]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
cfgcleanup.c (mentions_nonequal_regs): Use END_REGNO.
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "input.h"
36 #include "function.h"
37 #include "symtab.h"
38 #include "statistics.h"
39 #include "double-int.h"
40 #include "real.h"
41 #include "fixed-value.h"
42 #include "alias.h"
43 #include "wide-int.h"
44 #include "inchash.h"
45 #include "tree.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "varasm.h"
52 #include "stmt.h"
53 #include "expr.h"
54 #include "insn-codes.h"
55 #include "optabs.h"
56 #include "regs.h"
57 #include "predict.h"
58 #include "dominance.h"
59 #include "cfg.h"
60 #include "cfgrtl.h"
61 #include "cfgbuild.h"
62 #include "cfgcleanup.h"
63 #include "basic-block.h"
64 #include "reload.h"
65 #include "recog.h"
66 #include "cselib.h"
67 #include "diagnostic-core.h"
68 #include "except.h"
69 #include "target.h"
70 #include "tree-pass.h"
71 #include "df.h"
72 #include "dbgcnt.h"
73
74 static int reload_cse_noop_set_p (rtx);
75 static bool reload_cse_simplify (rtx_insn *, rtx);
76 static void reload_cse_regs_1 (void);
77 static int reload_cse_simplify_set (rtx, rtx_insn *);
78 static int reload_cse_simplify_operands (rtx_insn *, rtx);
79
80 static void reload_combine (void);
81 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
82 static void reload_combine_note_store (rtx, const_rtx, void *);
83
84 static bool reload_cse_move2add (rtx_insn *);
85 static void move2add_note_store (rtx, const_rtx, void *);
86
87 /* Call cse / combine like post-reload optimization phases.
88 FIRST is the first instruction. */
89
90 static void
91 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
92 {
93 bool moves_converted;
94 reload_cse_regs_1 ();
95 reload_combine ();
96 moves_converted = reload_cse_move2add (first);
97 if (flag_expensive_optimizations)
98 {
99 if (moves_converted)
100 reload_combine ();
101 reload_cse_regs_1 ();
102 }
103 }
104
105 /* See whether a single set SET is a noop. */
106 static int
107 reload_cse_noop_set_p (rtx set)
108 {
109 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
110 return 0;
111
112 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
113 }
114
115 /* Try to simplify INSN. Return true if the CFG may have changed. */
116 static bool
117 reload_cse_simplify (rtx_insn *insn, rtx testreg)
118 {
119 rtx body = PATTERN (insn);
120 basic_block insn_bb = BLOCK_FOR_INSN (insn);
121 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
122
123 if (GET_CODE (body) == SET)
124 {
125 int count = 0;
126
127 /* Simplify even if we may think it is a no-op.
128 We may think a memory load of a value smaller than WORD_SIZE
129 is redundant because we haven't taken into account possible
130 implicit extension. reload_cse_simplify_set() will bring
131 this out, so it's safer to simplify before we delete. */
132 count += reload_cse_simplify_set (body, insn);
133
134 if (!count && reload_cse_noop_set_p (body))
135 {
136 rtx value = SET_DEST (body);
137 if (REG_P (value)
138 && ! REG_FUNCTION_VALUE_P (value))
139 value = 0;
140 if (check_for_inc_dec (insn))
141 delete_insn_and_edges (insn);
142 /* We're done with this insn. */
143 goto done;
144 }
145
146 if (count > 0)
147 apply_change_group ();
148 else
149 reload_cse_simplify_operands (insn, testreg);
150 }
151 else if (GET_CODE (body) == PARALLEL)
152 {
153 int i;
154 int count = 0;
155 rtx value = NULL_RTX;
156
157 /* Registers mentioned in the clobber list for an asm cannot be reused
158 within the body of the asm. Invalidate those registers now so that
159 we don't try to substitute values for them. */
160 if (asm_noperands (body) >= 0)
161 {
162 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
163 {
164 rtx part = XVECEXP (body, 0, i);
165 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
166 cselib_invalidate_rtx (XEXP (part, 0));
167 }
168 }
169
170 /* If every action in a PARALLEL is a noop, we can delete
171 the entire PARALLEL. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 {
174 rtx part = XVECEXP (body, 0, i);
175 if (GET_CODE (part) == SET)
176 {
177 if (! reload_cse_noop_set_p (part))
178 break;
179 if (REG_P (SET_DEST (part))
180 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
181 {
182 if (value)
183 break;
184 value = SET_DEST (part);
185 }
186 }
187 else if (GET_CODE (part) != CLOBBER)
188 break;
189 }
190
191 if (i < 0)
192 {
193 if (check_for_inc_dec (insn))
194 delete_insn_and_edges (insn);
195 /* We're done with this insn. */
196 goto done;
197 }
198
199 /* It's not a no-op, but we can try to simplify it. */
200 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
201 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
202 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
203
204 if (count > 0)
205 apply_change_group ();
206 else
207 reload_cse_simplify_operands (insn, testreg);
208 }
209
210 done:
211 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
212 }
213
214 /* Do a very simple CSE pass over the hard registers.
215
216 This function detects no-op moves where we happened to assign two
217 different pseudo-registers to the same hard register, and then
218 copied one to the other. Reload will generate a useless
219 instruction copying a register to itself.
220
221 This function also detects cases where we load a value from memory
222 into two different registers, and (if memory is more expensive than
223 registers) changes it to simply copy the first register into the
224 second register.
225
226 Another optimization is performed that scans the operands of each
227 instruction to see whether the value is already available in a
228 hard register. It then replaces the operand with the hard register
229 if possible, much like an optional reload would. */
230
231 static void
232 reload_cse_regs_1 (void)
233 {
234 bool cfg_changed = false;
235 basic_block bb;
236 rtx_insn *insn;
237 rtx testreg = gen_rtx_REG (VOIDmode, -1);
238
239 cselib_init (CSELIB_RECORD_MEMORY);
240 init_alias_analysis ();
241
242 FOR_EACH_BB_FN (bb, cfun)
243 FOR_BB_INSNS (bb, insn)
244 {
245 if (INSN_P (insn))
246 cfg_changed |= reload_cse_simplify (insn, testreg);
247
248 cselib_process_insn (insn);
249 }
250
251 /* Clean up. */
252 end_alias_analysis ();
253 cselib_finish ();
254 if (cfg_changed)
255 cleanup_cfg (0);
256 }
257
258 /* Try to simplify a single SET instruction. SET is the set pattern.
259 INSN is the instruction it came from.
260 This function only handles one case: if we set a register to a value
261 which is not a register, we try to find that value in some other register
262 and change the set into a register copy. */
263
264 static int
265 reload_cse_simplify_set (rtx set, rtx_insn *insn)
266 {
267 int did_change = 0;
268 int dreg;
269 rtx src;
270 reg_class_t dclass;
271 int old_cost;
272 cselib_val *val;
273 struct elt_loc_list *l;
274 #ifdef LOAD_EXTEND_OP
275 enum rtx_code extend_op = UNKNOWN;
276 #endif
277 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
278
279 dreg = true_regnum (SET_DEST (set));
280 if (dreg < 0)
281 return 0;
282
283 src = SET_SRC (set);
284 if (side_effects_p (src) || true_regnum (src) >= 0)
285 return 0;
286
287 dclass = REGNO_REG_CLASS (dreg);
288
289 #ifdef LOAD_EXTEND_OP
290 /* When replacing a memory with a register, we need to honor assumptions
291 that combine made wrt the contents of sign bits. We'll do this by
292 generating an extend instruction instead of a reg->reg copy. Thus
293 the destination must be a register that we can widen. */
294 if (MEM_P (src)
295 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
296 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
297 && !REG_P (SET_DEST (set)))
298 return 0;
299 #endif
300
301 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
302 if (! val)
303 return 0;
304
305 /* If memory loads are cheaper than register copies, don't change them. */
306 if (MEM_P (src))
307 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
308 else if (REG_P (src))
309 old_cost = register_move_cost (GET_MODE (src),
310 REGNO_REG_CLASS (REGNO (src)), dclass);
311 else
312 old_cost = set_src_cost (src, speed);
313
314 for (l = val->locs; l; l = l->next)
315 {
316 rtx this_rtx = l->loc;
317 int this_cost;
318
319 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
320 {
321 #ifdef LOAD_EXTEND_OP
322 if (extend_op != UNKNOWN)
323 {
324 wide_int result;
325
326 if (!CONST_SCALAR_INT_P (this_rtx))
327 continue;
328
329 switch (extend_op)
330 {
331 case ZERO_EXTEND:
332 result = wide_int::from (std::make_pair (this_rtx,
333 GET_MODE (src)),
334 BITS_PER_WORD, UNSIGNED);
335 break;
336 case SIGN_EXTEND:
337 result = wide_int::from (std::make_pair (this_rtx,
338 GET_MODE (src)),
339 BITS_PER_WORD, SIGNED);
340 break;
341 default:
342 gcc_unreachable ();
343 }
344 this_rtx = immed_wide_int_const (result, word_mode);
345 }
346 #endif
347 this_cost = set_src_cost (this_rtx, speed);
348 }
349 else if (REG_P (this_rtx))
350 {
351 #ifdef LOAD_EXTEND_OP
352 if (extend_op != UNKNOWN)
353 {
354 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
355 this_cost = set_src_cost (this_rtx, speed);
356 }
357 else
358 #endif
359 this_cost = register_move_cost (GET_MODE (this_rtx),
360 REGNO_REG_CLASS (REGNO (this_rtx)),
361 dclass);
362 }
363 else
364 continue;
365
366 /* If equal costs, prefer registers over anything else. That
367 tends to lead to smaller instructions on some machines. */
368 if (this_cost < old_cost
369 || (this_cost == old_cost
370 && REG_P (this_rtx)
371 && !REG_P (SET_SRC (set))))
372 {
373 #ifdef LOAD_EXTEND_OP
374 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
375 && extend_op != UNKNOWN
376 #ifdef CANNOT_CHANGE_MODE_CLASS
377 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
378 word_mode,
379 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
380 #endif
381 )
382 {
383 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
384 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
385 validate_change (insn, &SET_DEST (set), wide_dest, 1);
386 }
387 #endif
388
389 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
390 old_cost = this_cost, did_change = 1;
391 }
392 }
393
394 return did_change;
395 }
396
397 /* Try to replace operands in INSN with equivalent values that are already
398 in registers. This can be viewed as optional reloading.
