]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
gcc/
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "input.h"
36 #include "function.h"
37 #include "symtab.h"
38 #include "statistics.h"
39 #include "double-int.h"
40 #include "real.h"
41 #include "fixed-value.h"
42 #include "alias.h"
43 #include "wide-int.h"
44 #include "inchash.h"
45 #include "tree.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "varasm.h"
52 #include "stmt.h"
53 #include "expr.h"
54 #include "insn-codes.h"
55 #include "optabs.h"
56 #include "regs.h"
57 #include "predict.h"
58 #include "dominance.h"
59 #include "cfg.h"
60 #include "cfgrtl.h"
61 #include "cfgbuild.h"
62 #include "cfgcleanup.h"
63 #include "basic-block.h"
64 #include "reload.h"
65 #include "recog.h"
66 #include "cselib.h"
67 #include "diagnostic-core.h"
68 #include "except.h"
69 #include "target.h"
70 #include "tree-pass.h"
71 #include "df.h"
72 #include "dbgcnt.h"
73
74 static int reload_cse_noop_set_p (rtx);
75 static bool reload_cse_simplify (rtx_insn *, rtx);
76 static void reload_cse_regs_1 (void);
77 static int reload_cse_simplify_set (rtx, rtx_insn *);
78 static int reload_cse_simplify_operands (rtx_insn *, rtx);
79
80 static void reload_combine (void);
81 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
82 static void reload_combine_note_store (rtx, const_rtx, void *);
83
84 static bool reload_cse_move2add (rtx_insn *);
85 static void move2add_note_store (rtx, const_rtx, void *);
86
87 /* Call cse / combine like post-reload optimization phases.
88 FIRST is the first instruction. */
89
90 static void
91 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
92 {
93 bool moves_converted;
94 reload_cse_regs_1 ();
95 reload_combine ();
96 moves_converted = reload_cse_move2add (first);
97 if (flag_expensive_optimizations)
98 {
99 if (moves_converted)
100 reload_combine ();
101 reload_cse_regs_1 ();
102 }
103 }
104
105 /* See whether a single set SET is a noop. */
106 static int
107 reload_cse_noop_set_p (rtx set)
108 {
109 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
110 return 0;
111
112 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
113 }
114
115 /* Try to simplify INSN. Return true if the CFG may have changed. */
116 static bool
117 reload_cse_simplify (rtx_insn *insn, rtx testreg)
118 {
119 rtx body = PATTERN (insn);
120 basic_block insn_bb = BLOCK_FOR_INSN (insn);
121 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
122
123 if (GET_CODE (body) == SET)
124 {
125 int count = 0;
126
127 /* Simplify even if we may think it is a no-op.
128 We may think a memory load of a value smaller than WORD_SIZE
129 is redundant because we haven't taken into account possible
130 implicit extension. reload_cse_simplify_set() will bring
131 this out, so it's safer to simplify before we delete. */
132 count += reload_cse_simplify_set (body, insn);
133
134 if (!count && reload_cse_noop_set_p (body))
135 {
136 rtx value = SET_DEST (body);
137 if (REG_P (value)
138 && ! REG_FUNCTION_VALUE_P (value))
139 value = 0;
140 if (check_for_inc_dec (insn))
141 delete_insn_and_edges (insn);
142 /* We're done with this insn. */
143 goto done;
144 }
145
146 if (count > 0)
147 apply_change_group ();
148 else
149 reload_cse_simplify_operands (insn, testreg);
150 }
151 else if (GET_CODE (body) == PARALLEL)
152 {
153 int i;
154 int count = 0;
155 rtx value = NULL_RTX;
156
157 /* Registers mentioned in the clobber list for an asm cannot be reused
158 within the body of the asm. Invalidate those registers now so that
159 we don't try to substitute values for them. */
160 if (asm_noperands (body) >= 0)
161 {
162 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
163 {
164 rtx part = XVECEXP (body, 0, i);
165 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
166 cselib_invalidate_rtx (XEXP (part, 0));
167 }
168 }
169
170 /* If every action in a PARALLEL is a noop, we can delete
171 the entire PARALLEL. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 {
174 rtx part = XVECEXP (body, 0, i);
175 if (GET_CODE (part) == SET)
176 {
177 if (! reload_cse_noop_set_p (part))
178 break;
179 if (REG_P (SET_DEST (part))
180 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
181 {
182 if (value)
183 break;
184 value = SET_DEST (part);
185 }
186 }
187 else if (GET_CODE (part) != CLOBBER)
188 break;
189 }
190
191 if (i < 0)
192 {
193 if (check_for_inc_dec (insn))
194 delete_insn_and_edges (insn);
195 /* We're done with this insn. */
196 goto done;
197 }
198
199 /* It's not a no-op, but we can try to simplify it. */
200 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
201 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
202 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
203
204 if (count > 0)
205 apply_change_group ();
206 else
207 reload_cse_simplify_operands (insn, testreg);
208 }
209
210 done:
211 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
212 }
213
214 /* Do a very simple CSE pass over the hard registers.
215
216 This function detects no-op moves where we happened to assign two
217 different pseudo-registers to the same hard register, and then
218 copied one to the other. Reload will generate a useless
219 instruction copying a register to itself.
220
221 This function also detects cases where we load a value from memory
222 into two different registers, and (if memory is more expensive than
223 registers) changes it to simply copy the first register into the
224 second register.
225
226 Another optimization is performed that scans the operands of each
227 instruction to see whether the value is already available in a
228 hard register. It then replaces the operand with the hard register
229 if possible, much like an optional reload would. */
230
231 static void
232 reload_cse_regs_1 (void)
233 {
234 bool cfg_changed = false;
235 basic_block bb;
236 rtx_insn *insn;
237 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
238
239 cselib_init (CSELIB_RECORD_MEMORY);
240 init_alias_analysis ();
241
242 FOR_EACH_BB_FN (bb, cfun)
243 FOR_BB_INSNS (bb, insn)
244 {
245 if (INSN_P (insn))
246 cfg_changed |= reload_cse_simplify (insn, testreg);
247
248 cselib_process_insn (insn);
249 }
250
251 /* Clean up. */
252 end_alias_analysis ();
253 cselib_finish ();
254 if (cfg_changed)
255 cleanup_cfg (0);
256 }
257
258 /* Try to simplify a single SET instruction. SET is the set pattern.
259 INSN is the instruction it came from.
260 This function only handles one case: if we set a register to a value
261 which is not a register, we try to find that value in some other register
262 and change the set into a register copy. */
263
264 static int
265 reload_cse_simplify_set (rtx set, rtx_insn *insn)
266 {
267 int did_change = 0;
268 int dreg;
269 rtx src;
270 reg_class_t dclass;
271 int old_cost;
272 cselib_val *val;
273 struct elt_loc_list *l;
274 #ifdef LOAD_EXTEND_OP
275 enum rtx_code extend_op = UNKNOWN;
276 #endif
277 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
278
279 dreg = true_regnum (SET_DEST (set));
280 if (dreg < 0)
281 return 0;
282
283 src = SET_SRC (set);
284 if (side_effects_p (src) || true_regnum (src) >= 0)
285 return 0;
286
287 dclass = REGNO_REG_CLASS (dreg);
288
289 #ifdef LOAD_EXTEND_OP
290 /* When replacing a memory with a register, we need to honor assumptions
291 that combine made wrt the contents of sign bits. We'll do this by
292 generating an extend instruction instead of a reg->reg copy. Thus
293 the destination must be a register that we can widen. */
294 if (MEM_P (src)
295 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
296 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
297 && !REG_P (SET_DEST (set)))
298 return 0;
299 #endif
300
301 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
302 if (! val)
303 return 0;
304
305 /* If memory loads are cheaper than register copies, don't change them. */
306 if (MEM_P (src))
307 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
308 else if (REG_P (src))
309 old_cost = register_move_cost (GET_MODE (src),
310 REGNO_REG_CLASS (REGNO (src)), dclass);
311 else
312 old_cost = set_src_cost (src, speed);
313
314 for (l = val->locs; l; l = l->next)
315 {
316 rtx this_rtx = l->loc;
317 int this_cost;
318
319 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
320 {
321 #ifdef LOAD_EXTEND_OP
322 if (extend_op != UNKNOWN)
323 {
324 wide_int result;
325
326 if (!CONST_SCALAR_INT_P (this_rtx))
327 continue;
328
329 switch (extend_op)
330 {
331 case ZERO_EXTEND:
332 result = wide_int::from (std::make_pair (this_rtx,
333 GET_MODE (src)),
334 BITS_PER_WORD, UNSIGNED);
335 break;
336 case SIGN_EXTEND:
337 result = wide_int::from (std::make_pair (this_rtx,
338 GET_MODE (src)),
339 BITS_PER_WORD, SIGNED);
340 break;
341 default:
342 gcc_unreachable ();
343 }
344 this_rtx = immed_wide_int_const (result, word_mode);
345 }
346 #endif
347 this_cost = set_src_cost (this_rtx, speed);
348 }
349 else if (REG_P (this_rtx))
350 {
351 #ifdef LOAD_EXTEND_OP
352 if (extend_op != UNKNOWN)
353 {
354 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
355 this_cost = set_src_cost (this_rtx, speed);
356 }
357 else
358 #endif
359 this_cost = register_move_cost (GET_MODE (this_rtx),
360 REGNO_REG_CLASS (REGNO (this_rtx)),
361 dclass);
362 }
363 else
364 continue;
365
366 /* If equal costs, prefer registers over anything else. That
367 tends to lead to smaller instructions on some machines. */
368 if (this_cost < old_cost
369 || (this_cost == old_cost
370 && REG_P (this_rtx)
371 && !REG_P (SET_SRC (set))))
372 {
373 #ifdef LOAD_EXTEND_OP
374 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
375 && extend_op != UNKNOWN
376 #ifdef CANNOT_CHANGE_MODE_CLASS
377 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
378 word_mode,
379 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
380 #endif
381 )
382 {
383 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
384 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
385 validate_change (insn, &SET_DEST (set), wide_dest, 1);
386 }
387 #endif
388
389 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
390 old_cost = this_cost, did_change = 1;
391 }
392 }
393
394 return did_change;
395 }
396
397 /* Try to replace operands in INSN with equivalent values that are already
398 in registers. This can be viewed as optional reloading.
