]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload-gcse.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "diagnostic-core.h"
28
29 #include "alias.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "profile.h"
37 #include "expmed.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "calls.h"
41 #include "emit-rtl.h"
42 #include "varasm.h"
43 #include "stmt.h"
44 #include "expr.h"
45 #include "except.h"
46 #include "intl.h"
47 #include "obstack.h"
48 #include "params.h"
49 #include "target.h"
50 #include "tree-pass.h"
51 #include "dbgcnt.h"
52 #include "gcse-common.h"
53
54 /* The following code implements gcse after reload, the purpose of this
55 pass is to cleanup redundant loads generated by reload and other
56 optimizations that come after gcse. It searches for simple inter-block
57 redundancies and tries to eliminate them by adding moves and loads
58 in cold places.
59
60 Perform partially redundant load elimination, try to eliminate redundant
61 loads created by the reload pass. We try to look for full or partial
62 redundant loads fed by one or more loads/stores in predecessor BBs,
63 and try adding loads to make them fully redundant. We also check if
64 it's worth adding loads to be able to delete the redundant load.
65
66 Algorithm:
67 1. Build available expressions hash table:
68 For each load/store instruction, if the loaded/stored memory didn't
69 change until the end of the basic block add this memory expression to
70 the hash table.
71 2. Perform Redundancy elimination:
72 For each load instruction do the following:
73 perform partial redundancy elimination, check if it's worth adding
74 loads to make the load fully redundant. If so add loads and
75 register copies and delete the load.
76 3. Delete instructions made redundant in step 2.
77
78 Future enhancement:
79 If the loaded register is used/defined between load and some store,
80 look for some other free register between load and all its stores,
81 and replace the load with a copy from this register to the loaded
82 register.
83 */
84 \f
85
86 /* Keep statistics of this pass. */
87 static struct
88 {
89 int moves_inserted;
90 int copies_inserted;
91 int insns_deleted;
92 } stats;
93
94 /* We need to keep a hash table of expressions. The table entries are of
95 type 'struct expr', and for each expression there is a single linked
96 list of occurrences. */
97
98 /* Expression elements in the hash table. */
99 struct expr
100 {
101 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
102 rtx expr;
103
104 /* The same hash for this entry. */
105 hashval_t hash;
106
107 /* Index in the transparent bitmaps. */
108 unsigned int bitmap_index;
109
110 /* List of available occurrence in basic blocks in the function. */
111 struct occr *avail_occr;
112 };
113
114 /* Hashtable helpers. */
115
116 struct expr_hasher : nofree_ptr_hash <expr>
117 {
118 static inline hashval_t hash (const expr *);
119 static inline bool equal (const expr *, const expr *);
120 };
121
122
123 /* Hash expression X.
124 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
125 or if the expression contains something we don't want to insert in the
126 table. */
127
128 static hashval_t
129 hash_expr (rtx x, int *do_not_record_p)
130 {
131 *do_not_record_p = 0;
132 return hash_rtx (x, GET_MODE (x), do_not_record_p,
133 NULL, /*have_reg_qty=*/false);
134 }
135
136 /* Callback for hashtab.
137 Return the hash value for expression EXP. We don't actually hash
138 here, we just return the cached hash value. */
139
140 inline hashval_t
141 expr_hasher::hash (const expr *exp)
142 {
143 return exp->hash;
144 }
145
146 /* Callback for hashtab.
147 Return nonzero if exp1 is equivalent to exp2. */
148
149 inline bool
150 expr_hasher::equal (const expr *exp1, const expr *exp2)
151 {
152 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
153
154 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
155 return equiv_p;
156 }
157
158 /* The table itself. */
159 static hash_table<expr_hasher> *expr_table;
160 \f
161
162 static struct obstack expr_obstack;
163
164 /* Occurrence of an expression.
165 There is at most one occurrence per basic block. If a pattern appears
166 more than once, the last appearance is used. */
167
168 struct occr
169 {
170 /* Next occurrence of this expression. */
171 struct occr *next;
172 /* The insn that computes the expression. */
173 rtx_insn *insn;
174 /* Nonzero if this [anticipatable] occurrence has been deleted. */
175 char deleted_p;
176 };
177
178 static struct obstack occr_obstack;
179
180 /* The following structure holds the information about the occurrences of
181 the redundant instructions. */
182 struct unoccr
183 {
184 struct unoccr *next;
185 edge pred;
186 rtx_insn *insn;
187 };
188
189 static struct obstack unoccr_obstack;
190
191 /* Array where each element is the CUID if the insn that last set the hard
192 register with the number of the element, since the start of the current
193 basic block.
194
195 This array is used during the building of the hash table (step 1) to
196 determine if a reg is killed before the end of a basic block.
197
198 It is also used when eliminating partial redundancies (step 2) to see
199 if a reg was modified since the start of a basic block. */
200 static int *reg_avail_info;
201
202 /* A list of insns that may modify memory within the current basic block. */
203 struct modifies_mem
204 {
205 rtx_insn *insn;
206 struct modifies_mem *next;
207 };
208 static struct modifies_mem *modifies_mem_list;
209
210 /* The modifies_mem structs also go on an obstack, only this obstack is
211 freed each time after completing the analysis or transformations on
212 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
213 object on the obstack to keep track of the bottom of the obstack. */
214 static struct obstack modifies_mem_obstack;
215 static struct modifies_mem *modifies_mem_obstack_bottom;
216
217 /* Mapping of insn UIDs to CUIDs.
