]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
Add a load_extend_op wrapper
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43
44 static int reload_cse_noop_set_p (rtx);
45 static bool reload_cse_simplify (rtx_insn *, rtx);
46 static void reload_cse_regs_1 (void);
47 static int reload_cse_simplify_set (rtx, rtx_insn *);
48 static int reload_cse_simplify_operands (rtx_insn *, rtx);
49
50 static void reload_combine (void);
51 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
52 static void reload_combine_note_store (rtx, const_rtx, void *);
53
54 static bool reload_cse_move2add (rtx_insn *);
55 static void move2add_note_store (rtx, const_rtx, void *);
56
57 /* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
59
60 static void
61 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
62 {
63 bool moves_converted;
64 reload_cse_regs_1 ();
65 reload_combine ();
66 moves_converted = reload_cse_move2add (first);
67 if (flag_expensive_optimizations)
68 {
69 if (moves_converted)
70 reload_combine ();
71 reload_cse_regs_1 ();
72 }
73 }
74
75 /* See whether a single set SET is a noop. */
76 static int
77 reload_cse_noop_set_p (rtx set)
78 {
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
81
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83 }
84
85 /* Try to simplify INSN. Return true if the CFG may have changed. */
86 static bool
87 reload_cse_simplify (rtx_insn *insn, rtx testreg)
88 {
89 rtx body = PATTERN (insn);
90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
92
93 if (GET_CODE (body) == SET)
94 {
95 int count = 0;
96
97 /* Simplify even if we may think it is a no-op.
98 We may think a memory load of a value smaller than WORD_SIZE
99 is redundant because we haven't taken into account possible
100 implicit extension. reload_cse_simplify_set() will bring
101 this out, so it's safer to simplify before we delete. */
102 count += reload_cse_simplify_set (body, insn);
103
104 if (!count && reload_cse_noop_set_p (body))
105 {
106 if (check_for_inc_dec (insn))
107 delete_insn_and_edges (insn);
108 /* We're done with this insn. */
109 goto done;
110 }
111
112 if (count > 0)
113 apply_change_group ();
114 else
115 reload_cse_simplify_operands (insn, testreg);
116 }
117 else if (GET_CODE (body) == PARALLEL)
118 {
119 int i;
120 int count = 0;
121 rtx value = NULL_RTX;
122
123 /* Registers mentioned in the clobber list for an asm cannot be reused
124 within the body of the asm. Invalidate those registers now so that
125 we don't try to substitute values for them. */
126 if (asm_noperands (body) >= 0)
127 {
128 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
129 {
130 rtx part = XVECEXP (body, 0, i);
131 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
132 cselib_invalidate_rtx (XEXP (part, 0));
133 }
134 }
135
136 /* If every action in a PARALLEL is a noop, we can delete
137 the entire PARALLEL. */
138 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
139 {
140 rtx part = XVECEXP (body, 0, i);
141 if (GET_CODE (part) == SET)
142 {
143 if (! reload_cse_noop_set_p (part))
144 break;
145 if (REG_P (SET_DEST (part))
146 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
147 {
148 if (value)
149 break;
150 value = SET_DEST (part);
151 }
152 }
153 else if (GET_CODE (part) != CLOBBER
154 && GET_CODE (part) != USE)
155 break;
156 }
157
158 if (i < 0)
159 {
160 if (check_for_inc_dec (insn))
161 delete_insn_and_edges (insn);
162 /* We're done with this insn. */
163 goto done;
164 }
165
166 /* It's not a no-op, but we can try to simplify it. */
167 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
168 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
169 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
170
171 if (count > 0)
172 apply_change_group ();
173 else
174 reload_cse_simplify_operands (insn, testreg);
175 }
176
177 done:
178 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
179 }
180
181 /* Do a very simple CSE pass over the hard registers.
182
183 This function detects no-op moves where we happened to assign two
184 different pseudo-registers to the same hard register, and then
185 copied one to the other. Reload will generate a useless
186 instruction copying a register to itself.
187
188 This function also detects cases where we load a value from memory
189 into two different registers, and (if memory is more expensive than
190 registers) changes it to simply copy the first register into the
191 second register.
192
193 Another optimization is performed that scans the operands of each
194 instruction to see whether the value is already available in a
195 hard register. It then replaces the operand with the hard register
196 if possible, much like an optional reload would. */
197
198 static void
199 reload_cse_regs_1 (void)
200 {
201 bool cfg_changed = false;
202 basic_block bb;
203 rtx_insn *insn;
204 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
205
206 cselib_init (CSELIB_RECORD_MEMORY);
207 init_alias_analysis ();
208
209 FOR_EACH_BB_FN (bb, cfun)
210 FOR_BB_INSNS (bb, insn)
211 {
212 if (INSN_P (insn))
213 cfg_changed |= reload_cse_simplify (insn, testreg);
214
215 cselib_process_insn (insn);
216 }
217
218 /* Clean up. */
219 end_alias_analysis ();
220 cselib_finish ();
221 if (cfg_changed)
222 cleanup_cfg (0);
223 }
224
225 /* Try to simplify a single SET instruction. SET is the set pattern.
226 INSN is the instruction it came from.
227 This function only handles one case: if we set a register to a value
228 which is not a register, we try to find that value in some other register
229 and change the set into a register copy. */
230
231 static int
232 reload_cse_simplify_set (rtx set, rtx_insn *insn)
233 {
234 int did_change = 0;
235 int dreg;
236 rtx src;
237 reg_class_t dclass;
238 int old_cost;
239 cselib_val *val;
240 struct elt_loc_list *l;
241 enum rtx_code extend_op = UNKNOWN;
242 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
243
244 dreg = true_regnum (SET_DEST (set));
245 if (dreg < 0)
246 return 0;
247
248 src = SET_SRC (set);
249 if (side_effects_p (src) || true_regnum (src) >= 0)
250 return 0;
251
252 dclass = REGNO_REG_CLASS (dreg);
253
254 /* When replacing a memory with a register, we need to honor assumptions
255 that combine made wrt the contents of sign bits. We'll do this by
256 generating an extend instruction instead of a reg->reg copy. Thus
257 the destination must be a register that we can widen. */
258 if (MEM_P (src)
259 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
260 && !REG_P (SET_DEST (set)))
261 return 0;
262
263 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
264 if (! val)
265 return 0;
266
267 /* If memory loads are cheaper than register copies, don't change them. */
268 if (MEM_P (src))
269 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
270 else if (REG_P (src))
271 old_cost = register_move_cost (GET_MODE (src),
272 REGNO_REG_CLASS (REGNO (src)), dclass);
273 else
274 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
275
276 for (l = val->locs; l; l = l->next)
277 {
278 rtx this_rtx = l->loc;
279 int this_cost;
280
281 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
282 {
283 if (extend_op != UNKNOWN)
284 {
285 wide_int result;
286
287 if (!CONST_SCALAR_INT_P (this_rtx))
288 continue;
289
290 switch (extend_op)
291 {
292 case ZERO_EXTEND:
293 result = wide_int::from (std::make_pair (this_rtx,
294 GET_MODE (src)),
295 BITS_PER_WORD, UNSIGNED);
296 break;
297 case SIGN_EXTEND:
298 result = wide_int::from (std::make_pair (this_rtx,
299 GET_MODE (src)),
300 BITS_PER_WORD, SIGNED);
301 break;
302 default:
303 gcc_unreachable ();
304 }
305 this_rtx = immed_wide_int_const (result, word_mode);
306 }
307
308 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
309 }
310 else if (REG_P (this_rtx))
311 {
312 if (extend_op != UNKNOWN)
313 {
314 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
315 this_cost = set_src_cost (this_rtx, word_mode, speed);
316 }
317 else
318 this_cost = register_move_cost (GET_MODE (this_rtx),
319 REGNO_REG_CLASS (REGNO (this_rtx)),
320 dclass);
321 }
322 else
323 continue;
324
325 /* If equal costs, prefer registers over anything else. That
326 tends to lead to smaller instructions on some machines. */
327 if (this_cost < old_cost
328 || (this_cost == old_cost
329 && REG_P (this_rtx)
330 && !REG_P (SET_SRC (set))))
331 {
332 if (extend_op != UNKNOWN
333 #ifdef CANNOT_CHANGE_MODE_CLASS
334 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
335 word_mode,
336 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
337 #endif
338 )
339 {
340 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
341 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
342 validate_change (insn, &SET_DEST (set), wide_dest, 1);
343 }
344
345 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
346 old_cost = this_cost, did_change = 1;
347 }
348 }
349
350 return did_change;
351 }
352
353 /* Try to replace operands in INSN with equivalent values that are already
354 in registers. This can be viewed as optional reloading.