399
400 For each non-register operand in the insn, see if any hard regs are
401 known to be equivalent to that operand. Record the alternatives which
402 can accept these hard registers. Among all alternatives, select the
403 ones which are better or equal to the one currently matching, where
404 "better" is in terms of '?' and '!' constraints. Among the remaining
405 alternatives, select the one which replaces most operands with
406 hard registers. */
407
408 static int
409 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
410 {
411 int i, j;
412
413 /* For each operand, all registers that are equivalent to it. */
414 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
415
416 const char *constraints[MAX_RECOG_OPERANDS];
417
418 /* Vector recording how bad an alternative is. */
419 int *alternative_reject;
420 /* Vector recording how many registers can be introduced by choosing
421 this alternative. */
422 int *alternative_nregs;
423 /* Array of vectors recording, for each operand and each alternative,
424 which hard register to substitute, or -1 if the operand should be
425 left as it is. */
426 int *op_alt_regno[MAX_RECOG_OPERANDS];
427 /* Array of alternatives, sorted in order of decreasing desirability. */
428 int *alternative_order;
429
430 extract_constrain_insn (insn);
431
432 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
433 return 0;
434
435 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
436 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
437 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
438 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
439 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
440
441 /* For each operand, find out which regs are equivalent. */
442 for (i = 0; i < recog_data.n_operands; i++)
443 {
444 cselib_val *v;
445 struct elt_loc_list *l;
446 rtx op;
447
448 CLEAR_HARD_REG_SET (equiv_regs[i]);
449
450 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
451 right, so avoid the problem here. Likewise if we have a constant
452 and the insn pattern doesn't tell us the mode we need. */
453 if (LABEL_P (recog_data.operand[i])
454 || (CONSTANT_P (recog_data.operand[i])
455 && recog_data.operand_mode[i] == VOIDmode))
456 continue;
457
458 op = recog_data.operand[i];
459 #ifdef LOAD_EXTEND_OP
460 if (MEM_P (op)
461 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
462 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
463 {
464 rtx set = single_set (insn);
465
466 /* We might have multiple sets, some of which do implicit
467 extension. Punt on this for now. */
468 if (! set)
469 continue;
470 /* If the destination is also a MEM or a STRICT_LOW_PART, no
471 extension applies.
472 Also, if there is an explicit extension, we don't have to
473 worry about an implicit one. */
474 else if (MEM_P (SET_DEST (set))
475 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
476 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
477 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
478 ; /* Continue ordinary processing. */
479 #ifdef CANNOT_CHANGE_MODE_CLASS
480 /* If the register cannot change mode to word_mode, it follows that
481 it cannot have been used in word_mode. */
482 else if (REG_P (SET_DEST (set))
483 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
484 word_mode,
485 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
486 ; /* Continue ordinary processing. */
487 #endif
488 /* If this is a straight load, make the extension explicit. */
489 else if (REG_P (SET_DEST (set))
490 && recog_data.n_operands == 2
491 && SET_SRC (set) == op
492 && SET_DEST (set) == recog_data.operand[1-i])
493 {
494 validate_change (insn, recog_data.operand_loc[i],
495 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
496 word_mode, op),
497 1);
498 validate_change (insn, recog_data.operand_loc[1-i],
499 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
500 1);
501 if (! apply_change_group ())
502 return 0;
503 return reload_cse_simplify_operands (insn, testreg);
504 }
505 else
506 /* ??? There might be arithmetic operations with memory that are
507 safe to optimize, but is it worth the trouble? */
508 continue;
509 }
510 #endif /* LOAD_EXTEND_OP */
511 if (side_effects_p (op))
512 continue;
513 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
514 if (! v)
515 continue;
516
517 for (l = v->locs; l; l = l->next)
518 if (REG_P (l->loc))
519 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
520 }
521
522 alternative_mask preferred = get_preferred_alternatives (insn);
523 for (i = 0; i < recog_data.n_operands; i++)
524 {
525 machine_mode mode;
526 int regno;
527 const char *p;
528
529 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
530 for (j = 0; j < recog_data.n_alternatives; j++)
531 op_alt_regno[i][j] = -1;
532
533 p = constraints[i] = recog_data.constraints[i];
534 mode = recog_data.operand_mode[i];
535
536 /* Add the reject values for each alternative given by the constraints
537 for this operand. */
538 j = 0;
539 while (*p != '\0')
540 {
541 char c = *p++;
542 if (c == ',')
543 j++;
544 else if (c == '?')
545 alternative_reject[j] += 3;
546 else if (c == '!')
547 alternative_reject[j] += 300;
548 }
549
550 /* We won't change operands which are already registers. We
551 also don't want to modify output operands. */
552 regno = true_regnum (recog_data.operand[i]);
553 if (regno >= 0
554 || constraints[i][0] == '='
555 || constraints[i][0] == '+')
556 continue;
557
558 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
559 {
560 enum reg_class rclass = NO_REGS;
561
562 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
563 continue;
564
565 SET_REGNO_RAW (testreg, regno);
566 PUT_MODE (testreg, mode);
567
568 /* We found a register equal to this operand. Now look for all
569 alternatives that can accept this register and have not been
570 assigned a register they can use yet. */
571 j = 0;
572 p = constraints[i];
573 for (;;)
574 {
575 char c = *p;
576
577 switch (c)
578 {
579 case 'g':
580 rclass = reg_class_subunion[rclass][GENERAL_REGS];
581 break;
582
583 default:
584 rclass
585 = (reg_class_subunion
586 [rclass]
587 [reg_class_for_constraint (lookup_constraint (p))]);
588 break;
589
590 case ',': case '\0':
591 /* See if REGNO fits this alternative, and set it up as the
592 replacement register if we don't have one for this
593 alternative yet and the operand being replaced is not
594 a cheap CONST_INT. */
595 if (op_alt_regno[i][j] == -1
596 && TEST_BIT (preferred, j)
597 && reg_fits_class_p (testreg, rclass, 0, mode)
598 && (!CONST_INT_P (recog_data.operand[i])
599 || (set_src_cost (recog_data.operand[i],
600 optimize_bb_for_speed_p
601 (BLOCK_FOR_INSN (insn)))
602 > set_src_cost (testreg,
603 optimize_bb_for_speed_p
604 (BLOCK_FOR_INSN (insn))))))
605 {
606 alternative_nregs[j]++;
607 op_alt_regno[i][j] = regno;
608 }
609 j++;
610 rclass = NO_REGS;
611 break;
612 }
613 p += CONSTRAINT_LEN (c, p);
614
615 if (c == '\0')
616 break;
617 }
618 }
619 }
620
621 /* Record all alternatives which are better or equal to the currently
622 matching one in the alternative_order array. */
623 for (i = j = 0; i < recog_data.n_alternatives; i++)
624 if (alternative_reject[i] <= alternative_reject[which_alternative])
625 alternative_order[j++] = i;
626 recog_data.n_alternatives = j;
627
628 /* Sort it. Given a small number of alternatives, a dumb algorithm
629 won't hurt too much. */
630 for (i = 0; i < recog_data.n_alternatives - 1; i++)
631 {
632 int best = i;
633 int best_reject = alternative_reject[alternative_order[i]];
634 int best_nregs = alternative_nregs[alternative_order[i]];
635
636 for (j = i + 1; j < recog_data.n_alternatives; j++)
637 {
638 int this_reject = alternative_reject[alternative_order[j]];
639 int this_nregs = alternative_nregs[alternative_order[j]];
640
641 if (this_reject < best_reject
642 || (this_reject == best_reject && this_nregs > best_nregs))
643 {
644 best = j;
645 best_reject = this_reject;
646 best_nregs = this_nregs;
647 }
648 }
649
650 std::swap (alternative_order[best], alternative_order[i]);
651 }
652
653 /* Substitute the operands as determined by op_alt_regno for the best
654 alternative. */
655 j = alternative_order[0];
656
657 for (i = 0; i < recog_data.n_operands; i++)
658 {
659 machine_mode mode = recog_data.operand_mode[i];
660 if (op_alt_regno[i][j] == -1)
661 continue;
662
663 validate_change (insn, recog_data.operand_loc[i],
664 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
665 }
666
667 for (i = recog_data.n_dups - 1; i >= 0; i--)
668 {
669 int op = recog_data.dup_num[i];
670 machine_mode mode = recog_data.operand_mode[op];
671
672 if (op_alt_regno[op][j] == -1)
673 continue;
674
675 validate_change (insn, recog_data.dup_loc[i],
676 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
677 }
678
679 return apply_change_group ();
680 }
681 \f
682 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
683 addressing now.
