;
4626 enum insn_code icode;
4627
4628 /* If one operand is constant, make it the second one. Only do this
4629 if the other operand is not constant as well. */
4630
4631 if (swap_commutative_operands_p (op0, op1))
4632 {
4633 tem = op0;
4634 op0 = op1;
4635 op1 = tem;
4636 code = swap_condition (code);
4637 }
4638
4639 /* get_condition will prefer to generate LT and GT even if the old
4640 comparison was against zero, so undo that canonicalization here since
4641 comparisons against zero are cheaper. */
4642 if (code == LT && op1 == const1_rtx)
4643 code = LE, op1 = const0_rtx;
4644 else if (code == GT && op1 == constm1_rtx)
4645 code = GE, op1 = const0_rtx;
4646
4647 if (cmode == VOIDmode)
4648 cmode = GET_MODE (op0);
4649
4650 if (mode == VOIDmode)
4651 mode = GET_MODE (op2);
4652
4653 icode = optab_handler (addcc_optab, mode);
4654
4655 if (icode == CODE_FOR_nothing)
4656 return 0;
4657
4658 if (!target)
4659 target = gen_reg_rtx (mode);
4660
4661 code = unsignedp ? unsigned_condition (code) : code;
4662 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4663
4664 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4665 return NULL and let the caller figure out how best to deal with this
4666 situation. */
4667 if (!COMPARISON_P (comparison))
4668 return NULL_RTX;
4669
4670 do_pending_stack_adjust ();
4671 last = get_last_insn ();
4672 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4673 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4674 &comparison, &cmode);
4675 if (comparison)
4676 {
4677 struct expand_operand ops[4];
4678
4679 create_output_operand (&ops[0], target, mode);
4680 create_fixed_operand (&ops[1], comparison);
4681 create_input_operand (&ops[2], op2, mode);
4682 create_input_operand (&ops[3], op3, mode);
4683 if (maybe_expand_insn (icode, 4, ops))
4684 {
4685 if (ops[0].value != target)
4686 convert_move (target, ops[0].value, false);
4687 return target;
4688 }
4689 }
4690 delete_insns_since (last);
4691 return NULL_RTX;
4692 }
4693 \f
4694 /* These functions attempt to generate an insn body, rather than
4695 emitting the insn, but if the gen function already emits them, we
4696 make no attempt to turn them back into naked patterns. */
4697
4698 /* Generate and return an insn body to add Y to X. */
4699
4700 rtx
4701 gen_add2_insn (rtx x, rtx y)
4702 {
4703 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4704
4705 gcc_assert (insn_operand_matches (icode, 0, x));
4706 gcc_assert (insn_operand_matches (icode, 1, x));
4707 gcc_assert (insn_operand_matches (icode, 2, y));
4708
4709 return GEN_FCN (icode) (x, x, y);
4710 }
4711
4712 /* Generate and return an insn body to add r1 and c,
4713 storing the result in r0. */
4714
4715 rtx
4716 gen_add3_insn (rtx r0, rtx r1, rtx c)
4717 {
4718 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4719
4720 if (icode == CODE_FOR_nothing
4721 || !insn_operand_matches (icode, 0, r0)
4722 || !insn_operand_matches (icode, 1, r1)
4723 || !insn_operand_matches (icode, 2, c))
4724 return NULL_RTX;
4725
4726 return GEN_FCN (icode) (r0, r1, c);
4727 }
4728
4729 int
4730 have_add2_insn (rtx x, rtx y)
4731 {
4732 enum insn_code icode;
4733
4734 gcc_assert (GET_MODE (x) != VOIDmode);
4735
4736 icode = optab_handler (add_optab, GET_MODE (x));
4737
4738 if (icode == CODE_FOR_nothing)
4739 return 0;
4740
4741 if (!insn_operand_matches (icode, 0, x)
4742 || !insn_operand_matches (icode, 1, x)
4743 || !insn_operand_matches (icode, 2, y))
4744 return 0;
4745
4746 return 1;
4747 }
4748
4749 /* Generate and return an insn body to subtract Y from X. */
4750
4751 rtx
4752 gen_sub2_insn (rtx x, rtx y)
4753 {
4754 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4755
4756 gcc_assert (insn_operand_matches (icode, 0, x));
4757 gcc_assert (insn_operand_matches (icode, 1, x));
4758 gcc_assert (insn_operand_matches (icode, 2, y));
4759
4760 return GEN_FCN (icode) (x, x, y);
4761 }
4762
4763 /* Generate and return an insn body to subtract r1 and c,
4764 storing the result in r0. */
4765
4766 rtx
4767 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4768 {
4769 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4770
4771 if (icode == CODE_FOR_nothing
4772 || !insn_operand_matches (icode, 0, r0)
4773 || !insn_operand_matches (icode, 1, r1)
4774 || !insn_operand_matches (icode, 2, c))
4775 return NULL_RTX;
4776
4777 return GEN_FCN (icode) (r0, r1, c);
4778 }
4779
4780 int
4781 have_sub2_insn (rtx x, rtx y)
4782 {
4783 enum insn_code icode;
4784
4785 gcc_assert (GET_MODE (x) != VOIDmode);
4786
4787 icode = optab_handler (sub_optab, GET_MODE (x));
4788
4789 if (icode == CODE_FOR_nothing)
4790 return 0;
4791
4792 if (!insn_operand_matches (icode, 0, x)
4793 || !insn_operand_matches (icode, 1, x)
4794 || !insn_operand_matches (icode, 2, y))
4795 return 0;
4796
4797 return 1;
4798 }
4799
4800 /* Generate the body of an instruction to copy Y into X.
4801 It may be a list of insns, if one insn isn't enough. */
4802
4803 rtx
4804 gen_move_insn (rtx x, rtx y)
4805 {
4806 rtx seq;
4807
4808 start_sequence ();
4809 emit_move_insn_1 (x, y);
4810 seq = get_insns ();
4811 end_sequence ();
4812 return seq;
4813 }
4814 \f
4815 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4816 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4817 no such operation exists, CODE_FOR_nothing will be returned. */
4818
4819 enum insn_code
4820 can_extend_p (enum machine_mode to_mode, enum machine_mode from_mode,
4821 int unsignedp)
4822 {
4823 convert_optab tab;
4824 #ifdef HAVE_ptr_extend
4825 if (unsignedp < 0)
4826 return CODE_FOR_ptr_extend;
4827 #endif
4828
4829 tab = unsignedp ? zext_optab : sext_optab;
4830 return convert_optab_handler (tab, to_mode, from_mode);
4831 }
4832
4833 /* Generate the body of an insn to extend Y (with mode MFROM)
4834 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4835
4836 rtx
4837 gen_extend_insn (rtx x, rtx y, enum machine_mode mto,
4838 enum machine_mode mfrom, int unsignedp)
4839 {
4840 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4841 return GEN_FCN (icode) (x, y);
4842 }
4843 \f
4844 /* can_fix_p and can_float_p say whether the target machine
4845 can directly convert a given fixed point type to
4846 a given floating point type, or vice versa.
4847 The returned value is the CODE_FOR_... value to use,
4848 or CODE_FOR_nothing if these modes cannot be directly converted.
4849
4850 *TRUNCP_PTR is set to 1 if it is necessary to output
4851 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4852
4853 static enum insn_code
4854 can_fix_p (enum machine_mode fixmode, enum machine_mode fltmode,
4855 int unsignedp, int *truncp_ptr)
4856 {
4857 convert_optab tab;
4858 enum insn_code icode;
4859
4860 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4861 icode = convert_optab_handler (tab, fixmode, fltmode);
4862 if (icode != CODE_FOR_nothing)
4863 {
4864 *truncp_ptr = 0;
4865 return icode;
4866 }
4867
4868 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4869 for this to work. We need to rework the fix* and ftrunc* patterns
4870 and documentation. */
4871 tab = unsignedp ? ufix_optab : sfix_optab;
4872 icode = convert_optab_handler (tab, fixmode, fltmode);
4873 if (icode != CODE_FOR_nothing
4874 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4875 {
4876 *truncp_ptr = 1;
4877 return icode;
4878 }
4879
4880 *truncp_ptr = 0;
4881 return CODE_FOR_nothing;
4882 }
4883
4884 enum insn_code
4885 can_float_p (enum machine_mode fltmode, enum machine_mode fixmode,
4886 int unsignedp)
4887 {
4888 convert_optab tab;
4889
4890 tab = unsignedp ? ufloat_optab : sfloat_optab;
4891 return convert_optab_handler (tab, fltmode, fixmode);
4892 }
4893
4894 /* Function supportable_convert_operation
4895
4896 Check whether an operation represented by the code CODE is a
4897 convert operation that is supported by the target platform in
4898 vector form (i.e., when operating on arguments of type VECTYPE_IN
4899 producing a result of type VECTYPE_OUT).
4900
4901 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4902 This function checks if these operations are supported
4903 by the target platform either directly (via vector tree-codes), or via
4904 target builtins.
4905
4906 Output:
4907 - CODE1 is code of vector operation to be used when
4908 vectorizing the operation, if available.
4909 - DECL is decl of target builtin functions to be used
4910 when vectorizing the operation, if available. In this case,
4911 CODE1 is CALL_EXPR. */
4912
4913 bool
4914 supportable_convert_operation (enum tree_code code,
4915 tree vectype_out, tree vectype_in,
4916 tree *decl, enum tree_code *code1)
4917 {
4918 enum machine_mode m1,m2;
4919 int truncp;
4920
4921 m1 = TYPE_MODE (vectype_out);
4922 m2 = TYPE_MODE (vectype_in);
4923
4924 /* First check if we can done conversion directly. */
4925 if ((code == FIX_TRUNC_EXPR
4926 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4927 != CODE_FOR_nothing)
4928 || (code == FLOAT_EXPR
4929 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4930 != CODE_FOR_nothing))
4931 {
4932 *code1 = code;
4933 return true;
4934 }
4935
4936 /* Now check for builtin. */
4937 if (targetm.vectorize.builtin_conversion
4938 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4939 {
4940 *code1 = CALL_EXPR;
4941 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
4942 return true;
4943 }
4944 return false;
4945 }
4946
4947 \f
4948 /* Generate code to convert FROM to floating point
4949 and store in TO. FROM must be fixed point and not VOIDmode.
4950 UNSIGNEDP nonzero means regard FROM as unsigned.
4951 Normally this is done by correcting the final value
4952 if it is negative. */
4953
4954 void
4955 expand_float (rtx to, rtx from, int unsignedp)
4956 {
4957 enum insn_code icode;
4958 rtx target = to;
4959 enum machine_mode fmode, imode;
4960 bool can_do_signed = false;
4961
4962 /* Crash now, because we won't be able to decide which mode to use. */
4963 gcc_assert (GET_MODE (from) != VOIDmode);
4964
4965 /* Look for an insn to do the conversion. Do it in the specified
4966 modes if possible; otherwise convert either input, output or both to
4967 wider mode. If the integer mode is wider than the mode of FROM,
4968 we can do the conversion signed even if the input is unsigned. */
4969
4970 for (fmode = GET_MODE (to); fmode != VOIDmode;
4971 fmode = GET_MODE_WIDER_MODE (fmode))
4972 for (imode = GET_MODE (from); imode != VOIDmode;
4973 imode = GET_MODE_WIDER_MODE (imode))
4974 {
4975 int doing_unsigned = unsignedp;
4976
4977 if (fmode != GET_MODE (to)
4978 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
4979 continue;
4980
4981 icode = can_float_p (fmode, imode, unsignedp);
4982 if (icode == CODE_FOR_nothing && unsignedp)
4983 {
4984 enum insn_code scode = can_float_p (fmode, imode, 0);
4985 if (scode != CODE_FOR_nothing)
4986 can_do_signed = true;
4987 if (imode != GET_MODE (from))
4988 icode = scode, doing_unsigned = 0;
4989 }
4990
4991 if (icode != CODE_FOR_nothing)
4992 {
4993 if (imode != GET_MODE (from))
4994 from = convert_to_mode (imode, from, unsignedp);
4995
4996 if (fmode != GET_MODE (to))
4997 target = gen_reg_rtx (fmode);
4998
4999 emit_unop_insn (icode, target, from,
5000 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5001
5002 if (target != to)
5003 convert_move (to, target, 0);
5004 return;
5005 }
5006 }
5007
5008 /* Unsigned integer, and no way to convert directly. Convert as signed,
5009 then unconditionally adjust the result. */
5010 if (unsignedp && can_do_signed)
5011 {
5012 rtx label = gen_label_rtx ();
5013 rtx temp;
5014 REAL_VALUE_TYPE offset;
5015
5016 /* Look for a usable floating mode FMODE wider than the source and at
5017 least as wide as the target. Using FMODE will avoid rounding woes
5018 with unsigned values greater than the signed maximum value. */
5019
5020 for (fmode = GET_MODE (to); fmode != VOIDmode;
5021 fmode = GET_MODE_WIDER_MODE (fmode))
5022 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5023 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5024 break;
5025
5026 if (fmode == VOIDmode)
5027 {
5028 /* There is no such mode. Pretend the target is wide enough. */
5029 fmode = GET_MODE (to);
5030
5031 /* Avoid double-rounding when TO is narrower than FROM. */
5032 if ((significand_size (fmode) + 1)
5033 < GET_MODE_PRECISION (GET_MODE (from)))
5034 {
5035 rtx temp1;
5036 rtx neglabel = gen_label_rtx ();
5037
5038 /* Don't use TARGET if it isn't a register, is a hard register,
5039 or is the wrong mode. */
5040 if (!REG_P (target)
5041 || REGNO (target) < FIRST_PSEUDO_REGISTER
5042 || GET_MODE (target) != fmode)
5043 target = gen_reg_rtx (fmode);
5044
5045 imode = GET_MODE (from);
5046 do_pending_stack_adjust ();
5047
5048 /* Test whether the sign bit is set. */
5049 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5050 0, neglabel);
5051
5052 /* The sign bit is not set. Convert as signed. */
5053 expand_float (target, from, 0);
5054 emit_jump_insn (gen_jump (label));
5055 emit_barrier ();
5056
5057 /* The sign bit is set.
