]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload-gcse.c
generalized IPA predicate on parameter
[thirdparty/gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34
35 #include "cfgrtl.h"
36 #include "profile.h"
37 #include "expr.h"
38 #include "params.h"
39 #include "tree-pass.h"
40 #include "dbgcnt.h"
41 #include "intl.h"
42 #include "gcse-common.h"
43 #include "gcse.h"
44 #include "regs.h"
45 #include "function-abi.h"
46
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
52
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
58
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
70
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
76 */
77 \f
78
79 /* Keep statistics of this pass. */
80 static struct
81 {
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85 } stats;
86
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
90
91 /* Expression elements in the hash table. */
92 struct expr
93 {
94 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
95 rtx expr;
96
97 /* The same hash for this entry. */
98 hashval_t hash;
99
100 /* Index in the transparent bitmaps. */
101 unsigned int bitmap_index;
102
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr *avail_occr;
105 };
106
107 /* Hashtable helpers. */
108
109 struct expr_hasher : nofree_ptr_hash <expr>
110 {
111 static inline hashval_t hash (const expr *);
112 static inline bool equal (const expr *, const expr *);
113 };
114
115
116 /* Hash expression X.
117 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
118 or if the expression contains something we don't want to insert in the
119 table. */
120
121 static hashval_t
122 hash_expr (rtx x, int *do_not_record_p)
123 {
124 *do_not_record_p = 0;
125 return hash_rtx (x, GET_MODE (x), do_not_record_p,
126 NULL, /*have_reg_qty=*/false);
127 }
128
129 /* Callback for hashtab.
130 Return the hash value for expression EXP. We don't actually hash
131 here, we just return the cached hash value. */
132
133 inline hashval_t
134 expr_hasher::hash (const expr *exp)
135 {
136 return exp->hash;
137 }
138
139 /* Callback for hashtab.
140 Return nonzero if exp1 is equivalent to exp2. */
141
142 inline bool
143 expr_hasher::equal (const expr *exp1, const expr *exp2)
144 {
145 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
146
147 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
148 return equiv_p;
149 }
150
151 /* The table itself. */
152 static hash_table<expr_hasher> *expr_table;
153 \f
154
155 static struct obstack expr_obstack;
156
157 /* Occurrence of an expression.
158 There is at most one occurrence per basic block. If a pattern appears
159 more than once, the last appearance is used. */
160
161 struct occr
162 {
163 /* Next occurrence of this expression. */
164 struct occr *next;
165 /* The insn that computes the expression. */
166 rtx_insn *insn;
167 /* Nonzero if this [anticipatable] occurrence has been deleted. */
168 char deleted_p;
169 };
170
171 static struct obstack occr_obstack;
172
173 /* The following structure holds the information about the occurrences of
174 the redundant instructions. */
175 struct unoccr
176 {
177 struct unoccr *next;
178 edge pred;
179 rtx_insn *insn;
180 };
181
182 static struct obstack unoccr_obstack;
183
184 /* Array where each element is the CUID if the insn that last set the hard
185 register with the number of the element, since the start of the current
186 basic block.
187
188 This array is used during the building of the hash table (step 1) to
189 determine if a reg is killed before the end of a basic block.
190
191 It is also used when eliminating partial redundancies (step 2) to see
192 if a reg was modified since the start of a basic block. */
193 static int *reg_avail_info;
194
195 /* A list of insns that may modify memory within the current basic block. */
196 struct modifies_mem
197 {
198 rtx_insn *insn;
199 struct modifies_mem *next;
200 };
201 static struct modifies_mem *modifies_mem_list;
202
203 /* The modifies_mem structs also go on an obstack, only this obstack is
204 freed each time after completing the analysis or transformations on
205 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
206 object on the obstack to keep track of the bottom of the obstack. */
207 static struct obstack modifies_mem_obstack;
208 static struct modifies_mem *modifies_mem_obstack_bottom;
209
210 /* Mapping of insn UIDs to CUIDs.