399
400 For each non-register operand in the insn, see if any hard regs are
401 known to be equivalent to that operand. Record the alternatives which
402 can accept these hard registers. Among all alternatives, select the
403 ones which are better or equal to the one currently matching, where
404 "better" is in terms of '?' and '!' constraints. Among the remaining
405 alternatives, select the one which replaces most operands with
406 hard registers. */
407
408 static int
409 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
410 {
411 int i, j;
412
413 /* For each operand, all registers that are equivalent to it. */
414 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
415
416 const char *constraints[MAX_RECOG_OPERANDS];
417
418 /* Vector recording how bad an alternative is. */
419 int *alternative_reject;
420 /* Vector recording how many registers can be introduced by choosing
421 this alternative. */
422 int *alternative_nregs;
423 /* Array of vectors recording, for each operand and each alternative,
424 which hard register to substitute, or -1 if the operand should be
425 left as it is. */
426 int *op_alt_regno[MAX_RECOG_OPERANDS];
427 /* Array of alternatives, sorted in order of decreasing desirability. */
428 int *alternative_order;
429
430 extract_constrain_insn (insn);
431
432 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
433 return 0;
434
435 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
436 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
437 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
438 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
439 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
440
441 /* For each operand, find out which regs are equivalent. */
442 for (i = 0; i < recog_data.n_operands; i++)
443 {
444 cselib_val *v;
445 struct elt_loc_list *l;
446 rtx op;
447
448 CLEAR_HARD_REG_SET (equiv_regs[i]);
449
450 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
451 right, so avoid the problem here. Likewise if we have a constant
452 and the insn pattern doesn't tell us the mode we need. */
453 if (LABEL_P (recog_data.operand[i])
454 || (CONSTANT_P (recog_data.operand[i])
455 && recog_data.operand_mode[i] == VOIDmode))
456 continue;
457
458 op = recog_data.operand[i];
459 #ifdef LOAD_EXTEND_OP
460 if (MEM_P (op)
461 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
462 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
463 {
464 rtx set = single_set (insn);
465
466 /* We might have multiple sets, some of which do implicit
467 extension. Punt on this for now. */
468 if (! set)
469 continue;
470 /* If the destination is also a MEM or a STRICT_LOW_PART, no
471 extension applies.
472 Also, if there is an explicit extension, we don't have to
473 worry about an implicit one. */
474 else if (MEM_P (SET_DEST (set))
475 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
476 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
477 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
478 ; /* Continue ordinary processing. */
479 #ifdef CANNOT_CHANGE_MODE_CLASS
480 /* If the register cannot change mode to word_mode, it follows that
481 it cannot have been used in word_mode. */
482 else if (REG_P (SET_DEST (set))
483 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
484 word_mode,
485 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
486 ; /* Continue ordinary processing. */
487 #endif
488 /* If this is a straight load, make the extension explicit. */
489 else if (REG_P (SET_DEST (set))
490 && recog_data.n_operands == 2
491 && SET_SRC (set) == op
492 && SET_DEST (set) == recog_data.operand[1-i])
493 {
494 validate_change (insn, recog_data.operand_loc[i],
495 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
496 word_mode, op),
497 1);
498 validate_change (insn, recog_data.operand_loc[1-i],
499 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
500 1);
501 if (! apply_change_group ())
502 return 0;
503 return reload_cse_simplify_operands (insn, testreg);
504 }
505 else
506 /* ??? There might be arithmetic operations with memory that are
507 safe to optimize, but is it worth the trouble? */
508 continue;
509 }
510 #endif /* LOAD_EXTEND_OP */
511 if (side_effects_p (op))
512 continue;
513 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
514 if (! v)
515 continue;
516
517 for (l = v->locs; l; l = l->next)
518 if (REG_P (l->loc))
519 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
520 }
521
522 alternative_mask preferred = get_preferred_alternatives (insn);
523 for (i = 0; i < recog_data.n_operands; i++)
524 {
525 machine_mode mode;
526 int regno;
527 const char *p;
528
529 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
530 for (j = 0; j < recog_data.n_alternatives; j++)
531 op_alt_regno[i][j] = -1;
532
533 p = constraints[i] = recog_data.constraints[i];
534 mode = recog_data.operand_mode[i];
535
536 /* Add the reject values for each alternative given by the constraints
537 for this operand. */
538 j = 0;
539 while (*p != '\0')
540 {
541 char c = *p++;
542 if (c == ',')
543 j++;
544 else if (c == '?')
545 alternative_reject[j] += 3;
546 else if (c == '!')
547 alternative_reject[j] += 300;
548 }
549
550 /* We won't change operands which are already registers. We
551 also don't want to modify output operands. */
552 regno = true_regnum (recog_data.operand[i]);
553 if (regno >= 0
554 || constraints[i][0] == '='
555 || constraints[i][0] == '+')
556 continue;
557
558 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
559 {
560 enum reg_class rclass = NO_REGS;
561
562 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
563 continue;
564
565 set_mode_and_regno (testreg, mode, regno);
566
567 /* We found a register equal to this operand. Now look for all
568 alternatives that can accept this register and have not been
569 assigned a register they can use yet. */
570 j = 0;
571 p = constraints[i];
572 for (;;)
573 {
574 char c = *p;
575
576 switch (c)
577 {
578 case 'g':
579 rclass = reg_class_subunion[rclass][GENERAL_REGS];
580 break;
581
582 default:
583 rclass
584 = (reg_class_subunion
585 [rclass]
586 [reg_class_for_constraint (lookup_constraint (p))]);
587 break;
588
589 case ',': case '\0':
590 /* See if REGNO fits this alternative, and set it up as the
591 replacement register if we don't have one for this
592 alternative yet and the operand being replaced is not
593 a cheap CONST_INT. */
594 if (op_alt_regno[i][j] == -1
595 && TEST_BIT (preferred, j)
596 && reg_fits_class_p (testreg, rclass, 0, mode)
597 && (!CONST_INT_P (recog_data.operand[i])
598 || (set_src_cost (recog_data.operand[i],
599 optimize_bb_for_speed_p
600 (BLOCK_FOR_INSN (insn)))
601 > set_src_cost (testreg,
602 optimize_bb_for_speed_p
603 (BLOCK_FOR_INSN (insn))))))
604 {
605 alternative_nregs[j]++;
606 op_alt_regno[i][j] = regno;
607 }
608 j++;
609 rclass = NO_REGS;
610 break;
611 }
612 p += CONSTRAINT_LEN (c, p);
613
614 if (c == '\0')
615 break;
616 }
617 }
618 }
619
620 /* Record all alternatives which are better or equal to the currently
621 matching one in the alternative_order array. */
622 for (i = j = 0; i < recog_data.n_alternatives; i++)
623 if (alternative_reject[i] <= alternative_reject[which_alternative])
624 alternative_order[j++] = i;
625 recog_data.n_alternatives = j;
626
627 /* Sort it. Given a small number of alternatives, a dumb algorithm
628 won't hurt too much. */
629 for (i = 0; i < recog_data.n_alternatives - 1; i++)
630 {
631 int best = i;
632 int best_reject = alternative_reject[alternative_order[i]];
633 int best_nregs = alternative_nregs[alternative_order[i]];
634
635 for (j = i + 1; j < recog_data.n_alternatives; j++)
636 {
637 int this_reject = alternative_reject[alternative_order[j]];
638 int this_nregs = alternative_nregs[alternative_order[j]];
639
640 if (this_reject < best_reject
641 || (this_reject == best_reject && this_nregs > best_nregs))
642 {
643 best = j;
644 best_reject = this_reject;
645 best_nregs = this_nregs;
646 }
647 }
648
649 std::swap (alternative_order[best], alternative_order[i]);
650 }
651
652 /* Substitute the operands as determined by op_alt_regno for the best
653 alternative. */
654 j = alternative_order[0];
655
656 for (i = 0; i < recog_data.n_operands; i++)
657 {
658 machine_mode mode = recog_data.operand_mode[i];
659 if (op_alt_regno[i][j] == -1)
660 continue;
661
662 validate_change (insn, recog_data.operand_loc[i],
663 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
664 }
665
666 for (i = recog_data.n_dups - 1; i >= 0; i--)
667 {
668 int op = recog_data.dup_num[i];
669 machine_mode mode = recog_data.operand_mode[op];
670
671 if (op_alt_regno[op][j] == -1)
672 continue;
673
674 validate_change (insn, recog_data.dup_loc[i],
675 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
676 }
677
678 return apply_change_group ();
679 }
680 \f
681 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
682 addressing now.