218 CUIDs are like UIDs except they increase monotonically in each basic
219 block, have no gaps, and only apply to real insns. */
220 static int *uid_cuid;
221 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
222
223 /* Bitmap of blocks which have memory stores. */
224 static bitmap modify_mem_list_set;
225
226 /* Bitmap of blocks which have calls. */
227 static bitmap blocks_with_calls;
228
229 /* Vector indexed by block # with a list of all the insns that
230 modify memory within the block. */
231 static vec<rtx_insn *> *modify_mem_list;
232
233 /* Vector indexed by block # with a canonicalized list of insns
234 that modify memory in the block. */
235 static vec<modify_pair> *canon_modify_mem_list;
236
237 /* Vector of simple bitmaps indexed by block number. Each component sbitmap
238 indicates which expressions are transparent through the block. */
239 static sbitmap *transp;
240 \f
241
242 /* Helpers for memory allocation/freeing. */
243 static void alloc_mem (void);
244 static void free_mem (void);
245
246 /* Support for hash table construction and transformations. */
247 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
248 static void record_last_reg_set_info (rtx_insn *, rtx);
249 static void record_last_reg_set_info_regno (rtx_insn *, int);
250 static void record_last_mem_set_info (rtx_insn *);
251 static void record_last_set_info (rtx, const_rtx, void *);
252 static void record_opr_changes (rtx_insn *);
253
254 static void find_mem_conflicts (rtx, const_rtx, void *);
255 static int load_killed_in_block_p (int, rtx, bool);
256 static void reset_opr_set_tables (void);
257
258 /* Hash table support. */
259 static hashval_t hash_expr (rtx, int *);
260 static void insert_expr_in_table (rtx, rtx_insn *);
261 static struct expr *lookup_expr_in_table (rtx);
262 static void dump_hash_table (FILE *);
263
264 /* Helpers for eliminate_partially_redundant_load. */
265 static bool reg_killed_on_edge (rtx, edge);
266 static bool reg_used_on_edge (rtx, edge);
267
268 static rtx get_avail_load_store_reg (rtx_insn *);
269
270 static bool bb_has_well_behaved_predecessors (basic_block);
271 static struct occr* get_bb_avail_insn (basic_block, struct occr *, int);
272 static void hash_scan_set (rtx_insn *);
273 static void compute_hash_table (void);
274
275 /* The work horses of this pass. */
276 static void eliminate_partially_redundant_load (basic_block,
277 rtx_insn *,
278 struct expr *);
279 static void eliminate_partially_redundant_loads (void);
280 \f
281
282 /* Allocate memory for the CUID mapping array and register/memory
283 tracking tables. */
284
285 static void
286 alloc_mem (void)
287 {
288 int i;
289 basic_block bb;
290 rtx_insn *insn;
291
292 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
293 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
294 i = 1;
295 FOR_EACH_BB_FN (bb, cfun)
296 FOR_BB_INSNS (bb, insn)
297 {
298 if (INSN_P (insn))
299 uid_cuid[INSN_UID (insn)] = i++;
300 else
301 uid_cuid[INSN_UID (insn)] = i;
302 }
303
304 /* Allocate the available expressions hash table. We don't want to
305 make the hash table too small, but unnecessarily making it too large
306 also doesn't help. The i/4 is a gcse.c relic, and seems like a
307 reasonable choice. */
308 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
309
310 /* We allocate everything on obstacks because we often can roll back
311 the whole obstack to some point. Freeing obstacks is very fast. */
312 gcc_obstack_init (&expr_obstack);
313 gcc_obstack_init (&occr_obstack);
314 gcc_obstack_init (&unoccr_obstack);
315 gcc_obstack_init (&modifies_mem_obstack);
316
317 /* Working array used to track the last set for each register
318 in the current block. */
319 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
320
321 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
322 can roll it back in reset_opr_set_tables. */
323 modifies_mem_obstack_bottom =
324 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
325 sizeof (struct modifies_mem));
326
327 blocks_with_calls = BITMAP_ALLOC (NULL);
328 modify_mem_list_set = BITMAP_ALLOC (NULL);
329
330 modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun),
331 sizeof (vec_rtx_heap));
332 canon_modify_mem_list
333 = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun),
334 sizeof (vec_modify_pair_heap));
335 }
336
337 /* Free memory allocated by alloc_mem. */
338
339 static void
340 free_mem (void)
341 {
342 free (uid_cuid);
343
344 delete expr_table;
345 expr_table = NULL;
346
347 obstack_free (&expr_obstack, NULL);
348 obstack_free (&occr_obstack, NULL);
349 obstack_free (&unoccr_obstack, NULL);
350 obstack_free (&modifies_mem_obstack, NULL);
351
352 unsigned i;
353 bitmap_iterator bi;
354 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
355 {
356 modify_mem_list[i].release ();
357 canon_modify_mem_list[i].release ();
358 }
359
360 BITMAP_FREE (blocks_with_calls);
361 BITMAP_FREE (modify_mem_list_set);
362 free (reg_avail_info);
363 }
364 \f
365
366 /* Insert expression X in INSN in the hash TABLE.
