]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload-gcse.c
Remove CC0
[thirdparty/gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34
35 #include "cfgrtl.h"
36 #include "profile.h"
37 #include "expr.h"
38 #include "tree-pass.h"
39 #include "dbgcnt.h"
40 #include "intl.h"
41 #include "gcse-common.h"
42 #include "gcse.h"
43 #include "regs.h"
44 #include "function-abi.h"
45
46 /* The following code implements gcse after reload, the purpose of this
47 pass is to cleanup redundant loads generated by reload and other
48 optimizations that come after gcse. It searches for simple inter-block
49 redundancies and tries to eliminate them by adding moves and loads
50 in cold places.
51
52 Perform partially redundant load elimination, try to eliminate redundant
53 loads created by the reload pass. We try to look for full or partial
54 redundant loads fed by one or more loads/stores in predecessor BBs,
55 and try adding loads to make them fully redundant. We also check if
56 it's worth adding loads to be able to delete the redundant load.
57
58 Algorithm:
59 1. Build available expressions hash table:
60 For each load/store instruction, if the loaded/stored memory didn't
61 change until the end of the basic block add this memory expression to
62 the hash table.
63 2. Perform Redundancy elimination:
64 For each load instruction do the following:
65 perform partial redundancy elimination, check if it's worth adding
66 loads to make the load fully redundant. If so add loads and
67 register copies and delete the load.
68 3. Delete instructions made redundant in step 2.
69
70 Future enhancement:
71 If the loaded register is used/defined between load and some store,
72 look for some other free register between load and all its stores,
73 and replace the load with a copy from this register to the loaded
74 register.
75 */
76 \f
77
78 /* Keep statistics of this pass. */
79 static struct
80 {
81 int moves_inserted;
82 int copies_inserted;
83 int insns_deleted;
84 } stats;
85
86 /* We need to keep a hash table of expressions. The table entries are of
87 type 'struct expr', and for each expression there is a single linked
88 list of occurrences. */
89
90 /* Expression elements in the hash table. */
91 struct expr
92 {
93 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
94 rtx expr;
95
96 /* The same hash for this entry. */
97 hashval_t hash;
98
99 /* Index in the transparent bitmaps. */
100 unsigned int bitmap_index;
101
102 /* List of available occurrence in basic blocks in the function. */
103 struct occr *avail_occr;
104 };
105
106 /* Hashtable helpers. */
107
108 struct expr_hasher : nofree_ptr_hash <expr>
109 {
110 static inline hashval_t hash (const expr *);
111 static inline bool equal (const expr *, const expr *);
112 };
113
114
115 /* Hash expression X.
116 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
117 or if the expression contains something we don't want to insert in the
118 table. */
119
120 static hashval_t
121 hash_expr (rtx x, int *do_not_record_p)
122 {
123 *do_not_record_p = 0;
124 return hash_rtx (x, GET_MODE (x), do_not_record_p,
125 NULL, /*have_reg_qty=*/false);
126 }
127
128 /* Callback for hashtab.
129 Return the hash value for expression EXP. We don't actually hash
130 here, we just return the cached hash value. */
131
132 inline hashval_t
133 expr_hasher::hash (const expr *exp)
134 {
135 return exp->hash;
136 }
137
138 /* Callback for hashtab.
139 Return nonzero if exp1 is equivalent to exp2. */
140
141 inline bool
142 expr_hasher::equal (const expr *exp1, const expr *exp2)
143 {
144 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
145
146 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
147 return equiv_p;
148 }
149
150 /* The table itself. */
151 static hash_table<expr_hasher> *expr_table;
152 \f
153
154 static struct obstack expr_obstack;
155
156 /* Occurrence of an expression.
157 There is at most one occurrence per basic block. If a pattern appears
158 more than once, the last appearance is used. */
159
160 struct occr
161 {
162 /* Next occurrence of this expression. */
163 struct occr *next;
164 /* The insn that computes the expression. */
165 rtx_insn *insn;
166 /* Nonzero if this [anticipatable] occurrence has been deleted. */
167 char deleted_p;
168 };
169
170 static struct obstack occr_obstack;
171
172 /* The following structure holds the information about the occurrences of
173 the redundant instructions. */
174 struct unoccr
175 {
176 struct unoccr *next;
177 edge pred;
178 rtx_insn *insn;
179 };
180
181 static struct obstack unoccr_obstack;
182
183 /* Array where each element is the CUID if the insn that last set the hard
184 register with the number of the element, since the start of the current
185 basic block.
186
187 This array is used during the building of the hash table (step 1) to
188 determine if a reg is killed before the end of a basic block.
189
190 It is also used when eliminating partial redundancies (step 2) to see
191 if a reg was modified since the start of a basic block. */
192 static int *reg_avail_info;
193
194 /* A list of insns that may modify memory within the current basic block. */
195 struct modifies_mem
196 {
197 rtx_insn *insn;
198 struct modifies_mem *next;
199 };
200 static struct modifies_mem *modifies_mem_list;
201
202 /* The modifies_mem structs also go on an obstack, only this obstack is
203 freed each time after completing the analysis or transformations on
204 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
205 object on the obstack to keep track of the bottom of the obstack. */
206 static struct obstack modifies_mem_obstack;
207 static struct modifies_mem *modifies_mem_obstack_bottom;
208
209 /* Mapping of insn UIDs to CUIDs.
