]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
2015-10-15 Prathamesh Kulkarni <prathamesh.kulkarni@linaro.org>
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "input.h"
36 #include "function.h"
37 #include "symtab.h"
38 #include "statistics.h"
39 #include "double-int.h"
40 #include "real.h"
41 #include "fixed-value.h"
42 #include "alias.h"
43 #include "wide-int.h"
44 #include "inchash.h"
45 #include "tree.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "varasm.h"
52 #include "stmt.h"
53 #include "expr.h"
54 #include "insn-codes.h"
55 #include "optabs.h"
56 #include "regs.h"
57 #include "predict.h"
58 #include "dominance.h"
59 #include "cfg.h"
60 #include "cfgrtl.h"
61 #include "cfgbuild.h"
62 #include "cfgcleanup.h"
63 #include "basic-block.h"
64 #include "reload.h"
65 #include "recog.h"
66 #include "cselib.h"
67 #include "diagnostic-core.h"
68 #include "except.h"
69 #include "target.h"
70 #include "tree-pass.h"
71 #include "df.h"
72 #include "dbgcnt.h"
73
74 static int reload_cse_noop_set_p (rtx);
75 static bool reload_cse_simplify (rtx_insn *, rtx);
76 static void reload_cse_regs_1 (void);
77 static int reload_cse_simplify_set (rtx, rtx_insn *);
78 static int reload_cse_simplify_operands (rtx_insn *, rtx);
79
80 static void reload_combine (void);
81 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
82 static void reload_combine_note_store (rtx, const_rtx, void *);
83
84 static bool reload_cse_move2add (rtx_insn *);
85 static void move2add_note_store (rtx, const_rtx, void *);
86
87 /* Call cse / combine like post-reload optimization phases.
88 FIRST is the first instruction. */
89
90 static void
91 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
92 {
93 bool moves_converted;
94 reload_cse_regs_1 ();
95 reload_combine ();
96 moves_converted = reload_cse_move2add (first);
97 if (flag_expensive_optimizations)
98 {
99 if (moves_converted)
100 reload_combine ();
101 reload_cse_regs_1 ();
102 }
103 }
104
105 /* See whether a single set SET is a noop. */
106 static int
107 reload_cse_noop_set_p (rtx set)
108 {
109 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
110 return 0;
111
112 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
113 }
114
115 /* Try to simplify INSN. Return true if the CFG may have changed. */
116 static bool
117 reload_cse_simplify (rtx_insn *insn, rtx testreg)
118 {
119 rtx body = PATTERN (insn);
120 basic_block insn_bb = BLOCK_FOR_INSN (insn);
121 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
122
123 if (GET_CODE (body) == SET)
124 {
125 int count = 0;
126
127 /* Simplify even if we may think it is a no-op.
128 We may think a memory load of a value smaller than WORD_SIZE
129 is redundant because we haven't taken into account possible
130 implicit extension. reload_cse_simplify_set() will bring
131 this out, so it's safer to simplify before we delete. */
132 count += reload_cse_simplify_set (body, insn);
133
134 if (!count && reload_cse_noop_set_p (body))
135 {
136 rtx value = SET_DEST (body);
137 if (REG_P (value)
138 && ! REG_FUNCTION_VALUE_P (value))
139 value = 0;
140 if (check_for_inc_dec (insn))
141 delete_insn_and_edges (insn);
142 /* We're done with this insn. */
143 goto done;
144 }
145
146 if (count > 0)
147 apply_change_group ();
148 else
149 reload_cse_simplify_operands (insn, testreg);
150 }
151 else if (GET_CODE (body) == PARALLEL)
152 {
153 int i;
154 int count = 0;
155 rtx value = NULL_RTX;
156
157 /* Registers mentioned in the clobber list for an asm cannot be reused
158 within the body of the asm. Invalidate those registers now so that
159 we don't try to substitute values for them. */
160 if (asm_noperands (body) >= 0)
161 {
162 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
163 {
164 rtx part = XVECEXP (body, 0, i);
165 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
166 cselib_invalidate_rtx (XEXP (part, 0));
167 }
168 }
169
170 /* If every action in a PARALLEL is a noop, we can delete
171 the entire PARALLEL. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 {
174 rtx part = XVECEXP (body, 0, i);
175 if (GET_CODE (part) == SET)
176 {
177 if (! reload_cse_noop_set_p (part))
178 break;
179 if (REG_P (SET_DEST (part))
180 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
181 {
182 if (value)
183 break;
184 value = SET_DEST (part);
185 }
186 }
187 else if (GET_CODE (part) != CLOBBER)
188 break;
189 }
190
191 if (i < 0)
192 {
193 if (check_for_inc_dec (insn))
194 delete_insn_and_edges (insn);
195 /* We're done with this insn. */
196 goto done;
197 }
198
199 /* It's not a no-op, but we can try to simplify it. */
200 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
201 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
202 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
203
204 if (count > 0)
205 apply_change_group ();
206 else
207 reload_cse_simplify_operands (insn, testreg);
208 }
209
210 done:
211 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
212 }
213
214 /* Do a very simple CSE pass over the hard registers.
215
216 This function detects no-op moves where we happened to assign two
217 different pseudo-registers to the same hard register, and then
218 copied one to the other. Reload will generate a useless
219 instruction copying a register to itself.
220
221 This function also detects cases where we load a value from memory
222 into two different registers, and (if memory is more expensive than
223 registers) changes it to simply copy the first register into the
224 second register.
225
226 Another optimization is performed that scans the operands of each
227 instruction to see whether the value is already available in a
228 hard register. It then replaces the operand with the hard register
229 if possible, much like an optional reload would. */
230
231 static void
232 reload_cse_regs_1 (void)
233 {
234 bool cfg_changed = false;
235 basic_block bb;
236 rtx_insn *insn;
237 rtx testreg = gen_rtx_REG (VOIDmode, -1);
238
239 cselib_init (CSELIB_RECORD_MEMORY);
240 init_alias_analysis ();
241
242 FOR_EACH_BB_FN (bb, cfun)
243 FOR_BB_INSNS (bb, insn)
244 {
245 if (INSN_P (insn))
246 cfg_changed |= reload_cse_simplify (insn, testreg);
247
248 cselib_process_insn (insn);
249 }
250
251 /* Clean up. */
252 end_alias_analysis ();
253 cselib_finish ();
254 if (cfg_changed)
255 cleanup_cfg (0);
256 }
257
258 /* Try to simplify a single SET instruction. SET is the set pattern.
259 INSN is the instruction it came from.
260 This function only handles one case: if we set a register to a value
261 which is not a register, we try to find that value in some other register
262 and change the set into a register copy. */
263
264 static int
265 reload_cse_simplify_set (rtx set, rtx_insn *insn)
266 {
267 int did_change = 0;
268 int dreg;
269 rtx src;
270 reg_class_t dclass;
271 int old_cost;
272 cselib_val *val;
273 struct elt_loc_list *l;
274 #ifdef LOAD_EXTEND_OP
275 enum rtx_code extend_op = UNKNOWN;
276 #endif
277 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
278
279 dreg = true_regnum (SET_DEST (set));
280 if (dreg < 0)
281 return 0;
282
283 src = SET_SRC (set);
284 if (side_effects_p (src) || true_regnum (src) >= 0)
285 return 0;
286
287 dclass = REGNO_REG_CLASS (dreg);
288
289 #ifdef LOAD_EXTEND_OP
290 /* When replacing a memory with a register, we need to honor assumptions
291 that combine made wrt the contents of sign bits. We'll do this by
292 generating an extend instruction instead of a reg->reg copy. Thus
293 the destination must be a register that we can widen. */
294 if (MEM_P (src)
295 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
296 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
297 && !REG_P (SET_DEST (set)))
298 return 0;
299 #endif
300
301 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
302 if (! val)
303 return 0;
304
305 /* If memory loads are cheaper than register copies, don't change them. */
306 if (MEM_P (src))
307 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
308 else if (REG_P (src))
309 old_cost = register_move_cost (GET_MODE (src),
310 REGNO_REG_CLASS (REGNO (src)), dclass);
311 else
312 old_cost = set_src_cost (src, speed);
313
314 for (l = val->locs; l; l = l->next)
315 {
316 rtx this_rtx = l->loc;
317 int this_cost;
318
319 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
320 {
321 #ifdef LOAD_EXTEND_OP
322 if (extend_op != UNKNOWN)
323 {
324 wide_int result;
325
326 if (!CONST_SCALAR_INT_P (this_rtx))
327 continue;
328
329 switch (extend_op)
330 {
331 case ZERO_EXTEND:
332 result = wide_int::from (std::make_pair (this_rtx,
333 GET_MODE (src)),
334 BITS_PER_WORD, UNSIGNED);
335 break;
336 case SIGN_EXTEND:
337 result = wide_int::from (std::make_pair (this_rtx,
338 GET_MODE (src)),
339 BITS_PER_WORD, SIGNED);
340 break;
341 default:
342 gcc_unreachable ();
343 }
344 this_rtx = immed_wide_int_const (result, word_mode);
345 }
346 #endif
347 this_cost = set_src_cost (this_rtx, speed);
348 }
349 else if (REG_P (this_rtx))
350 {
351 #ifdef LOAD_EXTEND_OP
352 if (extend_op != UNKNOWN)
353 {
354 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
355 this_cost = set_src_cost (this_rtx, speed);
356 }
357 else
358 #endif
359 this_cost = register_move_cost (GET_MODE (this_rtx),
360 REGNO_REG_CLASS (REGNO (this_rtx)),
361 dclass);
362 }
363 else
364 continue;
365
366 /* If equal costs, prefer registers over anything else. That
367 tends to lead to smaller instructions on some machines. */
368 if (this_cost < old_cost
369 || (this_cost == old_cost
370 && REG_P (this_rtx)
371 && !REG_P (SET_SRC (set))))
372 {
373 #ifdef LOAD_EXTEND_OP
374 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
375 && extend_op != UNKNOWN
376 #ifdef CANNOT_CHANGE_MODE_CLASS
377 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
378 word_mode,
379 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
380 #endif
381 )
382 {
383 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
384 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
385 validate_change (insn, &SET_DEST (set), wide_dest, 1);
386 }
387 #endif
388
389 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
390 old_cost = this_cost, did_change = 1;
391 }
392 }
393
394 return did_change;
395 }
396
397 /* Try to replace operands in INSN with equivalent values that are already
398 in registers. This can be viewed as optional reloading.
