]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload-gcse.c
params.c (set_param_value): Use gcc_assert & gcc_unreachable.
[thirdparty/gcc.git] / gcc / postreload-gcse.c
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "intl.h"
43 #include "obstack.h"
44 #include "hashtab.h"
45 #include "params.h"
46 #include "target.h"
47
48 /* The following code implements gcse after reload, the purpose of this
49 pass is to cleanup redundant loads generated by reload and other
50 optimizations that come after gcse. It searches for simple inter-block
51 redundancies and tries to eliminate them by adding moves and loads
52 in cold places.
53
54 Perform partially redundant load elimination, try to eliminate redundant
55 loads created by the reload pass. We try to look for full or partial
56 redundant loads fed by one or more loads/stores in predecessor BBs,
57 and try adding loads to make them fully redundant. We also check if
58 it's worth adding loads to be able to delete the redundant load.
59
60 Algorithm:
61 1. Build available expressions hash table:
62 For each load/store instruction, if the loaded/stored memory didn't
63 change until the end of the basic block add this memory expression to
64 the hash table.
65 2. Perform Redundancy elimination:
66 For each load instruction do the following:
67 perform partial redundancy elimination, check if it's worth adding
68 loads to make the load fully redundant. If so add loads and
69 register copies and delete the load.
70 3. Delete instructions made redundant in step 2.
71
72 Future enhancement:
73 If the loaded register is used/defined between load and some store,
74 look for some other free register between load and all its stores,
75 and replace the load with a copy from this register to the loaded
76 register.
77 */
78 \f
79
80 /* Keep statistics of this pass. */
81 static struct
82 {
83 int moves_inserted;
84 int copies_inserted;
85 int insns_deleted;
86 } stats;
87
88 /* We need to keep a hash table of expressions. The table entries are of
89 type 'struct expr', and for each expression there is a single linked
90 list of occurrences. */
91
92 /* The table itself. */
93 static htab_t expr_table;
94
95 /* Expression elements in the hash table. */
96 struct expr
97 {
98 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
99 rtx expr;
100
101 /* The same hash for this entry. */
102 hashval_t hash;
103
104 /* List of available occurrence in basic blocks in the function. */
105 struct occr *avail_occr;
106 };
107
108 static struct obstack expr_obstack;
109
110 /* Occurrence of an expression.
111 There is at most one occurrence per basic block. If a pattern appears
112 more than once, the last appearance is used. */
113
114 struct occr
115 {
116 /* Next occurrence of this expression. */
117 struct occr *next;
118 /* The insn that computes the expression. */
119 rtx insn;
120 /* Nonzero if this [anticipatable] occurrence has been deleted. */
121 char deleted_p;
122 };
123
124 static struct obstack occr_obstack;
125
126 /* The following structure holds the information about the occurrences of
127 the redundant instructions. */
128 struct unoccr
129 {
130 struct unoccr *next;
131 edge pred;
132 rtx insn;
133 };
134
135 static struct obstack unoccr_obstack;
136
137 /* Array where each element is the CUID if the insn that last set the hard
138 register with the number of the element, since the start of the current
139 basic block.
140
141 This array is used during the building of the hash table (step 1) to
142 determine if a reg is killed before the end of a basic block.
143
144 It is also used when eliminating partial redundancies (step 2) to see
145 if a reg was modified since the start of a basic block. */
146 static int *reg_avail_info;
147
148 /* A list of insns that may modify memory within the current basic block. */
149 struct modifies_mem
150 {
151 rtx insn;
152 struct modifies_mem *next;
153 };
154 static struct modifies_mem *modifies_mem_list;
155
156 /* The modifies_mem structs also go on an obstack, only this obstack is
157 freed each time after completing the analysis or transformations on
158 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
159 object on the obstack to keep track of the bottom of the obstack. */
160 static struct obstack modifies_mem_obstack;
161 static struct modifies_mem *modifies_mem_obstack_bottom;
162
163 /* Mapping of insn UIDs to CUIDs.
