]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
PR target/82145
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43
44 static int reload_cse_noop_set_p (rtx);
45 static bool reload_cse_simplify (rtx_insn *, rtx);
46 static void reload_cse_regs_1 (void);
47 static int reload_cse_simplify_set (rtx, rtx_insn *);
48 static int reload_cse_simplify_operands (rtx_insn *, rtx);
49
50 static void reload_combine (void);
51 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
52 static void reload_combine_note_store (rtx, const_rtx, void *);
53
54 static bool reload_cse_move2add (rtx_insn *);
55 static void move2add_note_store (rtx, const_rtx, void *);
56
57 /* Call cse / combine like post-reload optimization phases.
58 FIRST is the first instruction. */
59
60 static void
61 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
62 {
63 bool moves_converted;
64 reload_cse_regs_1 ();
65 reload_combine ();
66 moves_converted = reload_cse_move2add (first);
67 if (flag_expensive_optimizations)
68 {
69 if (moves_converted)
70 reload_combine ();
71 reload_cse_regs_1 ();
72 }
73 }
74
75 /* See whether a single set SET is a noop. */
76 static int
77 reload_cse_noop_set_p (rtx set)
78 {
79 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
80 return 0;
81
82 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83 }
84
85 /* Try to simplify INSN. Return true if the CFG may have changed. */
86 static bool
87 reload_cse_simplify (rtx_insn *insn, rtx testreg)
88 {
89 rtx body = PATTERN (insn);
90 basic_block insn_bb = BLOCK_FOR_INSN (insn);
91 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
92
93 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
94 to cse function calls. */
95 if (NO_FUNCTION_CSE && CALL_P (insn))
96 return false;
97
98 if (GET_CODE (body) == SET)
99 {
100 int count = 0;
101
102 /* Simplify even if we may think it is a no-op.
103 We may think a memory load of a value smaller than WORD_SIZE
104 is redundant because we haven't taken into account possible
105 implicit extension. reload_cse_simplify_set() will bring
106 this out, so it's safer to simplify before we delete. */
107 count += reload_cse_simplify_set (body, insn);
108
109 if (!count && reload_cse_noop_set_p (body))
110 {
111 if (check_for_inc_dec (insn))
112 delete_insn_and_edges (insn);
113 /* We're done with this insn. */
114 goto done;
115 }
116
117 if (count > 0)
118 apply_change_group ();
119 else
120 reload_cse_simplify_operands (insn, testreg);
121 }
122 else if (GET_CODE (body) == PARALLEL)
123 {
124 int i;
125 int count = 0;
126 rtx value = NULL_RTX;
127
128 /* Registers mentioned in the clobber list for an asm cannot be reused
129 within the body of the asm. Invalidate those registers now so that
130 we don't try to substitute values for them. */
131 if (asm_noperands (body) >= 0)
132 {
133 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
134 {
135 rtx part = XVECEXP (body, 0, i);
136 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
137 cselib_invalidate_rtx (XEXP (part, 0));
138 }
139 }
140
141 /* If every action in a PARALLEL is a noop, we can delete
142 the entire PARALLEL. */
143 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
144 {
145 rtx part = XVECEXP (body, 0, i);
146 if (GET_CODE (part) == SET)
147 {
148 if (! reload_cse_noop_set_p (part))
149 break;
150 if (REG_P (SET_DEST (part))
151 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
152 {
153 if (value)
154 break;
155 value = SET_DEST (part);
156 }
157 }
158 else if (GET_CODE (part) != CLOBBER
159 && GET_CODE (part) != USE)
160 break;
161 }
162
163 if (i < 0)
164 {
165 if (check_for_inc_dec (insn))
166 delete_insn_and_edges (insn);
167 /* We're done with this insn. */
168 goto done;
169 }
170
171 /* It's not a no-op, but we can try to simplify it. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
174 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
175
176 if (count > 0)
177 apply_change_group ();
178 else
179 reload_cse_simplify_operands (insn, testreg);
180 }
181
182 done:
183 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
184 }
185
186 /* Do a very simple CSE pass over the hard registers.
187
188 This function detects no-op moves where we happened to assign two
189 different pseudo-registers to the same hard register, and then
190 copied one to the other. Reload will generate a useless
191 instruction copying a register to itself.
192
193 This function also detects cases where we load a value from memory
194 into two different registers, and (if memory is more expensive than
195 registers) changes it to simply copy the first register into the
196 second register.
197
198 Another optimization is performed that scans the operands of each
199 instruction to see whether the value is already available in a
200 hard register. It then replaces the operand with the hard register
201 if possible, much like an optional reload would. */
202
203 static void
204 reload_cse_regs_1 (void)
205 {
206 bool cfg_changed = false;
207 basic_block bb;
208 rtx_insn *insn;
209 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
210
211 cselib_init (CSELIB_RECORD_MEMORY);
212 init_alias_analysis ();
213
214 FOR_EACH_BB_FN (bb, cfun)
215 FOR_BB_INSNS (bb, insn)
216 {
217 if (INSN_P (insn))
218 cfg_changed |= reload_cse_simplify (insn, testreg);
219
220 cselib_process_insn (insn);
221 }
222
223 /* Clean up. */
224 end_alias_analysis ();
225 cselib_finish ();
226 if (cfg_changed)
227 cleanup_cfg (0);
228 }
229
230 /* Try to simplify a single SET instruction. SET is the set pattern.
231 INSN is the instruction it came from.
232 This function only handles one case: if we set a register to a value
233 which is not a register, we try to find that value in some other register
234 and change the set into a register copy. */
235
236 static int
237 reload_cse_simplify_set (rtx set, rtx_insn *insn)
238 {
239 int did_change = 0;
240 int dreg;
241 rtx src;
242 reg_class_t dclass;
243 int old_cost;
244 cselib_val *val;
245 struct elt_loc_list *l;
246 enum rtx_code extend_op = UNKNOWN;
247 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
248
249 dreg = true_regnum (SET_DEST (set));
250 if (dreg < 0)
251 return 0;
252
253 src = SET_SRC (set);
254 if (side_effects_p (src) || true_regnum (src) >= 0)
255 return 0;
256
257 dclass = REGNO_REG_CLASS (dreg);
258
259 /* When replacing a memory with a register, we need to honor assumptions
260 that combine made wrt the contents of sign bits. We'll do this by
261 generating an extend instruction instead of a reg->reg copy. Thus
262 the destination must be a register that we can widen. */
263 if (MEM_P (src)
264 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
265 && !REG_P (SET_DEST (set)))
266 return 0;
267
268 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
269 if (! val)
270 return 0;
271
272 /* If memory loads are cheaper than register copies, don't change them. */
273 if (MEM_P (src))
274 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
275 else if (REG_P (src))
276 old_cost = register_move_cost (GET_MODE (src),
277 REGNO_REG_CLASS (REGNO (src)), dclass);
278 else
279 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
280
281 for (l = val->locs; l; l = l->next)
282 {
283 rtx this_rtx = l->loc;
284 int this_cost;
285
286 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
287 {
288 if (extend_op != UNKNOWN)
289 {
290 wide_int result;
291
292 if (!CONST_SCALAR_INT_P (this_rtx))
293 continue;
294
295 switch (extend_op)
296 {
297 case ZERO_EXTEND:
298 result = wide_int::from (rtx_mode_t (this_rtx,
299 GET_MODE (src)),
300 BITS_PER_WORD, UNSIGNED);
301 break;
302 case SIGN_EXTEND:
303 result = wide_int::from (rtx_mode_t (this_rtx,
304 GET_MODE (src)),
305 BITS_PER_WORD, SIGNED);
306 break;
307 default:
308 gcc_unreachable ();
309 }
310 this_rtx = immed_wide_int_const (result, word_mode);
311 }
312
313 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
314 }
315 else if (REG_P (this_rtx))
316 {
317 if (extend_op != UNKNOWN)
318 {
319 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
320 this_cost = set_src_cost (this_rtx, word_mode, speed);
321 }
322 else
323 this_cost = register_move_cost (GET_MODE (this_rtx),
324 REGNO_REG_CLASS (REGNO (this_rtx)),
325 dclass);
326 }
327 else
328 continue;
329
330 /* If equal costs, prefer registers over anything else. That
331 tends to lead to smaller instructions on some machines. */
332 if (this_cost < old_cost
333 || (this_cost == old_cost
334 && REG_P (this_rtx)
335 && !REG_P (SET_SRC (set))))
336 {
337 if (extend_op != UNKNOWN
338 #ifdef CANNOT_CHANGE_MODE_CLASS
339 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
340 word_mode,
341 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
342 #endif
343 )
344 {
345 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
346 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
347 validate_change (insn, &SET_DEST (set), wide_dest, 1);
348 }
349
350 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
351 old_cost = this_cost, did_change = 1;
352 }
353 }
354
355 return did_change;
356 }
357
358 /* Try to replace operands in INSN with equivalent values that are already
359 in registers. This can be viewed as optional reloading.
