]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
[26/77] Use is_a <scalar_int_mode> in subreg/extract simplifications
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43
44 static int reload_cse_noop_set_p (rtx);
45 static bool reload_cse_simplify (rtx_insn *, rtx);
46 static void reload_cse_regs_1 (void);
47 static int reload_cse_simplify_set (rtx, rtx_insn *);
48 static int reload_cse_simplify_operands (rtx_insn *, rtx);
49
50 static void reload_combine (void);
51 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
52 static void reload_combine_note_store (rtx, const_rtx, void *);
53
54 static bool reload_cse_move2add (rtx_insn *);
55 static void move2add_note_store (rtx, const_rtx, void *);
56
57 /* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
59
60 static void
61 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
62 {
63 bool moves_converted;
64 reload_cse_regs_1 ();
65 reload_combine ();
66 moves_converted = reload_cse_move2add (first);
67 if (flag_expensive_optimizations)
68 {
69 if (moves_converted)
70 reload_combine ();
71 reload_cse_regs_1 ();
72 }
73 }
74
75 /* See whether a single set SET is a noop. */
76 static int
77 reload_cse_noop_set_p (rtx set)
78 {
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
81
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83 }
84
85 /* Try to simplify INSN. Return true if the CFG may have changed. */
86 static bool
87 reload_cse_simplify (rtx_insn *insn, rtx testreg)
88 {
89 rtx body = PATTERN (insn);
90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
92
93 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
94 to cse function calls. */
95 if (NO_FUNCTION_CSE && CALL_P (insn))
96 return false;
97
98 if (GET_CODE (body) == SET)
99 {
100 int count = 0;
101
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count += reload_cse_simplify_set (body, insn);
108
109 if (!count && reload_cse_noop_set_p (body))
110 {
111 if (check_for_inc_dec (insn))
112 delete_insn_and_edges (insn);
113 /* We're done with this insn. */
114 goto done;
115 }
116
117 if (count > 0)
118 apply_change_group ();
119 else
120 reload_cse_simplify_operands (insn, testreg);
121 }
122 else if (GET_CODE (body) == PARALLEL)
123 {
124 int i;
125 int count = 0;
126 rtx value = NULL_RTX;
127
128 /* Registers mentioned in the clobber list for an asm cannot be reused
129 within the body of the asm. Invalidate those registers now so that
130 we don't try to substitute values for them. */
131 if (asm_noperands (body) >= 0)
132 {
133 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
134 {
135 rtx part = XVECEXP (body, 0, i);
136 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
137 cselib_invalidate_rtx (XEXP (part, 0));
138 }
139 }
140
141 /* If every action in a PARALLEL is a noop, we can delete
142 the entire PARALLEL. */
143 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
144 {
145 rtx part = XVECEXP (body, 0, i);
146 if (GET_CODE (part) == SET)
147 {
148 if (! reload_cse_noop_set_p (part))
149 break;
150 if (REG_P (SET_DEST (part))
151 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
152 {
153 if (value)
154 break;
155 value = SET_DEST (part);
156 }
157 }
158 else if (GET_CODE (part) != CLOBBER
159 && GET_CODE (part) != USE)
160 break;
161 }
162
163 if (i < 0)
164 {
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
167 /* We're done with this insn. */
168 goto done;
169 }
170
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
175
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
180 }
181
182 done:
183 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
184 }
185
186 /* Do a very simple CSE pass over the hard registers.
187
188 This function detects no-op moves where we happened to assign two
189 different pseudo-registers to the same hard register, and then
190 copied one to the other. Reload will generate a useless
191 instruction copying a register to itself.
192
193 This function also detects cases where we load a value from memory
194 into two different registers, and (if memory is more expensive than
195 registers) changes it to simply copy the first register into the
196 second register.
197
198 Another optimization is performed that scans the operands of each
199 instruction to see whether the value is already available in a
200 hard register. It then replaces the operand with the hard register
201 if possible, much like an optional reload would. */
202
203 static void
204 reload_cse_regs_1 (void)
205 {
206 bool cfg_changed = false;
207 basic_block bb;
208 rtx_insn *insn;
209 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
210
211 cselib_init (CSELIB_RECORD_MEMORY);
212 init_alias_analysis ();
213
214 FOR_EACH_BB_FN (bb, cfun)
215 FOR_BB_INSNS (bb, insn)
216 {
217 if (INSN_P (insn))
218 cfg_changed |= reload_cse_simplify (insn, testreg);
219
220 cselib_process_insn (insn);
221 }
222
223 /* Clean up. */
224 end_alias_analysis ();
225 cselib_finish ();
226 if (cfg_changed)
227 cleanup_cfg (0);
228 }
229
230 /* Try to simplify a single SET instruction. SET is the set pattern.
231 INSN is the instruction it came from.
232 This function only handles one case: if we set a register to a value
233 which is not a register, we try to find that value in some other register
234 and change the set into a register copy. */
235
236 static int
237 reload_cse_simplify_set (rtx set, rtx_insn *insn)
238 {
239 int did_change = 0;
240 int dreg;
241 rtx src;
242 reg_class_t dclass;
243 int old_cost;
244 cselib_val *val;
245 struct elt_loc_list *l;
246 enum rtx_code extend_op = UNKNOWN;
247 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
248
249 dreg = true_regnum (SET_DEST (set));
250 if (dreg < 0)
251 return 0;
252
253 src = SET_SRC (set);
254 if (side_effects_p (src) || true_regnum (src) >= 0)
255 return 0;
256
257 dclass = REGNO_REG_CLASS (dreg);
258
259 /* When replacing a memory with a register, we need to honor assumptions
260 that combine made wrt the contents of sign bits. We'll do this by
261 generating an extend instruction instead of a reg->reg copy. Thus
262 the destination must be a register that we can widen. */
263 if (MEM_P (src)
264 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
265 && !REG_P (SET_DEST (set)))
266 return 0;
267
268 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
269 if (! val)
270 return 0;
271
272 /* If memory loads are cheaper than register copies, don't change them. */
273 if (MEM_P (src))
274 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
275 else if (REG_P (src))
276 old_cost = register_move_cost (GET_MODE (src),
277 REGNO_REG_CLASS (REGNO (src)), dclass);
278 else
279 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
280
281 for (l = val->locs; l; l = l->next)
282 {
283 rtx this_rtx = l->loc;
284 int this_cost;
285
286 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
287 {
288 if (extend_op != UNKNOWN)
289 {
290 wide_int result;
291
292 if (!CONST_SCALAR_INT_P (this_rtx))
293 continue;
294
295 switch (extend_op)
296 {
297 case ZERO_EXTEND:
298 result = wide_int::from (rtx_mode_t (this_rtx,
299 GET_MODE (src)),
300 BITS_PER_WORD, UNSIGNED);
301 break;
302 case SIGN_EXTEND:
303 result = wide_int::from (rtx_mode_t (this_rtx,
304 GET_MODE (src)),
305 BITS_PER_WORD, SIGNED);
306 break;
307 default:
308 gcc_unreachable ();
309 }
310 this_rtx = immed_wide_int_const (result, word_mode);
311 }
312
313 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
314 }
315 else if (REG_P (this_rtx))
316 {
317 if (extend_op != UNKNOWN)
318 {
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = set_src_cost (this_rtx, word_mode, speed);
321 }
322 else
323 this_cost = register_move_cost (GET_MODE (this_rtx),
324 REGNO_REG_CLASS (REGNO (this_rtx)),
325 dclass);
326 }
327 else
328 continue;
329
330 /* If equal costs, prefer registers over anything else. That
331 tends to lead to smaller instructions on some machines. */
332 if (this_cost < old_cost
333 || (this_cost == old_cost
334 && REG_P (this_rtx)
335 && !REG_P (SET_SRC (set))))
336 {
337 if (extend_op != UNKNOWN
338 #ifdef CANNOT_CHANGE_MODE_CLASS
339 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
340 word_mode,
341 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
342 #endif
343 )
344 {
345 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
346 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
347 validate_change (insn, &SET_DEST (set), wide_dest, 1);
348 }
349
350 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
351 old_cost = this_cost, did_change = 1;
352 }
353 }
354
355 return did_change;
356 }
357
358 /* Try to replace operands in INSN with equivalent values that are already
359 in registers. This can be viewed as optional reloading.