355
356 For each non-register operand in the insn, see if any hard regs are
357 known to be equivalent to that operand. Record the alternatives which
358 can accept these hard registers. Among all alternatives, select the
359 ones which are better or equal to the one currently matching, where
360 "better" is in terms of '?' and '!' constraints. Among the remaining
361 alternatives, select the one which replaces most operands with
362 hard registers. */
363
364 static int
365 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
366 {
367 int i, j;
368
369 /* For each operand, all registers that are equivalent to it. */
370 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
371
372 const char *constraints[MAX_RECOG_OPERANDS];
373
374 /* Vector recording how bad an alternative is. */
375 int *alternative_reject;
376 /* Vector recording how many registers can be introduced by choosing
377 this alternative. */
378 int *alternative_nregs;
379 /* Array of vectors recording, for each operand and each alternative,
380 which hard register to substitute, or -1 if the operand should be
381 left as it is. */
382 int *op_alt_regno[MAX_RECOG_OPERANDS];
383 /* Array of alternatives, sorted in order of decreasing desirability. */
384 int *alternative_order;
385
386 extract_constrain_insn (insn);
387
388 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
389 return 0;
390
391 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
392 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
393 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
394 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
395 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
396
397 /* For each operand, find out which regs are equivalent. */
398 for (i = 0; i < recog_data.n_operands; i++)
399 {
400 cselib_val *v;
401 struct elt_loc_list *l;
402 rtx op;
403
404 CLEAR_HARD_REG_SET (equiv_regs[i]);
405
406 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
407 right, so avoid the problem here. Likewise if we have a constant
408 and the insn pattern doesn't tell us the mode we need. */
409 if (LABEL_P (recog_data.operand[i])
410 || (CONSTANT_P (recog_data.operand[i])
411 && recog_data.operand_mode[i] == VOIDmode))
412 continue;
413
414 op = recog_data.operand[i];
415 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
416 {
417 rtx set = single_set (insn);
418
419 /* We might have multiple sets, some of which do implicit
420 extension. Punt on this for now. */
421 if (! set)
422 continue;
423 /* If the destination is also a MEM or a STRICT_LOW_PART, no
424 extension applies.
425 Also, if there is an explicit extension, we don't have to
426 worry about an implicit one. */
427 else if (MEM_P (SET_DEST (set))
428 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
429 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
430 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
431 ; /* Continue ordinary processing. */
432 #ifdef CANNOT_CHANGE_MODE_CLASS
433 /* If the register cannot change mode to word_mode, it follows that
434 it cannot have been used in word_mode. */
435 else if (REG_P (SET_DEST (set))
436 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
437 word_mode,
438 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
439 ; /* Continue ordinary processing. */
440 #endif
441 /* If this is a straight load, make the extension explicit. */
442 else if (REG_P (SET_DEST (set))
443 && recog_data.n_operands == 2
444 && SET_SRC (set) == op
445 && SET_DEST (set) == recog_data.operand[1-i])
446 {
447 validate_change (insn, recog_data.operand_loc[i],
448 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
449 word_mode, op),
450 1);
451 validate_change (insn, recog_data.operand_loc[1-i],
452 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
453 1);
454 if (! apply_change_group ())
455 return 0;
456 return reload_cse_simplify_operands (insn, testreg);
457 }
458 else
459 /* ??? There might be arithmetic operations with memory that are
460 safe to optimize, but is it worth the trouble? */
461 continue;
462 }
463
464 if (side_effects_p (op))
465 continue;
466 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
467 if (! v)
468 continue;
469
470 for (l = v->locs; l; l = l->next)
471 if (REG_P (l->loc))
472 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
473 }
474
475 alternative_mask preferred = get_preferred_alternatives (insn);
476 for (i = 0; i < recog_data.n_operands; i++)
477 {
478 machine_mode mode;
479 int regno;
480 const char *p;
481
482 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
483 for (j = 0; j < recog_data.n_alternatives; j++)
484 op_alt_regno[i][j] = -1;
485
486 p = constraints[i] = recog_data.constraints[i];
487 mode = recog_data.operand_mode[i];
488
489 /* Add the reject values for each alternative given by the constraints
490 for this operand. */
491 j = 0;
492 while (*p != '\0')
493 {
494 char c = *p++;
495 if (c == ',')
496 j++;
497 else if (c == '?')
498 alternative_reject[j] += 3;
499 else if (c == '!')
500 alternative_reject[j] += 300;
501 }
502
503 /* We won't change operands which are already registers. We
504 also don't want to modify output operands. */
505 regno = true_regnum (recog_data.operand[i]);
506 if (regno >= 0
507 || constraints[i][0] == '='
508 || constraints[i][0] == '+')
509 continue;
510
511 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
512 {
513 enum reg_class rclass = NO_REGS;
514
515 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
516 continue;
517
518 set_mode_and_regno (testreg, mode, regno);
519
520 /* We found a register equal to this operand. Now look for all
521 alternatives that can accept this register and have not been
522 assigned a register they can use yet. */
523 j = 0;
524 p = constraints[i];
525 for (;;)
526 {
527 char c = *p;
528
529 switch (c)
530 {
531 case 'g':
532 rclass = reg_class_subunion[rclass][GENERAL_REGS];
533 break;
534
535 default:
536 rclass
537 = (reg_class_subunion
538 [rclass]
539 [reg_class_for_constraint (lookup_constraint (p))]);
540 break;
541
542 case ',': case '\0':
543 /* See if REGNO fits this alternative, and set it up as the
544 replacement register if we don't have one for this
545 alternative yet and the operand being replaced is not
546 a cheap CONST_INT. */
547 if (op_alt_regno[i][j] == -1
548 && TEST_BIT (preferred, j)
549 && reg_fits_class_p (testreg, rclass, 0, mode)
550 && (!CONST_INT_P (recog_data.operand[i])
551 || (set_src_cost (recog_data.operand[i], mode,
552 optimize_bb_for_speed_p
553 (BLOCK_FOR_INSN (insn)))
554 > set_src_cost (testreg, mode,
555 optimize_bb_for_speed_p
556 (BLOCK_FOR_INSN (insn))))))
557 {
558 alternative_nregs[j]++;
559 op_alt_regno[i][j] = regno;
560 }
561 j++;
562 rclass = NO_REGS;
563 break;
564 }
565 p += CONSTRAINT_LEN (c, p);
566
567 if (c == '\0')
568 break;
569 }
570 }
571 }
572
573 /* Record all alternatives which are better or equal to the currently
574 matching one in the alternative_order array. */
575 for (i = j = 0; i < recog_data.n_alternatives; i++)
576 if (alternative_reject[i] <= alternative_reject[which_alternative])
577 alternative_order[j++] = i;
578 recog_data.n_alternatives = j;
579
580 /* Sort it. Given a small number of alternatives, a dumb algorithm
581 won't hurt too much. */
582 for (i = 0; i < recog_data.n_alternatives - 1; i++)
583 {
584 int best = i;
585 int best_reject = alternative_reject[alternative_order[i]];
586 int best_nregs = alternative_nregs[alternative_order[i]];
587
588 for (j = i + 1; j < recog_data.n_alternatives; j++)
589 {
590 int this_reject = alternative_reject[alternative_order[j]];
591 int this_nregs = alternative_nregs[alternative_order[j]];
592
593 if (this_reject < best_reject
594 || (this_reject == best_reject && this_nregs > best_nregs))
595 {
596 best = j;
597 best_reject = this_reject;
598 best_nregs = this_nregs;
599 }
600 }
601
602 std::swap (alternative_order[best], alternative_order[i]);
603 }
604
605 /* Substitute the operands as determined by op_alt_regno for the best
606 alternative. */
607 j = alternative_order[0];
608
609 for (i = 0; i < recog_data.n_operands; i++)
610 {
611 machine_mode mode = recog_data.operand_mode[i];
612 if (op_alt_regno[i][j] == -1)
613 continue;
614
615 validate_change (insn, recog_data.operand_loc[i],
616 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
617 }
618
619 for (i = recog_data.n_dups - 1; i >= 0; i--)
620 {
621 int op = recog_data.dup_num[i];
622 machine_mode mode = recog_data.operand_mode[op];
623
624 if (op_alt_regno[op][j] == -1)
625 continue;
626
627 validate_change (insn, recog_data.dup_loc[i],
628 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
629 }
630
631 return apply_change_group ();
632 }
633 \f
634 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
635 addressing now.