360
361 For each non-register operand in the insn, see if any hard regs are
362 known to be equivalent to that operand. Record the alternatives which
363 can accept these hard registers. Among all alternatives, select the
364 ones which are better or equal to the one currently matching, where
365 "better" is in terms of '?' and '!' constraints. Among the remaining
366 alternatives, select the one which replaces most operands with
367 hard registers. */
368
369 static int
370 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
371 {
372 int i, j;
373
374 /* For each operand, all registers that are equivalent to it. */
375 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
376
377 const char *constraints[MAX_RECOG_OPERANDS];
378
379 /* Vector recording how bad an alternative is. */
380 int *alternative_reject;
381 /* Vector recording how many registers can be introduced by choosing
382 this alternative. */
383 int *alternative_nregs;
384 /* Array of vectors recording, for each operand and each alternative,
385 which hard register to substitute, or -1 if the operand should be
386 left as it is. */
387 int *op_alt_regno[MAX_RECOG_OPERANDS];
388 /* Array of alternatives, sorted in order of decreasing desirability. */
389 int *alternative_order;
390
391 extract_constrain_insn (insn);
392
393 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
394 return 0;
395
396 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
397 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
398 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
399 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
400 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
401
402 /* For each operand, find out which regs are equivalent. */
403 for (i = 0; i < recog_data.n_operands; i++)
404 {
405 cselib_val *v;
406 struct elt_loc_list *l;
407 rtx op;
408
409 CLEAR_HARD_REG_SET (equiv_regs[i]);
410
411 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
412 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
413 Likewise if we have a constant and the insn pattern doesn't tell us
414 the mode we need. */
415 if (LABEL_P (recog_data.operand[i])
416 || (NOTE_P (recog_data.operand[i])
417 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
418 || (CONSTANT_P (recog_data.operand[i])
419 && recog_data.operand_mode[i] == VOIDmode))
420 continue;
421
422 op = recog_data.operand[i];
423 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
424 {
425 rtx set = single_set (insn);
426
427 /* We might have multiple sets, some of which do implicit
428 extension. Punt on this for now. */
429 if (! set)
430 continue;
431 /* If the destination is also a MEM or a STRICT_LOW_PART, no
432 extension applies.
433 Also, if there is an explicit extension, we don't have to
434 worry about an implicit one. */
435 else if (MEM_P (SET_DEST (set))
436 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
437 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
438 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
439 ; /* Continue ordinary processing. */
440 #ifdef CANNOT_CHANGE_MODE_CLASS
441 /* If the register cannot change mode to word_mode, it follows that
442 it cannot have been used in word_mode. */
443 else if (REG_P (SET_DEST (set))
444 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
445 word_mode,
446 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
447 ; /* Continue ordinary processing. */
448 #endif
449 /* If this is a straight load, make the extension explicit. */
450 else if (REG_P (SET_DEST (set))
451 && recog_data.n_operands == 2
452 && SET_SRC (set) == op
453 && SET_DEST (set) == recog_data.operand[1-i])
454 {
455 validate_change (insn, recog_data.operand_loc[i],
456 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
457 word_mode, op),
458 1);
459 validate_change (insn, recog_data.operand_loc[1-i],
460 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
461 1);
462 if (! apply_change_group ())
463 return 0;
464 return reload_cse_simplify_operands (insn, testreg);
465 }
466 else
467 /* ??? There might be arithmetic operations with memory that are
468 safe to optimize, but is it worth the trouble? */
469 continue;
470 }
471
472 if (side_effects_p (op))
473 continue;
474 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
475 if (! v)
476 continue;
477
478 for (l = v->locs; l; l = l->next)
479 if (REG_P (l->loc))
480 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
481 }
482
483 alternative_mask preferred = get_preferred_alternatives (insn);
484 for (i = 0; i < recog_data.n_operands; i++)
485 {
486 machine_mode mode;
487 int regno;
488 const char *p;
489
490 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
491 for (j = 0; j < recog_data.n_alternatives; j++)
492 op_alt_regno[i][j] = -1;
493
494 p = constraints[i] = recog_data.constraints[i];
495 mode = recog_data.operand_mode[i];
496
497 /* Add the reject values for each alternative given by the constraints
498 for this operand. */
499 j = 0;
500 while (*p != '\0')
501 {
502 char c = *p++;
503 if (c == ',')
504 j++;
505 else if (c == '?')
506 alternative_reject[j] += 3;
507 else if (c == '!')
508 alternative_reject[j] += 300;
509 }
510
511 /* We won't change operands which are already registers. We
512 also don't want to modify output operands. */
513 regno = true_regnum (recog_data.operand[i]);
514 if (regno >= 0
515 || constraints[i][0] == '='
516 || constraints[i][0] == '+')
517 continue;
518
519 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
520 {
521 enum reg_class rclass = NO_REGS;
522
523 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
524 continue;
525
526 set_mode_and_regno (testreg, mode, regno);
527
528 /* We found a register equal to this operand. Now look for all
529 alternatives that can accept this register and have not been
530 assigned a register they can use yet. */
531 j = 0;
532 p = constraints[i];
533 for (;;)
534 {
535 char c = *p;
536
537 switch (c)
538 {
539 case 'g':
540 rclass = reg_class_subunion[rclass][GENERAL_REGS];
541 break;
542
543 default:
544 rclass
545 = (reg_class_subunion
546 [rclass]
547 [reg_class_for_constraint (lookup_constraint (p))]);
548 break;
549
550 case ',': case '\0':
551 /* See if REGNO fits this alternative, and set it up as the
552 replacement register if we don't have one for this
553 alternative yet and the operand being replaced is not
554 a cheap CONST_INT. */
555 if (op_alt_regno[i][j] == -1
556 && TEST_BIT (preferred, j)
557 && reg_fits_class_p (testreg, rclass, 0, mode)
558 && (!CONST_INT_P (recog_data.operand[i])
559 || (set_src_cost (recog_data.operand[i], mode,
560 optimize_bb_for_speed_p
561 (BLOCK_FOR_INSN (insn)))
562 > set_src_cost (testreg, mode,
563 optimize_bb_for_speed_p
564 (BLOCK_FOR_INSN (insn))))))
565 {
566 alternative_nregs[j]++;
567 op_alt_regno[i][j] = regno;
568 }
569 j++;
570 rclass = NO_REGS;
571 break;
572 }
573 p += CONSTRAINT_LEN (c, p);
574
575 if (c == '\0')
576 break;
577 }
578 }
579 }
580
581 /* Record all alternatives which are better or equal to the currently
582 matching one in the alternative_order array. */
583 for (i = j = 0; i < recog_data.n_alternatives; i++)
584 if (alternative_reject[i] <= alternative_reject[which_alternative])
585 alternative_order[j++] = i;
586 recog_data.n_alternatives = j;
587
588 /* Sort it. Given a small number of alternatives, a dumb algorithm
589 won't hurt too much. */
590 for (i = 0; i < recog_data.n_alternatives - 1; i++)
591 {
592 int best = i;
593 int best_reject = alternative_reject[alternative_order[i]];
594 int best_nregs = alternative_nregs[alternative_order[i]];
595
596 for (j = i + 1; j < recog_data.n_alternatives; j++)
597 {
598 int this_reject = alternative_reject[alternative_order[j]];
599 int this_nregs = alternative_nregs[alternative_order[j]];
600
601 if (this_reject < best_reject
602 || (this_reject == best_reject && this_nregs > best_nregs))
603 {
604 best = j;
605 best_reject = this_reject;
606 best_nregs = this_nregs;
607 }
608 }
609
610 std::swap (alternative_order[best], alternative_order[i]);
611 }
612
613 /* Substitute the operands as determined by op_alt_regno for the best
614 alternative. */
615 j = alternative_order[0];
616
617 for (i = 0; i < recog_data.n_operands; i++)
618 {
619 machine_mode mode = recog_data.operand_mode[i];
620 if (op_alt_regno[i][j] == -1)
621 continue;
622
623 validate_change (insn, recog_data.operand_loc[i],
624 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
625 }
626
627 for (i = recog_data.n_dups - 1; i >= 0; i--)
628 {
629 int op = recog_data.dup_num[i];
630 machine_mode mode = recog_data.operand_mode[op];
631
632 if (op_alt_regno[op][j] == -1)
633 continue;
634
635 validate_change (insn, recog_data.dup_loc[i],
636 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
637 }
638
639 return apply_change_group ();
640 }
641 \f
642 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
643 addressing now.