360
361 For each non-register operand in the insn, see if any hard regs are
362 known to be equivalent to that operand. Record the alternatives which
363 can accept these hard registers. Among all alternatives, select the
364 ones which are better or equal to the one currently matching, where
365 "better" is in terms of '?' and '!' constraints. Among the remaining
366 alternatives, select the one which replaces most operands with
367 hard registers. */
368
369 static int
370 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
371 {
372 int i, j;
373
374 /* For each operand, all registers that are equivalent to it. */
375 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
376
377 const char *constraints[MAX_RECOG_OPERANDS];
378
379 /* Vector recording how bad an alternative is. */
380 int *alternative_reject;
381 /* Vector recording how many registers can be introduced by choosing
382 this alternative. */
383 int *alternative_nregs;
384 /* Array of vectors recording, for each operand and each alternative,
385 which hard register to substitute, or -1 if the operand should be
386 left as it is. */
387 int *op_alt_regno[MAX_RECOG_OPERANDS];
388 /* Array of alternatives, sorted in order of decreasing desirability. */
389 int *alternative_order;
390
391 extract_constrain_insn (insn);
392
393 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
394 return 0;
395
396 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
397 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
398 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
399 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
400 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
401
402 /* For each operand, find out which regs are equivalent. */
403 for (i = 0; i < recog_data.n_operands; i++)
404 {
405 cselib_val *v;
406 struct elt_loc_list *l;
407 rtx op;
408
409 CLEAR_HARD_REG_SET (equiv_regs[i]);
410
411 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
412 right, so avoid the problem here. Likewise if we have a constant
413 and the insn pattern doesn't tell us the mode we need. */
414 if (LABEL_P (recog_data.operand[i])
415 || (CONSTANT_P (recog_data.operand[i])
416 && recog_data.operand_mode[i] == VOIDmode))
417 continue;
418
419 op = recog_data.operand[i];
420 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
421 {
422 rtx set = single_set (insn);
423
424 /* We might have multiple sets, some of which do implicit
425 extension. Punt on this for now. */
426 if (! set)
427 continue;
428 /* If the destination is also a MEM or a STRICT_LOW_PART, no
429 extension applies.
430 Also, if there is an explicit extension, we don't have to
431 worry about an implicit one. */
432 else if (MEM_P (SET_DEST (set))
433 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
434 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
435 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
436 ; /* Continue ordinary processing. */
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 /* If the register cannot change mode to word_mode, it follows that
439 it cannot have been used in word_mode. */
440 else if (REG_P (SET_DEST (set))
441 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
442 word_mode,
443 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
444 ; /* Continue ordinary processing. */
445 #endif
446 /* If this is a straight load, make the extension explicit. */
447 else if (REG_P (SET_DEST (set))
448 && recog_data.n_operands == 2
449 && SET_SRC (set) == op
450 && SET_DEST (set) == recog_data.operand[1-i])
451 {
452 validate_change (insn, recog_data.operand_loc[i],
453 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
454 word_mode, op),
455 1);
456 validate_change (insn, recog_data.operand_loc[1-i],
457 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
458 1);
459 if (! apply_change_group ())
460 return 0;
461 return reload_cse_simplify_operands (insn, testreg);
462 }
463 else
464 /* ??? There might be arithmetic operations with memory that are
465 safe to optimize, but is it worth the trouble? */
466 continue;
467 }
468
469 if (side_effects_p (op))
470 continue;
471 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
472 if (! v)
473 continue;
474
475 for (l = v->locs; l; l = l->next)
476 if (REG_P (l->loc))
477 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
478 }
479
480 alternative_mask preferred = get_preferred_alternatives (insn);
481 for (i = 0; i < recog_data.n_operands; i++)
482 {
483 machine_mode mode;
484 int regno;
485 const char *p;
486
487 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
488 for (j = 0; j < recog_data.n_alternatives; j++)
489 op_alt_regno[i][j] = -1;
490
491 p = constraints[i] = recog_data.constraints[i];
492 mode = recog_data.operand_mode[i];
493
494 /* Add the reject values for each alternative given by the constraints
495 for this operand. */
496 j = 0;
497 while (*p != '\0')
498 {
499 char c = *p++;
500 if (c == ',')
501 j++;
502 else if (c == '?')
503 alternative_reject[j] += 3;
504 else if (c == '!')
505 alternative_reject[j] += 300;
506 }
507
508 /* We won't change operands which are already registers. We
509 also don't want to modify output operands. */
510 regno = true_regnum (recog_data.operand[i]);
511 if (regno >= 0
512 || constraints[i][0] == '='
513 || constraints[i][0] == '+')
514 continue;
515
516 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
517 {
518 enum reg_class rclass = NO_REGS;
519
520 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
521 continue;
522
523 set_mode_and_regno (testreg, mode, regno);
524
525 /* We found a register equal to this operand. Now look for all
526 alternatives that can accept this register and have not been
527 assigned a register they can use yet. */
528 j = 0;
529 p = constraints[i];
530 for (;;)
531 {
532 char c = *p;
533
534 switch (c)
535 {
536 case 'g':
537 rclass = reg_class_subunion[rclass][GENERAL_REGS];
538 break;
539
540 default:
541 rclass
542 = (reg_class_subunion
543 [rclass]
544 [reg_class_for_constraint (lookup_constraint (p))]);
545 break;
546
547 case ',': case '\0':
548 /* See if REGNO fits this alternative, and set it up as the
549 replacement register if we don't have one for this
550 alternative yet and the operand being replaced is not
551 a cheap CONST_INT. */
552 if (op_alt_regno[i][j] == -1
553 && TEST_BIT (preferred, j)
554 && reg_fits_class_p (testreg, rclass, 0, mode)
555 && (!CONST_INT_P (recog_data.operand[i])
556 || (set_src_cost (recog_data.operand[i], mode,
557 optimize_bb_for_speed_p
558 (BLOCK_FOR_INSN (insn)))
559 > set_src_cost (testreg, mode,
560 optimize_bb_for_speed_p
561 (BLOCK_FOR_INSN (insn))))))
562 {
563 alternative_nregs[j]++;
564 op_alt_regno[i][j] = regno;
565 }
566 j++;
567 rclass = NO_REGS;
568 break;
569 }
570 p += CONSTRAINT_LEN (c, p);
571
572 if (c == '\0')
573 break;
574 }
575 }
576 }
577
578 /* Record all alternatives which are better or equal to the currently
579 matching one in the alternative_order array. */
580 for (i = j = 0; i < recog_data.n_alternatives; i++)
581 if (alternative_reject[i] <= alternative_reject[which_alternative])
582 alternative_order[j++] = i;
583 recog_data.n_alternatives = j;
584
585 /* Sort it. Given a small number of alternatives, a dumb algorithm
586 won't hurt too much. */
587 for (i = 0; i < recog_data.n_alternatives - 1; i++)
588 {
589 int best = i;
590 int best_reject = alternative_reject[alternative_order[i]];
591 int best_nregs = alternative_nregs[alternative_order[i]];
592
593 for (j = i + 1; j < recog_data.n_alternatives; j++)
594 {
595 int this_reject = alternative_reject[alternative_order[j]];
596 int this_nregs = alternative_nregs[alternative_order[j]];
597
598 if (this_reject < best_reject
599 || (this_reject == best_reject && this_nregs > best_nregs))
600 {
601 best = j;
602 best_reject = this_reject;
603 best_nregs = this_nregs;
604 }
605 }
606
607 std::swap (alternative_order[best], alternative_order[i]);
608 }
609
610 /* Substitute the operands as determined by op_alt_regno for the best
611 alternative. */
612 j = alternative_order[0];
613
614 for (i = 0; i < recog_data.n_operands; i++)
615 {
616 machine_mode mode = recog_data.operand_mode[i];
617 if (op_alt_regno[i][j] == -1)
618 continue;
619
620 validate_change (insn, recog_data.operand_loc[i],
621 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
622 }
623
624 for (i = recog_data.n_dups - 1; i >= 0; i--)
625 {
626 int op = recog_data.dup_num[i];
627 machine_mode mode = recog_data.operand_mode[op];
628
629 if (op_alt_regno[op][j] == -1)
630 continue;
631
632 validate_change (insn, recog_data.dup_loc[i],
633 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
634 }
635
636 return apply_change_group ();
637 }
638 \f
639 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
640 addressing now.
