]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
Use std::swap instead of explicit swaps
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "input.h"
36 #include "function.h"
37 #include "symtab.h"
38 #include "statistics.h"
39 #include "double-int.h"
40 #include "real.h"
41 #include "fixed-value.h"
42 #include "alias.h"
43 #include "wide-int.h"
44 #include "inchash.h"
45 #include "tree.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "varasm.h"
52 #include "stmt.h"
53 #include "expr.h"
54 #include "insn-codes.h"
55 #include "optabs.h"
56 #include "regs.h"
57 #include "predict.h"
58 #include "dominance.h"
59 #include "cfg.h"
60 #include "cfgrtl.h"
61 #include "cfgbuild.h"
62 #include "cfgcleanup.h"
63 #include "basic-block.h"
64 #include "reload.h"
65 #include "recog.h"
66 #include "cselib.h"
67 #include "diagnostic-core.h"
68 #include "except.h"
69 #include "target.h"
70 #include "tree-pass.h"
71 #include "df.h"
72 #include "dbgcnt.h"
73
74 static int reload_cse_noop_set_p (rtx);
75 static bool reload_cse_simplify (rtx_insn *, rtx);
76 static void reload_cse_regs_1 (void);
77 static int reload_cse_simplify_set (rtx, rtx_insn *);
78 static int reload_cse_simplify_operands (rtx_insn *, rtx);
79
80 static void reload_combine (void);
81 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
82 static void reload_combine_note_store (rtx, const_rtx, void *);
83
84 static bool reload_cse_move2add (rtx_insn *);
85 static void move2add_note_store (rtx, const_rtx, void *);
86
87 /* Call cse / combine like post-reload optimization phases.
88 FIRST is the first instruction. */
89
90 static void
91 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
92 {
93 bool moves_converted;
94 reload_cse_regs_1 ();
95 reload_combine ();
96 moves_converted = reload_cse_move2add (first);
97 if (flag_expensive_optimizations)
98 {
99 if (moves_converted)
100 reload_combine ();
101 reload_cse_regs_1 ();
102 }
103 }
104
105 /* See whether a single set SET is a noop. */
106 static int
107 reload_cse_noop_set_p (rtx set)
108 {
109 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
110 return 0;
111
112 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
113 }
114
115 /* Try to simplify INSN. Return true if the CFG may have changed. */
116 static bool
117 reload_cse_simplify (rtx_insn *insn, rtx testreg)
118 {
119 rtx body = PATTERN (insn);
120 basic_block insn_bb = BLOCK_FOR_INSN (insn);
121 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
122
123 if (GET_CODE (body) == SET)
124 {
125 int count = 0;
126
127 /* Simplify even if we may think it is a no-op.
128 We may think a memory load of a value smaller than WORD_SIZE
129 is redundant because we haven't taken into account possible
130 implicit extension. reload_cse_simplify_set() will bring
131 this out, so it's safer to simplify before we delete. */
132 count += reload_cse_simplify_set (body, insn);
133
134 if (!count && reload_cse_noop_set_p (body))
135 {
136 rtx value = SET_DEST (body);
137 if (REG_P (value)
138 && ! REG_FUNCTION_VALUE_P (value))
139 value = 0;
140 if (check_for_inc_dec (insn))
141 delete_insn_and_edges (insn);
142 /* We're done with this insn. */
143 goto done;
144 }
145
146 if (count > 0)
147 apply_change_group ();
148 else
149 reload_cse_simplify_operands (insn, testreg);
150 }
151 else if (GET_CODE (body) == PARALLEL)
152 {
153 int i;
154 int count = 0;
155 rtx value = NULL_RTX;
156
157 /* Registers mentioned in the clobber list for an asm cannot be reused
158 within the body of the asm. Invalidate those registers now so that
159 we don't try to substitute values for them. */
160 if (asm_noperands (body) >= 0)
161 {
162 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
163 {
164 rtx part = XVECEXP (body, 0, i);
165 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
166 cselib_invalidate_rtx (XEXP (part, 0));
167 }
168 }
169
170 /* If every action in a PARALLEL is a noop, we can delete
171 the entire PARALLEL. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
173 {
174 rtx part = XVECEXP (body, 0, i);
175 if (GET_CODE (part) == SET)
176 {
177 if (! reload_cse_noop_set_p (part))
178 break;
179 if (REG_P (SET_DEST (part))
180 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
181 {
182 if (value)
183 break;
184 value = SET_DEST (part);
185 }
186 }
187 else if (GET_CODE (part) != CLOBBER)
188 break;
189 }
190
191 if (i < 0)
192 {
193 if (check_for_inc_dec (insn))
194 delete_insn_and_edges (insn);
195 /* We're done with this insn. */
196 goto done;
197 }
198
199 /* It's not a no-op, but we can try to simplify it. */
200 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
201 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
202 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
203
204 if (count > 0)
205 apply_change_group ();
206 else
207 reload_cse_simplify_operands (insn, testreg);
208 }
209
210 done:
211 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
212 }
213
214 /* Do a very simple CSE pass over the hard registers.
215
216 This function detects no-op moves where we happened to assign two
217 different pseudo-registers to the same hard register, and then
218 copied one to the other. Reload will generate a useless
219 instruction copying a register to itself.
220
221 This function also detects cases where we load a value from memory
222 into two different registers, and (if memory is more expensive than
223 registers) changes it to simply copy the first register into the
224 second register.
225
226 Another optimization is performed that scans the operands of each
227 instruction to see whether the value is already available in a
228 hard register. It then replaces the operand with the hard register
229 if possible, much like an optional reload would. */
230
231 static void
232 reload_cse_regs_1 (void)
233 {
234 bool cfg_changed = false;
235 basic_block bb;
236 rtx_insn *insn;
237 rtx testreg = gen_rtx_REG (VOIDmode, -1);
238
239 cselib_init (CSELIB_RECORD_MEMORY);
240 init_alias_analysis ();
241
242 FOR_EACH_BB_FN (bb, cfun)
243 FOR_BB_INSNS (bb, insn)
244 {
245 if (INSN_P (insn))
246 cfg_changed |= reload_cse_simplify (insn, testreg);
247
248 cselib_process_insn (insn);
249 }
250
251 /* Clean up. */
252 end_alias_analysis ();
253 cselib_finish ();
254 if (cfg_changed)
255 cleanup_cfg (0);
256 }
257
258 /* Try to simplify a single SET instruction. SET is the set pattern.
259 INSN is the instruction it came from.
260 This function only handles one case: if we set a register to a value
261 which is not a register, we try to find that value in some other register
262 and change the set into a register copy. */
263
264 static int
265 reload_cse_simplify_set (rtx set, rtx_insn *insn)
266 {
267 int did_change = 0;
268 int dreg;
269 rtx src;
270 reg_class_t dclass;
271 int old_cost;
272 cselib_val *val;
273 struct elt_loc_list *l;
274 #ifdef LOAD_EXTEND_OP
275 enum rtx_code extend_op = UNKNOWN;
276 #endif
277 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
278
279 dreg = true_regnum (SET_DEST (set));
280 if (dreg < 0)
281 return 0;
282
283 src = SET_SRC (set);
284 if (side_effects_p (src) || true_regnum (src) >= 0)
285 return 0;
286
287 dclass = REGNO_REG_CLASS (dreg);
288
289 #ifdef LOAD_EXTEND_OP
290 /* When replacing a memory with a register, we need to honor assumptions
291 that combine made wrt the contents of sign bits. We'll do this by
292 generating an extend instruction instead of a reg->reg copy. Thus
293 the destination must be a register that we can widen. */
294 if (MEM_P (src)
295 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
296 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
297 && !REG_P (SET_DEST (set)))
298 return 0;
299 #endif
300
301 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
302 if (! val)
303 return 0;
304
305 /* If memory loads are cheaper than register copies, don't change them. */
306 if (MEM_P (src))
307 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
308 else if (REG_P (src))
309 old_cost = register_move_cost (GET_MODE (src),
310 REGNO_REG_CLASS (REGNO (src)), dclass);
311 else
312 old_cost = set_src_cost (src, speed);
313
314 for (l = val->locs; l; l = l->next)
315 {
316 rtx this_rtx = l->loc;
317 int this_cost;
318
319 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
320 {
321 #ifdef LOAD_EXTEND_OP
322 if (extend_op != UNKNOWN)
323 {
324 wide_int result;
325
326 if (!CONST_SCALAR_INT_P (this_rtx))
327 continue;
328
329 switch (extend_op)
330 {
331 case ZERO_EXTEND:
332 result = wide_int::from (std::make_pair (this_rtx,
333 GET_MODE (src)),
334 BITS_PER_WORD, UNSIGNED);
335 break;
336 case SIGN_EXTEND:
337 result = wide_int::from (std::make_pair (this_rtx,
338 GET_MODE (src)),
339 BITS_PER_WORD, SIGNED);
340 break;
341 default:
342 gcc_unreachable ();
343 }
344 this_rtx = immed_wide_int_const (result, word_mode);
345 }
346 #endif
347 this_cost = set_src_cost (this_rtx, speed);
348 }
349 else if (REG_P (this_rtx))
350 {
351 #ifdef LOAD_EXTEND_OP
352 if (extend_op != UNKNOWN)
353 {
354 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
355 this_cost = set_src_cost (this_rtx, speed);
356 }
357 else
358 #endif
359 this_cost = register_move_cost (GET_MODE (this_rtx),
360 REGNO_REG_CLASS (REGNO (this_rtx)),
361 dclass);
362 }
363 else
364 continue;
365
366 /* If equal costs, prefer registers over anything else. That
367 tends to lead to smaller instructions on some machines. */
368 if (this_cost < old_cost
369 || (this_cost == old_cost
370 && REG_P (this_rtx)
371 && !REG_P (SET_SRC (set))))
372 {
373 #ifdef LOAD_EXTEND_OP
374 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
375 && extend_op != UNKNOWN
376 #ifdef CANNOT_CHANGE_MODE_CLASS
377 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
378 word_mode,
379 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
380 #endif
381 )
382 {
383 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
384 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
385 validate_change (insn, &SET_DEST (set), wide_dest, 1);
386 }
387 #endif
388
389 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
390 old_cost = this_cost, did_change = 1;
391 }
392 }
393
394 return did_change;
395 }
396
397 /* Try to replace operands in INSN with equivalent values that are already
398 in registers. This can be viewed as optional reloading.