211 CUIDs are like UIDs except they increase monotonically in each basic
212 block, have no gaps, and only apply to real insns. */
213 static int *uid_cuid;
214 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
215
216 /* Bitmap of blocks which have memory stores. */
217 static bitmap modify_mem_list_set;
218
219 /* Bitmap of blocks which have calls. */
220 static bitmap blocks_with_calls;
221
222 /* Vector indexed by block # with a list of all the insns that
223 modify memory within the block. */
224 static vec<rtx_insn *> *modify_mem_list;
225
226 /* Vector indexed by block # with a canonicalized list of insns
227 that modify memory in the block. */
228 static vec<modify_pair> *canon_modify_mem_list;
229
230 /* Vector of simple bitmaps indexed by block number. Each component sbitmap
231 indicates which expressions are transparent through the block. */
232 static sbitmap *transp;
233 \f
234
235 /* Helpers for memory allocation/freeing. */
236 static void alloc_mem (void);
237 static void free_mem (void);
238
239 /* Support for hash table construction and transformations. */
240 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
241 static void record_last_reg_set_info (rtx_insn *, rtx);
242 static void record_last_reg_set_info_regno (rtx_insn *, int);
243 static void record_last_mem_set_info (rtx_insn *);
244 static void record_last_set_info (rtx, const_rtx, void *);
245 static void record_opr_changes (rtx_insn *);
246
247 static void find_mem_conflicts (rtx, const_rtx, void *);
248 static int load_killed_in_block_p (int, rtx, bool);
249 static void reset_opr_set_tables (void);
250
251 /* Hash table support. */
252 static hashval_t hash_expr (rtx, int *);
253 static void insert_expr_in_table (rtx, rtx_insn *);
254 static struct expr *lookup_expr_in_table (rtx);
255 static void dump_hash_table (FILE *);
256
257 /* Helpers for eliminate_partially_redundant_load. */
258 static bool reg_killed_on_edge (rtx, edge);
259 static bool reg_used_on_edge (rtx, edge);
260
261 static rtx get_avail_load_store_reg (rtx_insn *);
262
263 static bool bb_has_well_behaved_predecessors (basic_block);
264 static struct occr* get_bb_avail_insn (basic_block, struct occr *, int);
265 static void hash_scan_set (rtx_insn *);
266 static void compute_hash_table (void);
267
268 /* The work horses of this pass. */
269 static void eliminate_partially_redundant_load (basic_block,
270 rtx_insn *,
271 struct expr *);
272 static void eliminate_partially_redundant_loads (void);
273 \f
274
275 /* Allocate memory for the CUID mapping array and register/memory
276 tracking tables. */
277
278 static void
279 alloc_mem (void)
280 {
281 int i;
282 basic_block bb;
283 rtx_insn *insn;
284
285 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
286 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
287 i = 1;
288 FOR_EACH_BB_FN (bb, cfun)
289 FOR_BB_INSNS (bb, insn)
290 {
291 if (INSN_P (insn))
292 uid_cuid[INSN_UID (insn)] = i++;
293 else
294 uid_cuid[INSN_UID (insn)] = i;
295 }
296
297 /* Allocate the available expressions hash table. We don't want to
298 make the hash table too small, but unnecessarily making it too large
299 also doesn't help. The i/4 is a gcse.c relic, and seems like a
300 reasonable choice. */
301 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
302
303 /* We allocate everything on obstacks because we often can roll back
304 the whole obstack to some point. Freeing obstacks is very fast. */
305 gcc_obstack_init (&expr_obstack);
306 gcc_obstack_init (&occr_obstack);
307 gcc_obstack_init (&unoccr_obstack);
308 gcc_obstack_init (&modifies_mem_obstack);
309
310 /* Working array used to track the last set for each register
311 in the current block. */
312 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
313
314 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
315 can roll it back in reset_opr_set_tables. */
316 modifies_mem_obstack_bottom =
317 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
318 sizeof (struct modifies_mem));
319
320 blocks_with_calls = BITMAP_ALLOC (NULL);
321 modify_mem_list_set = BITMAP_ALLOC (NULL);
322
323 modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun),
324 sizeof (vec_rtx_heap));
325 canon_modify_mem_list
326 = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun),
327 sizeof (vec_modify_pair_heap));
328 }
329
330 /* Free memory allocated by alloc_mem. */
331
332 static void
333 free_mem (void)
334 {
335 free (uid_cuid);
336
337 delete expr_table;
338 expr_table = NULL;
339
340 obstack_free (&expr_obstack, NULL);
341 obstack_free (&occr_obstack, NULL);
342 obstack_free (&unoccr_obstack, NULL);
343 obstack_free (&modifies_mem_obstack, NULL);
344
345 unsigned i;
346 bitmap_iterator bi;
347 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
348 {
349 modify_mem_list[i].release ();
350 canon_modify_mem_list[i].release ();
351 }
352
353 BITMAP_FREE (blocks_with_calls);
354 BITMAP_FREE (modify_mem_list_set);
355 free (reg_avail_info);
356 free (modify_mem_list);
357 free (canon_modify_mem_list);
358 }
359 \f
360
361 /* Insert expression X in INSN in the hash TABLE.
362 If it is already present, record it as the last occurrence in INSN's
363 basic block. */
364
365 static void
366 insert_expr_in_table (rtx x, rtx_insn *insn)
367 {
368 int do_not_record_p;
369 hashval_t hash;
370 struct expr *cur_expr, **slot;
371 struct occr *avail_occr;
372
373 hash = hash_expr (x, &do_not_record_p);
374
375 /* Do not insert expression in the table if it contains volatile operands,
376 or if hash_expr determines the expression is something we don't want
377 to or can't handle. */
378 if (do_not_record_p)
379 return;
380
381 /* We anticipate that redundant expressions are rare, so for convenience
382 allocate a new hash table element here already and set its fields.
383 If we don't do this, we need a hack with a static struct expr. Anyway,
384 obstack_free is really fast and one more obstack_alloc doesn't hurt if
385 we're going to see more expressions later on. */
386 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
387 sizeof (struct expr));
388 cur_expr->expr = x;
389 cur_expr->hash = hash;
390 cur_expr->avail_occr = NULL;
391
392 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
393
394 if (! (*slot))
395 {
396 /* The expression isn't found, so insert it. */
397 *slot = cur_expr;
398
399 /* Anytime we add an entry to the table, record the index
400 of the new entry. The bitmap index starts counting
401 at zero. */
402 cur_expr->bitmap_index = expr_table->elements () - 1;
403 }
404 else
405 {
406 /* The expression is already in the table, so roll back the
407 obstack and use the existing table entry. */
408 obstack_free (&expr_obstack, cur_expr);
409 cur_expr = *slot;
410 }
411
412 /* Search for another occurrence in the same basic block. We insert
413 insns blockwise from start to end, so keep appending to the
414 start of the list so we have to check only a single element. */
415 avail_occr = cur_expr->avail_occr;
416 if (avail_occr
417 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
418 avail_occr->insn = insn;
419 else
420 {
421 /* First occurrence of this expression in this basic block. */
422 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
423 sizeof (struct occr));
424 avail_occr->insn = insn;
425 avail_occr->next = cur_expr->avail_occr;
426 avail_occr->deleted_p = 0;
427 cur_expr->avail_occr = avail_occr;
428 }
429 }
430 \f
431
432 /* Lookup pattern PAT in the expression hash table.