636 This code might also be useful when reload gave up on reg+reg addressing
637 because of clashes between the return register and INDEX_REG_CLASS. */
638
639 /* The maximum number of uses of a register we can keep track of to
640 replace them with reg+reg addressing. */
641 #define RELOAD_COMBINE_MAX_USES 16
642
643 /* Describes a recorded use of a register. */
644 struct reg_use
645 {
646 /* The insn where a register has been used. */
647 rtx_insn *insn;
648 /* Points to the memory reference enclosing the use, if any, NULL_RTX
649 otherwise. */
650 rtx containing_mem;
651 /* Location of the register within INSN. */
652 rtx *usep;
653 /* The reverse uid of the insn. */
654 int ruid;
655 };
656
657 /* If the register is used in some unknown fashion, USE_INDEX is negative.
658 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
659 indicates where it is first set or clobbered.
660 Otherwise, USE_INDEX is the index of the last encountered use of the
661 register (which is first among these we have seen since we scan backwards).
662 USE_RUID indicates the first encountered, i.e. last, of these uses.
663 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
664 with a constant offset; OFFSET contains this constant in that case.
665 STORE_RUID is always meaningful if we only want to use a value in a
666 register in a different place: it denotes the next insn in the insn
667 stream (i.e. the last encountered) that sets or clobbers the register.
668 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
669 static struct
670 {
671 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
672 rtx offset;
673 int use_index;
674 int store_ruid;
675 int real_store_ruid;
676 int use_ruid;
677 bool all_offsets_match;
678 } reg_state[FIRST_PSEUDO_REGISTER];
679
680 /* Reverse linear uid. This is increased in reload_combine while scanning
681 the instructions from last to first. It is used to set last_label_ruid
682 and the store_ruid / use_ruid fields in reg_state. */
683 static int reload_combine_ruid;
684
685 /* The RUID of the last label we encountered in reload_combine. */
686 static int last_label_ruid;
687
688 /* The RUID of the last jump we encountered in reload_combine. */
689 static int last_jump_ruid;
690
691 /* The register numbers of the first and last index register. A value of
692 -1 in LAST_INDEX_REG indicates that we've previously computed these
693 values and found no suitable index registers. */
694 static int first_index_reg = -1;
695 static int last_index_reg;
696
697 #define LABEL_LIVE(LABEL) \
698 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
699
700 /* Subroutine of reload_combine_split_ruids, called to fix up a single
701 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
702
703 static inline void
704 reload_combine_split_one_ruid (int *pruid, int split_ruid)
705 {
706 if (*pruid > split_ruid)
707 (*pruid)++;
708 }
709
710 /* Called when we insert a new insn in a position we've already passed in
711 the scan. Examine all our state, increasing all ruids that are higher
712 than SPLIT_RUID by one in order to make room for a new insn. */
713
714 static void
715 reload_combine_split_ruids (int split_ruid)
716 {
717 unsigned i;
718
719 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
720 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
721 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
722
723 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
724 {
725 int j, idx = reg_state[i].use_index;
726 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
727 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
728 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
729 split_ruid);
730 if (idx < 0)
731 continue;
732 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
733 {
734 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
735 split_ruid);
736 }
737 }
738 }
739
740 /* Called when we are about to rescan a previously encountered insn with
741 reload_combine_note_use after modifying some part of it. This clears all
742 information about uses in that particular insn. */
743
744 static void
745 reload_combine_purge_insn_uses (rtx_insn *insn)
746 {
747 unsigned i;
748
749 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
750 {
751 int j, k, idx = reg_state[i].use_index;
752 if (idx < 0)
753 continue;
754 j = k = RELOAD_COMBINE_MAX_USES;
755 while (j-- > idx)
756 {
757 if (reg_state[i].reg_use[j].insn != insn)
758 {
759 k--;
760 if (k != j)
761 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
762 }
763 }
764 reg_state[i].use_index = k;
765 }
766 }
767
768 /* Called when we need to forget about all uses of REGNO after an insn
769 which is identified by RUID. */
770
771 static void
772 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
773 {
774 int j, k, idx = reg_state[regno].use_index;
775 if (idx < 0)
776 return;
777 j = k = RELOAD_COMBINE_MAX_USES;
778 while (j-- > idx)
779 {
780 if (reg_state[regno].reg_use[j].ruid >= ruid)
781 {
782 k--;
783 if (k != j)
784 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
785 }
786 }
787 reg_state[regno].use_index = k;
788 }
789
790 /* Find the use of REGNO with the ruid that is highest among those
791 lower than RUID_LIMIT, and return it if it is the only use of this
792 reg in the insn. Return NULL otherwise. */
793
794 static struct reg_use *
795 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
796 {
797 int i, best_ruid = 0;
798 int use_idx = reg_state[regno].use_index;
799 struct reg_use *retval;
800
801 if (use_idx < 0)
802 return NULL;
803 retval = NULL;
804 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
805 {
806 struct reg_use *use = reg_state[regno].reg_use + i;
807 int this_ruid = use->ruid;
808 if (this_ruid >= ruid_limit)
809 continue;
810 if (this_ruid > best_ruid)
811 {
812 best_ruid = this_ruid;
813 retval = use;
814 }
815 else if (this_ruid == best_ruid)
816 retval = NULL;
817 }
818 if (last_label_ruid >= best_ruid)
819 return NULL;
820 return retval;
821 }
822
823 /* After we've moved an add insn, fix up any debug insns that occur
824 between the old location of the add and the new location. REG is
825 the destination register of the add insn; REPLACEMENT is the
826 SET_SRC of the add. FROM and TO specify the range in which we
827 should make this change on debug insns. */
828
829 static void
830 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
831 {
832 rtx_insn *insn;
833 for (insn = from; insn != to; insn = NEXT_INSN (insn))
834 {
835 rtx t;
836
837 if (!DEBUG_INSN_P (insn))
838 continue;
839
840 t = INSN_VAR_LOCATION_LOC (insn);
841 t = simplify_replace_rtx (t, reg, replacement);
842 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
843 }
844 }
845
846 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
847 with SRC in the insn described by USE, taking costs into account. Return
848 true if we made the replacement. */
849
850 static bool
851 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
852 {
853 rtx_insn *use_insn = use->insn;
854 rtx mem = use->containing_mem;
855 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
856
857 if (mem != NULL_RTX)
858 {
859 addr_space_t as = MEM_ADDR_SPACE (mem);
860 rtx oldaddr = XEXP (mem, 0);
861 rtx newaddr = NULL_RTX;
862 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
863 int new_cost;
864
865 newaddr = simplify_replace_rtx (oldaddr, reg, src);
866 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
867 {
868 XEXP (mem, 0) = newaddr;
869 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
870 XEXP (mem, 0) = oldaddr;
871 if (new_cost <= old_cost
872 && validate_change (use_insn,
873 &XEXP (mem, 0), newaddr, 0))
874 return true;
875 }
876 }
877 else
878 {
879 rtx new_set = single_set (use_insn);
880 if (new_set
881 && REG_P (SET_DEST (new_set))
882 && GET_CODE (SET_SRC (new_set)) == PLUS
883 && REG_P (XEXP (SET_SRC (new_set), 0))
884 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
885 {
886 rtx new_src;
887 machine_mode mode = GET_MODE (SET_DEST (new_set));
888 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
889
890 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
891 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
892
893 if (set_src_cost (new_src, mode, speed) <= old_cost
894 && validate_change (use_insn, &SET_SRC (new_set),
895 new_src, 0))
896 return true;
897 }
898 }
899 return false;
900 }
901
902 /* Called by reload_combine when scanning INSN. This function tries to detect
903 patterns where a constant is added to a register, and the result is used
904 in an address.