210 CUIDs are like UIDs except they increase monotonically in each basic
211 block, have no gaps, and only apply to real insns. */
212 static int *uid_cuid;
213 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
214
215 /* Bitmap of blocks which have memory stores. */
216 static bitmap modify_mem_list_set;
217
218 /* Bitmap of blocks which have calls. */
219 static bitmap blocks_with_calls;
220
221 /* Vector indexed by block # with a list of all the insns that
222 modify memory within the block. */
223 static vec<rtx_insn *> *modify_mem_list;
224
225 /* Vector indexed by block # with a canonicalized list of insns
226 that modify memory in the block. */
227 static vec<modify_pair> *canon_modify_mem_list;
228
229 /* Vector of simple bitmaps indexed by block number. Each component sbitmap
230 indicates which expressions are transparent through the block. */
231 static sbitmap *transp;
232 \f
233
234 /* Helpers for memory allocation/freeing. */
235 static void alloc_mem (void);
236 static void free_mem (void);
237
238 /* Support for hash table construction and transformations. */
239 static bool oprs_unchanged_p (rtx, rtx_insn *, bool);
240 static void record_last_reg_set_info (rtx_insn *, rtx);
241 static void record_last_reg_set_info_regno (rtx_insn *, int);
242 static void record_last_mem_set_info (rtx_insn *);
243 static void record_last_set_info (rtx, const_rtx, void *);
244 static void record_opr_changes (rtx_insn *);
245
246 static void find_mem_conflicts (rtx, const_rtx, void *);
247 static int load_killed_in_block_p (int, rtx, bool);
248 static void reset_opr_set_tables (void);
249
250 /* Hash table support. */
251 static hashval_t hash_expr (rtx, int *);
252 static void insert_expr_in_table (rtx, rtx_insn *);
253 static struct expr *lookup_expr_in_table (rtx);
254 static void dump_hash_table (FILE *);
255
256 /* Helpers for eliminate_partially_redundant_load. */
257 static bool reg_killed_on_edge (rtx, edge);
258 static bool reg_used_on_edge (rtx, edge);
259
260 static rtx get_avail_load_store_reg (rtx_insn *);
261
262 static bool bb_has_well_behaved_predecessors (basic_block);
263 static struct occr* get_bb_avail_insn (basic_block, struct occr *, int);
264 static void hash_scan_set (rtx_insn *);
265 static void compute_hash_table (void);
266
267 /* The work horses of this pass. */
268 static void eliminate_partially_redundant_load (basic_block,
269 rtx_insn *,
270 struct expr *);
271 static void eliminate_partially_redundant_loads (void);
272 \f
273
274 /* Allocate memory for the CUID mapping array and register/memory
275 tracking tables. */
276
277 static void
278 alloc_mem (void)
279 {
280 int i;
281 basic_block bb;
282 rtx_insn *insn;
283
284 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
285 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
286 i = 1;
287 FOR_EACH_BB_FN (bb, cfun)
288 FOR_BB_INSNS (bb, insn)
289 {
290 if (INSN_P (insn))
291 uid_cuid[INSN_UID (insn)] = i++;
292 else
293 uid_cuid[INSN_UID (insn)] = i;
294 }
295
296 /* Allocate the available expressions hash table. We don't want to
297 make the hash table too small, but unnecessarily making it too large
298 also doesn't help. The i/4 is a gcse.c relic, and seems like a
299 reasonable choice. */
300 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13));
301
302 /* We allocate everything on obstacks because we often can roll back
303 the whole obstack to some point. Freeing obstacks is very fast. */
304 gcc_obstack_init (&expr_obstack);
305 gcc_obstack_init (&occr_obstack);
306 gcc_obstack_init (&unoccr_obstack);
307 gcc_obstack_init (&modifies_mem_obstack);
308
309 /* Working array used to track the last set for each register
310 in the current block. */
311 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
312
313 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
314 can roll it back in reset_opr_set_tables. */
315 modifies_mem_obstack_bottom =
316 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
317 sizeof (struct modifies_mem));
318
319 blocks_with_calls = BITMAP_ALLOC (NULL);
320 modify_mem_list_set = BITMAP_ALLOC (NULL);
321
322 modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun),
323 sizeof (vec_rtx_heap));
324 canon_modify_mem_list
325 = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun),
326 sizeof (vec_modify_pair_heap));
327 }
328
329 /* Free memory allocated by alloc_mem. */
330
331 static void
332 free_mem (void)
333 {
334 free (uid_cuid);
335
336 delete expr_table;
337 expr_table = NULL;
338
339 obstack_free (&expr_obstack, NULL);
340 obstack_free (&occr_obstack, NULL);
341 obstack_free (&unoccr_obstack, NULL);
342 obstack_free (&modifies_mem_obstack, NULL);
343
344 unsigned i;
345 bitmap_iterator bi;
346 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
347 {
348 modify_mem_list[i].release ();
349 canon_modify_mem_list[i].release ();
350 }
351
352 BITMAP_FREE (blocks_with_calls);
353 BITMAP_FREE (modify_mem_list_set);
354 free (reg_avail_info);
355 free (modify_mem_list);
356 free (canon_modify_mem_list);
357 }
358 \f
359
360 /* Insert expression X in INSN in the hash TABLE.
361 If it is already present, record it as the last occurrence in INSN's
362 basic block. */
363
364 static void
365 insert_expr_in_table (rtx x, rtx_insn *insn)
366 {
367 int do_not_record_p;
368 hashval_t hash;
369 struct expr *cur_expr, **slot;
370 struct occr *avail_occr;
371
372 hash = hash_expr (x, &do_not_record_p);
373
374 /* Do not insert expression in the table if it contains volatile operands,
375 or if hash_expr determines the expression is something we don't want
376 to or can't handle. */
377 if (do_not_record_p)
378 return;
379
380 /* We anticipate that redundant expressions are rare, so for convenience
381 allocate a new hash table element here already and set its fields.