641 This code might also be useful when reload gave up on reg+reg addressing
642 because of clashes between the return register and INDEX_REG_CLASS. */
643
644 /* The maximum number of uses of a register we can keep track of to
645 replace them with reg+reg addressing. */
646 #define RELOAD_COMBINE_MAX_USES 16
647
648 /* Describes a recorded use of a register. */
649 struct reg_use
650 {
651 /* The insn where a register has been used. */
652 rtx_insn *insn;
653 /* Points to the memory reference enclosing the use, if any, NULL_RTX
654 otherwise. */
655 rtx containing_mem;
656 /* Location of the register within INSN. */
657 rtx *usep;
658 /* The reverse uid of the insn. */
659 int ruid;
660 };
661
662 /* If the register is used in some unknown fashion, USE_INDEX is negative.
663 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
664 indicates where it is first set or clobbered.
665 Otherwise, USE_INDEX is the index of the last encountered use of the
666 register (which is first among these we have seen since we scan backwards).
667 USE_RUID indicates the first encountered, i.e. last, of these uses.
668 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
669 with a constant offset; OFFSET contains this constant in that case.
670 STORE_RUID is always meaningful if we only want to use a value in a
671 register in a different place: it denotes the next insn in the insn
672 stream (i.e. the last encountered) that sets or clobbers the register.
673 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
674 static struct
675 {
676 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
677 rtx offset;
678 int use_index;
679 int store_ruid;
680 int real_store_ruid;
681 int use_ruid;
682 bool all_offsets_match;
683 } reg_state[FIRST_PSEUDO_REGISTER];
684
685 /* Reverse linear uid. This is increased in reload_combine while scanning
686 the instructions from last to first. It is used to set last_label_ruid
687 and the store_ruid / use_ruid fields in reg_state. */
688 static int reload_combine_ruid;
689
690 /* The RUID of the last label we encountered in reload_combine. */
691 static int last_label_ruid;
692
693 /* The RUID of the last jump we encountered in reload_combine. */
694 static int last_jump_ruid;
695
696 /* The register numbers of the first and last index register. A value of
697 -1 in LAST_INDEX_REG indicates that we've previously computed these
698 values and found no suitable index registers. */
699 static int first_index_reg = -1;
700 static int last_index_reg;
701
702 #define LABEL_LIVE(LABEL) \
703 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
704
705 /* Subroutine of reload_combine_split_ruids, called to fix up a single
706 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
707
708 static inline void
709 reload_combine_split_one_ruid (int *pruid, int split_ruid)
710 {
711 if (*pruid > split_ruid)
712 (*pruid)++;
713 }
714
715 /* Called when we insert a new insn in a position we've already passed in
716 the scan. Examine all our state, increasing all ruids that are higher
717 than SPLIT_RUID by one in order to make room for a new insn. */
718
719 static void
720 reload_combine_split_ruids (int split_ruid)
721 {
722 unsigned i;
723
724 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
725 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
726 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
727
728 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
729 {
730 int j, idx = reg_state[i].use_index;
731 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
732 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
733 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
734 split_ruid);
735 if (idx < 0)
736 continue;
737 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
738 {
739 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
740 split_ruid);
741 }
742 }
743 }
744
745 /* Called when we are about to rescan a previously encountered insn with
746 reload_combine_note_use after modifying some part of it. This clears all
747 information about uses in that particular insn. */
748
749 static void
750 reload_combine_purge_insn_uses (rtx_insn *insn)
751 {
752 unsigned i;
753
754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
755 {
756 int j, k, idx = reg_state[i].use_index;
757 if (idx < 0)
758 continue;
759 j = k = RELOAD_COMBINE_MAX_USES;
760 while (j-- > idx)
761 {
762 if (reg_state[i].reg_use[j].insn != insn)
763 {
764 k--;
765 if (k != j)
766 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
767 }
768 }
769 reg_state[i].use_index = k;
770 }
771 }
772
773 /* Called when we need to forget about all uses of REGNO after an insn
774 which is identified by RUID. */
775
776 static void
777 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
778 {
779 int j, k, idx = reg_state[regno].use_index;
780 if (idx < 0)
781 return;
782 j = k = RELOAD_COMBINE_MAX_USES;
783 while (j-- > idx)
784 {
785 if (reg_state[regno].reg_use[j].ruid >= ruid)
786 {
787 k--;
788 if (k != j)
789 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
790 }
791 }
792 reg_state[regno].use_index = k;
793 }
794
795 /* Find the use of REGNO with the ruid that is highest among those
796 lower than RUID_LIMIT, and return it if it is the only use of this
797 reg in the insn. Return NULL otherwise. */
798
799 static struct reg_use *
800 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
801 {
802 int i, best_ruid = 0;
803 int use_idx = reg_state[regno].use_index;
804 struct reg_use *retval;
805
806 if (use_idx < 0)
807 return NULL;
808 retval = NULL;
809 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
810 {
811 struct reg_use *use = reg_state[regno].reg_use + i;
812 int this_ruid = use->ruid;
813 if (this_ruid >= ruid_limit)
814 continue;
815 if (this_ruid > best_ruid)
816 {
817 best_ruid = this_ruid;
818 retval = use;
819 }
820 else if (this_ruid == best_ruid)
821 retval = NULL;
822 }
823 if (last_label_ruid >= best_ruid)
824 return NULL;
825 return retval;
826 }
827
828 /* After we've moved an add insn, fix up any debug insns that occur
829 between the old location of the add and the new location. REG is
830 the destination register of the add insn; REPLACEMENT is the
831 SET_SRC of the add. FROM and TO specify the range in which we
832 should make this change on debug insns. */
833
834 static void
835 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
836 {
837 rtx_insn *insn;
838 for (insn = from; insn != to; insn = NEXT_INSN (insn))
839 {
840 rtx t;
841
842 if (!DEBUG_INSN_P (insn))
843 continue;
844
845 t = INSN_VAR_LOCATION_LOC (insn);
846 t = simplify_replace_rtx (t, reg, replacement);
847 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
848 }
849 }
850
851 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
852 with SRC in the insn described by USE, taking costs into account. Return
853 true if we made the replacement. */
854
855 static bool
856 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
857 {
858 rtx_insn *use_insn = use->insn;
859 rtx mem = use->containing_mem;
860 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
861
862 if (mem != NULL_RTX)
863 {
864 addr_space_t as = MEM_ADDR_SPACE (mem);
865 rtx oldaddr = XEXP (mem, 0);
866 rtx newaddr = NULL_RTX;
867 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
868 int new_cost;
869
870 newaddr = simplify_replace_rtx (oldaddr, reg, src);
871 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
872 {
873 XEXP (mem, 0) = newaddr;
874 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
875 XEXP (mem, 0) = oldaddr;
876 if (new_cost <= old_cost
877 && validate_change (use_insn,
878 &XEXP (mem, 0), newaddr, 0))
879 return true;
880 }
881 }
882 else
883 {
884 rtx new_set = single_set (use_insn);
885 if (new_set
886 && REG_P (SET_DEST (new_set))
887 && GET_CODE (SET_SRC (new_set)) == PLUS
888 && REG_P (XEXP (SET_SRC (new_set), 0))
889 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
890 {
891 rtx new_src;
892 machine_mode mode = GET_MODE (SET_DEST (new_set));
893 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
894
895 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
896 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
897
898 if (set_src_cost (new_src, mode, speed) <= old_cost
899 && validate_change (use_insn, &SET_SRC (new_set),
900 new_src, 0))
901 return true;
902 }
903 }
904 return false;
905 }
906
907 /* Called by reload_combine when scanning INSN. This function tries to detect
908 patterns where a constant is added to a register, and the result is used
909 in an address.