164 CUIDs are like UIDs except they increase monotonically in each basic
165 block, have no gaps, and only apply to real insns. */
166 static int *uid_cuid;
167 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
168 \f
169
170 /* Helpers for memory allocation/freeing. */
171 static void alloc_mem (void);
172 static void free_mem (void);
173
174 /* Support for hash table construction and transformations. */
175 static bool oprs_unchanged_p (rtx, rtx, bool);
176 static void record_last_reg_set_info (rtx, int);
177 static void record_last_mem_set_info (rtx);
178 static void record_last_set_info (rtx, rtx, void *);
179 static void record_opr_changes (rtx);
180
181 static void find_mem_conflicts (rtx, rtx, void *);
182 static int load_killed_in_block_p (int, rtx, bool);
183 static void reset_opr_set_tables (void);
184
185 /* Hash table support. */
186 static hashval_t hash_expr (rtx, int *);
187 static hashval_t hash_expr_for_htab (const void *);
188 static int expr_equiv_p (const void *, const void *);
189 static void insert_expr_in_table (rtx, rtx);
190 static struct expr *lookup_expr_in_table (rtx);
191 static int dump_hash_table_entry (void **, void *);
192 static void dump_hash_table (FILE *);
193
194 /* Helpers for eliminate_partially_redundant_load. */
195 static bool reg_killed_on_edge (rtx, edge);
196 static bool reg_used_on_edge (rtx, edge);
197
198 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
199 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
200 static rtx get_avail_load_store_reg (rtx);
201
202 static bool bb_has_well_behaved_predecessors (basic_block);
203 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
204 static void hash_scan_set (rtx);
205 static void compute_hash_table (void);
206
207 /* The work horses of this pass. */
208 static void eliminate_partially_redundant_load (basic_block,
209 rtx,
210 struct expr *);
211 static void eliminate_partially_redundant_loads (void);
212 \f
213
214 /* Allocate memory for the CUID mapping array and register/memory
215 tracking tables. */
216
217 static void
218 alloc_mem (void)
219 {
220 int i;
221 basic_block bb;
222 rtx insn;
223
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
225 uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
226 i = 0;
227 FOR_EACH_BB (bb)
228 FOR_BB_INSNS (bb, insn)
229 {
230 if (INSN_P (insn))
231 uid_cuid[INSN_UID (insn)] = i++;
232 else
233 uid_cuid[INSN_UID (insn)] = i;
234 }
235
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table = htab_create (MAX (i / 4, 13),
241 hash_expr_for_htab, expr_equiv_p, NULL);
242
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack);
246 gcc_obstack_init (&occr_obstack);
247 gcc_obstack_init (&unoccr_obstack);
248 gcc_obstack_init (&modifies_mem_obstack);
249
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
253
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom =
257 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
258 sizeof (struct modifies_mem));
259 }
260
261 /* Free memory allocated by alloc_mem. */
262
263 static void
264 free_mem (void)
265 {
266 free (uid_cuid);
267
268 htab_delete (expr_table);
269
270 obstack_free (&expr_obstack, NULL);
271 obstack_free (&occr_obstack, NULL);
272 obstack_free (&unoccr_obstack, NULL);
273 obstack_free (&modifies_mem_obstack, NULL);
274
275 free (reg_avail_info);
276 }
277 \f
278
279 /* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
282 table. */
283
284 static hashval_t
285 hash_expr (rtx x, int *do_not_record_p)
286 {
287 *do_not_record_p = 0;
288 return hash_rtx (x, GET_MODE (x), do_not_record_p,
289 NULL, /*have_reg_qty=*/false);
290 }
291
292 /* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
295
296 static hashval_t
297 hash_expr_for_htab (const void *expp)
298 {
299 struct expr *exp = (struct expr *) expp;
300 return exp->hash;
301 }
302
303 /* Callback for hashtab.