684 This code might also be useful when reload gave up on reg+reg addressing
685 because of clashes between the return register and INDEX_REG_CLASS. */
686
687 /* The maximum number of uses of a register we can keep track of to
688 replace them with reg+reg addressing. */
689 #define RELOAD_COMBINE_MAX_USES 16
690
691 /* Describes a recorded use of a register. */
692 struct reg_use
693 {
694 /* The insn where a register has been used. */
695 rtx_insn *insn;
696 /* Points to the memory reference enclosing the use, if any, NULL_RTX
697 otherwise. */
698 rtx containing_mem;
699 /* Location of the register within INSN. */
700 rtx *usep;
701 /* The reverse uid of the insn. */
702 int ruid;
703 };
704
705 /* If the register is used in some unknown fashion, USE_INDEX is negative.
706 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
707 indicates where it is first set or clobbered.
708 Otherwise, USE_INDEX is the index of the last encountered use of the
709 register (which is first among these we have seen since we scan backwards).
710 USE_RUID indicates the first encountered, i.e. last, of these uses.
711 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
712 with a constant offset; OFFSET contains this constant in that case.
713 STORE_RUID is always meaningful if we only want to use a value in a
714 register in a different place: it denotes the next insn in the insn
715 stream (i.e. the last encountered) that sets or clobbers the register.
716 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
717 static struct
718 {
719 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
720 rtx offset;
721 int use_index;
722 int store_ruid;
723 int real_store_ruid;
724 int use_ruid;
725 bool all_offsets_match;
726 } reg_state[FIRST_PSEUDO_REGISTER];
727
728 /* Reverse linear uid. This is increased in reload_combine while scanning
729 the instructions from last to first. It is used to set last_label_ruid
730 and the store_ruid / use_ruid fields in reg_state. */
731 static int reload_combine_ruid;
732
733 /* The RUID of the last label we encountered in reload_combine. */
734 static int last_label_ruid;
735
736 /* The RUID of the last jump we encountered in reload_combine. */
737 static int last_jump_ruid;
738
739 /* The register numbers of the first and last index register. A value of
740 -1 in LAST_INDEX_REG indicates that we've previously computed these
741 values and found no suitable index registers. */
742 static int first_index_reg = -1;
743 static int last_index_reg;
744
745 #define LABEL_LIVE(LABEL) \
746 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
747
748 /* Subroutine of reload_combine_split_ruids, called to fix up a single
749 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
750
751 static inline void
752 reload_combine_split_one_ruid (int *pruid, int split_ruid)
753 {
754 if (*pruid > split_ruid)
755 (*pruid)++;
756 }
757
758 /* Called when we insert a new insn in a position we've already passed in
759 the scan. Examine all our state, increasing all ruids that are higher
760 than SPLIT_RUID by one in order to make room for a new insn. */
761
762 static void
763 reload_combine_split_ruids (int split_ruid)
764 {
765 unsigned i;
766
767 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
768 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
769 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
770
771 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
772 {
773 int j, idx = reg_state[i].use_index;
774 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
775 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
776 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
777 split_ruid);
778 if (idx < 0)
779 continue;
780 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
781 {
782 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
783 split_ruid);
784 }
785 }
786 }
787
788 /* Called when we are about to rescan a previously encountered insn with
789 reload_combine_note_use after modifying some part of it. This clears all
790 information about uses in that particular insn. */
791
792 static void
793 reload_combine_purge_insn_uses (rtx_insn *insn)
794 {
795 unsigned i;
796
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 {
799 int j, k, idx = reg_state[i].use_index;
800 if (idx < 0)
801 continue;
802 j = k = RELOAD_COMBINE_MAX_USES;
803 while (j-- > idx)
804 {
805 if (reg_state[i].reg_use[j].insn != insn)
806 {
807 k--;
808 if (k != j)
809 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
810 }
811 }
812 reg_state[i].use_index = k;
813 }
814 }
815
816 /* Called when we need to forget about all uses of REGNO after an insn
817 which is identified by RUID. */
818
819 static void
820 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
821 {
822 int j, k, idx = reg_state[regno].use_index;
823 if (idx < 0)
824 return;
825 j = k = RELOAD_COMBINE_MAX_USES;
826 while (j-- > idx)
827 {
828 if (reg_state[regno].reg_use[j].ruid >= ruid)
829 {
830 k--;
831 if (k != j)
832 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
833 }
834 }
835 reg_state[regno].use_index = k;
836 }
837
838 /* Find the use of REGNO with the ruid that is highest among those
839 lower than RUID_LIMIT, and return it if it is the only use of this
840 reg in the insn. Return NULL otherwise. */
841
842 static struct reg_use *
843 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
844 {
845 int i, best_ruid = 0;
846 int use_idx = reg_state[regno].use_index;
847 struct reg_use *retval;
848
849 if (use_idx < 0)
850 return NULL;
851 retval = NULL;
852 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
853 {
854 struct reg_use *use = reg_state[regno].reg_use + i;
855 int this_ruid = use->ruid;
856 if (this_ruid >= ruid_limit)
857 continue;
858 if (this_ruid > best_ruid)
859 {
860 best_ruid = this_ruid;
861 retval = use;
862 }
863 else if (this_ruid == best_ruid)
864 retval = NULL;
865 }
866 if (last_label_ruid >= best_ruid)
867 return NULL;
868 return retval;
869 }
870
871 /* After we've moved an add insn, fix up any debug insns that occur
872 between the old location of the add and the new location. REG is
873 the destination register of the add insn; REPLACEMENT is the
874 SET_SRC of the add. FROM and TO specify the range in which we
875 should make this change on debug insns. */
876
877 static void
878 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
879 {
880 rtx_insn *insn;
881 for (insn = from; insn != to; insn = NEXT_INSN (insn))
882 {
883 rtx t;
884
885 if (!DEBUG_INSN_P (insn))
886 continue;
887
888 t = INSN_VAR_LOCATION_LOC (insn);
889 t = simplify_replace_rtx (t, reg, replacement);
890 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
891 }
892 }
893
894 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
895 with SRC in the insn described by USE, taking costs into account. Return
896 true if we made the replacement. */
897
898 static bool
899 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
900 {
901 rtx_insn *use_insn = use->insn;
902 rtx mem = use->containing_mem;
903 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
904
905 if (mem != NULL_RTX)
906 {
907 addr_space_t as = MEM_ADDR_SPACE (mem);
908 rtx oldaddr = XEXP (mem, 0);
909 rtx newaddr = NULL_RTX;
910 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
911 int new_cost;
912
913 newaddr = simplify_replace_rtx (oldaddr, reg, src);
914 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
915 {
916 XEXP (mem, 0) = newaddr;
917 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
918 XEXP (mem, 0) = oldaddr;
919 if (new_cost <= old_cost
920 && validate_change (use_insn,
921 &XEXP (mem, 0), newaddr, 0))
922 return true;
923 }
924 }
925 else
926 {
927 rtx new_set = single_set (use_insn);
928 if (new_set
929 && REG_P (SET_DEST (new_set))
930 && GET_CODE (SET_SRC (new_set)) == PLUS
931 && REG_P (XEXP (SET_SRC (new_set), 0))
932 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
933 {
934 rtx new_src;
935 int old_cost = set_src_cost (SET_SRC (new_set), speed);
936
937 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
938 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
939
940 if (set_src_cost (new_src, speed) <= old_cost
941 && validate_change (use_insn, &SET_SRC (new_set),
942 new_src, 0))
943 return true;
944 }
945 }
946 return false;
947 }
948
949 /* Called by reload_combine when scanning INSN. This function tries to detect
950 patterns where a constant is added to a register, and the result is used
951 in an address.