367 If it is already present, record it as the last occurrence in INSN's
368 basic block. */
369
370 static void
371 insert_expr_in_table (rtx x, rtx_insn *insn)
372 {
373 int do_not_record_p;
374 hashval_t hash;
375 struct expr *cur_expr, **slot;
376 struct occr *avail_occr, *last_occr = NULL;
377
378 hash = hash_expr (x, &do_not_record_p);
379
380 /* Do not insert expression in the table if it contains volatile operands,
381 or if hash_expr determines the expression is something we don't want
382 to or can't handle. */
383 if (do_not_record_p)
384 return;
385
386 /* We anticipate that redundant expressions are rare, so for convenience
387 allocate a new hash table element here already and set its fields.
388 If we don't do this, we need a hack with a static struct expr. Anyway,
389 obstack_free is really fast and one more obstack_alloc doesn't hurt if
390 we're going to see more expressions later on. */
391 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
392 sizeof (struct expr));
393 cur_expr->expr = x;
394 cur_expr->hash = hash;
395 cur_expr->avail_occr = NULL;
396
397 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
398
399 if (! (*slot))
400 {
401 /* The expression isn't found, so insert it. */
402 *slot = cur_expr;
403
404 /* Anytime we add an entry to the table, record the index
405 of the new entry. The bitmap index starts counting
406 at zero. */
407 cur_expr->bitmap_index = expr_table->elements () - 1;
408 }
409 else
410 {
411 /* The expression is already in the table, so roll back the
412 obstack and use the existing table entry. */
413 obstack_free (&expr_obstack, cur_expr);
414 cur_expr = *slot;
415 }
416
417 /* Search for another occurrence in the same basic block. */
418 avail_occr = cur_expr->avail_occr;
419 while (avail_occr
420 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
421 {
422 /* If an occurrence isn't found, save a pointer to the end of
423 the list. */
424 last_occr = avail_occr;
425 avail_occr = avail_occr->next;
426 }
427
428 if (avail_occr)
429 /* Found another instance of the expression in the same basic block.
430 Prefer this occurrence to the currently recorded one. We want
431 the last one in the block and the block is scanned from start
432 to end. */
433 avail_occr->insn = insn;
434 else
435 {
436 /* First occurrence of this expression in this basic block. */
437 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
438 sizeof (struct occr));
439
440 /* First occurrence of this expression in any block? */
441 if (cur_expr->avail_occr == NULL)
442 cur_expr->avail_occr = avail_occr;
443 else
444 last_occr->next = avail_occr;
445
446 avail_occr->insn = insn;
447 avail_occr->next = NULL;
448 avail_occr->deleted_p = 0;
449 }
450 }
451 \f
452
453 /* Lookup pattern PAT in the expression hash table.
454 The result is a pointer to the table entry, or NULL if not found. */
455
456 static struct expr *
457 lookup_expr_in_table (rtx pat)
458 {
459 int do_not_record_p;
460 struct expr **slot, *tmp_expr;
461 hashval_t hash = hash_expr (pat, &do_not_record_p);
462
463 if (do_not_record_p)
464 return NULL;
465
466 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
467 sizeof (struct expr));
468 tmp_expr->expr = pat;
469 tmp_expr->hash = hash;
470 tmp_expr->avail_occr = NULL;
471
472 slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT);
473 obstack_free (&expr_obstack, tmp_expr);
474
475 if (!slot)
476 return NULL;
477 else
478 return (*slot);
479 }
480 \f
481
482 /* Dump all expressions and occurrences that are currently in the
483 expression hash table to FILE. */
484
485 /* This helper is called via htab_traverse. */
486 int
487 dump_expr_hash_table_entry (expr **slot, FILE *file)
488 {
489 struct expr *exprs = *slot;
490 struct occr *occr;
491
492 fprintf (file, "expr: ");
493 print_rtl (file, exprs->expr);
494 fprintf (file,"\nhashcode: %u\n", exprs->hash);
495 fprintf (file,"list of occurrences:\n");
496 occr = exprs->avail_occr;
497 while (occr)
498 {
499 rtx_insn *insn = occr->insn;
500 print_rtl_single (file, insn);
501 fprintf (file, "\n");
502 occr = occr->next;
503 }
504 fprintf (file, "\n");
505 return 1;
506 }
507
508 static void
509 dump_hash_table (FILE *file)
510 {
511 fprintf (file, "\n\nexpression hash table\n");
512 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
513 (long) expr_table->size (),
514 (long) expr_table->elements (),
515 expr_table->collisions ());
516 if (expr_table->elements () > 0)
517 {
518 fprintf (file, "\n\ntable entries:\n");
519 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
520 }
521 fprintf (file, "\n");
522 }
523 \f
524 /* Return true if register X is recorded as being set by an instruction
525 whose CUID is greater than the one given. */
526
527 static bool
528 reg_changed_after_insn_p (rtx x, int cuid)
529 {
530 unsigned int regno, end_regno;
531
532 regno = REGNO (x);
533 end_regno = END_REGNO (x);
534 do
535 if (reg_avail_info[regno] > cuid)
536 return true;
537 while (++regno < end_regno);
538 return false;
539 }
540
541 /* Return nonzero if the operands of expression X are unchanged
542 1) from the start of INSN's basic block up to but not including INSN
543 if AFTER_INSN is false, or
544 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
545
546 static bool
547 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
548 {
549 int i, j;
550 enum rtx_code code;
551 const char *fmt;
552
553 if (x == 0)
554 return 1;
555
556 code = GET_CODE (x);
557 switch (code)
558 {
559 case REG:
560 /* We are called after register allocation. */
561 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
562 if (after_insn)
563 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
564 else
565 return !reg_changed_after_insn_p (x, 0);
566
567 case MEM:
568 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
569 return 0;
570 else
571 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
572
573 case PC:
574 case CC0: /*FIXME*/
575 case CONST:
576 CASE_CONST_ANY:
577 case SYMBOL_REF:
578 case LABEL_REF:
579 case ADDR_VEC:
580 case ADDR_DIFF_VEC:
581 return 1;
582
583 case PRE_DEC:
584 case PRE_INC:
585 case POST_DEC:
586 case POST_INC:
587 case PRE_MODIFY:
588 case POST_MODIFY:
589 if (after_insn)
590 return 0;
591 break;
592
593 default:
594 break;
595 }
596
597 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
598 {
599 if (fmt[i] == 'e')
600 {
601 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
602 return 0;
603 }
604 else if (fmt[i] == 'E')
605 for (j = 0; j < XVECLEN (x, i); j++)
606 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
607 return 0;
608 }
609
610 return 1;
611 }
612 \f
613
614 /* Used for communication between find_mem_conflicts and
615 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
616 conflict between two memory references.