382 If we don't do this, we need a hack with a static struct expr. Anyway,
383 obstack_free is really fast and one more obstack_alloc doesn't hurt if
384 we're going to see more expressions later on. */
385 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
386 sizeof (struct expr));
387 cur_expr->expr = x;
388 cur_expr->hash = hash;
389 cur_expr->avail_occr = NULL;
390
391 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT);
392
393 if (! (*slot))
394 {
395 /* The expression isn't found, so insert it. */
396 *slot = cur_expr;
397
398 /* Anytime we add an entry to the table, record the index
399 of the new entry. The bitmap index starts counting
400 at zero. */
401 cur_expr->bitmap_index = expr_table->elements () - 1;
402 }
403 else
404 {
405 /* The expression is already in the table, so roll back the
406 obstack and use the existing table entry. */
407 obstack_free (&expr_obstack, cur_expr);
408 cur_expr = *slot;
409 }
410
411 /* Search for another occurrence in the same basic block. We insert
412 insns blockwise from start to end, so keep appending to the
413 start of the list so we have to check only a single element. */
414 avail_occr = cur_expr->avail_occr;
415 if (avail_occr
416 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
417 avail_occr->insn = insn;
418 else
419 {
420 /* First occurrence of this expression in this basic block. */
421 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
422 sizeof (struct occr));
423 avail_occr->insn = insn;
424 avail_occr->next = cur_expr->avail_occr;
425 avail_occr->deleted_p = 0;
426 cur_expr->avail_occr = avail_occr;
427 }
428 }
429 \f
430
431 /* Lookup pattern PAT in the expression hash table.
432 The result is a pointer to the table entry, or NULL if not found. */
433
434 static struct expr *
435 lookup_expr_in_table (rtx pat)
436 {
437 int do_not_record_p;
438 struct expr **slot, *tmp_expr;
439 hashval_t hash = hash_expr (pat, &do_not_record_p);
440
441 if (do_not_record_p)
442 return NULL;
443
444 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
445 sizeof (struct expr));
446 tmp_expr->expr = pat;
447 tmp_expr->hash = hash;
448 tmp_expr->avail_occr = NULL;
449
450 slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT);
451 obstack_free (&expr_obstack, tmp_expr);
452
453 if (!slot)
454 return NULL;
455 else
456 return (*slot);
457 }
458 \f
459
460 /* Dump all expressions and occurrences that are currently in the
461 expression hash table to FILE. */
462
463 /* This helper is called via htab_traverse. */
464 int
465 dump_expr_hash_table_entry (expr **slot, FILE *file)
466 {
467 struct expr *exprs = *slot;
468 struct occr *occr;
469
470 fprintf (file, "expr: ");
471 print_rtl (file, exprs->expr);
472 fprintf (file,"\nhashcode: %u\n", exprs->hash);
473 fprintf (file,"list of occurrences:\n");
474 occr = exprs->avail_occr;
475 while (occr)
476 {
477 rtx_insn *insn = occr->insn;
478 print_rtl_single (file, insn);
479 fprintf (file, "\n");
480 occr = occr->next;
481 }
482 fprintf (file, "\n");
483 return 1;
484 }
485
486 static void
487 dump_hash_table (FILE *file)
488 {
489 fprintf (file, "\n\nexpression hash table\n");
490 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
491 (long) expr_table->size (),
492 (long) expr_table->elements (),
493 expr_table->collisions ());
494 if (!expr_table->is_empty ())
495 {
496 fprintf (file, "\n\ntable entries:\n");
497 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file);
498 }
499 fprintf (file, "\n");
500 }
501 \f
502 /* Return true if register X is recorded as being set by an instruction
503 whose CUID is greater than the one given. */
504
505 static bool
506 reg_changed_after_insn_p (rtx x, int cuid)
507 {
508 unsigned int regno, end_regno;
509
510 regno = REGNO (x);
511 end_regno = END_REGNO (x);
512 do
513 if (reg_avail_info[regno] > cuid)
514 return true;
515 while (++regno < end_regno);
516 return false;
517 }
518
519 /* Return nonzero if the operands of expression X are unchanged
520 1) from the start of INSN's basic block up to but not including INSN
521 if AFTER_INSN is false, or
522 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
523
524 static bool
525 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn)
526 {
527 int i, j;
528 enum rtx_code code;
529 const char *fmt;
530
531 if (x == 0)
532 return 1;
533
534 code = GET_CODE (x);
535 switch (code)
536 {
537 case REG:
538 /* We are called after register allocation. */
539 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
540 if (after_insn)
541 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
542 else
543 return !reg_changed_after_insn_p (x, 0);
544
545 case MEM:
546 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
547 return 0;
548 else
549 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
550
551 case PC:
552 case CONST:
553 CASE_CONST_ANY:
554 case SYMBOL_REF:
555 case LABEL_REF:
556 case ADDR_VEC:
557 case ADDR_DIFF_VEC:
558 return 1;
559
560 case PRE_DEC:
561 case PRE_INC:
562 case POST_DEC:
563 case POST_INC:
564 case PRE_MODIFY:
565 case POST_MODIFY:
566 if (after_insn)
567 return 0;
568 break;
569
570 default:
571 break;
572 }
573
574 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
575 {
576 if (fmt[i] == 'e')
577 {
578 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
579 return 0;
580 }
581 else if (fmt[i] == 'E')
582 for (j = 0; j < XVECLEN (x, i); j++)
583 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
584 return 0;
585 }
586
587 return 1;
588 }
589 \f
590
591 /* Used for communication between find_mem_conflicts and
592 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
593 conflict between two memory references.