433 The result is a pointer to the table entry, or NULL if not found. */
434
435 static struct expr *
436 lookup_expr_in_table (rtx pat)
437 {
438 int do_not_record_p;
439 struct expr **slot, *tmp_expr;
440 hashval_t hash = hash_expr (pat, &do_not_record_p);
441
442 if (do_not_record_p)
443 return NULL;
444
445 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
446 sizeof (struct expr));
447 tmp_expr->expr = pat;
448 tmp_expr->hash = hash;
449 tmp_expr->avail_occr = NULL;
450
451 slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT);
452 obstack_free (&expr_obstack, tmp_expr);
453
454 if (!slot)
455 return NULL;
456 else
457 return (*slot);
458 }
459 \f
460
461 /* Dump all expressions and occurrences that are currently in the
462 expression hash table to FILE. */
463
464 /* This helper is called via htab_traverse. */
465 int
466 dump_expr_hash_table_entry (expr **slot, FILE *file)
467 {
468 struct expr *exprs = *slot;
469 struct occr *occr;
470
471 fprintf (file, "expr: ");
472 print_rtl (file, exprs->expr);
473 fprintf (file,"\nhashcode: %u\n", exprs->hash);
474 fprintf (file,"list of occurrences:\n");
475 occr = exprs->avail_occr;
476 while (occr)
477 {
478 rtx_insn *insn = occr->insn;
479 print_rtl_single (file, insn);
480 fprintf (file, "\n");
481 occr = occr->next;
482 }
483 fprintf (file, "\n");
484 return 1;
485 }
486
487 static void
488 dump_hash_table (FILE *file)
489 {
490 fprintf (file, "\n\nexpression hash table\n");
491 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
492 (long) expr_table->size (),
493 (long) expr_table->elements (),
494 expr_table->collisions ());
495 if (!expr_table->is_empty ())
496 {
497 fprintf (file, "\n\ntable entries:\n");
498 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
499 }
500 fprintf (file, "\n");
501 }
502 \f
503 /* Return true if register X is recorded as being set by an instruction
504 whose CUID is greater than the one given. */
505
506 static bool
507 reg_changed_after_insn_p (rtx x, int cuid)
508 {
509 unsigned int regno, end_regno;
510
511 regno = REGNO (x);
512 end_regno = END_REGNO (x);
513 do
514 if (reg_avail_info[regno] > cuid)
515 return true;
516 while (++regno < end_regno);
517 return false;
518 }
519
520 /* Return nonzero if the operands of expression X are unchanged
521 1) from the start of INSN's basic block up to but not including INSN
522 if AFTER_INSN is false, or
523 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
524
525 static bool
526 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
527 {
528 int i, j;
529 enum rtx_code code;
530 const char *fmt;
531
532 if (x == 0)
533 return 1;
534
535 code = GET_CODE (x);
536 switch (code)
537 {
538 case REG:
539 /* We are called after register allocation. */
540 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
541 if (after_insn)
542 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
543 else
544 return !reg_changed_after_insn_p (x, 0);
545
546 case MEM:
547 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
548 return 0;
549 else
550 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
551
552 case PC:
553 case CC0: /*FIXME*/
554 case CONST:
555 CASE_CONST_ANY:
556 case SYMBOL_REF:
557 case LABEL_REF:
558 case ADDR_VEC:
559 case ADDR_DIFF_VEC:
560 return 1;
561
562 case PRE_DEC:
563 case PRE_INC:
564 case POST_DEC:
565 case POST_INC:
566 case PRE_MODIFY:
567 case POST_MODIFY:
568 if (after_insn)
569 return 0;
570 break;
571
572 default:
573 break;
574 }
575
576 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
577 {
578 if (fmt[i] == 'e')
579 {
580 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
581 return 0;
582 }
583 else if (fmt[i] == 'E')
584 for (j = 0; j < XVECLEN (x, i); j++)
585 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
586 return 0;
587 }
588
589 return 1;
590 }
591 \f
592
593 /* Used for communication between find_mem_conflicts and
594 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
595 conflict between two memory references.