399
400 For each non-register operand in the insn, see if any hard regs are
401 known to be equivalent to that operand. Record the alternatives which
402 can accept these hard registers. Among all alternatives, select the
403 ones which are better or equal to the one currently matching, where
404 "better" is in terms of '?' and '!' constraints. Among the remaining
405 alternatives, select the one which replaces most operands with
406 hard registers. */
407
408 static int
409 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
410 {
411 int i, j;
412
413 /* For each operand, all registers that are equivalent to it. */
414 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
415
416 const char *constraints[MAX_RECOG_OPERANDS];
417
418 /* Vector recording how bad an alternative is. */
419 int *alternative_reject;
420 /* Vector recording how many registers can be introduced by choosing
421 this alternative. */
422 int *alternative_nregs;
423 /* Array of vectors recording, for each operand and each alternative,
424 which hard register to substitute, or -1 if the operand should be
425 left as it is. */
426 int *op_alt_regno[MAX_RECOG_OPERANDS];
427 /* Array of alternatives, sorted in order of decreasing desirability. */
428 int *alternative_order;
429
430 extract_constrain_insn (insn);
431
432 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
433 return 0;
434
435 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
436 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
437 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
438 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
439 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
440
441 /* For each operand, find out which regs are equivalent. */
442 for (i = 0; i < recog_data.n_operands; i++)
443 {
444 cselib_val *v;
445 struct elt_loc_list *l;
446 rtx op;
447
448 CLEAR_HARD_REG_SET (equiv_regs[i]);
449
450 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
451 right, so avoid the problem here. Likewise if we have a constant
452 and the insn pattern doesn't tell us the mode we need. */
453 if (LABEL_P (recog_data.operand[i])
454 || (CONSTANT_P (recog_data.operand[i])
455 && recog_data.operand_mode[i] == VOIDmode))
456 continue;
457
458 op = recog_data.operand[i];
459 #ifdef LOAD_EXTEND_OP
460 if (MEM_P (op)
461 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
462 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
463 {
464 rtx set = single_set (insn);
465
466 /* We might have multiple sets, some of which do implicit
467 extension. Punt on this for now. */
468 if (! set)
469 continue;
470 /* If the destination is also a MEM or a STRICT_LOW_PART, no
471 extension applies.
472 Also, if there is an explicit extension, we don't have to
473 worry about an implicit one. */
474 else if (MEM_P (SET_DEST (set))
475 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
476 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
477 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
478 ; /* Continue ordinary processing. */
479 #ifdef CANNOT_CHANGE_MODE_CLASS
480 /* If the register cannot change mode to word_mode, it follows that
481 it cannot have been used in word_mode. */
482 else if (REG_P (SET_DEST (set))
483 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
484 word_mode,
485 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
486 ; /* Continue ordinary processing. */
487 #endif
488 /* If this is a straight load, make the extension explicit. */
489 else if (REG_P (SET_DEST (set))
490 && recog_data.n_operands == 2
491 && SET_SRC (set) == op
492 && SET_DEST (set) == recog_data.operand[1-i])
493 {
494 validate_change (insn, recog_data.operand_loc[i],
495 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
496 word_mode, op),
497 1);
498 validate_change (insn, recog_data.operand_loc[1-i],
499 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
500 1);
501 if (! apply_change_group ())
502 return 0;
503 return reload_cse_simplify_operands (insn, testreg);
504 }
505 else
506 /* ??? There might be arithmetic operations with memory that are
507 safe to optimize, but is it worth the trouble? */
508 continue;
509 }
510 #endif /* LOAD_EXTEND_OP */
511 if (side_effects_p (op))
512 continue;
513 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
514 if (! v)
515 continue;
516
517 for (l = v->locs; l; l = l->next)
518 if (REG_P (l->loc))
519 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
520 }
521
522 alternative_mask preferred = get_preferred_alternatives (insn);
523 for (i = 0; i < recog_data.n_operands; i++)
524 {
525 machine_mode mode;
526 int regno;
527 const char *p;
528
529 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
530 for (j = 0; j < recog_data.n_alternatives; j++)
531 op_alt_regno[i][j] = -1;
532
533 p = constraints[i] = recog_data.constraints[i];
534 mode = recog_data.operand_mode[i];
535
536 /* Add the reject values for each alternative given by the constraints
537 for this operand. */
538 j = 0;
539 while (*p != '\0')
540 {
541 char c = *p++;
542 if (c == ',')
543 j++;
544 else if (c == '?')
545 alternative_reject[j] += 3;
546 else if (c == '!')
547 alternative_reject[j] += 300;
548 }
549
550 /* We won't change operands which are already registers. We
551 also don't want to modify output operands. */
552 regno = true_regnum (recog_data.operand[i]);
553 if (regno >= 0
554 || constraints[i][0] == '='
555 || constraints[i][0] == '+')
556 continue;
557
558 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
559 {
560 enum reg_class rclass = NO_REGS;
561
562 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
563 continue;
564
565 SET_REGNO_RAW (testreg, regno);
566 PUT_MODE (testreg, mode);
567
568 /* We found a register equal to this operand. Now look for all
569 alternatives that can accept this register and have not been
570 assigned a register they can use yet. */
571 j = 0;
572 p = constraints[i];
573 for (;;)
574 {
575 char c = *p;
576
577 switch (c)
578 {
579 case 'g':
580 rclass = reg_class_subunion[rclass][GENERAL_REGS];
581 break;
582
583 default:
584 rclass
585 = (reg_class_subunion
586 [rclass]
587 [reg_class_for_constraint (lookup_constraint (p))]);
588 break;
589
590 case ',': case '\0':
591 /* See if REGNO fits this alternative, and set it up as the
592 replacement register if we don't have one for this
593 alternative yet and the operand being replaced is not
594 a cheap CONST_INT. */
595 if (op_alt_regno[i][j] == -1
596 && TEST_BIT (preferred, j)
597 && reg_fits_class_p (testreg, rclass, 0, mode)
598 && (!CONST_INT_P (recog_data.operand[i])
599 || (set_src_cost (recog_data.operand[i],
600 optimize_bb_for_speed_p
601 (BLOCK_FOR_INSN (insn)))
602 > set_src_cost (testreg,
603 optimize_bb_for_speed_p
604 (BLOCK_FOR_INSN (insn))))))
605 {
606 alternative_nregs[j]++;
607 op_alt_regno[i][j] = regno;
608 }
609 j++;
610 rclass = NO_REGS;
611 break;
612 }
613 p += CONSTRAINT_LEN (c, p);
614
615 if (c == '\0')
616 break;
617 }
618 }
619 }
620
621 /* Record all alternatives which are better or equal to the currently
622 matching one in the alternative_order array. */
623 for (i = j = 0; i < recog_data.n_alternatives; i++)
624 if (alternative_reject[i] <= alternative_reject[which_alternative])
625 alternative_order[j++] = i;
626 recog_data.n_alternatives = j;
627
628 /* Sort it. Given a small number of alternatives, a dumb algorithm
629 won't hurt too much. */
630 for (i = 0; i < recog_data.n_alternatives - 1; i++)
631 {
632 int best = i;
633 int best_reject = alternative_reject[alternative_order[i]];
634 int best_nregs = alternative_nregs[alternative_order[i]];
635
636 for (j = i + 1; j < recog_data.n_alternatives; j++)
637 {
638 int this_reject = alternative_reject[alternative_order[j]];
639 int this_nregs = alternative_nregs[alternative_order[j]];
640
641 if (this_reject < best_reject
642 || (this_reject == best_reject && this_nregs > best_nregs))
643 {
644 best = j;
645 best_reject = this_reject;
646 best_nregs = this_nregs;
647 }
648 }
649
650 std::swap (alternative_order[best], alternative_order[i]);
651 }
652
653 /* Substitute the operands as determined by op_alt_regno for the best
654 alternative. */
655 j = alternative_order[0];
656
657 for (i = 0; i < recog_data.n_operands; i++)
658 {
659 machine_mode mode = recog_data.operand_mode[i];
660 if (op_alt_regno[i][j] == -1)
661 continue;
662
663 validate_change (insn, recog_data.operand_loc[i],
664 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
665 }
666
667 for (i = recog_data.n_dups - 1; i >= 0; i--)
668 {
669 int op = recog_data.dup_num[i];
670 machine_mode mode = recog_data.operand_mode[op];
671
672 if (op_alt_regno[op][j] == -1)
673 continue;
674
675 validate_change (insn, recog_data.dup_loc[i],
676 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
677 }
678
679 return apply_change_group ();
680 }
681 \f
682 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
683 addressing now.