594 This is a bit of a hack to work around the limitations of note_stores. */
595 static int mems_conflict_p;
596
597 /* DEST is the output of an instruction. If it is a memory reference, and
598 possibly conflicts with the load found in DATA, then set mems_conflict_p
599 to a nonzero value. */
600
601 static void
602 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
603 void *data)
604 {
605 rtx mem_op = (rtx) data;
606
607 while (GET_CODE (dest) == SUBREG
608 || GET_CODE (dest) == ZERO_EXTRACT
609 || GET_CODE (dest) == STRICT_LOW_PART)
610 dest = XEXP (dest, 0);
611
612 /* If DEST is not a MEM, then it will not conflict with the load. Note
613 that function calls are assumed to clobber memory, but are handled
614 elsewhere. */
615 if (! MEM_P (dest))
616 return;
617
618 if (true_dependence (dest, GET_MODE (dest), mem_op))
619 mems_conflict_p = 1;
620 }
621 \f
622
623 /* Return nonzero if the expression in X (a memory reference) is killed
624 in the current basic block before (if AFTER_INSN is false) or after
625 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
626
627 This function assumes that the modifies_mem table is flushed when
628 the hash table construction or redundancy elimination phases start
629 processing a new basic block. */
630
631 static int
632 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
633 {
634 struct modifies_mem *list_entry = modifies_mem_list;
635
636 while (list_entry)
637 {
638 rtx_insn *setter = list_entry->insn;
639
640 /* Ignore entries in the list that do not apply. */
641 if ((after_insn
642 && INSN_CUID (setter) < uid_limit)
643 || (! after_insn
644 && INSN_CUID (setter) > uid_limit))
645 {
646 list_entry = list_entry->next;
647 continue;
648 }
649
650 /* If SETTER is a call everything is clobbered. Note that calls
651 to pure functions are never put on the list, so we need not
652 worry about them. */
653 if (CALL_P (setter))
654 return 1;
655
656 /* SETTER must be an insn of some kind that sets memory. Call
657 note_stores to examine each hunk of memory that is modified.
658 It will set mems_conflict_p to nonzero if there may be a
659 conflict between X and SETTER. */
660 mems_conflict_p = 0;
661 note_stores (setter, find_mem_conflicts, x);
662 if (mems_conflict_p)
663 return 1;
664
665 list_entry = list_entry->next;
666 }
667 return 0;
668 }
669 \f
670
671 /* Record register first/last/block set information for REGNO in INSN. */
672
673 static inline void
674 record_last_reg_set_info (rtx_insn *insn, rtx reg)
675 {
676 unsigned int regno, end_regno;
677
678 regno = REGNO (reg);
679 end_regno = END_REGNO (reg);
680 do
681 reg_avail_info[regno] = INSN_CUID (insn);
682 while (++regno < end_regno);
683 }
684
685 static inline void
686 record_last_reg_set_info_regno (rtx_insn *insn, int regno)
687 {
688 reg_avail_info[regno] = INSN_CUID (insn);
689 }
690
691
692 /* Record memory modification information for INSN. We do not actually care
693 about the memory location(s) that are set, or even how they are set (consider
694 a CALL_INSN). We merely need to record which insns modify memory. */
695
696 static void
697 record_last_mem_set_info (rtx_insn *insn)
698 {
699 struct modifies_mem *list_entry;
700
701 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
702 sizeof (struct modifies_mem));
703 list_entry->insn = insn;
704 list_entry->next = modifies_mem_list;
705 modifies_mem_list = list_entry;
706
707 record_last_mem_set_info_common (insn, modify_mem_list,
708 canon_modify_mem_list,
709 modify_mem_list_set,
710 blocks_with_calls);
711 }
712
713 /* Called from compute_hash_table via note_stores to handle one
714 SET or CLOBBER in an insn. DATA is really the instruction in which
715 the SET is taking place. */
716
717 static void
718 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
719 {
720 rtx_insn *last_set_insn = (rtx_insn *) data;
721
722 if (GET_CODE (dest) == SUBREG)
723 dest = SUBREG_REG (dest);
724
725 if (REG_P (dest))
726 record_last_reg_set_info (last_set_insn, dest);
727 else if (MEM_P (dest))
728 {
729 /* Ignore pushes, they don't clobber memory. They may still
730 clobber the stack pointer though. Some targets do argument
731 pushes without adding REG_INC notes. See e.g. PR25196,
732 where a pushsi2 on i386 doesn't have REG_INC notes. Note
733 such changes here too. */
734 if (! push_operand (dest, GET_MODE (dest)))
735 record_last_mem_set_info (last_set_insn);
736 else
737 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
738 }
739 }
740
741
742 /* Reset tables used to keep track of what's still available since the
743 start of the block. */
744
745 static void
746 reset_opr_set_tables (void)
747 {
748 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
749 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
750 modifies_mem_list = NULL;
751 }
752 \f
753
754 /* Record things set by INSN.