304 Return nonzero if exp1 is equivalent to exp2. */
305
306 static int
307 expr_equiv_p (const void *exp1p, const void *exp2p)
308 {
309 struct expr *exp1 = (struct expr *) exp1p;
310 struct expr *exp2 = (struct expr *) exp2p;
311 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
312
313 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
314 return equiv_p;
315 }
316 \f
317
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
321
322 static void
323 insert_expr_in_table (rtx x, rtx insn)
324 {
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
329
330 hash = hash_expr (x, &do_not_record_p);
331
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
337
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
348
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
351
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
356 {
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
361 }
362
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
366 {
367 /* If an occurrence isn't found, save a pointer to the end of
368 the list. */
369 last_occr = avail_occr;
370 avail_occr = avail_occr->next;
371 }
372
373 if (avail_occr)
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
377 to end. */
378 avail_occr->insn = insn;
379 else
380 {
381 /* First occurrence of this expression in this basic block. */
382 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
383 sizeof (struct occr));
384
385 /* First occurrence of this expression in any block? */
386 if (cur_expr->avail_occr == NULL)
387 cur_expr->avail_occr = avail_occr;
388 else
389 last_occr->next = avail_occr;
390
391 avail_occr->insn = insn;
392 avail_occr->next = NULL;
393 avail_occr->deleted_p = 0;
394 }
395 }
396 \f
397
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
400
401 static struct expr *
402 lookup_expr_in_table (rtx pat)
403 {
404 int do_not_record_p;
405 struct expr **slot, *tmp_expr;
406 hashval_t hash = hash_expr (pat, &do_not_record_p);
407
408 if (do_not_record_p)
409 return NULL;
410
411 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
412 sizeof (struct expr));
413 tmp_expr->expr = pat;
414 tmp_expr->hash = hash;
415 tmp_expr->avail_occr = NULL;
416
417 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
418 hash, INSERT);
419 obstack_free (&expr_obstack, tmp_expr);
420
421 if (!slot)
422 return NULL;
423 else
424 return (*slot);
425 }
426 \f
427
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
430
431 /* This helper is called via htab_traverse. */
432 static int
433 dump_hash_table_entry (void **slot, void *filep)
434 {
435 struct expr *expr = (struct expr *) *slot;
436 FILE *file = (FILE *) filep;
437 struct occr *occr;
438
439 fprintf (file, "expr: ");
440 print_rtl (file, expr->expr);
441 fprintf (file,"\nhashcode: %u\n", expr->hash);
442 fprintf (file,"list of occurences:\n");
443 occr = expr->avail_occr;
444 while (occr)
445 {
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
450 }
451 fprintf (file, "\n");
452 return 1;
453 }
454
455 static void
456 dump_hash_table (FILE *file)
457 {
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table),
461 (long) htab_elements (expr_table),
462 htab_collisions (expr_table));
463 if (htab_elements (expr_table) > 0)
464 {
465 fprintf (file, "\n\ntable entries:\n");
466 htab_traverse (expr_table, dump_hash_table_entry, file);
467 }
468 fprintf (file, "\n");
469 }
470 \f
471
472 /* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
476
477 static bool
478 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
479 {
480 int i, j;
481 enum rtx_code code;
482 const char *fmt;
483
484 if (x == 0)
485 return 1;
486
487 code = GET_CODE (x);
488 switch (code)
489 {
490 case REG:
491 /* We are called after register allocation. */
492 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
493 if (after_insn)
494 /* If the last CUID setting the insn is less than the CUID of
495 INSN, then reg X is not changed in or after INSN. */
496 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
497 else
498 /* Reg X is not set before INSN in the current basic block if
499 we have not yet recorded the CUID of an insn that touches
500 the reg. */
501 return reg_avail_info[REGNO (x)] == 0;
502
503 case MEM:
504 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
505 return 0;
506 else
507 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
508
509 case PC:
510 case CC0: /*FIXME*/
511 case CONST:
512 case CONST_INT:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case SYMBOL_REF:
516 case LABEL_REF:
517 case ADDR_VEC:
518 case ADDR_DIFF_VEC:
519 return 1;
520
521 case PRE_DEC:
522 case PRE_INC:
523 case POST_DEC:
524 case POST_INC:
525 case PRE_MODIFY:
526 case POST_MODIFY:
527 if (after_insn)
528 return 0;
529 break;
530
531 default:
532 break;
533 }
534
535 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
536 {
537 if (fmt[i] == 'e')
538 {
539 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
540 return 0;
541 }
542 else if (fmt[i] == 'E')
543 for (j = 0; j < XVECLEN (x, i); j++)
544 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
545 return 0;
546 }
547
548 return 1;
549 }
550 \f
551
552 /* Used for communication between find_mem_conflicts and
553 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
554 conflict between two memory references.