684 This code might also be useful when reload gave up on reg+reg addressing
685 because of clashes between the return register and INDEX_REG_CLASS. */
686
687 /* The maximum number of uses of a register we can keep track of to
688 replace them with reg+reg addressing. */
689 #define RELOAD_COMBINE_MAX_USES 16
690
691 /* Describes a recorded use of a register. */
692 struct reg_use
693 {
694 /* The insn where a register has been used. */
695 rtx_insn *insn;
696 /* Points to the memory reference enclosing the use, if any, NULL_RTX
697 otherwise. */
698 rtx containing_mem;
699 /* Location of the register within INSN. */
700 rtx *usep;
701 /* The reverse uid of the insn. */
702 int ruid;
703 };
704
705 /* If the register is used in some unknown fashion, USE_INDEX is negative.
706 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
707 indicates where it is first set or clobbered.
708 Otherwise, USE_INDEX is the index of the last encountered use of the
709 register (which is first among these we have seen since we scan backwards).
710 USE_RUID indicates the first encountered, i.e. last, of these uses.
711 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
712 with a constant offset; OFFSET contains this constant in that case.
713 STORE_RUID is always meaningful if we only want to use a value in a
714 register in a different place: it denotes the next insn in the insn
715 stream (i.e. the last encountered) that sets or clobbers the register.
716 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
717 static struct
718 {
719 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
720 rtx offset;
721 int use_index;
722 int store_ruid;
723 int real_store_ruid;
724 int use_ruid;
725 bool all_offsets_match;
726 } reg_state[FIRST_PSEUDO_REGISTER];
727
728 /* Reverse linear uid. This is increased in reload_combine while scanning
729 the instructions from last to first. It is used to set last_label_ruid
730 and the store_ruid / use_ruid fields in reg_state. */
731 static int reload_combine_ruid;
732
733 /* The RUID of the last label we encountered in reload_combine. */
734 static int last_label_ruid;
735
736 /* The RUID of the last jump we encountered in reload_combine. */
737 static int last_jump_ruid;
738
739 /* The register numbers of the first and last index register. A value of
740 -1 in LAST_INDEX_REG indicates that we've previously computed these
741 values and found no suitable index registers. */
742 static int first_index_reg = -1;
743 static int last_index_reg;
744
745 #define LABEL_LIVE(LABEL) \
746 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
747
748 /* Subroutine of reload_combine_split_ruids, called to fix up a single
749 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
750
751 static inline void
752 reload_combine_split_one_ruid (int *pruid, int split_ruid)
753 {
754 if (*pruid > split_ruid)
755 (*pruid)++;
756 }
757
758 /* Called when we insert a new insn in a position we've already passed in
759 the scan. Examine all our state, increasing all ruids that are higher
760 than SPLIT_RUID by one in order to make room for a new insn. */
761
762 static void
763 reload_combine_split_ruids (int split_ruid)
764 {
765 unsigned i;
766
767 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
768 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
769 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
770
771 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
772 {
773 int j, idx = reg_state[i].use_index;
774 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
775 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
776 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
777 split_ruid);
778 if (idx < 0)
779 continue;
780 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
781 {
782 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
783 split_ruid);
784 }
785 }
786 }
787
788 /* Called when we are about to rescan a previously encountered insn with
789 reload_combine_note_use after modifying some part of it. This clears all
790 information about uses in that particular insn. */
791
792 static void
793 reload_combine_purge_insn_uses (rtx_insn *insn)
794 {
795 unsigned i;
796
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 {
799 int j, k, idx = reg_state[i].use_index;
800 if (idx < 0)
801 continue;
802 j = k = RELOAD_COMBINE_MAX_USES;
803 while (j-- > idx)
804 {
805 if (reg_state[i].reg_use[j].insn != insn)
806 {
807 k--;
808 if (k != j)
809 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
810 }
811 }
812 reg_state[i].use_index = k;
813 }
814 }
815
816 /* Called when we need to forget about all uses of REGNO after an insn
817 which is identified by RUID. */
818
819 static void
820 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
821 {
822 int j, k, idx = reg_state[regno].use_index;
823 if (idx < 0)
824 return;
825 j = k = RELOAD_COMBINE_MAX_USES;
826 while (j-- > idx)
827 {
828 if (reg_state[regno].reg_use[j].ruid >= ruid)
829 {
830 k--;
831 if (k != j)
832 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
833 }
834 }
835 reg_state[regno].use_index = k;
836 }
837
838 /* Find the use of REGNO with the ruid that is highest among those
839 lower than RUID_LIMIT, and return it if it is the only use of this
840 reg in the insn. Return NULL otherwise. */
841
842 static struct reg_use *
843 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
844 {
845 int i, best_ruid = 0;
846 int use_idx = reg_state[regno].use_index;
847 struct reg_use *retval;
848
849 if (use_idx < 0)
850 return NULL;
851 retval = NULL;
852 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
853 {
854 struct reg_use *use = reg_state[regno].reg_use + i;
855 int this_ruid = use->ruid;
856 if (this_ruid >= ruid_limit)
857 continue;
858 if (this_ruid > best_ruid)
859 {
860 best_ruid = this_ruid;
861 retval = use;
862 }
863 else if (this_ruid == best_ruid)
864 retval = NULL;
865 }
866 if (last_label_ruid >= best_ruid)
867 return NULL;
868 return retval;
869 }
870
871 /* After we've moved an add insn, fix up any debug insns that occur
872 between the old location of the add and the new location. REG is
873 the destination register of the add insn; REPLACEMENT is the
874 SET_SRC of the add. FROM and TO specify the range in which we
875 should make this change on debug insns. */
876
877 static void
878 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
879 {
880 rtx_insn *insn;
881 for (insn = from; insn != to; insn = NEXT_INSN (insn))
882 {
883 rtx t;
884
885 if (!DEBUG_INSN_P (insn))
886 continue;
887
888 t = INSN_VAR_LOCATION_LOC (insn);
889 t = simplify_replace_rtx (t, reg, replacement);
890 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
891 }
892 }
893
894 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
895 with SRC in the insn described by USE, taking costs into account. Return
896 true if we made the replacement. */
897
898 static bool
899 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
900 {
901 rtx_insn *use_insn = use->insn;
902 rtx mem = use->containing_mem;
903 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
904
905 if (mem != NULL_RTX)
906 {
907 addr_space_t as = MEM_ADDR_SPACE (mem);
908 rtx oldaddr = XEXP (mem, 0);
909 rtx newaddr = NULL_RTX;
910 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
911 int new_cost;
912
913 newaddr = simplify_replace_rtx (oldaddr, reg, src);
914 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
915 {
916 XEXP (mem, 0) = newaddr;
917 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
918 XEXP (mem, 0) = oldaddr;
919 if (new_cost <= old_cost
920 && validate_change (use_insn,
921 &XEXP (mem, 0), newaddr, 0))
922 return true;
923 }
924 }
925 else
926 {
927 rtx new_set = single_set (use_insn);
928 if (new_set
929 && REG_P (SET_DEST (new_set))
930 && GET_CODE (SET_SRC (new_set)) == PLUS
931 && REG_P (XEXP (SET_SRC (new_set), 0))
932 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
933 {
934 rtx new_src;
935 int old_cost = set_src_cost (SET_SRC (new_set), speed);
936
937 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
938 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
939
940 if (set_src_cost (new_src, speed) <= old_cost
941 && validate_change (use_insn, &SET_SRC (new_set),
942 new_src, 0))
943 return true;
944 }
945 }
946 return false;
947 }
948
949 /* Called by reload_combine when scanning INSN. This function tries to detect
950 patterns where a constant is added to a register, and the result is used
951 in an address.