399
400 For each non-register operand in the insn, see if any hard regs are
401 known to be equivalent to that operand. Record the alternatives which
402 can accept these hard registers. Among all alternatives, select the
403 ones which are better or equal to the one currently matching, where
404 "better" is in terms of '?' and '!' constraints. Among the remaining
405 alternatives, select the one which replaces most operands with
406 hard registers. */
407
408 static int
409 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
410 {
411 int i, j;
412
413 /* For each operand, all registers that are equivalent to it. */
414 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
415
416 const char *constraints[MAX_RECOG_OPERANDS];
417
418 /* Vector recording how bad an alternative is. */
419 int *alternative_reject;
420 /* Vector recording how many registers can be introduced by choosing
421 this alternative. */
422 int *alternative_nregs;
423 /* Array of vectors recording, for each operand and each alternative,
424 which hard register to substitute, or -1 if the operand should be
425 left as it is. */
426 int *op_alt_regno[MAX_RECOG_OPERANDS];
427 /* Array of alternatives, sorted in order of decreasing desirability. */
428 int *alternative_order;
429
430 extract_constrain_insn (insn);
431
432 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
433 return 0;
434
435 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
436 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
437 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
438 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
439 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
440
441 /* For each operand, find out which regs are equivalent. */
442 for (i = 0; i < recog_data.n_operands; i++)
443 {
444 cselib_val *v;
445 struct elt_loc_list *l;
446 rtx op;
447
448 CLEAR_HARD_REG_SET (equiv_regs[i]);
449
450 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
451 right, so avoid the problem here. Likewise if we have a constant
452 and the insn pattern doesn't tell us the mode we need. */
453 if (LABEL_P (recog_data.operand[i])
454 || (CONSTANT_P (recog_data.operand[i])
455 && recog_data.operand_mode[i] == VOIDmode))
456 continue;
457
458 op = recog_data.operand[i];
459 #ifdef LOAD_EXTEND_OP
460 if (MEM_P (op)
461 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
462 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
463 {
464 rtx set = single_set (insn);
465
466 /* We might have multiple sets, some of which do implicit
467 extension. Punt on this for now. */
468 if (! set)
469 continue;
470 /* If the destination is also a MEM or a STRICT_LOW_PART, no
471 extension applies.
472 Also, if there is an explicit extension, we don't have to
473 worry about an implicit one. */
474 else if (MEM_P (SET_DEST (set))
475 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
476 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
477 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
478 ; /* Continue ordinary processing. */
479 #ifdef CANNOT_CHANGE_MODE_CLASS
480 /* If the register cannot change mode to word_mode, it follows that
481 it cannot have been used in word_mode. */
482 else if (REG_P (SET_DEST (set))
483 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
484 word_mode,
485 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
486 ; /* Continue ordinary processing. */
487 #endif
488 /* If this is a straight load, make the extension explicit. */
489 else if (REG_P (SET_DEST (set))
490 && recog_data.n_operands == 2
491 && SET_SRC (set) == op
492 && SET_DEST (set) == recog_data.operand[1-i])
493 {
494 validate_change (insn, recog_data.operand_loc[i],
495 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
496 word_mode, op),
497 1);
498 validate_change (insn, recog_data.operand_loc[1-i],
499 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
500 1);
501 if (! apply_change_group ())
502 return 0;
503 return reload_cse_simplify_operands (insn, testreg);
504 }
505 else
506 /* ??? There might be arithmetic operations with memory that are
507 safe to optimize, but is it worth the trouble? */
508 continue;
509 }
510 #endif /* LOAD_EXTEND_OP */
511 if (side_effects_p (op))
512 continue;
513 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
514 if (! v)
515 continue;
516
517 for (l = v->locs; l; l = l->next)
518 if (REG_P (l->loc))
519 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
520 }
521
522 alternative_mask preferred = get_preferred_alternatives (insn);
523 for (i = 0; i < recog_data.n_operands; i++)
524 {
525 machine_mode mode;
526 int regno;
527 const char *p;
528
529 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
530 for (j = 0; j < recog_data.n_alternatives; j++)
531 op_alt_regno[i][j] = -1;
532
533 p = constraints[i] = recog_data.constraints[i];
534 mode = recog_data.operand_mode[i];
535
536 /* Add the reject values for each alternative given by the constraints
537 for this operand. */
538 j = 0;
539 while (*p != '\0')
540 {
541 char c = *p++;
542 if (c == ',')
543 j++;
544 else if (c == '?')
545 alternative_reject[j] += 3;
546 else if (c == '!')
547 alternative_reject[j] += 300;
548 }
549
550 /* We won't change operands which are already registers. We
551 also don't want to modify output operands. */
552 regno = true_regnum (recog_data.operand[i]);
553 if (regno >= 0
554 || constraints[i][0] == '='
555 || constraints[i][0] == '+')
556 continue;
557
558 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
559 {
560 enum reg_class rclass = NO_REGS;
561
562 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
563 continue;
564
565 SET_REGNO_RAW (testreg, regno);
566 PUT_MODE (testreg, mode);
567
568 /* We found a register equal to this operand. Now look for all
569 alternatives that can accept this register and have not been
570 assigned a register they can use yet. */
571 j = 0;
572 p = constraints[i];
573 for (;;)
574 {
575 char c = *p;
576
577 switch (c)
578 {
579 case 'g':
580 rclass = reg_class_subunion[rclass][GENERAL_REGS];
581 break;
582
583 default:
584 rclass
585 = (reg_class_subunion
586 [rclass]
587 [reg_class_for_constraint (lookup_constraint (p))]);
588 break;
589
590 case ',': case '\0':
591 /* See if REGNO fits this alternative, and set it up as the
592 replacement register if we don't have one for this
593 alternative yet and the operand being replaced is not
594 a cheap CONST_INT. */
595 if (op_alt_regno[i][j] == -1
596 && TEST_BIT (preferred, j)
597 && reg_fits_class_p (testreg, rclass, 0, mode)
598 && (!CONST_INT_P (recog_data.operand[i])
599 || (set_src_cost (recog_data.operand[i],
600 optimize_bb_for_speed_p
601 (BLOCK_FOR_INSN (insn)))
602 > set_src_cost (testreg,
603 optimize_bb_for_speed_p
604 (BLOCK_FOR_INSN (insn))))))
605 {
606 alternative_nregs[j]++;
607 op_alt_regno[i][j] = regno;
608 }
609 j++;
610 rclass = NO_REGS;
611 break;
612 }
613 p += CONSTRAINT_LEN (c, p);
614
615 if (c == '\0')
616 break;
617 }
618 }
619 }
620
621 /* Record all alternatives which are better or equal to the currently
622 matching one in the alternative_order array. */
623 for (i = j = 0; i < recog_data.n_alternatives; i++)
624 if (alternative_reject[i] <= alternative_reject[which_alternative])
625 alternative_order[j++] = i;
626 recog_data.n_alternatives = j;
627
628 /* Sort it. Given a small number of alternatives, a dumb algorithm
629 won't hurt too much. */
630 for (i = 0; i < recog_data.n_alternatives - 1; i++)
631 {
632 int best = i;
633 int best_reject = alternative_reject[alternative_order[i]];
634 int best_nregs = alternative_nregs[alternative_order[i]];
635 int tmp;
636
637 for (j = i + 1; j < recog_data.n_alternatives; j++)
638 {
639 int this_reject = alternative_reject[alternative_order[j]];
640 int this_nregs = alternative_nregs[alternative_order[j]];
641
642 if (this_reject < best_reject
643 || (this_reject == best_reject && this_nregs > best_nregs))
644 {
645 best = j;
646 best_reject = this_reject;
647 best_nregs = this_nregs;
648 }
649 }
650
651 tmp = alternative_order[best];
652 alternative_order[best] = alternative_order[i];
653 alternative_order[i] = tmp;
654 }
655
656 /* Substitute the operands as determined by op_alt_regno for the best
657 alternative. */
658 j = alternative_order[0];
659
660 for (i = 0; i < recog_data.n_operands; i++)
661 {
662 machine_mode mode = recog_data.operand_mode[i];
663 if (op_alt_regno[i][j] == -1)
664 continue;
665
666 validate_change (insn, recog_data.operand_loc[i],
667 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
668 }
669
670 for (i = recog_data.n_dups - 1; i >= 0; i--)
671 {
672 int op = recog_data.dup_num[i];
673 machine_mode mode = recog_data.operand_mode[op];
674
675 if (op_alt_regno[op][j] == -1)
676 continue;
677
678 validate_change (insn, recog_data.dup_loc[i],
679 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
680 }
681
682 return apply_change_group ();
683 }
684 \f
685 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
686 addressing now.