596 This is a bit of a hack to work around the limitations of note_stores. */
597 static int mems_conflict_p;
598
599 /* DEST is the output of an instruction. If it is a memory reference, and
600 possibly conflicts with the load found in DATA, then set mems_conflict_p
601 to a nonzero value. */
602
603 static void
604 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
605 void *data)
606 {
607 rtx mem_op = (rtx) data;
608
609 while (GET_CODE (dest) == SUBREG
610 || GET_CODE (dest) == ZERO_EXTRACT
611 || GET_CODE (dest) == STRICT_LOW_PART)
612 dest = XEXP (dest, 0);
613
614 /* If DEST is not a MEM, then it will not conflict with the load. Note
615 that function calls are assumed to clobber memory, but are handled
616 elsewhere. */
617 if (! MEM_P (dest))
618 return;
619
620 if (true_dependence (dest, GET_MODE (dest), mem_op))
621 mems_conflict_p = 1;
622 }
623 \f
624
625 /* Return nonzero if the expression in X (a memory reference) is killed
626 in the current basic block before (if AFTER_INSN is false) or after
627 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
628
629 This function assumes that the modifies_mem table is flushed when
630 the hash table construction or redundancy elimination phases start
631 processing a new basic block. */
632
633 static int
634 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
635 {
636 struct modifies_mem *list_entry = modifies_mem_list;
637
638 while (list_entry)
639 {
640 rtx_insn *setter = list_entry->insn;
641
642 /* Ignore entries in the list that do not apply. */
643 if ((after_insn
644 && INSN_CUID (setter) < uid_limit)
645 || (! after_insn
646 && INSN_CUID (setter) > uid_limit))
647 {
648 list_entry = list_entry->next;
649 continue;
650 }
651
652 /* If SETTER is a call everything is clobbered. Note that calls
653 to pure functions are never put on the list, so we need not
654 worry about them. */
655 if (CALL_P (setter))
656 return 1;
657
658 /* SETTER must be an insn of some kind that sets memory. Call
659 note_stores to examine each hunk of memory that is modified.
660 It will set mems_conflict_p to nonzero if there may be a
661 conflict between X and SETTER. */
662 mems_conflict_p = 0;
663 note_stores (setter, find_mem_conflicts, x);
664 if (mems_conflict_p)
665 return 1;
666
667 list_entry = list_entry->next;
668 }
669 return 0;
670 }
671 \f
672
673 /* Record register first/last/block set information for REGNO in INSN. */
674
675 static inline void
676 record_last_reg_set_info (rtx_insn *insn, rtx reg)
677 {
678 unsigned int regno, end_regno;
679
680 regno = REGNO (reg);
681 end_regno = END_REGNO (reg);
682 do
683 reg_avail_info[regno] = INSN_CUID (insn);
684 while (++regno < end_regno);
685 }
686
687 static inline void
688 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
689 {
690 reg_avail_info[regno] = INSN_CUID (insn);
691 }
692
693
694 /* Record memory modification information for INSN. We do not actually care
695 about the memory location(s) that are set, or even how they are set (consider
696 a CALL_INSN). We merely need to record which insns modify memory. */
697
698 static void
699 record_last_mem_set_info (rtx_insn *insn)
700 {
701 struct modifies_mem *list_entry;
702
703 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
704 sizeof (struct modifies_mem));
705 list_entry->insn = insn;
706 list_entry->next = modifies_mem_list;
707 modifies_mem_list = list_entry;
708
709 record_last_mem_set_info_common (insn, modify_mem_list,
710 canon_modify_mem_list,
711 modify_mem_list_set,
712 blocks_with_calls);
713 }
714
715 /* Called from compute_hash_table via note_stores to handle one
716 SET or CLOBBER in an insn. DATA is really the instruction in which
717 the SET is taking place. */
718
719 static void
720 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
721 {
722 rtx_insn *last_set_insn = (rtx_insn *) data;
723
724 if (GET_CODE (dest) == SUBREG)
725 dest = SUBREG_REG (dest);
726
727 if (REG_P (dest))
728 record_last_reg_set_info (last_set_insn, dest);
729 else if (MEM_P (dest))
730 {
731 /* Ignore pushes, they don't clobber memory. They may still
732 clobber the stack pointer though. Some targets do argument
733 pushes without adding REG_INC notes. See e.g. PR25196,
734 where a pushsi2 on i386 doesn't have REG_INC notes. Note
735 such changes here too. */
736 if (! push_operand (dest, GET_MODE (dest)))
737 record_last_mem_set_info (last_set_insn);
738 else
739 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
740 }
741 }
742
743
744 /* Reset tables used to keep track of what's still available since the
745 start of the block. */
746
747 static void
748 reset_opr_set_tables (void)
749 {
750 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
751 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
752 modifies_mem_list = NULL;
753 }
754 \f
755
756 /* Record things set by INSN.
757 This data is used by oprs_unchanged_p. */
758
759 static void
760 record_opr_changes (rtx_insn *insn)
761 {
762 rtx note;
763
764 /* Find all stores and record them. */
765 note_stores (insn, record_last_set_info, insn);
766
767 /* Also record autoincremented REGs for this insn as changed. */
768 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
769 if (REG_NOTE_KIND (note) == REG_INC)
770 record_last_reg_set_info (insn, XEXP (note, 0));
771
772 /* Finally, if this is a call, record all call clobbers. */
773 if (CALL_P (insn))
774 {
775 unsigned int regno;
776 hard_reg_set_iterator hrsi;
777 /* We don't track modes of hard registers, so we need to be
778 conservative and assume that partial kills are full kills. */
779 HARD_REG_SET callee_clobbers
780 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
781 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
782 record_last_reg_set_info_regno (insn, regno);
783
784 if (! RTL_CONST_OR_PURE_CALL_P (insn))
785 record_last_mem_set_info (insn);
786 }
787 }
788 \f
789
790 /* Scan the pattern of INSN and add an entry to the hash TABLE.