910 Return true if no further processing is needed on INSN; false if it wasn't
911 recognized and should be handled normally. */
912
913 static bool
914 reload_combine_recognize_const_pattern (rtx_insn *insn)
915 {
916 int from_ruid = reload_combine_ruid;
917 rtx set, pat, reg, src, addreg;
918 unsigned int regno;
919 struct reg_use *use;
920 bool must_move_add;
921 rtx_insn *add_moved_after_insn = NULL;
922 int add_moved_after_ruid = 0;
923 int clobbered_regno = -1;
924
925 set = single_set (insn);
926 if (set == NULL_RTX)
927 return false;
928
929 reg = SET_DEST (set);
930 src = SET_SRC (set);
931 if (!REG_P (reg)
932 || REG_NREGS (reg) != 1
933 || GET_MODE (reg) != Pmode
934 || reg == stack_pointer_rtx)
935 return false;
936
937 regno = REGNO (reg);
938
939 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
940 uses of REG1 inside an address, or inside another add insn. If
941 possible and profitable, merge the addition into subsequent
942 uses. */
943 if (GET_CODE (src) != PLUS
944 || !REG_P (XEXP (src, 0))
945 || !CONSTANT_P (XEXP (src, 1)))
946 return false;
947
948 addreg = XEXP (src, 0);
949 must_move_add = rtx_equal_p (reg, addreg);
950
951 pat = PATTERN (insn);
952 if (must_move_add && set != pat)
953 {
954 /* We have to be careful when moving the add; apart from the
955 single_set there may also be clobbers. Recognize one special
956 case, that of one clobber alongside the set (likely a clobber
957 of the CC register). */
958 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
959 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
960 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
961 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
962 return false;
963 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
964 }
965
966 do
967 {
968 use = reload_combine_closest_single_use (regno, from_ruid);
969
970 if (use)
971 /* Start the search for the next use from here. */
972 from_ruid = use->ruid;
973
974 if (use && GET_MODE (*use->usep) == Pmode)
975 {
976 bool delete_add = false;
977 rtx_insn *use_insn = use->insn;
978 int use_ruid = use->ruid;
979
980 /* Avoid moving the add insn past a jump. */
981 if (must_move_add && use_ruid <= last_jump_ruid)
982 break;
983
984 /* If the add clobbers another hard reg in parallel, don't move
985 it past a real set of this hard reg. */
986 if (must_move_add && clobbered_regno >= 0
987 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
988 break;
989
990 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
991 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
992 break;
993
994 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
995 /* Avoid moving a use of ADDREG past a point where it is stored. */
996 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
997 break;
998
999 /* We also must not move the addition past an insn that sets
1000 the same register, unless we can combine two add insns. */
1001 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1002 {
1003 if (use->containing_mem == NULL_RTX)
1004 delete_add = true;
1005 else
1006 break;
1007 }
1008
1009 if (try_replace_in_use (use, reg, src))
1010 {
1011 reload_combine_purge_insn_uses (use_insn);
1012 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1013 use_ruid, NULL_RTX);
1014
1015 if (delete_add)
1016 {
1017 fixup_debug_insns (reg, src, insn, use_insn);
1018 delete_insn (insn);
1019 return true;
1020 }
1021 if (must_move_add)
1022 {
1023 add_moved_after_insn = use_insn;
1024 add_moved_after_ruid = use_ruid;
1025 }
1026 continue;
1027 }
1028 }
1029 /* If we get here, we couldn't handle this use. */
1030 if (must_move_add)
1031 break;
1032 }
1033 while (use);
1034
1035 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1036 /* Process the add normally. */
1037 return false;
1038
1039 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1040
1041 reorder_insns (insn, insn, add_moved_after_insn);
1042 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1043 reload_combine_split_ruids (add_moved_after_ruid - 1);
1044 reload_combine_note_use (&PATTERN (insn), insn,
1045 add_moved_after_ruid, NULL_RTX);
1046 reg_state[regno].store_ruid = add_moved_after_ruid;
1047
1048 return true;
1049 }
1050
1051 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1052 can handle and improve. Return true if no further processing is needed on
1053 INSN; false if it wasn't recognized and should be handled normally. */
1054
1055 static bool
1056 reload_combine_recognize_pattern (rtx_insn *insn)
1057 {
1058 rtx set, reg, src;
1059
1060 set = single_set (insn);
1061 if (set == NULL_RTX)
1062 return false;
1063
1064 reg = SET_DEST (set);
1065 src = SET_SRC (set);
1066 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1067 return false;
1068
1069 unsigned int regno = REGNO (reg);
1070 machine_mode mode = GET_MODE (reg);
1071
1072 if (reg_state[regno].use_index < 0
1073 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1074 return false;
1075
1076 for (int i = reg_state[regno].use_index;
1077 i < RELOAD_COMBINE_MAX_USES; i++)
1078 {
1079 struct reg_use *use = reg_state[regno].reg_use + i;
1080 if (GET_MODE (*use->usep) != mode)
1081 return false;
1082 }
1083
1084 /* Look for (set (REGX) (CONST_INT))
1085 (set (REGX) (PLUS (REGX) (REGY)))
1086 ...
1087 ... (MEM (REGX)) ...
1088 and convert it to
1089 (set (REGZ) (CONST_INT))
1090 ...
1091 ... (MEM (PLUS (REGZ) (REGY)))... .
1092
1093 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1094 and that we know all uses of REGX before it dies.
1095 Also, explicitly check that REGX != REGY; our life information
1096 does not yet show whether REGY changes in this insn. */
1097
1098 if (GET_CODE (src) == PLUS
1099 && reg_state[regno].all_offsets_match
1100 && last_index_reg != -1
1101 && REG_P (XEXP (src, 1))
1102 && rtx_equal_p (XEXP (src, 0), reg)
1103 && !rtx_equal_p (XEXP (src, 1), reg)
1104 && last_label_ruid < reg_state[regno].use_ruid)
1105 {
1106 rtx base = XEXP (src, 1);
1107 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1108 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1109 rtx index_reg = NULL_RTX;
1110 rtx reg_sum = NULL_RTX;
1111 int i;
1112
1113 /* Now we need to set INDEX_REG to an index register (denoted as
1114 REGZ in the illustration above) and REG_SUM to the expression
1115 register+register that we want to use to substitute uses of REG
1116 (typically in MEMs) with. First check REG and BASE for being
1117 index registers; we can use them even if they are not dead. */
1118 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1119 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1120 REGNO (base)))
1121 {
1122 index_reg = reg;
1123 reg_sum = src;
1124 }
1125 else
1126 {
1127 /* Otherwise, look for a free index register. Since we have
1128 checked above that neither REG nor BASE are index registers,
1129 if we find anything at all, it will be different from these
1130 two registers. */
1131 for (i = first_index_reg; i <= last_index_reg; i++)
1132 {
1133 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1134 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1135 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1136 && (call_used_regs[i] || df_regs_ever_live_p (i))
1137 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1138 && !fixed_regs[i] && !global_regs[i]
1139 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1140 && targetm.hard_regno_scratch_ok (i))
1141 {
1142 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1143 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1144 break;
1145 }
1146 }
1147 }
1148
1149 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1150 (REGY), i.e. BASE, is not clobbered before the last use we'll
1151 create. */
1152 if (reg_sum
1153 && prev_set
1154 && CONST_INT_P (SET_SRC (prev_set))
1155 && rtx_equal_p (SET_DEST (prev_set), reg)
1156 && (reg_state[REGNO (base)].store_ruid
1157 <= reg_state[regno].use_ruid))
1158 {
1159 /* Change destination register and, if necessary, the constant
1160 value in PREV, the constant loading instruction. */
1161 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1162 if (reg_state[regno].offset != const0_rtx)
1163 validate_change (prev,
1164 &SET_SRC (prev_set),
1165 GEN_INT (INTVAL (SET_SRC (prev_set))
1166 + INTVAL (reg_state[regno].offset)),
1167 1);
1168
1169 /* Now for every use of REG that we have recorded, replace REG
1170 with REG_SUM. */
1171 for (i = reg_state[regno].use_index;
1172 i < RELOAD_COMBINE_MAX_USES; i++)
1173 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1174 reg_state[regno].reg_use[i].usep,
1175 /* Each change must have its own
1176 replacement. */
1177 reg_sum, 1);
1178
1179 if (apply_change_group ())
1180 {
1181 struct reg_use *lowest_ruid = NULL;
1182
1183 /* For every new use of REG_SUM, we have to record the use
1184 of BASE therein, i.e. operand 1. */
1185 for (i = reg_state[regno].use_index;
1186 i < RELOAD_COMBINE_MAX_USES; i++)
1187 {
1188 struct reg_use *use = reg_state[regno].reg_use + i;
1189 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1190 use->ruid, use->containing_mem);
1191 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1192 lowest_ruid = use;
1193 }
1194
1195 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1196
1197 /* Delete the reg-reg addition. */
1198 delete_insn (insn);
1199
1200 if (reg_state[regno].offset != const0_rtx
1201 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1202 are now invalid. */
1203 && remove_reg_equal_equiv_notes (prev))
1204 df_notes_rescan (prev);
1205
1206 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1207 return true;
1208 }
1209 }
1210 }
1211 return false;
1212 }
1213
1214 static void
1215 reload_combine (void)
1216 {
1217 rtx_insn *insn, *prev;
1218 basic_block bb;
1219 unsigned int r;
1220 int min_labelno, n_labels;