683 This code might also be useful when reload gave up on reg+reg addressing
684 because of clashes between the return register and INDEX_REG_CLASS. */
685
686 /* The maximum number of uses of a register we can keep track of to
687 replace them with reg+reg addressing. */
688 #define RELOAD_COMBINE_MAX_USES 16
689
690 /* Describes a recorded use of a register. */
691 struct reg_use
692 {
693 /* The insn where a register has been used. */
694 rtx_insn *insn;
695 /* Points to the memory reference enclosing the use, if any, NULL_RTX
696 otherwise. */
697 rtx containing_mem;
698 /* Location of the register within INSN. */
699 rtx *usep;
700 /* The reverse uid of the insn. */
701 int ruid;
702 };
703
704 /* If the register is used in some unknown fashion, USE_INDEX is negative.
705 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
706 indicates where it is first set or clobbered.
707 Otherwise, USE_INDEX is the index of the last encountered use of the
708 register (which is first among these we have seen since we scan backwards).
709 USE_RUID indicates the first encountered, i.e. last, of these uses.
710 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
711 with a constant offset; OFFSET contains this constant in that case.
712 STORE_RUID is always meaningful if we only want to use a value in a
713 register in a different place: it denotes the next insn in the insn
714 stream (i.e. the last encountered) that sets or clobbers the register.
715 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
716 static struct
717 {
718 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
719 rtx offset;
720 int use_index;
721 int store_ruid;
722 int real_store_ruid;
723 int use_ruid;
724 bool all_offsets_match;
725 } reg_state[FIRST_PSEUDO_REGISTER];
726
727 /* Reverse linear uid. This is increased in reload_combine while scanning
728 the instructions from last to first. It is used to set last_label_ruid
729 and the store_ruid / use_ruid fields in reg_state. */
730 static int reload_combine_ruid;
731
732 /* The RUID of the last label we encountered in reload_combine. */
733 static int last_label_ruid;
734
735 /* The RUID of the last jump we encountered in reload_combine. */
736 static int last_jump_ruid;
737
738 /* The register numbers of the first and last index register. A value of
739 -1 in LAST_INDEX_REG indicates that we've previously computed these
740 values and found no suitable index registers. */
741 static int first_index_reg = -1;
742 static int last_index_reg;
743
744 #define LABEL_LIVE(LABEL) \
745 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
746
747 /* Subroutine of reload_combine_split_ruids, called to fix up a single
748 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
749
750 static inline void
751 reload_combine_split_one_ruid (int *pruid, int split_ruid)
752 {
753 if (*pruid > split_ruid)
754 (*pruid)++;
755 }
756
757 /* Called when we insert a new insn in a position we've already passed in
758 the scan. Examine all our state, increasing all ruids that are higher
759 than SPLIT_RUID by one in order to make room for a new insn. */
760
761 static void
762 reload_combine_split_ruids (int split_ruid)
763 {
764 unsigned i;
765
766 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
767 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
768 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
769
770 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
771 {
772 int j, idx = reg_state[i].use_index;
773 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
774 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
775 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
776 split_ruid);
777 if (idx < 0)
778 continue;
779 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
780 {
781 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
782 split_ruid);
783 }
784 }
785 }
786
787 /* Called when we are about to rescan a previously encountered insn with
788 reload_combine_note_use after modifying some part of it. This clears all
789 information about uses in that particular insn. */
790
791 static void
792 reload_combine_purge_insn_uses (rtx_insn *insn)
793 {
794 unsigned i;
795
796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
797 {
798 int j, k, idx = reg_state[i].use_index;
799 if (idx < 0)
800 continue;
801 j = k = RELOAD_COMBINE_MAX_USES;
802 while (j-- > idx)
803 {
804 if (reg_state[i].reg_use[j].insn != insn)
805 {
806 k--;
807 if (k != j)
808 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
809 }
810 }
811 reg_state[i].use_index = k;
812 }
813 }
814
815 /* Called when we need to forget about all uses of REGNO after an insn
816 which is identified by RUID. */
817
818 static void
819 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
820 {
821 int j, k, idx = reg_state[regno].use_index;
822 if (idx < 0)
823 return;
824 j = k = RELOAD_COMBINE_MAX_USES;
825 while (j-- > idx)
826 {
827 if (reg_state[regno].reg_use[j].ruid >= ruid)
828 {
829 k--;
830 if (k != j)
831 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
832 }
833 }
834 reg_state[regno].use_index = k;
835 }
836
837 /* Find the use of REGNO with the ruid that is highest among those
838 lower than RUID_LIMIT, and return it if it is the only use of this
839 reg in the insn. Return NULL otherwise. */
840
841 static struct reg_use *
842 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
843 {
844 int i, best_ruid = 0;
845 int use_idx = reg_state[regno].use_index;
846 struct reg_use *retval;
847
848 if (use_idx < 0)
849 return NULL;
850 retval = NULL;
851 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
852 {
853 struct reg_use *use = reg_state[regno].reg_use + i;
854 int this_ruid = use->ruid;
855 if (this_ruid >= ruid_limit)
856 continue;
857 if (this_ruid > best_ruid)
858 {
859 best_ruid = this_ruid;
860 retval = use;
861 }
862 else if (this_ruid == best_ruid)
863 retval = NULL;
864 }
865 if (last_label_ruid >= best_ruid)
866 return NULL;
867 return retval;
868 }
869
870 /* After we've moved an add insn, fix up any debug insns that occur
871 between the old location of the add and the new location. REG is
872 the destination register of the add insn; REPLACEMENT is the
873 SET_SRC of the add. FROM and TO specify the range in which we
874 should make this change on debug insns. */
875
876 static void
877 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
878 {
879 rtx_insn *insn;
880 for (insn = from; insn != to; insn = NEXT_INSN (insn))
881 {
882 rtx t;
883
884 if (!DEBUG_INSN_P (insn))
885 continue;
886
887 t = INSN_VAR_LOCATION_LOC (insn);
888 t = simplify_replace_rtx (t, reg, replacement);
889 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
890 }
891 }
892
893 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
894 with SRC in the insn described by USE, taking costs into account. Return
895 true if we made the replacement. */
896
897 static bool
898 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
899 {
900 rtx_insn *use_insn = use->insn;
901 rtx mem = use->containing_mem;
902 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
903
904 if (mem != NULL_RTX)
905 {
906 addr_space_t as = MEM_ADDR_SPACE (mem);
907 rtx oldaddr = XEXP (mem, 0);
908 rtx newaddr = NULL_RTX;
909 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
910 int new_cost;
911
912 newaddr = simplify_replace_rtx (oldaddr, reg, src);
913 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
914 {
915 XEXP (mem, 0) = newaddr;
916 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
917 XEXP (mem, 0) = oldaddr;
918 if (new_cost <= old_cost
919 && validate_change (use_insn,
920 &XEXP (mem, 0), newaddr, 0))
921 return true;
922 }
923 }
924 else
925 {
926 rtx new_set = single_set (use_insn);
927 if (new_set
928 && REG_P (SET_DEST (new_set))
929 && GET_CODE (SET_SRC (new_set)) == PLUS
930 && REG_P (XEXP (SET_SRC (new_set), 0))
931 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
932 {
933 rtx new_src;
934 int old_cost = set_src_cost (SET_SRC (new_set), speed);
935
936 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
937 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
938
939 if (set_src_cost (new_src, speed) <= old_cost
940 && validate_change (use_insn, &SET_SRC (new_set),
941 new_src, 0))
942 return true;
943 }
944 }
945 return false;
946 }
947
948 /* Called by reload_combine when scanning INSN. This function tries to detect
949 patterns where a constant is added to a register, and the result is used
950 in an address.