755 This data is used by oprs_unchanged_p. */
756
757 static void
758 record_opr_changes (rtx_insn *insn)
759 {
760 rtx note;
761
762 /* Find all stores and record them. */
763 note_stores (insn, record_last_set_info, insn);
764
765 /* Also record autoincremented REGs for this insn as changed. */
766 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
767 if (REG_NOTE_KIND (note) == REG_INC)
768 record_last_reg_set_info (insn, XEXP (note, 0));
769
770 /* Finally, if this is a call, record all call clobbers. */
771 if (CALL_P (insn))
772 {
773 unsigned int regno;
774 hard_reg_set_iterator hrsi;
775 /* We don't track modes of hard registers, so we need to be
776 conservative and assume that partial kills are full kills. */
777 HARD_REG_SET callee_clobbers
778 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
779 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
780 record_last_reg_set_info_regno (insn, regno);
781
782 if (! RTL_CONST_OR_PURE_CALL_P (insn))
783 record_last_mem_set_info (insn);
784 }
785 }
786 \f
787
788 /* Scan the pattern of INSN and add an entry to the hash TABLE.
789 After reload we are interested in loads/stores only. */
790
791 static void
792 hash_scan_set (rtx_insn *insn)
793 {
794 rtx pat = PATTERN (insn);
795 rtx src = SET_SRC (pat);
796 rtx dest = SET_DEST (pat);
797
798 /* We are only interested in loads and stores. */
799 if (! MEM_P (src) && ! MEM_P (dest))
800 return;
801
802 /* Don't mess with jumps and nops. */
803 if (JUMP_P (insn) || set_noop_p (pat))
804 return;
805
806 if (REG_P (dest))
807 {
808 if (/* Don't CSE something if we can't do a reg/reg copy. */
809 can_copy_p (GET_MODE (dest))
810 /* Is SET_SRC something we want to gcse? */
811 && general_operand (src, GET_MODE (src))
812 #ifdef STACK_REGS
813 /* Never consider insns touching the register stack. It may
814 create situations that reg-stack cannot handle (e.g. a stack
815 register live across an abnormal edge). */
816 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
817 #endif
818 /* An expression is not available if its operands are
819 subsequently modified, including this insn. */
820 && oprs_unchanged_p (src, insn, true))
821 {
822 insert_expr_in_table (src, insn);
823 }
824 }
825 else if (REG_P (src))
826 {
827 /* Only record sets of pseudo-regs in the hash table. */
828 if (/* Don't CSE something if we can't do a reg/reg copy. */
829 can_copy_p (GET_MODE (src))
830 /* Is SET_DEST something we want to gcse? */
831 && general_operand (dest, GET_MODE (dest))
832 #ifdef STACK_REGS
833 /* As above for STACK_REGS. */
834 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
835 #endif
836 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
837 /* Check if the memory expression is killed after insn. */
838 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
839 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
840 {
841 insert_expr_in_table (dest, insn);
842 }
843 }
844 }
845 \f
846
847 /* Create hash table of memory expressions available at end of basic
848 blocks. Basically you should think of this hash table as the
849 representation of AVAIL_OUT. This is the set of expressions that
850 is generated in a basic block and not killed before the end of the
851 same basic block. Notice that this is really a local computation. */
852
853 static void
854 compute_hash_table (void)
855 {
856 basic_block bb;
857
858 FOR_EACH_BB_FN (bb, cfun)
859 {
860 rtx_insn *insn;
861
862 /* First pass over the instructions records information used to
863 determine when registers and memory are last set.
864 Since we compute a "local" AVAIL_OUT, reset the tables that
865 help us keep track of what has been modified since the start
866 of the block. */
867 reset_opr_set_tables ();
868 FOR_BB_INSNS (bb, insn)
869 {
870 if (INSN_P (insn))
871 record_opr_changes (insn);
872 }
873
874 /* The next pass actually builds the hash table. */
875 FOR_BB_INSNS (bb, insn)
876 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
877 hash_scan_set (insn);
878 }
879 }
880 \f
881
882 /* Check if register REG is killed in any insn waiting to be inserted on
883 edge E. This function is required to check that our data flow analysis
884 is still valid prior to commit_edge_insertions. */
885
886 static bool
887 reg_killed_on_edge (rtx reg, edge e)
888 {
889 rtx_insn *insn;
890
891 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
892 if (INSN_P (insn) && reg_set_p (reg, insn))
893 return true;
894
895 return false;
896 }
897
898 /* Similar to above - check if register REG is used in any insn waiting
899 to be inserted on edge E.