617 This is a bit of a hack to work around the limitations of note_stores. */
618 static int mems_conflict_p;
619
620 /* DEST is the output of an instruction. If it is a memory reference, and
621 possibly conflicts with the load found in DATA, then set mems_conflict_p
622 to a nonzero value. */
623
624 static void
625 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
626 void *data)
627 {
628 rtx mem_op = (rtx) data;
629
630 while (GET_CODE (dest) == SUBREG
631 || GET_CODE (dest) == ZERO_EXTRACT
632 || GET_CODE (dest) == STRICT_LOW_PART)
633 dest = XEXP (dest, 0);
634
635 /* If DEST is not a MEM, then it will not conflict with the load. Note
636 that function calls are assumed to clobber memory, but are handled
637 elsewhere. */
638 if (! MEM_P (dest))
639 return;
640
641 if (true_dependence (dest, GET_MODE (dest), mem_op))
642 mems_conflict_p = 1;
643 }
644 \f
645
646 /* Return nonzero if the expression in X (a memory reference) is killed
647 in the current basic block before (if AFTER_INSN is false) or after
648 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
649
650 This function assumes that the modifies_mem table is flushed when
651 the hash table construction or redundancy elimination phases start
652 processing a new basic block. */
653
654 static int
655 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
656 {
657 struct modifies_mem *list_entry = modifies_mem_list;
658
659 while (list_entry)
660 {
661 rtx_insn *setter = list_entry->insn;
662
663 /* Ignore entries in the list that do not apply. */
664 if ((after_insn
665 && INSN_CUID (setter) < uid_limit)
666 || (! after_insn
667 && INSN_CUID (setter) > uid_limit))
668 {
669 list_entry = list_entry->next;
670 continue;
671 }
672
673 /* If SETTER is a call everything is clobbered. Note that calls
674 to pure functions are never put on the list, so we need not
675 worry about them. */
676 if (CALL_P (setter))
677 return 1;
678
679 /* SETTER must be an insn of some kind that sets memory. Call
680 note_stores to examine each hunk of memory that is modified.
681 It will set mems_conflict_p to nonzero if there may be a
682 conflict between X and SETTER. */
683 mems_conflict_p = 0;
684 note_stores (PATTERN (setter), find_mem_conflicts, x);
685 if (mems_conflict_p)
686 return 1;
687
688 list_entry = list_entry->next;
689 }
690 return 0;
691 }
692 \f
693
694 /* Record register first/last/block set information for REGNO in INSN. */
695
696 static inline void
697 record_last_reg_set_info (rtx_insn *insn, rtx reg)
698 {
699 unsigned int regno, end_regno;
700
701 regno = REGNO (reg);
702 end_regno = END_REGNO (reg);
703 do
704 reg_avail_info[regno] = INSN_CUID (insn);
705 while (++regno < end_regno);
706 }
707
708 static inline void
709 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
710 {
711 reg_avail_info[regno] = INSN_CUID (insn);
712 }
713
714
715 /* Record memory modification information for INSN. We do not actually care
716 about the memory location(s) that are set, or even how they are set (consider
717 a CALL_INSN). We merely need to record which insns modify memory. */
718
719 static void
720 record_last_mem_set_info (rtx_insn *insn)
721 {
722 struct modifies_mem *list_entry;
723
724 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
725 sizeof (struct modifies_mem));
726 list_entry->insn = insn;
727 list_entry->next = modifies_mem_list;
728 modifies_mem_list = list_entry;
729
730 record_last_mem_set_info_common (insn, modify_mem_list,
731 canon_modify_mem_list,
732 modify_mem_list_set,
733 blocks_with_calls);
734 }
735
736 /* Called from compute_hash_table via note_stores to handle one
737 SET or CLOBBER in an insn. DATA is really the instruction in which
738 the SET is taking place. */
739
740 static void
741 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
742 {
743 rtx_insn *last_set_insn = (rtx_insn *) data;
744
745 if (GET_CODE (dest) == SUBREG)
746 dest = SUBREG_REG (dest);
747
748 if (REG_P (dest))
749 record_last_reg_set_info (last_set_insn, dest);
750 else if (MEM_P (dest))
751 {
752 /* Ignore pushes, they don't clobber memory. They may still
753 clobber the stack pointer though. Some targets do argument
754 pushes without adding REG_INC notes. See e.g. PR25196,
755 where a pushsi2 on i386 doesn't have REG_INC notes. Note
756 such changes here too. */
757 if (! push_operand (dest, GET_MODE (dest)))
758 record_last_mem_set_info (last_set_insn);
759 else
760 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
761 }
762 }
763
764
765 /* Reset tables used to keep track of what's still available since the
766 start of the block. */
767
768 static void
769 reset_opr_set_tables (void)
770 {
771 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
772 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
773 modifies_mem_list = NULL;
774 }
775 \f
776
777 /* Record things set by INSN.