951 Return true if no further processing is needed on INSN; false if it wasn't
952 recognized and should be handled normally. */
953
954 static bool
955 reload_combine_recognize_const_pattern (rtx_insn *insn)
956 {
957 int from_ruid = reload_combine_ruid;
958 rtx set, pat, reg, src, addreg;
959 unsigned int regno;
960 struct reg_use *use;
961 bool must_move_add;
962 rtx_insn *add_moved_after_insn = NULL;
963 int add_moved_after_ruid = 0;
964 int clobbered_regno = -1;
965
966 set = single_set (insn);
967 if (set == NULL_RTX)
968 return false;
969
970 reg = SET_DEST (set);
971 src = SET_SRC (set);
972 if (!REG_P (reg)
973 || REG_NREGS (reg) != 1
974 || GET_MODE (reg) != Pmode
975 || reg == stack_pointer_rtx)
976 return false;
977
978 regno = REGNO (reg);
979
980 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
981 uses of REG1 inside an address, or inside another add insn. If
982 possible and profitable, merge the addition into subsequent
983 uses. */
984 if (GET_CODE (src) != PLUS
985 || !REG_P (XEXP (src, 0))
986 || !CONSTANT_P (XEXP (src, 1)))
987 return false;
988
989 addreg = XEXP (src, 0);
990 must_move_add = rtx_equal_p (reg, addreg);
991
992 pat = PATTERN (insn);
993 if (must_move_add && set != pat)
994 {
995 /* We have to be careful when moving the add; apart from the
996 single_set there may also be clobbers. Recognize one special
997 case, that of one clobber alongside the set (likely a clobber
998 of the CC register). */
999 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
1000 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
1001 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
1002 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
1003 return false;
1004 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1005 }
1006
1007 do
1008 {
1009 use = reload_combine_closest_single_use (regno, from_ruid);
1010
1011 if (use)
1012 /* Start the search for the next use from here. */
1013 from_ruid = use->ruid;
1014
1015 if (use && GET_MODE (*use->usep) == Pmode)
1016 {
1017 bool delete_add = false;
1018 rtx_insn *use_insn = use->insn;
1019 int use_ruid = use->ruid;
1020
1021 /* Avoid moving the add insn past a jump. */
1022 if (must_move_add && use_ruid <= last_jump_ruid)
1023 break;
1024
1025 /* If the add clobbers another hard reg in parallel, don't move
1026 it past a real set of this hard reg. */
1027 if (must_move_add && clobbered_regno >= 0
1028 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1029 break;
1030
1031 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1032 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1033 break;
1034
1035 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1036 /* Avoid moving a use of ADDREG past a point where it is stored. */
1037 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1038 break;
1039
1040 /* We also must not move the addition past an insn that sets
1041 the same register, unless we can combine two add insns. */
1042 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1043 {
1044 if (use->containing_mem == NULL_RTX)
1045 delete_add = true;
1046 else
1047 break;
1048 }
1049
1050 if (try_replace_in_use (use, reg, src))
1051 {
1052 reload_combine_purge_insn_uses (use_insn);
1053 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1054 use_ruid, NULL_RTX);
1055
1056 if (delete_add)
1057 {
1058 fixup_debug_insns (reg, src, insn, use_insn);
1059 delete_insn (insn);
1060 return true;
1061 }
1062 if (must_move_add)
1063 {
1064 add_moved_after_insn = use_insn;
1065 add_moved_after_ruid = use_ruid;
1066 }
1067 continue;
1068 }
1069 }
1070 /* If we get here, we couldn't handle this use. */
1071 if (must_move_add)
1072 break;
1073 }
1074 while (use);
1075
1076 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1077 /* Process the add normally. */
1078 return false;
1079
1080 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1081
1082 reorder_insns (insn, insn, add_moved_after_insn);
1083 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1084 reload_combine_split_ruids (add_moved_after_ruid - 1);
1085 reload_combine_note_use (&PATTERN (insn), insn,
1086 add_moved_after_ruid, NULL_RTX);
1087 reg_state[regno].store_ruid = add_moved_after_ruid;
1088
1089 return true;
1090 }
1091
1092 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1093 can handle and improve. Return true if no further processing is needed on
1094 INSN; false if it wasn't recognized and should be handled normally. */
1095
1096 static bool
1097 reload_combine_recognize_pattern (rtx_insn *insn)
1098 {
1099 rtx set, reg, src;
1100 unsigned int regno;
1101
1102 set = single_set (insn);
1103 if (set == NULL_RTX)
1104 return false;
1105
1106 reg = SET_DEST (set);
1107 src = SET_SRC (set);
1108 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1109 return false;
1110
1111 regno = REGNO (reg);
1112
1113 /* Look for (set (REGX) (CONST_INT))
1114 (set (REGX) (PLUS (REGX) (REGY)))
1115 ...
1116 ... (MEM (REGX)) ...
1117 and convert it to
1118 (set (REGZ) (CONST_INT))
1119 ...
1120 ... (MEM (PLUS (REGZ) (REGY)))... .
1121
1122 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1123 and that we know all uses of REGX before it dies.
1124 Also, explicitly check that REGX != REGY; our life information
1125 does not yet show whether REGY changes in this insn. */
1126
1127 if (GET_CODE (src) == PLUS
1128 && reg_state[regno].all_offsets_match
1129 && last_index_reg != -1
1130 && REG_P (XEXP (src, 1))
1131 && rtx_equal_p (XEXP (src, 0), reg)
1132 && !rtx_equal_p (XEXP (src, 1), reg)
1133 && reg_state[regno].use_index >= 0
1134 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1135 && last_label_ruid < reg_state[regno].use_ruid)
1136 {
1137 rtx base = XEXP (src, 1);
1138 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1139 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1140 rtx index_reg = NULL_RTX;
1141 rtx reg_sum = NULL_RTX;
1142 int i;
1143
1144 /* Now we need to set INDEX_REG to an index register (denoted as
1145 REGZ in the illustration above) and REG_SUM to the expression
1146 register+register that we want to use to substitute uses of REG
1147 (typically in MEMs) with. First check REG and BASE for being
1148 index registers; we can use them even if they are not dead. */
1149 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1150 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1151 REGNO (base)))
1152 {
1153 index_reg = reg;
1154 reg_sum = src;
1155 }
1156 else
1157 {
1158 /* Otherwise, look for a free index register. Since we have
1159 checked above that neither REG nor BASE are index registers,
1160 if we find anything at all, it will be different from these
1161 two registers. */
1162 for (i = first_index_reg; i <= last_index_reg; i++)
1163 {
1164 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1165 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1166 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1167 && (call_used_regs[i] || df_regs_ever_live_p (i))
1168 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1169 && !fixed_regs[i] && !global_regs[i]
1170 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1171 && targetm.hard_regno_scratch_ok (i))
1172 {
1173 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1174 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1175 break;
1176 }
1177 }
1178 }
1179
1180 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1181 (REGY), i.e. BASE, is not clobbered before the last use we'll
1182 create. */
1183 if (reg_sum
1184 && prev_set
1185 && CONST_INT_P (SET_SRC (prev_set))
1186 && rtx_equal_p (SET_DEST (prev_set), reg)
1187 && (reg_state[REGNO (base)].store_ruid
1188 <= reg_state[regno].use_ruid))
1189 {
1190 /* Change destination register and, if necessary, the constant
1191 value in PREV, the constant loading instruction. */
1192 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1193 if (reg_state[regno].offset != const0_rtx)
1194 validate_change (prev,
1195 &SET_SRC (prev_set),
1196 GEN_INT (INTVAL (SET_SRC (prev_set))
1197 + INTVAL (reg_state[regno].offset)),
1198 1);
1199
1200 /* Now for every use of REG that we have recorded, replace REG
1201 with REG_SUM. */
1202 for (i = reg_state[regno].use_index;
1203 i < RELOAD_COMBINE_MAX_USES; i++)
1204 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1205 reg_state[regno].reg_use[i].usep,
1206 /* Each change must have its own
1207 replacement. */
1208 reg_sum, 1);
1209
1210 if (apply_change_group ())
1211 {
1212 struct reg_use *lowest_ruid = NULL;
1213
1214 /* For every new use of REG_SUM, we have to record the use
1215 of BASE therein, i.e. operand 1. */
1216 for (i = reg_state[regno].use_index;
1217 i < RELOAD_COMBINE_MAX_USES; i++)
1218 {