644 This code might also be useful when reload gave up on reg+reg addressing
645 because of clashes between the return register and INDEX_REG_CLASS. */
646
647 /* The maximum number of uses of a register we can keep track of to
648 replace them with reg+reg addressing. */
649 #define RELOAD_COMBINE_MAX_USES 16
650
651 /* Describes a recorded use of a register. */
652 struct reg_use
653 {
654 /* The insn where a register has been used. */
655 rtx_insn *insn;
656 /* Points to the memory reference enclosing the use, if any, NULL_RTX
657 otherwise. */
658 rtx containing_mem;
659 /* Location of the register within INSN. */
660 rtx *usep;
661 /* The reverse uid of the insn. */
662 int ruid;
663 };
664
665 /* If the register is used in some unknown fashion, USE_INDEX is negative.
666 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
667 indicates where it is first set or clobbered.
668 Otherwise, USE_INDEX is the index of the last encountered use of the
669 register (which is first among these we have seen since we scan backwards).
670 USE_RUID indicates the first encountered, i.e. last, of these uses.
671 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
672 with a constant offset; OFFSET contains this constant in that case.
673 STORE_RUID is always meaningful if we only want to use a value in a
674 register in a different place: it denotes the next insn in the insn
675 stream (i.e. the last encountered) that sets or clobbers the register.
676 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
677 static struct
678 {
679 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
680 rtx offset;
681 int use_index;
682 int store_ruid;
683 int real_store_ruid;
684 int use_ruid;
685 bool all_offsets_match;
686 } reg_state[FIRST_PSEUDO_REGISTER];
687
688 /* Reverse linear uid. This is increased in reload_combine while scanning
689 the instructions from last to first. It is used to set last_label_ruid
690 and the store_ruid / use_ruid fields in reg_state. */
691 static int reload_combine_ruid;
692
693 /* The RUID of the last label we encountered in reload_combine. */
694 static int last_label_ruid;
695
696 /* The RUID of the last jump we encountered in reload_combine. */
697 static int last_jump_ruid;
698
699 /* The register numbers of the first and last index register. A value of
700 -1 in LAST_INDEX_REG indicates that we've previously computed these
701 values and found no suitable index registers. */
702 static int first_index_reg = -1;
703 static int last_index_reg;
704
705 #define LABEL_LIVE(LABEL) \
706 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
707
708 /* Subroutine of reload_combine_split_ruids, called to fix up a single
709 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
710
711 static inline void
712 reload_combine_split_one_ruid (int *pruid, int split_ruid)
713 {
714 if (*pruid > split_ruid)
715 (*pruid)++;
716 }
717
718 /* Called when we insert a new insn in a position we've already passed in
719 the scan. Examine all our state, increasing all ruids that are higher
720 than SPLIT_RUID by one in order to make room for a new insn. */
721
722 static void
723 reload_combine_split_ruids (int split_ruid)
724 {
725 unsigned i;
726
727 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
728 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
729 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
730
731 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
732 {
733 int j, idx = reg_state[i].use_index;
734 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
735 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
736 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
737 split_ruid);
738 if (idx < 0)
739 continue;
740 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
741 {
742 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
743 split_ruid);
744 }
745 }
746 }
747
748 /* Called when we are about to rescan a previously encountered insn with
749 reload_combine_note_use after modifying some part of it. This clears all
750 information about uses in that particular insn. */
751
752 static void
753 reload_combine_purge_insn_uses (rtx_insn *insn)
754 {
755 unsigned i;
756
757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
758 {
759 int j, k, idx = reg_state[i].use_index;
760 if (idx < 0)
761 continue;
762 j = k = RELOAD_COMBINE_MAX_USES;
763 while (j-- > idx)
764 {
765 if (reg_state[i].reg_use[j].insn != insn)
766 {
767 k--;
768 if (k != j)
769 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
770 }
771 }
772 reg_state[i].use_index = k;
773 }
774 }
775
776 /* Called when we need to forget about all uses of REGNO after an insn
777 which is identified by RUID. */
778
779 static void
780 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
781 {
782 int j, k, idx = reg_state[regno].use_index;
783 if (idx < 0)
784 return;
785 j = k = RELOAD_COMBINE_MAX_USES;
786 while (j-- > idx)
787 {
788 if (reg_state[regno].reg_use[j].ruid >= ruid)
789 {
790 k--;
791 if (k != j)
792 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
793 }
794 }
795 reg_state[regno].use_index = k;
796 }
797
798 /* Find the use of REGNO with the ruid that is highest among those
799 lower than RUID_LIMIT, and return it if it is the only use of this
800 reg in the insn. Return NULL otherwise. */
801
802 static struct reg_use *
803 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
804 {
805 int i, best_ruid = 0;
806 int use_idx = reg_state[regno].use_index;
807 struct reg_use *retval;
808
809 if (use_idx < 0)
810 return NULL;
811 retval = NULL;
812 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
813 {
814 struct reg_use *use = reg_state[regno].reg_use + i;
815 int this_ruid = use->ruid;
816 if (this_ruid >= ruid_limit)
817 continue;
818 if (this_ruid > best_ruid)
819 {
820 best_ruid = this_ruid;
821 retval = use;
822 }
823 else if (this_ruid == best_ruid)
824 retval = NULL;
825 }
826 if (last_label_ruid >= best_ruid)
827 return NULL;
828 return retval;
829 }
830
831 /* After we've moved an add insn, fix up any debug insns that occur
832 between the old location of the add and the new location. REG is
833 the destination register of the add insn; REPLACEMENT is the
834 SET_SRC of the add. FROM and TO specify the range in which we
835 should make this change on debug insns. */
836
837 static void
838 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
839 {
840 rtx_insn *insn;
841 for (insn = from; insn != to; insn = NEXT_INSN (insn))
842 {
843 rtx t;
844
845 if (!DEBUG_INSN_P (insn))
846 continue;
847
848 t = INSN_VAR_LOCATION_LOC (insn);
849 t = simplify_replace_rtx (t, reg, replacement);
850 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
851 }
852 }
853
854 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
855 with SRC in the insn described by USE, taking costs into account. Return
856 true if we made the replacement. */
857
858 static bool
859 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
860 {
861 rtx_insn *use_insn = use->insn;
862 rtx mem = use->containing_mem;
863 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
864
865 if (mem != NULL_RTX)
866 {
867 addr_space_t as = MEM_ADDR_SPACE (mem);
868 rtx oldaddr = XEXP (mem, 0);
869 rtx newaddr = NULL_RTX;
870 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
871 int new_cost;
872
873 newaddr = simplify_replace_rtx (oldaddr, reg, src);
874 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
875 {
876 XEXP (mem, 0) = newaddr;
877 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
878 XEXP (mem, 0) = oldaddr;
879 if (new_cost <= old_cost
880 && validate_change (use_insn,
881 &XEXP (mem, 0), newaddr, 0))
882 return true;
883 }
884 }
885 else
886 {
887 rtx new_set = single_set (use_insn);
888 if (new_set
889 && REG_P (SET_DEST (new_set))
890 && GET_CODE (SET_SRC (new_set)) == PLUS
891 && REG_P (XEXP (SET_SRC (new_set), 0))
892 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
893 {
894 rtx new_src;
895 machine_mode mode = GET_MODE (SET_DEST (new_set));
896 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
897
898 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
899 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
900
901 if (set_src_cost (new_src, mode, speed) <= old_cost
902 && validate_change (use_insn, &SET_SRC (new_set),
903 new_src, 0))
904 return true;
905 }
906 }
907 return false;
908 }
909
910 /* Called by reload_combine when scanning INSN. This function tries to detect
911 patterns where a constant is added to a register, and the result is used
912 in an address.