791 After reload we are interested in loads/stores only. */
792
793 static void
794 hash_scan_set (rtx_insn *insn)
795 {
796 rtx pat = PATTERN (insn);
797 rtx src = SET_SRC (pat);
798 rtx dest = SET_DEST (pat);
799
800 /* We are only interested in loads and stores. */
801 if (! MEM_P (src) && ! MEM_P (dest))
802 return;
803
804 /* Don't mess with jumps and nops. */
805 if (JUMP_P (insn) || set_noop_p (pat))
806 return;
807
808 if (REG_P (dest))
809 {
810 if (/* Don't CSE something if we can't do a reg/reg copy. */
811 can_copy_p (GET_MODE (dest))
812 /* Is SET_SRC something we want to gcse? */
813 && general_operand (src, GET_MODE (src))
814 #ifdef STACK_REGS
815 /* Never consider insns touching the register stack. It may
816 create situations that reg-stack cannot handle (e.g. a stack
817 register live across an abnormal edge). */
818 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
819 #endif
820 /* An expression is not available if its operands are
821 subsequently modified, including this insn. */
822 && oprs_unchanged_p (src, insn, true))
823 {
824 insert_expr_in_table (src, insn);
825 }
826 }
827 else if (REG_P (src))
828 {
829 /* Only record sets of pseudo-regs in the hash table. */
830 if (/* Don't CSE something if we can't do a reg/reg copy. */
831 can_copy_p (GET_MODE (src))
832 /* Is SET_DEST something we want to gcse? */
833 && general_operand (dest, GET_MODE (dest))
834 #ifdef STACK_REGS
835 /* As above for STACK_REGS. */
836 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
837 #endif
838 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
839 /* Check if the memory expression is killed after insn. */
840 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
841 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
842 {
843 insert_expr_in_table (dest, insn);
844 }
845 }
846 }
847 \f
848
849 /* Create hash table of memory expressions available at end of basic
850 blocks. Basically you should think of this hash table as the
851 representation of AVAIL_OUT. This is the set of expressions that
852 is generated in a basic block and not killed before the end of the
853 same basic block. Notice that this is really a local computation. */
854
855 static void
856 compute_hash_table (void)
857 {
858 basic_block bb;
859
860 FOR_EACH_BB_FN (bb, cfun)
861 {
862 rtx_insn *insn;
863
864 /* First pass over the instructions records information used to
865 determine when registers and memory are last set.
866 Since we compute a "local" AVAIL_OUT, reset the tables that
867 help us keep track of what has been modified since the start
868 of the block. */
869 reset_opr_set_tables ();
870 FOR_BB_INSNS (bb, insn)
871 {
872 if (INSN_P (insn))
873 record_opr_changes (insn);
874 }
875
876 /* The next pass actually builds the hash table. */
877 FOR_BB_INSNS (bb, insn)
878 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
879 hash_scan_set (insn);
880 }
881 }
882 \f
883
884 /* Check if register REG is killed in any insn waiting to be inserted on
885 edge E. This function is required to check that our data flow analysis
886 is still valid prior to commit_edge_insertions. */
887
888 static bool
889 reg_killed_on_edge (rtx reg, edge e)
890 {
891 rtx_insn *insn;
892
893 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
894 if (INSN_P (insn) && reg_set_p (reg, insn))
895 return true;
896
897 return false;
898 }
899
900 /* Similar to above - check if register REG is used in any insn waiting
901 to be inserted on edge E.
902 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
903 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
904
905 static bool
906 reg_used_on_edge (rtx reg, edge e)
907 {
908 rtx_insn *insn;
909
910 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
911 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
912 return true;
913
914 return false;
915 }
916 \f
917 /* Return the loaded/stored register of a load/store instruction. */
918
919 static rtx
920 get_avail_load_store_reg (rtx_insn *insn)
921 {
922 if (REG_P (SET_DEST (PATTERN (insn))))
923 /* A load. */
924 return SET_DEST (PATTERN (insn));
925 else
926 {
927 /* A store. */
928 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
929 return SET_SRC (PATTERN (insn));
930 }
931 }
932
933 /* Return nonzero if the predecessors of BB are "well behaved". */
934
935 static bool
936 bb_has_well_behaved_predecessors (basic_block bb)
937 {
938 edge pred;
939 edge_iterator ei;
940
941 if (EDGE_COUNT (bb->preds) == 0)
942 return false;
943
944 FOR_EACH_EDGE (pred, ei, bb->preds)
945 {
946 /* commit_one_edge_insertion refuses to insert on abnormal edges even if
947 the source has only one successor so EDGE_CRITICAL_P is too weak. */
948 if ((pred->flags & EDGE_ABNORMAL) && !single_pred_p (pred->dest))
949 return false;
950
951 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
952 return false;
953
954 if (tablejump_p (BB_END (pred->src), NULL, NULL))
955 return false;
956 }
957 return true;
958 }
959
960
961 /* Search for the occurrences of expression in BB. */
962
963 static struct occr*
964 get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index)
965 {
966 struct occr *occr = orig_occr;
967
968 for (; occr != NULL; occr = occr->next)
969 if (BLOCK_FOR_INSN (occr->insn) == bb)
970 return occr;
971
972 /* If we could not find an occurrence in BB, see if BB
973 has a single predecessor with an occurrence that is
974 transparent through BB. */
975 if (transp
976 && single_pred_p (bb)
977 && bitmap_bit_p (transp[bb->index], bitmap_index)
978 && (occr = get_bb_avail_insn (single_pred (bb), orig_occr, bitmap_index)))
979 {
980 rtx avail_reg = get_avail_load_store_reg (occr->insn);
981 if (!reg_set_between_p (avail_reg,
982 PREV_INSN (BB_HEAD (bb)),
983 NEXT_INSN (BB_END (bb)))
984 && !reg_killed_on_edge (avail_reg, single_pred_edge (bb)))
985 return occr;
986 }
987
988 return NULL;
989 }
990
991
992 /* This helper is called via htab_traverse. */
993 int
994 compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED)
995 {
996 struct expr *expr = *slot;
997
998 compute_transp (expr->expr, expr->bitmap_index, transp,
999 blocks_with_calls, modify_mem_list_set,
1000 canon_modify_mem_list);
1001 return 1;
1002 }
1003
1004 /* This handles the case where several stores feed a partially redundant
1005 load. It checks if the redundancy elimination is possible and if it's
1006 worth it.