1219 struct reg_use *use = reg_state[regno].reg_use + i;
1220 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1221 use->ruid, use->containing_mem);
1222 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1223 lowest_ruid = use;
1224 }
1225
1226 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1227
1228 /* Delete the reg-reg addition. */
1229 delete_insn (insn);
1230
1231 if (reg_state[regno].offset != const0_rtx)
1232 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1233 are now invalid. */
1234 remove_reg_equal_equiv_notes (prev);
1235
1236 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1237 return true;
1238 }
1239 }
1240 }
1241 return false;
1242 }
1243
1244 static void
1245 reload_combine (void)
1246 {
1247 rtx_insn *insn, *prev;
1248 basic_block bb;
1249 unsigned int r;
1250 int min_labelno, n_labels;
1251 HARD_REG_SET ever_live_at_start, *label_live;
1252
1253 /* To avoid wasting too much time later searching for an index register,
1254 determine the minimum and maximum index register numbers. */
1255 if (INDEX_REG_CLASS == NO_REGS)
1256 last_index_reg = -1;
1257 else if (first_index_reg == -1 && last_index_reg == 0)
1258 {
1259 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1260 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1261 {
1262 if (first_index_reg == -1)
1263 first_index_reg = r;
1264
1265 last_index_reg = r;
1266 }
1267
1268 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1269 to -1 so we'll know to quit early the next time we get here. */
1270 if (first_index_reg == -1)
1271 {
1272 last_index_reg = -1;
1273 return;
1274 }
1275 }
1276
1277 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1278 information is a bit fuzzy immediately after reload, but it's
1279 still good enough to determine which registers are live at a jump
1280 destination. */
1281 min_labelno = get_first_label_num ();
1282 n_labels = max_label_num () - min_labelno;
1283 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1284 CLEAR_HARD_REG_SET (ever_live_at_start);
1285
1286 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1287 {
1288 insn = BB_HEAD (bb);
1289 if (LABEL_P (insn))
1290 {
1291 HARD_REG_SET live;
1292 bitmap live_in = df_get_live_in (bb);
1293
1294 REG_SET_TO_HARD_REG_SET (live, live_in);
1295 compute_use_by_pseudos (&live, live_in);
1296 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1297 IOR_HARD_REG_SET (ever_live_at_start, live);
1298 }
1299 }
1300
1301 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1302 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1303 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1304 {
1305 reg_state[r].store_ruid = 0;
1306 reg_state[r].real_store_ruid = 0;
1307 if (fixed_regs[r])
1308 reg_state[r].use_index = -1;
1309 else
1310 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1311 }
1312
1313 for (insn = get_last_insn (); insn; insn = prev)
1314 {
1315 bool control_flow_insn;
1316 rtx note;
1317
1318 prev = PREV_INSN (insn);
1319
1320 /* We cannot do our optimization across labels. Invalidating all the use
1321 information we have would be costly, so we just note where the label
1322 is and then later disable any optimization that would cross it. */
1323 if (LABEL_P (insn))
1324 last_label_ruid = reload_combine_ruid;
1325 else if (BARRIER_P (insn))
1326 {
1327 /* Crossing a barrier resets all the use information. */
1328 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1329 if (! fixed_regs[r])
1330 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1331 }
1332 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1333 /* Optimizations across insns being marked as volatile must be
1334 prevented. All the usage information is invalidated
1335 here. */
1336 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1337 if (! fixed_regs[r]
1338 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1339 reg_state[r].use_index = -1;
1340
1341 if (! NONDEBUG_INSN_P (insn))
1342 continue;
1343
1344 reload_combine_ruid++;
1345
1346 control_flow_insn = control_flow_insn_p (insn);
1347 if (control_flow_insn)
1348 last_jump_ruid = reload_combine_ruid;
1349
1350 if (reload_combine_recognize_const_pattern (insn)
1351 || reload_combine_recognize_pattern (insn))
1352 continue;
1353
1354 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1355
1356 if (CALL_P (insn))
1357 {
1358 rtx link;
1359
1360 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1361 if (call_used_regs[r])
1362 {
1363 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1364 reg_state[r].store_ruid = reload_combine_ruid;
1365 }
1366
1367 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1368 link = XEXP (link, 1))
1369 {
1370 rtx setuse = XEXP (link, 0);
1371 rtx usage_rtx = XEXP (setuse, 0);
1372 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1373 && REG_P (usage_rtx))
1374 {
1375 unsigned int end_regno = END_REGNO (usage_rtx);
1376 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1377 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1378 {
1379 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1380 reg_state[i].store_ruid = reload_combine_ruid;
1381 }
1382 else
1383 reg_state[i].use_index = -1;
1384 }
1385 }
1386 }
1387
1388 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1389 {
1390 /* Non-spill registers might be used at the call destination in
1391 some unknown fashion, so we have to mark the unknown use. */
1392 HARD_REG_SET *live;
1393
1394 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1395 && JUMP_LABEL (insn))
1396 {
1397 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1398 live = NULL;
1399 else
1400 live = &LABEL_LIVE (JUMP_LABEL (insn));
1401 }
1402 else
1403 live = &ever_live_at_start;
1404
1405 if (live)
1406 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1407 if (TEST_HARD_REG_BIT (*live, r))
1408 reg_state[r].use_index = -1;
1409 }
1410
1411 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1412 NULL_RTX);
1413
1414 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1415 {
1416 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1417 {
1418 int regno = REGNO (XEXP (note, 0));
1419 reg_state[regno].store_ruid = reload_combine_ruid;
1420 reg_state[regno].real_store_ruid = reload_combine_ruid;
1421 reg_state[regno].use_index = -1;
1422 }
1423 }
1424 }
1425
1426 free (label_live);
1427 }
1428
1429 /* Check if DST is a register or a subreg of a register; if it is,
1430 update store_ruid, real_store_ruid and use_index in the reg_state
1431 structure accordingly. Called via note_stores from reload_combine. */
1432
1433 static void
1434 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1435 {
1436 int regno = 0;
1437 int i;
1438 machine_mode mode = GET_MODE (dst);
1439
1440 if (GET_CODE (dst) == SUBREG)
1441 {
1442 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1443 GET_MODE (SUBREG_REG (dst)),
1444 SUBREG_BYTE (dst),
1445 GET_MODE (dst));
1446 dst = SUBREG_REG (dst);
1447 }
1448
1449 /* Some targets do argument pushes without adding REG_INC notes. */
1450
1451 if (MEM_P (dst))
1452 {
1453 dst = XEXP (dst, 0);
1454 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1455 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1456 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1457 {
1458 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1459 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1460 {
1461 /* We could probably do better, but for now mark the register
1462 as used in an unknown fashion and set/clobbered at this
1463 insn. */
1464 reg_state[i].use_index = -1;
1465 reg_state[i].store_ruid = reload_combine_ruid;
1466 reg_state[i].real_store_ruid = reload_combine_ruid;
1467 }
1468 }
1469 else
1470 return;
1471 }
1472
1473 if (!REG_P (dst))
1474 return;
1475 regno += REGNO (dst);
1476
1477 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1478 careful with registers / register parts that are not full words.
1479 Similarly for ZERO_EXTRACT. */
1480 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1481 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1482 {
1483 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1484 {
1485 reg_state[i].use_index = -1;
1486 reg_state[i].store_ruid = reload_combine_ruid;
1487 reg_state[i].real_store_ruid = reload_combine_ruid;
1488 }
1489 }
1490 else
1491 {
1492 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1493 {
1494 reg_state[i].store_ruid = reload_combine_ruid;
1495 if (GET_CODE (set) == SET)
1496 reg_state[i].real_store_ruid = reload_combine_ruid;
1497 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1498 }
1499 }
1500 }
1501
1502 /* XP points to a piece of rtl that has to be checked for any uses of
1503 registers.
1504 *XP is the pattern of INSN, or a part of it.