5058 Convert to a usable (positive signed) value by shifting right
5059 one bit, while remembering if a nonzero bit was shifted
5060 out; i.e., compute (from & 1) | (from >> 1). */
5061
5062 emit_label (neglabel);
5063 temp = expand_binop (imode, and_optab, from, const1_rtx,
5064 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5065 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5066 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5067 OPTAB_LIB_WIDEN);
5068 expand_float (target, temp, 0);
5069
5070 /* Multiply by 2 to undo the shift above. */
5071 temp = expand_binop (fmode, add_optab, target, target,
5072 target, 0, OPTAB_LIB_WIDEN);
5073 if (temp != target)
5074 emit_move_insn (target, temp);
5075
5076 do_pending_stack_adjust ();
5077 emit_label (label);
5078 goto done;
5079 }
5080 }
5081
5082 /* If we are about to do some arithmetic to correct for an
5083 unsigned operand, do it in a pseudo-register. */
5084
5085 if (GET_MODE (to) != fmode
5086 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5087 target = gen_reg_rtx (fmode);
5088
5089 /* Convert as signed integer to floating. */
5090 expand_float (target, from, 0);
5091
5092 /* If FROM is negative (and therefore TO is negative),
5093 correct its value by 2**bitwidth. */
5094
5095 do_pending_stack_adjust ();
5096 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5097 0, label);
5098
5099
5100 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5101 temp = expand_binop (fmode, add_optab, target,
5102 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5103 target, 0, OPTAB_LIB_WIDEN);
5104 if (temp != target)
5105 emit_move_insn (target, temp);
5106
5107 do_pending_stack_adjust ();
5108 emit_label (label);
5109 goto done;
5110 }
5111
5112 /* No hardware instruction available; call a library routine. */
5113 {
5114 rtx libfunc;
5115 rtx insns;
5116 rtx value;
5117 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5118
5119 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
5120 from = convert_to_mode (SImode, from, unsignedp);
5121
5122 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5123 gcc_assert (libfunc);
5124
5125 start_sequence ();
5126
5127 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5128 GET_MODE (to), 1, from,
5129 GET_MODE (from));
5130 insns = get_insns ();
5131 end_sequence ();
5132
5133 emit_libcall_block (insns, target, value,
5134 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5135 GET_MODE (to), from));
5136 }
5137
5138 done:
5139
5140 /* Copy result to requested destination
5141 if we have been computing in a temp location. */
5142
5143 if (target != to)
5144 {
5145 if (GET_MODE (target) == GET_MODE (to))
5146 emit_move_insn (to, target);
5147 else
5148 convert_move (to, target, 0);
5149 }
5150 }
5151 \f
5152 /* Generate code to convert FROM to fixed point and store in TO. FROM
5153 must be floating point. */
5154
5155 void
5156 expand_fix (rtx to, rtx from, int unsignedp)
5157 {
5158 enum insn_code icode;
5159 rtx target = to;
5160 enum machine_mode fmode, imode;
5161 int must_trunc = 0;
5162
5163 /* We first try to find a pair of modes, one real and one integer, at
5164 least as wide as FROM and TO, respectively, in which we can open-code
5165 this conversion. If the integer mode is wider than the mode of TO,
5166 we can do the conversion either signed or unsigned. */
5167
5168 for (fmode = GET_MODE (from); fmode != VOIDmode;
5169 fmode = GET_MODE_WIDER_MODE (fmode))
5170 for (imode = GET_MODE (to); imode != VOIDmode;
5171 imode = GET_MODE_WIDER_MODE (imode))
5172 {
5173 int doing_unsigned = unsignedp;
5174
5175 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5176 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5177 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5178
5179 if (icode != CODE_FOR_nothing)
5180 {
5181 rtx last = get_last_insn ();
5182 if (fmode != GET_MODE (from))
5183 from = convert_to_mode (fmode, from, 0);
5184
5185 if (must_trunc)
5186 {
5187 rtx temp = gen_reg_rtx (GET_MODE (from));
5188 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5189 temp, 0);
5190 }
5191
5192 if (imode != GET_MODE (to))
5193 target = gen_reg_rtx (imode);
5194
5195 if (maybe_emit_unop_insn (icode, target, from,
5196 doing_unsigned ? UNSIGNED_FIX : FIX))
5197 {
5198 if (target != to)
5199 convert_move (to, target, unsignedp);
5200 return;
5201 }
5202 delete_insns_since (last);
5203 }
5204 }
5205
5206 /* For an unsigned conversion, there is one more way to do it.
5207 If we have a signed conversion, we generate code that compares
5208 the real value to the largest representable positive number. If if
5209 is smaller, the conversion is done normally. Otherwise, subtract
5210 one plus the highest signed number, convert, and add it back.
5211
5212 We only need to check all real modes, since we know we didn't find
5213 anything with a wider integer mode.
5214
5215 This code used to extend FP value into mode wider than the destination.
5216 This is needed for decimal float modes which cannot accurately
5217 represent one plus the highest signed number of the same size, but
5218 not for binary modes. Consider, for instance conversion from SFmode
5219 into DImode.
5220
5221 The hot path through the code is dealing with inputs smaller than 2^63
5222 and doing just the conversion, so there is no bits to lose.
5223
5224 In the other path we know the value is positive in the range 2^63..2^64-1
5225 inclusive. (as for other input overflow happens and result is undefined)
5226 So we know that the most important bit set in mantissa corresponds to
5227 2^63. The subtraction of 2^63 should not generate any rounding as it
5228 simply clears out that bit. The rest is trivial. */
5229
5230 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5231 for (fmode = GET_MODE (from); fmode != VOIDmode;
5232 fmode = GET_MODE_WIDER_MODE (fmode))
5233 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5234 && (!DECIMAL_FLOAT_MODE_P (fmode)
5235 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5236 {
5237 int bitsize;
5238 REAL_VALUE_TYPE offset;
5239 rtx limit, lab1, lab2, insn;
5240
5241 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5242 real_2expN (&offset, bitsize - 1, fmode);
5243 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5244 lab1 = gen_label_rtx ();
5245 lab2 = gen_label_rtx ();
5246
5247 if (fmode != GET_MODE (from))
5248 from = convert_to_mode (fmode, from, 0);
5249
5250 /* See if we need to do the subtraction. */
5251 do_pending_stack_adjust ();
5252 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5253 0, lab1);
5254
5255 /* If not, do the signed "fix" and branch around fixup code. */
5256 expand_fix (to, from, 0);
5257 emit_jump_insn (gen_jump (lab2));
5258 emit_barrier ();
5259
5260 /* Otherwise, subtract 2**(N-1), convert to signed number,
5261 then add 2**(N-1). Do the addition using XOR since this
5262 will often generate better code. */
5263 emit_label (lab1);
5264 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5265 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5266 expand_fix (to, target, 0);
5267 target = expand_binop (GET_MODE (to), xor_optab, to,
5268 gen_int_mode
5269 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5270 GET_MODE (to)),
5271 to, 1, OPTAB_LIB_WIDEN);
5272
5273 if (target != to)
5274 emit_move_insn (to, target);
5275
5276 emit_label (lab2);
5277
5278 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5279 {
5280 /* Make a place for a REG_NOTE and add it. */
5281 insn = emit_move_insn (to, to);
5282 set_dst_reg_note (insn, REG_EQUAL,
5283 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5284 copy_rtx (from)),
5285 to);
5286 }
5287
5288 return;
5289 }
5290
5291 /* We can't do it with an insn, so use a library call. But first ensure
5292 that the mode of TO is at least as wide as SImode, since those are the
5293 only library calls we know about. */
5294
5295 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5296 {
5297 target = gen_reg_rtx (SImode);
5298
5299 expand_fix (target, from, unsignedp);
5300 }
5301 else
5302 {
5303 rtx insns;
5304 rtx value;
5305 rtx libfunc;
5306
5307 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5308 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5309 gcc_assert (libfunc);
5310
5311 start_sequence ();
5312
5313 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5314 GET_MODE (to), 1, from,
5315 GET_MODE (from));
5316 insns = get_insns ();
5317 end_sequence ();
5318
5319 emit_libcall_block (insns, target, value,
5320 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5321 GET_MODE (to), from));
5322 }
5323
5324 if (target != to)
5325 {
5326 if (GET_MODE (to) == GET_MODE (target))
5327 emit_move_insn (to, target);
5328 else
5329 convert_move (to, target, 0);
5330 }
5331 }
5332
5333 /* Generate code to convert FROM or TO a fixed-point.
5334 If UINTP is true, either TO or FROM is an unsigned integer.
5335 If SATP is true, we need to saturate the result. */
5336
5337 void
5338 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5339 {
5340 enum machine_mode to_mode = GET_MODE (to);
5341 enum machine_mode from_mode = GET_MODE (from);
5342 convert_optab tab;
5343 enum rtx_code this_code;
5344 enum insn_code code;
5345 rtx insns, value;
5346 rtx libfunc;
5347
5348 if (to_mode == from_mode)
5349 {
5350 emit_move_insn (to, from);
5351 return;
5352 }
5353
5354 if (uintp)
5355 {
5356 tab = satp ? satfractuns_optab : fractuns_optab;
5357 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5358 }
5359 else
5360 {
5361 tab = satp ? satfract_optab : fract_optab;
5362 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5363 }
5364 code = convert_optab_handler (tab, to_mode, from_mode);
5365 if (code != CODE_FOR_nothing)
5366 {
5367 emit_unop_insn (code, to, from, this_code);
5368 return;
5369 }
5370
5371 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5372 gcc_assert (libfunc);
5373
5374 start_sequence ();
5375 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5376 1, from, from_mode);
5377 insns = get_insns ();
5378 end_sequence ();
5379
5380 emit_libcall_block (insns, to, value,
5381 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5382 }
5383
5384 /* Generate code to convert FROM to fixed point and store in TO. FROM
5385 must be floating point, TO must be signed. Use the conversion optab
5386 TAB to do the conversion. */
5387
5388 bool
5389 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5390 {
5391 enum insn_code icode;
5392 rtx target = to;
5393 enum machine_mode fmode, imode;
5394
5395 /* We first try to find a pair of modes, one real and one integer, at
5396 least as wide as FROM and TO, respectively, in which we can open-code
5397 this conversion. If the integer mode is wider than the mode of TO,
5398 we can do the conversion either signed or unsigned. */
5399
5400 for (fmode = GET_MODE (from); fmode != VOIDmode;
5401 fmode = GET_MODE_WIDER_MODE (fmode))
5402 for (imode = GET_MODE (to); imode != VOIDmode;
5403 imode = GET_MODE_WIDER_MODE (imode))
5404 {
5405 icode = convert_optab_handler (tab, imode, fmode);
5406 if (icode != CODE_FOR_nothing)
5407 {
5408 rtx last = get_last_insn ();
5409 if (fmode != GET_MODE (from))
5410 from = convert_to_mode (fmode, from, 0);
5411
5412 if (imode != GET_MODE (to))
5413 target = gen_reg_rtx (imode);
5414
5415 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5416 {
5417 delete_insns_since (last);
5418 continue;
5419 }
5420 if (target != to)
5421 convert_move (to, target, 0);
5422 return true;
5423 }
5424 }
5425
5426 return false;
5427 }
5428 \f
5429 /* Report whether we have an instruction to perform the operation
5430 specified by CODE on operands of mode MODE. */
5431 int
5432 have_insn_for (enum rtx_code code, enum machine_mode mode)
5433 {
5434 return (code_to_optab (code)
5435 && (optab_handler (code_to_optab (code), mode)
5436 != CODE_FOR_nothing));
5437 }
5438
5439 /* Initialize the libfunc fields of an entire group of entries in some
5440 optab. Each entry is set equal to a string consisting of a leading
5441 pair of underscores followed by a generic operation name followed by
5442 a mode name (downshifted to lowercase) followed by a single character
5443 representing the number of operands for the given operation (which is
5444 usually one of the characters '2', '3', or '4').
5445
5446 OPTABLE is the table in which libfunc fields are to be initialized.
5447 OPNAME is the generic (string) name of the operation.
5448 SUFFIX is the character which specifies the number of operands for
5449 the given generic operation.