687 This code might also be useful when reload gave up on reg+reg addressing
688 because of clashes between the return register and INDEX_REG_CLASS. */
689
690 /* The maximum number of uses of a register we can keep track of to
691 replace them with reg+reg addressing. */
692 #define RELOAD_COMBINE_MAX_USES 16
693
694 /* Describes a recorded use of a register. */
695 struct reg_use
696 {
697 /* The insn where a register has been used. */
698 rtx_insn *insn;
699 /* Points to the memory reference enclosing the use, if any, NULL_RTX
700 otherwise. */
701 rtx containing_mem;
702 /* Location of the register within INSN. */
703 rtx *usep;
704 /* The reverse uid of the insn. */
705 int ruid;
706 };
707
708 /* If the register is used in some unknown fashion, USE_INDEX is negative.
709 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
710 indicates where it is first set or clobbered.
711 Otherwise, USE_INDEX is the index of the last encountered use of the
712 register (which is first among these we have seen since we scan backwards).
713 USE_RUID indicates the first encountered, i.e. last, of these uses.
714 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
715 with a constant offset; OFFSET contains this constant in that case.
716 STORE_RUID is always meaningful if we only want to use a value in a
717 register in a different place: it denotes the next insn in the insn
718 stream (i.e. the last encountered) that sets or clobbers the register.
719 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
720 static struct
721 {
722 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
723 rtx offset;
724 int use_index;
725 int store_ruid;
726 int real_store_ruid;
727 int use_ruid;
728 bool all_offsets_match;
729 } reg_state[FIRST_PSEUDO_REGISTER];
730
731 /* Reverse linear uid. This is increased in reload_combine while scanning
732 the instructions from last to first. It is used to set last_label_ruid
733 and the store_ruid / use_ruid fields in reg_state. */
734 static int reload_combine_ruid;
735
736 /* The RUID of the last label we encountered in reload_combine. */
737 static int last_label_ruid;
738
739 /* The RUID of the last jump we encountered in reload_combine. */
740 static int last_jump_ruid;
741
742 /* The register numbers of the first and last index register. A value of
743 -1 in LAST_INDEX_REG indicates that we've previously computed these
744 values and found no suitable index registers. */
745 static int first_index_reg = -1;
746 static int last_index_reg;
747
748 #define LABEL_LIVE(LABEL) \
749 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
750
751 /* Subroutine of reload_combine_split_ruids, called to fix up a single
752 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
753
754 static inline void
755 reload_combine_split_one_ruid (int *pruid, int split_ruid)
756 {
757 if (*pruid > split_ruid)
758 (*pruid)++;
759 }
760
761 /* Called when we insert a new insn in a position we've already passed in
762 the scan. Examine all our state, increasing all ruids that are higher
763 than SPLIT_RUID by one in order to make room for a new insn. */
764
765 static void
766 reload_combine_split_ruids (int split_ruid)
767 {
768 unsigned i;
769
770 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
771 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
772 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
773
774 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
775 {
776 int j, idx = reg_state[i].use_index;
777 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
778 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
779 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
780 split_ruid);
781 if (idx < 0)
782 continue;
783 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
784 {
785 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
786 split_ruid);
787 }
788 }
789 }
790
791 /* Called when we are about to rescan a previously encountered insn with
792 reload_combine_note_use after modifying some part of it. This clears all
793 information about uses in that particular insn. */
794
795 static void
796 reload_combine_purge_insn_uses (rtx_insn *insn)
797 {
798 unsigned i;
799
800 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
801 {
802 int j, k, idx = reg_state[i].use_index;
803 if (idx < 0)
804 continue;
805 j = k = RELOAD_COMBINE_MAX_USES;
806 while (j-- > idx)
807 {
808 if (reg_state[i].reg_use[j].insn != insn)
809 {
810 k--;
811 if (k != j)
812 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
813 }
814 }
815 reg_state[i].use_index = k;
816 }
817 }
818
819 /* Called when we need to forget about all uses of REGNO after an insn
820 which is identified by RUID. */
821
822 static void
823 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
824 {
825 int j, k, idx = reg_state[regno].use_index;
826 if (idx < 0)
827 return;
828 j = k = RELOAD_COMBINE_MAX_USES;
829 while (j-- > idx)
830 {
831 if (reg_state[regno].reg_use[j].ruid >= ruid)
832 {
833 k--;
834 if (k != j)
835 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
836 }
837 }
838 reg_state[regno].use_index = k;
839 }
840
841 /* Find the use of REGNO with the ruid that is highest among those
842 lower than RUID_LIMIT, and return it if it is the only use of this
843 reg in the insn. Return NULL otherwise. */
844
845 static struct reg_use *
846 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
847 {
848 int i, best_ruid = 0;
849 int use_idx = reg_state[regno].use_index;
850 struct reg_use *retval;
851
852 if (use_idx < 0)
853 return NULL;
854 retval = NULL;
855 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
856 {
857 struct reg_use *use = reg_state[regno].reg_use + i;
858 int this_ruid = use->ruid;
859 if (this_ruid >= ruid_limit)
860 continue;
861 if (this_ruid > best_ruid)
862 {
863 best_ruid = this_ruid;
864 retval = use;
865 }
866 else if (this_ruid == best_ruid)
867 retval = NULL;
868 }
869 if (last_label_ruid >= best_ruid)
870 return NULL;
871 return retval;
872 }
873
874 /* After we've moved an add insn, fix up any debug insns that occur
875 between the old location of the add and the new location. REG is
876 the destination register of the add insn; REPLACEMENT is the
877 SET_SRC of the add. FROM and TO specify the range in which we
878 should make this change on debug insns. */
879
880 static void
881 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
882 {
883 rtx_insn *insn;
884 for (insn = from; insn != to; insn = NEXT_INSN (insn))
885 {
886 rtx t;
887
888 if (!DEBUG_INSN_P (insn))
889 continue;
890
891 t = INSN_VAR_LOCATION_LOC (insn);
892 t = simplify_replace_rtx (t, reg, replacement);
893 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
894 }
895 }
896
897 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
898 with SRC in the insn described by USE, taking costs into account. Return
899 true if we made the replacement. */
900
901 static bool
902 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
903 {
904 rtx_insn *use_insn = use->insn;
905 rtx mem = use->containing_mem;
906 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
907
908 if (mem != NULL_RTX)
909 {
910 addr_space_t as = MEM_ADDR_SPACE (mem);
911 rtx oldaddr = XEXP (mem, 0);
912 rtx newaddr = NULL_RTX;
913 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
914 int new_cost;
915
916 newaddr = simplify_replace_rtx (oldaddr, reg, src);
917 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
918 {
919 XEXP (mem, 0) = newaddr;
920 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
921 XEXP (mem, 0) = oldaddr;
922 if (new_cost <= old_cost
923 && validate_change (use_insn,
924 &XEXP (mem, 0), newaddr, 0))
925 return true;
926 }
927 }
928 else
929 {
930 rtx new_set = single_set (use_insn);
931 if (new_set
932 && REG_P (SET_DEST (new_set))
933 && GET_CODE (SET_SRC (new_set)) == PLUS
934 && REG_P (XEXP (SET_SRC (new_set), 0))
935 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
936 {
937 rtx new_src;
938 int old_cost = set_src_cost (SET_SRC (new_set), speed);
939
940 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
941 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
942
943 if (set_src_cost (new_src, speed) <= old_cost
944 && validate_change (use_insn, &SET_SRC (new_set),
945 new_src, 0))
946 return true;
947 }
948 }
949 return false;
950 }
951
952 /* Called by reload_combine when scanning INSN. This function tries to detect
953 patterns where a constant is added to a register, and the result is used
954 in an address.