778 This data is used by oprs_unchanged_p. */
779
780 static void
781 record_opr_changes (rtx_insn *insn)
782 {
783 rtx note;
784
785 /* Find all stores and record them. */
786 note_stores (PATTERN (insn), record_last_set_info, insn);
787
788 /* Also record autoincremented REGs for this insn as changed. */
789 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
790 if (REG_NOTE_KIND (note) == REG_INC)
791 record_last_reg_set_info (insn, XEXP (note, 0));
792
793 /* Finally, if this is a call, record all call clobbers. */
794 if (CALL_P (insn))
795 {
796 unsigned int regno;
797 rtx link, x;
798 hard_reg_set_iterator hrsi;
799 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
800 record_last_reg_set_info_regno (insn, regno);
801
802 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
803 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
804 {
805 x = XEXP (XEXP (link, 0), 0);
806 if (REG_P (x))
807 {
808 gcc_assert (HARD_REGISTER_P (x));
809 record_last_reg_set_info (insn, x);
810 }
811 }
812
813 if (! RTL_CONST_OR_PURE_CALL_P (insn))
814 record_last_mem_set_info (insn);
815 }
816 }
817 \f
818
819 /* Scan the pattern of INSN and add an entry to the hash TABLE.
820 After reload we are interested in loads/stores only. */
821
822 static void
823 hash_scan_set (rtx_insn *insn)
824 {
825 rtx pat = PATTERN (insn);
826 rtx src = SET_SRC (pat);
827 rtx dest = SET_DEST (pat);
828
829 /* We are only interested in loads and stores. */
830 if (! MEM_P (src) && ! MEM_P (dest))
831 return;
832
833 /* Don't mess with jumps and nops. */
834 if (JUMP_P (insn) || set_noop_p (pat))
835 return;
836
837 if (REG_P (dest))
838 {
839 if (/* Don't CSE something if we can't do a reg/reg copy. */
840 can_copy_p (GET_MODE (dest))
841 /* Is SET_SRC something we want to gcse? */
842 && general_operand (src, GET_MODE (src))
843 #ifdef STACK_REGS
844 /* Never consider insns touching the register stack. It may
845 create situations that reg-stack cannot handle (e.g. a stack
846 register live across an abnormal edge). */
847 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
848 #endif
849 /* An expression is not available if its operands are
850 subsequently modified, including this insn. */
851 && oprs_unchanged_p (src, insn, true))
852 {
853 insert_expr_in_table (src, insn);
854 }
855 }
856 else if (REG_P (src))
857 {
858 /* Only record sets of pseudo-regs in the hash table. */
859 if (/* Don't CSE something if we can't do a reg/reg copy. */
860 can_copy_p (GET_MODE (src))
861 /* Is SET_DEST something we want to gcse? */
862 && general_operand (dest, GET_MODE (dest))
863 #ifdef STACK_REGS
864 /* As above for STACK_REGS. */
865 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
866 #endif
867 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
868 /* Check if the memory expression is killed after insn. */
869 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
870 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
871 {
872 insert_expr_in_table (dest, insn);
873 }
874 }
875 }
876 \f
877
878 /* Create hash table of memory expressions available at end of basic
879 blocks. Basically you should think of this hash table as the
880 representation of AVAIL_OUT. This is the set of expressions that
881 is generated in a basic block and not killed before the end of the
882 same basic block. Notice that this is really a local computation. */
883
884 static void
885 compute_hash_table (void)
886 {
887 basic_block bb;
888
889 FOR_EACH_BB_FN (bb, cfun)
890 {
891 rtx_insn *insn;
892
893 /* First pass over the instructions records information used to
894 determine when registers and memory are last set.
895 Since we compute a "local" AVAIL_OUT, reset the tables that
896 help us keep track of what has been modified since the start
897 of the block. */
898 reset_opr_set_tables ();
899 FOR_BB_INSNS (bb, insn)
900 {
901 if (INSN_P (insn))
902 record_opr_changes (insn);
903 }
904
905 /* The next pass actually builds the hash table. */
906 FOR_BB_INSNS (bb, insn)
907 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
908 hash_scan_set (insn);
909 }
910 }
911 \f
912
913 /* Check if register REG is killed in any insn waiting to be inserted on
914 edge E. This function is required to check that our data flow analysis
915 is still valid prior to commit_edge_insertions. */
916
917 static bool
918 reg_killed_on_edge (rtx reg, edge e)
919 {
920 rtx_insn *insn;
921
922 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
923 if (INSN_P (insn) && reg_set_p (reg, insn))
924 return true;
925
926 return false;
927 }
928
929 /* Similar to above - check if register REG is used in any insn waiting
930 to be inserted on edge E.