905 Return true if no further processing is needed on INSN; false if it wasn't
906 recognized and should be handled normally. */
907
908 static bool
909 reload_combine_recognize_const_pattern (rtx_insn *insn)
910 {
911 int from_ruid = reload_combine_ruid;
912 rtx set, pat, reg, src, addreg;
913 unsigned int regno;
914 struct reg_use *use;
915 bool must_move_add;
916 rtx_insn *add_moved_after_insn = NULL;
917 int add_moved_after_ruid = 0;
918 int clobbered_regno = -1;
919
920 set = single_set (insn);
921 if (set == NULL_RTX)
922 return false;
923
924 reg = SET_DEST (set);
925 src = SET_SRC (set);
926 if (!REG_P (reg)
927 || REG_NREGS (reg) != 1
928 || GET_MODE (reg) != Pmode
929 || reg == stack_pointer_rtx)
930 return false;
931
932 regno = REGNO (reg);
933
934 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
935 uses of REG1 inside an address, or inside another add insn. If
936 possible and profitable, merge the addition into subsequent
937 uses. */
938 if (GET_CODE (src) != PLUS
939 || !REG_P (XEXP (src, 0))
940 || !CONSTANT_P (XEXP (src, 1)))
941 return false;
942
943 addreg = XEXP (src, 0);
944 must_move_add = rtx_equal_p (reg, addreg);
945
946 pat = PATTERN (insn);
947 if (must_move_add && set != pat)
948 {
949 /* We have to be careful when moving the add; apart from the
950 single_set there may also be clobbers. Recognize one special
951 case, that of one clobber alongside the set (likely a clobber
952 of the CC register). */
953 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
954 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
955 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
956 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
957 return false;
958 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
959 }
960
961 do
962 {
963 use = reload_combine_closest_single_use (regno, from_ruid);
964
965 if (use)
966 /* Start the search for the next use from here. */
967 from_ruid = use->ruid;
968
969 if (use && GET_MODE (*use->usep) == Pmode)
970 {
971 bool delete_add = false;
972 rtx_insn *use_insn = use->insn;
973 int use_ruid = use->ruid;
974
975 /* Avoid moving the add insn past a jump. */
976 if (must_move_add && use_ruid <= last_jump_ruid)
977 break;
978
979 /* If the add clobbers another hard reg in parallel, don't move
980 it past a real set of this hard reg. */
981 if (must_move_add && clobbered_regno >= 0
982 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
983 break;
984
985 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
986 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
987 break;
988
989 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
990 /* Avoid moving a use of ADDREG past a point where it is stored. */
991 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
992 break;
993
994 /* We also must not move the addition past an insn that sets
995 the same register, unless we can combine two add insns. */
996 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
997 {
998 if (use->containing_mem == NULL_RTX)
999 delete_add = true;
1000 else
1001 break;
1002 }
1003
1004 if (try_replace_in_use (use, reg, src))
1005 {
1006 reload_combine_purge_insn_uses (use_insn);
1007 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1008 use_ruid, NULL_RTX);
1009
1010 if (delete_add)
1011 {
1012 fixup_debug_insns (reg, src, insn, use_insn);
1013 delete_insn (insn);
1014 return true;
1015 }
1016 if (must_move_add)
1017 {
1018 add_moved_after_insn = use_insn;
1019 add_moved_after_ruid = use_ruid;
1020 }
1021 continue;
1022 }
1023 }
1024 /* If we get here, we couldn't handle this use. */
1025 if (must_move_add)
1026 break;
1027 }
1028 while (use);
1029
1030 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1031 /* Process the add normally. */
1032 return false;
1033
1034 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1035
1036 reorder_insns (insn, insn, add_moved_after_insn);
1037 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1038 reload_combine_split_ruids (add_moved_after_ruid - 1);
1039 reload_combine_note_use (&PATTERN (insn), insn,
1040 add_moved_after_ruid, NULL_RTX);
1041 reg_state[regno].store_ruid = add_moved_after_ruid;
1042
1043 return true;
1044 }
1045
1046 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1047 can handle and improve. Return true if no further processing is needed on
1048 INSN; false if it wasn't recognized and should be handled normally. */
1049
1050 static bool
1051 reload_combine_recognize_pattern (rtx_insn *insn)
1052 {
1053 rtx set, reg, src;
1054
1055 set = single_set (insn);
1056 if (set == NULL_RTX)
1057 return false;
1058
1059 reg = SET_DEST (set);
1060 src = SET_SRC (set);
1061 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1062 return false;
1063
1064 unsigned int regno = REGNO (reg);
1065 machine_mode mode = GET_MODE (reg);
1066
1067 if (reg_state[regno].use_index < 0
1068 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1069 return false;
1070
1071 for (int i = reg_state[regno].use_index;
1072 i < RELOAD_COMBINE_MAX_USES; i++)
1073 {
1074 struct reg_use *use = reg_state[regno].reg_use + i;
1075 if (GET_MODE (*use->usep) != mode)
1076 return false;
1077 }
1078
1079 /* Look for (set (REGX) (CONST_INT))
1080 (set (REGX) (PLUS (REGX) (REGY)))
1081 ...
1082 ... (MEM (REGX)) ...
1083 and convert it to
1084 (set (REGZ) (CONST_INT))
1085 ...
1086 ... (MEM (PLUS (REGZ) (REGY)))... .
1087
1088 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1089 and that we know all uses of REGX before it dies.
1090 Also, explicitly check that REGX != REGY; our life information
1091 does not yet show whether REGY changes in this insn. */
1092
1093 if (GET_CODE (src) == PLUS
1094 && reg_state[regno].all_offsets_match
1095 && last_index_reg != -1
1096 && REG_P (XEXP (src, 1))
1097 && rtx_equal_p (XEXP (src, 0), reg)
1098 && !rtx_equal_p (XEXP (src, 1), reg)
1099 && last_label_ruid < reg_state[regno].use_ruid)
1100 {
1101 rtx base = XEXP (src, 1);
1102 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1103 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1104 rtx index_reg = NULL_RTX;
1105 rtx reg_sum = NULL_RTX;
1106 int i;
1107
1108 /* Now we need to set INDEX_REG to an index register (denoted as
1109 REGZ in the illustration above) and REG_SUM to the expression
1110 register+register that we want to use to substitute uses of REG
1111 (typically in MEMs) with. First check REG and BASE for being
1112 index registers; we can use them even if they are not dead. */
1113 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1114 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1115 REGNO (base)))
1116 {
1117 index_reg = reg;
1118 reg_sum = src;
1119 }
1120 else
1121 {
1122 /* Otherwise, look for a free index register. Since we have
1123 checked above that neither REG nor BASE are index registers,
1124 if we find anything at all, it will be different from these
1125 two registers. */
1126 for (i = first_index_reg; i <= last_index_reg; i++)
1127 {
1128 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1129 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1130 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1131 && (call_used_regs[i] || df_regs_ever_live_p (i))
1132 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1133 && !fixed_regs[i] && !global_regs[i]
1134 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1135 && targetm.hard_regno_scratch_ok (i))
1136 {
1137 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1138 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1139 break;
1140 }
1141 }
1142 }
1143
1144 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1145 (REGY), i.e. BASE, is not clobbered before the last use we'll
1146 create. */
1147 if (reg_sum
1148 && prev_set
1149 && CONST_INT_P (SET_SRC (prev_set))
1150 && rtx_equal_p (SET_DEST (prev_set), reg)
1151 && (reg_state[REGNO (base)].store_ruid
1152 <= reg_state[regno].use_ruid))
1153 {
1154 /* Change destination register and, if necessary, the constant
1155 value in PREV, the constant loading instruction. */
1156 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1157 if (reg_state[regno].offset != const0_rtx)
1158 validate_change (prev,
1159 &SET_SRC (prev_set),
1160 GEN_INT (INTVAL (SET_SRC (prev_set))
1161 + INTVAL (reg_state[regno].offset)),
1162 1);
1163
1164 /* Now for every use of REG that we have recorded, replace REG
1165 with REG_SUM. */
1166 for (i = reg_state[regno].use_index;
1167 i < RELOAD_COMBINE_MAX_USES; i++)
1168 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1169 reg_state[regno].reg_use[i].usep,
1170 /* Each change must have its own
1171 replacement. */
1172 reg_sum, 1);
1173
1174 if (apply_change_group ())
1175 {
1176 struct reg_use *lowest_ruid = NULL;
1177
1178 /* For every new use of REG_SUM, we have to record the use
1179 of BASE therein, i.e. operand 1. */
1180 for (i = reg_state[regno].use_index;
1181 i < RELOAD_COMBINE_MAX_USES; i++)
1182 {
1183 struct reg_use *use = reg_state[regno].reg_use + i;
1184 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1185 use->ruid, use->containing_mem);
1186 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1187 lowest_ruid = use;
1188 }
1189
1190 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1191
1192 /* Delete the reg-reg addition. */
1193 delete_insn (insn);
1194
1195 if (reg_state[regno].offset != const0_rtx)
1196 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1197 are now invalid. */
1198 remove_reg_equal_equiv_notes (prev);
1199
1200 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1201 return true;
1202 }
1203 }
1204 }
1205 return false;
1206 }
1207
1208 static void
1209 reload_combine (void)
1210 {
1211 rtx_insn *insn, *prev;
1212 basic_block bb;
1213 unsigned int r;
1214 int min_labelno, n_labels;
1215 HARD_REG_SET ever_live_at_start, *label_live;