955 Return true if no further processing is needed on INSN; false if it wasn't
956 recognized and should be handled normally. */
957
958 static bool
959 reload_combine_recognize_const_pattern (rtx_insn *insn)
960 {
961 int from_ruid = reload_combine_ruid;
962 rtx set, pat, reg, src, addreg;
963 unsigned int regno;
964 struct reg_use *use;
965 bool must_move_add;
966 rtx_insn *add_moved_after_insn = NULL;
967 int add_moved_after_ruid = 0;
968 int clobbered_regno = -1;
969
970 set = single_set (insn);
971 if (set == NULL_RTX)
972 return false;
973
974 reg = SET_DEST (set);
975 src = SET_SRC (set);
976 if (!REG_P (reg)
977 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
978 || GET_MODE (reg) != Pmode
979 || reg == stack_pointer_rtx)
980 return false;
981
982 regno = REGNO (reg);
983
984 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
985 uses of REG1 inside an address, or inside another add insn. If
986 possible and profitable, merge the addition into subsequent
987 uses. */
988 if (GET_CODE (src) != PLUS
989 || !REG_P (XEXP (src, 0))
990 || !CONSTANT_P (XEXP (src, 1)))
991 return false;
992
993 addreg = XEXP (src, 0);
994 must_move_add = rtx_equal_p (reg, addreg);
995
996 pat = PATTERN (insn);
997 if (must_move_add && set != pat)
998 {
999 /* We have to be careful when moving the add; apart from the
1000 single_set there may also be clobbers. Recognize one special
1001 case, that of one clobber alongside the set (likely a clobber
1002 of the CC register). */
1003 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
1004 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
1005 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
1006 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
1007 return false;
1008 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1009 }
1010
1011 do
1012 {
1013 use = reload_combine_closest_single_use (regno, from_ruid);
1014
1015 if (use)
1016 /* Start the search for the next use from here. */
1017 from_ruid = use->ruid;
1018
1019 if (use && GET_MODE (*use->usep) == Pmode)
1020 {
1021 bool delete_add = false;
1022 rtx_insn *use_insn = use->insn;
1023 int use_ruid = use->ruid;
1024
1025 /* Avoid moving the add insn past a jump. */
1026 if (must_move_add && use_ruid <= last_jump_ruid)
1027 break;
1028
1029 /* If the add clobbers another hard reg in parallel, don't move
1030 it past a real set of this hard reg. */
1031 if (must_move_add && clobbered_regno >= 0
1032 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1033 break;
1034
1035 #ifdef HAVE_cc0
1036 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1037 if (must_move_add && sets_cc0_p (PATTERN (use_insn)))
1038 break;
1039 #endif
1040
1041 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1042 /* Avoid moving a use of ADDREG past a point where it is stored. */
1043 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1044 break;
1045
1046 /* We also must not move the addition past an insn that sets
1047 the same register, unless we can combine two add insns. */
1048 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1049 {
1050 if (use->containing_mem == NULL_RTX)
1051 delete_add = true;
1052 else
1053 break;
1054 }
1055
1056 if (try_replace_in_use (use, reg, src))
1057 {
1058 reload_combine_purge_insn_uses (use_insn);
1059 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1060 use_ruid, NULL_RTX);
1061
1062 if (delete_add)
1063 {
1064 fixup_debug_insns (reg, src, insn, use_insn);
1065 delete_insn (insn);
1066 return true;
1067 }
1068 if (must_move_add)
1069 {
1070 add_moved_after_insn = use_insn;
1071 add_moved_after_ruid = use_ruid;
1072 }
1073 continue;
1074 }
1075 }
1076 /* If we get here, we couldn't handle this use. */
1077 if (must_move_add)
1078 break;
1079 }
1080 while (use);
1081
1082 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1083 /* Process the add normally. */
1084 return false;
1085
1086 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1087
1088 reorder_insns (insn, insn, add_moved_after_insn);
1089 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1090 reload_combine_split_ruids (add_moved_after_ruid - 1);
1091 reload_combine_note_use (&PATTERN (insn), insn,
1092 add_moved_after_ruid, NULL_RTX);
1093 reg_state[regno].store_ruid = add_moved_after_ruid;
1094
1095 return true;
1096 }
1097
1098 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1099 can handle and improve. Return true if no further processing is needed on
1100 INSN; false if it wasn't recognized and should be handled normally. */
1101
1102 static bool
1103 reload_combine_recognize_pattern (rtx_insn *insn)
1104 {
1105 rtx set, reg, src;
1106 unsigned int regno;
1107
1108 set = single_set (insn);
1109 if (set == NULL_RTX)
1110 return false;
1111
1112 reg = SET_DEST (set);
1113 src = SET_SRC (set);
1114 if (!REG_P (reg)
1115 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1116 return false;
1117
1118 regno = REGNO (reg);
1119
1120 /* Look for (set (REGX) (CONST_INT))
1121 (set (REGX) (PLUS (REGX) (REGY)))
1122 ...
1123 ... (MEM (REGX)) ...
1124 and convert it to
1125 (set (REGZ) (CONST_INT))
1126 ...
1127 ... (MEM (PLUS (REGZ) (REGY)))... .
1128
1129 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1130 and that we know all uses of REGX before it dies.
1131 Also, explicitly check that REGX != REGY; our life information
1132 does not yet show whether REGY changes in this insn. */
1133
1134 if (GET_CODE (src) == PLUS
1135 && reg_state[regno].all_offsets_match
1136 && last_index_reg != -1
1137 && REG_P (XEXP (src, 1))
1138 && rtx_equal_p (XEXP (src, 0), reg)
1139 && !rtx_equal_p (XEXP (src, 1), reg)
1140 && reg_state[regno].use_index >= 0
1141 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1142 && last_label_ruid < reg_state[regno].use_ruid)
1143 {
1144 rtx base = XEXP (src, 1);
1145 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1146 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1147 rtx index_reg = NULL_RTX;
1148 rtx reg_sum = NULL_RTX;
1149 int i;
1150
1151 /* Now we need to set INDEX_REG to an index register (denoted as
1152 REGZ in the illustration above) and REG_SUM to the expression
1153 register+register that we want to use to substitute uses of REG
1154 (typically in MEMs) with. First check REG and BASE for being
1155 index registers; we can use them even if they are not dead. */
1156 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1157 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1158 REGNO (base)))
1159 {
1160 index_reg = reg;
1161 reg_sum = src;
1162 }
1163 else
1164 {
1165 /* Otherwise, look for a free index register. Since we have
1166 checked above that neither REG nor BASE are index registers,
1167 if we find anything at all, it will be different from these
1168 two registers. */
1169 for (i = first_index_reg; i <= last_index_reg; i++)
1170 {
1171 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1172 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1173 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1174 && (call_used_regs[i] || df_regs_ever_live_p (i))
1175 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1176 && !fixed_regs[i] && !global_regs[i]
1177 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1178 && targetm.hard_regno_scratch_ok (i))
1179 {
1180 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1181 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1182 break;
1183 }
1184 }
1185 }
1186
1187 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1188 (REGY), i.e. BASE, is not clobbered before the last use we'll
1189 create. */
1190 if (reg_sum
1191 && prev_set
1192 && CONST_INT_P (SET_SRC (prev_set))
1193 && rtx_equal_p (SET_DEST (prev_set), reg)
1194 && (reg_state[REGNO (base)].store_ruid
1195 <= reg_state[regno].use_ruid))
1196 {
1197 /* Change destination register and, if necessary, the constant
1198 value in PREV, the constant loading instruction. */
1199 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1200 if (reg_state[regno].offset != const0_rtx)
1201 validate_change (prev,
1202 &SET_SRC (prev_set),
1203 GEN_INT (INTVAL (SET_SRC (prev_set))
1204 + INTVAL (reg_state[regno].offset)),
1205 1);
1206
1207 /* Now for every use of REG that we have recorded, replace REG
1208 with REG_SUM. */
1209 for (i = reg_state[regno].use_index;
1210 i < RELOAD_COMBINE_MAX_USES; i++)
1211 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1212 reg_state[regno].reg_use[i].usep,
1213 /* Each change must have its own
1214 replacement. */
1215 reg_sum, 1);
1216
1217 if (apply_change_group ())
1218 {
1219 struct reg_use *lowest_ruid = NULL;
1220
1221 /* For every new use of REG_SUM, we have to record the use
1222 of BASE therein, i.e. operand 1. */
1223 for (i = reg_state[regno].use_index;
1224 i < RELOAD_COMBINE_MAX_USES; i++)
1225 {