555 This is a bit of a hack to work around the limitations of note_stores. */
556 static int mems_conflict_p;
557
558 /* DEST is the output of an instruction. If it is a memory reference, and
559 possibly conflicts with the load found in DATA, then set mems_conflict_p
560 to a nonzero value. */
561
562 static void
563 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
564 void *data)
565 {
566 rtx mem_op = (rtx) data;
567
568 while (GET_CODE (dest) == SUBREG
569 || GET_CODE (dest) == ZERO_EXTRACT
570 || GET_CODE (dest) == STRICT_LOW_PART)
571 dest = XEXP (dest, 0);
572
573 /* If DEST is not a MEM, then it will not conflict with the load. Note
574 that function calls are assumed to clobber memory, but are handled
575 elsewhere. */
576 if (! MEM_P (dest))
577 return;
578
579 if (true_dependence (dest, GET_MODE (dest), mem_op,
580 rtx_addr_varies_p))
581 mems_conflict_p = 1;
582 }
583 \f
584
585 /* Return nonzero if the expression in X (a memory reference) is killed
586 in the current basic block before (if AFTER_INSN is false) or after
587 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
588
589 This function assumes that the modifies_mem table is flushed when
590 the hash table construction or redundancy elimination phases start
591 processing a new basic block. */
592
593 static int
594 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
595 {
596 struct modifies_mem *list_entry = modifies_mem_list;
597
598 while (list_entry)
599 {
600 rtx setter = list_entry->insn;
601
602 /* Ignore entries in the list that do not apply. */
603 if ((after_insn
604 && INSN_CUID (setter) < uid_limit)
605 || (! after_insn
606 && INSN_CUID (setter) > uid_limit))
607 {
608 list_entry = list_entry->next;
609 continue;
610 }
611
612 /* If SETTER is a call everything is clobbered. Note that calls
613 to pure functions are never put on the list, so we need not
614 worry about them. */
615 if (CALL_P (setter))
616 return 1;
617
618 /* SETTER must be an insn of some kind that sets memory. Call
619 note_stores to examine each hunk of memory that is modified.
620 It will set mems_conflict_p to nonzero if there may be a
621 conflict between X and SETTER. */
622 mems_conflict_p = 0;
623 note_stores (PATTERN (setter), find_mem_conflicts, x);
624 if (mems_conflict_p)
625 return 1;
626
627 list_entry = list_entry->next;
628 }
629 return 0;
630 }
631 \f
632
633 /* Record register first/last/block set information for REGNO in INSN. */
634
635 static inline void
636 record_last_reg_set_info (rtx insn, int regno)
637 {
638 reg_avail_info[regno] = INSN_CUID (insn);
639 }
640
641
642 /* Record memory modification information for INSN. We do not actually care
643 about the memory location(s) that are set, or even how they are set (consider
644 a CALL_INSN). We merely need to record which insns modify memory. */
645
646 static void
647 record_last_mem_set_info (rtx insn)
648 {
649 struct modifies_mem *list_entry;
650
651 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
652 sizeof (struct modifies_mem));
653 list_entry->insn = insn;
654 list_entry->next = modifies_mem_list;
655 modifies_mem_list = list_entry;
656 }
657
658 /* Called from compute_hash_table via note_stores to handle one
659 SET or CLOBBER in an insn. DATA is really the instruction in which
660 the SET is taking place. */
661
662 static void
663 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
664 {
665 rtx last_set_insn = (rtx) data;
666
667 if (GET_CODE (dest) == SUBREG)
668 dest = SUBREG_REG (dest);
669
670 if (REG_P (dest))
671 record_last_reg_set_info (last_set_insn, REGNO (dest));
672 else if (MEM_P (dest)
673 /* Ignore pushes, they clobber nothing. */
674 && ! push_operand (dest, GET_MODE (dest)))
675 record_last_mem_set_info (last_set_insn);
676 }
677
678
679 /* Reset tables used to keep track of what's still available since the
680 start of the block. */
681
682 static void
683 reset_opr_set_tables (void)
684 {
685 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
686 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
687 modifies_mem_list = NULL;
688 }
689 \f
690
691 /* Record things set by INSN.
692 This data is used by oprs_unchanged_p. */
693
694 static void
695 record_opr_changes (rtx insn)
696 {
697 rtx note;
698
699 /* Find all stores and record them. */
700 note_stores (PATTERN (insn), record_last_set_info, insn);
701
702 /* Also record autoincremented REGs for this insn as changed. */
703 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
704 if (REG_NOTE_KIND (note) == REG_INC)
705 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
706
707 /* Finally, if this is a call, record all call clobbers. */
708 if (CALL_P (insn))
709 {
710 unsigned int regno;
711
712 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
713 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
714 record_last_reg_set_info (insn, regno);
715
716 if (! CONST_OR_PURE_CALL_P (insn))
717 record_last_mem_set_info (insn);
718 }
719 }
720 \f
721
722 /* Scan the pattern of INSN and add an entry to the hash TABLE.