1216
1217 /* To avoid wasting too much time later searching for an index register,
1218 determine the minimum and maximum index register numbers. */
1219 if (INDEX_REG_CLASS == NO_REGS)
1220 last_index_reg = -1;
1221 else if (first_index_reg == -1 && last_index_reg == 0)
1222 {
1223 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1224 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1225 {
1226 if (first_index_reg == -1)
1227 first_index_reg = r;
1228
1229 last_index_reg = r;
1230 }
1231
1232 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1233 to -1 so we'll know to quit early the next time we get here. */
1234 if (first_index_reg == -1)
1235 {
1236 last_index_reg = -1;
1237 return;
1238 }
1239 }
1240
1241 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1242 information is a bit fuzzy immediately after reload, but it's
1243 still good enough to determine which registers are live at a jump
1244 destination. */
1245 min_labelno = get_first_label_num ();
1246 n_labels = max_label_num () - min_labelno;
1247 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1248 CLEAR_HARD_REG_SET (ever_live_at_start);
1249
1250 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1251 {
1252 insn = BB_HEAD (bb);
1253 if (LABEL_P (insn))
1254 {
1255 HARD_REG_SET live;
1256 bitmap live_in = df_get_live_in (bb);
1257
1258 REG_SET_TO_HARD_REG_SET (live, live_in);
1259 compute_use_by_pseudos (&live, live_in);
1260 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1261 IOR_HARD_REG_SET (ever_live_at_start, live);
1262 }
1263 }
1264
1265 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1266 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1267 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1268 {
1269 reg_state[r].store_ruid = 0;
1270 reg_state[r].real_store_ruid = 0;
1271 if (fixed_regs[r])
1272 reg_state[r].use_index = -1;
1273 else
1274 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1275 }
1276
1277 for (insn = get_last_insn (); insn; insn = prev)
1278 {
1279 bool control_flow_insn;
1280 rtx note;
1281
1282 prev = PREV_INSN (insn);
1283
1284 /* We cannot do our optimization across labels. Invalidating all the use
1285 information we have would be costly, so we just note where the label
1286 is and then later disable any optimization that would cross it. */
1287 if (LABEL_P (insn))
1288 last_label_ruid = reload_combine_ruid;
1289 else if (BARRIER_P (insn))
1290 {
1291 /* Crossing a barrier resets all the use information. */
1292 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1293 if (! fixed_regs[r])
1294 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1295 }
1296 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1297 /* Optimizations across insns being marked as volatile must be
1298 prevented. All the usage information is invalidated
1299 here. */
1300 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1301 if (! fixed_regs[r]
1302 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1303 reg_state[r].use_index = -1;
1304
1305 if (! NONDEBUG_INSN_P (insn))
1306 continue;
1307
1308 reload_combine_ruid++;
1309
1310 control_flow_insn = control_flow_insn_p (insn);
1311 if (control_flow_insn)
1312 last_jump_ruid = reload_combine_ruid;
1313
1314 if (reload_combine_recognize_const_pattern (insn)
1315 || reload_combine_recognize_pattern (insn))
1316 continue;
1317
1318 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1319
1320 if (CALL_P (insn))
1321 {
1322 rtx link;
1323 HARD_REG_SET used_regs;
1324
1325 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1326
1327 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1328 if (TEST_HARD_REG_BIT (used_regs, r))
1329 {
1330 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1331 reg_state[r].store_ruid = reload_combine_ruid;
1332 }
1333
1334 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1335 link = XEXP (link, 1))
1336 {
1337 rtx setuse = XEXP (link, 0);
1338 rtx usage_rtx = XEXP (setuse, 0);
1339 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1340 && REG_P (usage_rtx))
1341 {
1342 unsigned int end_regno = END_REGNO (usage_rtx);
1343 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1344 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1345 {
1346 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1347 reg_state[i].store_ruid = reload_combine_ruid;
1348 }
1349 else
1350 reg_state[i].use_index = -1;
1351 }
1352 }
1353 }
1354
1355 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1356 {
1357 /* Non-spill registers might be used at the call destination in
1358 some unknown fashion, so we have to mark the unknown use. */
1359 HARD_REG_SET *live;
1360
1361 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1362 && JUMP_LABEL (insn))
1363 {
1364 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1365 live = NULL;
1366 else
1367 live = &LABEL_LIVE (JUMP_LABEL (insn));
1368 }
1369 else
1370 live = &ever_live_at_start;
1371
1372 if (live)
1373 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1374 if (TEST_HARD_REG_BIT (*live, r))
1375 reg_state[r].use_index = -1;
1376 }
1377
1378 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1379 NULL_RTX);
1380
1381 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1382 {
1383 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1384 {
1385 int regno = REGNO (XEXP (note, 0));
1386 reg_state[regno].store_ruid = reload_combine_ruid;
1387 reg_state[regno].real_store_ruid = reload_combine_ruid;
1388 reg_state[regno].use_index = -1;
1389 }
1390 }
1391 }
1392
1393 free (label_live);
1394 }
1395
1396 /* Check if DST is a register or a subreg of a register; if it is,
1397 update store_ruid, real_store_ruid and use_index in the reg_state
1398 structure accordingly. Called via note_stores from reload_combine. */
1399
1400 static void
1401 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1402 {
1403 int regno = 0;
1404 int i;
1405 machine_mode mode = GET_MODE (dst);
1406
1407 if (GET_CODE (dst) == SUBREG)
1408 {
1409 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1410 GET_MODE (SUBREG_REG (dst)),
1411 SUBREG_BYTE (dst),
1412 GET_MODE (dst));
1413 dst = SUBREG_REG (dst);
1414 }
1415
1416 /* Some targets do argument pushes without adding REG_INC notes. */
1417
1418 if (MEM_P (dst))
1419 {
1420 dst = XEXP (dst, 0);
1421 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1422 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1423 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1424 {
1425 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1426 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1427 {
1428 /* We could probably do better, but for now mark the register
1429 as used in an unknown fashion and set/clobbered at this
1430 insn. */
1431 reg_state[i].use_index = -1;
1432 reg_state[i].store_ruid = reload_combine_ruid;
1433 reg_state[i].real_store_ruid = reload_combine_ruid;
1434 }
1435 }
1436 else
1437 return;
1438 }
1439
1440 if (!REG_P (dst))
1441 return;
1442 regno += REGNO (dst);
1443
1444 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1445 careful with registers / register parts that are not full words.
1446 Similarly for ZERO_EXTRACT. */
1447 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1448 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1449 {
1450 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1451 {
1452 reg_state[i].use_index = -1;
1453 reg_state[i].store_ruid = reload_combine_ruid;
1454 reg_state[i].real_store_ruid = reload_combine_ruid;
1455 }
1456 }
1457 else
1458 {
1459 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1460 {
1461 reg_state[i].store_ruid = reload_combine_ruid;
1462 if (GET_CODE (set) == SET)
1463 reg_state[i].real_store_ruid = reload_combine_ruid;
1464 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1465 }
1466 }
1467 }
1468
1469 /* XP points to a piece of rtl that has to be checked for any uses of
1470 registers.
1471 *XP is the pattern of INSN, or a part of it.
1472 Called from reload_combine, and recursively by itself. */
1473 static void
1474 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1475 {
1476 rtx x = *xp;
1477 enum rtx_code code = x->code;
1478 const char *fmt;
1479 int i, j;
1480 rtx offset = const0_rtx; /* For the REG case below. */
1481
1482 switch (code)
1483 {
1484 case SET:
1485 if (REG_P (SET_DEST (x)))
1486 {
1487 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1488 return;
1489 }
1490 break;
1491
1492 case USE:
1493 /* If this is the USE of a return value, we can't change it. */
1494 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1495 {
1496 /* Mark the return register as used in an unknown fashion. */
1497 rtx reg = XEXP (x, 0);
1498 unsigned int end_regno = END_REGNO (reg);
1499 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1500 reg_state[regno].use_index = -1;
1501 return;
1502 }
1503 break;
1504
1505 case CLOBBER:
1506 if (REG_P (SET_DEST (x)))
1507 {
1508 /* No spurious CLOBBERs of pseudo registers may remain. */
1509 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1510 return;
1511 }
1512 break;
1513
1514 case PLUS:
1515 /* We are interested in (plus (reg) (const_int)) . */
1516 if (!REG_P (XEXP (x, 0))
1517 || !CONST_INT_P (XEXP (x, 1)))
1518 break;
1519 offset = XEXP (x, 1);
1520 x = XEXP (x, 0);
1521 /* Fall through. */
1522 case REG:
1523 {
1524 int regno = REGNO (x);
1525 int use_index;
1526 int nregs;
1527
1528 /* No spurious USEs of pseudo registers may remain. */
1529 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1530
1531 nregs = REG_NREGS (x);
1532
1533 /* We can't substitute into multi-hard-reg uses. */
1534 if (nregs > 1)
1535 {
1536 while (--nregs >= 0)
1537 reg_state[regno + nregs].use_index = -1;
1538 return;
1539 }
1540
1541 /* We may be called to update uses in previously seen insns.