913 Return true if no further processing is needed on INSN; false if it wasn't
914 recognized and should be handled normally. */
915
916 static bool
917 reload_combine_recognize_const_pattern (rtx_insn *insn)
918 {
919 int from_ruid = reload_combine_ruid;
920 rtx set, pat, reg, src, addreg;
921 unsigned int regno;
922 struct reg_use *use;
923 bool must_move_add;
924 rtx_insn *add_moved_after_insn = NULL;
925 int add_moved_after_ruid = 0;
926 int clobbered_regno = -1;
927
928 set = single_set (insn);
929 if (set == NULL_RTX)
930 return false;
931
932 reg = SET_DEST (set);
933 src = SET_SRC (set);
934 if (!REG_P (reg)
935 || REG_NREGS (reg) != 1
936 || GET_MODE (reg) != Pmode
937 || reg == stack_pointer_rtx)
938 return false;
939
940 regno = REGNO (reg);
941
942 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
943 uses of REG1 inside an address, or inside another add insn. If
944 possible and profitable, merge the addition into subsequent
945 uses. */
946 if (GET_CODE (src) != PLUS
947 || !REG_P (XEXP (src, 0))
948 || !CONSTANT_P (XEXP (src, 1)))
949 return false;
950
951 addreg = XEXP (src, 0);
952 must_move_add = rtx_equal_p (reg, addreg);
953
954 pat = PATTERN (insn);
955 if (must_move_add && set != pat)
956 {
957 /* We have to be careful when moving the add; apart from the
958 single_set there may also be clobbers. Recognize one special
959 case, that of one clobber alongside the set (likely a clobber
960 of the CC register). */
961 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
962 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
963 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
964 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
965 return false;
966 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
967 }
968
969 do
970 {
971 use = reload_combine_closest_single_use (regno, from_ruid);
972
973 if (use)
974 /* Start the search for the next use from here. */
975 from_ruid = use->ruid;
976
977 if (use && GET_MODE (*use->usep) == Pmode)
978 {
979 bool delete_add = false;
980 rtx_insn *use_insn = use->insn;
981 int use_ruid = use->ruid;
982
983 /* Avoid moving the add insn past a jump. */
984 if (must_move_add && use_ruid <= last_jump_ruid)
985 break;
986
987 /* If the add clobbers another hard reg in parallel, don't move
988 it past a real set of this hard reg. */
989 if (must_move_add && clobbered_regno >= 0
990 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
991 break;
992
993 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
994 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
995 break;
996
997 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
998 /* Avoid moving a use of ADDREG past a point where it is stored. */
999 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1000 break;
1001
1002 /* We also must not move the addition past an insn that sets
1003 the same register, unless we can combine two add insns. */
1004 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1005 {
1006 if (use->containing_mem == NULL_RTX)
1007 delete_add = true;
1008 else
1009 break;
1010 }
1011
1012 if (try_replace_in_use (use, reg, src))
1013 {
1014 reload_combine_purge_insn_uses (use_insn);
1015 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1016 use_ruid, NULL_RTX);
1017
1018 if (delete_add)
1019 {
1020 fixup_debug_insns (reg, src, insn, use_insn);
1021 delete_insn (insn);
1022 return true;
1023 }
1024 if (must_move_add)
1025 {
1026 add_moved_after_insn = use_insn;
1027 add_moved_after_ruid = use_ruid;
1028 }
1029 continue;
1030 }
1031 }
1032 /* If we get here, we couldn't handle this use. */
1033 if (must_move_add)
1034 break;
1035 }
1036 while (use);
1037
1038 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1039 /* Process the add normally. */
1040 return false;
1041
1042 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1043
1044 reorder_insns (insn, insn, add_moved_after_insn);
1045 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1046 reload_combine_split_ruids (add_moved_after_ruid - 1);
1047 reload_combine_note_use (&PATTERN (insn), insn,
1048 add_moved_after_ruid, NULL_RTX);
1049 reg_state[regno].store_ruid = add_moved_after_ruid;
1050
1051 return true;
1052 }
1053
1054 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1055 can handle and improve. Return true if no further processing is needed on
1056 INSN; false if it wasn't recognized and should be handled normally. */
1057
1058 static bool
1059 reload_combine_recognize_pattern (rtx_insn *insn)
1060 {
1061 rtx set, reg, src;
1062
1063 set = single_set (insn);
1064 if (set == NULL_RTX)
1065 return false;
1066
1067 reg = SET_DEST (set);
1068 src = SET_SRC (set);
1069 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1070 return false;
1071
1072 unsigned int regno = REGNO (reg);
1073 machine_mode mode = GET_MODE (reg);
1074
1075 if (reg_state[regno].use_index < 0
1076 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1077 return false;
1078
1079 for (int i = reg_state[regno].use_index;
1080 i < RELOAD_COMBINE_MAX_USES; i++)
1081 {
1082 struct reg_use *use = reg_state[regno].reg_use + i;
1083 if (GET_MODE (*use->usep) != mode)
1084 return false;
1085 }
1086
1087 /* Look for (set (REGX) (CONST_INT))
1088 (set (REGX) (PLUS (REGX) (REGY)))
1089 ...
1090 ... (MEM (REGX)) ...
1091 and convert it to
1092 (set (REGZ) (CONST_INT))
1093 ...
1094 ... (MEM (PLUS (REGZ) (REGY)))... .
1095
1096 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1097 and that we know all uses of REGX before it dies.
1098 Also, explicitly check that REGX != REGY; our life information
1099 does not yet show whether REGY changes in this insn. */
1100
1101 if (GET_CODE (src) == PLUS
1102 && reg_state[regno].all_offsets_match
1103 && last_index_reg != -1
1104 && REG_P (XEXP (src, 1))
1105 && rtx_equal_p (XEXP (src, 0), reg)
1106 && !rtx_equal_p (XEXP (src, 1), reg)
1107 && last_label_ruid < reg_state[regno].use_ruid)
1108 {
1109 rtx base = XEXP (src, 1);
1110 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1111 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1112 rtx index_reg = NULL_RTX;
1113 rtx reg_sum = NULL_RTX;
1114 int i;
1115
1116 /* Now we need to set INDEX_REG to an index register (denoted as
1117 REGZ in the illustration above) and REG_SUM to the expression
1118 register+register that we want to use to substitute uses of REG
1119 (typically in MEMs) with. First check REG and BASE for being
1120 index registers; we can use them even if they are not dead. */
1121 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1122 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1123 REGNO (base)))
1124 {
1125 index_reg = reg;
1126 reg_sum = src;
1127 }
1128 else
1129 {
1130 /* Otherwise, look for a free index register. Since we have
1131 checked above that neither REG nor BASE are index registers,
1132 if we find anything at all, it will be different from these
1133 two registers. */
1134 for (i = first_index_reg; i <= last_index_reg; i++)
1135 {
1136 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1137 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1138 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1139 && (call_used_regs[i] || df_regs_ever_live_p (i))
1140 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1141 && !fixed_regs[i] && !global_regs[i]
1142 && hard_regno_nregs (i, GET_MODE (reg)) == 1
1143 && targetm.hard_regno_scratch_ok (i))
1144 {
1145 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1146 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1147 break;
1148 }
1149 }
1150 }
1151
1152 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1153 (REGY), i.e. BASE, is not clobbered before the last use we'll
1154 create. */
1155 if (reg_sum
1156 && prev_set
1157 && CONST_INT_P (SET_SRC (prev_set))
1158 && rtx_equal_p (SET_DEST (prev_set), reg)
1159 && (reg_state[REGNO (base)].store_ruid
1160 <= reg_state[regno].use_ruid))
1161 {
1162 /* Change destination register and, if necessary, the constant
1163 value in PREV, the constant loading instruction. */
1164 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1165 if (reg_state[regno].offset != const0_rtx)
1166 validate_change (prev,
1167 &SET_SRC (prev_set),
1168 GEN_INT (INTVAL (SET_SRC (prev_set))
1169 + INTVAL (reg_state[regno].offset)),
1170 1);
1171
1172 /* Now for every use of REG that we have recorded, replace REG
1173 with REG_SUM. */
1174 for (i = reg_state[regno].use_index;
1175 i < RELOAD_COMBINE_MAX_USES; i++)
1176 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1177 reg_state[regno].reg_use[i].usep,
1178 /* Each change must have its own
1179 replacement. */
1180 reg_sum, 1);
1181
1182 if (apply_change_group ())
1183 {
1184 struct reg_use *lowest_ruid = NULL;
1185
1186 /* For every new use of REG_SUM, we have to record the use
1187 of BASE therein, i.e. operand 1. */
1188 for (i = reg_state[regno].use_index;
1189 i < RELOAD_COMBINE_MAX_USES; i++)