952 Return true if no further processing is needed on INSN; false if it wasn't
953 recognized and should be handled normally. */
954
955 static bool
956 reload_combine_recognize_const_pattern (rtx_insn *insn)
957 {
958 int from_ruid = reload_combine_ruid;
959 rtx set, pat, reg, src, addreg;
960 unsigned int regno;
961 struct reg_use *use;
962 bool must_move_add;
963 rtx_insn *add_moved_after_insn = NULL;
964 int add_moved_after_ruid = 0;
965 int clobbered_regno = -1;
966
967 set = single_set (insn);
968 if (set == NULL_RTX)
969 return false;
970
971 reg = SET_DEST (set);
972 src = SET_SRC (set);
973 if (!REG_P (reg)
974 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
975 || GET_MODE (reg) != Pmode
976 || reg == stack_pointer_rtx)
977 return false;
978
979 regno = REGNO (reg);
980
981 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
982 uses of REG1 inside an address, or inside another add insn. If
983 possible and profitable, merge the addition into subsequent
984 uses. */
985 if (GET_CODE (src) != PLUS
986 || !REG_P (XEXP (src, 0))
987 || !CONSTANT_P (XEXP (src, 1)))
988 return false;
989
990 addreg = XEXP (src, 0);
991 must_move_add = rtx_equal_p (reg, addreg);
992
993 pat = PATTERN (insn);
994 if (must_move_add && set != pat)
995 {
996 /* We have to be careful when moving the add; apart from the
997 single_set there may also be clobbers. Recognize one special
998 case, that of one clobber alongside the set (likely a clobber
999 of the CC register). */
1000 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
1001 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
1002 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
1003 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
1004 return false;
1005 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1006 }
1007
1008 do
1009 {
1010 use = reload_combine_closest_single_use (regno, from_ruid);
1011
1012 if (use)
1013 /* Start the search for the next use from here. */
1014 from_ruid = use->ruid;
1015
1016 if (use && GET_MODE (*use->usep) == Pmode)
1017 {
1018 bool delete_add = false;
1019 rtx_insn *use_insn = use->insn;
1020 int use_ruid = use->ruid;
1021
1022 /* Avoid moving the add insn past a jump. */
1023 if (must_move_add && use_ruid <= last_jump_ruid)
1024 break;
1025
1026 /* If the add clobbers another hard reg in parallel, don't move
1027 it past a real set of this hard reg. */
1028 if (must_move_add && clobbered_regno >= 0
1029 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1030 break;
1031
1032 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1033 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1034 break;
1035
1036 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1037 /* Avoid moving a use of ADDREG past a point where it is stored. */
1038 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1039 break;
1040
1041 /* We also must not move the addition past an insn that sets
1042 the same register, unless we can combine two add insns. */
1043 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1044 {
1045 if (use->containing_mem == NULL_RTX)
1046 delete_add = true;
1047 else
1048 break;
1049 }
1050
1051 if (try_replace_in_use (use, reg, src))
1052 {
1053 reload_combine_purge_insn_uses (use_insn);
1054 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1055 use_ruid, NULL_RTX);
1056
1057 if (delete_add)
1058 {
1059 fixup_debug_insns (reg, src, insn, use_insn);
1060 delete_insn (insn);
1061 return true;
1062 }
1063 if (must_move_add)
1064 {
1065 add_moved_after_insn = use_insn;
1066 add_moved_after_ruid = use_ruid;
1067 }
1068 continue;
1069 }
1070 }
1071 /* If we get here, we couldn't handle this use. */
1072 if (must_move_add)
1073 break;
1074 }
1075 while (use);
1076
1077 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1078 /* Process the add normally. */
1079 return false;
1080
1081 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1082
1083 reorder_insns (insn, insn, add_moved_after_insn);
1084 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1085 reload_combine_split_ruids (add_moved_after_ruid - 1);
1086 reload_combine_note_use (&PATTERN (insn), insn,
1087 add_moved_after_ruid, NULL_RTX);
1088 reg_state[regno].store_ruid = add_moved_after_ruid;
1089
1090 return true;
1091 }
1092
1093 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1094 can handle and improve. Return true if no further processing is needed on
1095 INSN; false if it wasn't recognized and should be handled normally. */
1096
1097 static bool
1098 reload_combine_recognize_pattern (rtx_insn *insn)
1099 {
1100 rtx set, reg, src;
1101 unsigned int regno;
1102
1103 set = single_set (insn);
1104 if (set == NULL_RTX)
1105 return false;
1106
1107 reg = SET_DEST (set);
1108 src = SET_SRC (set);
1109 if (!REG_P (reg)
1110 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1111 return false;
1112
1113 regno = REGNO (reg);
1114
1115 /* Look for (set (REGX) (CONST_INT))
1116 (set (REGX) (PLUS (REGX) (REGY)))
1117 ...
1118 ... (MEM (REGX)) ...
1119 and convert it to
1120 (set (REGZ) (CONST_INT))
1121 ...
1122 ... (MEM (PLUS (REGZ) (REGY)))... .
1123
1124 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1125 and that we know all uses of REGX before it dies.
1126 Also, explicitly check that REGX != REGY; our life information
1127 does not yet show whether REGY changes in this insn. */
1128
1129 if (GET_CODE (src) == PLUS
1130 && reg_state[regno].all_offsets_match
1131 && last_index_reg != -1
1132 && REG_P (XEXP (src, 1))
1133 && rtx_equal_p (XEXP (src, 0), reg)
1134 && !rtx_equal_p (XEXP (src, 1), reg)
1135 && reg_state[regno].use_index >= 0
1136 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1137 && last_label_ruid < reg_state[regno].use_ruid)
1138 {
1139 rtx base = XEXP (src, 1);
1140 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1141 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1142 rtx index_reg = NULL_RTX;
1143 rtx reg_sum = NULL_RTX;
1144 int i;
1145
1146 /* Now we need to set INDEX_REG to an index register (denoted as
1147 REGZ in the illustration above) and REG_SUM to the expression
1148 register+register that we want to use to substitute uses of REG
1149 (typically in MEMs) with. First check REG and BASE for being
1150 index registers; we can use them even if they are not dead. */
1151 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1152 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1153 REGNO (base)))
1154 {
1155 index_reg = reg;
1156 reg_sum = src;
1157 }
1158 else
1159 {
1160 /* Otherwise, look for a free index register. Since we have
1161 checked above that neither REG nor BASE are index registers,
1162 if we find anything at all, it will be different from these
1163 two registers. */
1164 for (i = first_index_reg; i <= last_index_reg; i++)
1165 {
1166 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1167 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1168 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1169 && (call_used_regs[i] || df_regs_ever_live_p (i))
1170 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1171 && !fixed_regs[i] && !global_regs[i]
1172 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1173 && targetm.hard_regno_scratch_ok (i))
1174 {
1175 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1176 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1183 (REGY), i.e. BASE, is not clobbered before the last use we'll
1184 create. */
1185 if (reg_sum
1186 && prev_set
1187 && CONST_INT_P (SET_SRC (prev_set))
1188 && rtx_equal_p (SET_DEST (prev_set), reg)
1189 && (reg_state[REGNO (base)].store_ruid
1190 <= reg_state[regno].use_ruid))
1191 {
1192 /* Change destination register and, if necessary, the constant
1193 value in PREV, the constant loading instruction. */
1194 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1195 if (reg_state[regno].offset != const0_rtx)
1196 validate_change (prev,
1197 &SET_SRC (prev_set),
1198 GEN_INT (INTVAL (SET_SRC (prev_set))
1199 + INTVAL (reg_state[regno].offset)),
1200 1);
1201
1202 /* Now for every use of REG that we have recorded, replace REG
1203 with REG_SUM. */
1204 for (i = reg_state[regno].use_index;
1205 i < RELOAD_COMBINE_MAX_USES; i++)
1206 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1207 reg_state[regno].reg_use[i].usep,
1208 /* Each change must have its own
1209 replacement. */
1210 reg_sum, 1);
1211
1212 if (apply_change_group ())
1213 {
1214 struct reg_use *lowest_ruid = NULL;
1215
1216 /* For every new use of REG_SUM, we have to record the use
1217 of BASE therein, i.e. operand 1. */
1218 for (i = reg_state[regno].use_index;
1219 i < RELOAD_COMBINE_MAX_USES; i++)
1220 {
1221 struct reg_use *use = reg_state[regno].reg_use + i;