1542 Don't add uses beyond the last store we saw. */
1543 if (ruid < reg_state[regno].store_ruid)
1544 return;
1545
1546 /* If this register is already used in some unknown fashion, we
1547 can't do anything.
1548 If we decrement the index from zero to -1, we can't store more
1549 uses, so this register becomes used in an unknown fashion. */
1550 use_index = --reg_state[regno].use_index;
1551 if (use_index < 0)
1552 return;
1553
1554 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1555 {
1556 /* This is the first use of this register we have seen since we
1557 marked it as dead. */
1558 reg_state[regno].offset = offset;
1559 reg_state[regno].all_offsets_match = true;
1560 reg_state[regno].use_ruid = ruid;
1561 }
1562 else
1563 {
1564 if (reg_state[regno].use_ruid > ruid)
1565 reg_state[regno].use_ruid = ruid;
1566
1567 if (! rtx_equal_p (offset, reg_state[regno].offset))
1568 reg_state[regno].all_offsets_match = false;
1569 }
1570
1571 reg_state[regno].reg_use[use_index].insn = insn;
1572 reg_state[regno].reg_use[use_index].ruid = ruid;
1573 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1574 reg_state[regno].reg_use[use_index].usep = xp;
1575 return;
1576 }
1577
1578 case MEM:
1579 containing_mem = x;
1580 break;
1581
1582 default:
1583 break;
1584 }
1585
1586 /* Recursively process the components of X. */
1587 fmt = GET_RTX_FORMAT (code);
1588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1589 {
1590 if (fmt[i] == 'e')
1591 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1592 else if (fmt[i] == 'E')
1593 {
1594 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1595 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1596 containing_mem);
1597 }
1598 }
1599 }
1600 \f
1601 /* See if we can reduce the cost of a constant by replacing a move
1602 with an add. We track situations in which a register is set to a
1603 constant or to a register plus a constant. */
1604 /* We cannot do our optimization across labels. Invalidating all the
1605 information about register contents we have would be costly, so we
1606 use move2add_last_label_luid to note where the label is and then
1607 later disable any optimization that would cross it.
1608 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1609 are only valid if reg_set_luid[n] is greater than
1610 move2add_last_label_luid.
1611 For a set that established a new (potential) base register with
1612 non-constant value, we use move2add_luid from the place where the
1613 setting insn is encountered; registers based off that base then
1614 get the same reg_set_luid. Constants all get
1615 move2add_last_label_luid + 1 as their reg_set_luid. */
1616 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1617
1618 /* If reg_base_reg[n] is negative, register n has been set to
1619 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1620 If reg_base_reg[n] is non-negative, register n has been set to the
1621 sum of reg_offset[n] and the value of register reg_base_reg[n]
1622 before reg_set_luid[n], calculated in mode reg_mode[n] .
1623 For multi-hard-register registers, all but the first one are
1624 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1625 marks it as invalid. */
1626 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1627 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1628 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1629 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1630
1631 /* move2add_luid is linearly increased while scanning the instructions
1632 from first to last. It is used to set reg_set_luid in
1633 reload_cse_move2add and move2add_note_store. */
1634 static int move2add_luid;
1635
1636 /* move2add_last_label_luid is set whenever a label is found. Labels
1637 invalidate all previously collected reg_offset data. */
1638 static int move2add_last_label_luid;
1639
1640 /* ??? We don't know how zero / sign extension is handled, hence we
1641 can't go from a narrower to a wider mode. */
1642 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1643 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1644 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1645 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1646
1647 /* Record that REG is being set to a value with the mode of REG. */
1648
1649 static void
1650 move2add_record_mode (rtx reg)
1651 {
1652 int regno, nregs;
1653 machine_mode mode = GET_MODE (reg);
1654
1655 if (GET_CODE (reg) == SUBREG)
1656 {
1657 regno = subreg_regno (reg);
1658 nregs = subreg_nregs (reg);
1659 }
1660 else if (REG_P (reg))
1661 {
1662 regno = REGNO (reg);
1663 nregs = REG_NREGS (reg);
1664 }
1665 else
1666 gcc_unreachable ();
1667 for (int i = nregs - 1; i > 0; i--)
1668 reg_mode[regno + i] = BLKmode;
1669 reg_mode[regno] = mode;
1670 }
1671
1672 /* Record that REG is being set to the sum of SYM and OFF. */
1673
1674 static void
1675 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1676 {
1677 int regno = REGNO (reg);
1678
1679 move2add_record_mode (reg);
1680 reg_set_luid[regno] = move2add_luid;
1681 reg_base_reg[regno] = -1;
1682 reg_symbol_ref[regno] = sym;
1683 reg_offset[regno] = INTVAL (off);
1684 }
1685
1686 /* Check if REGNO contains a valid value in MODE. */
1687
1688 static bool
1689 move2add_valid_value_p (int regno, machine_mode mode)
1690 {
1691 if (reg_set_luid[regno] <= move2add_last_label_luid)
1692 return false;
1693
1694 if (mode != reg_mode[regno])
1695 {
1696 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1697 return false;
1698 /* The value loaded into regno in reg_mode[regno] is also valid in
1699 mode after truncation only if (REG:mode regno) is the lowpart of
1700 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1701 regno of the lowpart might be different. */
1702 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1703 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1704 if (s_off != 0)
1705 /* We could in principle adjust regno, check reg_mode[regno] to be
1706 BLKmode, and return s_off to the caller (vs. -1 for failure),
1707 but we currently have no callers that could make use of this
1708 information. */
1709 return false;
1710 }
1711
1712 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1713 if (reg_mode[regno + i] != BLKmode)
1714 return false;
1715 return true;
1716 }
1717
1718 /* This function is called with INSN that sets REG to (SYM + OFF),
1719 while REG is known to already have value (SYM + offset).
1720 This function tries to change INSN into an add instruction
1721 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1722 It also updates the information about REG's known value.
1723 Return true if we made a change. */
1724
1725 static bool
1726 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1727 {
1728 rtx pat = PATTERN (insn);
1729 rtx src = SET_SRC (pat);
1730 int regno = REGNO (reg);
1731 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1732 GET_MODE (reg));
1733 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1734 bool changed = false;
1735
1736 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1737 use (set (reg) (reg)) instead.
1738 We don't delete this insn, nor do we convert it into a
1739 note, to avoid losing register notes or the return
1740 value flag. jump2 already knows how to get rid of
1741 no-op moves. */
1742 if (new_src == const0_rtx)
1743 {
1744 /* If the constants are different, this is a
1745 truncation, that, if turned into (set (reg)
1746 (reg)), would be discarded. Maybe we should
1747 try a truncMN pattern? */
1748 if (INTVAL (off) == reg_offset [regno])
1749 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1750 }
1751 else
1752 {
1753 struct full_rtx_costs oldcst, newcst;
1754 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1755
1756 get_full_set_rtx_cost (pat, &oldcst);
1757 SET_SRC (pat) = tem;
1758 get_full_set_rtx_cost (pat, &newcst);
1759 SET_SRC (pat) = src;
1760
1761 if (costs_lt_p (&newcst, &oldcst, speed)
1762 && have_add2_insn (reg, new_src))
1763 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1764 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1765 {
1766 machine_mode narrow_mode;
1767 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1768 narrow_mode != VOIDmode
1769 && narrow_mode != GET_MODE (reg);
1770 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1771 {
1772 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1773 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1774 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1775 {
1776 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1777 rtx narrow_src = gen_int_mode (INTVAL (off),
1778 narrow_mode);
1779 rtx new_set
1780 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1781 narrow_reg),
1782 narrow_src);
1783 get_full_set_rtx_cost (new_set, &newcst);
1784 if (costs_lt_p (&newcst, &oldcst, speed))
1785 {
1786 changed = validate_change (insn, &PATTERN (insn),
1787 new_set, 0);
1788 if (changed)
1789 break;
1790 }
1791 }
1792 }
1793 }
1794 }
1795 move2add_record_sym_value (reg, sym, off);
1796 return changed;