1226 struct reg_use *use = reg_state[regno].reg_use + i;
1227 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1228 use->ruid, use->containing_mem);
1229 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1230 lowest_ruid = use;
1231 }
1232
1233 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1234
1235 /* Delete the reg-reg addition. */
1236 delete_insn (insn);
1237
1238 if (reg_state[regno].offset != const0_rtx)
1239 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1240 are now invalid. */
1241 remove_reg_equal_equiv_notes (prev);
1242
1243 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1244 return true;
1245 }
1246 }
1247 }
1248 return false;
1249 }
1250
1251 static void
1252 reload_combine (void)
1253 {
1254 rtx_insn *insn, *prev;
1255 basic_block bb;
1256 unsigned int r;
1257 int min_labelno, n_labels;
1258 HARD_REG_SET ever_live_at_start, *label_live;
1259
1260 /* To avoid wasting too much time later searching for an index register,
1261 determine the minimum and maximum index register numbers. */
1262 if (INDEX_REG_CLASS == NO_REGS)
1263 last_index_reg = -1;
1264 else if (first_index_reg == -1 && last_index_reg == 0)
1265 {
1266 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1267 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1268 {
1269 if (first_index_reg == -1)
1270 first_index_reg = r;
1271
1272 last_index_reg = r;
1273 }
1274
1275 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1276 to -1 so we'll know to quit early the next time we get here. */
1277 if (first_index_reg == -1)
1278 {
1279 last_index_reg = -1;
1280 return;
1281 }
1282 }
1283
1284 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1285 information is a bit fuzzy immediately after reload, but it's
1286 still good enough to determine which registers are live at a jump
1287 destination. */
1288 min_labelno = get_first_label_num ();
1289 n_labels = max_label_num () - min_labelno;
1290 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1291 CLEAR_HARD_REG_SET (ever_live_at_start);
1292
1293 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1294 {
1295 insn = BB_HEAD (bb);
1296 if (LABEL_P (insn))
1297 {
1298 HARD_REG_SET live;
1299 bitmap live_in = df_get_live_in (bb);
1300
1301 REG_SET_TO_HARD_REG_SET (live, live_in);
1302 compute_use_by_pseudos (&live, live_in);
1303 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1304 IOR_HARD_REG_SET (ever_live_at_start, live);
1305 }
1306 }
1307
1308 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1309 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1310 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1311 {
1312 reg_state[r].store_ruid = 0;
1313 reg_state[r].real_store_ruid = 0;
1314 if (fixed_regs[r])
1315 reg_state[r].use_index = -1;
1316 else
1317 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1318 }
1319
1320 for (insn = get_last_insn (); insn; insn = prev)
1321 {
1322 bool control_flow_insn;
1323 rtx note;
1324
1325 prev = PREV_INSN (insn);
1326
1327 /* We cannot do our optimization across labels. Invalidating all the use
1328 information we have would be costly, so we just note where the label
1329 is and then later disable any optimization that would cross it. */
1330 if (LABEL_P (insn))
1331 last_label_ruid = reload_combine_ruid;
1332 else if (BARRIER_P (insn))
1333 {
1334 /* Crossing a barrier resets all the use information. */
1335 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1336 if (! fixed_regs[r])
1337 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1338 }
1339 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1340 /* Optimizations across insns being marked as volatile must be
1341 prevented. All the usage information is invalidated
1342 here. */
1343 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1344 if (! fixed_regs[r]
1345 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1346 reg_state[r].use_index = -1;
1347
1348 if (! NONDEBUG_INSN_P (insn))
1349 continue;
1350
1351 reload_combine_ruid++;
1352
1353 control_flow_insn = control_flow_insn_p (insn);
1354 if (control_flow_insn)
1355 last_jump_ruid = reload_combine_ruid;
1356
1357 if (reload_combine_recognize_const_pattern (insn)
1358 || reload_combine_recognize_pattern (insn))
1359 continue;
1360
1361 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1362
1363 if (CALL_P (insn))
1364 {
1365 rtx link;
1366
1367 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1368 if (call_used_regs[r])
1369 {
1370 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1371 reg_state[r].store_ruid = reload_combine_ruid;
1372 }
1373
1374 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1375 link = XEXP (link, 1))
1376 {
1377 rtx setuse = XEXP (link, 0);
1378 rtx usage_rtx = XEXP (setuse, 0);
1379 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1380 && REG_P (usage_rtx))
1381 {
1382 unsigned int i;
1383 unsigned int start_reg = REGNO (usage_rtx);
1384 unsigned int num_regs
1385 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1386 unsigned int end_reg = start_reg + num_regs - 1;
1387 for (i = start_reg; i <= end_reg; i++)
1388 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1389 {
1390 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1391 reg_state[i].store_ruid = reload_combine_ruid;
1392 }
1393 else
1394 reg_state[i].use_index = -1;
1395 }
1396 }
1397 }
1398
1399 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1400 {
1401 /* Non-spill registers might be used at the call destination in
1402 some unknown fashion, so we have to mark the unknown use. */
1403 HARD_REG_SET *live;
1404
1405 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1406 && JUMP_LABEL (insn))
1407 {
1408 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1409 live = NULL;
1410 else
1411 live = &LABEL_LIVE (JUMP_LABEL (insn));
1412 }
1413 else
1414 live = &ever_live_at_start;
1415
1416 if (live)
1417 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1418 if (TEST_HARD_REG_BIT (*live, r))
1419 reg_state[r].use_index = -1;
1420 }
1421
1422 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1423 NULL_RTX);
1424
1425 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1426 {
1427 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1428 {
1429 int regno = REGNO (XEXP (note, 0));
1430 reg_state[regno].store_ruid = reload_combine_ruid;
1431 reg_state[regno].real_store_ruid = reload_combine_ruid;
1432 reg_state[regno].use_index = -1;
1433 }
1434 }
1435 }
1436
1437 free (label_live);
1438 }
1439
1440 /* Check if DST is a register or a subreg of a register; if it is,
1441 update store_ruid, real_store_ruid and use_index in the reg_state
1442 structure accordingly. Called via note_stores from reload_combine. */
1443
1444 static void
1445 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1446 {
1447 int regno = 0;
1448 int i;
1449 machine_mode mode = GET_MODE (dst);
1450
1451 if (GET_CODE (dst) == SUBREG)
1452 {
1453 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1454 GET_MODE (SUBREG_REG (dst)),
1455 SUBREG_BYTE (dst),
1456 GET_MODE (dst));
1457 dst = SUBREG_REG (dst);
1458 }
1459
1460 /* Some targets do argument pushes without adding REG_INC notes. */
1461
1462 if (MEM_P (dst))
1463 {
1464 dst = XEXP (dst, 0);
1465 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1466 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1467 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1468 {
1469 regno = REGNO (XEXP (dst, 0));
1470 mode = GET_MODE (XEXP (dst, 0));
1471 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1472 {
1473 /* We could probably do better, but for now mark the register
1474 as used in an unknown fashion and set/clobbered at this
1475 insn. */
1476 reg_state[i].use_index = -1;
1477 reg_state[i].store_ruid = reload_combine_ruid;
1478 reg_state[i].real_store_ruid = reload_combine_ruid;
1479 }
1480 }
1481 else
1482 return;
1483 }
1484
1485 if (!REG_P (dst))
1486 return;
1487 regno += REGNO (dst);
1488
1489 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1490 careful with registers / register parts that are not full words.
1491 Similarly for ZERO_EXTRACT. */
1492 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1493 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1494 {
1495 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1496 {
1497 reg_state[i].use_index = -1;
1498 reg_state[i].store_ruid = reload_combine_ruid;
1499 reg_state[i].real_store_ruid = reload_combine_ruid;
1500 }
1501 }
1502 else
1503 {
1504 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1505 {
1506 reg_state[i].store_ruid = reload_combine_ruid;
1507 if (GET_CODE (set) == SET)
1508 reg_state[i].real_store_ruid = reload_combine_ruid;
1509 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1510 }
1511 }
1512 }
1513
1514 /* XP points to a piece of rtl that has to be checked for any uses of
1515 registers.