952 Return true if no further processing is needed on INSN; false if it wasn't
953 recognized and should be handled normally. */
954
955 static bool
956 reload_combine_recognize_const_pattern (rtx_insn *insn)
957 {
958 int from_ruid = reload_combine_ruid;
959 rtx set, pat, reg, src, addreg;
960 unsigned int regno;
961 struct reg_use *use;
962 bool must_move_add;
963 rtx_insn *add_moved_after_insn = NULL;
964 int add_moved_after_ruid = 0;
965 int clobbered_regno = -1;
966
967 set = single_set (insn);
968 if (set == NULL_RTX)
969 return false;
970
971 reg = SET_DEST (set);
972 src = SET_SRC (set);
973 if (!REG_P (reg)
974 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
975 || GET_MODE (reg) != Pmode
976 || reg == stack_pointer_rtx)
977 return false;
978
979 regno = REGNO (reg);
980
981 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
982 uses of REG1 inside an address, or inside another add insn. If
983 possible and profitable, merge the addition into subsequent
984 uses. */
985 if (GET_CODE (src) != PLUS
986 || !REG_P (XEXP (src, 0))
987 || !CONSTANT_P (XEXP (src, 1)))
988 return false;
989
990 addreg = XEXP (src, 0);
991 must_move_add = rtx_equal_p (reg, addreg);
992
993 pat = PATTERN (insn);
994 if (must_move_add && set != pat)
995 {
996 /* We have to be careful when moving the add; apart from the
997 single_set there may also be clobbers. Recognize one special
998 case, that of one clobber alongside the set (likely a clobber
999 of the CC register). */
1000 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
1001 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
1002 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
1003 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
1004 return false;
1005 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1006 }
1007
1008 do
1009 {
1010 use = reload_combine_closest_single_use (regno, from_ruid);
1011
1012 if (use)
1013 /* Start the search for the next use from here. */
1014 from_ruid = use->ruid;
1015
1016 if (use && GET_MODE (*use->usep) == Pmode)
1017 {
1018 bool delete_add = false;
1019 rtx_insn *use_insn = use->insn;
1020 int use_ruid = use->ruid;
1021
1022 /* Avoid moving the add insn past a jump. */
1023 if (must_move_add && use_ruid <= last_jump_ruid)
1024 break;
1025
1026 /* If the add clobbers another hard reg in parallel, don't move
1027 it past a real set of this hard reg. */
1028 if (must_move_add && clobbered_regno >= 0
1029 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1030 break;
1031
1032 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1033 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1034 break;
1035
1036 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1037 /* Avoid moving a use of ADDREG past a point where it is stored. */
1038 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1039 break;
1040
1041 /* We also must not move the addition past an insn that sets
1042 the same register, unless we can combine two add insns. */
1043 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1044 {
1045 if (use->containing_mem == NULL_RTX)
1046 delete_add = true;
1047 else
1048 break;
1049 }
1050
1051 if (try_replace_in_use (use, reg, src))
1052 {
1053 reload_combine_purge_insn_uses (use_insn);
1054 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1055 use_ruid, NULL_RTX);
1056
1057 if (delete_add)
1058 {
1059 fixup_debug_insns (reg, src, insn, use_insn);
1060 delete_insn (insn);
1061 return true;
1062 }
1063 if (must_move_add)
1064 {
1065 add_moved_after_insn = use_insn;
1066 add_moved_after_ruid = use_ruid;
1067 }
1068 continue;
1069 }
1070 }
1071 /* If we get here, we couldn't handle this use. */
1072 if (must_move_add)
1073 break;
1074 }
1075 while (use);
1076
1077 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1078 /* Process the add normally. */
1079 return false;
1080
1081 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1082
1083 reorder_insns (insn, insn, add_moved_after_insn);
1084 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1085 reload_combine_split_ruids (add_moved_after_ruid - 1);
1086 reload_combine_note_use (&PATTERN (insn), insn,
1087 add_moved_after_ruid, NULL_RTX);
1088 reg_state[regno].store_ruid = add_moved_after_ruid;
1089
1090 return true;
1091 }
1092
1093 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1094 can handle and improve. Return true if no further processing is needed on
1095 INSN; false if it wasn't recognized and should be handled normally. */
1096
1097 static bool
1098 reload_combine_recognize_pattern (rtx_insn *insn)
1099 {
1100 rtx set, reg, src;
1101 unsigned int regno;
1102
1103 set = single_set (insn);
1104 if (set == NULL_RTX)
1105 return false;
1106
1107 reg = SET_DEST (set);
1108 src = SET_SRC (set);
1109 if (!REG_P (reg)
1110 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1111 return false;
1112
1113 regno = REGNO (reg);
1114
1115 /* Look for (set (REGX) (CONST_INT))
1116 (set (REGX) (PLUS (REGX) (REGY)))
1117 ...
1118 ... (MEM (REGX)) ...
1119 and convert it to
1120 (set (REGZ) (CONST_INT))
1121 ...
1122 ... (MEM (PLUS (REGZ) (REGY)))... .
1123
1124 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1125 and that we know all uses of REGX before it dies.
1126 Also, explicitly check that REGX != REGY; our life information
1127 does not yet show whether REGY changes in this insn. */
1128
1129 if (GET_CODE (src) == PLUS
1130 && reg_state[regno].all_offsets_match
1131 && last_index_reg != -1
1132 && REG_P (XEXP (src, 1))
1133 && rtx_equal_p (XEXP (src, 0), reg)
1134 && !rtx_equal_p (XEXP (src, 1), reg)
1135 && reg_state[regno].use_index >= 0
1136 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1137 && last_label_ruid < reg_state[regno].use_ruid)
1138 {
1139 rtx base = XEXP (src, 1);
1140 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1141 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1142 rtx index_reg = NULL_RTX;
1143 rtx reg_sum = NULL_RTX;
1144 int i;
1145
1146 /* Now we need to set INDEX_REG to an index register (denoted as
1147 REGZ in the illustration above) and REG_SUM to the expression
1148 register+register that we want to use to substitute uses of REG
1149 (typically in MEMs) with. First check REG and BASE for being
1150 index registers; we can use them even if they are not dead. */
1151 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1152 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1153 REGNO (base)))
1154 {
1155 index_reg = reg;
1156 reg_sum = src;
1157 }
1158 else
1159 {
1160 /* Otherwise, look for a free index register. Since we have
1161 checked above that neither REG nor BASE are index registers,
1162 if we find anything at all, it will be different from these
1163 two registers. */
1164 for (i = first_index_reg; i <= last_index_reg; i++)
1165 {
1166 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1167 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1168 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1169 && (call_used_regs[i] || df_regs_ever_live_p (i))
1170 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1171 && !fixed_regs[i] && !global_regs[i]
1172 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1173 && targetm.hard_regno_scratch_ok (i))
1174 {
1175 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1176 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1177 break;
1178 }
1179 }
1180 }
1181
1182 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1183 (REGY), i.e. BASE, is not clobbered before the last use we'll
1184 create. */
1185 if (reg_sum
1186 && prev_set
1187 && CONST_INT_P (SET_SRC (prev_set))
1188 && rtx_equal_p (SET_DEST (prev_set), reg)
1189 && (reg_state[REGNO (base)].store_ruid
1190 <= reg_state[regno].use_ruid))
1191 {
1192 /* Change destination register and, if necessary, the constant
1193 value in PREV, the constant loading instruction. */
1194 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1195 if (reg_state[regno].offset != const0_rtx)
1196 validate_change (prev,
1197 &SET_SRC (prev_set),
1198 GEN_INT (INTVAL (SET_SRC (prev_set))
1199 + INTVAL (reg_state[regno].offset)),
1200 1);
1201
1202 /* Now for every use of REG that we have recorded, replace REG
1203 with REG_SUM. */
1204 for (i = reg_state[regno].use_index;
1205 i < RELOAD_COMBINE_MAX_USES; i++)
1206 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1207 reg_state[regno].reg_use[i].usep,
1208 /* Each change must have its own
1209 replacement. */
1210 reg_sum, 1);
1211
1212 if (apply_change_group ())
1213 {
1214 struct reg_use *lowest_ruid = NULL;
1215
1216 /* For every new use of REG_SUM, we have to record the use
1217 of BASE therein, i.e. operand 1. */
1218 for (i = reg_state[regno].use_index;
1219 i < RELOAD_COMBINE_MAX_USES; i++)
1220 {
1221 struct reg_use *use = reg_state[regno].reg_use + i;