1007
1008 Redundancy elimination is possible if,
1009 1) None of the operands of an insn have been modified since the start
1010 of the current basic block.
1011 2) In any predecessor of the current basic block, the same expression
1012 is generated.
1013
1014 See the function body for the heuristics that determine if eliminating
1015 a redundancy is also worth doing, assuming it is possible. */
1016
1017 static void
1018 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
1019 struct expr *expr)
1020 {
1021 edge pred;
1022 rtx_insn *avail_insn = NULL;
1023 rtx avail_reg;
1024 rtx dest, pat;
1025 struct occr *a_occr;
1026 struct unoccr *occr, *avail_occrs = NULL;
1027 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1028 int npred_ok = 0;
1029 profile_count ok_count = profile_count::zero ();
1030 /* Redundant load execution count. */
1031 profile_count critical_count = profile_count::zero ();
1032 /* Execution count of critical edges. */
1033 edge_iterator ei;
1034 bool critical_edge_split = false;
1035
1036 /* The execution count of the loads to be added to make the
1037 load fully redundant. */
1038 profile_count not_ok_count = profile_count::zero ();
1039 basic_block pred_bb;
1040
1041 pat = PATTERN (insn);
1042 dest = SET_DEST (pat);
1043
1044 /* Check that the loaded register is not used, set, or killed from the
1045 beginning of the block. */
1046 if (reg_changed_after_insn_p (dest, 0)
1047 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
1048 return;
1049
1050 /* Check potential for replacing load with copy for predecessors. */
1051 FOR_EACH_EDGE (pred, ei, bb->preds)
1052 {
1053 rtx_insn *next_pred_bb_end;
1054
1055 avail_insn = NULL;
1056 avail_reg = NULL_RTX;
1057 pred_bb = pred->src;
1058 for (a_occr = get_bb_avail_insn (pred_bb,
1059 expr->avail_occr,
1060 expr->bitmap_index);
1061 a_occr;
1062 a_occr = get_bb_avail_insn (pred_bb,
1063 a_occr->next,
1064 expr->bitmap_index))
1065 {
1066 /* Check if the loaded register is not used. */
1067 avail_insn = a_occr->insn;
1068 avail_reg = get_avail_load_store_reg (avail_insn);
1069 gcc_assert (avail_reg);
1070
1071 /* Make sure we can generate a move from register avail_reg to
1072 dest. */
1073 rtx_insn *move = gen_move_insn (copy_rtx (dest),
1074 copy_rtx (avail_reg));
1075 extract_insn (move);
1076 if (! constrain_operands (1, get_preferred_alternatives (insn,
1077 pred_bb))
1078 || reg_killed_on_edge (avail_reg, pred)
1079 || reg_used_on_edge (dest, pred))
1080 {
1081 avail_insn = NULL;
1082 continue;
1083 }
1084 next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn)));
1085 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1086 /* AVAIL_INSN remains non-null. */
1087 break;
1088 else
1089 avail_insn = NULL;
1090 }
1091
1092 if (EDGE_CRITICAL_P (pred) && pred->count ().initialized_p ())
1093 critical_count += pred->count ();
1094
1095 if (avail_insn != NULL_RTX)
1096 {
1097 npred_ok++;
1098 if (pred->count ().initialized_p ())
1099 ok_count = ok_count + pred->count ();
1100 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1101 copy_rtx (avail_reg)))))
1102 {
1103 /* Check if there is going to be a split. */
1104 if (EDGE_CRITICAL_P (pred))
1105 critical_edge_split = true;
1106 }
1107 else /* Its a dead move no need to generate. */
1108 continue;
1109 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1110 sizeof (struct unoccr));
1111 occr->insn = avail_insn;
1112 occr->pred = pred;
1113 occr->next = avail_occrs;
1114 avail_occrs = occr;
1115 if (! rollback_unoccr)
1116 rollback_unoccr = occr;
1117 }
1118 else
1119 {
1120 /* Adding a load on a critical edge will cause a split. */
1121 if (EDGE_CRITICAL_P (pred))
1122 critical_edge_split = true;
1123 if (pred->count ().initialized_p ())
1124 not_ok_count = not_ok_count + pred->count ();
1125 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1126 sizeof (struct unoccr));
1127 unoccr->insn = NULL;
1128 unoccr->pred = pred;
1129 unoccr->next = unavail_occrs;
1130 unavail_occrs = unoccr;
1131 if (! rollback_unoccr)
1132 rollback_unoccr = unoccr;
1133 }
1134 }
1135
1136 if (/* No load can be replaced by copy. */
1137 npred_ok == 0
1138 /* Prevent exploding the code. */
1139 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1140 /* If we don't have profile information we cannot tell if splitting
1141 a critical edge is profitable or not so don't do it. */
1142 || ((!profile_info || profile_status_for_fn (cfun) != PROFILE_READ
1143 || targetm.cannot_modify_jumps_p ())
1144 && critical_edge_split))
1145 goto cleanup;
1146