1516 *XP is the pattern of INSN, or a part of it.
1517 Called from reload_combine, and recursively by itself. */
1518 static void
1519 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1520 {
1521 rtx x = *xp;
1522 enum rtx_code code = x->code;
1523 const char *fmt;
1524 int i, j;
1525 rtx offset = const0_rtx; /* For the REG case below. */
1526
1527 switch (code)
1528 {
1529 case SET:
1530 if (REG_P (SET_DEST (x)))
1531 {
1532 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1533 return;
1534 }
1535 break;
1536
1537 case USE:
1538 /* If this is the USE of a return value, we can't change it. */
1539 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1540 {
1541 /* Mark the return register as used in an unknown fashion. */
1542 rtx reg = XEXP (x, 0);
1543 int regno = REGNO (reg);
1544 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1545
1546 while (--nregs >= 0)
1547 reg_state[regno + nregs].use_index = -1;
1548 return;
1549 }
1550 break;
1551
1552 case CLOBBER:
1553 if (REG_P (SET_DEST (x)))
1554 {
1555 /* No spurious CLOBBERs of pseudo registers may remain. */
1556 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1557 return;
1558 }
1559 break;
1560
1561 case PLUS:
1562 /* We are interested in (plus (reg) (const_int)) . */
1563 if (!REG_P (XEXP (x, 0))
1564 || !CONST_INT_P (XEXP (x, 1)))
1565 break;
1566 offset = XEXP (x, 1);
1567 x = XEXP (x, 0);
1568 /* Fall through. */
1569 case REG:
1570 {
1571 int regno = REGNO (x);
1572 int use_index;
1573 int nregs;
1574
1575 /* No spurious USEs of pseudo registers may remain. */
1576 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1577
1578 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1579
1580 /* We can't substitute into multi-hard-reg uses. */
1581 if (nregs > 1)
1582 {
1583 while (--nregs >= 0)
1584 reg_state[regno + nregs].use_index = -1;
1585 return;
1586 }
1587
1588 /* We may be called to update uses in previously seen insns.
1589 Don't add uses beyond the last store we saw. */
1590 if (ruid < reg_state[regno].store_ruid)
1591 return;
1592
1593 /* If this register is already used in some unknown fashion, we
1594 can't do anything.
1595 If we decrement the index from zero to -1, we can't store more
1596 uses, so this register becomes used in an unknown fashion. */
1597 use_index = --reg_state[regno].use_index;
1598 if (use_index < 0)
1599 return;
1600
1601 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1602 {
1603 /* This is the first use of this register we have seen since we
1604 marked it as dead. */
1605 reg_state[regno].offset = offset;
1606 reg_state[regno].all_offsets_match = true;
1607 reg_state[regno].use_ruid = ruid;
1608 }
1609 else
1610 {
1611 if (reg_state[regno].use_ruid > ruid)
1612 reg_state[regno].use_ruid = ruid;
1613
1614 if (! rtx_equal_p (offset, reg_state[regno].offset))
1615 reg_state[regno].all_offsets_match = false;
1616 }
1617
1618 reg_state[regno].reg_use[use_index].insn = insn;
1619 reg_state[regno].reg_use[use_index].ruid = ruid;
1620 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1621 reg_state[regno].reg_use[use_index].usep = xp;
1622 return;
1623 }
1624
1625 case MEM:
1626 containing_mem = x;
1627 break;
1628
1629 default:
1630 break;
1631 }
1632
1633 /* Recursively process the components of X. */
1634 fmt = GET_RTX_FORMAT (code);
1635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1636 {
1637 if (fmt[i] == 'e')
1638 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1639 else if (fmt[i] == 'E')
1640 {
1641 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1642 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1643 containing_mem);
1644 }
1645 }
1646 }
1647 \f
1648 /* See if we can reduce the cost of a constant by replacing a move
1649 with an add. We track situations in which a register is set to a
1650 constant or to a register plus a constant. */
1651 /* We cannot do our optimization across labels. Invalidating all the
1652 information about register contents we have would be costly, so we
1653 use move2add_last_label_luid to note where the label is and then
1654 later disable any optimization that would cross it.
1655 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1656 are only valid if reg_set_luid[n] is greater than
1657 move2add_last_label_luid.
1658 For a set that established a new (potential) base register with
1659 non-constant value, we use move2add_luid from the place where the
1660 setting insn is encountered; registers based off that base then
1661 get the same reg_set_luid. Constants all get
1662 move2add_last_label_luid + 1 as their reg_set_luid. */
1663 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1664
1665 /* If reg_base_reg[n] is negative, register n has been set to
1666 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1667 If reg_base_reg[n] is non-negative, register n has been set to the
1668 sum of reg_offset[n] and the value of register reg_base_reg[n]
1669 before reg_set_luid[n], calculated in mode reg_mode[n] .
1670 For multi-hard-register registers, all but the first one are
1671 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1672 marks it as invalid. */
1673 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1674 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1675 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1676 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1677
1678 /* move2add_luid is linearly increased while scanning the instructions
1679 from first to last. It is used to set reg_set_luid in
1680 reload_cse_move2add and move2add_note_store. */
1681 static int move2add_luid;
1682
1683 /* move2add_last_label_luid is set whenever a label is found. Labels
1684 invalidate all previously collected reg_offset data. */
1685 static int move2add_last_label_luid;
1686
1687 /* ??? We don't know how zero / sign extension is handled, hence we
1688 can't go from a narrower to a wider mode. */
1689 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1690 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1691 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1692 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1693
1694 /* Record that REG is being set to a value with the mode of REG. */
1695
1696 static void
1697 move2add_record_mode (rtx reg)
1698 {
1699 int regno, nregs;
1700 machine_mode mode = GET_MODE (reg);
1701
1702 if (GET_CODE (reg) == SUBREG)
1703 {
1704 regno = subreg_regno (reg);
1705 nregs = subreg_nregs (reg);
1706 }
1707 else if (REG_P (reg))
1708 {
1709 regno = REGNO (reg);
1710 nregs = hard_regno_nregs[regno][mode];
1711 }
1712 else
1713 gcc_unreachable ();
1714 for (int i = nregs - 1; i > 0; i--)
1715 reg_mode[regno + i] = BLKmode;
1716 reg_mode[regno] = mode;
1717 }
1718
1719 /* Record that REG is being set to the sum of SYM and OFF. */
1720
1721 static void
1722 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1723 {
1724 int regno = REGNO (reg);
1725
1726 move2add_record_mode (reg);
1727 reg_set_luid[regno] = move2add_luid;
1728 reg_base_reg[regno] = -1;
1729 reg_symbol_ref[regno] = sym;
1730 reg_offset[regno] = INTVAL (off);
1731 }
1732
1733 /* Check if REGNO contains a valid value in MODE. */
1734
1735 static bool
1736 move2add_valid_value_p (int regno, machine_mode mode)
1737 {
1738 if (reg_set_luid[regno] <= move2add_last_label_luid)
1739 return false;
1740
1741 if (mode != reg_mode[regno])
1742 {
1743 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1744 return false;
1745 /* The value loaded into regno in reg_mode[regno] is also valid in
1746 mode after truncation only if (REG:mode regno) is the lowpart of
1747 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1748 regno of the lowpart might be different. */
1749 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1750 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1751 if (s_off != 0)
1752 /* We could in principle adjust regno, check reg_mode[regno] to be
1753 BLKmode, and return s_off to the caller (vs. -1 for failure),
1754 but we currently have no callers that could make use of this
1755 information. */
1756 return false;
1757 }
1758
1759 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1760 if (reg_mode[regno + i] != BLKmode)
1761 return false;
1762 return true;
1763 }
1764
1765 /* This function is called with INSN that sets REG to (SYM + OFF),
1766 while REG is known to already have value (SYM + offset).
1767 This function tries to change INSN into an add instruction
1768 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1769 It also updates the information about REG's known value.
1770 Return true if we made a change. */
1771
1772 static bool
1773 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1774 {
1775 rtx pat = PATTERN (insn);
1776 rtx src = SET_SRC (pat);
1777 int regno = REGNO (reg);
1778 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1779 GET_MODE (reg));
1780 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1781 bool changed = false;
1782
1783 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1784 use (set (reg) (reg)) instead.