900 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
901 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
902
903 static bool
904 reg_used_on_edge (rtx reg, edge e)
905 {
906 rtx_insn *insn;
907
908 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
909 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
910 return true;
911
912 return false;
913 }
914 \f
915 /* Return the loaded/stored register of a load/store instruction. */
916
917 static rtx
918 get_avail_load_store_reg (rtx_insn *insn)
919 {
920 if (REG_P (SET_DEST (PATTERN (insn))))
921 /* A load. */
922 return SET_DEST (PATTERN (insn));
923 else
924 {
925 /* A store. */
926 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
927 return SET_SRC (PATTERN (insn));
928 }
929 }
930
931 /* Return nonzero if the predecessors of BB are "well behaved". */
932
933 static bool
934 bb_has_well_behaved_predecessors (basic_block bb)
935 {
936 edge pred;
937 edge_iterator ei;
938
939 if (EDGE_COUNT (bb->preds) == 0)
940 return false;
941
942 FOR_EACH_EDGE (pred, ei, bb->preds)
943 {
944 /* commit_one_edge_insertion refuses to insert on abnormal edges even if
945 the source has only one successor so EDGE_CRITICAL_P is too weak. */
946 if ((pred->flags & EDGE_ABNORMAL) && !single_pred_p (pred->dest))
947 return false;
948
949 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
950 return false;
951
952 if (tablejump_p (BB_END (pred->src), NULL, NULL))
953 return false;
954 }
955 return true;
956 }
957
958
959 /* Search for the occurrences of expression in BB. */
960
961 static struct occr*
962 get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index)
963 {
964 struct occr *occr = orig_occr;
965
966 for (; occr != NULL; occr = occr->next)
967 if (BLOCK_FOR_INSN (occr->insn) == bb)
968 return occr;
969
970 /* If we could not find an occurrence in BB, see if BB
971 has a single predecessor with an occurrence that is
972 transparent through BB. */
973 if (transp
974 && single_pred_p (bb)
975 && bitmap_bit_p (transp[bb->index], bitmap_index)
976 && (occr = get_bb_avail_insn (single_pred (bb), orig_occr, bitmap_index)))
977 {
978 rtx avail_reg = get_avail_load_store_reg (occr->insn);
979 if (!reg_set_between_p (avail_reg,
980 PREV_INSN (BB_HEAD (bb)),
981 NEXT_INSN (BB_END (bb)))
982 && !reg_killed_on_edge (avail_reg, single_pred_edge (bb)))
983 return occr;
984 }
985
986 return NULL;
987 }
988
989
990 /* This helper is called via htab_traverse. */
991 int
992 compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED)
993 {
994 struct expr *expr = *slot;
995
996 compute_transp (expr->expr, expr->bitmap_index, transp,
997 blocks_with_calls, modify_mem_list_set,
998 canon_modify_mem_list);
999 return 1;
1000 }
1001
1002 /* This handles the case where several stores feed a partially redundant
1003 load. It checks if the redundancy elimination is possible and if it's
1004 worth it.
1005
1006 Redundancy elimination is possible if,
1007 1) None of the operands of an insn have been modified since the start
1008 of the current basic block.
1009 2) In any predecessor of the current basic block, the same expression
1010 is generated.
1011
1012 See the function body for the heuristics that determine if eliminating
1013 a redundancy is also worth doing, assuming it is possible. */
1014
1015 static void
1016 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn,
1017 struct expr *expr)
1018 {
1019 edge pred;
1020 rtx_insn *avail_insn = NULL;
1021 rtx avail_reg;
1022 rtx dest, pat;
1023 struct occr *a_occr;
1024 struct unoccr *occr, *avail_occrs = NULL;
1025 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1026 int npred_ok = 0;
1027 profile_count ok_count = profile_count::zero ();
1028 /* Redundant load execution count. */
1029 profile_count critical_count = profile_count::zero ();
1030 /* Execution count of critical edges. */
1031 edge_iterator ei;
1032 bool critical_edge_split = false;
1033
1034 /* The execution count of the loads to be added to make the
1035 load fully redundant. */
1036 profile_count not_ok_count = profile_count::zero ();
1037 basic_block pred_bb;
1038
1039 pat = PATTERN (insn);
1040 dest = SET_DEST (pat);
1041
1042 /* Check that the loaded register is not used, set, or killed from the
1043 beginning of the block. */
1044 if (reg_changed_after_insn_p (dest, 0)
1045 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
1046 return;
1047
1048 /* Check potential for replacing load with copy for predecessors. */
1049 FOR_EACH_EDGE (pred, ei, bb->preds)
1050 {
1051 rtx_insn *next_pred_bb_end;
1052
1053 avail_insn = NULL;
1054 avail_reg = NULL_RTX;
1055 pred_bb = pred->src;
1056 for (a_occr = get_bb_avail_insn (pred_bb,
1057 expr->avail_occr,
1058 expr->bitmap_index);
1059 a_occr;
1060 a_occr = get_bb_avail_insn (pred_bb,
1061 a_occr->next,
1062 expr->bitmap_index))
1063 {
1064 /* Check if the loaded register is not used. */
1065 avail_insn = a_occr->insn;
1066 avail_reg = get_avail_load_store_reg (avail_insn);
1067 gcc_assert (avail_reg);
1068
1069 /* Make sure we can generate a move from register avail_reg to
1070 dest. */
1071 rtx_insn *move = gen_move_insn (copy_rtx (dest),
1072 copy_rtx (avail_reg));
1073 extract_insn (move);
1074 if (! constrain_operands (1, get_preferred_alternatives (insn,
1075 pred_bb))
1076 || reg_killed_on_edge (avail_reg, pred)
1077 || reg_used_on_edge (dest, pred))
1078 {
1079 avail_insn = NULL;
1080 continue;
1081 }
1082 next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn)));