1797 }
1798
1799
1800 /* This function is called with INSN that sets REG to (SYM + OFF),
1801 but REG doesn't have known value (SYM + offset). This function
1802 tries to find another register which is known to already have
1803 value (SYM + offset) and change INSN into an add instruction
1804 (set (REG) (plus (the found register) (OFF - offset))) if such
1805 a register is found. It also updates the information about
1806 REG's known value.
1807 Return true iff we made a change. */
1808
1809 static bool
1810 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1811 {
1812 rtx pat = PATTERN (insn);
1813 rtx src = SET_SRC (pat);
1814 int regno = REGNO (reg);
1815 int min_regno = 0;
1816 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1817 int i;
1818 bool changed = false;
1819 struct full_rtx_costs oldcst, newcst, mincst;
1820 rtx plus_expr;
1821
1822 init_costs_to_max (&mincst);
1823 get_full_set_rtx_cost (pat, &oldcst);
1824
1825 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1826 SET_SRC (pat) = plus_expr;
1827
1828 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1829 if (move2add_valid_value_p (i, GET_MODE (reg))
1830 && reg_base_reg[i] < 0
1831 && reg_symbol_ref[i] != NULL_RTX
1832 && rtx_equal_p (sym, reg_symbol_ref[i]))
1833 {
1834 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1835 GET_MODE (reg));
1836 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1837 use (set (reg) (reg)) instead.
1838 We don't delete this insn, nor do we convert it into a
1839 note, to avoid losing register notes or the return
1840 value flag. jump2 already knows how to get rid of
1841 no-op moves. */
1842 if (new_src == const0_rtx)
1843 {
1844 init_costs_to_zero (&mincst);
1845 min_regno = i;
1846 break;
1847 }
1848 else
1849 {
1850 XEXP (plus_expr, 1) = new_src;
1851 get_full_set_rtx_cost (pat, &newcst);
1852
1853 if (costs_lt_p (&newcst, &mincst, speed))
1854 {
1855 mincst = newcst;
1856 min_regno = i;
1857 }
1858 }
1859 }
1860 SET_SRC (pat) = src;
1861
1862 if (costs_lt_p (&mincst, &oldcst, speed))
1863 {
1864 rtx tem;
1865
1866 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1867 if (i != min_regno)
1868 {
1869 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1870 GET_MODE (reg));
1871 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1872 }
1873 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1874 changed = true;
1875 }
1876 reg_set_luid[regno] = move2add_luid;
1877 move2add_record_sym_value (reg, sym, off);
1878 return changed;
1879 }
1880
1881 /* Convert move insns with constant inputs to additions if they are cheaper.
1882 Return true if any changes were made. */
1883 static bool
1884 reload_cse_move2add (rtx_insn *first)
1885 {
1886 int i;
1887 rtx_insn *insn;
1888 bool changed = false;
1889
1890 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1891 {
1892 reg_set_luid[i] = 0;
1893 reg_offset[i] = 0;
1894 reg_base_reg[i] = 0;
1895 reg_symbol_ref[i] = NULL_RTX;
1896 reg_mode[i] = VOIDmode;
1897 }
1898
1899 move2add_last_label_luid = 0;
1900 move2add_luid = 2;
1901 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1902 {
1903 rtx pat, note;
1904
1905 if (LABEL_P (insn))
1906 {
1907 move2add_last_label_luid = move2add_luid;
1908 /* We're going to increment move2add_luid twice after a
1909 label, so that we can use move2add_last_label_luid + 1 as
1910 the luid for constants. */
1911 move2add_luid++;
1912 continue;
1913 }
1914 if (! INSN_P (insn))
1915 continue;
1916 pat = PATTERN (insn);
1917 /* For simplicity, we only perform this optimization on
1918 straightforward SETs. */
1919 if (GET_CODE (pat) == SET
1920 && REG_P (SET_DEST (pat)))
1921 {
1922 rtx reg = SET_DEST (pat);
1923 int regno = REGNO (reg);
1924 rtx src = SET_SRC (pat);
1925
1926 /* Check if we have valid information on the contents of this
1927 register in the mode of REG. */
1928 if (move2add_valid_value_p (regno, GET_MODE (reg))
1929 && dbg_cnt (cse2_move2add))
1930 {
1931 /* Try to transform (set (REGX) (CONST_INT A))
1932 ...
1933 (set (REGX) (CONST_INT B))
1934 to
1935 (set (REGX) (CONST_INT A))
1936 ...
1937 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1938 or
1939 (set (REGX) (CONST_INT A))
1940 ...
1941 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1942 */
1943
1944 if (CONST_INT_P (src)
1945 && reg_base_reg[regno] < 0
1946 && reg_symbol_ref[regno] == NULL_RTX)
1947 {
1948 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1949 continue;
1950 }
1951
1952 /* Try to transform (set (REGX) (REGY))
1953 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1954 ...
1955 (set (REGX) (REGY))
1956 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1957 to
1958 (set (REGX) (REGY))
1959 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1960 ...
1961 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1962 else if (REG_P (src)
1963 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1964 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1965 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1966 {
1967 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1968 rtx set = NULL_RTX;
1969 if (next)
1970 set = single_set (next);
1971 if (set
1972 && SET_DEST (set) == reg
1973 && GET_CODE (SET_SRC (set)) == PLUS
1974 && XEXP (SET_SRC (set), 0) == reg
1975 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1976 {
1977 rtx src3 = XEXP (SET_SRC (set), 1);
1978 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1979 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1980 HOST_WIDE_INT regno_offset = reg_offset[regno];
1981 rtx new_src =
1982 gen_int_mode (added_offset
1983 + base_offset
1984 - regno_offset,
1985 GET_MODE (reg));
1986 bool success = false;
1987 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1988
1989 if (new_src == const0_rtx)
1990 /* See above why we create (set (reg) (reg)) here. */
1991 success
1992 = validate_change (next, &SET_SRC (set), reg, 0);
1993 else
1994 {
1995 rtx old_src = SET_SRC (set);
1996 struct full_rtx_costs oldcst, newcst;
1997 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1998
1999 get_full_set_rtx_cost (set, &oldcst);
2000 SET_SRC (set) = tem;
2001 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
2002 SET_SRC (set) = old_src;
2003 costs_add_n_insns (&oldcst, 1);
2004
2005 if (costs_lt_p (&newcst, &oldcst, speed)
2006 && have_add2_insn (reg, new_src))
2007 {
2008 rtx newpat = gen_rtx_SET (reg, tem);
2009 success
2010 = validate_change (next, &PATTERN (next),
2011 newpat, 0);
2012 }
2013 }
2014 if (success)
2015 delete_insn (insn);
2016 changed |= success;
2017 insn = next;
2018 move2add_record_mode (reg);
2019 reg_offset[regno]
2020 = trunc_int_for_mode (added_offset + base_offset,
2021 GET_MODE (reg));
2022 continue;
2023 }
2024 }
2025 }
2026
2027 /* Try to transform
2028 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2029 ...
2030 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2031 to
2032 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2033 ...