5450 MODE is the mode to generate for.
5451 */
5452
5453 static void
5454 gen_libfunc (optab optable, const char *opname, int suffix,
5455 enum machine_mode mode)
5456 {
5457 unsigned opname_len = strlen (opname);
5458 const char *mname = GET_MODE_NAME (mode);
5459 unsigned mname_len = strlen (mname);
5460 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5461 int len = prefix_len + opname_len + mname_len + 1 + 1;
5462 char *libfunc_name = XALLOCAVEC (char, len);
5463 char *p;
5464 const char *q;
5465
5466 p = libfunc_name;
5467 *p++ = '_';
5468 *p++ = '_';
5469 if (targetm.libfunc_gnu_prefix)
5470 {
5471 *p++ = 'g';
5472 *p++ = 'n';
5473 *p++ = 'u';
5474 *p++ = '_';
5475 }
5476 for (q = opname; *q; )
5477 *p++ = *q++;
5478 for (q = mname; *q; q++)
5479 *p++ = TOLOWER (*q);
5480 *p++ = suffix;
5481 *p = '\0';
5482
5483 set_optab_libfunc (optable, mode,
5484 ggc_alloc_string (libfunc_name, p - libfunc_name));
5485 }
5486
5487 /* Like gen_libfunc, but verify that integer operation is involved. */
5488
5489 void
5490 gen_int_libfunc (optab optable, const char *opname, char suffix,
5491 enum machine_mode mode)
5492 {
5493 int maxsize = 2 * BITS_PER_WORD;
5494
5495 if (GET_MODE_CLASS (mode) != MODE_INT)
5496 return;
5497 if (maxsize < LONG_LONG_TYPE_SIZE)
5498 maxsize = LONG_LONG_TYPE_SIZE;
5499 if (GET_MODE_CLASS (mode) != MODE_INT
5500 || mode < word_mode || GET_MODE_BITSIZE (mode) > maxsize)
5501 return;
5502 gen_libfunc (optable, opname, suffix, mode);
5503 }
5504
5505 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5506
5507 void
5508 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5509 enum machine_mode mode)
5510 {
5511 char *dec_opname;
5512
5513 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5514 gen_libfunc (optable, opname, suffix, mode);
5515 if (DECIMAL_FLOAT_MODE_P (mode))
5516 {
5517 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5518 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5519 depending on the low level floating format used. */
5520 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5521 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5522 gen_libfunc (optable, dec_opname, suffix, mode);
5523 }
5524 }
5525
5526 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5527
5528 void
5529 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5530 enum machine_mode mode)
5531 {
5532 if (!ALL_FIXED_POINT_MODE_P (mode))
5533 return;
5534 gen_libfunc (optable, opname, suffix, mode);
5535 }
5536
5537 /* Like gen_libfunc, but verify that signed fixed-point operation is
5538 involved. */
5539
5540 void
5541 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5542 enum machine_mode mode)
5543 {
5544 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5545 return;
5546 gen_libfunc (optable, opname, suffix, mode);
5547 }
5548
5549 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5550 involved. */
5551
5552 void
5553 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5554 enum machine_mode mode)
5555 {
5556 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5557 return;
5558 gen_libfunc (optable, opname, suffix, mode);
5559 }
5560
5561 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5562
5563 void
5564 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5565 enum machine_mode mode)
5566 {
5567 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5568 gen_fp_libfunc (optable, name, suffix, mode);
5569 if (INTEGRAL_MODE_P (mode))
5570 gen_int_libfunc (optable, name, suffix, mode);
5571 }
5572
5573 /* Like gen_libfunc, but verify that FP or INT operation is involved
5574 and add 'v' suffix for integer operation. */
5575
5576 void
5577 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5578 enum machine_mode mode)
5579 {
5580 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5581 gen_fp_libfunc (optable, name, suffix, mode);
5582 if (GET_MODE_CLASS (mode) == MODE_INT)
5583 {
5584 int len = strlen (name);
5585 char *v_name = XALLOCAVEC (char, len + 2);
5586 strcpy (v_name, name);
5587 v_name[len] = 'v';
5588 v_name[len + 1] = 0;
5589 gen_int_libfunc (optable, v_name, suffix, mode);
5590 }
5591 }
5592
5593 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5594 involved. */
5595
5596 void
5597 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5598 enum machine_mode mode)
5599 {
5600 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5601 gen_fp_libfunc (optable, name, suffix, mode);
5602 if (INTEGRAL_MODE_P (mode))
5603 gen_int_libfunc (optable, name, suffix, mode);
5604 if (ALL_FIXED_POINT_MODE_P (mode))
5605 gen_fixed_libfunc (optable, name, suffix, mode);
5606 }
5607
5608 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5609 involved. */
5610
5611 void
5612 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5613 enum machine_mode mode)
5614 {
5615 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5616 gen_fp_libfunc (optable, name, suffix, mode);
5617 if (INTEGRAL_MODE_P (mode))
5618 gen_int_libfunc (optable, name, suffix, mode);
5619 if (SIGNED_FIXED_POINT_MODE_P (mode))
5620 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5621 }
5622
5623 /* Like gen_libfunc, but verify that INT or FIXED operation is
5624 involved. */
5625
5626 void
5627 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5628 enum machine_mode mode)
5629 {
5630 if (INTEGRAL_MODE_P (mode))
5631 gen_int_libfunc (optable, name, suffix, mode);
5632 if (ALL_FIXED_POINT_MODE_P (mode))
5633 gen_fixed_libfunc (optable, name, suffix, mode);
5634 }
5635
5636 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5637 involved. */
5638
5639 void
5640 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5641 enum machine_mode mode)
5642 {
5643 if (INTEGRAL_MODE_P (mode))
5644 gen_int_libfunc (optable, name, suffix, mode);
5645 if (SIGNED_FIXED_POINT_MODE_P (mode))
5646 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5647 }
5648
5649 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5650 involved. */
5651
5652 void
5653 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5654 enum machine_mode mode)
5655 {
5656 if (INTEGRAL_MODE_P (mode))
5657 gen_int_libfunc (optable, name, suffix, mode);
5658 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5659 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5660 }
5661
5662 /* Initialize the libfunc fields of an entire group of entries of an
5663 inter-mode-class conversion optab. The string formation rules are
5664 similar to the ones for init_libfuncs, above, but instead of having
5665 a mode name and an operand count these functions have two mode names
5666 and no operand count. */
5667
5668 void
5669 gen_interclass_conv_libfunc (convert_optab tab,
5670 const char *opname,
5671 enum machine_mode tmode,
5672 enum machine_mode fmode)
5673 {
5674 size_t opname_len = strlen (opname);
5675 size_t mname_len = 0;
5676
5677 const char *fname, *tname;
5678 const char *q;
5679 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5680 char *libfunc_name, *suffix;
5681 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5682 char *p;
5683
5684 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5685 depends on which underlying decimal floating point format is used. */
5686 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5687
5688 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5689
5690 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5691 nondec_name[0] = '_';
5692 nondec_name[1] = '_';
5693 if (targetm.libfunc_gnu_prefix)
5694 {
5695 nondec_name[2] = 'g';
5696 nondec_name[3] = 'n';
5697 nondec_name[4] = 'u';
5698 nondec_name[5] = '_';
5699 }
5700
5701 memcpy (&nondec_name[prefix_len], opname, opname_len);
5702 nondec_suffix = nondec_name + opname_len + prefix_len;
5703
5704 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5705 dec_name[0] = '_';
5706 dec_name[1] = '_';
5707 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5708 memcpy (&dec_name[2+dec_len], opname, opname_len);
5709 dec_suffix = dec_name + dec_len + opname_len + 2;
5710
5711 fname = GET_MODE_NAME (fmode);
5712 tname = GET_MODE_NAME (tmode);
5713
5714 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5715 {
5716 libfunc_name = dec_name;
5717 suffix = dec_suffix;
5718 }
5719 else
5720 {
5721 libfunc_name = nondec_name;
5722 suffix = nondec_suffix;
5723 }
5724
5725 p = suffix;
5726 for (q = fname; *q; p++, q++)
5727 *p = TOLOWER (*q);
5728 for (q = tname; *q; p++, q++)
5729 *p = TOLOWER (*q);
5730
5731 *p = '\0';
5732
5733 set_conv_libfunc (tab, tmode, fmode,
5734 ggc_alloc_string (libfunc_name, p - libfunc_name));
5735 }
5736
5737 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5738 int->fp conversion. */
5739
5740 void
5741 gen_int_to_fp_conv_libfunc (convert_optab tab,
5742 const char *opname,
5743 enum machine_mode tmode,
5744 enum machine_mode fmode)
5745 {
5746 if (GET_MODE_CLASS (fmode) != MODE_INT)
5747 return;
5748 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5749 return;
5750 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5751 }
5752
5753 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5754 naming scheme. */
5755
5756 void
5757 gen_ufloat_conv_libfunc (convert_optab tab,
5758 const char *opname ATTRIBUTE_UNUSED,
5759 enum machine_mode tmode,
5760 enum machine_mode fmode)
5761 {
5762 if (DECIMAL_FLOAT_MODE_P (tmode))
5763 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5764 else
5765 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5766 }
5767
5768 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5769 fp->int conversion. */
5770
5771 void
5772 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5773 const char *opname,
5774 enum machine_mode tmode,
5775 enum machine_mode fmode)
5776 {
5777 if (GET_MODE_CLASS (fmode) != MODE_INT)
5778 return;
5779 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5780 return;
5781 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5782 }
5783
5784 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5785 fp->int conversion with no decimal floating point involved. */
5786
5787 void
5788 gen_fp_to_int_conv_libfunc (convert_optab tab,
5789 const char *opname,
5790 enum machine_mode tmode,
5791 enum machine_mode fmode)
5792 {
5793 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5794 return;
5795 if (GET_MODE_CLASS (tmode) != MODE_INT)
5796 return;
5797 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5798 }
5799
5800 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5801 The string formation rules are
5802 similar to the ones for init_libfunc, above. */
5803
5804 void
5805 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5806 enum machine_mode tmode, enum machine_mode fmode)
5807 {
5808 size_t opname_len = strlen (opname);
5809 size_t mname_len = 0;
5810
5811 const char *fname, *tname;
5812 const char *q;
5813 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5814 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5815 char *libfunc_name, *suffix;
5816 char *p;
5817
5818 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5819 depends on which underlying decimal floating point format is used. */
5820 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5821
5822 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5823
5824 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5825 nondec_name[0] = '_';
5826 nondec_name[1] = '_';
5827 if (targetm.libfunc_gnu_prefix)
5828 {
5829 nondec_name[2] = 'g';
5830 nondec_name[3] = 'n';
5831 nondec_name[4] = 'u';
5832 nondec_name[5] = '_';
5833 }
5834 memcpy (&nondec_name[prefix_len], opname, opname_len);
5835 nondec_suffix = nondec_name + opname_len + prefix_len;
5836
5837 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5838 dec_name[0] = '_';
5839 dec_name[1] = '_';
5840 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5841 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5842 dec_suffix = dec_name + dec_len + opname_len + 2;
5843
5844 fname = GET_MODE_NAME (fmode);
5845 tname = GET_MODE_NAME (tmode);
5846
5847 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5848 {
5849 libfunc_name = dec_name;
5850 suffix = dec_suffix;
5851 }
5852 else
5853 {
5854 libfunc_name = nondec_name;
5855 suffix = nondec_suffix;
5856 }
5857
5858 p = suffix;
5859 for (q = fname; *q; p++, q++)
5860 *p = TOLOWER (*q);
5861 for (q = tname; *q; p++, q++)
5862 *p = TOLOWER (*q);
5863
5864 *p++ = '2';
5865 *p = '\0';
5866
5867 set_conv_libfunc (tab, tmode, fmode,
5868 ggc_alloc_string (libfunc_name, p - libfunc_name));
5869 }
5870
5871 /* Pick proper libcall for trunc_optab. We need to chose if we do
5872 truncation or extension and interclass or intraclass. */
5873
5874 void
5875 gen_trunc_conv_libfunc (convert_optab tab,
5876 const char *opname,
5877 enum machine_mode tmode,
5878 enum machine_mode fmode)
5879 {
5880 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5881 return;
5882 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5883 return;
5884 if (tmode == fmode)
5885 return;
5886
5887 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5888 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5889 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5890
5891 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5892 return;
5893
5894 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5895 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5896 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5897 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5898 }
5899
5900 /* Pick proper libcall for extend_optab. We need to chose if we do
5901 truncation or extension and interclass or intraclass. */
5902
5903 void
5904 gen_extend_conv_libfunc (convert_optab tab,
5905 const char *opname ATTRIBUTE_UNUSED,
5906 enum machine_mode tmode,
5907 enum machine_mode fmode)
5908 {
5909 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5910 return;
5911 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5912 return;
5913 if (tmode == fmode)
5914 return;
5915
5916 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5917 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5918 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5919
5920 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5921 return;
5922
5923 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5924 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5925 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5926 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5927 }
5928
5929 /* Pick proper libcall for fract_optab. We need to chose if we do
5930 interclass or intraclass. */
5931
5932 void
5933 gen_fract_conv_libfunc (convert_optab tab,
5934 const char *opname,
5935 enum machine_mode tmode,
5936 enum machine_mode fmode)
5937 {
5938 if (tmode == fmode)
5939 return;
5940 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
5941 return;
5942
5943 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5944 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5945 else
5946 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5947 }
5948
5949 /* Pick proper libcall for fractuns_optab. */
5950
5951 void
5952 gen_fractuns_conv_libfunc (convert_optab tab,
5953 const char *opname,
5954 enum machine_mode tmode,
5955 enum machine_mode fmode)
5956 {
5957 if (tmode == fmode)
5958 return;
5959 /* One mode must be a fixed-point mode, and the other must be an integer
5960 mode. */
5961 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
5962 || (ALL_FIXED_POINT_MODE_P (fmode)
5963 && GET_MODE_CLASS (tmode) == MODE_INT)))
5964 return;
5965
5966 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5967 }
5968
5969 /* Pick proper libcall for satfract_optab. We need to chose if we do
5970 interclass or intraclass. */
5971
5972 void
5973 gen_satfract_conv_libfunc (convert_optab tab,
5974 const char *opname,
5975 enum machine_mode tmode,
5976 enum machine_mode fmode)
5977 {
5978 if (tmode == fmode)
5979 return;
5980 /* TMODE must be a fixed-point mode. */
5981 if (!ALL_FIXED_POINT_MODE_P (tmode))
5982 return;
5983
5984 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
5985 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5986 else
5987 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5988 }
5989
5990 /* Pick proper libcall for satfractuns_optab. */
5991
5992 void
5993 gen_satfractuns_conv_libfunc (convert_optab tab,
5994 const char *opname,
5995 enum machine_mode tmode,
5996 enum machine_mode fmode)
5997 {
5998 if (tmode == fmode)
5999 return;
6000 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6001 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6002 return;
6003
6004 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6005 }
6006
6007 /* A table of previously-created libfuncs, hashed by name. */
6008 static GTY ((param_is (union tree_node))) htab_t libfunc_decls;
6009
6010 /* Hashtable callbacks for libfunc_decls. */
6011
6012 static hashval_t
6013 libfunc_decl_hash (const void *entry)
6014 {
6015 return IDENTIFIER_HASH_VALUE (DECL_NAME ((const_tree) entry));
6016 }
6017
6018 static int
6019 libfunc_decl_eq (const void *entry1, const void *entry2)
6020 {
6021 return DECL_NAME ((const_tree) entry1) == (const_tree) entry2;
6022 }
6023
6024 /* Build a decl for a libfunc named NAME. */
6025
6026 tree
6027 build_libfunc_function (const char *name)
6028 {
6029 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6030 get_identifier (name),
6031 build_function_type (integer_type_node, NULL_TREE));
6032 /* ??? We don't have any type information except for this is
6033 a function. Pretend this is "int foo()". */
6034 DECL_ARTIFICIAL (decl) = 1;
6035 DECL_EXTERNAL (decl) = 1;
6036 TREE_PUBLIC (decl) = 1;
6037 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6038
6039 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6040 are the flags assigned by targetm.encode_section_info. */
6041 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6042
6043 return decl;
6044 }
6045
6046 rtx
6047 init_one_libfunc (const char *name)
6048 {
6049 tree id, decl;
6050 void **slot;
6051 hashval_t hash;
6052
6053 if (libfunc_decls == NULL)
6054 libfunc_decls = htab_create_ggc (37, libfunc_decl_hash,
6055 libfunc_decl_eq, NULL);
6056
6057 /* See if we have already created a libfunc decl for this function. */
6058 id = get_identifier (name);
6059 hash = IDENTIFIER_HASH_VALUE (id);
6060 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, INSERT);
6061 decl = (tree) *slot;
6062 if (decl == NULL)
6063 {
6064 /* Create a new decl, so that it can be passed to
6065 targetm.encode_section_info. */
6066 decl = build_libfunc_function (name);
6067 *slot = decl;
6068 }
6069 return XEXP (DECL_RTL (decl), 0);
6070 }
6071
6072 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6073
6074 rtx
6075 set_user_assembler_libfunc (const char *name, const char *asmspec)
6076 {
6077 tree id, decl;
6078 void **slot;
6079 hashval_t hash;
6080
6081 id = get_identifier (name);
6082 hash = IDENTIFIER_HASH_VALUE (id);
6083 slot = htab_find_slot_with_hash (libfunc_decls, id, hash, NO_INSERT);
6084 gcc_assert (slot);
6085 decl = (tree) *slot;
6086 set_user_assembler_name (decl, asmspec);
6087 return XEXP (DECL_RTL (decl), 0);
6088 }
6089
6090 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6091 MODE to NAME, which should be either 0 or a string constant. */
6092 void
6093 set_optab_libfunc (optab op, enum machine_mode mode, const char *name)
6094 {
6095 rtx val;
6096 struct libfunc_entry e;
6097 struct libfunc_entry **slot;
6098
6099 e.op = op;
6100 e.mode1 = mode;
6101 e.mode2 = VOIDmode;
6102
6103 if (name)
6104 val = init_one_libfunc (name);
6105 else
6106 val = 0;
6107 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6108 if (*slot == NULL)
6109 *slot = ggc_alloc_libfunc_entry ();
6110 (*slot)->op = op;
6111 (*slot)->mode1 = mode;
6112 (*slot)->mode2 = VOIDmode;
6113 (*slot)->libfunc = val;
6114 }
6115
6116 /* Call this to reset the function entry for one conversion optab
6117 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6118 either 0 or a string constant. */
6119 void
6120 set_conv_libfunc (convert_optab optab, enum machine_mode tmode,
6121 enum machine_mode fmode, const char *name)
6122 {
6123 rtx val;
6124 struct libfunc_entry e;
6125 struct libfunc_entry **slot;
6126
6127 e.op = optab;
6128 e.mode1 = tmode;
6129 e.mode2 = fmode;
6130
6131 if (name)
6132 val = init_one_libfunc (name);
6133 else
6134 val = 0;
6135 slot = (struct libfunc_entry **) htab_find_slot (libfunc_hash, &e, INSERT);
6136 if (*slot == NULL)
6137 *slot = ggc_alloc_libfunc_entry ();
6138 (*slot)->op = optab;
6139 (*slot)->mode1 = tmode;
6140 (*slot)->mode2 = fmode;
6141 (*slot)->libfunc = val;
6142 }
6143
6144 /* Call this to initialize the contents of the optabs
6145 appropriately for the current target machine. */
6146
6147 void
6148 init_optabs (void)
6149 {
6150 if (libfunc_hash)
6151 htab_empty (libfunc_hash);
6152 else
6153 libfunc_hash = htab_create_ggc (10, hash_libfunc, eq_libfunc, NULL);
6154
6155 /* Fill in the optabs with the insns we support. */
6156 init_all_optabs (this_fn_optabs);
6157
6158 /* The ffs function operates on `int'. Fall back on it if we do not
6159 have a libgcc2 function for that width. */
6160 if (INT_TYPE_SIZE < BITS_PER_WORD)
6161 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6162 "ffs");
6163
6164 /* Explicitly initialize the bswap libfuncs since we need them to be
6165 valid for things other than word_mode. */
6166 if (targetm.libfunc_gnu_prefix)
6167 {
6168 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6169 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6170 }
6171 else
6172 {
6173 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6174 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6175 }
6176
6177 /* Use cabs for double complex abs, since systems generally have cabs.