1222 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1223 use->ruid, use->containing_mem);
1224 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1225 lowest_ruid = use;
1226 }
1227
1228 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1229
1230 /* Delete the reg-reg addition. */
1231 delete_insn (insn);
1232
1233 if (reg_state[regno].offset != const0_rtx)
1234 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1235 are now invalid. */
1236 remove_reg_equal_equiv_notes (prev);
1237
1238 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1239 return true;
1240 }
1241 }
1242 }
1243 return false;
1244 }
1245
1246 static void
1247 reload_combine (void)
1248 {
1249 rtx_insn *insn, *prev;
1250 basic_block bb;
1251 unsigned int r;
1252 int min_labelno, n_labels;
1253 HARD_REG_SET ever_live_at_start, *label_live;
1254
1255 /* To avoid wasting too much time later searching for an index register,
1256 determine the minimum and maximum index register numbers. */
1257 if (INDEX_REG_CLASS == NO_REGS)
1258 last_index_reg = -1;
1259 else if (first_index_reg == -1 && last_index_reg == 0)
1260 {
1261 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1262 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1263 {
1264 if (first_index_reg == -1)
1265 first_index_reg = r;
1266
1267 last_index_reg = r;
1268 }
1269
1270 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1271 to -1 so we'll know to quit early the next time we get here. */
1272 if (first_index_reg == -1)
1273 {
1274 last_index_reg = -1;
1275 return;
1276 }
1277 }
1278
1279 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1280 information is a bit fuzzy immediately after reload, but it's
1281 still good enough to determine which registers are live at a jump
1282 destination. */
1283 min_labelno = get_first_label_num ();
1284 n_labels = max_label_num () - min_labelno;
1285 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1286 CLEAR_HARD_REG_SET (ever_live_at_start);
1287
1288 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1289 {
1290 insn = BB_HEAD (bb);
1291 if (LABEL_P (insn))
1292 {
1293 HARD_REG_SET live;
1294 bitmap live_in = df_get_live_in (bb);
1295
1296 REG_SET_TO_HARD_REG_SET (live, live_in);
1297 compute_use_by_pseudos (&live, live_in);
1298 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1299 IOR_HARD_REG_SET (ever_live_at_start, live);
1300 }
1301 }
1302
1303 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1304 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1305 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1306 {
1307 reg_state[r].store_ruid = 0;
1308 reg_state[r].real_store_ruid = 0;
1309 if (fixed_regs[r])
1310 reg_state[r].use_index = -1;
1311 else
1312 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1313 }
1314
1315 for (insn = get_last_insn (); insn; insn = prev)
1316 {
1317 bool control_flow_insn;
1318 rtx note;
1319
1320 prev = PREV_INSN (insn);
1321
1322 /* We cannot do our optimization across labels. Invalidating all the use
1323 information we have would be costly, so we just note where the label
1324 is and then later disable any optimization that would cross it. */
1325 if (LABEL_P (insn))
1326 last_label_ruid = reload_combine_ruid;
1327 else if (BARRIER_P (insn))
1328 {
1329 /* Crossing a barrier resets all the use information. */
1330 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1331 if (! fixed_regs[r])
1332 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1333 }
1334 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1335 /* Optimizations across insns being marked as volatile must be
1336 prevented. All the usage information is invalidated
1337 here. */
1338 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1339 if (! fixed_regs[r]
1340 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1341 reg_state[r].use_index = -1;
1342
1343 if (! NONDEBUG_INSN_P (insn))
1344 continue;
1345
1346 reload_combine_ruid++;
1347
1348 control_flow_insn = control_flow_insn_p (insn);
1349 if (control_flow_insn)
1350 last_jump_ruid = reload_combine_ruid;
1351
1352 if (reload_combine_recognize_const_pattern (insn)
1353 || reload_combine_recognize_pattern (insn))
1354 continue;
1355
1356 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1357
1358 if (CALL_P (insn))
1359 {
1360 rtx link;
1361
1362 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1363 if (call_used_regs[r])
1364 {
1365 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1366 reg_state[r].store_ruid = reload_combine_ruid;
1367 }
1368
1369 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1370 link = XEXP (link, 1))
1371 {
1372 rtx setuse = XEXP (link, 0);
1373 rtx usage_rtx = XEXP (setuse, 0);
1374 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1375 && REG_P (usage_rtx))
1376 {
1377 unsigned int i;
1378 unsigned int start_reg = REGNO (usage_rtx);
1379 unsigned int num_regs
1380 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1381 unsigned int end_reg = start_reg + num_regs - 1;
1382 for (i = start_reg; i <= end_reg; i++)
1383 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1384 {
1385 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1386 reg_state[i].store_ruid = reload_combine_ruid;
1387 }
1388 else
1389 reg_state[i].use_index = -1;
1390 }
1391 }
1392 }
1393
1394 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1395 {
1396 /* Non-spill registers might be used at the call destination in
1397 some unknown fashion, so we have to mark the unknown use. */
1398 HARD_REG_SET *live;
1399
1400 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1401 && JUMP_LABEL (insn))
1402 {
1403 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1404 live = NULL;
1405 else
1406 live = &LABEL_LIVE (JUMP_LABEL (insn));
1407 }
1408 else
1409 live = &ever_live_at_start;
1410
1411 if (live)
1412 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1413 if (TEST_HARD_REG_BIT (*live, r))
1414 reg_state[r].use_index = -1;
1415 }
1416
1417 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1418 NULL_RTX);
1419
1420 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1421 {
1422 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1423 {
1424 int regno = REGNO (XEXP (note, 0));
1425 reg_state[regno].store_ruid = reload_combine_ruid;
1426 reg_state[regno].real_store_ruid = reload_combine_ruid;
1427 reg_state[regno].use_index = -1;
1428 }
1429 }
1430 }
1431
1432 free (label_live);
1433 }
1434
1435 /* Check if DST is a register or a subreg of a register; if it is,
1436 update store_ruid, real_store_ruid and use_index in the reg_state
1437 structure accordingly. Called via note_stores from reload_combine. */
1438
1439 static void
1440 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1441 {
1442 int regno = 0;
1443 int i;
1444 machine_mode mode = GET_MODE (dst);
1445
1446 if (GET_CODE (dst) == SUBREG)
1447 {
1448 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1449 GET_MODE (SUBREG_REG (dst)),
1450 SUBREG_BYTE (dst),
1451 GET_MODE (dst));
1452 dst = SUBREG_REG (dst);
1453 }
1454
1455 /* Some targets do argument pushes without adding REG_INC notes. */
1456
1457 if (MEM_P (dst))
1458 {
1459 dst = XEXP (dst, 0);
1460 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1461 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1462 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1463 {
1464 regno = REGNO (XEXP (dst, 0));
1465 mode = GET_MODE (XEXP (dst, 0));
1466 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1467 {
1468 /* We could probably do better, but for now mark the register
1469 as used in an unknown fashion and set/clobbered at this
1470 insn. */
1471 reg_state[i].use_index = -1;
1472 reg_state[i].store_ruid = reload_combine_ruid;
1473 reg_state[i].real_store_ruid = reload_combine_ruid;
1474 }
1475 }
1476 else
1477 return;
1478 }
1479
1480 if (!REG_P (dst))
1481 return;
1482 regno += REGNO (dst);
1483
1484 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1485 careful with registers / register parts that are not full words.
1486 Similarly for ZERO_EXTRACT. */
1487 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1488 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1489 {
1490 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1491 {
1492 reg_state[i].use_index = -1;
1493 reg_state[i].store_ruid = reload_combine_ruid;
1494 reg_state[i].real_store_ruid = reload_combine_ruid;
1495 }
1496 }
1497 else
1498 {
1499 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1500 {
1501 reg_state[i].store_ruid = reload_combine_ruid;
1502 if (GET_CODE (set) == SET)
1503 reg_state[i].real_store_ruid = reload_combine_ruid;
1504 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1505 }
1506 }
1507 }
1508
1509 /* XP points to a piece of rtl that has to be checked for any uses of
1510 registers.
1511 *XP is the pattern of INSN, or a part of it.