723 After reload we are interested in loads/stores only. */
724
725 static void
726 hash_scan_set (rtx insn)
727 {
728 rtx pat = PATTERN (insn);
729 rtx src = SET_SRC (pat);
730 rtx dest = SET_DEST (pat);
731
732 /* We are only interested in loads and stores. */
733 if (! MEM_P (src) && ! MEM_P (dest))
734 return;
735
736 /* Don't mess with jumps and nops. */
737 if (JUMP_P (insn) || set_noop_p (pat))
738 return;
739
740 /* We shouldn't have any EH_REGION notes post reload. */
741 gcc_assert (!find_reg_note (insn, REG_EH_REGION, NULL_RTX));
742
743 if (REG_P (dest))
744 {
745 if (/* Don't CSE something if we can't do a reg/reg copy. */
746 can_copy_p (GET_MODE (dest))
747 /* Is SET_SRC something we want to gcse? */
748 && general_operand (src, GET_MODE (src))
749 /* An expression is not available if its operands are
750 subsequently modified, including this insn. */
751 && oprs_unchanged_p (src, insn, true))
752 {
753 insert_expr_in_table (src, insn);
754 }
755 }
756 else if (REG_P (src))
757 {
758 /* Only record sets of pseudo-regs in the hash table. */
759 if (/* Don't CSE something if we can't do a reg/reg copy. */
760 can_copy_p (GET_MODE (src))
761 /* Is SET_DEST something we want to gcse? */
762 && general_operand (dest, GET_MODE (dest))
763 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
764 /* Check if the memory expression is killed after insn. */
765 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
766 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
767 {
768 insert_expr_in_table (dest, insn);
769 }
770 }
771 }
772 \f
773
774 /* Create hash table of memory expressions available at end of basic
775 blocks. Basically you should think of this hash table as the
776 representation of AVAIL_OUT. This is the set of expressions that
777 is generated in a basic block and not killed before the end of the
778 same basic block. Notice that this is really a local computation. */
779
780 static void
781 compute_hash_table (void)
782 {
783 basic_block bb;
784
785 FOR_EACH_BB (bb)
786 {
787 rtx insn;
788
789 /* First pass over the instructions records information used to
790 determine when registers and memory are last set.
791 Since we compute a "local" AVAIL_OUT, reset the tables that
792 help us keep track of what has been modified since the start
793 of the block. */
794 reset_opr_set_tables ();
795 FOR_BB_INSNS (bb, insn)
796 {
797 if (INSN_P (insn))
798 record_opr_changes (insn);
799 }
800
801 /* The next pass actually builds the hash table. */
802 FOR_BB_INSNS (bb, insn)
803 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
804 hash_scan_set (insn);
805 }
806 }
807 \f
808
809 /* Check if register REG is killed in any insn waiting to be inserted on
810 edge E. This function is required to check that our data flow analysis
811 is still valid prior to commit_edge_insertions. */
812
813 static bool
814 reg_killed_on_edge (rtx reg, edge e)
815 {
816 rtx insn;
817
818 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
819 if (INSN_P (insn) && reg_set_p (reg, insn))
820 return true;
821
822 return false;
823 }
824
825 /* Similar to above - check if register REG is used in any insn waiting
826 to be inserted on edge E.
827 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
828 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
829
830 static bool
831 reg_used_on_edge (rtx reg, edge e)
832 {
833 rtx insn;
834
835 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
836 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
837 return true;
838
839 return false;