1221 HARD_REG_SET ever_live_at_start, *label_live;
1222
1223 /* To avoid wasting too much time later searching for an index register,
1224 determine the minimum and maximum index register numbers. */
1225 if (INDEX_REG_CLASS == NO_REGS)
1226 last_index_reg = -1;
1227 else if (first_index_reg == -1 && last_index_reg == 0)
1228 {
1229 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1230 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1231 {
1232 if (first_index_reg == -1)
1233 first_index_reg = r;
1234
1235 last_index_reg = r;
1236 }
1237
1238 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1239 to -1 so we'll know to quit early the next time we get here. */
1240 if (first_index_reg == -1)
1241 {
1242 last_index_reg = -1;
1243 return;
1244 }
1245 }
1246
1247 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1248 information is a bit fuzzy immediately after reload, but it's
1249 still good enough to determine which registers are live at a jump
1250 destination. */
1251 min_labelno = get_first_label_num ();
1252 n_labels = max_label_num () - min_labelno;
1253 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1254 CLEAR_HARD_REG_SET (ever_live_at_start);
1255
1256 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1257 {
1258 insn = BB_HEAD (bb);
1259 if (LABEL_P (insn))
1260 {
1261 HARD_REG_SET live;
1262 bitmap live_in = df_get_live_in (bb);
1263
1264 REG_SET_TO_HARD_REG_SET (live, live_in);
1265 compute_use_by_pseudos (&live, live_in);
1266 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1267 IOR_HARD_REG_SET (ever_live_at_start, live);
1268 }
1269 }
1270
1271 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1272 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1273 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1274 {
1275 reg_state[r].store_ruid = 0;
1276 reg_state[r].real_store_ruid = 0;
1277 if (fixed_regs[r])
1278 reg_state[r].use_index = -1;
1279 else
1280 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1281 }
1282
1283 for (insn = get_last_insn (); insn; insn = prev)
1284 {
1285 bool control_flow_insn;
1286 rtx note;
1287
1288 prev = PREV_INSN (insn);
1289
1290 /* We cannot do our optimization across labels. Invalidating all the use
1291 information we have would be costly, so we just note where the label
1292 is and then later disable any optimization that would cross it. */
1293 if (LABEL_P (insn))
1294 last_label_ruid = reload_combine_ruid;
1295 else if (BARRIER_P (insn))
1296 {
1297 /* Crossing a barrier resets all the use information. */
1298 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1299 if (! fixed_regs[r])
1300 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1301 }
1302 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1303 /* Optimizations across insns being marked as volatile must be
1304 prevented. All the usage information is invalidated
1305 here. */
1306 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1307 if (! fixed_regs[r]
1308 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1309 reg_state[r].use_index = -1;
1310
1311 if (! NONDEBUG_INSN_P (insn))
1312 continue;
1313
1314 reload_combine_ruid++;
1315
1316 control_flow_insn = control_flow_insn_p (insn);
1317 if (control_flow_insn)
1318 last_jump_ruid = reload_combine_ruid;
1319
1320 if (reload_combine_recognize_const_pattern (insn)
1321 || reload_combine_recognize_pattern (insn))
1322 continue;
1323
1324 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1325
1326 if (CALL_P (insn))
1327 {
1328 rtx link;
1329 HARD_REG_SET used_regs;
1330
1331 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1332
1333 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1334 if (TEST_HARD_REG_BIT (used_regs, r))
1335 {
1336 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1337 reg_state[r].store_ruid = reload_combine_ruid;
1338 }
1339
1340 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1341 link = XEXP (link, 1))
1342 {
1343 rtx setuse = XEXP (link, 0);
1344 rtx usage_rtx = XEXP (setuse, 0);
1345 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1346 && REG_P (usage_rtx))
1347 {
1348 unsigned int end_regno = END_REGNO (usage_rtx);
1349 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1350 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1351 {
1352 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1353 reg_state[i].store_ruid = reload_combine_ruid;
1354 }
1355 else
1356 reg_state[i].use_index = -1;
1357 }
1358 }
1359 }
1360
1361 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1362 {
1363 /* Non-spill registers might be used at the call destination in
1364 some unknown fashion, so we have to mark the unknown use. */
1365 HARD_REG_SET *live;
1366
1367 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1368 && JUMP_LABEL (insn))
1369 {
1370 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1371 live = NULL;
1372 else
1373 live = &LABEL_LIVE (JUMP_LABEL (insn));
1374 }
1375 else
1376 live = &ever_live_at_start;
1377
1378 if (live)
1379 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1380 if (TEST_HARD_REG_BIT (*live, r))
1381 reg_state[r].use_index = -1;
1382 }
1383
1384 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1385 NULL_RTX);
1386
1387 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1388 {
1389 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1390 {
1391 int regno = REGNO (XEXP (note, 0));
1392 reg_state[regno].store_ruid = reload_combine_ruid;
1393 reg_state[regno].real_store_ruid = reload_combine_ruid;
1394 reg_state[regno].use_index = -1;
1395 }
1396 }
1397 }
1398
1399 free (label_live);
1400 }
1401
1402 /* Check if DST is a register or a subreg of a register; if it is,
1403 update store_ruid, real_store_ruid and use_index in the reg_state
1404 structure accordingly. Called via note_stores from reload_combine. */
1405
1406 static void
1407 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1408 {
1409 int regno = 0;
1410 int i;
1411 machine_mode mode = GET_MODE (dst);
1412
1413 if (GET_CODE (dst) == SUBREG)
1414 {
1415 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1416 GET_MODE (SUBREG_REG (dst)),
1417 SUBREG_BYTE (dst),
1418 GET_MODE (dst));
1419 dst = SUBREG_REG (dst);
1420 }
1421
1422 /* Some targets do argument pushes without adding REG_INC notes. */
1423
1424 if (MEM_P (dst))
1425 {
1426 dst = XEXP (dst, 0);
1427 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1428 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1429 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1430 {
1431 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1432 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1433 {
1434 /* We could probably do better, but for now mark the register
1435 as used in an unknown fashion and set/clobbered at this
1436 insn. */
1437 reg_state[i].use_index = -1;
1438 reg_state[i].store_ruid = reload_combine_ruid;
1439 reg_state[i].real_store_ruid = reload_combine_ruid;
1440 }
1441 }
1442 else
1443 return;
1444 }
1445
1446 if (!REG_P (dst))
1447 return;
1448 regno += REGNO (dst);
1449
1450 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1451 careful with registers / register parts that are not full words.
1452 Similarly for ZERO_EXTRACT. */
1453 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1454 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1455 {
1456 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1457 {
1458 reg_state[i].use_index = -1;
1459 reg_state[i].store_ruid = reload_combine_ruid;
1460 reg_state[i].real_store_ruid = reload_combine_ruid;
1461 }
1462 }
1463 else
1464 {
1465 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1466 {
1467 reg_state[i].store_ruid = reload_combine_ruid;
1468 if (GET_CODE (set) == SET)
1469 reg_state[i].real_store_ruid = reload_combine_ruid;
1470 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1471 }
1472 }
1473 }
1474
1475 /* XP points to a piece of rtl that has to be checked for any uses of
1476 registers.
1477 *XP is the pattern of INSN, or a part of it.
1478 Called from reload_combine, and recursively by itself. */
1479 static void
1480 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1481 {
1482 rtx x = *xp;
1483 enum rtx_code code = x->code;
1484 const char *fmt;
1485 int i, j;
1486 rtx offset = const0_rtx; /* For the REG case below. */
1487
1488 switch (code)
1489 {
1490 case SET:
1491 if (REG_P (SET_DEST (x)))
1492 {
1493 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1494 return;
1495 }
1496 break;
1497
1498 case USE:
1499 /* If this is the USE of a return value, we can't change it. */
1500 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1501 {
1502 /* Mark the return register as used in an unknown fashion. */
1503 rtx reg = XEXP (x, 0);
1504 unsigned int end_regno = END_REGNO (reg);
1505 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1506 reg_state[regno].use_index = -1;
1507 return;
1508 }
1509 break;
1510
1511 case CLOBBER:
1512 if (REG_P (SET_DEST (x)))
1513 {
1514 /* No spurious CLOBBERs of pseudo registers may remain. */
1515 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1516 return;
1517 }
1518 break;
1519
1520 case PLUS:
1521 /* We are interested in (plus (reg) (const_int)) . */
1522 if (!REG_P (XEXP (x, 0))
1523 || !CONST_INT_P (XEXP (x, 1)))
1524 break;
1525 offset = XEXP (x, 1);
1526 x = XEXP (x, 0);
1527 /* Fall through. */
1528 case REG:
1529 {
1530 int regno = REGNO (x);
1531 int use_index;
1532 int nregs;
1533
1534 /* No spurious USEs of pseudo registers may remain. */
1535 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1536
1537 nregs = REG_NREGS (x);
1538
1539 /* We can't substitute into multi-hard-reg uses. */
1540 if (nregs > 1)
1541 {
1542 while (--nregs >= 0)
1543 reg_state[regno + nregs].use_index = -1;
1544 return;
1545 }
1546
1547 /* We may be called to update uses in previously seen insns.