1785 We don't delete this insn, nor do we convert it into a
1786 note, to avoid losing register notes or the return
1787 value flag. jump2 already knows how to get rid of
1788 no-op moves. */
1789 if (new_src == const0_rtx)
1790 {
1791 /* If the constants are different, this is a
1792 truncation, that, if turned into (set (reg)
1793 (reg)), would be discarded. Maybe we should
1794 try a truncMN pattern? */
1795 if (INTVAL (off) == reg_offset [regno])
1796 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1797 }
1798 else
1799 {
1800 struct full_rtx_costs oldcst, newcst;
1801 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1802
1803 get_full_set_rtx_cost (pat, &oldcst);
1804 SET_SRC (pat) = tem;
1805 get_full_set_rtx_cost (pat, &newcst);
1806 SET_SRC (pat) = src;
1807
1808 if (costs_lt_p (&newcst, &oldcst, speed)
1809 && have_add2_insn (reg, new_src))
1810 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1811 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1812 {
1813 machine_mode narrow_mode;
1814 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1815 narrow_mode != VOIDmode
1816 && narrow_mode != GET_MODE (reg);
1817 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1818 {
1819 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1820 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1821 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1822 {
1823 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1824 rtx narrow_src = gen_int_mode (INTVAL (off),
1825 narrow_mode);
1826 rtx new_set
1827 = gen_rtx_SET (VOIDmode,
1828 gen_rtx_STRICT_LOW_PART (VOIDmode,
1829 narrow_reg),
1830 narrow_src);
1831 get_full_set_rtx_cost (new_set, &newcst);
1832 if (costs_lt_p (&newcst, &oldcst, speed))
1833 {
1834 changed = validate_change (insn, &PATTERN (insn),
1835 new_set, 0);
1836 if (changed)
1837 break;
1838 }
1839 }
1840 }
1841 }
1842 }
1843 move2add_record_sym_value (reg, sym, off);
1844 return changed;
1845 }
1846
1847
1848 /* This function is called with INSN that sets REG to (SYM + OFF),
1849 but REG doesn't have known value (SYM + offset). This function
1850 tries to find another register which is known to already have
1851 value (SYM + offset) and change INSN into an add instruction
1852 (set (REG) (plus (the found register) (OFF - offset))) if such
1853 a register is found. It also updates the information about
1854 REG's known value.
1855 Return true iff we made a change. */
1856
1857 static bool
1858 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1859 {
1860 rtx pat = PATTERN (insn);
1861 rtx src = SET_SRC (pat);
1862 int regno = REGNO (reg);
1863 int min_regno = 0;
1864 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1865 int i;
1866 bool changed = false;
1867 struct full_rtx_costs oldcst, newcst, mincst;
1868 rtx plus_expr;
1869
1870 init_costs_to_max (&mincst);
1871 get_full_set_rtx_cost (pat, &oldcst);
1872
1873 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1874 SET_SRC (pat) = plus_expr;
1875
1876 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1877 if (move2add_valid_value_p (i, GET_MODE (reg))
1878 && reg_base_reg[i] < 0
1879 && reg_symbol_ref[i] != NULL_RTX
1880 && rtx_equal_p (sym, reg_symbol_ref[i]))
1881 {
1882 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1883 GET_MODE (reg));
1884 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1885 use (set (reg) (reg)) instead.
1886 We don't delete this insn, nor do we convert it into a
1887 note, to avoid losing register notes or the return
1888 value flag. jump2 already knows how to get rid of
1889 no-op moves. */
1890 if (new_src == const0_rtx)
1891 {
1892 init_costs_to_zero (&mincst);
1893 min_regno = i;
1894 break;
1895 }
1896 else
1897 {
1898 XEXP (plus_expr, 1) = new_src;
1899 get_full_set_rtx_cost (pat, &newcst);
1900
1901 if (costs_lt_p (&newcst, &mincst, speed))
1902 {
1903 mincst = newcst;
1904 min_regno = i;
1905 }
1906 }
1907 }
1908 SET_SRC (pat) = src;
1909
1910 if (costs_lt_p (&mincst, &oldcst, speed))
1911 {
1912 rtx tem;
1913
1914 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1915 if (i != min_regno)
1916 {
1917 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1918 GET_MODE (reg));
1919 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1920 }
1921 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1922 changed = true;
1923 }
1924 reg_set_luid[regno] = move2add_luid;
1925 move2add_record_sym_value (reg, sym, off);
1926 return changed;
1927 }
1928
1929 /* Convert move insns with constant inputs to additions if they are cheaper.
1930 Return true if any changes were made. */
1931 static bool
1932 reload_cse_move2add (rtx_insn *first)
1933 {
1934 int i;
1935 rtx_insn *insn;
1936 bool changed = false;
1937
1938 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1939 {
1940 reg_set_luid[i] = 0;
1941 reg_offset[i] = 0;
1942 reg_base_reg[i] = 0;
1943 reg_symbol_ref[i] = NULL_RTX;
1944 reg_mode[i] = VOIDmode;
1945 }
1946
1947 move2add_last_label_luid = 0;
1948 move2add_luid = 2;
1949 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1950 {
1951 rtx pat, note;
1952
1953 if (LABEL_P (insn))
1954 {
1955 move2add_last_label_luid = move2add_luid;
1956 /* We're going to increment move2add_luid twice after a
1957 label, so that we can use move2add_last_label_luid + 1 as
1958 the luid for constants. */
1959 move2add_luid++;
1960 continue;
1961 }
1962 if (! INSN_P (insn))
1963 continue;
1964 pat = PATTERN (insn);
1965 /* For simplicity, we only perform this optimization on
1966 straightforward SETs. */
1967 if (GET_CODE (pat) == SET
1968 && REG_P (SET_DEST (pat)))
1969 {
1970 rtx reg = SET_DEST (pat);
1971 int regno = REGNO (reg);
1972 rtx src = SET_SRC (pat);
1973
1974 /* Check if we have valid information on the contents of this
1975 register in the mode of REG. */
1976 if (move2add_valid_value_p (regno, GET_MODE (reg))
1977 && dbg_cnt (cse2_move2add))
1978 {
1979 /* Try to transform (set (REGX) (CONST_INT A))
1980 ...
1981 (set (REGX) (CONST_INT B))
1982 to
1983 (set (REGX) (CONST_INT A))
1984 ...
1985 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1986 or
1987 (set (REGX) (CONST_INT A))
1988 ...
1989 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1990 */
1991
1992 if (CONST_INT_P (src)
1993 && reg_base_reg[regno] < 0
1994 && reg_symbol_ref[regno] == NULL_RTX)
1995 {
1996 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1997 continue;
1998 }
1999
2000 /* Try to transform (set (REGX) (REGY))
2001 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2002 ...
2003 (set (REGX) (REGY))
2004 (set (REGX) (PLUS (REGX) (CONST_INT B)))
2005 to
2006 (set (REGX) (REGY))
2007 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2008 ...
2009 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
2010 else if (REG_P (src)
2011 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
2012 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
2013 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
2014 {
2015 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2016 rtx set = NULL_RTX;
2017 if (next)
2018 set = single_set (next);
2019 if (set
2020 && SET_DEST (set) == reg
2021 && GET_CODE (SET_SRC (set)) == PLUS
2022 && XEXP (SET_SRC (set), 0) == reg
2023 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2024 {
2025 rtx src3 = XEXP (SET_SRC (set), 1);
2026 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2027 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2028 HOST_WIDE_INT regno_offset = reg_offset[regno];
2029 rtx new_src =
2030 gen_int_mode (added_offset
2031 + base_offset
2032 - regno_offset,
2033 GET_MODE (reg));
2034 bool success = false;
2035 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2036
2037 if (new_src == const0_rtx)
2038 /* See above why we create (set (reg) (reg)) here. */
2039 success
2040 = validate_change (next, &SET_SRC (set), reg, 0);
2041 else
2042 {
2043 rtx old_src = SET_SRC (set);
2044 struct full_rtx_costs oldcst, newcst;
2045 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2046
2047 get_full_set_rtx_cost (set, &oldcst);
2048 SET_SRC (set) = tem;
2049 get_full_set_src_cost (tem, &newcst);
2050 SET_SRC (set) = old_src;
2051 costs_add_n_insns (&oldcst, 1);
2052
2053 if (costs_lt_p (&newcst, &oldcst, speed)
2054 && have_add2_insn (reg, new_src))
2055 {
2056 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2057 success
2058 = validate_change (next, &PATTERN (next),
2059 newpat, 0);
2060 }
2061 }
2062 if (success)
2063 delete_insn (insn);
2064 changed |= success;
2065 insn = next;
2066 move2add_record_mode (reg);
2067 reg_offset[regno]
2068 = trunc_int_for_mode (added_offset + base_offset,
2069 GET_MODE (reg));
2070 continue;
2071 }
2072 }
2073 }
2074
2075 /* Try to transform
2076 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2077 ...
2078 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2079 to
2080 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2081 ...