931 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
932 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
933
934 static bool
935 reg_used_on_edge (rtx reg, edge e)
936 {
937 rtx_insn *insn;
938
939 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
940 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
941 return true;
942
943 return false;
944 }
945 \f
946 /* Return the loaded/stored register of a load/store instruction. */
947
948 static rtx
949 get_avail_load_store_reg (rtx_insn *insn)
950 {
951 if (REG_P (SET_DEST (PATTERN (insn))))
952 /* A load. */
953 return SET_DEST (PATTERN (insn));
954 else
955 {
956 /* A store. */
957 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
958 return SET_SRC (PATTERN (insn));
959 }
960 }
961
962 /* Return nonzero if the predecessors of BB are "well behaved". */
963
964 static bool
965 bb_has_well_behaved_predecessors (basic_block bb)
966 {
967 edge pred;
968 edge_iterator ei;
969
970 if (EDGE_COUNT (bb->preds) == 0)
971 return false;
972
973 FOR_EACH_EDGE (pred, ei, bb->preds)
974 {
975 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
976 return false;
977
978 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
979 return false;
980
981 if (tablejump_p (BB_END (pred->src), NULL, NULL))
982 return false;
983 }
984 return true;
985 }
986
987
988 /* Search for the occurrences of expression in BB. */
989
990 static struct occr*
991 get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index)
992 {
993 struct occr *occr = orig_occr;
994
995 for (; occr != NULL; occr = occr->next)
996 if (BLOCK_FOR_INSN (occr->insn) == bb)
997 return occr;
998
999 /* If we could not find an occurrence in BB, see if BB
1000 has a single predecessor with an occurrence that is
1001 transparent through BB. */
1002 if (single_pred_p (bb)
1003 && bitmap_bit_p (transp[bb->index], bitmap_index)
1004 && (occr = get_bb_avail_insn (single_pred (bb), orig_occr, bitmap_index)))
1005 {
1006 rtx avail_reg = get_avail_load_store_reg (occr->insn);
1007 if (!reg_set_between_p (avail_reg,
1008 PREV_INSN (BB_HEAD (bb)),
1009 NEXT_INSN (BB_END (bb)))
1010 && !reg_killed_on_edge (avail_reg, single_pred_edge (bb)))
1011 return occr;
1012 }
1013
1014 return NULL;
1015 }
1016
1017
1018 /* This helper is called via htab_traverse. */
1019 int
1020 compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED)
1021 {
1022 struct expr *expr = *slot;
1023
1024 compute_transp (expr->expr, expr->bitmap_index, transp,
1025 blocks_with_calls, modify_mem_list_set,
1026 canon_modify_mem_list);
1027 return 1;
1028 }
1029
1030 /* This handles the case where several stores feed a partially redundant
1031 load. It checks if the redundancy elimination is possible and if it's
1032 worth it.
1033
1034 Redundancy elimination is possible if,
1035 1) None of the operands of an insn have been modified since the start
1036 of the current basic block.
1037 2) In any predecessor of the current basic block, the same expression
1038 is generated.
1039
1040 See the function body for the heuristics that determine if eliminating
1041 a redundancy is also worth doing, assuming it is possible. */
1042
1043 static void
1044 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
1045 struct expr *expr)
1046 {
1047 edge pred;
1048 rtx_insn *avail_insn = NULL;
1049 rtx avail_reg;
1050 rtx dest, pat;
1051 struct occr *a_occr;
1052 struct unoccr *occr, *avail_occrs = NULL;
1053 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1054 int npred_ok = 0;
1055 gcov_type ok_count = 0; /* Redundant load execution count. */
1056 gcov_type critical_count = 0; /* Execution count of critical edges. */
1057 edge_iterator ei;
1058 bool critical_edge_split = false;
1059
1060 /* The execution count of the loads to be added to make the
1061 load fully redundant. */
1062 gcov_type not_ok_count = 0;
1063 basic_block pred_bb;
1064
1065 pat = PATTERN (insn);
1066 dest = SET_DEST (pat);
1067
1068 /* Check that the loaded register is not used, set, or killed from the
1069 beginning of the block. */
1070 if (reg_changed_after_insn_p (dest, 0)
1071 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
1072 return;
1073
1074 /* Check potential for replacing load with copy for predecessors. */
1075 FOR_EACH_EDGE (pred, ei, bb->preds)
1076 {
1077 rtx_insn *next_pred_bb_end;
1078
1079 avail_insn = NULL;
1080 avail_reg = NULL_RTX;
1081 pred_bb = pred->src;
1082 for (a_occr = get_bb_avail_insn (pred_bb,
1083 expr->avail_occr,
1084 expr->bitmap_index);
1085 a_occr;
1086 a_occr = get_bb_avail_insn (pred_bb,
1087 a_occr->next,
1088 expr->bitmap_index))
1089 {
1090 /* Check if the loaded register is not used. */
1091 avail_insn = a_occr->insn;
1092 avail_reg = get_avail_load_store_reg (avail_insn);
1093 gcc_assert (avail_reg);
1094
1095 /* Make sure we can generate a move from register avail_reg to
1096 dest. */
1097 rtx_insn *move = gen_move_insn (copy_rtx (dest),
1098 copy_rtx (avail_reg));
1099 extract_insn (move);
1100 if (! constrain_operands (1, get_preferred_alternatives (insn,
1101 pred_bb))
1102 || reg_killed_on_edge (avail_reg, pred)
1103 || reg_used_on_edge (dest, pred))
1104 {
1105 avail_insn = NULL;