6178 Don't define any libcall for float complex, so that cabs will be used. */
6179 if (complex_double_type_node)
6180 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6181 "cabs");
6182
6183 abort_libfunc = init_one_libfunc ("abort");
6184 memcpy_libfunc = init_one_libfunc ("memcpy");
6185 memmove_libfunc = init_one_libfunc ("memmove");
6186 memcmp_libfunc = init_one_libfunc ("memcmp");
6187 memset_libfunc = init_one_libfunc ("memset");
6188 setbits_libfunc = init_one_libfunc ("__setbits");
6189
6190 #ifndef DONT_USE_BUILTIN_SETJMP
6191 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6192 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6193 #else
6194 setjmp_libfunc = init_one_libfunc ("setjmp");
6195 longjmp_libfunc = init_one_libfunc ("longjmp");
6196 #endif
6197 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6198 unwind_sjlj_unregister_libfunc
6199 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6200
6201 /* For function entry/exit instrumentation. */
6202 profile_function_entry_libfunc
6203 = init_one_libfunc ("__cyg_profile_func_enter");
6204 profile_function_exit_libfunc
6205 = init_one_libfunc ("__cyg_profile_func_exit");
6206
6207 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6208
6209 /* Allow the target to add more libcalls or rename some, etc. */
6210 targetm.init_libfuncs ();
6211 }
6212
6213 /* Use the current target and options to initialize
6214 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6215
6216 void
6217 init_tree_optimization_optabs (tree optnode)
6218 {
6219 /* Quick exit if we have already computed optabs for this target. */
6220 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6221 return;
6222
6223 /* Forget any previous information and set up for the current target. */
6224 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6225 struct target_optabs *tmp_optabs = (struct target_optabs *)
6226 TREE_OPTIMIZATION_OPTABS (optnode);
6227 if (tmp_optabs)
6228 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6229 else
6230 tmp_optabs = (struct target_optabs *)
6231 ggc_alloc_atomic (sizeof (struct target_optabs));
6232
6233 /* Generate a new set of optabs into tmp_optabs. */
6234 init_all_optabs (tmp_optabs);
6235
6236 /* If the optabs changed, record it. */
6237 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6238 TREE_OPTIMIZATION_OPTABS (optnode) = (unsigned char *) tmp_optabs;
6239 else
6240 {
6241 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6242 ggc_free (tmp_optabs);
6243 }
6244 }
6245
6246 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6247 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6248
6249 static void
6250 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6251 {
6252 enum machine_mode mode;
6253 char buf[64];
6254 size_t len = strlen (base);
6255 int i;
6256
6257 gcc_assert (max <= 8);
6258 gcc_assert (len + 3 < sizeof (buf));
6259
6260 memcpy (buf, base, len);
6261 buf[len] = '_';
6262 buf[len + 1] = '0';
6263 buf[len + 2] = '\0';
6264
6265 mode = QImode;
6266 for (i = 1; i <= max; i *= 2)
6267 {
6268 buf[len + 1] = '0' + i;
6269 set_optab_libfunc (tab, mode, buf);
6270 mode = GET_MODE_2XWIDER_MODE (mode);
6271 }
6272 }
6273
6274 void
6275 init_sync_libfuncs (int max)
6276 {
6277 if (!flag_sync_libcalls)
6278 return;
6279
6280 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6281 "__sync_val_compare_and_swap", max);
6282 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6283 "__sync_lock_test_and_set", max);
6284
6285 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6286 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6287 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6288 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6289 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6290 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6291
6292 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6293 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6294 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6295 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6296 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6297 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6298 }
6299
6300 /* Print information about the current contents of the optabs on
6301 STDERR. */
6302
6303 DEBUG_FUNCTION void
6304 debug_optab_libfuncs (void)
6305 {
6306 int i, j, k;
6307
6308 /* Dump the arithmetic optabs. */
6309 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6310 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6311 {
6312 rtx l = optab_libfunc ((optab) i, (enum machine_mode) j);
6313 if (l)
6314 {
6315 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6316 fprintf (stderr, "%s\t%s:\t%s\n",
6317 GET_RTX_NAME (optab_to_code ((optab) i)),
6318 GET_MODE_NAME (j),
6319 XSTR (l, 0));
6320 }
6321 }
6322
6323 /* Dump the conversion optabs. */
6324 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6325 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6326 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6327 {
6328 rtx l = convert_optab_libfunc ((optab) i, (enum machine_mode) j,
6329 (enum machine_mode) k);
6330 if (l)
6331 {
6332 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6333 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6334 GET_RTX_NAME (optab_to_code ((optab) i)),
6335 GET_MODE_NAME (j),
6336 GET_MODE_NAME (k),
6337 XSTR (l, 0));
6338 }
6339 }
6340 }
6341
6342 \f
6343 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6344 CODE. Return 0 on failure. */
6345
6346 rtx
6347 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6348 {
6349 enum machine_mode mode = GET_MODE (op1);
6350 enum insn_code icode;
6351 rtx insn;
6352 rtx trap_rtx;
6353
6354 if (mode == VOIDmode)
6355 return 0;
6356
6357 icode = optab_handler (ctrap_optab, mode);
6358 if (icode == CODE_FOR_nothing)
6359 return 0;
6360
6361 /* Some targets only accept a zero trap code. */
6362 if (!insn_operand_matches (icode, 3, tcode))
6363 return 0;
6364
6365 do_pending_stack_adjust ();
6366 start_sequence ();
6367 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6368 &trap_rtx, &mode);
6369 if (!trap_rtx)
6370 insn = NULL_RTX;
6371 else
6372 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6373 tcode);
6374
6375 /* If that failed, then give up. */
6376 if (insn == 0)
6377 {
6378 end_sequence ();
6379 return 0;
6380 }
6381
6382 emit_insn (insn);
6383 insn = get_insns ();
6384 end_sequence ();
6385 return insn;
6386 }
6387
6388 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6389 or unsigned operation code. */
6390
6391 static enum rtx_code
6392 get_rtx_code (enum tree_code tcode, bool unsignedp)
6393 {
6394 enum rtx_code code;
6395 switch (tcode)
6396 {
6397 case EQ_EXPR:
6398 code = EQ;
6399 break;
6400 case NE_EXPR:
6401 code = NE;
6402 break;
6403 case LT_EXPR:
6404 code = unsignedp ? LTU : LT;
6405 break;
6406 case LE_EXPR:
6407 code = unsignedp ? LEU : LE;
6408 break;
6409 case GT_EXPR:
6410 code = unsignedp ? GTU : GT;
6411 break;
6412 case GE_EXPR:
6413 code = unsignedp ? GEU : GE;
6414 break;
6415
6416 case UNORDERED_EXPR:
6417 code = UNORDERED;
6418 break;
6419 case ORDERED_EXPR:
6420 code = ORDERED;
6421 break;
6422 case UNLT_EXPR:
6423 code = UNLT;
6424 break;
6425 case UNLE_EXPR:
6426 code = UNLE;
6427 break;
6428 case UNGT_EXPR:
6429 code = UNGT;
6430 break;
6431 case UNGE_EXPR:
6432 code = UNGE;
6433 break;
6434 case UNEQ_EXPR:
6435 code = UNEQ;
6436 break;
6437 case LTGT_EXPR:
6438 code = LTGT;
6439 break;
6440
6441 default:
6442 gcc_unreachable ();
6443 }
6444 return code;
6445 }
6446
6447 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6448 unsigned operators. Do not generate compare instruction. */
6449
6450 static rtx
6451 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6452 bool unsignedp, enum insn_code icode)
6453 {
6454 struct expand_operand ops[2];
6455 rtx rtx_op0, rtx_op1;
6456 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6457
6458 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6459
6460 /* Expand operands. */
6461 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6462 EXPAND_STACK_PARM);
6463 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6464 EXPAND_STACK_PARM);
6465
6466 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6467 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6468 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6469 gcc_unreachable ();
6470 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6471 }
6472
6473 /* Return true if VEC_PERM_EXPR can be expanded using SIMD extensions
6474 of the CPU. SEL may be NULL, which stands for an unknown constant. */
6475
6476 bool
6477 can_vec_perm_p (enum machine_mode mode, bool variable,
6478 const unsigned char *sel)
6479 {
6480 enum machine_mode qimode;
6481
6482 /* If the target doesn't implement a vector mode for the vector type,
6483 then no operations are supported. */
6484 if (!VECTOR_MODE_P (mode))
6485 return false;
6486
6487 if (!variable)
6488 {
6489 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6490 && (sel == NULL
6491 || targetm.vectorize.vec_perm_const_ok == NULL
6492 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6493 return true;
6494 }
6495
6496 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6497 return true;
6498
6499 /* We allow fallback to a QI vector mode, and adjust the mask. */
6500 if (GET_MODE_INNER (mode) == QImode)
6501 return false;
6502 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6503 if (!VECTOR_MODE_P (qimode))
6504 return false;
6505
6506 /* ??? For completeness, we ought to check the QImode version of
6507 vec_perm_const_optab. But all users of this implicit lowering
6508 feature implement the variable vec_perm_optab. */
6509 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6510 return false;
6511
6512 /* In order to support the lowering of variable permutations,
6513 we need to support shifts and adds. */
6514 if (variable)
6515 {
6516 if (GET_MODE_UNIT_SIZE (mode) > 2
6517 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6518 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6519 return false;
6520 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6521 return false;
6522 }
6523
6524 return true;
6525 }
6526
6527 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6528
6529 static rtx
6530 expand_vec_perm_1 (enum insn_code icode, rtx target,
6531 rtx v0, rtx v1, rtx sel)
6532 {
6533 enum machine_mode tmode = GET_MODE (target);
6534 enum machine_mode smode = GET_MODE (sel);
6535 struct expand_operand ops[4];
6536
6537 create_output_operand (&ops[0], target, tmode);
6538 create_input_operand (&ops[3], sel, smode);
6539
6540 /* Make an effort to preserve v0 == v1. The target expander is able to
6541 rely on this to determine if we're permuting a single input operand. */
6542 if (rtx_equal_p (v0, v1))
6543 {
6544 if (!insn_operand_matches (icode, 1, v0))
6545 v0 = force_reg (tmode, v0);
6546 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6547 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6548
6549 create_fixed_operand (&ops[1], v0);
6550 create_fixed_operand (&ops[2], v0);
6551 }
6552 else
6553 {
6554 create_input_operand (&ops[1], v0, tmode);
6555 create_input_operand (&ops[2], v1, tmode);
6556 }
6557
6558 if (maybe_expand_insn (icode, 4, ops))
6559 return ops[0].value;
6560 return NULL_RTX;
6561 }
6562
6563 /* Generate instructions for vec_perm optab given its mode
6564 and three operands. */
6565
6566 rtx
6567 expand_vec_perm (enum machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6568 {
6569 enum insn_code icode;
6570 enum machine_mode qimode;
6571 unsigned int i, w, e, u;
6572 rtx tmp, sel_qi = NULL;
6573 rtvec vec;
6574
6575 if (!target || GET_MODE (target) != mode)
6576 target = gen_reg_rtx (mode);
6577
6578 w = GET_MODE_SIZE (mode);
6579 e = GET_MODE_NUNITS (mode);
6580 u = GET_MODE_UNIT_SIZE (mode);
6581
6582 /* Set QIMODE to a different vector mode with byte elements.