1505 Called from reload_combine, and recursively by itself. */
1506 static void
1507 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1508 {
1509 rtx x = *xp;
1510 enum rtx_code code = x->code;
1511 const char *fmt;
1512 int i, j;
1513 rtx offset = const0_rtx; /* For the REG case below. */
1514
1515 switch (code)
1516 {
1517 case SET:
1518 if (REG_P (SET_DEST (x)))
1519 {
1520 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1521 return;
1522 }
1523 break;
1524
1525 case USE:
1526 /* If this is the USE of a return value, we can't change it. */
1527 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1528 {
1529 /* Mark the return register as used in an unknown fashion. */
1530 rtx reg = XEXP (x, 0);
1531 unsigned int end_regno = END_REGNO (reg);
1532 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1533 reg_state[regno].use_index = -1;
1534 return;
1535 }
1536 break;
1537
1538 case CLOBBER:
1539 if (REG_P (SET_DEST (x)))
1540 {
1541 /* No spurious CLOBBERs of pseudo registers may remain. */
1542 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1543 return;
1544 }
1545 break;
1546
1547 case PLUS:
1548 /* We are interested in (plus (reg) (const_int)) . */
1549 if (!REG_P (XEXP (x, 0))
1550 || !CONST_INT_P (XEXP (x, 1)))
1551 break;
1552 offset = XEXP (x, 1);
1553 x = XEXP (x, 0);
1554 /* Fall through. */
1555 case REG:
1556 {
1557 int regno = REGNO (x);
1558 int use_index;
1559 int nregs;
1560
1561 /* No spurious USEs of pseudo registers may remain. */
1562 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1563
1564 nregs = REG_NREGS (x);
1565
1566 /* We can't substitute into multi-hard-reg uses. */
1567 if (nregs > 1)
1568 {
1569 while (--nregs >= 0)
1570 reg_state[regno + nregs].use_index = -1;
1571 return;
1572 }
1573
1574 /* We may be called to update uses in previously seen insns.
1575 Don't add uses beyond the last store we saw. */
1576 if (ruid < reg_state[regno].store_ruid)
1577 return;
1578
1579 /* If this register is already used in some unknown fashion, we
1580 can't do anything.
1581 If we decrement the index from zero to -1, we can't store more
1582 uses, so this register becomes used in an unknown fashion. */
1583 use_index = --reg_state[regno].use_index;
1584 if (use_index < 0)
1585 return;
1586
1587 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1588 {
1589 /* This is the first use of this register we have seen since we
1590 marked it as dead. */
1591 reg_state[regno].offset = offset;
1592 reg_state[regno].all_offsets_match = true;
1593 reg_state[regno].use_ruid = ruid;
1594 }
1595 else
1596 {
1597 if (reg_state[regno].use_ruid > ruid)
1598 reg_state[regno].use_ruid = ruid;
1599
1600 if (! rtx_equal_p (offset, reg_state[regno].offset))
1601 reg_state[regno].all_offsets_match = false;
1602 }
1603
1604 reg_state[regno].reg_use[use_index].insn = insn;
1605 reg_state[regno].reg_use[use_index].ruid = ruid;
1606 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1607 reg_state[regno].reg_use[use_index].usep = xp;
1608 return;
1609 }
1610
1611 case MEM:
1612 containing_mem = x;
1613 break;
1614
1615 default:
1616 break;
1617 }
1618
1619 /* Recursively process the components of X. */
1620 fmt = GET_RTX_FORMAT (code);
1621 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1622 {
1623 if (fmt[i] == 'e')
1624 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1625 else if (fmt[i] == 'E')
1626 {
1627 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1628 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1629 containing_mem);
1630 }
1631 }
1632 }
1633 \f
1634 /* See if we can reduce the cost of a constant by replacing a move
1635 with an add. We track situations in which a register is set to a
1636 constant or to a register plus a constant. */
1637 /* We cannot do our optimization across labels. Invalidating all the
1638 information about register contents we have would be costly, so we
1639 use move2add_last_label_luid to note where the label is and then
1640 later disable any optimization that would cross it.
1641 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1642 are only valid if reg_set_luid[n] is greater than
1643 move2add_last_label_luid.
1644 For a set that established a new (potential) base register with
1645 non-constant value, we use move2add_luid from the place where the
1646 setting insn is encountered; registers based off that base then
1647 get the same reg_set_luid. Constants all get
1648 move2add_last_label_luid + 1 as their reg_set_luid. */
1649 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1650
1651 /* If reg_base_reg[n] is negative, register n has been set to
1652 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1653 If reg_base_reg[n] is non-negative, register n has been set to the
1654 sum of reg_offset[n] and the value of register reg_base_reg[n]
1655 before reg_set_luid[n], calculated in mode reg_mode[n] .
1656 For multi-hard-register registers, all but the first one are
1657 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1658 marks it as invalid. */
1659 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1660 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1661 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1662 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1663
1664 /* move2add_luid is linearly increased while scanning the instructions
1665 from first to last. It is used to set reg_set_luid in
1666 reload_cse_move2add and move2add_note_store. */
1667 static int move2add_luid;
1668
1669 /* move2add_last_label_luid is set whenever a label is found. Labels
1670 invalidate all previously collected reg_offset data. */
1671 static int move2add_last_label_luid;
1672
1673 /* ??? We don't know how zero / sign extension is handled, hence we
1674 can't go from a narrower to a wider mode. */
1675 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1676 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1677 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1678 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1679
1680 /* Record that REG is being set to a value with the mode of REG. */
1681
1682 static void
1683 move2add_record_mode (rtx reg)
1684 {
1685 int regno, nregs;
1686 machine_mode mode = GET_MODE (reg);
1687
1688 if (GET_CODE (reg) == SUBREG)
1689 {
1690 regno = subreg_regno (reg);
1691 nregs = subreg_nregs (reg);
1692 }
1693 else if (REG_P (reg))
1694 {
1695 regno = REGNO (reg);
1696 nregs = REG_NREGS (reg);
1697 }
1698 else
1699 gcc_unreachable ();
1700 for (int i = nregs - 1; i > 0; i--)
1701 reg_mode[regno + i] = BLKmode;
1702 reg_mode[regno] = mode;
1703 }
1704
1705 /* Record that REG is being set to the sum of SYM and OFF. */
1706
1707 static void
1708 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1709 {
1710 int regno = REGNO (reg);
1711
1712 move2add_record_mode (reg);
1713 reg_set_luid[regno] = move2add_luid;
1714 reg_base_reg[regno] = -1;
1715 reg_symbol_ref[regno] = sym;
1716 reg_offset[regno] = INTVAL (off);
1717 }
1718
1719 /* Check if REGNO contains a valid value in MODE. */
1720
1721 static bool
1722 move2add_valid_value_p (int regno, machine_mode mode)
1723 {
1724 if (reg_set_luid[regno] <= move2add_last_label_luid)
1725 return false;
1726
1727 if (mode != reg_mode[regno])
1728 {
1729 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1730 return false;
1731 /* The value loaded into regno in reg_mode[regno] is also valid in
1732 mode after truncation only if (REG:mode regno) is the lowpart of
1733 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1734 regno of the lowpart might be different. */
1735 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1736 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1737 if (s_off != 0)
1738 /* We could in principle adjust regno, check reg_mode[regno] to be
1739 BLKmode, and return s_off to the caller (vs. -1 for failure),
1740 but we currently have no callers that could make use of this
1741 information. */
1742 return false;
1743 }
1744
1745 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1746 if (reg_mode[regno + i] != BLKmode)
1747 return false;
1748 return true;
1749 }
1750
1751 /* This function is called with INSN that sets REG to (SYM + OFF),
1752 while REG is known to already have value (SYM + offset).
1753 This function tries to change INSN into an add instruction
1754 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1755 It also updates the information about REG's known value.
1756 Return true if we made a change. */
1757
1758 static bool
1759 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1760 {
1761 rtx pat = PATTERN (insn);
1762 rtx src = SET_SRC (pat);
1763 int regno = REGNO (reg);
1764 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1765 GET_MODE (reg));
1766 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1767 bool changed = false;
1768
1769 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1770 use (set (reg) (reg)) instead.