840 }
841 \f
842
843 /* Return the insn that sets register REG or clobbers it in between
844 FROM_INSN and TO_INSN (exclusive of those two).
845 Just like reg_set_between but for hard registers and not pseudos. */
846
847 static rtx
848 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
849 {
850 rtx insn;
851
852 /* We are called after register allocation. */
853 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
854
855 if (from_insn == to_insn)
856 return NULL_RTX;
857
858 for (insn = NEXT_INSN (from_insn);
859 insn != to_insn;
860 insn = NEXT_INSN (insn))
861 if (INSN_P (insn))
862 {
863 if (set_of (reg, insn) != NULL_RTX)
864 return insn;
865 if ((CALL_P (insn)
866 && call_used_regs[REGNO (reg)])
867 || find_reg_fusage (insn, CLOBBER, reg))
868 return insn;
869
870 if (FIND_REG_INC_NOTE (insn, reg))
871 return insn;
872 }
873
874 return NULL_RTX;
875 }
876
877 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
878 (exclusive of those two). Similar to reg_used_between but for hard
879 registers and not pseudos. */
880
881 static rtx
882 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
883 {
884 rtx insn;
885
886 /* We are called after register allocation. */
887 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
888
889 if (from_insn == to_insn)
890 return NULL_RTX;
891
892 for (insn = NEXT_INSN (from_insn);
893 insn != to_insn;
894 insn = NEXT_INSN (insn))
895 if (INSN_P (insn))
896 {
897 if (reg_overlap_mentioned_p (reg, PATTERN (insn))
898 || (CALL_P (insn)
899 && call_used_regs[REGNO (reg)])
900 || find_reg_fusage (insn, USE, reg)
901 || find_reg_fusage (insn, CLOBBER, reg))
902 return insn;
903
904 if (FIND_REG_INC_NOTE (insn, reg))
905 return insn;
906 }
907
908 return NULL_RTX;
909 }
910
911 /* Return true if REG is used, set, or killed between the beginning of
912 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
913
914 static bool
915 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
916 {
917 rtx insn, start = PREV_INSN (BB_HEAD (bb));
918
919 if (reg_avail_info[REGNO (reg)] != 0)
920 return true;
921
922 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
923 if (! insn)
924 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
925
926 if (insn)
927 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
928
929 return insn != NULL_RTX;
930 }
931
932 /* Return the loaded/stored register of a load/store instruction. */
933
934 static rtx
935 get_avail_load_store_reg (rtx insn)
936 {
937 if (REG_P (SET_DEST (PATTERN (insn))))
938 /* A load. */
939 return SET_DEST(PATTERN(insn));
940 else
941 {
942 /* A store. */
943 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
944 return SET_SRC (PATTERN (insn));
945 }
946 }
947
948 /* Return nonzero if the predecessors of BB are "well behaved". */
949
950 static bool
951 bb_has_well_behaved_predecessors (basic_block bb)
952 {
953 edge pred;
954 edge_iterator ei;
955
956 if (EDGE_COUNT (bb->preds) == 0)
957 return false;
958
959 FOR_EACH_EDGE (pred, ei, bb->preds)
960 {
961 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
962 return false;
963
964 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
965 return false;
966 }
967 return true;
968 }
969
970
971 /* Search for the occurrences of expression in BB. */
972
973 static struct occr*
974 get_bb_avail_insn (basic_block bb, struct occr *occr)
975 {
976 for (; occr != NULL; occr = occr->next)
977 if (BLOCK_FOR_INSN (occr->insn) == bb)
978 return occr;
979 return NULL;
980 }
981
982
983 /* This handles the case where several stores feed a partially redundant
984 load. It checks if the redundancy elimination is possible and if it's
985 worth it.
986
987 Redundancy elimination is possible if,
988 1) None of the operands of an insn have been modified since the start
989 of the current basic block.
990 2) In any predecessor of the current basic block, the same expression
991 is generated.