1147 /* Check if it's worth applying the partial redundancy elimination. */
1148 if (ok_count.to_gcov_type ()
1149 < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count.to_gcov_type ())
1150 goto cleanup;
1151
1152 gcov_type threshold;
1153 #if (GCC_VERSION >= 5000)
1154 if (__builtin_mul_overflow (GCSE_AFTER_RELOAD_CRITICAL_FRACTION,
1155 critical_count.to_gcov_type (), &threshold))
1156 threshold = profile_count::max_count;
1157 #else
1158 threshold
1159 = GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count.to_gcov_type ();
1160 #endif
1161
1162 if (ok_count.to_gcov_type () < threshold)
1163 goto cleanup;
1164
1165 /* Generate moves to the loaded register from where
1166 the memory is available. */
1167 for (occr = avail_occrs; occr; occr = occr->next)
1168 {
1169 avail_insn = occr->insn;
1170 pred = occr->pred;
1171 /* Set avail_reg to be the register having the value of the
1172 memory. */
1173 avail_reg = get_avail_load_store_reg (avail_insn);
1174 gcc_assert (avail_reg);
1175
1176 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1177 copy_rtx (avail_reg)),
1178 pred);
1179 stats.moves_inserted++;
1180
1181 if (dump_file)
1182 fprintf (dump_file,
1183 "generating move from %d to %d on edge from %d to %d\n",
1184 REGNO (avail_reg),
1185 REGNO (dest),
1186 pred->src->index,
1187 pred->dest->index);
1188 }
1189
1190 /* Regenerate loads where the memory is unavailable. */
1191 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1192 {
1193 pred = unoccr->pred;
1194 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1195 stats.copies_inserted++;
1196
1197 if (dump_file)
1198 {
1199 fprintf (dump_file,
1200 "generating on edge from %d to %d a copy of load: ",
1201 pred->src->index,
1202 pred->dest->index);
1203 print_rtl (dump_file, PATTERN (insn));
1204 fprintf (dump_file, "\n");
1205 }
1206 }
1207
1208 /* Delete the insn if it is not available in this block and mark it
1209 for deletion if it is available. If insn is available it may help
1210 discover additional redundancies, so mark it for later deletion. */
1211 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr, expr->bitmap_index);
1212 a_occr && (a_occr->insn != insn);
1213 a_occr = get_bb_avail_insn (bb, a_occr->next, expr->bitmap_index))
1214 ;
1215
1216 if (!a_occr)
1217 {
1218 stats.insns_deleted++;
1219
1220 if (dump_file)
1221 {
1222 fprintf (dump_file, "deleting insn:\n");
1223 print_rtl_single (dump_file, insn);
1224 fprintf (dump_file, "\n");
1225 }
1226 delete_insn (insn);
1227 }
1228 else
1229 a_occr->deleted_p = 1;
1230
1231 cleanup:
1232 if (rollback_unoccr)
1233 obstack_free (&unoccr_obstack, rollback_unoccr);
1234 }
1235
1236 /* Performing the redundancy elimination as described before. */
1237
1238 static void
1239 eliminate_partially_redundant_loads (void)
1240 {
1241 rtx_insn *insn;
1242 basic_block bb;
1243
1244 /* Note we start at block 1. */
1245
1246 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1247 return;
1248
1249 FOR_BB_BETWEEN (bb,
1250 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1251 EXIT_BLOCK_PTR_FOR_FN (cfun),
1252 next_bb)
1253 {
1254 /* Don't try anything on basic blocks with strange predecessors. */
1255 if (! bb_has_well_behaved_predecessors (bb))
1256 continue;
1257
1258 /* Do not try anything on cold basic blocks. */
1259 if (optimize_bb_for_size_p (bb))
1260 continue;
1261
1262 /* Reset the table of things changed since the start of the current
1263 basic block. */
1264 reset_opr_set_tables ();
1265
1266 /* Look at all insns in the current basic block and see if there are
1267 any loads in it that we can record. */
1268 FOR_BB_INSNS (bb, insn)
1269 {
1270 /* Is it a load - of the form (set (reg) (mem))? */
1271 if (NONJUMP_INSN_P (insn)
1272 && GET_CODE (PATTERN (insn)) == SET
1273 && REG_P (SET_DEST (PATTERN (insn)))
1274 && MEM_P (SET_SRC (PATTERN (insn))))
1275 {
1276 rtx pat = PATTERN (insn);
1277 rtx src = SET_SRC (pat);
1278 struct expr *expr;
1279
1280 if (!MEM_VOLATILE_P (src)
1281 && GET_MODE (src) != BLKmode
1282 && general_operand (src, GET_MODE (src))
1283 /* Are the operands unchanged since the start of the
1284 block? */
1285 && oprs_unchanged_p (src, insn, false)
1286 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1287 && !side_effects_p (src)
1288 /* Is the expression recorded? */
1289 && (expr = lookup_expr_in_table (src)) != NULL)
1290 {
1291 /* We now have a load (insn) and an available memory at
1292 its BB start (expr). Try to remove the loads if it is
1293 redundant. */
1294 eliminate_partially_redundant_load (bb, insn, expr);