1222 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1223 use->ruid, use->containing_mem);
1224 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1225 lowest_ruid = use;
1226 }
1227
1228 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1229
1230 /* Delete the reg-reg addition. */
1231 delete_insn (insn);
1232
1233 if (reg_state[regno].offset != const0_rtx)
1234 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1235 are now invalid. */
1236 remove_reg_equal_equiv_notes (prev);
1237
1238 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1239 return true;
1240 }
1241 }
1242 }
1243 return false;
1244 }
1245
1246 static void
1247 reload_combine (void)
1248 {
1249 rtx_insn *insn, *prev;
1250 basic_block bb;
1251 unsigned int r;
1252 int min_labelno, n_labels;
1253 HARD_REG_SET ever_live_at_start, *label_live;
1254
1255 /* To avoid wasting too much time later searching for an index register,
1256 determine the minimum and maximum index register numbers. */
1257 if (INDEX_REG_CLASS == NO_REGS)
1258 last_index_reg = -1;
1259 else if (first_index_reg == -1 && last_index_reg == 0)
1260 {
1261 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1262 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1263 {
1264 if (first_index_reg == -1)
1265 first_index_reg = r;
1266
1267 last_index_reg = r;
1268 }
1269
1270 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1271 to -1 so we'll know to quit early the next time we get here. */
1272 if (first_index_reg == -1)
1273 {
1274 last_index_reg = -1;
1275 return;
1276 }
1277 }
1278
1279 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1280 information is a bit fuzzy immediately after reload, but it's
1281 still good enough to determine which registers are live at a jump
1282 destination. */
1283 min_labelno = get_first_label_num ();
1284 n_labels = max_label_num () - min_labelno;
1285 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1286 CLEAR_HARD_REG_SET (ever_live_at_start);
1287
1288 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1289 {
1290 insn = BB_HEAD (bb);
1291 if (LABEL_P (insn))
1292 {
1293 HARD_REG_SET live;
1294 bitmap live_in = df_get_live_in (bb);
1295
1296 REG_SET_TO_HARD_REG_SET (live, live_in);
1297 compute_use_by_pseudos (&live, live_in);
1298 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1299 IOR_HARD_REG_SET (ever_live_at_start, live);
1300 }
1301 }
1302
1303 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1304 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1305 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1306 {
1307 reg_state[r].store_ruid = 0;
1308 reg_state[r].real_store_ruid = 0;
1309 if (fixed_regs[r])
1310 reg_state[r].use_index = -1;
1311 else
1312 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1313 }
1314
1315 for (insn = get_last_insn (); insn; insn = prev)
1316 {
1317 bool control_flow_insn;
1318 rtx note;
1319
1320 prev = PREV_INSN (insn);
1321
1322 /* We cannot do our optimization across labels. Invalidating all the use
1323 information we have would be costly, so we just note where the label
1324 is and then later disable any optimization that would cross it. */
1325 if (LABEL_P (insn))
1326 last_label_ruid = reload_combine_ruid;
1327 else if (BARRIER_P (insn))
1328 {
1329 /* Crossing a barrier resets all the use information. */
1330 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1331 if (! fixed_regs[r])
1332 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1333 }
1334 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1335 /* Optimizations across insns being marked as volatile must be
1336 prevented. All the usage information is invalidated
1337 here. */
1338 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1339 if (! fixed_regs[r]
1340 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1341 reg_state[r].use_index = -1;
1342
1343 if (! NONDEBUG_INSN_P (insn))
1344 continue;
1345
1346 reload_combine_ruid++;
1347
1348 control_flow_insn = control_flow_insn_p (insn);
1349 if (control_flow_insn)
1350 last_jump_ruid = reload_combine_ruid;
1351
1352 if (reload_combine_recognize_const_pattern (insn)
1353 || reload_combine_recognize_pattern (insn))
1354 continue;
1355
1356 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1357
1358 if (CALL_P (insn))
1359 {
1360 rtx link;
1361
1362 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1363 if (call_used_regs[r])
1364 {
1365 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1366 reg_state[r].store_ruid = reload_combine_ruid;
1367 }
1368
1369 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1370 link = XEXP (link, 1))
1371 {
1372 rtx setuse = XEXP (link, 0);
1373 rtx usage_rtx = XEXP (setuse, 0);
1374 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1375 && REG_P (usage_rtx))
1376 {
1377 unsigned int end_regno = END_REGNO (usage_rtx);
1378 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1379 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1380 {
1381 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1382 reg_state[i].store_ruid = reload_combine_ruid;
1383 }
1384 else
1385 reg_state[i].use_index = -1;
1386 }
1387 }
1388 }
1389
1390 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1391 {
1392 /* Non-spill registers might be used at the call destination in
1393 some unknown fashion, so we have to mark the unknown use. */
1394 HARD_REG_SET *live;
1395
1396 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1397 && JUMP_LABEL (insn))
1398 {
1399 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1400 live = NULL;
1401 else
1402 live = &LABEL_LIVE (JUMP_LABEL (insn));
1403 }
1404 else
1405 live = &ever_live_at_start;
1406
1407 if (live)
1408 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1409 if (TEST_HARD_REG_BIT (*live, r))
1410 reg_state[r].use_index = -1;
1411 }
1412
1413 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1414 NULL_RTX);
1415
1416 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1417 {
1418 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1419 {
1420 int regno = REGNO (XEXP (note, 0));
1421 reg_state[regno].store_ruid = reload_combine_ruid;
1422 reg_state[regno].real_store_ruid = reload_combine_ruid;
1423 reg_state[regno].use_index = -1;
1424 }
1425 }
1426 }
1427
1428 free (label_live);
1429 }
1430
1431 /* Check if DST is a register or a subreg of a register; if it is,
1432 update store_ruid, real_store_ruid and use_index in the reg_state
1433 structure accordingly. Called via note_stores from reload_combine. */
1434
1435 static void
1436 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1437 {
1438 int regno = 0;
1439 int i;
1440 machine_mode mode = GET_MODE (dst);
1441
1442 if (GET_CODE (dst) == SUBREG)
1443 {
1444 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1445 GET_MODE (SUBREG_REG (dst)),
1446 SUBREG_BYTE (dst),
1447 GET_MODE (dst));
1448 dst = SUBREG_REG (dst);
1449 }
1450
1451 /* Some targets do argument pushes without adding REG_INC notes. */
1452
1453 if (MEM_P (dst))
1454 {
1455 dst = XEXP (dst, 0);
1456 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1457 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1458 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1459 {
1460 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1461 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1462 {
1463 /* We could probably do better, but for now mark the register
1464 as used in an unknown fashion and set/clobbered at this
1465 insn. */
1466 reg_state[i].use_index = -1;
1467 reg_state[i].store_ruid = reload_combine_ruid;
1468 reg_state[i].real_store_ruid = reload_combine_ruid;
1469 }
1470 }
1471 else
1472 return;
1473 }
1474
1475 if (!REG_P (dst))
1476 return;
1477 regno += REGNO (dst);
1478
1479 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1480 careful with registers / register parts that are not full words.
1481 Similarly for ZERO_EXTRACT. */
1482 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1483 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1484 {
1485 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1486 {
1487 reg_state[i].use_index = -1;
1488 reg_state[i].store_ruid = reload_combine_ruid;
1489 reg_state[i].real_store_ruid = reload_combine_ruid;
1490 }
1491 }
1492 else
1493 {
1494 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1495 {
1496 reg_state[i].store_ruid = reload_combine_ruid;
1497 if (GET_CODE (set) == SET)
1498 reg_state[i].real_store_ruid = reload_combine_ruid;
1499 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1500 }
1501 }
1502 }
1503
1504 /* XP points to a piece of rtl that has to be checked for any uses of
1505 registers.
1506 *XP is the pattern of INSN, or a part of it.