2034 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2035 if ((GET_CODE (src) == SYMBOL_REF
2036 || (GET_CODE (src) == CONST
2037 && GET_CODE (XEXP (src, 0)) == PLUS
2038 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2039 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2040 && dbg_cnt (cse2_move2add))
2041 {
2042 rtx sym, off;
2043
2044 if (GET_CODE (src) == SYMBOL_REF)
2045 {
2046 sym = src;
2047 off = const0_rtx;
2048 }
2049 else
2050 {
2051 sym = XEXP (XEXP (src, 0), 0);
2052 off = XEXP (XEXP (src, 0), 1);
2053 }
2054
2055 /* If the reg already contains the value which is sum of
2056 sym and some constant value, we can use an add2 insn. */
2057 if (move2add_valid_value_p (regno, GET_MODE (reg))
2058 && reg_base_reg[regno] < 0
2059 && reg_symbol_ref[regno] != NULL_RTX
2060 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2061 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2062
2063 /* Otherwise, we have to find a register whose value is sum
2064 of sym and some constant value. */
2065 else
2066 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2067
2068 continue;
2069 }
2070 }
2071
2072 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2073 {
2074 if (REG_NOTE_KIND (note) == REG_INC
2075 && REG_P (XEXP (note, 0)))
2076 {
2077 /* Reset the information about this register. */
2078 int regno = REGNO (XEXP (note, 0));
2079 if (regno < FIRST_PSEUDO_REGISTER)
2080 {
2081 move2add_record_mode (XEXP (note, 0));
2082 reg_mode[regno] = VOIDmode;
2083 }
2084 }
2085 }
2086 note_stores (PATTERN (insn), move2add_note_store, insn);
2087
2088 /* If INSN is a conditional branch, we try to extract an
2089 implicit set out of it. */
2090 if (any_condjump_p (insn))
2091 {
2092 rtx cnd = fis_get_condition (insn);
2093
2094 if (cnd != NULL_RTX
2095 && GET_CODE (cnd) == NE
2096 && REG_P (XEXP (cnd, 0))
2097 && !reg_set_p (XEXP (cnd, 0), insn)
2098 /* The following two checks, which are also in
2099 move2add_note_store, are intended to reduce the
2100 number of calls to gen_rtx_SET to avoid memory
2101 allocation if possible. */
2102 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2103 && REG_NREGS (XEXP (cnd, 0)) == 1
2104 && CONST_INT_P (XEXP (cnd, 1)))
2105 {
2106 rtx implicit_set =
2107 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2108 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2109 }
2110 }
2111
2112 /* If this is a CALL_INSN, all call used registers are stored with
2113 unknown values. */
2114 if (CALL_P (insn))
2115 {
2116 rtx link;
2117
2118 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2119 {
2120 if (call_used_regs[i])
2121 /* Reset the information about this register. */
2122 reg_mode[i] = VOIDmode;
2123 }
2124
2125 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2126 link = XEXP (link, 1))
2127 {
2128 rtx setuse = XEXP (link, 0);
2129 rtx usage_rtx = XEXP (setuse, 0);
2130 if (GET_CODE (setuse) == CLOBBER
2131 && REG_P (usage_rtx))
2132 {
2133 unsigned int end_regno = END_REGNO (usage_rtx);
2134 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2135 /* Reset the information about this register. */
2136 reg_mode[r] = VOIDmode;
2137 }
2138 }
2139 }
2140 }
2141 return changed;
2142 }
2143
2144 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2145 contains SET.
2146 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2147 Called from reload_cse_move2add via note_stores. */
2148
2149 static void
2150 move2add_note_store (rtx dst, const_rtx set, void *data)
2151 {
2152 rtx_insn *insn = (rtx_insn *) data;
2153 unsigned int regno = 0;
2154 machine_mode mode = GET_MODE (dst);
2155
2156 /* Some targets do argument pushes without adding REG_INC notes. */
2157
2158 if (MEM_P (dst))
2159 {
2160 dst = XEXP (dst, 0);
2161 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2162 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2163 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2164 return;
2165 }
2166
2167 if (GET_CODE (dst) == SUBREG)
2168 regno = subreg_regno (dst);
2169 else if (REG_P (dst))
2170 regno = REGNO (dst);
2171 else
2172 return;
2173
2174 if (SCALAR_INT_MODE_P (mode)
2175 && GET_CODE (set) == SET)
2176 {
2177 rtx note, sym = NULL_RTX;
2178 rtx off;
2179
2180 note = find_reg_equal_equiv_note (insn);
2181 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2182 {
2183 sym = XEXP (note, 0);
2184 off = const0_rtx;
2185 }
2186 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2187 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2188 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2189 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2190 {
2191 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2192 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2193 }
2194
2195 if (sym != NULL_RTX)
2196 {
2197 move2add_record_sym_value (dst, sym, off);
2198 return;
2199 }
2200 }
2201
2202 if (SCALAR_INT_MODE_P (mode)
2203 && GET_CODE (set) == SET
2204 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2205 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2206 {
2207 rtx src = SET_SRC (set);
2208 rtx base_reg;
2209 unsigned HOST_WIDE_INT offset;
2210 int base_regno;
2211
2212 switch (GET_CODE (src))
2213 {
2214 case PLUS:
2215 if (REG_P (XEXP (src, 0)))
2216 {
2217 base_reg = XEXP (src, 0);
2218
2219 if (CONST_INT_P (XEXP (src, 1)))
2220 offset = UINTVAL (XEXP (src, 1));
2221 else if (REG_P (XEXP (src, 1))
2222 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2223 {
2224 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2225 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2226 offset = reg_offset[REGNO (XEXP (src, 1))];
2227 /* Maybe the first register is known to be a
2228 constant. */
2229 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2230 && reg_base_reg[REGNO (base_reg)] < 0
2231 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2232 {
2233 offset = reg_offset[REGNO (base_reg)];
2234 base_reg = XEXP (src, 1);
2235 }
2236 else
2237 goto invalidate;
2238 }
2239 else
2240 goto invalidate;
2241
2242 break;
2243 }
2244
2245 goto invalidate;
2246
2247 case REG:
2248 base_reg = src;
2249 offset = 0;
2250 break;
2251
2252 case CONST_INT:
2253 /* Start tracking the register as a constant. */
2254 reg_base_reg[regno] = -1;
2255 reg_symbol_ref[regno] = NULL_RTX;
2256 reg_offset[regno] = INTVAL (SET_SRC (set));
2257 /* We assign the same luid to all registers set to constants. */
2258 reg_set_luid[regno] = move2add_last_label_luid + 1;
2259 move2add_record_mode (dst);
2260 return;
2261
2262 default:
2263 goto invalidate;
2264 }
2265
2266 base_regno = REGNO (base_reg);
2267 /* If information about the base register is not valid, set it
2268 up as a new base register, pretending its value is known
2269 starting from the current insn. */
2270 if (!move2add_valid_value_p (base_regno, mode))
2271 {
2272 reg_base_reg[base_regno] = base_regno;
2273 reg_symbol_ref[base_regno] = NULL_RTX;
2274 reg_offset[base_regno] = 0;
2275 reg_set_luid[base_regno] = move2add_luid;
2276 gcc_assert (GET_MODE (base_reg) == mode);
2277 move2add_record_mode (base_reg);
2278 }
2279
2280 /* Copy base information from our base register. */
2281 reg_set_luid[regno] = reg_set_luid[base_regno];
2282 reg_base_reg[regno] = reg_base_reg[base_regno];
2283 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2284
2285 /* Compute the sum of the offsets or constants. */
2286 reg_offset[regno]
2287 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2288
2289 move2add_record_mode (dst);
2290 }
2291 else
2292 {
2293 invalidate:
2294 /* Invalidate the contents of the register. */
2295 move2add_record_mode (dst);
2296 reg_mode[regno] = VOIDmode;
2297 }
2298 }
2299 \f
2300 namespace {
2301
2302 const pass_data pass_data_postreload_cse =
2303 {
2304 RTL_PASS, /* type */
2305 "postreload", /* name */
2306 OPTGROUP_NONE, /* optinfo_flags */
2307 TV_RELOAD_CSE_REGS, /* tv_id */
2308 0, /* properties_required */
2309 0, /* properties_provided */
2310 0, /* properties_destroyed */
2311 0, /* todo_flags_start */
2312 TODO_df_finish, /* todo_flags_finish */
2313 };
2314
2315 class pass_postreload_cse : public rtl_opt_pass
2316 {
2317 public:
2318 pass_postreload_cse (gcc::context *ctxt)
2319 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2320 {}
2321
2322 /* opt_pass methods: */
2323 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2324
2325 virtual unsigned int execute (function *);
2326
2327 }; // class pass_postreload_cse
2328
2329 unsigned int
2330 pass_postreload_cse::execute (function *fun)
2331 {
2332 if (!dbg_cnt (postreload_cse))
2333 return 0;
2334
2335 /* Do a very simple CSE pass over just the hard registers. */
2336 reload_cse_regs (get_insns ());
2337 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2338 Remove any EH edges associated with them. */
2339 if (fun->can_throw_non_call_exceptions
2340 && purge_all_dead_edges ())
2341 cleanup_cfg (0);
2342
2343 return 0;
2344 }
2345
2346 } // anon namespace
2347
2348 rtl_opt_pass *
2349 make_pass_postreload_cse (gcc::context *ctxt)
2350 {
2351 return new pass_postreload_cse (ctxt);
2352 }