1083 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1084 /* AVAIL_INSN remains non-null. */
1085 break;
1086 else
1087 avail_insn = NULL;
1088 }
1089
1090 if (EDGE_CRITICAL_P (pred) && pred->count ().initialized_p ())
1091 critical_count += pred->count ();
1092
1093 if (avail_insn != NULL_RTX)
1094 {
1095 npred_ok++;
1096 if (pred->count ().initialized_p ())
1097 ok_count = ok_count + pred->count ();
1098 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1099 copy_rtx (avail_reg)))))
1100 {
1101 /* Check if there is going to be a split. */
1102 if (EDGE_CRITICAL_P (pred))
1103 critical_edge_split = true;
1104 }
1105 else /* Its a dead move no need to generate. */
1106 continue;
1107 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1108 sizeof (struct unoccr));
1109 occr->insn = avail_insn;
1110 occr->pred = pred;
1111 occr->next = avail_occrs;
1112 avail_occrs = occr;
1113 if (! rollback_unoccr)
1114 rollback_unoccr = occr;
1115 }
1116 else
1117 {
1118 /* Adding a load on a critical edge will cause a split. */
1119 if (EDGE_CRITICAL_P (pred))
1120 critical_edge_split = true;
1121 if (pred->count ().initialized_p ())
1122 not_ok_count = not_ok_count + pred->count ();
1123 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1124 sizeof (struct unoccr));
1125 unoccr->insn = NULL;
1126 unoccr->pred = pred;
1127 unoccr->next = unavail_occrs;
1128 unavail_occrs = unoccr;
1129 if (! rollback_unoccr)
1130 rollback_unoccr = unoccr;
1131 }
1132 }
1133
1134 if (/* No load can be replaced by copy. */
1135 npred_ok == 0
1136 /* Prevent exploding the code. */
1137 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1138 /* If we don't have profile information we cannot tell if splitting
1139 a critical edge is profitable or not so don't do it. */
1140 || ((!profile_info || profile_status_for_fn (cfun) != PROFILE_READ
1141 || targetm.cannot_modify_jumps_p ())
1142 && critical_edge_split))
1143 goto cleanup;
1144
1145 /* Check if it's worth applying the partial redundancy elimination. */
1146 if (ok_count.to_gcov_type ()
1147 < param_gcse_after_reload_partial_fraction * not_ok_count.to_gcov_type ())
1148 goto cleanup;
1149
1150 gcov_type threshold;
1151 #if (GCC_VERSION >= 5000)
1152 if (__builtin_mul_overflow (param_gcse_after_reload_critical_fraction,
1153 critical_count.to_gcov_type (), &threshold))
1154 threshold = profile_count::max_count;
1155 #else
1156 threshold
1157 = (param_gcse_after_reload_critical_fraction
1158 * critical_count.to_gcov_type ());
1159 #endif
1160
1161 if (ok_count.to_gcov_type () < threshold)
1162 goto cleanup;
1163
1164 /* Generate moves to the loaded register from where
1165 the memory is available. */
1166 for (occr = avail_occrs; occr; occr = occr->next)
1167 {
1168 avail_insn = occr->insn;
1169 pred = occr->pred;
1170 /* Set avail_reg to be the register having the value of the
1171 memory. */
1172 avail_reg = get_avail_load_store_reg (avail_insn);
1173 gcc_assert (avail_reg);
1174
1175 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1176 copy_rtx (avail_reg)),
1177 pred);
1178 stats.moves_inserted++;
1179
1180 if (dump_file)
1181 fprintf (dump_file,
1182 "generating move from %d to %d on edge from %d to %d\n",
1183 REGNO (avail_reg),
1184 REGNO (dest),
1185 pred->src->index,
1186 pred->dest->index);
1187 }
1188
1189 /* Regenerate loads where the memory is unavailable. */
1190 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1191 {
1192 pred = unoccr->pred;
1193 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1194 stats.copies_inserted++;
1195
1196 if (dump_file)
1197 {
1198 fprintf (dump_file,
1199 "generating on edge from %d to %d a copy of load: ",
1200 pred->src->index,
1201 pred->dest->index);
1202 print_rtl (dump_file, PATTERN (insn));
1203 fprintf (dump_file, "\n");
1204 }
1205 }
1206
1207 /* Delete the insn if it is not available in this block and mark it
1208 for deletion if it is available. If insn is available it may help
1209 discover additional redundancies, so mark it for later deletion. */
1210 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr, expr->bitmap_index);
1211 a_occr && (a_occr->insn != insn);
1212 a_occr = get_bb_avail_insn (bb, a_occr->next, expr->bitmap_index))
1213 ;
1214
1215 if (!a_occr)
1216 {
1217 stats.insns_deleted++;
1218
1219 if (dump_file)
1220 {
1221 fprintf (dump_file, "deleting insn:\n");
1222 print_rtl_single (dump_file, insn);
1223 fprintf (dump_file, "\n");
1224 }
1225 delete_insn (insn);
1226 }
1227 else
1228 a_occr->deleted_p = 1;
1229
1230 cleanup:
1231 if (rollback_unoccr)
1232 obstack_free (&unoccr_obstack, rollback_unoccr);
1233 }
1234
1235 /* Performing the redundancy elimination as described before. */
1236
1237 static void
1238 eliminate_partially_redundant_loads (void)
1239 {
1240 rtx_insn *insn;
1241 basic_block bb;
1242
1243 /* Note we start at block 1. */
1244
1245 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1246 return;
1247
1248 FOR_BB_BETWEEN (bb,
1249 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb,
1250 EXIT_BLOCK_PTR_FOR_FN (cfun),
1251 next_bb)
1252 {
1253 /* Don't try anything on basic blocks with strange predecessors. */
1254 if (! bb_has_well_behaved_predecessors (bb))
1255 continue;
1256
1257 /* Do not try anything on cold basic blocks. */
1258 if (optimize_bb_for_size_p (bb))
1259 continue;
1260
1261 /* Reset the table of things changed since the start of the current
1262 basic block. */
1263 reset_opr_set_tables ();
1264
1265 /* Look at all insns in the current basic block and see if there are
1266 any loads in it that we can record. */