2082 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2083 if ((GET_CODE (src) == SYMBOL_REF
2084 || (GET_CODE (src) == CONST
2085 && GET_CODE (XEXP (src, 0)) == PLUS
2086 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2087 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2088 && dbg_cnt (cse2_move2add))
2089 {
2090 rtx sym, off;
2091
2092 if (GET_CODE (src) == SYMBOL_REF)
2093 {
2094 sym = src;
2095 off = const0_rtx;
2096 }
2097 else
2098 {
2099 sym = XEXP (XEXP (src, 0), 0);
2100 off = XEXP (XEXP (src, 0), 1);
2101 }
2102
2103 /* If the reg already contains the value which is sum of
2104 sym and some constant value, we can use an add2 insn. */
2105 if (move2add_valid_value_p (regno, GET_MODE (reg))
2106 && reg_base_reg[regno] < 0
2107 && reg_symbol_ref[regno] != NULL_RTX
2108 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2109 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2110
2111 /* Otherwise, we have to find a register whose value is sum
2112 of sym and some constant value. */
2113 else
2114 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2115
2116 continue;
2117 }
2118 }
2119
2120 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2121 {
2122 if (REG_NOTE_KIND (note) == REG_INC
2123 && REG_P (XEXP (note, 0)))
2124 {
2125 /* Reset the information about this register. */
2126 int regno = REGNO (XEXP (note, 0));
2127 if (regno < FIRST_PSEUDO_REGISTER)
2128 {
2129 move2add_record_mode (XEXP (note, 0));
2130 reg_mode[regno] = VOIDmode;
2131 }
2132 }
2133 }
2134 note_stores (PATTERN (insn), move2add_note_store, insn);
2135
2136 /* If INSN is a conditional branch, we try to extract an
2137 implicit set out of it. */
2138 if (any_condjump_p (insn))
2139 {
2140 rtx cnd = fis_get_condition (insn);
2141
2142 if (cnd != NULL_RTX
2143 && GET_CODE (cnd) == NE
2144 && REG_P (XEXP (cnd, 0))
2145 && !reg_set_p (XEXP (cnd, 0), insn)
2146 /* The following two checks, which are also in
2147 move2add_note_store, are intended to reduce the
2148 number of calls to gen_rtx_SET to avoid memory
2149 allocation if possible. */
2150 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2151 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2152 && CONST_INT_P (XEXP (cnd, 1)))
2153 {
2154 rtx implicit_set =
2155 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2156 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2157 }
2158 }
2159
2160 /* If this is a CALL_INSN, all call used registers are stored with
2161 unknown values. */
2162 if (CALL_P (insn))
2163 {
2164 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2165 {
2166 if (call_used_regs[i])
2167 /* Reset the information about this register. */
2168 reg_mode[i] = VOIDmode;
2169 }
2170 }
2171 }
2172 return changed;
2173 }
2174
2175 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2176 contains SET.
2177 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2178 Called from reload_cse_move2add via note_stores. */
2179
2180 static void
2181 move2add_note_store (rtx dst, const_rtx set, void *data)
2182 {
2183 rtx_insn *insn = (rtx_insn *) data;
2184 unsigned int regno = 0;
2185 machine_mode mode = GET_MODE (dst);
2186
2187 /* Some targets do argument pushes without adding REG_INC notes. */
2188
2189 if (MEM_P (dst))
2190 {
2191 dst = XEXP (dst, 0);
2192 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2193 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2194 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2195 return;
2196 }
2197
2198 if (GET_CODE (dst) == SUBREG)
2199 regno = subreg_regno (dst);
2200 else if (REG_P (dst))
2201 regno = REGNO (dst);
2202 else
2203 return;
2204
2205 if (SCALAR_INT_MODE_P (mode)
2206 && GET_CODE (set) == SET)
2207 {
2208 rtx note, sym = NULL_RTX;
2209 rtx off;
2210
2211 note = find_reg_equal_equiv_note (insn);
2212 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2213 {
2214 sym = XEXP (note, 0);
2215 off = const0_rtx;
2216 }
2217 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2218 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2219 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2220 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2221 {
2222 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2223 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2224 }
2225
2226 if (sym != NULL_RTX)
2227 {
2228 move2add_record_sym_value (dst, sym, off);
2229 return;
2230 }
2231 }
2232
2233 if (SCALAR_INT_MODE_P (mode)
2234 && GET_CODE (set) == SET
2235 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2236 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2237 {
2238 rtx src = SET_SRC (set);
2239 rtx base_reg;
2240 unsigned HOST_WIDE_INT offset;
2241 int base_regno;
2242
2243 switch (GET_CODE (src))
2244 {
2245 case PLUS:
2246 if (REG_P (XEXP (src, 0)))
2247 {
2248 base_reg = XEXP (src, 0);
2249
2250 if (CONST_INT_P (XEXP (src, 1)))
2251 offset = UINTVAL (XEXP (src, 1));
2252 else if (REG_P (XEXP (src, 1))
2253 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2254 {
2255 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2256 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2257 offset = reg_offset[REGNO (XEXP (src, 1))];
2258 /* Maybe the first register is known to be a
2259 constant. */
2260 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2261 && reg_base_reg[REGNO (base_reg)] < 0
2262 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2263 {
2264 offset = reg_offset[REGNO (base_reg)];
2265 base_reg = XEXP (src, 1);
2266 }
2267 else
2268 goto invalidate;
2269 }
2270 else
2271 goto invalidate;
2272
2273 break;
2274 }
2275
2276 goto invalidate;
2277
2278 case REG:
2279 base_reg = src;
2280 offset = 0;
2281 break;
2282
2283 case CONST_INT:
2284 /* Start tracking the register as a constant. */
2285 reg_base_reg[regno] = -1;
2286 reg_symbol_ref[regno] = NULL_RTX;
2287 reg_offset[regno] = INTVAL (SET_SRC (set));
2288 /* We assign the same luid to all registers set to constants. */
2289 reg_set_luid[regno] = move2add_last_label_luid + 1;
2290 move2add_record_mode (dst);
2291 return;
2292
2293 default:
2294 goto invalidate;
2295 }
2296
2297 base_regno = REGNO (base_reg);
2298 /* If information about the base register is not valid, set it
2299 up as a new base register, pretending its value is known
2300 starting from the current insn. */
2301 if (!move2add_valid_value_p (base_regno, mode))
2302 {
2303 reg_base_reg[base_regno] = base_regno;
2304 reg_symbol_ref[base_regno] = NULL_RTX;
2305 reg_offset[base_regno] = 0;
2306 reg_set_luid[base_regno] = move2add_luid;
2307 gcc_assert (GET_MODE (base_reg) == mode);
2308 move2add_record_mode (base_reg);
2309 }
2310
2311 /* Copy base information from our base register. */
2312 reg_set_luid[regno] = reg_set_luid[base_regno];
2313 reg_base_reg[regno] = reg_base_reg[base_regno];
2314 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2315
2316 /* Compute the sum of the offsets or constants. */
2317 reg_offset[regno]
2318 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2319
2320 move2add_record_mode (dst);
2321 }
2322 else
2323 {
2324 invalidate:
2325 /* Invalidate the contents of the register. */
2326 move2add_record_mode (dst);
2327 reg_mode[regno] = VOIDmode;
2328 }
2329 }
2330 \f
2331 namespace {
2332
2333 const pass_data pass_data_postreload_cse =
2334 {
2335 RTL_PASS, /* type */
2336 "postreload", /* name */
2337 OPTGROUP_NONE, /* optinfo_flags */
2338 TV_RELOAD_CSE_REGS, /* tv_id */
2339 0, /* properties_required */
2340 0, /* properties_provided */
2341 0, /* properties_destroyed */
2342 0, /* todo_flags_start */
2343 TODO_df_finish, /* todo_flags_finish */
2344 };
2345
2346 class pass_postreload_cse : public rtl_opt_pass
2347 {
2348 public:
2349 pass_postreload_cse (gcc::context *ctxt)
2350 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2351 {}
2352
2353 /* opt_pass methods: */
2354 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2355
2356 virtual unsigned int execute (function *);
2357
2358 }; // class pass_postreload_cse
2359
2360 unsigned int
2361 pass_postreload_cse::execute (function *fun)
2362 {
2363 if (!dbg_cnt (postreload_cse))
2364 return 0;
2365
2366 /* Do a very simple CSE pass over just the hard registers. */
2367 reload_cse_regs (get_insns ());
2368 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2369 Remove any EH edges associated with them. */
2370 if (fun->can_throw_non_call_exceptions
2371 && purge_all_dead_edges ())
2372 cleanup_cfg (0);
2373
2374 return 0;
2375 }
2376
2377 } // anon namespace
2378
2379 rtl_opt_pass *
2380 make_pass_postreload_cse (gcc::context *ctxt)
2381 {
2382 return new pass_postreload_cse (ctxt);
2383 }