6583 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6584 qimode = VOIDmode;
6585 if (GET_MODE_INNER (mode) != QImode)
6586 {
6587 qimode = mode_for_vector (QImode, w);
6588 if (!VECTOR_MODE_P (qimode))
6589 qimode = VOIDmode;
6590 }
6591
6592 /* If the input is a constant, expand it specially. */
6593 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6594 if (GET_CODE (sel) == CONST_VECTOR)
6595 {
6596 icode = direct_optab_handler (vec_perm_const_optab, mode);
6597 if (icode != CODE_FOR_nothing)
6598 {
6599 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6600 if (tmp)
6601 return tmp;
6602 }
6603
6604 /* Fall back to a constant byte-based permutation. */
6605 if (qimode != VOIDmode)
6606 {
6607 vec = rtvec_alloc (w);
6608 for (i = 0; i < e; ++i)
6609 {
6610 unsigned int j, this_e;
6611
6612 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6613 this_e &= 2 * e - 1;
6614 this_e *= u;
6615
6616 for (j = 0; j < u; ++j)
6617 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6618 }
6619 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6620
6621 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6622 if (icode != CODE_FOR_nothing)
6623 {
6624 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6625 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6626 gen_lowpart (qimode, v1), sel_qi);
6627 if (tmp)
6628 return gen_lowpart (mode, tmp);
6629 }
6630 }
6631 }
6632
6633 /* Otherwise expand as a fully variable permuation. */
6634 icode = direct_optab_handler (vec_perm_optab, mode);
6635 if (icode != CODE_FOR_nothing)
6636 {
6637 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6638 if (tmp)
6639 return tmp;
6640 }
6641
6642 /* As a special case to aid several targets, lower the element-based
6643 permutation to a byte-based permutation and try again. */
6644 if (qimode == VOIDmode)
6645 return NULL_RTX;
6646 icode = direct_optab_handler (vec_perm_optab, qimode);
6647 if (icode == CODE_FOR_nothing)
6648 return NULL_RTX;
6649
6650 if (sel_qi == NULL)
6651 {
6652 /* Multiply each element by its byte size. */
6653 enum machine_mode selmode = GET_MODE (sel);
6654 if (u == 2)
6655 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6656 sel, 0, OPTAB_DIRECT);
6657 else
6658 sel = expand_simple_binop (selmode, ASHIFT, sel,
6659 GEN_INT (exact_log2 (u)),
6660 sel, 0, OPTAB_DIRECT);
6661 gcc_assert (sel != NULL);
6662
6663 /* Broadcast the low byte each element into each of its bytes. */
6664 vec = rtvec_alloc (w);
6665 for (i = 0; i < w; ++i)
6666 {
6667 int this_e = i / u * u;
6668 if (BYTES_BIG_ENDIAN)
6669 this_e += u - 1;
6670 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6671 }
6672 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6673 sel = gen_lowpart (qimode, sel);
6674 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6675 gcc_assert (sel != NULL);
6676
6677 /* Add the byte offset to each byte element. */
6678 /* Note that the definition of the indicies here is memory ordering,
6679 so there should be no difference between big and little endian. */
6680 vec = rtvec_alloc (w);
6681 for (i = 0; i < w; ++i)
6682 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6683 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6684 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6685 sel, 0, OPTAB_DIRECT);
6686 gcc_assert (sel_qi != NULL);
6687 }
6688
6689 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6690 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6691 gen_lowpart (qimode, v1), sel_qi);
6692 if (tmp)
6693 tmp = gen_lowpart (mode, tmp);
6694 return tmp;
6695 }
6696
6697 /* Return insn code for a conditional operator with a comparison in
6698 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6699
6700 static inline enum insn_code
6701 get_vcond_icode (enum machine_mode vmode, enum machine_mode cmode, bool uns)
6702 {
6703 enum insn_code icode = CODE_FOR_nothing;
6704 if (uns)
6705 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6706 else
6707 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6708 return icode;
6709 }
6710
6711 /* Return TRUE iff, appropriate vector insns are available
6712 for vector cond expr with vector type VALUE_TYPE and a comparison
6713 with operand vector types in CMP_OP_TYPE. */
6714
6715 bool
6716 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6717 {
6718 enum machine_mode value_mode = TYPE_MODE (value_type);
6719 enum machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6720 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6721 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6722 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6723 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6724 return false;
6725 return true;
6726 }
6727
6728 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6729 three operands. */
6730
6731 rtx
6732 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6733 rtx target)
6734 {
6735 struct expand_operand ops[6];
6736 enum insn_code icode;
6737 rtx comparison, rtx_op1, rtx_op2;
6738 enum machine_mode mode = TYPE_MODE (vec_cond_type);
6739 enum machine_mode cmp_op_mode;
6740 bool unsignedp;
6741 tree op0a, op0b;
6742 enum tree_code tcode;
6743
6744 if (COMPARISON_CLASS_P (op0))
6745 {
6746 op0a = TREE_OPERAND (op0, 0);
6747 op0b = TREE_OPERAND (op0, 1);
6748 tcode = TREE_CODE (op0);
6749 }
6750 else
6751 {
6752 /* Fake op0 < 0. */
6753 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6754 op0a = op0;
6755 op0b = build_zero_cst (TREE_TYPE (op0));
6756 tcode = LT_EXPR;
6757 }
6758 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6759 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6760
6761
6762 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6763 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6764
6765 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6766 if (icode == CODE_FOR_nothing)
6767 return 0;
6768
6769 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6770 rtx_op1 = expand_normal (op1);
6771 rtx_op2 = expand_normal (op2);
6772
6773 create_output_operand (&ops[0], target, mode);
6774 create_input_operand (&ops[1], rtx_op1, mode);
6775 create_input_operand (&ops[2], rtx_op2, mode);
6776 create_fixed_operand (&ops[3], comparison);
6777 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6778 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6779 expand_insn (icode, 6, ops);
6780 return ops[0].value;
6781 }
6782
6783 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6784 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6785 2 for even/odd widening, and 3 for hi/lo widening. */
6786
6787 int
6788 can_mult_highpart_p (enum machine_mode mode, bool uns_p)
6789 {
6790 optab op;
6791 unsigned char *sel;
6792 unsigned i, nunits;
6793
6794 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6795 if (optab_handler (op, mode) != CODE_FOR_nothing)
6796 return 1;
6797
6798 /* If the mode is an integral vector, synth from widening operations. */
6799 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6800 return 0;
6801
6802 nunits = GET_MODE_NUNITS (mode);
6803 sel = XALLOCAVEC (unsigned char, nunits);
6804
6805 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6806 if (optab_handler (op, mode) != CODE_FOR_nothing)
6807 {
6808 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6809 if (optab_handler (op, mode) != CODE_FOR_nothing)
6810 {
6811 for (i = 0; i < nunits; ++i)
6812 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6813 if (can_vec_perm_p (mode, false, sel))
6814 return 2;
6815 }
6816 }
6817
6818 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6819 if (optab_handler (op, mode) != CODE_FOR_nothing)
6820 {
6821 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6822 if (optab_handler (op, mode) != CODE_FOR_nothing)
6823 {
6824 for (i = 0; i < nunits; ++i)
6825 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6826 if (can_vec_perm_p (mode, false, sel))
6827 return 3;
6828 }
6829 }
6830
6831 return 0;
6832 }
6833
6834 /* Expand a highpart multiply. */
6835
6836 rtx
6837 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
6838 rtx target, bool uns_p)
6839 {
6840 struct expand_operand eops[3];
6841 enum insn_code icode;
6842 int method, i, nunits;
6843 enum machine_mode wmode;
6844 rtx m1, m2, perm;
6845 optab tab1, tab2;
6846 rtvec v;
6847
6848 method = can_mult_highpart_p (mode, uns_p);
6849 switch (method)
6850 {
6851 case 0:
6852 return NULL_RTX;
6853 case 1:
6854 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6855 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6856 OPTAB_LIB_WIDEN);
6857 case 2:
6858 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6859 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6860 break;
6861 case 3:
6862 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6863 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6864 if (BYTES_BIG_ENDIAN)
6865 {
6866 optab t = tab1;
6867 tab1 = tab2;
6868 tab2 = t;
6869 }
6870 break;
6871 default:
6872 gcc_unreachable ();
6873 }
6874
6875 icode = optab_handler (tab1, mode);
6876 nunits = GET_MODE_NUNITS (mode);
6877 wmode = insn_data[icode].operand[0].mode;
6878 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6879 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6880
6881 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6882 create_input_operand (&eops[1], op0, mode);
6883 create_input_operand (&eops[2], op1, mode);
6884 expand_insn (icode, 3, eops);
6885 m1 = gen_lowpart (mode, eops[0].value);
6886
6887 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6888 create_input_operand (&eops[1], op0, mode);
6889 create_input_operand (&eops[2], op1, mode);
6890 expand_insn (optab_handler (tab2, mode), 3, eops);
6891 m2 = gen_lowpart (mode, eops[0].value);
6892
6893 v = rtvec_alloc (nunits);
6894 if (method == 2)
6895 {
6896 for (i = 0; i < nunits; ++i)
6897 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
6898 + ((i & 1) ? nunits : 0));
6899 }
6900 else
6901 {
6902 for (i = 0; i < nunits; ++i)
6903 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
6904 }
6905 perm = gen_rtx_CONST_VECTOR (mode, v);
6906
6907 return expand_vec_perm (mode, m1, m2, perm, target);
6908 }
6909 \f
6910 /* Return true if there is a compare_and_swap pattern. */
6911
6912 bool
6913 can_compare_and_swap_p (enum machine_mode mode, bool allow_libcall)
6914 {
6915 enum insn_code icode;
6916
6917 /* Check for __atomic_compare_and_swap. */
6918 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6919 if (icode != CODE_FOR_nothing)
6920 return true;
6921
6922 /* Check for __sync_compare_and_swap. */
6923 icode = optab_handler (sync_compare_and_swap_optab, mode);
6924 if (icode != CODE_FOR_nothing)
6925 return true;
6926 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
6927 return true;
6928
6929 /* No inline compare and swap. */
6930 return false;
6931 }
6932
6933 /* Return true if an atomic exchange can be performed. */
6934
6935 bool
6936 can_atomic_exchange_p (enum machine_mode mode, bool allow_libcall)
6937 {
6938 enum insn_code icode;
6939
6940 /* Check for __atomic_exchange. */
6941 icode = direct_optab_handler (atomic_exchange_optab, mode);
6942 if (icode != CODE_FOR_nothing)
6943 return true;
6944
6945 /* Don't check __sync_test_and_set, as on some platforms that
6946 has reduced functionality. Targets that really do support
6947 a proper exchange should simply be updated to the __atomics. */
6948
6949 return can_compare_and_swap_p (mode, allow_libcall);
6950 }
6951
6952
6953 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6954 pattern. */
6955
6956 static void
6957 find_cc_set (rtx x, const_rtx pat, void *data)
6958 {
6959 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
6960 && GET_CODE (pat) == SET)
6961 {
6962 rtx *p_cc_reg = (rtx *) data;
6963 gcc_assert (!*p_cc_reg);
6964 *p_cc_reg = x;
6965 }
6966 }
6967
6968 /* This is a helper function for the other atomic operations. This function
6969 emits a loop that contains SEQ that iterates until a compare-and-swap
6970 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6971 a set of instructions that takes a value from OLD_REG as an input and
6972 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6973 set to the current contents of MEM. After SEQ, a compare-and-swap will
6974 attempt to update MEM with NEW_REG. The function returns true when the
6975 loop was generated successfully. */
6976
6977 static bool
6978 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6979 {
6980 enum machine_mode mode = GET_MODE (mem);
6981 rtx label, cmp_reg, success, oldval;
6982
6983 /* The loop we want to generate looks like
6984
6985 cmp_reg = mem;
6986 label:
6987 old_reg = cmp_reg;
6988 seq;
6989 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6990 if (success)
6991 goto label;
6992
6993 Note that we only do the plain load from memory once. Subsequent
6994 iterations use the value loaded by the compare-and-swap pattern. */
6995
6996 label = gen_label_rtx ();
6997 cmp_reg = gen_reg_rtx (mode);
6998
6999 emit_move_insn (cmp_reg, mem);
7000 emit_label (label);
7001 emit_move_insn (old_reg, cmp_reg);
7002 if (seq)
7003 emit_insn (seq);
7004
7005 success = NULL_RTX;
7006 oldval = cmp_reg;
7007 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7008 new_reg, false, MEMMODEL_SEQ_CST,
7009 MEMMODEL_RELAXED))
7010 return false;
7011
7012 if (oldval != cmp_reg)
7013 emit_move_insn (cmp_reg, oldval);
7014
7015 /* Mark this jump predicted not taken. */
7016 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7017 GET_MODE (success), 1, label, 0);
7018 return true;
7019 }
7020
7021
7022 /* This function tries to emit an atomic_exchange intruction. VAL is written
7023 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7024 using TARGET if possible. */
7025
7026 static rtx
7027 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7028 {
7029 enum machine_mode mode = GET_MODE (mem);
7030 enum insn_code icode;
7031
7032 /* If the target supports the exchange directly, great. */
7033 icode = direct_optab_handler (atomic_exchange_optab, mode);
7034 if (icode != CODE_FOR_nothing)
7035 {
7036 struct expand_operand ops[4];
7037
7038 create_output_operand (&ops[0], target, mode);
7039 create_fixed_operand (&ops[1], mem);
7040 create_input_operand (&ops[2], val, mode);
7041 create_integer_operand (&ops[3], model);
7042 if (maybe_expand_insn (icode, 4, ops))
7043 return ops[0].value;
7044 }
7045
7046 return NULL_RTX;
7047 }
7048
7049 /* This function tries to implement an atomic exchange operation using
7050 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7051 The previous contents of *MEM are returned, using TARGET if possible.