1295 }
1296 }
1297
1298 /* Keep track of everything modified by this insn, so that we
1299 know what has been modified since the start of the current
1300 basic block. */
1301 if (INSN_P (insn))
1302 record_opr_changes (insn);
1303 }
1304 }
1305
1306 commit_edge_insertions ();
1307 }
1308
1309 /* Go over the expression hash table and delete insns that were
1310 marked for later deletion. */
1311
1312 /* This helper is called via htab_traverse. */
1313 int
1314 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1315 {
1316 struct expr *exprs = *slot;
1317 struct occr *occr;
1318
1319 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1320 {
1321 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1322 {
1323 delete_insn (occr->insn);
1324 stats.insns_deleted++;
1325
1326 if (dump_file)
1327 {
1328 fprintf (dump_file, "deleting insn:\n");
1329 print_rtl_single (dump_file, occr->insn);
1330 fprintf (dump_file, "\n");
1331 }
1332 }
1333 }
1334
1335 return 1;
1336 }
1337
1338 static void
1339 delete_redundant_insns (void)
1340 {
1341 expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1342 if (dump_file)
1343 fprintf (dump_file, "\n");
1344 }
1345
1346 /* Main entry point of the GCSE after reload - clean some redundant loads
1347 due to spilling. */
1348
1349 static void
1350 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1351 {
1352 /* Disable computing transparentness if it is too expensive. */
1353 bool do_transp
1354 = !gcse_or_cprop_is_too_expensive (_("using simple load CSE after register "
1355 "allocation"));
1356
1357 memset (&stats, 0, sizeof (stats));
1358
1359 /* Allocate memory for this pass.
1360 Also computes and initializes the insns' CUIDs. */
1361 alloc_mem ();
1362
1363 /* We need alias analysis. */
1364 init_alias_analysis ();
1365
1366 compute_hash_table ();
1367
1368 if (dump_file)
1369 dump_hash_table (dump_file);
1370
1371 if (!expr_table->is_empty ())
1372 {
1373 /* Knowing which MEMs are transparent through a block can signifiantly
1374 increase the number of redundant loads found. So compute transparency
1375 information for each memory expression in the hash table. */
1376 df_analyze ();
1377 if (do_transp)
1378 {
1379 /* This cannot be part of the normal allocation routine because
1380 we have to know the number of elements in the hash table. */
1381 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1382 expr_table->elements ());
1383 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
1384 expr_table->traverse <FILE *, compute_expr_transp> (dump_file);
1385 }
1386 else
1387 transp = NULL;
1388 eliminate_partially_redundant_loads ();
1389 delete_redundant_insns ();
1390 if (do_transp)
1391 sbitmap_vector_free (transp);
1392
1393 if (dump_file)
1394 {
1395 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1396 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1397 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1398 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1399 fprintf (dump_file, "\n\n");
1400 }
1401
1402 statistics_counter_event (cfun, "copies inserted",
1403 stats.copies_inserted);
1404 statistics_counter_event (cfun, "moves inserted",
1405 stats.moves_inserted);
1406 statistics_counter_event (cfun, "insns deleted",
1407 stats.insns_deleted);
1408 }
1409
1410 /* We are finished with alias. */
1411 end_alias_analysis ();
1412
1413 free_mem ();
1414 }
1415
1416 \f
1417
1418 static unsigned int
1419 rest_of_handle_gcse2 (void)
1420 {
1421 gcse_after_reload_main (get_insns ());
1422 rebuild_jump_labels (get_insns ());
1423 return 0;
1424 }
1425
1426 namespace {
1427
1428 const pass_data pass_data_gcse2 =
1429 {
1430 RTL_PASS, /* type */
1431 "gcse2", /* name */
1432 OPTGROUP_NONE, /* optinfo_flags */
1433 TV_GCSE_AFTER_RELOAD, /* tv_id */
1434 0, /* properties_required */
1435 0, /* properties_provided */
1436 0, /* properties_destroyed */
1437 0, /* todo_flags_start */
1438 0, /* todo_flags_finish */
1439 };
1440
1441 class pass_gcse2 : public rtl_opt_pass
1442 {
1443 public:
1444 pass_gcse2 (gcc::context *ctxt)
1445 : rtl_opt_pass (pass_data_gcse2, ctxt)
1446 {}
1447
1448 /* opt_pass methods: */
1449 virtual bool gate (function *fun)
1450 {
1451 return (optimize > 0 && flag_gcse_after_reload
1452 && optimize_function_for_speed_p (fun));
1453 }
1454
1455 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
1456
1457 }; // class pass_gcse2
1458
1459 } // anon namespace
1460
1461 rtl_opt_pass *
1462 make_pass_gcse2 (gcc::context *ctxt)
1463 {
1464 return new pass_gcse2 (ctxt);
1465 }