1512 Called from reload_combine, and recursively by itself. */
1513 static void
1514 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1515 {
1516 rtx x = *xp;
1517 enum rtx_code code = x->code;
1518 const char *fmt;
1519 int i, j;
1520 rtx offset = const0_rtx; /* For the REG case below. */
1521
1522 switch (code)
1523 {
1524 case SET:
1525 if (REG_P (SET_DEST (x)))
1526 {
1527 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1528 return;
1529 }
1530 break;
1531
1532 case USE:
1533 /* If this is the USE of a return value, we can't change it. */
1534 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1535 {
1536 /* Mark the return register as used in an unknown fashion. */
1537 rtx reg = XEXP (x, 0);
1538 int regno = REGNO (reg);
1539 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1540
1541 while (--nregs >= 0)
1542 reg_state[regno + nregs].use_index = -1;
1543 return;
1544 }
1545 break;
1546
1547 case CLOBBER:
1548 if (REG_P (SET_DEST (x)))
1549 {
1550 /* No spurious CLOBBERs of pseudo registers may remain. */
1551 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1552 return;
1553 }
1554 break;
1555
1556 case PLUS:
1557 /* We are interested in (plus (reg) (const_int)) . */
1558 if (!REG_P (XEXP (x, 0))
1559 || !CONST_INT_P (XEXP (x, 1)))
1560 break;
1561 offset = XEXP (x, 1);
1562 x = XEXP (x, 0);
1563 /* Fall through. */
1564 case REG:
1565 {
1566 int regno = REGNO (x);
1567 int use_index;
1568 int nregs;
1569
1570 /* No spurious USEs of pseudo registers may remain. */
1571 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1572
1573 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1574
1575 /* We can't substitute into multi-hard-reg uses. */
1576 if (nregs > 1)
1577 {
1578 while (--nregs >= 0)
1579 reg_state[regno + nregs].use_index = -1;
1580 return;
1581 }
1582
1583 /* We may be called to update uses in previously seen insns.
1584 Don't add uses beyond the last store we saw. */
1585 if (ruid < reg_state[regno].store_ruid)
1586 return;
1587
1588 /* If this register is already used in some unknown fashion, we
1589 can't do anything.
1590 If we decrement the index from zero to -1, we can't store more
1591 uses, so this register becomes used in an unknown fashion. */
1592 use_index = --reg_state[regno].use_index;
1593 if (use_index < 0)
1594 return;
1595
1596 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1597 {
1598 /* This is the first use of this register we have seen since we
1599 marked it as dead. */
1600 reg_state[regno].offset = offset;
1601 reg_state[regno].all_offsets_match = true;
1602 reg_state[regno].use_ruid = ruid;
1603 }
1604 else
1605 {
1606 if (reg_state[regno].use_ruid > ruid)
1607 reg_state[regno].use_ruid = ruid;
1608
1609 if (! rtx_equal_p (offset, reg_state[regno].offset))
1610 reg_state[regno].all_offsets_match = false;
1611 }
1612
1613 reg_state[regno].reg_use[use_index].insn = insn;
1614 reg_state[regno].reg_use[use_index].ruid = ruid;
1615 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1616 reg_state[regno].reg_use[use_index].usep = xp;
1617 return;
1618 }
1619
1620 case MEM:
1621 containing_mem = x;
1622 break;
1623
1624 default:
1625 break;
1626 }
1627
1628 /* Recursively process the components of X. */
1629 fmt = GET_RTX_FORMAT (code);
1630 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1631 {
1632 if (fmt[i] == 'e')
1633 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1634 else if (fmt[i] == 'E')
1635 {
1636 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1637 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1638 containing_mem);
1639 }
1640 }
1641 }
1642 \f
1643 /* See if we can reduce the cost of a constant by replacing a move
1644 with an add. We track situations in which a register is set to a
1645 constant or to a register plus a constant. */
1646 /* We cannot do our optimization across labels. Invalidating all the
1647 information about register contents we have would be costly, so we
1648 use move2add_last_label_luid to note where the label is and then
1649 later disable any optimization that would cross it.
1650 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1651 are only valid if reg_set_luid[n] is greater than
1652 move2add_last_label_luid.
1653 For a set that established a new (potential) base register with
1654 non-constant value, we use move2add_luid from the place where the
1655 setting insn is encountered; registers based off that base then
1656 get the same reg_set_luid. Constants all get
1657 move2add_last_label_luid + 1 as their reg_set_luid. */
1658 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1659
1660 /* If reg_base_reg[n] is negative, register n has been set to
1661 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1662 If reg_base_reg[n] is non-negative, register n has been set to the
1663 sum of reg_offset[n] and the value of register reg_base_reg[n]
1664 before reg_set_luid[n], calculated in mode reg_mode[n] .
1665 For multi-hard-register registers, all but the first one are
1666 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1667 marks it as invalid. */
1668 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1669 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1670 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1671 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1672
1673 /* move2add_luid is linearly increased while scanning the instructions
1674 from first to last. It is used to set reg_set_luid in
1675 reload_cse_move2add and move2add_note_store. */
1676 static int move2add_luid;
1677
1678 /* move2add_last_label_luid is set whenever a label is found. Labels
1679 invalidate all previously collected reg_offset data. */
1680 static int move2add_last_label_luid;
1681
1682 /* ??? We don't know how zero / sign extension is handled, hence we
1683 can't go from a narrower to a wider mode. */
1684 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1685 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1686 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1687 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1688
1689 /* Record that REG is being set to a value with the mode of REG. */
1690
1691 static void
1692 move2add_record_mode (rtx reg)
1693 {
1694 int regno, nregs;
1695 machine_mode mode = GET_MODE (reg);
1696
1697 if (GET_CODE (reg) == SUBREG)
1698 {
1699 regno = subreg_regno (reg);
1700 nregs = subreg_nregs (reg);
1701 }
1702 else if (REG_P (reg))
1703 {
1704 regno = REGNO (reg);
1705 nregs = hard_regno_nregs[regno][mode];
1706 }
1707 else
1708 gcc_unreachable ();
1709 for (int i = nregs - 1; i > 0; i--)
1710 reg_mode[regno + i] = BLKmode;
1711 reg_mode[regno] = mode;
1712 }
1713
1714 /* Record that REG is being set to the sum of SYM and OFF. */
1715
1716 static void
1717 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1718 {
1719 int regno = REGNO (reg);
1720
1721 move2add_record_mode (reg);
1722 reg_set_luid[regno] = move2add_luid;
1723 reg_base_reg[regno] = -1;
1724 reg_symbol_ref[regno] = sym;
1725 reg_offset[regno] = INTVAL (off);
1726 }
1727
1728 /* Check if REGNO contains a valid value in MODE. */
1729
1730 static bool
1731 move2add_valid_value_p (int regno, machine_mode mode)
1732 {
1733 if (reg_set_luid[regno] <= move2add_last_label_luid)
1734 return false;
1735
1736 if (mode != reg_mode[regno])
1737 {
1738 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1739 return false;
1740 /* The value loaded into regno in reg_mode[regno] is also valid in
1741 mode after truncation only if (REG:mode regno) is the lowpart of
1742 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1743 regno of the lowpart might be different. */
1744 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1745 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1746 if (s_off != 0)
1747 /* We could in principle adjust regno, check reg_mode[regno] to be
1748 BLKmode, and return s_off to the caller (vs. -1 for failure),
1749 but we currently have no callers that could make use of this
1750 information. */
1751 return false;
1752 }
1753
1754 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1755 if (reg_mode[regno + i] != BLKmode)
1756 return false;
1757 return true;
1758 }
1759
1760 /* This function is called with INSN that sets REG to (SYM + OFF),
1761 while REG is known to already have value (SYM + offset).
1762 This function tries to change INSN into an add instruction
1763 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1764 It also updates the information about REG's known value.
1765 Return true if we made a change. */
1766
1767 static bool
1768 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1769 {
1770 rtx pat = PATTERN (insn);
1771 rtx src = SET_SRC (pat);
1772 int regno = REGNO (reg);
1773 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1774 GET_MODE (reg));
1775 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1776 bool changed = false;
1777
1778 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1779 use (set (reg) (reg)) instead.