1771 We don't delete this insn, nor do we convert it into a
1772 note, to avoid losing register notes or the return
1773 value flag. jump2 already knows how to get rid of
1774 no-op moves. */
1775 if (new_src == const0_rtx)
1776 {
1777 /* If the constants are different, this is a
1778 truncation, that, if turned into (set (reg)
1779 (reg)), would be discarded. Maybe we should
1780 try a truncMN pattern? */
1781 if (INTVAL (off) == reg_offset [regno])
1782 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1783 }
1784 else
1785 {
1786 struct full_rtx_costs oldcst, newcst;
1787 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1788
1789 get_full_set_rtx_cost (pat, &oldcst);
1790 SET_SRC (pat) = tem;
1791 get_full_set_rtx_cost (pat, &newcst);
1792 SET_SRC (pat) = src;
1793
1794 if (costs_lt_p (&newcst, &oldcst, speed)
1795 && have_add2_insn (reg, new_src))
1796 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1797 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1798 {
1799 machine_mode narrow_mode;
1800 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1801 narrow_mode != VOIDmode
1802 && narrow_mode != GET_MODE (reg);
1803 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1804 {
1805 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1806 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1807 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1808 {
1809 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1810 rtx narrow_src = gen_int_mode (INTVAL (off),
1811 narrow_mode);
1812 rtx new_set
1813 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1814 narrow_reg),
1815 narrow_src);
1816 get_full_set_rtx_cost (new_set, &newcst);
1817 if (costs_lt_p (&newcst, &oldcst, speed))
1818 {
1819 changed = validate_change (insn, &PATTERN (insn),
1820 new_set, 0);
1821 if (changed)
1822 break;
1823 }
1824 }
1825 }
1826 }
1827 }
1828 move2add_record_sym_value (reg, sym, off);
1829 return changed;
1830 }
1831
1832
1833 /* This function is called with INSN that sets REG to (SYM + OFF),
1834 but REG doesn't have known value (SYM + offset). This function
1835 tries to find another register which is known to already have
1836 value (SYM + offset) and change INSN into an add instruction
1837 (set (REG) (plus (the found register) (OFF - offset))) if such
1838 a register is found. It also updates the information about
1839 REG's known value.
1840 Return true iff we made a change. */
1841
1842 static bool
1843 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1844 {
1845 rtx pat = PATTERN (insn);
1846 rtx src = SET_SRC (pat);
1847 int regno = REGNO (reg);
1848 int min_regno = 0;
1849 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1850 int i;
1851 bool changed = false;
1852 struct full_rtx_costs oldcst, newcst, mincst;
1853 rtx plus_expr;
1854
1855 init_costs_to_max (&mincst);
1856 get_full_set_rtx_cost (pat, &oldcst);
1857
1858 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1859 SET_SRC (pat) = plus_expr;
1860
1861 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1862 if (move2add_valid_value_p (i, GET_MODE (reg))
1863 && reg_base_reg[i] < 0
1864 && reg_symbol_ref[i] != NULL_RTX
1865 && rtx_equal_p (sym, reg_symbol_ref[i]))
1866 {
1867 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1868 GET_MODE (reg));
1869 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1870 use (set (reg) (reg)) instead.
1871 We don't delete this insn, nor do we convert it into a
1872 note, to avoid losing register notes or the return
1873 value flag. jump2 already knows how to get rid of
1874 no-op moves. */
1875 if (new_src == const0_rtx)
1876 {
1877 init_costs_to_zero (&mincst);
1878 min_regno = i;
1879 break;
1880 }
1881 else
1882 {
1883 XEXP (plus_expr, 1) = new_src;
1884 get_full_set_rtx_cost (pat, &newcst);
1885
1886 if (costs_lt_p (&newcst, &mincst, speed))
1887 {
1888 mincst = newcst;
1889 min_regno = i;
1890 }
1891 }
1892 }
1893 SET_SRC (pat) = src;
1894
1895 if (costs_lt_p (&mincst, &oldcst, speed))
1896 {
1897 rtx tem;
1898
1899 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1900 if (i != min_regno)
1901 {
1902 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1903 GET_MODE (reg));
1904 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1905 }
1906 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1907 changed = true;
1908 }
1909 reg_set_luid[regno] = move2add_luid;
1910 move2add_record_sym_value (reg, sym, off);
1911 return changed;
1912 }
1913
1914 /* Convert move insns with constant inputs to additions if they are cheaper.
1915 Return true if any changes were made. */
1916 static bool
1917 reload_cse_move2add (rtx_insn *first)
1918 {
1919 int i;
1920 rtx_insn *insn;
1921 bool changed = false;
1922
1923 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1924 {
1925 reg_set_luid[i] = 0;
1926 reg_offset[i] = 0;
1927 reg_base_reg[i] = 0;
1928 reg_symbol_ref[i] = NULL_RTX;
1929 reg_mode[i] = VOIDmode;
1930 }
1931
1932 move2add_last_label_luid = 0;
1933 move2add_luid = 2;
1934 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1935 {
1936 rtx pat, note;
1937
1938 if (LABEL_P (insn))
1939 {
1940 move2add_last_label_luid = move2add_luid;
1941 /* We're going to increment move2add_luid twice after a
1942 label, so that we can use move2add_last_label_luid + 1 as
1943 the luid for constants. */
1944 move2add_luid++;
1945 continue;
1946 }
1947 if (! INSN_P (insn))
1948 continue;
1949 pat = PATTERN (insn);
1950 /* For simplicity, we only perform this optimization on
1951 straightforward SETs. */
1952 if (GET_CODE (pat) == SET
1953 && REG_P (SET_DEST (pat)))
1954 {
1955 rtx reg = SET_DEST (pat);
1956 int regno = REGNO (reg);
1957 rtx src = SET_SRC (pat);
1958
1959 /* Check if we have valid information on the contents of this
1960 register in the mode of REG. */
1961 if (move2add_valid_value_p (regno, GET_MODE (reg))
1962 && dbg_cnt (cse2_move2add))
1963 {
1964 /* Try to transform (set (REGX) (CONST_INT A))
1965 ...
1966 (set (REGX) (CONST_INT B))
1967 to
1968 (set (REGX) (CONST_INT A))
1969 ...
1970 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1971 or
1972 (set (REGX) (CONST_INT A))
1973 ...
1974 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1975 */
1976
1977 if (CONST_INT_P (src)
1978 && reg_base_reg[regno] < 0
1979 && reg_symbol_ref[regno] == NULL_RTX)
1980 {
1981 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1982 continue;
1983 }
1984
1985 /* Try to transform (set (REGX) (REGY))
1986 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1987 ...
1988 (set (REGX) (REGY))
1989 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1990 to
1991 (set (REGX) (REGY))
1992 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1993 ...
1994 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1995 else if (REG_P (src)
1996 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1997 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1998 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
1999 {
2000 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2001 rtx set = NULL_RTX;
2002 if (next)
2003 set = single_set (next);
2004 if (set
2005 && SET_DEST (set) == reg
2006 && GET_CODE (SET_SRC (set)) == PLUS
2007 && XEXP (SET_SRC (set), 0) == reg
2008 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2009 {
2010 rtx src3 = XEXP (SET_SRC (set), 1);
2011 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2012 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2013 HOST_WIDE_INT regno_offset = reg_offset[regno];
2014 rtx new_src =
2015 gen_int_mode (added_offset
2016 + base_offset
2017 - regno_offset,
2018 GET_MODE (reg));
2019 bool success = false;
2020 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2021
2022 if (new_src == const0_rtx)
2023 /* See above why we create (set (reg) (reg)) here. */
2024 success
2025 = validate_change (next, &SET_SRC (set), reg, 0);
2026 else
2027 {
2028 rtx old_src = SET_SRC (set);
2029 struct full_rtx_costs oldcst, newcst;
2030 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2031
2032 get_full_set_rtx_cost (set, &oldcst);
2033 SET_SRC (set) = tem;
2034 get_full_set_src_cost (tem, &newcst);
2035 SET_SRC (set) = old_src;
2036 costs_add_n_insns (&oldcst, 1);
2037
2038 if (costs_lt_p (&newcst, &oldcst, speed)
2039 && have_add2_insn (reg, new_src))
2040 {
2041 rtx newpat = gen_rtx_SET (reg, tem);
2042 success
2043 = validate_change (next, &PATTERN (next),
2044 newpat, 0);
2045 }
2046 }
2047 if (success)
2048 delete_insn (insn);
2049 changed |= success;
2050 insn = next;
2051 move2add_record_mode (reg);
2052 reg_offset[regno]
2053 = trunc_int_for_mode (added_offset + base_offset,
2054 GET_MODE (reg));
2055 continue;
2056 }
2057 }
2058 }
2059
2060 /* Try to transform
2061 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2062 ...
2063 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2064 to
2065 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2066 ...