7052 Since this instructionn is an acquire barrier only, stronger memory
7053 models may require additional barriers to be emitted. */
7054
7055 static rtx
7056 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7057 enum memmodel model)
7058 {
7059 enum machine_mode mode = GET_MODE (mem);
7060 enum insn_code icode;
7061 rtx last_insn = get_last_insn ();
7062
7063 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7064
7065 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7066 exists, and the memory model is stronger than acquire, add a release
7067 barrier before the instruction. */
7068
7069 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7070 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7071 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7072 expand_mem_thread_fence (model);
7073
7074 if (icode != CODE_FOR_nothing)
7075 {
7076 struct expand_operand ops[3];
7077 create_output_operand (&ops[0], target, mode);
7078 create_fixed_operand (&ops[1], mem);
7079 create_input_operand (&ops[2], val, mode);
7080 if (maybe_expand_insn (icode, 3, ops))
7081 return ops[0].value;
7082 }
7083
7084 /* If an external test-and-set libcall is provided, use that instead of
7085 any external compare-and-swap that we might get from the compare-and-
7086 swap-loop expansion later. */
7087 if (!can_compare_and_swap_p (mode, false))
7088 {
7089 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7090 if (libfunc != NULL)
7091 {
7092 rtx addr;
7093
7094 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7095 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7096 mode, 2, addr, ptr_mode,
7097 val, mode);
7098 }
7099 }
7100
7101 /* If the test_and_set can't be emitted, eliminate any barrier that might
7102 have been emitted. */
7103 delete_insns_since (last_insn);
7104 return NULL_RTX;
7105 }
7106
7107 /* This function tries to implement an atomic exchange operation using a
7108 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7109 *MEM are returned, using TARGET if possible. No memory model is required
7110 since a compare_and_swap loop is seq-cst. */
7111
7112 static rtx
7113 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7114 {
7115 enum machine_mode mode = GET_MODE (mem);
7116
7117 if (can_compare_and_swap_p (mode, true))
7118 {
7119 if (!target || !register_operand (target, mode))
7120 target = gen_reg_rtx (mode);
7121 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7122 return target;
7123 }
7124
7125 return NULL_RTX;
7126 }
7127
7128 /* This function tries to implement an atomic test-and-set operation
7129 using the atomic_test_and_set instruction pattern. A boolean value
7130 is returned from the operation, using TARGET if possible. */
7131
7132 #ifndef HAVE_atomic_test_and_set
7133 #define HAVE_atomic_test_and_set 0
7134 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7135 #endif
7136
7137 static rtx
7138 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7139 {
7140 enum machine_mode pat_bool_mode;
7141 struct expand_operand ops[3];
7142
7143 if (!HAVE_atomic_test_and_set)
7144 return NULL_RTX;
7145
7146 /* While we always get QImode from __atomic_test_and_set, we get
7147 other memory modes from __sync_lock_test_and_set. Note that we
7148 use no endian adjustment here. This matches the 4.6 behavior
7149 in the Sparc backend. */
7150 gcc_checking_assert
7151 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7152 if (GET_MODE (mem) != QImode)
7153 mem = adjust_address_nv (mem, QImode, 0);
7154
7155 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7156 create_output_operand (&ops[0], target, pat_bool_mode);
7157 create_fixed_operand (&ops[1], mem);
7158 create_integer_operand (&ops[2], model);
7159
7160 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7161 return ops[0].value;
7162 return NULL_RTX;
7163 }
7164
7165 /* This function expands the legacy _sync_lock test_and_set operation which is
7166 generally an atomic exchange. Some limited targets only allow the
7167 constant 1 to be stored. This is an ACQUIRE operation.
7168
7169 TARGET is an optional place to stick the return value.
7170 MEM is where VAL is stored. */
7171
7172 rtx
7173 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7174 {
7175 rtx ret;
7176
7177 /* Try an atomic_exchange first. */
7178 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7179 if (ret)
7180 return ret;
7181
7182 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7183 if (ret)
7184 return ret;
7185
7186 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7187 if (ret)
7188 return ret;
7189
7190 /* If there are no other options, try atomic_test_and_set if the value
7191 being stored is 1. */
7192 if (val == const1_rtx)
7193 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7194
7195 return ret;
7196 }
7197
7198 /* This function expands the atomic test_and_set operation:
7199 atomically store a boolean TRUE into MEM and return the previous value.
7200
7201 MEMMODEL is the memory model variant to use.
7202 TARGET is an optional place to stick the return value. */
7203
7204 rtx
7205 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7206 {
7207 enum machine_mode mode = GET_MODE (mem);
7208 rtx ret, trueval, subtarget;
7209
7210 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7211 if (ret)
7212 return ret;
7213
7214 /* Be binary compatible with non-default settings of trueval, and different
7215 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7216 another only has atomic-exchange. */
7217 if (targetm.atomic_test_and_set_trueval == 1)
7218 {
7219 trueval = const1_rtx;
7220 subtarget = target ? target : gen_reg_rtx (mode);
7221 }
7222 else
7223 {
7224 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7225 subtarget = gen_reg_rtx (mode);
7226 }
7227
7228 /* Try the atomic-exchange optab... */
7229 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7230
7231 /* ... then an atomic-compare-and-swap loop ... */
7232 if (!ret)
7233 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7234
7235 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7236 if (!ret)
7237 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7238
7239 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7240 things with the value 1. Thus we try again without trueval. */
7241 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7242 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7243
7244 /* Failing all else, assume a single threaded environment and simply
7245 perform the operation. */
7246 if (!ret)
7247 {
7248 emit_move_insn (subtarget, mem);
7249 emit_move_insn (mem, trueval);
7250 ret = subtarget;
7251 }
7252
7253 /* Recall that have to return a boolean value; rectify if trueval
7254 is not exactly one. */
7255 if (targetm.atomic_test_and_set_trueval != 1)
7256 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7257
7258 return ret;
7259 }
7260
7261 /* This function expands the atomic exchange operation:
7262 atomically store VAL in MEM and return the previous value in MEM.
7263
7264 MEMMODEL is the memory model variant to use.
7265 TARGET is an optional place to stick the return value. */
7266
7267 rtx
7268 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7269 {
7270 rtx ret;
7271
7272 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7273
7274 /* Next try a compare-and-swap loop for the exchange. */
7275 if (!ret)
7276 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7277
7278 return ret;
7279 }
7280
7281 /* This function expands the atomic compare exchange operation:
7282
7283 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7284 *PTARGET_OVAL is an optional place to store the old value from memory.
7285 Both target parameters may be NULL to indicate that we do not care about
7286 that return value. Both target parameters are updated on success to
7287 the actual location of the corresponding result.
7288
7289 MEMMODEL is the memory model variant to use.
7290
7291 The return value of the function is true for success. */
7292
7293 bool
7294 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7295 rtx mem, rtx expected, rtx desired,
7296 bool is_weak, enum memmodel succ_model,
7297 enum memmodel fail_model)
7298 {
7299 enum machine_mode mode = GET_MODE (mem);
7300 struct expand_operand ops[8];
7301 enum insn_code icode;
7302 rtx target_oval, target_bool = NULL_RTX;
7303 rtx libfunc;
7304
7305 /* Load expected into a register for the compare and swap. */
7306 if (MEM_P (expected))
7307 expected = copy_to_reg (expected);
7308
7309 /* Make sure we always have some place to put the return oldval.
7310 Further, make sure that place is distinct from the input expected,
7311 just in case we need that path down below. */
7312 if (ptarget_oval == NULL
7313 || (target_oval = *ptarget_oval) == NULL
7314 || reg_overlap_mentioned_p (expected, target_oval))
7315 target_oval = gen_reg_rtx (mode);
7316
7317 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7318 if (icode != CODE_FOR_nothing)
7319 {
7320 enum machine_mode bool_mode = insn_data[icode].operand[0].mode;
7321
7322 /* Make sure we always have a place for the bool operand. */
7323 if (ptarget_bool == NULL
7324 || (target_bool = *ptarget_bool) == NULL
7325 || GET_MODE (target_bool) != bool_mode)
7326 target_bool = gen_reg_rtx (bool_mode);
7327
7328 /* Emit the compare_and_swap. */
7329 create_output_operand (&ops[0], target_bool, bool_mode);
7330 create_output_operand (&ops[1], target_oval, mode);
7331 create_fixed_operand (&ops[2], mem);
7332 create_input_operand (&ops[3], expected, mode);
7333 create_input_operand (&ops[4], desired, mode);
7334 create_integer_operand (&ops[5], is_weak);
7335 create_integer_operand (&ops[6], succ_model);
7336 create_integer_operand (&ops[7], fail_model);
7337 expand_insn (icode, 8, ops);
7338
7339 /* Return success/failure. */
7340 target_bool = ops[0].value;
7341 target_oval = ops[1].value;
7342 goto success;
7343 }
7344
7345 /* Otherwise fall back to the original __sync_val_compare_and_swap
7346 which is always seq-cst. */
7347 icode = optab_handler (sync_compare_and_swap_optab, mode);
7348 if (icode != CODE_FOR_nothing)
7349 {
7350 rtx cc_reg;
7351
7352 create_output_operand (&ops[0], target_oval, mode);
7353 create_fixed_operand (&ops[1], mem);
7354 create_input_operand (&ops[2], expected, mode);
7355 create_input_operand (&ops[3], desired, mode);
7356 if (!maybe_expand_insn (icode, 4, ops))
7357 return false;
7358
7359 target_oval = ops[0].value;
7360
7361 /* If the caller isn't interested in the boolean return value,
7362 skip the computation of it. */
7363 if (ptarget_bool == NULL)
7364 goto success;
7365
7366 /* Otherwise, work out if the compare-and-swap succeeded. */
7367 cc_reg = NULL_RTX;
7368 if (have_insn_for (COMPARE, CCmode))
7369 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7370 if (cc_reg)
7371 {
7372 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7373 const0_rtx, VOIDmode, 0, 1);
7374 goto success;
7375 }
7376 goto success_bool_from_val;
7377 }
7378
7379 /* Also check for library support for __sync_val_compare_and_swap. */
7380 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7381 if (libfunc != NULL)
7382 {
7383 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7384 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7385 mode, 3, addr, ptr_mode,
7386 expected, mode, desired, mode);
7387
7388 /* Compute the boolean return value only if requested. */
7389 if (ptarget_bool)
7390 goto success_bool_from_val;
7391 else
7392 goto success;
7393 }
7394
7395 /* Failure. */
7396 return false;
7397
7398 success_bool_from_val:
7399 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7400 expected, VOIDmode, 1, 1);
7401 success:
7402 /* Make sure that the oval output winds up where the caller asked. */
7403 if (ptarget_oval)
7404 *ptarget_oval = target_oval;
7405 if (ptarget_bool)
7406 *ptarget_bool = target_bool;
7407 return true;
7408 }
7409
7410 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7411
7412 static void
7413 expand_asm_memory_barrier (void)
7414 {
7415 rtx asm_op, clob;
7416
7417 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7418 rtvec_alloc (0), rtvec_alloc (0),
7419 rtvec_alloc (0), UNKNOWN_LOCATION);
7420 MEM_VOLATILE_P (asm_op) = 1;
7421
7422 clob = gen_rtx_SCRATCH (VOIDmode);
7423 clob = gen_rtx_MEM (BLKmode, clob);
7424 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7425
7426 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7427 }
7428
7429 /* This routine will either emit the mem_thread_fence pattern or issue a
7430 sync_synchronize to generate a fence for memory model MEMMODEL. */
7431
7432 #ifndef HAVE_mem_thread_fence
7433 # define HAVE_mem_thread_fence 0
7434 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7435 #endif
7436 #ifndef HAVE_memory_barrier
7437 # define HAVE_memory_barrier 0
7438 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7439 #endif
7440
7441 void
7442 expand_mem_thread_fence (enum memmodel model)
7443 {
7444 if (HAVE_mem_thread_fence)
7445 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7446 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7447 {
7448 if (HAVE_memory_barrier)
7449 emit_insn (gen_memory_barrier ());
7450 else if (synchronize_libfunc != NULL_RTX)
7451 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7452 else
7453 expand_asm_memory_barrier ();
7454 }
7455 }
7456
7457 /* This routine will either emit the mem_signal_fence pattern or issue a
7458 sync_synchronize to generate a fence for memory model MEMMODEL. */
7459
7460 #ifndef HAVE_mem_signal_fence
7461 # define HAVE_mem_signal_fence 0
7462 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7463 #endif
7464
7465 void
7466 expand_mem_signal_fence (enum memmodel model)
7467 {
7468 if (HAVE_mem_signal_fence)
7469 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7470 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7471 {
7472 /* By default targets are coherent between a thread and the signal
7473 handler running on the same thread. Thus this really becomes a
7474 compiler barrier, in that stores must not be sunk past
7475 (or raised above) a given point. */
7476 expand_asm_memory_barrier ();
7477 }
7478 }
7479
7480 /* This function expands the atomic load operation:
7481 return the atomically loaded value in MEM.
7482
7483 MEMMODEL is the memory model variant to use.
7484 TARGET is an option place to stick the return value. */
7485
7486 rtx
7487 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7488 {
7489 enum machine_mode mode = GET_MODE (mem);
7490 enum insn_code icode;
7491
7492 /* If the target supports the load directly, great. */
7493 icode = direct_optab_handler (atomic_load_optab, mode);
7494 if (icode != CODE_FOR_nothing)
7495 {
7496 struct expand_operand ops[3];
7497
7498 create_output_operand (&ops[0], target, mode);
7499 create_fixed_operand (&ops[1], mem);
7500 create_integer_operand (&ops[2], model);
7501 if (maybe_expand_insn (icode, 3, ops))
7502 return ops[0].value;
7503 }
7504
7505 /* If the size of the object is greater than word size on this target,
7506 then we assume that a load will not be atomic. */
7507 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7508 {
7509 /* Issue val = compare_and_swap (mem, 0, 0).