1507 Called from reload_combine, and recursively by itself. */
1508 static void
1509 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1510 {
1511 rtx x = *xp;
1512 enum rtx_code code = x->code;
1513 const char *fmt;
1514 int i, j;
1515 rtx offset = const0_rtx; /* For the REG case below. */
1516
1517 switch (code)
1518 {
1519 case SET:
1520 if (REG_P (SET_DEST (x)))
1521 {
1522 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1523 return;
1524 }
1525 break;
1526
1527 case USE:
1528 /* If this is the USE of a return value, we can't change it. */
1529 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1530 {
1531 /* Mark the return register as used in an unknown fashion. */
1532 rtx reg = XEXP (x, 0);
1533 unsigned int end_regno = END_REGNO (reg);
1534 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1535 reg_state[regno].use_index = -1;
1536 return;
1537 }
1538 break;
1539
1540 case CLOBBER:
1541 if (REG_P (SET_DEST (x)))
1542 {
1543 /* No spurious CLOBBERs of pseudo registers may remain. */
1544 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1545 return;
1546 }
1547 break;
1548
1549 case PLUS:
1550 /* We are interested in (plus (reg) (const_int)) . */
1551 if (!REG_P (XEXP (x, 0))
1552 || !CONST_INT_P (XEXP (x, 1)))
1553 break;
1554 offset = XEXP (x, 1);
1555 x = XEXP (x, 0);
1556 /* Fall through. */
1557 case REG:
1558 {
1559 int regno = REGNO (x);
1560 int use_index;
1561 int nregs;
1562
1563 /* No spurious USEs of pseudo registers may remain. */
1564 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1565
1566 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1567
1568 /* We can't substitute into multi-hard-reg uses. */
1569 if (nregs > 1)
1570 {
1571 while (--nregs >= 0)
1572 reg_state[regno + nregs].use_index = -1;
1573 return;
1574 }
1575
1576 /* We may be called to update uses in previously seen insns.
1577 Don't add uses beyond the last store we saw. */
1578 if (ruid < reg_state[regno].store_ruid)
1579 return;
1580
1581 /* If this register is already used in some unknown fashion, we
1582 can't do anything.
1583 If we decrement the index from zero to -1, we can't store more
1584 uses, so this register becomes used in an unknown fashion. */
1585 use_index = --reg_state[regno].use_index;
1586 if (use_index < 0)
1587 return;
1588
1589 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1590 {
1591 /* This is the first use of this register we have seen since we
1592 marked it as dead. */
1593 reg_state[regno].offset = offset;
1594 reg_state[regno].all_offsets_match = true;
1595 reg_state[regno].use_ruid = ruid;
1596 }
1597 else
1598 {
1599 if (reg_state[regno].use_ruid > ruid)
1600 reg_state[regno].use_ruid = ruid;
1601
1602 if (! rtx_equal_p (offset, reg_state[regno].offset))
1603 reg_state[regno].all_offsets_match = false;
1604 }
1605
1606 reg_state[regno].reg_use[use_index].insn = insn;
1607 reg_state[regno].reg_use[use_index].ruid = ruid;
1608 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1609 reg_state[regno].reg_use[use_index].usep = xp;
1610 return;
1611 }
1612
1613 case MEM:
1614 containing_mem = x;
1615 break;
1616
1617 default:
1618 break;
1619 }
1620
1621 /* Recursively process the components of X. */
1622 fmt = GET_RTX_FORMAT (code);
1623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1624 {
1625 if (fmt[i] == 'e')
1626 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1627 else if (fmt[i] == 'E')
1628 {
1629 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1630 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1631 containing_mem);
1632 }
1633 }
1634 }
1635 \f
1636 /* See if we can reduce the cost of a constant by replacing a move
1637 with an add. We track situations in which a register is set to a
1638 constant or to a register plus a constant. */
1639 /* We cannot do our optimization across labels. Invalidating all the
1640 information about register contents we have would be costly, so we
1641 use move2add_last_label_luid to note where the label is and then
1642 later disable any optimization that would cross it.
1643 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1644 are only valid if reg_set_luid[n] is greater than
1645 move2add_last_label_luid.
1646 For a set that established a new (potential) base register with
1647 non-constant value, we use move2add_luid from the place where the
1648 setting insn is encountered; registers based off that base then
1649 get the same reg_set_luid. Constants all get
1650 move2add_last_label_luid + 1 as their reg_set_luid. */
1651 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1652
1653 /* If reg_base_reg[n] is negative, register n has been set to
1654 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1655 If reg_base_reg[n] is non-negative, register n has been set to the
1656 sum of reg_offset[n] and the value of register reg_base_reg[n]
1657 before reg_set_luid[n], calculated in mode reg_mode[n] .
1658 For multi-hard-register registers, all but the first one are
1659 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1660 marks it as invalid. */
1661 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1662 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1663 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1664 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1665
1666 /* move2add_luid is linearly increased while scanning the instructions
1667 from first to last. It is used to set reg_set_luid in
1668 reload_cse_move2add and move2add_note_store. */
1669 static int move2add_luid;
1670
1671 /* move2add_last_label_luid is set whenever a label is found. Labels
1672 invalidate all previously collected reg_offset data. */
1673 static int move2add_last_label_luid;
1674
1675 /* ??? We don't know how zero / sign extension is handled, hence we
1676 can't go from a narrower to a wider mode. */
1677 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1678 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1679 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1680 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1681
1682 /* Record that REG is being set to a value with the mode of REG. */
1683
1684 static void
1685 move2add_record_mode (rtx reg)
1686 {
1687 int regno, nregs;
1688 machine_mode mode = GET_MODE (reg);
1689
1690 if (GET_CODE (reg) == SUBREG)
1691 {
1692 regno = subreg_regno (reg);
1693 nregs = subreg_nregs (reg);
1694 }
1695 else if (REG_P (reg))
1696 {
1697 regno = REGNO (reg);
1698 nregs = hard_regno_nregs[regno][mode];
1699 }
1700 else
1701 gcc_unreachable ();
1702 for (int i = nregs - 1; i > 0; i--)
1703 reg_mode[regno + i] = BLKmode;
1704 reg_mode[regno] = mode;
1705 }
1706
1707 /* Record that REG is being set to the sum of SYM and OFF. */
1708
1709 static void
1710 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1711 {
1712 int regno = REGNO (reg);
1713
1714 move2add_record_mode (reg);
1715 reg_set_luid[regno] = move2add_luid;
1716 reg_base_reg[regno] = -1;
1717 reg_symbol_ref[regno] = sym;
1718 reg_offset[regno] = INTVAL (off);
1719 }
1720
1721 /* Check if REGNO contains a valid value in MODE. */
1722
1723 static bool
1724 move2add_valid_value_p (int regno, machine_mode mode)
1725 {
1726 if (reg_set_luid[regno] <= move2add_last_label_luid)
1727 return false;
1728
1729 if (mode != reg_mode[regno])
1730 {
1731 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1732 return false;
1733 /* The value loaded into regno in reg_mode[regno] is also valid in
1734 mode after truncation only if (REG:mode regno) is the lowpart of
1735 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1736 regno of the lowpart might be different. */
1737 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1738 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1739 if (s_off != 0)
1740 /* We could in principle adjust regno, check reg_mode[regno] to be
1741 BLKmode, and return s_off to the caller (vs. -1 for failure),
1742 but we currently have no callers that could make use of this
1743 information. */
1744 return false;
1745 }
1746
1747 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1748 if (reg_mode[regno + i] != BLKmode)
1749 return false;
1750 return true;
1751 }
1752
1753 /* This function is called with INSN that sets REG to (SYM + OFF),
1754 while REG is known to already have value (SYM + offset).
1755 This function tries to change INSN into an add instruction
1756 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1757 It also updates the information about REG's known value.
1758 Return true if we made a change. */
1759
1760 static bool
1761 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1762 {
1763 rtx pat = PATTERN (insn);
1764 rtx src = SET_SRC (pat);
1765 int regno = REGNO (reg);
1766 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1767 GET_MODE (reg));
1768 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1769 bool changed = false;
1770
1771 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1772 use (set (reg) (reg)) instead.