1780 We don't delete this insn, nor do we convert it into a
1781 note, to avoid losing register notes or the return
1782 value flag. jump2 already knows how to get rid of
1783 no-op moves. */
1784 if (new_src == const0_rtx)
1785 {
1786 /* If the constants are different, this is a
1787 truncation, that, if turned into (set (reg)
1788 (reg)), would be discarded. Maybe we should
1789 try a truncMN pattern? */
1790 if (INTVAL (off) == reg_offset [regno])
1791 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1792 }
1793 else
1794 {
1795 struct full_rtx_costs oldcst, newcst;
1796 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1797
1798 get_full_set_rtx_cost (pat, &oldcst);
1799 SET_SRC (pat) = tem;
1800 get_full_set_rtx_cost (pat, &newcst);
1801 SET_SRC (pat) = src;
1802
1803 if (costs_lt_p (&newcst, &oldcst, speed)
1804 && have_add2_insn (reg, new_src))
1805 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1806 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1807 {
1808 machine_mode narrow_mode;
1809 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1810 narrow_mode != VOIDmode
1811 && narrow_mode != GET_MODE (reg);
1812 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1813 {
1814 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1815 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1816 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1817 {
1818 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1819 rtx narrow_src = gen_int_mode (INTVAL (off),
1820 narrow_mode);
1821 rtx new_set
1822 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1823 narrow_reg),
1824 narrow_src);
1825 get_full_set_rtx_cost (new_set, &newcst);
1826 if (costs_lt_p (&newcst, &oldcst, speed))
1827 {
1828 changed = validate_change (insn, &PATTERN (insn),
1829 new_set, 0);
1830 if (changed)
1831 break;
1832 }
1833 }
1834 }
1835 }
1836 }
1837 move2add_record_sym_value (reg, sym, off);
1838 return changed;
1839 }
1840
1841
1842 /* This function is called with INSN that sets REG to (SYM + OFF),
1843 but REG doesn't have known value (SYM + offset). This function
1844 tries to find another register which is known to already have
1845 value (SYM + offset) and change INSN into an add instruction
1846 (set (REG) (plus (the found register) (OFF - offset))) if such
1847 a register is found. It also updates the information about
1848 REG's known value.
1849 Return true iff we made a change. */
1850
1851 static bool
1852 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1853 {
1854 rtx pat = PATTERN (insn);
1855 rtx src = SET_SRC (pat);
1856 int regno = REGNO (reg);
1857 int min_regno = 0;
1858 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1859 int i;
1860 bool changed = false;
1861 struct full_rtx_costs oldcst, newcst, mincst;
1862 rtx plus_expr;
1863
1864 init_costs_to_max (&mincst);
1865 get_full_set_rtx_cost (pat, &oldcst);
1866
1867 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1868 SET_SRC (pat) = plus_expr;
1869
1870 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1871 if (move2add_valid_value_p (i, GET_MODE (reg))
1872 && reg_base_reg[i] < 0
1873 && reg_symbol_ref[i] != NULL_RTX
1874 && rtx_equal_p (sym, reg_symbol_ref[i]))
1875 {
1876 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1877 GET_MODE (reg));
1878 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1879 use (set (reg) (reg)) instead.
1880 We don't delete this insn, nor do we convert it into a
1881 note, to avoid losing register notes or the return
1882 value flag. jump2 already knows how to get rid of
1883 no-op moves. */
1884 if (new_src == const0_rtx)
1885 {
1886 init_costs_to_zero (&mincst);
1887 min_regno = i;
1888 break;
1889 }
1890 else
1891 {
1892 XEXP (plus_expr, 1) = new_src;
1893 get_full_set_rtx_cost (pat, &newcst);
1894
1895 if (costs_lt_p (&newcst, &mincst, speed))
1896 {
1897 mincst = newcst;
1898 min_regno = i;
1899 }
1900 }
1901 }
1902 SET_SRC (pat) = src;
1903
1904 if (costs_lt_p (&mincst, &oldcst, speed))
1905 {
1906 rtx tem;
1907
1908 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1909 if (i != min_regno)
1910 {
1911 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1912 GET_MODE (reg));
1913 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1914 }
1915 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1916 changed = true;
1917 }
1918 reg_set_luid[regno] = move2add_luid;
1919 move2add_record_sym_value (reg, sym, off);
1920 return changed;
1921 }
1922
1923 /* Convert move insns with constant inputs to additions if they are cheaper.
1924 Return true if any changes were made. */
1925 static bool
1926 reload_cse_move2add (rtx_insn *first)
1927 {
1928 int i;
1929 rtx_insn *insn;
1930 bool changed = false;
1931
1932 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1933 {
1934 reg_set_luid[i] = 0;
1935 reg_offset[i] = 0;
1936 reg_base_reg[i] = 0;
1937 reg_symbol_ref[i] = NULL_RTX;
1938 reg_mode[i] = VOIDmode;
1939 }
1940
1941 move2add_last_label_luid = 0;
1942 move2add_luid = 2;
1943 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1944 {
1945 rtx pat, note;
1946
1947 if (LABEL_P (insn))
1948 {
1949 move2add_last_label_luid = move2add_luid;
1950 /* We're going to increment move2add_luid twice after a
1951 label, so that we can use move2add_last_label_luid + 1 as
1952 the luid for constants. */
1953 move2add_luid++;
1954 continue;
1955 }
1956 if (! INSN_P (insn))
1957 continue;
1958 pat = PATTERN (insn);
1959 /* For simplicity, we only perform this optimization on
1960 straightforward SETs. */
1961 if (GET_CODE (pat) == SET
1962 && REG_P (SET_DEST (pat)))
1963 {
1964 rtx reg = SET_DEST (pat);
1965 int regno = REGNO (reg);
1966 rtx src = SET_SRC (pat);
1967
1968 /* Check if we have valid information on the contents of this
1969 register in the mode of REG. */
1970 if (move2add_valid_value_p (regno, GET_MODE (reg))
1971 && dbg_cnt (cse2_move2add))
1972 {
1973 /* Try to transform (set (REGX) (CONST_INT A))
1974 ...
1975 (set (REGX) (CONST_INT B))
1976 to
1977 (set (REGX) (CONST_INT A))
1978 ...
1979 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1980 or
1981 (set (REGX) (CONST_INT A))
1982 ...
1983 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1984 */
1985
1986 if (CONST_INT_P (src)
1987 && reg_base_reg[regno] < 0
1988 && reg_symbol_ref[regno] == NULL_RTX)
1989 {
1990 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1991 continue;
1992 }
1993
1994 /* Try to transform (set (REGX) (REGY))
1995 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1996 ...
1997 (set (REGX) (REGY))
1998 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1999 to
2000 (set (REGX) (REGY))
2001 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2002 ...
2003 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
2004 else if (REG_P (src)
2005 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
2006 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
2007 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
2008 {
2009 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2010 rtx set = NULL_RTX;
2011 if (next)
2012 set = single_set (next);
2013 if (set
2014 && SET_DEST (set) == reg
2015 && GET_CODE (SET_SRC (set)) == PLUS
2016 && XEXP (SET_SRC (set), 0) == reg
2017 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2018 {
2019 rtx src3 = XEXP (SET_SRC (set), 1);
2020 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2021 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2022 HOST_WIDE_INT regno_offset = reg_offset[regno];
2023 rtx new_src =
2024 gen_int_mode (added_offset
2025 + base_offset
2026 - regno_offset,
2027 GET_MODE (reg));
2028 bool success = false;
2029 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2030
2031 if (new_src == const0_rtx)
2032 /* See above why we create (set (reg) (reg)) here. */
2033 success
2034 = validate_change (next, &SET_SRC (set), reg, 0);
2035 else
2036 {
2037 rtx old_src = SET_SRC (set);
2038 struct full_rtx_costs oldcst, newcst;
2039 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2040
2041 get_full_set_rtx_cost (set, &oldcst);
2042 SET_SRC (set) = tem;
2043 get_full_set_src_cost (tem, &newcst);
2044 SET_SRC (set) = old_src;
2045 costs_add_n_insns (&oldcst, 1);
2046
2047 if (costs_lt_p (&newcst, &oldcst, speed)
2048 && have_add2_insn (reg, new_src))
2049 {
2050 rtx newpat = gen_rtx_SET (reg, tem);
2051 success
2052 = validate_change (next, &PATTERN (next),
2053 newpat, 0);
2054 }
2055 }
2056 if (success)
2057 delete_insn (insn);
2058 changed |= success;
2059 insn = next;
2060 move2add_record_mode (reg);
2061 reg_offset[regno]
2062 = trunc_int_for_mode (added_offset + base_offset,
2063 GET_MODE (reg));
2064 continue;
2065 }
2066 }
2067 }
2068
2069 /* Try to transform
2070 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2071 ...
2072 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2073 to
2074 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2075 ...