1548 Don't add uses beyond the last store we saw. */
1549 if (ruid < reg_state[regno].store_ruid)
1550 return;
1551
1552 /* If this register is already used in some unknown fashion, we
1553 can't do anything.
1554 If we decrement the index from zero to -1, we can't store more
1555 uses, so this register becomes used in an unknown fashion. */
1556 use_index = --reg_state[regno].use_index;
1557 if (use_index < 0)
1558 return;
1559
1560 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1561 {
1562 /* This is the first use of this register we have seen since we
1563 marked it as dead. */
1564 reg_state[regno].offset = offset;
1565 reg_state[regno].all_offsets_match = true;
1566 reg_state[regno].use_ruid = ruid;
1567 }
1568 else
1569 {
1570 if (reg_state[regno].use_ruid > ruid)
1571 reg_state[regno].use_ruid = ruid;
1572
1573 if (! rtx_equal_p (offset, reg_state[regno].offset))
1574 reg_state[regno].all_offsets_match = false;
1575 }
1576
1577 reg_state[regno].reg_use[use_index].insn = insn;
1578 reg_state[regno].reg_use[use_index].ruid = ruid;
1579 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1580 reg_state[regno].reg_use[use_index].usep = xp;
1581 return;
1582 }
1583
1584 case MEM:
1585 containing_mem = x;
1586 break;
1587
1588 default:
1589 break;
1590 }
1591
1592 /* Recursively process the components of X. */
1593 fmt = GET_RTX_FORMAT (code);
1594 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1595 {
1596 if (fmt[i] == 'e')
1597 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1598 else if (fmt[i] == 'E')
1599 {
1600 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1601 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1602 containing_mem);
1603 }
1604 }
1605 }
1606 \f
1607 /* See if we can reduce the cost of a constant by replacing a move
1608 with an add. We track situations in which a register is set to a
1609 constant or to a register plus a constant. */
1610 /* We cannot do our optimization across labels. Invalidating all the
1611 information about register contents we have would be costly, so we
1612 use move2add_last_label_luid to note where the label is and then
1613 later disable any optimization that would cross it.
1614 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1615 are only valid if reg_set_luid[n] is greater than
1616 move2add_last_label_luid.
1617 For a set that established a new (potential) base register with
1618 non-constant value, we use move2add_luid from the place where the
1619 setting insn is encountered; registers based off that base then
1620 get the same reg_set_luid. Constants all get
1621 move2add_last_label_luid + 1 as their reg_set_luid. */
1622 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1623
1624 /* If reg_base_reg[n] is negative, register n has been set to
1625 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1626 If reg_base_reg[n] is non-negative, register n has been set to the
1627 sum of reg_offset[n] and the value of register reg_base_reg[n]
1628 before reg_set_luid[n], calculated in mode reg_mode[n] .
1629 For multi-hard-register registers, all but the first one are
1630 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1631 marks it as invalid. */
1632 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1633 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1634 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1635 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1636
1637 /* move2add_luid is linearly increased while scanning the instructions
1638 from first to last. It is used to set reg_set_luid in
1639 reload_cse_move2add and move2add_note_store. */
1640 static int move2add_luid;
1641
1642 /* move2add_last_label_luid is set whenever a label is found. Labels
1643 invalidate all previously collected reg_offset data. */
1644 static int move2add_last_label_luid;
1645
1646 /* ??? We don't know how zero / sign extension is handled, hence we
1647 can't go from a narrower to a wider mode. */
1648 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1649 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1650 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1651 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1652
1653 /* Record that REG is being set to a value with the mode of REG. */
1654
1655 static void
1656 move2add_record_mode (rtx reg)
1657 {
1658 int regno, nregs;
1659 machine_mode mode = GET_MODE (reg);
1660
1661 if (GET_CODE (reg) == SUBREG)
1662 {
1663 regno = subreg_regno (reg);
1664 nregs = subreg_nregs (reg);
1665 }
1666 else if (REG_P (reg))
1667 {
1668 regno = REGNO (reg);
1669 nregs = REG_NREGS (reg);
1670 }
1671 else
1672 gcc_unreachable ();
1673 for (int i = nregs - 1; i > 0; i--)
1674 reg_mode[regno + i] = BLKmode;
1675 reg_mode[regno] = mode;
1676 }
1677
1678 /* Record that REG is being set to the sum of SYM and OFF. */
1679
1680 static void
1681 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1682 {
1683 int regno = REGNO (reg);
1684
1685 move2add_record_mode (reg);
1686 reg_set_luid[regno] = move2add_luid;
1687 reg_base_reg[regno] = -1;
1688 reg_symbol_ref[regno] = sym;
1689 reg_offset[regno] = INTVAL (off);
1690 }
1691
1692 /* Check if REGNO contains a valid value in MODE. */
1693
1694 static bool
1695 move2add_valid_value_p (int regno, machine_mode mode)
1696 {
1697 if (reg_set_luid[regno] <= move2add_last_label_luid)
1698 return false;
1699
1700 if (mode != reg_mode[regno])
1701 {
1702 scalar_int_mode old_mode;
1703 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1704 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
1705 return false;
1706 /* The value loaded into regno in reg_mode[regno] is also valid in
1707 mode after truncation only if (REG:mode regno) is the lowpart of
1708 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1709 regno of the lowpart might be different. */
1710 int s_off = subreg_lowpart_offset (mode, old_mode);
1711 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1712 if (s_off != 0)
1713 /* We could in principle adjust regno, check reg_mode[regno] to be
1714 BLKmode, and return s_off to the caller (vs. -1 for failure),
1715 but we currently have no callers that could make use of this
1716 information. */
1717 return false;
1718 }
1719
1720 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1721 if (reg_mode[regno + i] != BLKmode)
1722 return false;
1723 return true;
1724 }
1725
1726 /* This function is called with INSN that sets REG to (SYM + OFF),
1727 while REG is known to already have value (SYM + offset).
1728 This function tries to change INSN into an add instruction
1729 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1730 It also updates the information about REG's known value.
1731 Return true if we made a change. */
1732
1733 static bool
1734 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1735 {
1736 rtx pat = PATTERN (insn);
1737 rtx src = SET_SRC (pat);
1738 int regno = REGNO (reg);
1739 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1740 GET_MODE (reg));
1741 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1742 bool changed = false;
1743
1744 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1745 use (set (reg) (reg)) instead.
1746 We don't delete this insn, nor do we convert it into a
1747 note, to avoid losing register notes or the return
1748 value flag. jump2 already knows how to get rid of
1749 no-op moves. */
1750 if (new_src == const0_rtx)
1751 {
1752 /* If the constants are different, this is a
1753 truncation, that, if turned into (set (reg)
1754 (reg)), would be discarded. Maybe we should
1755 try a truncMN pattern? */
1756 if (INTVAL (off) == reg_offset [regno])
1757 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1758 }
1759 else
1760 {
1761 struct full_rtx_costs oldcst, newcst;
1762 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1763
1764 get_full_set_rtx_cost (pat, &oldcst);
1765 SET_SRC (pat) = tem;
1766 get_full_set_rtx_cost (pat, &newcst);
1767 SET_SRC (pat) = src;
1768
1769 if (costs_lt_p (&newcst, &oldcst, speed)
1770 && have_add2_insn (reg, new_src))
1771 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1772 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1773 {
1774 machine_mode narrow_mode;
1775 FOR_EACH_MODE_UNTIL (narrow_mode, GET_MODE (reg))
1776 {
1777 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1778 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1779 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1780 {
1781 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1782 rtx narrow_src = gen_int_mode (INTVAL (off),
1783 narrow_mode);
1784 rtx new_set
1785 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1786 narrow_reg),
1787 narrow_src);
1788 get_full_set_rtx_cost (new_set, &newcst);
1789 if (costs_lt_p (&newcst, &oldcst, speed))
1790 {
1791 changed = validate_change (insn, &PATTERN (insn),
1792 new_set, 0);
1793 if (changed)
1794 break;
1795 }
1796 }
1797 }
1798 }
1799 }
1800 move2add_record_sym_value (reg, sym, off);
1801 return changed;