1773 We don't delete this insn, nor do we convert it into a
1774 note, to avoid losing register notes or the return
1775 value flag. jump2 already knows how to get rid of
1776 no-op moves. */
1777 if (new_src == const0_rtx)
1778 {
1779 /* If the constants are different, this is a
1780 truncation, that, if turned into (set (reg)
1781 (reg)), would be discarded. Maybe we should
1782 try a truncMN pattern? */
1783 if (INTVAL (off) == reg_offset [regno])
1784 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1785 }
1786 else
1787 {
1788 struct full_rtx_costs oldcst, newcst;
1789 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1790
1791 get_full_set_rtx_cost (pat, &oldcst);
1792 SET_SRC (pat) = tem;
1793 get_full_set_rtx_cost (pat, &newcst);
1794 SET_SRC (pat) = src;
1795
1796 if (costs_lt_p (&newcst, &oldcst, speed)
1797 && have_add2_insn (reg, new_src))
1798 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1799 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1800 {
1801 machine_mode narrow_mode;
1802 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1803 narrow_mode != VOIDmode
1804 && narrow_mode != GET_MODE (reg);
1805 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1806 {
1807 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1808 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1809 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1810 {
1811 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1812 rtx narrow_src = gen_int_mode (INTVAL (off),
1813 narrow_mode);
1814 rtx new_set
1815 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1816 narrow_reg),
1817 narrow_src);
1818 get_full_set_rtx_cost (new_set, &newcst);
1819 if (costs_lt_p (&newcst, &oldcst, speed))
1820 {
1821 changed = validate_change (insn, &PATTERN (insn),
1822 new_set, 0);
1823 if (changed)
1824 break;
1825 }
1826 }
1827 }
1828 }
1829 }
1830 move2add_record_sym_value (reg, sym, off);
1831 return changed;
1832 }
1833
1834
1835 /* This function is called with INSN that sets REG to (SYM + OFF),
1836 but REG doesn't have known value (SYM + offset). This function
1837 tries to find another register which is known to already have
1838 value (SYM + offset) and change INSN into an add instruction
1839 (set (REG) (plus (the found register) (OFF - offset))) if such
1840 a register is found. It also updates the information about
1841 REG's known value.
1842 Return true iff we made a change. */
1843
1844 static bool
1845 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1846 {
1847 rtx pat = PATTERN (insn);
1848 rtx src = SET_SRC (pat);
1849 int regno = REGNO (reg);
1850 int min_regno = 0;
1851 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1852 int i;
1853 bool changed = false;
1854 struct full_rtx_costs oldcst, newcst, mincst;
1855 rtx plus_expr;
1856
1857 init_costs_to_max (&mincst);
1858 get_full_set_rtx_cost (pat, &oldcst);
1859
1860 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1861 SET_SRC (pat) = plus_expr;
1862
1863 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1864 if (move2add_valid_value_p (i, GET_MODE (reg))
1865 && reg_base_reg[i] < 0
1866 && reg_symbol_ref[i] != NULL_RTX
1867 && rtx_equal_p (sym, reg_symbol_ref[i]))
1868 {
1869 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1870 GET_MODE (reg));
1871 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1872 use (set (reg) (reg)) instead.
1873 We don't delete this insn, nor do we convert it into a
1874 note, to avoid losing register notes or the return
1875 value flag. jump2 already knows how to get rid of
1876 no-op moves. */
1877 if (new_src == const0_rtx)
1878 {
1879 init_costs_to_zero (&mincst);
1880 min_regno = i;
1881 break;
1882 }
1883 else
1884 {
1885 XEXP (plus_expr, 1) = new_src;
1886 get_full_set_rtx_cost (pat, &newcst);
1887
1888 if (costs_lt_p (&newcst, &mincst, speed))
1889 {
1890 mincst = newcst;
1891 min_regno = i;
1892 }
1893 }
1894 }
1895 SET_SRC (pat) = src;
1896
1897 if (costs_lt_p (&mincst, &oldcst, speed))
1898 {
1899 rtx tem;
1900
1901 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1902 if (i != min_regno)
1903 {
1904 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1905 GET_MODE (reg));
1906 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1907 }
1908 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1909 changed = true;
1910 }
1911 reg_set_luid[regno] = move2add_luid;
1912 move2add_record_sym_value (reg, sym, off);
1913 return changed;
1914 }
1915
1916 /* Convert move insns with constant inputs to additions if they are cheaper.
1917 Return true if any changes were made. */
1918 static bool
1919 reload_cse_move2add (rtx_insn *first)
1920 {
1921 int i;
1922 rtx_insn *insn;
1923 bool changed = false;
1924
1925 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1926 {
1927 reg_set_luid[i] = 0;
1928 reg_offset[i] = 0;
1929 reg_base_reg[i] = 0;
1930 reg_symbol_ref[i] = NULL_RTX;
1931 reg_mode[i] = VOIDmode;
1932 }
1933
1934 move2add_last_label_luid = 0;
1935 move2add_luid = 2;
1936 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1937 {
1938 rtx pat, note;
1939
1940 if (LABEL_P (insn))
1941 {
1942 move2add_last_label_luid = move2add_luid;
1943 /* We're going to increment move2add_luid twice after a
1944 label, so that we can use move2add_last_label_luid + 1 as
1945 the luid for constants. */
1946 move2add_luid++;
1947 continue;
1948 }
1949 if (! INSN_P (insn))
1950 continue;
1951 pat = PATTERN (insn);
1952 /* For simplicity, we only perform this optimization on
1953 straightforward SETs. */
1954 if (GET_CODE (pat) == SET
1955 && REG_P (SET_DEST (pat)))
1956 {
1957 rtx reg = SET_DEST (pat);
1958 int regno = REGNO (reg);
1959 rtx src = SET_SRC (pat);
1960
1961 /* Check if we have valid information on the contents of this
1962 register in the mode of REG. */
1963 if (move2add_valid_value_p (regno, GET_MODE (reg))
1964 && dbg_cnt (cse2_move2add))
1965 {
1966 /* Try to transform (set (REGX) (CONST_INT A))
1967 ...
1968 (set (REGX) (CONST_INT B))
1969 to
1970 (set (REGX) (CONST_INT A))
1971 ...
1972 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1973 or
1974 (set (REGX) (CONST_INT A))
1975 ...
1976 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1977 */
1978
1979 if (CONST_INT_P (src)
1980 && reg_base_reg[regno] < 0
1981 && reg_symbol_ref[regno] == NULL_RTX)
1982 {
1983 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1984 continue;
1985 }
1986
1987 /* Try to transform (set (REGX) (REGY))
1988 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1989 ...
1990 (set (REGX) (REGY))
1991 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1992 to
1993 (set (REGX) (REGY))
1994 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1995 ...
1996 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1997 else if (REG_P (src)
1998 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1999 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
2000 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
2001 {
2002 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2003 rtx set = NULL_RTX;
2004 if (next)
2005 set = single_set (next);
2006 if (set
2007 && SET_DEST (set) == reg
2008 && GET_CODE (SET_SRC (set)) == PLUS
2009 && XEXP (SET_SRC (set), 0) == reg
2010 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2011 {
2012 rtx src3 = XEXP (SET_SRC (set), 1);
2013 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2014 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2015 HOST_WIDE_INT regno_offset = reg_offset[regno];
2016 rtx new_src =
2017 gen_int_mode (added_offset
2018 + base_offset
2019 - regno_offset,
2020 GET_MODE (reg));
2021 bool success = false;
2022 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2023
2024 if (new_src == const0_rtx)
2025 /* See above why we create (set (reg) (reg)) here. */
2026 success
2027 = validate_change (next, &SET_SRC (set), reg, 0);
2028 else
2029 {
2030 rtx old_src = SET_SRC (set);
2031 struct full_rtx_costs oldcst, newcst;
2032 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2033
2034 get_full_set_rtx_cost (set, &oldcst);
2035 SET_SRC (set) = tem;
2036 get_full_set_src_cost (tem, &newcst);
2037 SET_SRC (set) = old_src;
2038 costs_add_n_insns (&oldcst, 1);
2039
2040 if (costs_lt_p (&newcst, &oldcst, speed)
2041 && have_add2_insn (reg, new_src))
2042 {
2043 rtx newpat = gen_rtx_SET (reg, tem);
2044 success
2045 = validate_change (next, &PATTERN (next),
2046 newpat, 0);
2047 }
2048 }
2049 if (success)
2050 delete_insn (insn);
2051 changed |= success;
2052 insn = next;
2053 move2add_record_mode (reg);
2054 reg_offset[regno]
2055 = trunc_int_for_mode (added_offset + base_offset,
2056 GET_MODE (reg));
2057 continue;
2058 }
2059 }
2060 }
2061
2062 /* Try to transform
2063 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2064 ...
2065 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2066 to
2067 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2068 ...