1190 {
1191 struct reg_use *use = reg_state[regno].reg_use + i;
1192 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1193 use->ruid, use->containing_mem);
1194 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1195 lowest_ruid = use;
1196 }
1197
1198 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1199
1200 /* Delete the reg-reg addition. */
1201 delete_insn (insn);
1202
1203 if (reg_state[regno].offset != const0_rtx
1204 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1205 are now invalid. */
1206 && remove_reg_equal_equiv_notes (prev))
1207 df_notes_rescan (prev);
1208
1209 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1210 return true;
1211 }
1212 }
1213 }
1214 return false;
1215 }
1216
1217 static void
1218 reload_combine (void)
1219 {
1220 rtx_insn *insn, *prev;
1221 basic_block bb;
1222 unsigned int r;
1223 int min_labelno, n_labels;
1224 HARD_REG_SET ever_live_at_start, *label_live;
1225
1226 /* To avoid wasting too much time later searching for an index register,
1227 determine the minimum and maximum index register numbers. */
1228 if (INDEX_REG_CLASS == NO_REGS)
1229 last_index_reg = -1;
1230 else if (first_index_reg == -1 && last_index_reg == 0)
1231 {
1232 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1233 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1234 {
1235 if (first_index_reg == -1)
1236 first_index_reg = r;
1237
1238 last_index_reg = r;
1239 }
1240
1241 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1242 to -1 so we'll know to quit early the next time we get here. */
1243 if (first_index_reg == -1)
1244 {
1245 last_index_reg = -1;
1246 return;
1247 }
1248 }
1249
1250 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1251 information is a bit fuzzy immediately after reload, but it's
1252 still good enough to determine which registers are live at a jump
1253 destination. */
1254 min_labelno = get_first_label_num ();
1255 n_labels = max_label_num () - min_labelno;
1256 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1257 CLEAR_HARD_REG_SET (ever_live_at_start);
1258
1259 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1260 {
1261 insn = BB_HEAD (bb);
1262 if (LABEL_P (insn))
1263 {
1264 HARD_REG_SET live;
1265 bitmap live_in = df_get_live_in (bb);
1266
1267 REG_SET_TO_HARD_REG_SET (live, live_in);
1268 compute_use_by_pseudos (&live, live_in);
1269 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1270 IOR_HARD_REG_SET (ever_live_at_start, live);
1271 }
1272 }
1273
1274 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1275 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1276 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1277 {
1278 reg_state[r].store_ruid = 0;
1279 reg_state[r].real_store_ruid = 0;
1280 if (fixed_regs[r])
1281 reg_state[r].use_index = -1;
1282 else
1283 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1284 }
1285
1286 for (insn = get_last_insn (); insn; insn = prev)
1287 {
1288 bool control_flow_insn;
1289 rtx note;
1290
1291 prev = PREV_INSN (insn);
1292
1293 /* We cannot do our optimization across labels. Invalidating all the use
1294 information we have would be costly, so we just note where the label
1295 is and then later disable any optimization that would cross it. */
1296 if (LABEL_P (insn))
1297 last_label_ruid = reload_combine_ruid;
1298 else if (BARRIER_P (insn))
1299 {
1300 /* Crossing a barrier resets all the use information. */
1301 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1302 if (! fixed_regs[r])
1303 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1304 }
1305 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1306 /* Optimizations across insns being marked as volatile must be
1307 prevented. All the usage information is invalidated
1308 here. */
1309 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1310 if (! fixed_regs[r]
1311 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1312 reg_state[r].use_index = -1;
1313
1314 if (! NONDEBUG_INSN_P (insn))
1315 continue;
1316
1317 reload_combine_ruid++;
1318
1319 control_flow_insn = control_flow_insn_p (insn);
1320 if (control_flow_insn)
1321 last_jump_ruid = reload_combine_ruid;
1322
1323 if (reload_combine_recognize_const_pattern (insn)
1324 || reload_combine_recognize_pattern (insn))
1325 continue;
1326
1327 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1328
1329 if (CALL_P (insn))
1330 {
1331 rtx link;
1332 HARD_REG_SET used_regs;
1333
1334 get_call_reg_set_usage (insn, &used_regs, call_used_reg_set);
1335
1336 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1337 if (TEST_HARD_REG_BIT (used_regs, r))
1338 {
1339 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1340 reg_state[r].store_ruid = reload_combine_ruid;
1341 }
1342
1343 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1344 link = XEXP (link, 1))
1345 {
1346 rtx setuse = XEXP (link, 0);
1347 rtx usage_rtx = XEXP (setuse, 0);
1348 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1349 && REG_P (usage_rtx))
1350 {
1351 unsigned int end_regno = END_REGNO (usage_rtx);
1352 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1353 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1354 {
1355 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1356 reg_state[i].store_ruid = reload_combine_ruid;
1357 }
1358 else
1359 reg_state[i].use_index = -1;
1360 }
1361 }
1362 }
1363
1364 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1365 {
1366 /* Non-spill registers might be used at the call destination in
1367 some unknown fashion, so we have to mark the unknown use. */
1368 HARD_REG_SET *live;
1369
1370 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1371 && JUMP_LABEL (insn))
1372 {
1373 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1374 live = NULL;
1375 else
1376 live = &LABEL_LIVE (JUMP_LABEL (insn));
1377 }
1378 else
1379 live = &ever_live_at_start;
1380
1381 if (live)
1382 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1383 if (TEST_HARD_REG_BIT (*live, r))
1384 reg_state[r].use_index = -1;
1385 }
1386
1387 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1388 NULL_RTX);
1389
1390 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1391 {
1392 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1393 {
1394 int regno = REGNO (XEXP (note, 0));
1395 reg_state[regno].store_ruid = reload_combine_ruid;
1396 reg_state[regno].real_store_ruid = reload_combine_ruid;
1397 reg_state[regno].use_index = -1;
1398 }
1399 }
1400 }
1401
1402 free (label_live);
1403 }
1404
1405 /* Check if DST is a register or a subreg of a register; if it is,
1406 update store_ruid, real_store_ruid and use_index in the reg_state
1407 structure accordingly. Called via note_stores from reload_combine. */
1408
1409 static void
1410 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1411 {
1412 int regno = 0;
1413 int i;
1414 machine_mode mode = GET_MODE (dst);
1415
1416 if (GET_CODE (dst) == SUBREG)
1417 {
1418 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1419 GET_MODE (SUBREG_REG (dst)),
1420 SUBREG_BYTE (dst),
1421 GET_MODE (dst));
1422 dst = SUBREG_REG (dst);
1423 }
1424
1425 /* Some targets do argument pushes without adding REG_INC notes. */
1426
1427 if (MEM_P (dst))
1428 {
1429 dst = XEXP (dst, 0);
1430 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1431 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1432 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1433 {
1434 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1435 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1436 {
1437 /* We could probably do better, but for now mark the register
1438 as used in an unknown fashion and set/clobbered at this
1439 insn. */
1440 reg_state[i].use_index = -1;
1441 reg_state[i].store_ruid = reload_combine_ruid;
1442 reg_state[i].real_store_ruid = reload_combine_ruid;
1443 }
1444 }
1445 else
1446 return;
1447 }
1448
1449 if (!REG_P (dst))
1450 return;
1451 regno += REGNO (dst);
1452
1453 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1454 careful with registers / register parts that are not full words.
1455 Similarly for ZERO_EXTRACT. */
1456 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1457 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1458 {
1459 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1460 {
1461 reg_state[i].use_index = -1;
1462 reg_state[i].store_ruid = reload_combine_ruid;
1463 reg_state[i].real_store_ruid = reload_combine_ruid;
1464 }
1465 }
1466 else
1467 {
1468 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1469 {
1470 reg_state[i].store_ruid = reload_combine_ruid;
1471 if (GET_CODE (set) == SET)
1472 reg_state[i].real_store_ruid = reload_combine_ruid;
1473 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1474 }
1475 }
1476 }
1477
1478 /* XP points to a piece of rtl that has to be checked for any uses of
1479 registers.
1480 *XP is the pattern of INSN, or a part of it.