992
993 See the function body for the heuristics that determine if eliminating
994 a redundancy is also worth doing, assuming it is possible. */
995
996 static void
997 eliminate_partially_redundant_load (basic_block bb, rtx insn,
998 struct expr *expr)
999 {
1000 edge pred;
1001 rtx avail_insn = NULL_RTX;
1002 rtx avail_reg;
1003 rtx dest, pat;
1004 struct occr *a_occr;
1005 struct unoccr *occr, *avail_occrs = NULL;
1006 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1007 int npred_ok = 0;
1008 gcov_type ok_count = 0; /* Redundant load execution count. */
1009 gcov_type critical_count = 0; /* Execution count of critical edges. */
1010 edge_iterator ei;
1011
1012 /* The execution count of the loads to be added to make the
1013 load fully redundant. */
1014 gcov_type not_ok_count = 0;
1015 basic_block pred_bb;
1016
1017 pat = PATTERN (insn);
1018 dest = SET_DEST (pat);
1019
1020 /* Check that the loaded register is not used, set, or killed from the
1021 beginning of the block. */
1022 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1023 return;
1024
1025 /* Check potential for replacing load with copy for predecessors. */
1026 FOR_EACH_EDGE (pred, ei, bb->preds)
1027 {
1028 rtx next_pred_bb_end;
1029
1030 avail_insn = NULL_RTX;
1031 pred_bb = pred->src;
1032 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1033 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1034 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1035 {
1036 /* Check if the loaded register is not used. */
1037 avail_insn = a_occr->insn;
1038 avail_reg = get_avail_load_store_reg (avail_insn);
1039 gcc_assert (avail_reg);
1040
1041 /* Make sure we can generate a move from register avail_reg to
1042 dest. */
1043 extract_insn (gen_move_insn (copy_rtx (dest),
1044 copy_rtx (avail_reg)));
1045 if (! constrain_operands (1)
1046 || reg_killed_on_edge (avail_reg, pred)
1047 || reg_used_on_edge (dest, pred))
1048 {
1049 avail_insn = NULL;
1050 continue;
1051 }
1052 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1053 next_pred_bb_end))
1054 /* AVAIL_INSN remains non-null. */
1055 break;
1056 else
1057 avail_insn = NULL;
1058 }
1059
1060 if (EDGE_CRITICAL_P (pred))
1061 critical_count += pred->count;
1062
1063 if (avail_insn != NULL_RTX)
1064 {
1065 npred_ok++;
1066 ok_count += pred->count;
1067 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1068 sizeof (struct occr));
1069 occr->insn = avail_insn;
1070 occr->pred = pred;
1071 occr->next = avail_occrs;
1072 avail_occrs = occr;
1073 if (! rollback_unoccr)
1074 rollback_unoccr = occr;
1075 }
1076 else
1077 {
1078 not_ok_count += pred->count;
1079 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1080 sizeof (struct unoccr));
1081 unoccr->insn = NULL_RTX;
1082 unoccr->pred = pred;
1083 unoccr->next = unavail_occrs;
1084 unavail_occrs = unoccr;
1085 if (! rollback_unoccr)
1086 rollback_unoccr = unoccr;
1087 }
1088 }
1089
1090 if (/* No load can be replaced by copy. */
1091 npred_ok == 0
1092 /* Prevent exploding the code. */
1093 || (optimize_size && npred_ok > 1))
1094 goto cleanup;
1095
1096 /* Check if it's worth applying the partial redundancy elimination. */
1097 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1098 goto cleanup;
1099 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1100 goto cleanup;
1101
1102 /* Generate moves to the loaded register from where
1103 the memory is available. */
1104 for (occr = avail_occrs; occr; occr = occr->next)
1105 {
1106 avail_insn = occr->insn;
1107 pred = occr->pred;
1108 /* Set avail_reg to be the register having the value of the
1109 memory. */
1110 avail_reg = get_avail_load_store_reg (avail_insn);
1111 gcc_assert (avail_reg);
1112
1113 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1114 copy_rtx (avail_reg)),
1115 pred);
1116 stats.moves_inserted++;
1117
1118 if (dump_file)
1119 fprintf (dump_file,
1120 "generating move from %d to %d on edge from %d to %d\n",
1121 REGNO (avail_reg),
1122 REGNO (dest),
1123 pred->src->index,
1124 pred->dest->index);
1125 }
1126
1127 /* Regenerate loads where the memory is unavailable. */
1128 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1129 {
1130 pred = unoccr->pred;
1131 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1132 stats.copies_inserted++;
1133
1134 if (dump_file)
1135 {
1136 fprintf (dump_file,
1137 "generating on edge from %d to %d a copy of load: ",
1138 pred->src->index,
1139 pred->dest->index);
1140 print_rtl (dump_file, PATTERN (insn));
1141 fprintf (dump_file, "\n");
1142 }
1143 }
1144
1145 /* Delete the insn if it is not available in this block and mark it