2067 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2068 if ((GET_CODE (src) == SYMBOL_REF
2069 || (GET_CODE (src) == CONST
2070 && GET_CODE (XEXP (src, 0)) == PLUS
2071 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2072 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2073 && dbg_cnt (cse2_move2add))
2074 {
2075 rtx sym, off;
2076
2077 if (GET_CODE (src) == SYMBOL_REF)
2078 {
2079 sym = src;
2080 off = const0_rtx;
2081 }
2082 else
2083 {
2084 sym = XEXP (XEXP (src, 0), 0);
2085 off = XEXP (XEXP (src, 0), 1);
2086 }
2087
2088 /* If the reg already contains the value which is sum of
2089 sym and some constant value, we can use an add2 insn. */
2090 if (move2add_valid_value_p (regno, GET_MODE (reg))
2091 && reg_base_reg[regno] < 0
2092 && reg_symbol_ref[regno] != NULL_RTX
2093 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2094 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2095
2096 /* Otherwise, we have to find a register whose value is sum
2097 of sym and some constant value. */
2098 else
2099 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2100
2101 continue;
2102 }
2103 }
2104
2105 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2106 {
2107 if (REG_NOTE_KIND (note) == REG_INC
2108 && REG_P (XEXP (note, 0)))
2109 {
2110 /* Reset the information about this register. */
2111 int regno = REGNO (XEXP (note, 0));
2112 if (regno < FIRST_PSEUDO_REGISTER)
2113 {
2114 move2add_record_mode (XEXP (note, 0));
2115 reg_mode[regno] = VOIDmode;
2116 }
2117 }
2118 }
2119 note_stores (PATTERN (insn), move2add_note_store, insn);
2120
2121 /* If INSN is a conditional branch, we try to extract an
2122 implicit set out of it. */
2123 if (any_condjump_p (insn))
2124 {
2125 rtx cnd = fis_get_condition (insn);
2126
2127 if (cnd != NULL_RTX
2128 && GET_CODE (cnd) == NE
2129 && REG_P (XEXP (cnd, 0))
2130 && !reg_set_p (XEXP (cnd, 0), insn)
2131 /* The following two checks, which are also in
2132 move2add_note_store, are intended to reduce the
2133 number of calls to gen_rtx_SET to avoid memory
2134 allocation if possible. */
2135 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2136 && REG_NREGS (XEXP (cnd, 0)) == 1
2137 && CONST_INT_P (XEXP (cnd, 1)))
2138 {
2139 rtx implicit_set =
2140 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2141 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2142 }
2143 }
2144
2145 /* If this is a CALL_INSN, all call used registers are stored with
2146 unknown values. */
2147 if (CALL_P (insn))
2148 {
2149 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2150 {
2151 if (call_used_regs[i])
2152 /* Reset the information about this register. */
2153 reg_mode[i] = VOIDmode;
2154 }
2155 }
2156 }
2157 return changed;
2158 }
2159
2160 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2161 contains SET.
2162 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2163 Called from reload_cse_move2add via note_stores. */
2164
2165 static void
2166 move2add_note_store (rtx dst, const_rtx set, void *data)
2167 {
2168 rtx_insn *insn = (rtx_insn *) data;
2169 unsigned int regno = 0;
2170 machine_mode mode = GET_MODE (dst);
2171
2172 /* Some targets do argument pushes without adding REG_INC notes. */
2173
2174 if (MEM_P (dst))
2175 {
2176 dst = XEXP (dst, 0);
2177 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2178 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2179 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2180 return;
2181 }
2182
2183 if (GET_CODE (dst) == SUBREG)
2184 regno = subreg_regno (dst);
2185 else if (REG_P (dst))
2186 regno = REGNO (dst);
2187 else
2188 return;
2189
2190 if (SCALAR_INT_MODE_P (mode)
2191 && GET_CODE (set) == SET)
2192 {
2193 rtx note, sym = NULL_RTX;
2194 rtx off;
2195
2196 note = find_reg_equal_equiv_note (insn);
2197 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2198 {
2199 sym = XEXP (note, 0);
2200 off = const0_rtx;
2201 }
2202 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2203 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2204 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2205 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2206 {
2207 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2208 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2209 }
2210
2211 if (sym != NULL_RTX)
2212 {
2213 move2add_record_sym_value (dst, sym, off);
2214 return;
2215 }
2216 }
2217
2218 if (SCALAR_INT_MODE_P (mode)
2219 && GET_CODE (set) == SET
2220 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2221 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2222 {
2223 rtx src = SET_SRC (set);
2224 rtx base_reg;
2225 unsigned HOST_WIDE_INT offset;
2226 int base_regno;
2227
2228 switch (GET_CODE (src))
2229 {
2230 case PLUS:
2231 if (REG_P (XEXP (src, 0)))
2232 {
2233 base_reg = XEXP (src, 0);
2234
2235 if (CONST_INT_P (XEXP (src, 1)))
2236 offset = UINTVAL (XEXP (src, 1));
2237 else if (REG_P (XEXP (src, 1))
2238 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2239 {
2240 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2241 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2242 offset = reg_offset[REGNO (XEXP (src, 1))];
2243 /* Maybe the first register is known to be a
2244 constant. */
2245 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2246 && reg_base_reg[REGNO (base_reg)] < 0
2247 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2248 {
2249 offset = reg_offset[REGNO (base_reg)];
2250 base_reg = XEXP (src, 1);
2251 }
2252 else
2253 goto invalidate;
2254 }
2255 else
2256 goto invalidate;
2257
2258 break;
2259 }
2260
2261 goto invalidate;
2262
2263 case REG:
2264 base_reg = src;
2265 offset = 0;
2266 break;
2267
2268 case CONST_INT:
2269 /* Start tracking the register as a constant. */
2270 reg_base_reg[regno] = -1;
2271 reg_symbol_ref[regno] = NULL_RTX;
2272 reg_offset[regno] = INTVAL (SET_SRC (set));
2273 /* We assign the same luid to all registers set to constants. */
2274 reg_set_luid[regno] = move2add_last_label_luid + 1;
2275 move2add_record_mode (dst);
2276 return;
2277
2278 default:
2279 goto invalidate;
2280 }
2281
2282 base_regno = REGNO (base_reg);
2283 /* If information about the base register is not valid, set it
2284 up as a new base register, pretending its value is known
2285 starting from the current insn. */
2286 if (!move2add_valid_value_p (base_regno, mode))
2287 {
2288 reg_base_reg[base_regno] = base_regno;
2289 reg_symbol_ref[base_regno] = NULL_RTX;
2290 reg_offset[base_regno] = 0;
2291 reg_set_luid[base_regno] = move2add_luid;
2292 gcc_assert (GET_MODE (base_reg) == mode);
2293 move2add_record_mode (base_reg);
2294 }
2295
2296 /* Copy base information from our base register. */
2297 reg_set_luid[regno] = reg_set_luid[base_regno];
2298 reg_base_reg[regno] = reg_base_reg[base_regno];
2299 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2300
2301 /* Compute the sum of the offsets or constants. */
2302 reg_offset[regno]
2303 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2304
2305 move2add_record_mode (dst);
2306 }
2307 else
2308 {
2309 invalidate:
2310 /* Invalidate the contents of the register. */
2311 move2add_record_mode (dst);
2312 reg_mode[regno] = VOIDmode;
2313 }
2314 }
2315 \f
2316 namespace {
2317
2318 const pass_data pass_data_postreload_cse =
2319 {
2320 RTL_PASS, /* type */
2321 "postreload", /* name */
2322 OPTGROUP_NONE, /* optinfo_flags */
2323 TV_RELOAD_CSE_REGS, /* tv_id */
2324 0, /* properties_required */
2325 0, /* properties_provided */
2326 0, /* properties_destroyed */
2327 0, /* todo_flags_start */
2328 TODO_df_finish, /* todo_flags_finish */
2329 };
2330
2331 class pass_postreload_cse : public rtl_opt_pass
2332 {
2333 public:
2334 pass_postreload_cse (gcc::context *ctxt)
2335 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2336 {}
2337
2338 /* opt_pass methods: */
2339 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2340
2341 virtual unsigned int execute (function *);
2342
2343 }; // class pass_postreload_cse
2344
2345 unsigned int
2346 pass_postreload_cse::execute (function *fun)
2347 {
2348 if (!dbg_cnt (postreload_cse))
2349 return 0;
2350
2351 /* Do a very simple CSE pass over just the hard registers. */
2352 reload_cse_regs (get_insns ());
2353 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2354 Remove any EH edges associated with them. */
2355 if (fun->can_throw_non_call_exceptions
2356 && purge_all_dead_edges ())
2357 cleanup_cfg (0);
2358
2359 return 0;
2360 }
2361
2362 } // anon namespace
2363
2364 rtl_opt_pass *
2365 make_pass_postreload_cse (gcc::context *ctxt)
2366 {
2367 return new pass_postreload_cse (ctxt);
2368 }