1481 Called from reload_combine, and recursively by itself. */
1482 static void
1483 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1484 {
1485 rtx x = *xp;
1486 enum rtx_code code = x->code;
1487 const char *fmt;
1488 int i, j;
1489 rtx offset = const0_rtx; /* For the REG case below. */
1490
1491 switch (code)
1492 {
1493 case SET:
1494 if (REG_P (SET_DEST (x)))
1495 {
1496 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1497 return;
1498 }
1499 break;
1500
1501 case USE:
1502 /* If this is the USE of a return value, we can't change it. */
1503 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1504 {
1505 /* Mark the return register as used in an unknown fashion. */
1506 rtx reg = XEXP (x, 0);
1507 unsigned int end_regno = END_REGNO (reg);
1508 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1509 reg_state[regno].use_index = -1;
1510 return;
1511 }
1512 break;
1513
1514 case CLOBBER:
1515 if (REG_P (SET_DEST (x)))
1516 {
1517 /* No spurious CLOBBERs of pseudo registers may remain. */
1518 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1519 return;
1520 }
1521 break;
1522
1523 case PLUS:
1524 /* We are interested in (plus (reg) (const_int)) . */
1525 if (!REG_P (XEXP (x, 0))
1526 || !CONST_INT_P (XEXP (x, 1)))
1527 break;
1528 offset = XEXP (x, 1);
1529 x = XEXP (x, 0);
1530 /* Fall through. */
1531 case REG:
1532 {
1533 int regno = REGNO (x);
1534 int use_index;
1535 int nregs;
1536
1537 /* No spurious USEs of pseudo registers may remain. */
1538 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1539
1540 nregs = REG_NREGS (x);
1541
1542 /* We can't substitute into multi-hard-reg uses. */
1543 if (nregs > 1)
1544 {
1545 while (--nregs >= 0)
1546 reg_state[regno + nregs].use_index = -1;
1547 return;
1548 }
1549
1550 /* We may be called to update uses in previously seen insns.
1551 Don't add uses beyond the last store we saw. */
1552 if (ruid < reg_state[regno].store_ruid)
1553 return;
1554
1555 /* If this register is already used in some unknown fashion, we
1556 can't do anything.
1557 If we decrement the index from zero to -1, we can't store more
1558 uses, so this register becomes used in an unknown fashion. */
1559 use_index = --reg_state[regno].use_index;
1560 if (use_index < 0)
1561 return;
1562
1563 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1564 {
1565 /* This is the first use of this register we have seen since we
1566 marked it as dead. */
1567 reg_state[regno].offset = offset;
1568 reg_state[regno].all_offsets_match = true;
1569 reg_state[regno].use_ruid = ruid;
1570 }
1571 else
1572 {
1573 if (reg_state[regno].use_ruid > ruid)
1574 reg_state[regno].use_ruid = ruid;
1575
1576 if (! rtx_equal_p (offset, reg_state[regno].offset))
1577 reg_state[regno].all_offsets_match = false;
1578 }
1579
1580 reg_state[regno].reg_use[use_index].insn = insn;
1581 reg_state[regno].reg_use[use_index].ruid = ruid;
1582 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1583 reg_state[regno].reg_use[use_index].usep = xp;
1584 return;
1585 }
1586
1587 case MEM:
1588 containing_mem = x;
1589 break;
1590
1591 default:
1592 break;
1593 }
1594
1595 /* Recursively process the components of X. */
1596 fmt = GET_RTX_FORMAT (code);
1597 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1598 {
1599 if (fmt[i] == 'e')
1600 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1601 else if (fmt[i] == 'E')
1602 {
1603 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1604 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1605 containing_mem);
1606 }
1607 }
1608 }
1609 \f
1610 /* See if we can reduce the cost of a constant by replacing a move
1611 with an add. We track situations in which a register is set to a
1612 constant or to a register plus a constant. */
1613 /* We cannot do our optimization across labels. Invalidating all the
1614 information about register contents we have would be costly, so we
1615 use move2add_last_label_luid to note where the label is and then
1616 later disable any optimization that would cross it.
1617 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1618 are only valid if reg_set_luid[n] is greater than
1619 move2add_last_label_luid.
1620 For a set that established a new (potential) base register with
1621 non-constant value, we use move2add_luid from the place where the
1622 setting insn is encountered; registers based off that base then
1623 get the same reg_set_luid. Constants all get
1624 move2add_last_label_luid + 1 as their reg_set_luid. */
1625 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1626
1627 /* If reg_base_reg[n] is negative, register n has been set to
1628 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1629 If reg_base_reg[n] is non-negative, register n has been set to the
1630 sum of reg_offset[n] and the value of register reg_base_reg[n]
1631 before reg_set_luid[n], calculated in mode reg_mode[n] .
1632 For multi-hard-register registers, all but the first one are
1633 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1634 marks it as invalid. */
1635 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1636 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1637 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1638 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1639
1640 /* move2add_luid is linearly increased while scanning the instructions
1641 from first to last. It is used to set reg_set_luid in
1642 reload_cse_move2add and move2add_note_store. */
1643 static int move2add_luid;
1644
1645 /* move2add_last_label_luid is set whenever a label is found. Labels
1646 invalidate all previously collected reg_offset data. */
1647 static int move2add_last_label_luid;
1648
1649 /* ??? We don't know how zero / sign extension is handled, hence we
1650 can't go from a narrower to a wider mode. */
1651 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1652 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1653 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1654 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1655
1656 /* Record that REG is being set to a value with the mode of REG. */
1657
1658 static void
1659 move2add_record_mode (rtx reg)
1660 {
1661 int regno, nregs;
1662 machine_mode mode = GET_MODE (reg);
1663
1664 if (GET_CODE (reg) == SUBREG)
1665 {
1666 regno = subreg_regno (reg);
1667 nregs = subreg_nregs (reg);
1668 }
1669 else if (REG_P (reg))
1670 {
1671 regno = REGNO (reg);
1672 nregs = REG_NREGS (reg);
1673 }
1674 else
1675 gcc_unreachable ();
1676 for (int i = nregs - 1; i > 0; i--)
1677 reg_mode[regno + i] = BLKmode;
1678 reg_mode[regno] = mode;
1679 }
1680
1681 /* Record that REG is being set to the sum of SYM and OFF. */
1682
1683 static void
1684 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1685 {
1686 int regno = REGNO (reg);
1687
1688 move2add_record_mode (reg);
1689 reg_set_luid[regno] = move2add_luid;
1690 reg_base_reg[regno] = -1;
1691 reg_symbol_ref[regno] = sym;
1692 reg_offset[regno] = INTVAL (off);
1693 }
1694
1695 /* Check if REGNO contains a valid value in MODE. */
1696
1697 static bool
1698 move2add_valid_value_p (int regno, scalar_int_mode mode)
1699 {
1700 if (reg_set_luid[regno] <= move2add_last_label_luid)
1701 return false;
1702
1703 if (mode != reg_mode[regno])
1704 {
1705 scalar_int_mode old_mode;
1706 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1707 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
1708 return false;
1709 /* The value loaded into regno in reg_mode[regno] is also valid in
1710 mode after truncation only if (REG:mode regno) is the lowpart of
1711 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1712 regno of the lowpart might be different. */
1713 int s_off = subreg_lowpart_offset (mode, old_mode);
1714 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1715 if (s_off != 0)
1716 /* We could in principle adjust regno, check reg_mode[regno] to be
1717 BLKmode, and return s_off to the caller (vs. -1 for failure),
1718 but we currently have no callers that could make use of this
1719 information. */
1720 return false;
1721 }
1722
1723 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1724 if (reg_mode[i] != BLKmode)
1725 return false;
1726 return true;
1727 }
1728
1729 /* This function is called with INSN that sets REG (of mode MODE)
1730 to (SYM + OFF), while REG is known to already have value (SYM + offset).
1731 This function tries to change INSN into an add instruction
1732 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1733 It also updates the information about REG's known value.
1734 Return true if we made a change. */
1735
1736 static bool
1737 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1738 rtx_insn *insn)
1739 {
1740 rtx pat = PATTERN (insn);
1741 rtx src = SET_SRC (pat);
1742 int regno = REGNO (reg);
1743 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1744 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1745 bool changed = false;
1746
1747 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1748 use (set (reg) (reg)) instead.