1802 }
1803
1804
1805 /* This function is called with INSN that sets REG to (SYM + OFF),
1806 but REG doesn't have known value (SYM + offset). This function
1807 tries to find another register which is known to already have
1808 value (SYM + offset) and change INSN into an add instruction
1809 (set (REG) (plus (the found register) (OFF - offset))) if such
1810 a register is found. It also updates the information about
1811 REG's known value.
1812 Return true iff we made a change. */
1813
1814 static bool
1815 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1816 {
1817 rtx pat = PATTERN (insn);
1818 rtx src = SET_SRC (pat);
1819 int regno = REGNO (reg);
1820 int min_regno = 0;
1821 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1822 int i;
1823 bool changed = false;
1824 struct full_rtx_costs oldcst, newcst, mincst;
1825 rtx plus_expr;
1826
1827 init_costs_to_max (&mincst);
1828 get_full_set_rtx_cost (pat, &oldcst);
1829
1830 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1831 SET_SRC (pat) = plus_expr;
1832
1833 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1834 if (move2add_valid_value_p (i, GET_MODE (reg))
1835 && reg_base_reg[i] < 0
1836 && reg_symbol_ref[i] != NULL_RTX
1837 && rtx_equal_p (sym, reg_symbol_ref[i]))
1838 {
1839 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1840 GET_MODE (reg));
1841 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1842 use (set (reg) (reg)) instead.
1843 We don't delete this insn, nor do we convert it into a
1844 note, to avoid losing register notes or the return
1845 value flag. jump2 already knows how to get rid of
1846 no-op moves. */
1847 if (new_src == const0_rtx)
1848 {
1849 init_costs_to_zero (&mincst);
1850 min_regno = i;
1851 break;
1852 }
1853 else
1854 {
1855 XEXP (plus_expr, 1) = new_src;
1856 get_full_set_rtx_cost (pat, &newcst);
1857
1858 if (costs_lt_p (&newcst, &mincst, speed))
1859 {
1860 mincst = newcst;
1861 min_regno = i;
1862 }
1863 }
1864 }
1865 SET_SRC (pat) = src;
1866
1867 if (costs_lt_p (&mincst, &oldcst, speed))
1868 {
1869 rtx tem;
1870
1871 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1872 if (i != min_regno)
1873 {
1874 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1875 GET_MODE (reg));
1876 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1877 }
1878 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1879 changed = true;
1880 }
1881 reg_set_luid[regno] = move2add_luid;
1882 move2add_record_sym_value (reg, sym, off);
1883 return changed;
1884 }
1885
1886 /* Convert move insns with constant inputs to additions if they are cheaper.
1887 Return true if any changes were made. */
1888 static bool
1889 reload_cse_move2add (rtx_insn *first)
1890 {
1891 int i;
1892 rtx_insn *insn;
1893 bool changed = false;
1894
1895 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1896 {
1897 reg_set_luid[i] = 0;
1898 reg_offset[i] = 0;
1899 reg_base_reg[i] = 0;
1900 reg_symbol_ref[i] = NULL_RTX;
1901 reg_mode[i] = VOIDmode;
1902 }
1903
1904 move2add_last_label_luid = 0;
1905 move2add_luid = 2;
1906 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1907 {
1908 rtx pat, note;
1909
1910 if (LABEL_P (insn))
1911 {
1912 move2add_last_label_luid = move2add_luid;
1913 /* We're going to increment move2add_luid twice after a
1914 label, so that we can use move2add_last_label_luid + 1 as
1915 the luid for constants. */
1916 move2add_luid++;
1917 continue;
1918 }
1919 if (! INSN_P (insn))
1920 continue;
1921 pat = PATTERN (insn);
1922 /* For simplicity, we only perform this optimization on
1923 straightforward SETs. */
1924 if (GET_CODE (pat) == SET
1925 && REG_P (SET_DEST (pat)))
1926 {
1927 rtx reg = SET_DEST (pat);
1928 int regno = REGNO (reg);
1929 rtx src = SET_SRC (pat);
1930
1931 /* Check if we have valid information on the contents of this
1932 register in the mode of REG. */
1933 if (move2add_valid_value_p (regno, GET_MODE (reg))
1934 && dbg_cnt (cse2_move2add))
1935 {
1936 /* Try to transform (set (REGX) (CONST_INT A))
1937 ...
1938 (set (REGX) (CONST_INT B))
1939 to
1940 (set (REGX) (CONST_INT A))
1941 ...
1942 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1943 or
1944 (set (REGX) (CONST_INT A))
1945 ...
1946 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1947 */
1948
1949 if (CONST_INT_P (src)
1950 && reg_base_reg[regno] < 0
1951 && reg_symbol_ref[regno] == NULL_RTX)
1952 {
1953 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1954 continue;
1955 }
1956
1957 /* Try to transform (set (REGX) (REGY))
1958 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1959 ...
1960 (set (REGX) (REGY))
1961 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1962 to
1963 (set (REGX) (REGY))
1964 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1965 ...
1966 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1967 else if (REG_P (src)
1968 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1969 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1970 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1971 {
1972 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1973 rtx set = NULL_RTX;
1974 if (next)
1975 set = single_set (next);
1976 if (set
1977 && SET_DEST (set) == reg
1978 && GET_CODE (SET_SRC (set)) == PLUS
1979 && XEXP (SET_SRC (set), 0) == reg
1980 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1981 {
1982 rtx src3 = XEXP (SET_SRC (set), 1);
1983 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1984 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1985 HOST_WIDE_INT regno_offset = reg_offset[regno];
1986 rtx new_src =
1987 gen_int_mode (added_offset
1988 + base_offset
1989 - regno_offset,
1990 GET_MODE (reg));
1991 bool success = false;
1992 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1993
1994 if (new_src == const0_rtx)
1995 /* See above why we create (set (reg) (reg)) here. */
1996 success
1997 = validate_change (next, &SET_SRC (set), reg, 0);
1998 else
1999 {
2000 rtx old_src = SET_SRC (set);
2001 struct full_rtx_costs oldcst, newcst;
2002 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2003
2004 get_full_set_rtx_cost (set, &oldcst);
2005 SET_SRC (set) = tem;
2006 get_full_set_src_cost (tem, GET_MODE (reg), &newcst);
2007 SET_SRC (set) = old_src;
2008 costs_add_n_insns (&oldcst, 1);
2009
2010 if (costs_lt_p (&newcst, &oldcst, speed)
2011 && have_add2_insn (reg, new_src))
2012 {
2013 rtx newpat = gen_rtx_SET (reg, tem);
2014 success
2015 = validate_change (next, &PATTERN (next),
2016 newpat, 0);
2017 }
2018 }
2019 if (success)
2020 delete_insn (insn);
2021 changed |= success;
2022 insn = next;
2023 move2add_record_mode (reg);
2024 reg_offset[regno]
2025 = trunc_int_for_mode (added_offset + base_offset,
2026 GET_MODE (reg));
2027 continue;
2028 }
2029 }
2030 }
2031
2032 /* Try to transform
2033 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2034 ...
2035 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2036 to
2037 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2038 ...