1267 FOR_BB_INSNS (bb, insn)
1268 {
1269 /* Is it a load - of the form (set (reg) (mem))? */
1270 if (NONJUMP_INSN_P (insn)
1271 && GET_CODE (PATTERN (insn)) == SET
1272 && REG_P (SET_DEST (PATTERN (insn)))
1273 && MEM_P (SET_SRC (PATTERN (insn))))
1274 {
1275 rtx pat = PATTERN (insn);
1276 rtx src = SET_SRC (pat);
1277 struct expr *expr;
1278
1279 if (!MEM_VOLATILE_P (src)
1280 && GET_MODE (src) != BLKmode
1281 && general_operand (src, GET_MODE (src))
1282 /* Are the operands unchanged since the start of the
1283 block? */
1284 && oprs_unchanged_p (src, insn, false)
1285 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1286 && !side_effects_p (src)
1287 /* Is the expression recorded? */
1288 && (expr = lookup_expr_in_table (src)) != NULL)
1289 {
1290 /* We now have a load (insn) and an available memory at
1291 its BB start (expr). Try to remove the loads if it is
1292 redundant. */
1293 eliminate_partially_redundant_load (bb, insn, expr);
1294 }
1295 }
1296
1297 /* Keep track of everything modified by this insn, so that we
1298 know what has been modified since the start of the current
1299 basic block. */
1300 if (INSN_P (insn))
1301 record_opr_changes (insn);
1302 }
1303 }
1304
1305 commit_edge_insertions ();
1306 }
1307
1308 /* Go over the expression hash table and delete insns that were
1309 marked for later deletion. */
1310
1311 /* This helper is called via htab_traverse. */
1312 int
1313 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED)
1314 {
1315 struct expr *exprs = *slot;
1316 struct occr *occr;
1317
1318 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next)
1319 {
1320 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1321 {
1322 delete_insn (occr->insn);
1323 stats.insns_deleted++;
1324
1325 if (dump_file)
1326 {
1327 fprintf (dump_file, "deleting insn:\n");
1328 print_rtl_single (dump_file, occr->insn);
1329 fprintf (dump_file, "\n");
1330 }
1331 }
1332 }
1333
1334 return 1;
1335 }
1336
1337 static void
1338 delete_redundant_insns (void)
1339 {
1340 expr_table->traverse <void *, delete_redundant_insns_1> (NULL);
1341 if (dump_file)
1342 fprintf (dump_file, "\n");
1343 }
1344
1345 /* Main entry point of the GCSE after reload - clean some redundant loads
1346 due to spilling. */
1347
1348 static void
1349 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1350 {
1351 /* Disable computing transparentness if it is too expensive. */
1352 bool do_transp
1353 = !gcse_or_cprop_is_too_expensive (_("using simple load CSE after register "
1354 "allocation"));
1355
1356 memset (&stats, 0, sizeof (stats));
1357
1358 /* Allocate memory for this pass.
1359 Also computes and initializes the insns' CUIDs. */
1360 alloc_mem ();
1361
1362 /* We need alias analysis. */
1363 init_alias_analysis ();
1364
1365 compute_hash_table ();
1366
1367 if (dump_file)
1368 dump_hash_table (dump_file);
1369
1370 if (!expr_table->is_empty ())
1371 {
1372 /* Knowing which MEMs are transparent through a block can signifiantly
1373 increase the number of redundant loads found. So compute transparency
1374 information for each memory expression in the hash table. */
1375 df_analyze ();
1376 if (do_transp)
1377 {
1378 /* This cannot be part of the normal allocation routine because
1379 we have to know the number of elements in the hash table. */
1380 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1381 expr_table->elements ());
1382 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
1383 expr_table->traverse <FILE *, compute_expr_transp> (dump_file);
1384 }
1385 else
1386 transp = NULL;
1387 eliminate_partially_redundant_loads ();
1388 delete_redundant_insns ();
1389 if (do_transp)
1390 sbitmap_vector_free (transp);
1391
1392 if (dump_file)
1393 {
1394 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1395 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1396 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1397 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1398 fprintf (dump_file, "\n\n");
1399 }
1400
1401 statistics_counter_event (cfun, "copies inserted",
1402 stats.copies_inserted);
1403 statistics_counter_event (cfun, "moves inserted",
1404 stats.moves_inserted);
1405 statistics_counter_event (cfun, "insns deleted",
1406 stats.insns_deleted);
1407 }
1408
1409 /* We are finished with alias. */
1410 end_alias_analysis ();
1411
1412 free_mem ();
1413 }
1414
1415 \f
1416
1417 static unsigned int
1418 rest_of_handle_gcse2 (void)
1419 {
1420 gcse_after_reload_main (get_insns ());
1421 rebuild_jump_labels (get_insns ());
1422 return 0;
1423 }
1424
1425 namespace {
1426
1427 const pass_data pass_data_gcse2 =
1428 {
1429 RTL_PASS, /* type */
1430 "gcse2", /* name */
1431 OPTGROUP_NONE, /* optinfo_flags */
1432 TV_GCSE_AFTER_RELOAD, /* tv_id */
1433 0, /* properties_required */
1434 0, /* properties_provided */
1435 0, /* properties_destroyed */
1436 0, /* todo_flags_start */
1437 0, /* todo_flags_finish */
1438 };
1439
1440 class pass_gcse2 : public rtl_opt_pass
1441 {
1442 public:
1443 pass_gcse2 (gcc::context *ctxt)
1444 : rtl_opt_pass (pass_data_gcse2, ctxt)
1445 {}
1446
1447 /* opt_pass methods: */
1448 virtual bool gate (function *fun)
1449 {
1450 return (optimize > 0 && flag_gcse_after_reload
1451 && optimize_function_for_speed_p (fun));
1452 }
1453
1454 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); }
1455
1456 }; // class pass_gcse2
1457
1458 } // anon namespace
1459
1460 rtl_opt_pass *
1461 make_pass_gcse2 (gcc::context *ctxt)
1462 {
1463 return new pass_gcse2 (ctxt);
1464 }