2076 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2077 if ((GET_CODE (src) == SYMBOL_REF
2078 || (GET_CODE (src) == CONST
2079 && GET_CODE (XEXP (src, 0)) == PLUS
2080 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2081 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2082 && dbg_cnt (cse2_move2add))
2083 {
2084 rtx sym, off;
2085
2086 if (GET_CODE (src) == SYMBOL_REF)
2087 {
2088 sym = src;
2089 off = const0_rtx;
2090 }
2091 else
2092 {
2093 sym = XEXP (XEXP (src, 0), 0);
2094 off = XEXP (XEXP (src, 0), 1);
2095 }
2096
2097 /* If the reg already contains the value which is sum of
2098 sym and some constant value, we can use an add2 insn. */
2099 if (move2add_valid_value_p (regno, GET_MODE (reg))
2100 && reg_base_reg[regno] < 0
2101 && reg_symbol_ref[regno] != NULL_RTX
2102 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2103 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2104
2105 /* Otherwise, we have to find a register whose value is sum
2106 of sym and some constant value. */
2107 else
2108 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2109
2110 continue;
2111 }
2112 }
2113
2114 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2115 {
2116 if (REG_NOTE_KIND (note) == REG_INC
2117 && REG_P (XEXP (note, 0)))
2118 {
2119 /* Reset the information about this register. */
2120 int regno = REGNO (XEXP (note, 0));
2121 if (regno < FIRST_PSEUDO_REGISTER)
2122 {
2123 move2add_record_mode (XEXP (note, 0));
2124 reg_mode[regno] = VOIDmode;
2125 }
2126 }
2127 }
2128 note_stores (PATTERN (insn), move2add_note_store, insn);
2129
2130 /* If INSN is a conditional branch, we try to extract an
2131 implicit set out of it. */
2132 if (any_condjump_p (insn))
2133 {
2134 rtx cnd = fis_get_condition (insn);
2135
2136 if (cnd != NULL_RTX
2137 && GET_CODE (cnd) == NE
2138 && REG_P (XEXP (cnd, 0))
2139 && !reg_set_p (XEXP (cnd, 0), insn)
2140 /* The following two checks, which are also in
2141 move2add_note_store, are intended to reduce the
2142 number of calls to gen_rtx_SET to avoid memory
2143 allocation if possible. */
2144 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2145 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2146 && CONST_INT_P (XEXP (cnd, 1)))
2147 {
2148 rtx implicit_set =
2149 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2150 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2151 }
2152 }
2153
2154 /* If this is a CALL_INSN, all call used registers are stored with
2155 unknown values. */
2156 if (CALL_P (insn))
2157 {
2158 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2159 {
2160 if (call_used_regs[i])
2161 /* Reset the information about this register. */
2162 reg_mode[i] = VOIDmode;
2163 }
2164 }
2165 }
2166 return changed;
2167 }
2168
2169 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2170 contains SET.
2171 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2172 Called from reload_cse_move2add via note_stores. */
2173
2174 static void
2175 move2add_note_store (rtx dst, const_rtx set, void *data)
2176 {
2177 rtx_insn *insn = (rtx_insn *) data;
2178 unsigned int regno = 0;
2179 machine_mode mode = GET_MODE (dst);
2180
2181 /* Some targets do argument pushes without adding REG_INC notes. */
2182
2183 if (MEM_P (dst))
2184 {
2185 dst = XEXP (dst, 0);
2186 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2187 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2188 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2189 return;
2190 }
2191
2192 if (GET_CODE (dst) == SUBREG)
2193 regno = subreg_regno (dst);
2194 else if (REG_P (dst))
2195 regno = REGNO (dst);
2196 else
2197 return;
2198
2199 if (SCALAR_INT_MODE_P (mode)
2200 && GET_CODE (set) == SET)
2201 {
2202 rtx note, sym = NULL_RTX;
2203 rtx off;
2204
2205 note = find_reg_equal_equiv_note (insn);
2206 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2207 {
2208 sym = XEXP (note, 0);
2209 off = const0_rtx;
2210 }
2211 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2212 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2213 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2214 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2215 {
2216 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2217 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2218 }
2219
2220 if (sym != NULL_RTX)
2221 {
2222 move2add_record_sym_value (dst, sym, off);
2223 return;
2224 }
2225 }
2226
2227 if (SCALAR_INT_MODE_P (mode)
2228 && GET_CODE (set) == SET
2229 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2230 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2231 {
2232 rtx src = SET_SRC (set);
2233 rtx base_reg;
2234 unsigned HOST_WIDE_INT offset;
2235 int base_regno;
2236
2237 switch (GET_CODE (src))
2238 {
2239 case PLUS:
2240 if (REG_P (XEXP (src, 0)))
2241 {
2242 base_reg = XEXP (src, 0);
2243
2244 if (CONST_INT_P (XEXP (src, 1)))
2245 offset = UINTVAL (XEXP (src, 1));
2246 else if (REG_P (XEXP (src, 1))
2247 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2248 {
2249 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2250 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2251 offset = reg_offset[REGNO (XEXP (src, 1))];
2252 /* Maybe the first register is known to be a
2253 constant. */
2254 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2255 && reg_base_reg[REGNO (base_reg)] < 0
2256 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2257 {
2258 offset = reg_offset[REGNO (base_reg)];
2259 base_reg = XEXP (src, 1);
2260 }
2261 else
2262 goto invalidate;
2263 }
2264 else
2265 goto invalidate;
2266
2267 break;
2268 }
2269
2270 goto invalidate;
2271
2272 case REG:
2273 base_reg = src;
2274 offset = 0;
2275 break;
2276
2277 case CONST_INT:
2278 /* Start tracking the register as a constant. */
2279 reg_base_reg[regno] = -1;
2280 reg_symbol_ref[regno] = NULL_RTX;
2281 reg_offset[regno] = INTVAL (SET_SRC (set));
2282 /* We assign the same luid to all registers set to constants. */
2283 reg_set_luid[regno] = move2add_last_label_luid + 1;
2284 move2add_record_mode (dst);
2285 return;
2286
2287 default:
2288 goto invalidate;
2289 }
2290
2291 base_regno = REGNO (base_reg);
2292 /* If information about the base register is not valid, set it
2293 up as a new base register, pretending its value is known
2294 starting from the current insn. */
2295 if (!move2add_valid_value_p (base_regno, mode))
2296 {
2297 reg_base_reg[base_regno] = base_regno;
2298 reg_symbol_ref[base_regno] = NULL_RTX;
2299 reg_offset[base_regno] = 0;
2300 reg_set_luid[base_regno] = move2add_luid;
2301 gcc_assert (GET_MODE (base_reg) == mode);
2302 move2add_record_mode (base_reg);
2303 }
2304
2305 /* Copy base information from our base register. */
2306 reg_set_luid[regno] = reg_set_luid[base_regno];
2307 reg_base_reg[regno] = reg_base_reg[base_regno];
2308 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2309
2310 /* Compute the sum of the offsets or constants. */
2311 reg_offset[regno]
2312 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2313
2314 move2add_record_mode (dst);
2315 }
2316 else
2317 {
2318 invalidate:
2319 /* Invalidate the contents of the register. */
2320 move2add_record_mode (dst);
2321 reg_mode[regno] = VOIDmode;
2322 }
2323 }
2324 \f
2325 namespace {
2326
2327 const pass_data pass_data_postreload_cse =
2328 {
2329 RTL_PASS, /* type */
2330 "postreload", /* name */
2331 OPTGROUP_NONE, /* optinfo_flags */
2332 TV_RELOAD_CSE_REGS, /* tv_id */
2333 0, /* properties_required */
2334 0, /* properties_provided */
2335 0, /* properties_destroyed */
2336 0, /* todo_flags_start */
2337 TODO_df_finish, /* todo_flags_finish */
2338 };
2339
2340 class pass_postreload_cse : public rtl_opt_pass
2341 {
2342 public:
2343 pass_postreload_cse (gcc::context *ctxt)
2344 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2345 {}
2346
2347 /* opt_pass methods: */
2348 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2349
2350 virtual unsigned int execute (function *);
2351
2352 }; // class pass_postreload_cse
2353
2354 unsigned int
2355 pass_postreload_cse::execute (function *fun)
2356 {
2357 if (!dbg_cnt (postreload_cse))
2358 return 0;
2359
2360 /* Do a very simple CSE pass over just the hard registers. */
2361 reload_cse_regs (get_insns ());
2362 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2363 Remove any EH edges associated with them. */
2364 if (fun->can_throw_non_call_exceptions
2365 && purge_all_dead_edges ())
2366 cleanup_cfg (0);
2367
2368 return 0;
2369 }
2370
2371 } // anon namespace
2372
2373 rtl_opt_pass *
2374 make_pass_postreload_cse (gcc::context *ctxt)
2375 {
2376 return new pass_postreload_cse (ctxt);
2377 }