2039 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2040 if ((GET_CODE (src) == SYMBOL_REF
2041 || (GET_CODE (src) == CONST
2042 && GET_CODE (XEXP (src, 0)) == PLUS
2043 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2044 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2045 && dbg_cnt (cse2_move2add))
2046 {
2047 rtx sym, off;
2048
2049 if (GET_CODE (src) == SYMBOL_REF)
2050 {
2051 sym = src;
2052 off = const0_rtx;
2053 }
2054 else
2055 {
2056 sym = XEXP (XEXP (src, 0), 0);
2057 off = XEXP (XEXP (src, 0), 1);
2058 }
2059
2060 /* If the reg already contains the value which is sum of
2061 sym and some constant value, we can use an add2 insn. */
2062 if (move2add_valid_value_p (regno, GET_MODE (reg))
2063 && reg_base_reg[regno] < 0
2064 && reg_symbol_ref[regno] != NULL_RTX
2065 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2066 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2067
2068 /* Otherwise, we have to find a register whose value is sum
2069 of sym and some constant value. */
2070 else
2071 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2072
2073 continue;
2074 }
2075 }
2076
2077 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2078 {
2079 if (REG_NOTE_KIND (note) == REG_INC
2080 && REG_P (XEXP (note, 0)))
2081 {
2082 /* Reset the information about this register. */
2083 int regno = REGNO (XEXP (note, 0));
2084 if (regno < FIRST_PSEUDO_REGISTER)
2085 {
2086 move2add_record_mode (XEXP (note, 0));
2087 reg_mode[regno] = VOIDmode;
2088 }
2089 }
2090 }
2091 note_stores (PATTERN (insn), move2add_note_store, insn);
2092
2093 /* If INSN is a conditional branch, we try to extract an
2094 implicit set out of it. */
2095 if (any_condjump_p (insn))
2096 {
2097 rtx cnd = fis_get_condition (insn);
2098
2099 if (cnd != NULL_RTX
2100 && GET_CODE (cnd) == NE
2101 && REG_P (XEXP (cnd, 0))
2102 && !reg_set_p (XEXP (cnd, 0), insn)
2103 /* The following two checks, which are also in
2104 move2add_note_store, are intended to reduce the
2105 number of calls to gen_rtx_SET to avoid memory
2106 allocation if possible. */
2107 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2108 && REG_NREGS (XEXP (cnd, 0)) == 1
2109 && CONST_INT_P (XEXP (cnd, 1)))
2110 {
2111 rtx implicit_set =
2112 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2113 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2114 }
2115 }
2116
2117 /* If this is a CALL_INSN, all call used registers are stored with
2118 unknown values. */
2119 if (CALL_P (insn))
2120 {
2121 rtx link;
2122
2123 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2124 {
2125 if (call_used_regs[i])
2126 /* Reset the information about this register. */
2127 reg_mode[i] = VOIDmode;
2128 }
2129
2130 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2131 link = XEXP (link, 1))
2132 {
2133 rtx setuse = XEXP (link, 0);
2134 rtx usage_rtx = XEXP (setuse, 0);
2135 if (GET_CODE (setuse) == CLOBBER
2136 && REG_P (usage_rtx))
2137 {
2138 unsigned int end_regno = END_REGNO (usage_rtx);
2139 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2140 /* Reset the information about this register. */
2141 reg_mode[r] = VOIDmode;
2142 }
2143 }
2144 }
2145 }
2146 return changed;
2147 }
2148
2149 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2150 contains SET.
2151 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2152 Called from reload_cse_move2add via note_stores. */
2153
2154 static void
2155 move2add_note_store (rtx dst, const_rtx set, void *data)
2156 {
2157 rtx_insn *insn = (rtx_insn *) data;
2158 unsigned int regno = 0;
2159 scalar_int_mode mode;
2160
2161 /* Some targets do argument pushes without adding REG_INC notes. */
2162
2163 if (MEM_P (dst))
2164 {
2165 dst = XEXP (dst, 0);
2166 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2167 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2168 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2169 return;
2170 }
2171
2172 if (GET_CODE (dst) == SUBREG)
2173 regno = subreg_regno (dst);
2174 else if (REG_P (dst))
2175 regno = REGNO (dst);
2176 else
2177 return;
2178
2179 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2180 goto invalidate;
2181
2182 if (GET_CODE (set) == SET)
2183 {
2184 rtx note, sym = NULL_RTX;
2185 rtx off;
2186
2187 note = find_reg_equal_equiv_note (insn);
2188 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2189 {
2190 sym = XEXP (note, 0);
2191 off = const0_rtx;
2192 }
2193 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2194 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2195 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2196 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2197 {
2198 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2199 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2200 }
2201
2202 if (sym != NULL_RTX)
2203 {
2204 move2add_record_sym_value (dst, sym, off);
2205 return;
2206 }
2207 }
2208
2209 if (GET_CODE (set) == SET
2210 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2211 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2212 {
2213 rtx src = SET_SRC (set);
2214 rtx base_reg;
2215 unsigned HOST_WIDE_INT offset;
2216 int base_regno;
2217
2218 switch (GET_CODE (src))
2219 {
2220 case PLUS:
2221 if (REG_P (XEXP (src, 0)))
2222 {
2223 base_reg = XEXP (src, 0);
2224
2225 if (CONST_INT_P (XEXP (src, 1)))
2226 offset = UINTVAL (XEXP (src, 1));
2227 else if (REG_P (XEXP (src, 1))
2228 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2229 {
2230 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2231 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2232 offset = reg_offset[REGNO (XEXP (src, 1))];
2233 /* Maybe the first register is known to be a
2234 constant. */
2235 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2236 && reg_base_reg[REGNO (base_reg)] < 0
2237 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2238 {
2239 offset = reg_offset[REGNO (base_reg)];
2240 base_reg = XEXP (src, 1);
2241 }
2242 else
2243 goto invalidate;
2244 }
2245 else
2246 goto invalidate;
2247
2248 break;
2249 }
2250
2251 goto invalidate;
2252
2253 case REG:
2254 base_reg = src;
2255 offset = 0;
2256 break;
2257
2258 case CONST_INT:
2259 /* Start tracking the register as a constant. */
2260 reg_base_reg[regno] = -1;
2261 reg_symbol_ref[regno] = NULL_RTX;
2262 reg_offset[regno] = INTVAL (SET_SRC (set));
2263 /* We assign the same luid to all registers set to constants. */
2264 reg_set_luid[regno] = move2add_last_label_luid + 1;
2265 move2add_record_mode (dst);
2266 return;
2267
2268 default:
2269 goto invalidate;
2270 }
2271
2272 base_regno = REGNO (base_reg);
2273 /* If information about the base register is not valid, set it
2274 up as a new base register, pretending its value is known
2275 starting from the current insn. */
2276 if (!move2add_valid_value_p (base_regno, mode))
2277 {
2278 reg_base_reg[base_regno] = base_regno;
2279 reg_symbol_ref[base_regno] = NULL_RTX;
2280 reg_offset[base_regno] = 0;
2281 reg_set_luid[base_regno] = move2add_luid;
2282 gcc_assert (GET_MODE (base_reg) == mode);
2283 move2add_record_mode (base_reg);
2284 }
2285
2286 /* Copy base information from our base register. */
2287 reg_set_luid[regno] = reg_set_luid[base_regno];
2288 reg_base_reg[regno] = reg_base_reg[base_regno];
2289 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2290
2291 /* Compute the sum of the offsets or constants. */
2292 reg_offset[regno]
2293 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2294
2295 move2add_record_mode (dst);
2296 }
2297 else
2298 {
2299 invalidate:
2300 /* Invalidate the contents of the register. */
2301 move2add_record_mode (dst);
2302 reg_mode[regno] = VOIDmode;
2303 }
2304 }
2305 \f
2306 namespace {
2307
2308 const pass_data pass_data_postreload_cse =
2309 {
2310 RTL_PASS, /* type */
2311 "postreload", /* name */
2312 OPTGROUP_NONE, /* optinfo_flags */
2313 TV_RELOAD_CSE_REGS, /* tv_id */
2314 0, /* properties_required */
2315 0, /* properties_provided */
2316 0, /* properties_destroyed */
2317 0, /* todo_flags_start */
2318 TODO_df_finish, /* todo_flags_finish */
2319 };
2320
2321 class pass_postreload_cse : public rtl_opt_pass
2322 {
2323 public:
2324 pass_postreload_cse (gcc::context *ctxt)
2325 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2326 {}
2327
2328 /* opt_pass methods: */
2329 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2330
2331 virtual unsigned int execute (function *);
2332
2333 }; // class pass_postreload_cse
2334
2335 unsigned int
2336 pass_postreload_cse::execute (function *fun)
2337 {
2338 if (!dbg_cnt (postreload_cse))
2339 return 0;
2340
2341 /* Do a very simple CSE pass over just the hard registers. */
2342 reload_cse_regs (get_insns ());
2343 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2344 Remove any EH edges associated with them. */
2345 if (fun->can_throw_non_call_exceptions
2346 && purge_all_dead_edges ())
2347 cleanup_cfg (0);
2348
2349 return 0;
2350 }
2351
2352 } // anon namespace
2353
2354 rtl_opt_pass *
2355 make_pass_postreload_cse (gcc::context *ctxt)
2356 {
2357 return new pass_postreload_cse (ctxt);
2358 }