7510 This may cause the occasional harmless store of 0 when the value is
7511 already 0, but it seems to be OK according to the standards guys. */
7512 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7513 const0_rtx, false, model, model))
7514 return target;
7515 else
7516 /* Otherwise there is no atomic load, leave the library call. */
7517 return NULL_RTX;
7518 }
7519
7520 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7521 if (!target || target == const0_rtx)
7522 target = gen_reg_rtx (mode);
7523
7524 /* For SEQ_CST, emit a barrier before the load. */
7525 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7526 expand_mem_thread_fence (model);
7527
7528 emit_move_insn (target, mem);
7529
7530 /* Emit the appropriate barrier after the load. */
7531 expand_mem_thread_fence (model);
7532
7533 return target;
7534 }
7535
7536 /* This function expands the atomic store operation:
7537 Atomically store VAL in MEM.
7538 MEMMODEL is the memory model variant to use.
7539 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7540 function returns const0_rtx if a pattern was emitted. */
7541
7542 rtx
7543 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7544 {
7545 enum machine_mode mode = GET_MODE (mem);
7546 enum insn_code icode;
7547 struct expand_operand ops[3];
7548
7549 /* If the target supports the store directly, great. */
7550 icode = direct_optab_handler (atomic_store_optab, mode);
7551 if (icode != CODE_FOR_nothing)
7552 {
7553 create_fixed_operand (&ops[0], mem);
7554 create_input_operand (&ops[1], val, mode);
7555 create_integer_operand (&ops[2], model);
7556 if (maybe_expand_insn (icode, 3, ops))
7557 return const0_rtx;
7558 }
7559
7560 /* If using __sync_lock_release is a viable alternative, try it. */
7561 if (use_release)
7562 {
7563 icode = direct_optab_handler (sync_lock_release_optab, mode);
7564 if (icode != CODE_FOR_nothing)
7565 {
7566 create_fixed_operand (&ops[0], mem);
7567 create_input_operand (&ops[1], const0_rtx, mode);
7568 if (maybe_expand_insn (icode, 2, ops))
7569 {
7570 /* lock_release is only a release barrier. */
7571 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7572 expand_mem_thread_fence (model);
7573 return const0_rtx;
7574 }
7575 }
7576 }
7577
7578 /* If the size of the object is greater than word size on this target,
7579 a default store will not be atomic, Try a mem_exchange and throw away
7580 the result. If that doesn't work, don't do anything. */
7581 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7582 {
7583 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7584 if (!target)
7585 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7586 if (target)
7587 return const0_rtx;
7588 else
7589 return NULL_RTX;
7590 }
7591
7592 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7593 expand_mem_thread_fence (model);
7594
7595 emit_move_insn (mem, val);
7596
7597 /* For SEQ_CST, also emit a barrier after the store. */
7598 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7599 expand_mem_thread_fence (model);
7600
7601 return const0_rtx;
7602 }
7603
7604
7605 /* Structure containing the pointers and values required to process the
7606 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7607
7608 struct atomic_op_functions
7609 {
7610 direct_optab mem_fetch_before;
7611 direct_optab mem_fetch_after;
7612 direct_optab mem_no_result;
7613 optab fetch_before;
7614 optab fetch_after;
7615 direct_optab no_result;
7616 enum rtx_code reverse_code;
7617 };
7618
7619
7620 /* Fill in structure pointed to by OP with the various optab entries for an
7621 operation of type CODE. */
7622
7623 static void
7624 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7625 {
7626 gcc_assert (op!= NULL);
7627
7628 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7629 in the source code during compilation, and the optab entries are not
7630 computable until runtime. Fill in the values at runtime. */
7631 switch (code)
7632 {
7633 case PLUS:
7634 op->mem_fetch_before = atomic_fetch_add_optab;
7635 op->mem_fetch_after = atomic_add_fetch_optab;
7636 op->mem_no_result = atomic_add_optab;
7637 op->fetch_before = sync_old_add_optab;
7638 op->fetch_after = sync_new_add_optab;
7639 op->no_result = sync_add_optab;
7640 op->reverse_code = MINUS;
7641 break;
7642 case MINUS:
7643 op->mem_fetch_before = atomic_fetch_sub_optab;
7644 op->mem_fetch_after = atomic_sub_fetch_optab;
7645 op->mem_no_result = atomic_sub_optab;
7646 op->fetch_before = sync_old_sub_optab;
7647 op->fetch_after = sync_new_sub_optab;
7648 op->no_result = sync_sub_optab;
7649 op->reverse_code = PLUS;
7650 break;
7651 case XOR:
7652 op->mem_fetch_before = atomic_fetch_xor_optab;
7653 op->mem_fetch_after = atomic_xor_fetch_optab;
7654 op->mem_no_result = atomic_xor_optab;
7655 op->fetch_before = sync_old_xor_optab;
7656 op->fetch_after = sync_new_xor_optab;
7657 op->no_result = sync_xor_optab;
7658 op->reverse_code = XOR;
7659 break;
7660 case AND:
7661 op->mem_fetch_before = atomic_fetch_and_optab;
7662 op->mem_fetch_after = atomic_and_fetch_optab;
7663 op->mem_no_result = atomic_and_optab;
7664 op->fetch_before = sync_old_and_optab;
7665 op->fetch_after = sync_new_and_optab;
7666 op->no_result = sync_and_optab;
7667 op->reverse_code = UNKNOWN;
7668 break;
7669 case IOR:
7670 op->mem_fetch_before = atomic_fetch_or_optab;
7671 op->mem_fetch_after = atomic_or_fetch_optab;
7672 op->mem_no_result = atomic_or_optab;
7673 op->fetch_before = sync_old_ior_optab;
7674 op->fetch_after = sync_new_ior_optab;
7675 op->no_result = sync_ior_optab;
7676 op->reverse_code = UNKNOWN;
7677 break;
7678 case NOT:
7679 op->mem_fetch_before = atomic_fetch_nand_optab;
7680 op->mem_fetch_after = atomic_nand_fetch_optab;
7681 op->mem_no_result = atomic_nand_optab;
7682 op->fetch_before = sync_old_nand_optab;
7683 op->fetch_after = sync_new_nand_optab;
7684 op->no_result = sync_nand_optab;
7685 op->reverse_code = UNKNOWN;
7686 break;
7687 default:
7688 gcc_unreachable ();
7689 }
7690 }
7691
7692 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7693 using memory order MODEL. If AFTER is true the operation needs to return
7694 the value of *MEM after the operation, otherwise the previous value.
7695 TARGET is an optional place to place the result. The result is unused if
7696 it is const0_rtx.
7697 Return the result if there is a better sequence, otherwise NULL_RTX. */
7698
7699 static rtx
7700 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7701 enum memmodel model, bool after)
7702 {
7703 /* If the value is prefetched, or not used, it may be possible to replace
7704 the sequence with a native exchange operation. */
7705 if (!after || target == const0_rtx)
7706 {
7707 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7708 if (code == AND && val == const0_rtx)
7709 {
7710 if (target == const0_rtx)
7711 target = gen_reg_rtx (GET_MODE (mem));
7712 return maybe_emit_atomic_exchange (target, mem, val, model);
7713 }
7714
7715 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7716 if (code == IOR && val == constm1_rtx)
7717 {
7718 if (target == const0_rtx)
7719 target = gen_reg_rtx (GET_MODE (mem));
7720 return maybe_emit_atomic_exchange (target, mem, val, model);
7721 }
7722 }
7723
7724 return NULL_RTX;
7725 }
7726
7727 /* Try to emit an instruction for a specific operation varaition.
7728 OPTAB contains the OP functions.
7729 TARGET is an optional place to return the result. const0_rtx means unused.
7730 MEM is the memory location to operate on.
7731 VAL is the value to use in the operation.
7732 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7733 MODEL is the memory model, if used.
7734 AFTER is true if the returned result is the value after the operation. */
7735
7736 static rtx
7737 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7738 rtx val, bool use_memmodel, enum memmodel model, bool after)
7739 {
7740 enum machine_mode mode = GET_MODE (mem);
7741 struct expand_operand ops[4];
7742 enum insn_code icode;
7743 int op_counter = 0;
7744 int num_ops;
7745
7746 /* Check to see if there is a result returned. */
7747 if (target == const0_rtx)
7748 {
7749 if (use_memmodel)
7750 {
7751 icode = direct_optab_handler (optab->mem_no_result, mode);
7752 create_integer_operand (&ops[2], model);
7753 num_ops = 3;
7754 }
7755 else
7756 {
7757 icode = direct_optab_handler (optab->no_result, mode);
7758 num_ops = 2;
7759 }
7760 }
7761 /* Otherwise, we need to generate a result. */
7762 else
7763 {
7764 if (use_memmodel)
7765 {
7766 icode = direct_optab_handler (after ? optab->mem_fetch_after
7767 : optab->mem_fetch_before, mode);
7768 create_integer_operand (&ops[3], model);
7769 num_ops = 4;
7770 }
7771 else
7772 {
7773 icode = optab_handler (after ? optab->fetch_after
7774 : optab->fetch_before, mode);
7775 num_ops = 3;
7776 }
7777 create_output_operand (&ops[op_counter++], target, mode);
7778 }
7779 if (icode == CODE_FOR_nothing)
7780 return NULL_RTX;
7781
7782 create_fixed_operand (&ops[op_counter++], mem);
7783 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7784 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7785
7786 if (maybe_expand_insn (icode, num_ops, ops))
7787 return (target == const0_rtx ? const0_rtx : ops[0].value);
7788
7789 return NULL_RTX;
7790 }
7791
7792
7793 /* This function expands an atomic fetch_OP or OP_fetch operation:
7794 TARGET is an option place to stick the return value. const0_rtx indicates
7795 the result is unused.
7796 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7797 CODE is the operation being performed (OP)
7798 MEMMODEL is the memory model variant to use.
7799 AFTER is true to return the result of the operation (OP_fetch).
7800 AFTER is false to return the value before the operation (fetch_OP).
7801
7802 This function will *only* generate instructions if there is a direct
7803 optab. No compare and swap loops or libcalls will be generated. */
7804
7805 static rtx
7806 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7807 enum rtx_code code, enum memmodel model,
7808 bool after)
7809 {
7810 enum machine_mode mode = GET_MODE (mem);
7811 struct atomic_op_functions optab;
7812 rtx result;
7813 bool unused_result = (target == const0_rtx);
7814
7815 get_atomic_op_for_code (&optab, code);
7816
7817 /* Check to see if there are any better instructions. */
7818 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7819 if (result)
7820 return result;
7821
7822 /* Check for the case where the result isn't used and try those patterns. */
7823 if (unused_result)
7824 {
7825 /* Try the memory model variant first. */
7826 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7827 if (result)
7828 return result;
7829
7830 /* Next try the old style withuot a memory model. */
7831 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7832 if (result)
7833 return result;
7834
7835 /* There is no no-result pattern, so try patterns with a result. */
7836 target = NULL_RTX;
7837 }
7838
7839 /* Try the __atomic version. */
7840 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7841 if (result)
7842 return result;
7843
7844 /* Try the older __sync version. */
7845 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
7846 if (result)
7847 return result;
7848
7849 /* If the fetch value can be calculated from the other variation of fetch,
7850 try that operation. */
7851 if (after || unused_result || optab.reverse_code != UNKNOWN)
7852 {
7853 /* Try the __atomic version, then the older __sync version. */
7854 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
7855 if (!result)
7856 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
7857
7858 if (result)
7859 {
7860 /* If the result isn't used, no need to do compensation code. */
7861 if (unused_result)
7862 return result;
7863
7864 /* Issue compensation code. Fetch_after == fetch_before OP val.
7865 Fetch_before == after REVERSE_OP val. */
7866 if (!after)
7867 code = optab.reverse_code;
7868 if (code == NOT)
7869 {
7870 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
7871 true, OPTAB_LIB_WIDEN);
7872 result = expand_simple_unop (mode, NOT, result, target, true);
7873 }
7874 else
7875 result = expand_simple_binop (mode, code, result, val, target,
7876 true, OPTAB_LIB_WIDEN);
7877 return result;
7878 }
7879 }
7880
7881 /* No direct opcode can be generated. */
7882 return NULL_RTX;
7883 }
7884
7885
7886
7887 /* This function expands an atomic fetch_OP or OP_fetch operation:
7888 TARGET is an option place to stick the return value. const0_rtx indicates
7889 the result is unused.
7890 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7891 CODE is the operation being performed (OP)
7892 MEMMODEL is the memory model variant to use.
7893 AFTER is true to return the result of the operation (OP_fetch).
7894 AFTER is false to return the value before the operation (fetch_OP). */
7895 rtx
7896 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7897 enum memmodel model, bool after)
7898 {
7899 enum machine_mode mode = GET_MODE (mem);
7900 rtx result;
7901 bool unused_result = (target == const0_rtx);
7902
7903 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
7904 after);
7905
7906 if (result)
7907 return result;
7908
7909 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7910 if (code == PLUS || code == MINUS)
7911 {
7912 rtx tmp;
7913 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
7914
7915 start_sequence ();
7916 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
7917 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
7918 model, after);
7919 if (result)
7920 {
7921 /* PLUS worked so emit the insns and return. */
7922 tmp = get_insns ();
7923 end_sequence ();
7924 emit_insn (tmp);
7925 return result;
7926 }
7927
7928 /* PLUS did not work, so throw away the negation code and continue. */
7929 end_sequence ();
7930 }
7931
7932 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7933 if (!can_compare_and_swap_p (mode, false))
7934 {
7935 rtx libfunc;
7936 bool fixup = false;
7937 enum rtx_code orig_code = code;
7938 struct atomic_op_functions optab;
7939
7940 get_atomic_op_for_code (&optab, code);
7941 libfunc = optab_libfunc (after ? optab.fetch_after
7942 : optab.fetch_before, mode);
7943 if (libfunc == NULL
7944 && (after || unused_result || optab.reverse_code != UNKNOWN))
7945 {
7946 fixup = true;
7947 if (!after)
7948 code = optab.reverse_code;
7949 libfunc = optab_libfunc (after ? optab.fetch_before
7950 : optab.fetch_after, mode);
7951 }
7952 if (libfunc != NULL)
7953 {
7954 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7955 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7956 2, addr, ptr_mode, val, mode);
7957
7958 if (!unused_result && fixup)
7959 result = expand_simple_binop (mode, code, result, val, target,
7960 true, OPTAB_LIB_WIDEN);
7961 return result;
7962 }
7963
7964 /* We need the original code for any further attempts. */
7965 code = orig_code;
7966 }
7967
7968 /* If nothing else has succeeded, default to a compare and swap loop. */
7969 if (can_compare_and_swap_p (mode, true))
7970 {
7971 rtx insn;
7972 rtx t0 = gen_reg_rtx (mode), t1;
7973
7974 start_sequence ();
7975
7976 /* If the result is used, get a register for it. */
7977 if (!unused_result)
7978 {
7979 if (!target || !register_operand (target, mode))
7980 target = gen_reg_rtx (mode);
7981 /* If fetch_before, copy the value now. */
7982 if (!after)
7983 emit_move_insn (target, t0);
7984 }
7985 else
7986 target = const0_rtx;
7987
7988 t1 = t0;
7989 if (code == NOT)
7990 {
7991 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7992 true, OPTAB_LIB_WIDEN);
7993 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7994 }
7995 else
7996 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7997 OPTAB_LIB_WIDEN);
7998
7999 /* For after, copy the value now. */
8000 if (!unused_result && after)
8001 emit_move_insn (target, t1);
8002 insn = get_insns ();
8003 end_sequence ();
8004
8005 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8006 return target;
8007 }
8008
8009 return NULL_RTX;
8010 }
8011 \f
8012 /* Return true if OPERAND is suitable for operand number OPNO of
8013 instruction ICODE. */
8014
8015 bool
8016 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8017 {
8018 return (!insn_data[(int) icode].operand[opno].predicate
8019 || (insn_data[(int) icode].operand[opno].predicate
8020 (operand, insn_data[(int) icode].operand[opno].mode)));
8021 }
8022 \f
8023 /* TARGET is a target of a multiword operation that we are going to
8024 implement as a series of word-mode operations. Return true if
8025 TARGET is suitable for this purpose. */
8026
8027 bool
8028 valid_multiword_target_p (rtx target)
8029 {
8030 enum machine_mode mode;
8031 int i;
8032
8033 mode = GET_MODE (target);
8034 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8035 if (!validate_subreg (word_mode, mode, target, i))
8036 return false;
8037 return true;
8038 }
8039
8040 /* Like maybe_legitimize_operand, but do not change the code of the
8041 current rtx value. */
8042
8043 static bool
8044 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8045 struct expand_operand *op)
8046 {
8047 /* See if the operand matches in its current form. */
8048 if (insn_operand_matches (icode, opno, op->value))
8049 return true;
8050
8051 /* If the operand is a memory whose address has no side effects,
8052 try forcing the address into a non-virtual pseudo register.