2069 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2070 if ((GET_CODE (src) == SYMBOL_REF
2071 || (GET_CODE (src) == CONST
2072 && GET_CODE (XEXP (src, 0)) == PLUS
2073 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2074 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2075 && dbg_cnt (cse2_move2add))
2076 {
2077 rtx sym, off;
2078
2079 if (GET_CODE (src) == SYMBOL_REF)
2080 {
2081 sym = src;
2082 off = const0_rtx;
2083 }
2084 else
2085 {
2086 sym = XEXP (XEXP (src, 0), 0);
2087 off = XEXP (XEXP (src, 0), 1);
2088 }
2089
2090 /* If the reg already contains the value which is sum of
2091 sym and some constant value, we can use an add2 insn. */
2092 if (move2add_valid_value_p (regno, GET_MODE (reg))
2093 && reg_base_reg[regno] < 0
2094 && reg_symbol_ref[regno] != NULL_RTX
2095 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2096 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2097
2098 /* Otherwise, we have to find a register whose value is sum
2099 of sym and some constant value. */
2100 else
2101 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2102
2103 continue;
2104 }
2105 }
2106
2107 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2108 {
2109 if (REG_NOTE_KIND (note) == REG_INC
2110 && REG_P (XEXP (note, 0)))
2111 {
2112 /* Reset the information about this register. */
2113 int regno = REGNO (XEXP (note, 0));
2114 if (regno < FIRST_PSEUDO_REGISTER)
2115 {
2116 move2add_record_mode (XEXP (note, 0));
2117 reg_mode[regno] = VOIDmode;
2118 }
2119 }
2120 }
2121 note_stores (PATTERN (insn), move2add_note_store, insn);
2122
2123 /* If INSN is a conditional branch, we try to extract an
2124 implicit set out of it. */
2125 if (any_condjump_p (insn))
2126 {
2127 rtx cnd = fis_get_condition (insn);
2128
2129 if (cnd != NULL_RTX
2130 && GET_CODE (cnd) == NE
2131 && REG_P (XEXP (cnd, 0))
2132 && !reg_set_p (XEXP (cnd, 0), insn)
2133 /* The following two checks, which are also in
2134 move2add_note_store, are intended to reduce the
2135 number of calls to gen_rtx_SET to avoid memory
2136 allocation if possible. */
2137 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2138 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2139 && CONST_INT_P (XEXP (cnd, 1)))
2140 {
2141 rtx implicit_set =
2142 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2143 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2144 }
2145 }
2146
2147 /* If this is a CALL_INSN, all call used registers are stored with
2148 unknown values. */
2149 if (CALL_P (insn))
2150 {
2151 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2152 {
2153 if (call_used_regs[i])
2154 /* Reset the information about this register. */
2155 reg_mode[i] = VOIDmode;
2156 }
2157 }
2158 }
2159 return changed;
2160 }
2161
2162 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2163 contains SET.
2164 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2165 Called from reload_cse_move2add via note_stores. */
2166
2167 static void
2168 move2add_note_store (rtx dst, const_rtx set, void *data)
2169 {
2170 rtx_insn *insn = (rtx_insn *) data;
2171 unsigned int regno = 0;
2172 machine_mode mode = GET_MODE (dst);
2173
2174 /* Some targets do argument pushes without adding REG_INC notes. */
2175
2176 if (MEM_P (dst))
2177 {
2178 dst = XEXP (dst, 0);
2179 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2180 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2181 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2182 return;
2183 }
2184
2185 if (GET_CODE (dst) == SUBREG)
2186 regno = subreg_regno (dst);
2187 else if (REG_P (dst))
2188 regno = REGNO (dst);
2189 else
2190 return;
2191
2192 if (SCALAR_INT_MODE_P (mode)
2193 && GET_CODE (set) == SET)
2194 {
2195 rtx note, sym = NULL_RTX;
2196 rtx off;
2197
2198 note = find_reg_equal_equiv_note (insn);
2199 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2200 {
2201 sym = XEXP (note, 0);
2202 off = const0_rtx;
2203 }
2204 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2205 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2206 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2207 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2208 {
2209 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2210 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2211 }
2212
2213 if (sym != NULL_RTX)
2214 {
2215 move2add_record_sym_value (dst, sym, off);
2216 return;
2217 }
2218 }
2219
2220 if (SCALAR_INT_MODE_P (mode)
2221 && GET_CODE (set) == SET
2222 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2223 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2224 {
2225 rtx src = SET_SRC (set);
2226 rtx base_reg;
2227 unsigned HOST_WIDE_INT offset;
2228 int base_regno;
2229
2230 switch (GET_CODE (src))
2231 {
2232 case PLUS:
2233 if (REG_P (XEXP (src, 0)))
2234 {
2235 base_reg = XEXP (src, 0);
2236
2237 if (CONST_INT_P (XEXP (src, 1)))
2238 offset = UINTVAL (XEXP (src, 1));
2239 else if (REG_P (XEXP (src, 1))
2240 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2241 {
2242 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2243 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2244 offset = reg_offset[REGNO (XEXP (src, 1))];
2245 /* Maybe the first register is known to be a
2246 constant. */
2247 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2248 && reg_base_reg[REGNO (base_reg)] < 0
2249 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2250 {
2251 offset = reg_offset[REGNO (base_reg)];
2252 base_reg = XEXP (src, 1);
2253 }
2254 else
2255 goto invalidate;
2256 }
2257 else
2258 goto invalidate;
2259
2260 break;
2261 }
2262
2263 goto invalidate;
2264
2265 case REG:
2266 base_reg = src;
2267 offset = 0;
2268 break;
2269
2270 case CONST_INT:
2271 /* Start tracking the register as a constant. */
2272 reg_base_reg[regno] = -1;
2273 reg_symbol_ref[regno] = NULL_RTX;
2274 reg_offset[regno] = INTVAL (SET_SRC (set));
2275 /* We assign the same luid to all registers set to constants. */
2276 reg_set_luid[regno] = move2add_last_label_luid + 1;
2277 move2add_record_mode (dst);
2278 return;
2279
2280 default:
2281 goto invalidate;
2282 }
2283
2284 base_regno = REGNO (base_reg);
2285 /* If information about the base register is not valid, set it
2286 up as a new base register, pretending its value is known
2287 starting from the current insn. */
2288 if (!move2add_valid_value_p (base_regno, mode))
2289 {
2290 reg_base_reg[base_regno] = base_regno;
2291 reg_symbol_ref[base_regno] = NULL_RTX;
2292 reg_offset[base_regno] = 0;
2293 reg_set_luid[base_regno] = move2add_luid;
2294 gcc_assert (GET_MODE (base_reg) == mode);
2295 move2add_record_mode (base_reg);
2296 }
2297
2298 /* Copy base information from our base register. */
2299 reg_set_luid[regno] = reg_set_luid[base_regno];
2300 reg_base_reg[regno] = reg_base_reg[base_regno];
2301 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2302
2303 /* Compute the sum of the offsets or constants. */
2304 reg_offset[regno]
2305 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2306
2307 move2add_record_mode (dst);
2308 }
2309 else
2310 {
2311 invalidate:
2312 /* Invalidate the contents of the register. */
2313 move2add_record_mode (dst);
2314 reg_mode[regno] = VOIDmode;
2315 }
2316 }
2317 \f
2318 namespace {
2319
2320 const pass_data pass_data_postreload_cse =
2321 {
2322 RTL_PASS, /* type */
2323 "postreload", /* name */
2324 OPTGROUP_NONE, /* optinfo_flags */
2325 TV_RELOAD_CSE_REGS, /* tv_id */
2326 0, /* properties_required */
2327 0, /* properties_provided */
2328 0, /* properties_destroyed */
2329 0, /* todo_flags_start */
2330 TODO_df_finish, /* todo_flags_finish */
2331 };
2332
2333 class pass_postreload_cse : public rtl_opt_pass
2334 {
2335 public:
2336 pass_postreload_cse (gcc::context *ctxt)
2337 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2338 {}
2339
2340 /* opt_pass methods: */
2341 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2342
2343 virtual unsigned int execute (function *);
2344
2345 }; // class pass_postreload_cse
2346
2347 unsigned int
2348 pass_postreload_cse::execute (function *fun)
2349 {
2350 if (!dbg_cnt (postreload_cse))
2351 return 0;
2352
2353 /* Do a very simple CSE pass over just the hard registers. */
2354 reload_cse_regs (get_insns ());
2355 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2356 Remove any EH edges associated with them. */
2357 if (fun->can_throw_non_call_exceptions
2358 && purge_all_dead_edges ())
2359 cleanup_cfg (0);
2360
2361 return 0;
2362 }
2363
2364 } // anon namespace
2365
2366 rtl_opt_pass *
2367 make_pass_postreload_cse (gcc::context *ctxt)
2368 {
2369 return new pass_postreload_cse (ctxt);
2370 }