1749 We don't delete this insn, nor do we convert it into a
1750 note, to avoid losing register notes or the return
1751 value flag. jump2 already knows how to get rid of
1752 no-op moves. */
1753 if (new_src == const0_rtx)
1754 {
1755 /* If the constants are different, this is a
1756 truncation, that, if turned into (set (reg)
1757 (reg)), would be discarded. Maybe we should
1758 try a truncMN pattern? */
1759 if (INTVAL (off) == reg_offset [regno])
1760 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1761 }
1762 else
1763 {
1764 struct full_rtx_costs oldcst, newcst;
1765 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1766
1767 get_full_set_rtx_cost (pat, &oldcst);
1768 SET_SRC (pat) = tem;
1769 get_full_set_rtx_cost (pat, &newcst);
1770 SET_SRC (pat) = src;
1771
1772 if (costs_lt_p (&newcst, &oldcst, speed)
1773 && have_add2_insn (reg, new_src))
1774 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1775 else if (sym == NULL_RTX && mode != BImode)
1776 {
1777 scalar_int_mode narrow_mode;
1778 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1779 {
1780 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1781 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1782 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1783 {
1784 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1785 rtx narrow_src = gen_int_mode (INTVAL (off),
1786 narrow_mode);
1787 rtx new_set
1788 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1789 narrow_reg),
1790 narrow_src);
1791 get_full_set_rtx_cost (new_set, &newcst);
1792 if (costs_lt_p (&newcst, &oldcst, speed))
1793 {
1794 changed = validate_change (insn, &PATTERN (insn),
1795 new_set, 0);
1796 if (changed)
1797 break;
1798 }
1799 }
1800 }
1801 }
1802 }
1803 move2add_record_sym_value (reg, sym, off);
1804 return changed;
1805 }
1806
1807
1808 /* This function is called with INSN that sets REG (of mode MODE) to
1809 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1810 function tries to find another register which is known to already have
1811 value (SYM + offset) and change INSN into an add instruction
1812 (set (REG) (plus (the found register) (OFF - offset))) if such
1813 a register is found. It also updates the information about
1814 REG's known value.
1815 Return true iff we made a change. */
1816
1817 static bool
1818 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1819 rtx_insn *insn)
1820 {
1821 rtx pat = PATTERN (insn);
1822 rtx src = SET_SRC (pat);
1823 int regno = REGNO (reg);
1824 int min_regno = 0;
1825 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1826 int i;
1827 bool changed = false;
1828 struct full_rtx_costs oldcst, newcst, mincst;
1829 rtx plus_expr;
1830
1831 init_costs_to_max (&mincst);
1832 get_full_set_rtx_cost (pat, &oldcst);
1833
1834 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1835 SET_SRC (pat) = plus_expr;
1836
1837 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1838 if (move2add_valid_value_p (i, mode)
1839 && reg_base_reg[i] < 0
1840 && reg_symbol_ref[i] != NULL_RTX
1841 && rtx_equal_p (sym, reg_symbol_ref[i]))
1842 {
1843 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1844 GET_MODE (reg));
1845 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1846 use (set (reg) (reg)) instead.
1847 We don't delete this insn, nor do we convert it into a
1848 note, to avoid losing register notes or the return
1849 value flag. jump2 already knows how to get rid of
1850 no-op moves. */
1851 if (new_src == const0_rtx)
1852 {
1853 init_costs_to_zero (&mincst);
1854 min_regno = i;
1855 break;
1856 }
1857 else
1858 {
1859 XEXP (plus_expr, 1) = new_src;
1860 get_full_set_rtx_cost (pat, &newcst);
1861
1862 if (costs_lt_p (&newcst, &mincst, speed))
1863 {
1864 mincst = newcst;
1865 min_regno = i;
1866 }
1867 }
1868 }
1869 SET_SRC (pat) = src;
1870
1871 if (costs_lt_p (&mincst, &oldcst, speed))
1872 {
1873 rtx tem;
1874
1875 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1876 if (i != min_regno)
1877 {
1878 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1879 GET_MODE (reg));
1880 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1881 }
1882 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1883 changed = true;
1884 }
1885 reg_set_luid[regno] = move2add_luid;
1886 move2add_record_sym_value (reg, sym, off);
1887 return changed;
1888 }
1889
1890 /* Convert move insns with constant inputs to additions if they are cheaper.
1891 Return true if any changes were made. */
1892 static bool
1893 reload_cse_move2add (rtx_insn *first)
1894 {
1895 int i;
1896 rtx_insn *insn;
1897 bool changed = false;
1898
1899 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1900 {
1901 reg_set_luid[i] = 0;
1902 reg_offset[i] = 0;
1903 reg_base_reg[i] = 0;
1904 reg_symbol_ref[i] = NULL_RTX;
1905 reg_mode[i] = VOIDmode;
1906 }
1907
1908 move2add_last_label_luid = 0;
1909 move2add_luid = 2;
1910 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1911 {
1912 rtx pat, note;
1913
1914 if (LABEL_P (insn))
1915 {
1916 move2add_last_label_luid = move2add_luid;
1917 /* We're going to increment move2add_luid twice after a
1918 label, so that we can use move2add_last_label_luid + 1 as
1919 the luid for constants. */
1920 move2add_luid++;
1921 continue;
1922 }
1923 if (! INSN_P (insn))
1924 continue;
1925 pat = PATTERN (insn);
1926 /* For simplicity, we only perform this optimization on
1927 straightforward SETs. */
1928 scalar_int_mode mode;
1929 if (GET_CODE (pat) == SET
1930 && REG_P (SET_DEST (pat))
1931 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1932 {
1933 rtx reg = SET_DEST (pat);
1934 int regno = REGNO (reg);
1935 rtx src = SET_SRC (pat);
1936
1937 /* Check if we have valid information on the contents of this
1938 register in the mode of REG. */
1939 if (move2add_valid_value_p (regno, mode)
1940 && dbg_cnt (cse2_move2add))
1941 {
1942 /* Try to transform (set (REGX) (CONST_INT A))
1943 ...
1944 (set (REGX) (CONST_INT B))
1945 to
1946 (set (REGX) (CONST_INT A))
1947 ...
1948 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1949 or
1950 (set (REGX) (CONST_INT A))
1951 ...
1952 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1953 */
1954
1955 if (CONST_INT_P (src)
1956 && reg_base_reg[regno] < 0
1957 && reg_symbol_ref[regno] == NULL_RTX)
1958 {
1959 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1960 src, insn);
1961 continue;
1962 }
1963
1964 /* Try to transform (set (REGX) (REGY))
1965 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1966 ...
1967 (set (REGX) (REGY))
1968 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1969 to
1970 (set (REGX) (REGY))
1971 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1972 ...
1973 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1974 else if (REG_P (src)
1975 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1976 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1977 && move2add_valid_value_p (REGNO (src), mode))
1978 {
1979 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1980 rtx set = NULL_RTX;
1981 if (next)
1982 set = single_set (next);
1983 if (set
1984 && SET_DEST (set) == reg
1985 && GET_CODE (SET_SRC (set)) == PLUS
1986 && XEXP (SET_SRC (set), 0) == reg
1987 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
1988 {
1989 rtx src3 = XEXP (SET_SRC (set), 1);
1990 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
1991 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1992 HOST_WIDE_INT regno_offset = reg_offset[regno];
1993 rtx new_src =
1994 gen_int_mode (added_offset
1995 + base_offset
1996 - regno_offset,
1997 mode);
1998 bool success = false;
1999 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2000
2001 if (new_src == const0_rtx)
2002 /* See above why we create (set (reg) (reg)) here. */
2003 success
2004 = validate_change (next, &SET_SRC (set), reg, 0);
2005 else
2006 {
2007 rtx old_src = SET_SRC (set);
2008 struct full_rtx_costs oldcst, newcst;
2009 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2010
2011 get_full_set_rtx_cost (set, &oldcst);
2012 SET_SRC (set) = tem;
2013 get_full_set_src_cost (tem, mode, &newcst);
2014 SET_SRC (set) = old_src;
2015 costs_add_n_insns (&oldcst, 1);
2016
2017 if (costs_lt_p (&newcst, &oldcst, speed)
2018 && have_add2_insn (reg, new_src))
2019 {
2020 rtx newpat = gen_rtx_SET (reg, tem);
2021 success
2022 = validate_change (next, &PATTERN (next),
2023 newpat, 0);
2024 }
2025 }
2026 if (success)
2027 delete_insn (insn);
2028 changed |= success;
2029 insn = next;
2030 move2add_record_mode (reg);
2031 reg_offset[regno]
2032 = trunc_int_for_mode (added_offset + base_offset,
2033 mode);
2034 continue;
2035 }
2036 }
2037 }
2038
2039 /* Try to transform
2040 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2041 ...
2042 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2043 to
2044 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2045 ...