1106 continue;
1107 }
1108 next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn)));
1109 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1110 /* AVAIL_INSN remains non-null. */
1111 break;
1112 else
1113 avail_insn = NULL;
1114 }
1115
1116 if (EDGE_CRITICAL_P (pred))
1117 critical_count += pred->count;
1118
1119 if (avail_insn != NULL_RTX)
1120 {
1121 npred_ok++;
1122 ok_count += pred->count;
1123 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1124 copy_rtx (avail_reg)))))
1125 {
1126 /* Check if there is going to be a split. */
1127 if (EDGE_CRITICAL_P (pred))
1128 critical_edge_split = true;
1129 }
1130 else /* Its a dead move no need to generate. */
1131 continue;
1132 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1133 sizeof (struct unoccr));
1134 occr->insn = avail_insn;
1135 occr->pred = pred;
1136 occr->next = avail_occrs;
1137 avail_occrs = occr;
1138 if (! rollback_unoccr)
1139 rollback_unoccr = occr;
1140 }
1141 else
1142 {
1143 /* Adding a load on a critical edge will cause a split. */
1144 if (EDGE_CRITICAL_P (pred))
1145 critical_edge_split = true;
1146 not_ok_count += pred->count;
1147 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1148 sizeof (struct unoccr));
1149 unoccr->insn = NULL;
1150 unoccr->pred = pred;
1151 unoccr->next = unavail_occrs;
1152 unavail_occrs = unoccr;
1153 if (! rollback_unoccr)
1154 rollback_unoccr = unoccr;
1155 }
1156 }
1157
1158 if (/* No load can be replaced by copy. */
1159 npred_ok == 0
1160 /* Prevent exploding the code. */
1161 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1162 /* If we don't have profile information we cannot tell if splitting
1163 a critical edge is profitable or not so don't do it. */
1164 || ((! profile_info || ! flag_branch_probabilities
1165 || targetm.cannot_modify_jumps_p ())
1166 && critical_edge_split))
1167 goto cleanup;
1168
1169 /* Check if it's worth applying the partial redundancy elimination. */
1170 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1171 goto cleanup;
1172 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1173 goto cleanup;
1174
1175 /* Generate moves to the loaded register from where
1176 the memory is available. */
1177 for (occr = avail_occrs; occr; occr = occr->next)
1178 {
1179 avail_insn = occr->insn;
1180 pred = occr->pred;
1181 /* Set avail_reg to be the register having the value of the
1182 memory. */
1183 avail_reg = get_avail_load_store_reg (avail_insn);
1184 gcc_assert (avail_reg);
1185
1186 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1187 copy_rtx (avail_reg)),
1188 pred);
1189 stats.moves_inserted++;
1190
1191 if (dump_file)
1192 fprintf (dump_file,
1193 "generating move from %d to %d on edge from %d to %d\n",
1194 REGNO (avail_reg),
1195 REGNO (dest),
1196 pred->src->index,
1197 pred->dest->index);
1198 }
1199
1200 /* Regenerate loads where the memory is unavailable. */
1201 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1202 {
1203 pred = unoccr->pred;
1204 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1205 stats.copies_inserted++;
1206
1207 if (dump_file)
1208 {
1209 fprintf (dump_file,
1210 "generating on edge from %d to %d a copy of load: ",
1211 pred->src->index,
1212 pred->dest->index);
1213 print_rtl (dump_file, PATTERN (insn));
1214 fprintf (dump_file, "\n");
1215 }
1216 }
1217
1218 /* Delete the insn if it is not available in this block and mark it
1219 for deletion if it is available. If insn is available it may help
1220 discover additional redundancies, so mark it for later deletion. */
1221 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr, expr->bitmap_index);
1222 a_occr && (a_occr->insn != insn);
1223 a_occr = get_bb_avail_insn (bb, a_occr->next, expr->bitmap_index))
1224 ;
1225
1226 if (!a_occr)
1227 {
1228 stats.insns_deleted++;
1229
1230 if (dump_file)
1231 {
1232 fprintf (dump_file, "deleting insn:\n");
1233 print_rtl_single (dump_file, insn);
1234 fprintf (dump_file, "\n");
1235 }
1236 delete_insn (insn);
1237 }
1238 else
1239 a_occr->deleted_p = 1;
1240
1241 cleanup:
1242 if (rollback_unoccr)
1243 obstack_free (&unoccr_obstack, rollback_unoccr);
1244 }
1245
1246 /* Performing the redundancy elimination as described before. */
1247
1248 static void
1249 eliminate_partially_redundant_loads (void)
1250 {
1251 rtx_insn *insn;
1252 basic_block bb;
1253
1254 /* Note we start at block 1. */
1255
1256 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1257 return;
1258
1259 FOR_BB_BETWEEN (bb,
1260 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1261 EXIT_BLOCK_PTR_FOR_FN (cfun),
1262 next_bb)
1263 {
1264 /* Don't try anything on basic blocks with strange predecessors. */
1265 if (! bb_has_well_behaved_predecessors (bb))
1266 continue;
1267
1268 /* Do not try anything on cold basic blocks. */
1269 if (optimize_bb_for_size_p (bb))
1270 continue;
1271
1272 /* Reset the table of things changed since the start of the current
1273 basic block. */
1274 reset_opr_set_tables ();
1275
1276 /* Look at all insns in the current basic block and see if there are
1277 any loads in it that we can record. */
1278 FOR_BB_INSNS (bb, insn)
1279 {