1146 for deletion if it is available. If insn is available it may help
1147 discover additional redundancies, so mark it for later deletion. */
1148 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1149 a_occr && (a_occr->insn != insn);
1150 a_occr = get_bb_avail_insn (bb, a_occr->next));
1151
1152 if (!a_occr)
1153 delete_insn (insn);
1154 else
1155 a_occr->deleted_p = 1;
1156
1157 cleanup:
1158 if (rollback_unoccr)
1159 obstack_free (&unoccr_obstack, rollback_unoccr);
1160 }
1161
1162 /* Performing the redundancy elimination as described before. */
1163
1164 static void
1165 eliminate_partially_redundant_loads (void)
1166 {
1167 rtx insn;
1168 basic_block bb;
1169
1170 /* Note we start at block 1. */
1171
1172 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1173 return;
1174
1175 FOR_BB_BETWEEN (bb,
1176 ENTRY_BLOCK_PTR->next_bb->next_bb,
1177 EXIT_BLOCK_PTR,
1178 next_bb)
1179 {
1180 /* Don't try anything on basic blocks with strange predecessors. */
1181 if (! bb_has_well_behaved_predecessors (bb))
1182 continue;
1183
1184 /* Do not try anything on cold basic blocks. */
1185 if (probably_cold_bb_p (bb))
1186 continue;
1187
1188 /* Reset the table of things changed since the start of the current
1189 basic block. */
1190 reset_opr_set_tables ();
1191
1192 /* Look at all insns in the current basic block and see if there are
1193 any loads in it that we can record. */
1194 FOR_BB_INSNS (bb, insn)
1195 {
1196 /* Is it a load - of the form (set (reg) (mem))? */
1197 if (NONJUMP_INSN_P (insn)
1198 && GET_CODE (PATTERN (insn)) == SET
1199 && REG_P (SET_DEST (PATTERN (insn)))
1200 && MEM_P (SET_SRC (PATTERN (insn))))
1201 {
1202 rtx pat = PATTERN (insn);
1203 rtx src = SET_SRC (pat);
1204 struct expr *expr;
1205
1206 if (!MEM_VOLATILE_P (src)
1207 && GET_MODE (src) != BLKmode
1208 && general_operand (src, GET_MODE (src))
1209 /* Are the operands unchanged since the start of the
1210 block? */
1211 && oprs_unchanged_p (src, insn, false)
1212 && !(flag_non_call_exceptions && may_trap_p (src))
1213 && !side_effects_p (src)
1214 /* Is the expression recorded? */
1215 && (expr = lookup_expr_in_table (src)) != NULL)
1216 {
1217 /* We now have a load (insn) and an available memory at
1218 its BB start (expr). Try to remove the loads if it is
1219 redundant. */
1220 eliminate_partially_redundant_load (bb, insn, expr);
1221 }
1222 }
1223
1224 /* Keep track of everything modified by this insn, so that we
1225 know what has been modified since the start of the current
1226 basic block. */
1227 if (INSN_P (insn))
1228 record_opr_changes (insn);
1229 }
1230 }
1231
1232 commit_edge_insertions ();
1233 }
1234
1235 /* Go over the expression hash table and delete insns that were
1236 marked for later deletion. */
1237
1238 /* This helper is called via htab_traverse. */
1239 static int
1240 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1241 {
1242 struct expr *expr = (struct expr *) *slot;
1243 struct occr *occr;
1244
1245 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1246 {
1247 if (occr->deleted_p)
1248 {
1249 delete_insn (occr->insn);
1250 stats.insns_deleted++;
1251
1252 if (dump_file)
1253 {
1254 fprintf (dump_file, "deleting insn:\n");
1255 print_rtl_single (dump_file, occr->insn);
1256 fprintf (dump_file, "\n");
1257 }
1258 }
1259 }
1260
1261 return 1;
1262 }
1263
1264 static void
1265 delete_redundant_insns (void)
1266 {
1267 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1268 if (dump_file)
1269 fprintf (dump_file, "\n");
1270 }
1271
1272 /* Main entry point of the GCSE after reload - clean some redundant loads
1273 due to spilling. */
1274
1275 void
1276 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1277 {
1278
1279 if (targetm.cannot_modify_jumps_p ())
1280 return;
1281
1282 memset (&stats, 0, sizeof (stats));
1283
1284 /* Allocate ememory for this pass.
1285 Also computes and initializes the insns' CUIDs. */
1286 alloc_mem ();
1287
1288 /* We need alias analysis. */
1289 init_alias_analysis ();
1290
1291 compute_hash_table ();
1292
1293 if (dump_file)
1294 dump_hash_table (dump_file);
1295
1296 if (htab_elements (expr_table) > 0)
1297 {
1298 eliminate_partially_redundant_loads ();
1299 delete_redundant_insns ();
1300
1301 if (dump_file)
1302 {
1303 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1304 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1305 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1306 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1307 fprintf (dump_file, "\n\n");
1308 }
1309 }
1310
1311 /* We are finished with alias. */
1312 end_alias_analysis ();
1313
1314 free_mem ();
1315 }
1316