2046 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2047 if ((GET_CODE (src) == SYMBOL_REF
2048 || (GET_CODE (src) == CONST
2049 && GET_CODE (XEXP (src, 0)) == PLUS
2050 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2051 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2052 && dbg_cnt (cse2_move2add))
2053 {
2054 rtx sym, off;
2055
2056 if (GET_CODE (src) == SYMBOL_REF)
2057 {
2058 sym = src;
2059 off = const0_rtx;
2060 }
2061 else
2062 {
2063 sym = XEXP (XEXP (src, 0), 0);
2064 off = XEXP (XEXP (src, 0), 1);
2065 }
2066
2067 /* If the reg already contains the value which is sum of
2068 sym and some constant value, we can use an add2 insn. */
2069 if (move2add_valid_value_p (regno, mode)
2070 && reg_base_reg[regno] < 0
2071 && reg_symbol_ref[regno] != NULL_RTX
2072 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2073 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2074
2075 /* Otherwise, we have to find a register whose value is sum
2076 of sym and some constant value. */
2077 else
2078 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2079
2080 continue;
2081 }
2082 }
2083
2084 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2085 {
2086 if (REG_NOTE_KIND (note) == REG_INC
2087 && REG_P (XEXP (note, 0)))
2088 {
2089 /* Reset the information about this register. */
2090 int regno = REGNO (XEXP (note, 0));
2091 if (regno < FIRST_PSEUDO_REGISTER)
2092 {
2093 move2add_record_mode (XEXP (note, 0));
2094 reg_mode[regno] = VOIDmode;
2095 }
2096 }
2097 }
2098 note_stores (PATTERN (insn), move2add_note_store, insn);
2099
2100 /* If INSN is a conditional branch, we try to extract an
2101 implicit set out of it. */
2102 if (any_condjump_p (insn))
2103 {
2104 rtx cnd = fis_get_condition (insn);
2105
2106 if (cnd != NULL_RTX
2107 && GET_CODE (cnd) == NE
2108 && REG_P (XEXP (cnd, 0))
2109 && !reg_set_p (XEXP (cnd, 0), insn)
2110 /* The following two checks, which are also in
2111 move2add_note_store, are intended to reduce the
2112 number of calls to gen_rtx_SET to avoid memory
2113 allocation if possible. */
2114 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2115 && REG_NREGS (XEXP (cnd, 0)) == 1
2116 && CONST_INT_P (XEXP (cnd, 1)))
2117 {
2118 rtx implicit_set =
2119 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2120 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2121 }
2122 }
2123
2124 /* If this is a CALL_INSN, all call used registers are stored with
2125 unknown values. */
2126 if (CALL_P (insn))
2127 {
2128 rtx link;
2129
2130 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2131 {
2132 if (call_used_regs[i])
2133 /* Reset the information about this register. */
2134 reg_mode[i] = VOIDmode;
2135 }
2136
2137 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
2138 link = XEXP (link, 1))
2139 {
2140 rtx setuse = XEXP (link, 0);
2141 rtx usage_rtx = XEXP (setuse, 0);
2142 if (GET_CODE (setuse) == CLOBBER
2143 && REG_P (usage_rtx))
2144 {
2145 unsigned int end_regno = END_REGNO (usage_rtx);
2146 for (unsigned int r = REGNO (usage_rtx); r < end_regno; ++r)
2147 /* Reset the information about this register. */
2148 reg_mode[r] = VOIDmode;
2149 }
2150 }
2151 }
2152 }
2153 return changed;
2154 }
2155
2156 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2157 contains SET.
2158 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2159 Called from reload_cse_move2add via note_stores. */
2160
2161 static void
2162 move2add_note_store (rtx dst, const_rtx set, void *data)
2163 {
2164 rtx_insn *insn = (rtx_insn *) data;
2165 unsigned int regno = 0;
2166 scalar_int_mode mode;
2167
2168 /* Some targets do argument pushes without adding REG_INC notes. */
2169
2170 if (MEM_P (dst))
2171 {
2172 dst = XEXP (dst, 0);
2173 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2174 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2175 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2176 return;
2177 }
2178
2179 if (GET_CODE (dst) == SUBREG)
2180 regno = subreg_regno (dst);
2181 else if (REG_P (dst))
2182 regno = REGNO (dst);
2183 else
2184 return;
2185
2186 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2187 goto invalidate;
2188
2189 if (GET_CODE (set) == SET)
2190 {
2191 rtx note, sym = NULL_RTX;
2192 rtx off;
2193
2194 note = find_reg_equal_equiv_note (insn);
2195 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2196 {
2197 sym = XEXP (note, 0);
2198 off = const0_rtx;
2199 }
2200 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2201 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2202 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2203 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2204 {
2205 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2206 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2207 }
2208
2209 if (sym != NULL_RTX)
2210 {
2211 move2add_record_sym_value (dst, sym, off);
2212 return;
2213 }
2214 }
2215
2216 if (GET_CODE (set) == SET
2217 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2218 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2219 {
2220 rtx src = SET_SRC (set);
2221 rtx base_reg;
2222 unsigned HOST_WIDE_INT offset;
2223 int base_regno;
2224
2225 switch (GET_CODE (src))
2226 {
2227 case PLUS:
2228 if (REG_P (XEXP (src, 0)))
2229 {
2230 base_reg = XEXP (src, 0);
2231
2232 if (CONST_INT_P (XEXP (src, 1)))
2233 offset = UINTVAL (XEXP (src, 1));
2234 else if (REG_P (XEXP (src, 1))
2235 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2236 {
2237 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2238 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2239 offset = reg_offset[REGNO (XEXP (src, 1))];
2240 /* Maybe the first register is known to be a
2241 constant. */
2242 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2243 && reg_base_reg[REGNO (base_reg)] < 0
2244 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2245 {
2246 offset = reg_offset[REGNO (base_reg)];
2247 base_reg = XEXP (src, 1);
2248 }
2249 else
2250 goto invalidate;
2251 }
2252 else
2253 goto invalidate;
2254
2255 break;
2256 }
2257
2258 goto invalidate;
2259
2260 case REG:
2261 base_reg = src;
2262 offset = 0;
2263 break;
2264
2265 case CONST_INT:
2266 /* Start tracking the register as a constant. */
2267 reg_base_reg[regno] = -1;
2268 reg_symbol_ref[regno] = NULL_RTX;
2269 reg_offset[regno] = INTVAL (SET_SRC (set));
2270 /* We assign the same luid to all registers set to constants. */
2271 reg_set_luid[regno] = move2add_last_label_luid + 1;
2272 move2add_record_mode (dst);
2273 return;
2274
2275 default:
2276 goto invalidate;
2277 }
2278
2279 base_regno = REGNO (base_reg);
2280 /* If information about the base register is not valid, set it
2281 up as a new base register, pretending its value is known
2282 starting from the current insn. */
2283 if (!move2add_valid_value_p (base_regno, mode))
2284 {
2285 reg_base_reg[base_regno] = base_regno;
2286 reg_symbol_ref[base_regno] = NULL_RTX;
2287 reg_offset[base_regno] = 0;
2288 reg_set_luid[base_regno] = move2add_luid;
2289 gcc_assert (GET_MODE (base_reg) == mode);
2290 move2add_record_mode (base_reg);
2291 }
2292
2293 /* Copy base information from our base register. */
2294 reg_set_luid[regno] = reg_set_luid[base_regno];
2295 reg_base_reg[regno] = reg_base_reg[base_regno];
2296 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2297
2298 /* Compute the sum of the offsets or constants. */
2299 reg_offset[regno]
2300 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2301
2302 move2add_record_mode (dst);
2303 }
2304 else
2305 {
2306 invalidate:
2307 /* Invalidate the contents of the register. */
2308 move2add_record_mode (dst);
2309 reg_mode[regno] = VOIDmode;
2310 }
2311 }
2312 \f
2313 namespace {
2314
2315 const pass_data pass_data_postreload_cse =
2316 {
2317 RTL_PASS, /* type */
2318 "postreload", /* name */
2319 OPTGROUP_NONE, /* optinfo_flags */
2320 TV_RELOAD_CSE_REGS, /* tv_id */
2321 0, /* properties_required */
2322 0, /* properties_provided */
2323 0, /* properties_destroyed */
2324 0, /* todo_flags_start */
2325 TODO_df_finish, /* todo_flags_finish */
2326 };
2327
2328 class pass_postreload_cse : public rtl_opt_pass
2329 {
2330 public:
2331 pass_postreload_cse (gcc::context *ctxt)
2332 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2333 {}
2334
2335 /* opt_pass methods: */
2336 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2337
2338 virtual unsigned int execute (function *);
2339
2340 }; // class pass_postreload_cse
2341
2342 unsigned int
2343 pass_postreload_cse::execute (function *fun)
2344 {
2345 if (!dbg_cnt (postreload_cse))
2346 return 0;
2347
2348 /* Do a very simple CSE pass over just the hard registers. */
2349 reload_cse_regs (get_insns ());
2350 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2351 Remove any EH edges associated with them. */
2352 if (fun->can_throw_non_call_exceptions
2353 && purge_all_dead_edges ())
2354 cleanup_cfg (0);
2355
2356 return 0;
2357 }
2358
2359 } // anon namespace
2360
2361 rtl_opt_pass *
2362 make_pass_postreload_cse (gcc::context *ctxt)
2363 {
2364 return new pass_postreload_cse (ctxt);
2365 }