1280 /* Is it a load - of the form (set (reg) (mem))? */
1281 if (NONJUMP_INSN_P (insn)
1282 && GET_CODE (PATTERN (insn)) == SET
1283 && REG_P (SET_DEST (PATTERN (insn)))
1284 && MEM_P (SET_SRC (PATTERN (insn))))
1285 {
1286 rtx pat = PATTERN (insn);
1287 rtx src = SET_SRC (pat);
1288 struct expr *expr;
1289
1290 if (!MEM_VOLATILE_P (src)
1291 && GET_MODE (src) != BLKmode
1292 && general_operand (src, GET_MODE (src))
1293 /* Are the operands unchanged since the start of the
1294 block? */
1295 && oprs_unchanged_p (src, insn, false)
1296 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1297 && !side_effects_p (src)
1298 /* Is the expression recorded? */
1299 && (expr = lookup_expr_in_table (src)) != NULL)
1300 {
1301 /* We now have a load (insn) and an available memory at
1302 its BB start (expr). Try to remove the loads if it is
1303 redundant. */
1304 eliminate_partially_redundant_load (bb, insn, expr);
1305 }
1306 }
1307
1308 /* Keep track of everything modified by this insn, so that we
1309 know what has been modified since the start of the current
1310 basic block. */
1311 if (INSN_P (insn))
1312 record_opr_changes (insn);
1313 }
1314 }
1315
1316 commit_edge_insertions ();
1317 }
1318
1319 /* Go over the expression hash table and delete insns that were
1320 marked for later deletion. */
1321
1322 /* This helper is called via htab_traverse. */
1323 int
1324 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1325 {
1326 struct expr *exprs = *slot;
1327 struct occr *occr;
1328
1329 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1330 {
1331 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1332 {
1333 delete_insn (occr->insn);
1334 stats.insns_deleted++;
1335
1336 if (dump_file)
1337 {
1338 fprintf (dump_file, "deleting insn:\n");
1339 print_rtl_single (dump_file, occr->insn);
1340 fprintf (dump_file, "\n");
1341 }
1342 }
1343 }
1344
1345 return 1;
1346 }
1347
1348 static void
1349 delete_redundant_insns (void)
1350 {
1351 expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1352 if (dump_file)
1353 fprintf (dump_file, "\n");
1354 }
1355
1356 /* Main entry point of the GCSE after reload - clean some redundant loads
1357 due to spilling. */
1358
1359 static void
1360 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1361 {
1362
1363 memset (&stats, 0, sizeof (stats));
1364
1365 /* Allocate memory for this pass.
1366 Also computes and initializes the insns' CUIDs. */
1367 alloc_mem ();
1368
1369 /* We need alias analysis. */
1370 init_alias_analysis ();
1371
1372 compute_hash_table ();
1373
1374 if (dump_file)
1375 dump_hash_table (dump_file);
1376
1377 if (expr_table->elements () > 0)
1378 {
1379 /* Knowing which MEMs are transparent through a block can signifiantly
1380 increase the number of redundant loads found. So compute transparency
1381 information for each memory expression in the hash table. */
1382 df_analyze ();
1383 /* This can not be part of the normal allocation routine because
1384 we have to know the number of elements in the hash table. */
1385 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1386 expr_table->elements ());
1387 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
1388 expr_table->traverse <FILE *, compute_expr_transp> (dump_file);
1389 eliminate_partially_redundant_loads ();
1390 delete_redundant_insns ();
1391 sbitmap_vector_free (transp);
1392
1393 if (dump_file)
1394 {
1395 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1396 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1397 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1398 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1399 fprintf (dump_file, "\n\n");
1400 }
1401
1402 statistics_counter_event (cfun, "copies inserted",
1403 stats.copies_inserted);
1404 statistics_counter_event (cfun, "moves inserted",
1405 stats.moves_inserted);
1406 statistics_counter_event (cfun, "insns deleted",
1407 stats.insns_deleted);
1408 }
1409
1410 /* We are finished with alias. */
1411 end_alias_analysis ();
1412
1413 free_mem ();
1414 }
1415
1416 \f
1417
1418 static unsigned int
1419 rest_of_handle_gcse2 (void)
1420 {
1421 gcse_after_reload_main (get_insns ());
1422 rebuild_jump_labels (get_insns ());
1423 return 0;
1424 }
1425
1426 namespace {
1427
1428 const pass_data pass_data_gcse2 =
1429 {
1430 RTL_PASS, /* type */
1431 "gcse2", /* name */
1432 OPTGROUP_NONE, /* optinfo_flags */
1433 TV_GCSE_AFTER_RELOAD, /* tv_id */
1434 0, /* properties_required */
1435 0, /* properties_provided */
1436 0, /* properties_destroyed */
1437 0, /* todo_flags_start */
1438 0, /* todo_flags_finish */
1439 };
1440
1441 class pass_gcse2 : public rtl_opt_pass
1442 {
1443 public:
1444 pass_gcse2 (gcc::context *ctxt)
1445 : rtl_opt_pass (pass_data_gcse2, ctxt)
1446 {}
1447
1448 /* opt_pass methods: */
1449 virtual bool gate (function *fun)
1450 {
1451 return (optimize > 0 && flag_gcse_after_reload
1452 && optimize_function_for_speed_p (fun));
1453 }
1454
1455 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
1456
1457 }; // class pass_gcse2
1458
1459 } // anon namespace
1460
1461 rtl_opt_pass *
1462 make_pass_gcse2 (gcc::context *ctxt)
1463 {
1464 return new pass_gcse2 (ctxt);
1465 }