8053 The check for side effects is important because copy_to_mode_reg
8054 cannot handle things like auto-modified addresses. */
8055 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8056 {
8057 rtx addr, mem;
8058
8059 mem = op->value;
8060 addr = XEXP (mem, 0);
8061 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8062 && !side_effects_p (addr))
8063 {
8064 rtx last;
8065 enum machine_mode mode;
8066
8067 last = get_last_insn ();
8068 mode = get_address_mode (mem);
8069 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8070 if (insn_operand_matches (icode, opno, mem))
8071 {
8072 op->value = mem;
8073 return true;
8074 }
8075 delete_insns_since (last);
8076 }
8077 }
8078
8079 return false;
8080 }
8081
8082 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8083 on success, storing the new operand value back in OP. */
8084
8085 static bool
8086 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8087 struct expand_operand *op)
8088 {
8089 enum machine_mode mode, imode;
8090 bool old_volatile_ok, result;
8091
8092 mode = op->mode;
8093 switch (op->type)
8094 {
8095 case EXPAND_FIXED:
8096 old_volatile_ok = volatile_ok;
8097 volatile_ok = true;
8098 result = maybe_legitimize_operand_same_code (icode, opno, op);
8099 volatile_ok = old_volatile_ok;
8100 return result;
8101
8102 case EXPAND_OUTPUT:
8103 gcc_assert (mode != VOIDmode);
8104 if (op->value
8105 && op->value != const0_rtx
8106 && GET_MODE (op->value) == mode
8107 && maybe_legitimize_operand_same_code (icode, opno, op))
8108 return true;
8109
8110 op->value = gen_reg_rtx (mode);
8111 break;
8112
8113 case EXPAND_INPUT:
8114 input:
8115 gcc_assert (mode != VOIDmode);
8116 gcc_assert (GET_MODE (op->value) == VOIDmode
8117 || GET_MODE (op->value) == mode);
8118 if (maybe_legitimize_operand_same_code (icode, opno, op))
8119 return true;
8120
8121 op->value = copy_to_mode_reg (mode, op->value);
8122 break;
8123
8124 case EXPAND_CONVERT_TO:
8125 gcc_assert (mode != VOIDmode);
8126 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8127 goto input;
8128
8129 case EXPAND_CONVERT_FROM:
8130 if (GET_MODE (op->value) != VOIDmode)
8131 mode = GET_MODE (op->value);
8132 else
8133 /* The caller must tell us what mode this value has. */
8134 gcc_assert (mode != VOIDmode);
8135
8136 imode = insn_data[(int) icode].operand[opno].mode;
8137 if (imode != VOIDmode && imode != mode)
8138 {
8139 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8140 mode = imode;
8141 }
8142 goto input;
8143
8144 case EXPAND_ADDRESS:
8145 gcc_assert (mode != VOIDmode);
8146 op->value = convert_memory_address (mode, op->value);
8147 goto input;
8148
8149 case EXPAND_INTEGER:
8150 mode = insn_data[(int) icode].operand[opno].mode;
8151 if (mode != VOIDmode && const_int_operand (op->value, mode))
8152 goto input;
8153 break;
8154 }
8155 return insn_operand_matches (icode, opno, op->value);
8156 }
8157
8158 /* Make OP describe an input operand that should have the same value
8159 as VALUE, after any mode conversion that the target might request.
8160 TYPE is the type of VALUE. */
8161
8162 void
8163 create_convert_operand_from_type (struct expand_operand *op,
8164 rtx value, tree type)
8165 {
8166 create_convert_operand_from (op, value, TYPE_MODE (type),
8167 TYPE_UNSIGNED (type));
8168 }
8169
8170 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8171 of instruction ICODE. Return true on success, leaving the new operand
8172 values in the OPS themselves. Emit no code on failure. */
8173
8174 bool
8175 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8176 unsigned int nops, struct expand_operand *ops)
8177 {
8178 rtx last;
8179 unsigned int i;
8180
8181 last = get_last_insn ();
8182 for (i = 0; i < nops; i++)
8183 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8184 {
8185 delete_insns_since (last);
8186 return false;
8187 }
8188 return true;
8189 }
8190
8191 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8192 as its operands. Return the instruction pattern on success,
8193 and emit any necessary set-up code. Return null and emit no
8194 code on failure. */
8195
8196 rtx
8197 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8198 struct expand_operand *ops)
8199 {
8200 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8201 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8202 return NULL_RTX;
8203
8204 switch (nops)
8205 {
8206 case 1:
8207 return GEN_FCN (icode) (ops[0].value);
8208 case 2:
8209 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8210 case 3:
8211 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8212 case 4:
8213 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8214 ops[3].value);
8215 case 5:
8216 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8217 ops[3].value, ops[4].value);
8218 case 6:
8219 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8220 ops[3].value, ops[4].value, ops[5].value);
8221 case 7:
8222 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8223 ops[3].value, ops[4].value, ops[5].value,
8224 ops[6].value);
8225 case 8:
8226 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8227 ops[3].value, ops[4].value, ops[5].value,
8228 ops[6].value, ops[7].value);
8229 }
8230 gcc_unreachable ();
8231 }
8232
8233 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8234 as its operands. Return true on success and emit no code on failure. */
8235
8236 bool
8237 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8238 struct expand_operand *ops)
8239 {
8240 rtx pat = maybe_gen_insn (icode, nops, ops);
8241 if (pat)
8242 {
8243 emit_insn (pat);
8244 return true;
8245 }
8246 return false;
8247 }
8248
8249 /* Like maybe_expand_insn, but for jumps. */
8250
8251 bool
8252 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8253 struct expand_operand *ops)
8254 {
8255 rtx pat = maybe_gen_insn (icode, nops, ops);
8256 if (pat)
8257 {
8258 emit_jump_insn (pat);
8259 return true;
8260 }
8261 return false;
8262 }
8263
8264 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8265 as its operands. */
8266
8267 void
8268 expand_insn (enum insn_code icode, unsigned int nops,
8269 struct expand_operand *ops)
8270 {
8271 if (!maybe_expand_insn (icode, nops, ops))
8272 gcc_unreachable ();
8273 }
8274
8275 /* Like expand_insn, but for jumps. */
8276
8277 void
8278 expand_jump_insn (enum insn_code icode, unsigned int nops,
8279 struct expand_operand *ops)
8280 {
8281 if (!maybe_expand_jump_insn (icode, nops, ops))
8282 gcc_unreachable ();
8283 }
8284
8285 /* Reduce conditional compilation elsewhere. */
8286 #ifndef HAVE_insv
8287 #define HAVE_insv 0
8288 #define CODE_FOR_insv CODE_FOR_nothing
8289 #endif
8290 #ifndef HAVE_extv
8291 #define HAVE_extv 0
8292 #define CODE_FOR_extv CODE_FOR_nothing
8293 #endif
8294 #ifndef HAVE_extzv
8295 #define HAVE_extzv 0
8296 #define CODE_FOR_extzv CODE_FOR_nothing
8297 #endif
8298
8299 /* Enumerates the possible types of structure operand to an
8300 extraction_insn. */
8301 enum extraction_type { ET_unaligned_mem, ET_reg };
8302
8303 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8304 insertion or extraction of type TYPE on a structure of mode MODE.
8305 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8306 operand number of the structure (the first sign_extract or zero_extract
8307 operand) and FIELD_OP is the operand number of the field (the other
8308 side of the set from the sign_extract or zero_extract). */
8309
8310 static bool
8311 get_traditional_extraction_insn (extraction_insn *insn,
8312 enum extraction_type type,
8313 enum machine_mode mode,
8314 enum insn_code icode,
8315 int struct_op, int field_op)
8316 {
8317 const struct insn_data_d *data = &insn_data[icode];
8318
8319 enum machine_mode struct_mode = data->operand[struct_op].mode;
8320 if (struct_mode == VOIDmode)
8321 struct_mode = word_mode;
8322 if (mode != struct_mode)
8323 return false;
8324
8325 enum machine_mode field_mode = data->operand[field_op].mode;
8326 if (field_mode == VOIDmode)
8327 field_mode = word_mode;
8328
8329 enum machine_mode pos_mode = data->operand[struct_op + 2].mode;
8330 if (pos_mode == VOIDmode)
8331 pos_mode = word_mode;
8332
8333 insn->icode = icode;
8334 insn->field_mode = field_mode;
8335 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8336 insn->pos_mode = pos_mode;
8337 return true;
8338 }
8339
8340 /* Return true if an optab exists to perform an insertion or extraction
8341 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8342
8343 REG_OPTAB is the optab to use for register structures and
8344 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8345 POS_OP is the operand number of the bit position. */
8346
8347 static bool
8348 get_optab_extraction_insn (struct extraction_insn *insn,
8349 enum extraction_type type,
8350 enum machine_mode mode, direct_optab reg_optab,
8351 direct_optab misalign_optab, int pos_op)
8352 {
8353 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8354 enum insn_code icode = direct_optab_handler (optab, mode);
8355 if (icode == CODE_FOR_nothing)
8356 return false;
8357
8358 const struct insn_data_d *data = &insn_data[icode];
8359
8360 insn->icode = icode;
8361 insn->field_mode = mode;
8362 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8363 insn->pos_mode = data->operand[pos_op].mode;
8364 if (insn->pos_mode == VOIDmode)
8365 insn->pos_mode = word_mode;
8366 return true;
8367 }
8368
8369 /* Return true if an instruction exists to perform an insertion or
8370 extraction (PATTERN says which) of type TYPE in mode MODE.
8371 Describe the instruction in *INSN if so. */
8372
8373 static bool
8374 get_extraction_insn (extraction_insn *insn,
8375 enum extraction_pattern pattern,
8376 enum extraction_type type,
8377 enum machine_mode mode)
8378 {
8379 switch (pattern)
8380 {
8381 case EP_insv:
8382 if (HAVE_insv
8383 && get_traditional_extraction_insn (insn, type, mode,
8384 CODE_FOR_insv, 0, 3))
8385 return true;
8386 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8387 insvmisalign_optab, 2);
8388
8389 case EP_extv:
8390 if (HAVE_extv
8391 && get_traditional_extraction_insn (insn, type, mode,
8392 CODE_FOR_extv, 1, 0))
8393 return true;
8394 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8395 extvmisalign_optab, 3);
8396
8397 case EP_extzv:
8398 if (HAVE_extzv
8399 && get_traditional_extraction_insn (insn, type, mode,
8400 CODE_FOR_extzv, 1, 0))
8401 return true;
8402 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8403 extzvmisalign_optab, 3);
8404
8405 default:
8406 gcc_unreachable ();
8407 }
8408 }
8409
8410 /* Return true if an instruction exists to access a field of mode
8411 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8412 Describe the "best" such instruction in *INSN if so. PATTERN and
8413 TYPE describe the type of insertion or extraction we want to perform.
8414
8415 For an insertion, the number of significant structure bits includes
8416 all bits of the target. For an extraction, it need only include the
8417 most significant bit of the field. Larger widths are acceptable
8418 in both cases. */
8419
8420 static bool
8421 get_best_extraction_insn (extraction_insn *insn,
8422 enum extraction_pattern pattern,
8423 enum extraction_type type,
8424 unsigned HOST_WIDE_INT struct_bits,
8425 enum machine_mode field_mode)
8426 {
8427 enum machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8428 while (mode != VOIDmode)
8429 {
8430 if (get_extraction_insn (insn, pattern, type, mode))
8431 {
8432 while (mode != VOIDmode
8433 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8434 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8435 field_mode))
8436 {
8437 get_extraction_insn (insn, pattern, type, mode);
8438 mode = GET_MODE_WIDER_MODE (mode);
8439 }
8440 return true;
8441 }
8442 mode = GET_MODE_WIDER_MODE (mode);
8443 }
8444 return false;
8445 }
8446
8447 /* Return true if an instruction exists to access a field of mode
8448 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8449 Describe the "best" such instruction in *INSN if so. PATTERN describes
8450 the type of insertion or extraction we want to perform.
8451
8452 For an insertion, the number of significant structure bits includes
8453 all bits of the target. For an extraction, it need only include the
8454 most significant bit of the field. Larger widths are acceptable
8455 in both cases. */
8456
8457 bool
8458 get_best_reg_extraction_insn (extraction_insn *insn,
8459 enum extraction_pattern pattern,
8460 unsigned HOST_WIDE_INT struct_bits,
8461 enum machine_mode field_mode)
8462 {
8463 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8464 field_mode);
8465 }
8466
8467 /* Return true if an instruction exists to access a field of BITSIZE
8468 bits starting BITNUM bits into a memory structure. Describe the
8469 "best" such instruction in *INSN if so. PATTERN describes the type
8470 of insertion or extraction we want to perform and FIELDMODE is the
8471 natural mode of the extracted field.
8472
8473 The instructions considered here only access bytes that overlap
8474 the bitfield; they do not touch any surrounding bytes. */
8475
8476 bool
8477 get_best_mem_extraction_insn (extraction_insn *insn,
8478 enum extraction_pattern pattern,
8479 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8480 enum machine_mode field_mode)
8481 {
8482 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8483 + bitsize
8484 + BITS_PER_UNIT - 1);
8485 struct_bits -= struct_bits % BITS_PER_UNIT;
8486 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8487 struct_bits, field_mode);
8488 }
8489
8490 #include "gt-optabs.h"