]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/predict.c
convert many uses of pointer_map to hash_map
[thirdparty/gcc.git] / gcc / predict.c
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "pointer-set.h"
55 #include "hash-map.h"
56 #include "tree-ssa-alias.h"
57 #include "internal-fn.h"
58 #include "gimple-expr.h"
59 #include "is-a.h"
60 #include "gimple.h"
61 #include "gimple-iterator.h"
62 #include "gimple-ssa.h"
63 #include "cgraph.h"
64 #include "tree-cfg.h"
65 #include "tree-phinodes.h"
66 #include "ssa-iterators.h"
67 #include "tree-ssa-loop-niter.h"
68 #include "tree-ssa-loop.h"
69 #include "tree-pass.h"
70 #include "tree-scalar-evolution.h"
71 #include "cfgloop.h"
72
73 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
74 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
75 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
76 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
77
78 static void combine_predictions_for_insn (rtx, basic_block);
79 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
80 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
81 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
82 static bool can_predict_insn_p (const_rtx);
83
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
86
87 struct predictor_info
88 {
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
93 };
94
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
98
99 /* Recompute hitrate in percent to our representation. */
100
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
106
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
109 };
110 #undef DEF_PREDICTOR
111
112 /* Return TRUE if frequency FREQ is considered to be hot. */
113
114 static inline bool
115 maybe_hot_frequency_p (struct function *fun, int freq)
116 {
117 struct cgraph_node *node = cgraph_node::get (fun->decl);
118 if (!profile_info || !flag_branch_probabilities)
119 {
120 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
121 return false;
122 if (node->frequency == NODE_FREQUENCY_HOT)
123 return true;
124 }
125 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
126 return true;
127 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
128 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
129 return false;
130 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
131 return false;
132 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
133 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
134 return false;
135 return true;
136 }
137
138 static gcov_type min_count = -1;
139
140 /* Determine the threshold for hot BB counts. */
141
142 gcov_type
143 get_hot_bb_threshold ()
144 {
145 gcov_working_set_t *ws;
146 if (min_count == -1)
147 {
148 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
149 gcc_assert (ws);
150 min_count = ws->min_counter;
151 }
152 return min_count;
153 }
154
155 /* Set the threshold for hot BB counts. */
156
157 void
158 set_hot_bb_threshold (gcov_type min)
159 {
160 min_count = min;
161 }
162
163 /* Return TRUE if frequency FREQ is considered to be hot. */
164
165 static inline bool
166 maybe_hot_count_p (struct function *fun, gcov_type count)
167 {
168 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
169 return true;
170 /* Code executed at most once is not hot. */
171 if (profile_info->runs >= count)
172 return false;
173 return (count >= get_hot_bb_threshold ());
174 }
175
176 /* Return true in case BB can be CPU intensive and should be optimized
177 for maximal performance. */
178
179 bool
180 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
181 {
182 gcc_checking_assert (fun);
183 if (profile_status_for_fn (fun) == PROFILE_READ)
184 return maybe_hot_count_p (fun, bb->count);
185 return maybe_hot_frequency_p (fun, bb->frequency);
186 }
187
188 /* Return true if the call can be hot. */
189
190 bool
191 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
192 {
193 if (profile_info && flag_branch_probabilities
194 && !maybe_hot_count_p (NULL,
195 edge->count))
196 return false;
197 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
198 || (edge->callee
199 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
200 return false;
201 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
202 && (edge->callee
203 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
204 return false;
205 if (optimize_size)
206 return false;
207 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
208 return true;
209 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
210 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
211 return false;
212 if (flag_guess_branch_prob)
213 {
214 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
215 || edge->frequency <= (CGRAPH_FREQ_BASE
216 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
217 return false;
218 }
219 return true;
220 }
221
222 /* Return true in case BB can be CPU intensive and should be optimized
223 for maximal performance. */
224
225 bool
226 maybe_hot_edge_p (edge e)
227 {
228 if (profile_status_for_fn (cfun) == PROFILE_READ)
229 return maybe_hot_count_p (cfun, e->count);
230 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
231 }
232
233
234
235 /* Return true if profile COUNT and FREQUENCY, or function FUN static
236 node frequency reflects never being executed. */
237
238 static bool
239 probably_never_executed (struct function *fun,
240 gcov_type count, int frequency)
241 {
242 gcc_checking_assert (fun);
243 if (profile_status_for_fn (cfun) == PROFILE_READ)
244 {
245 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
246 if (count * unlikely_count_fraction >= profile_info->runs)
247 return false;
248 if (!frequency)
249 return true;
250 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
251 return false;
252 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
253 {
254 gcov_type computed_count;
255 /* Check for possibility of overflow, in which case entry bb count
256 is large enough to do the division first without losing much
257 precision. */
258 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
259 REG_BR_PROB_BASE)
260 {
261 gcov_type scaled_count
262 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
263 unlikely_count_fraction;
264 computed_count = RDIV (scaled_count,
265 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
266 }
267 else
268 {
269 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
270 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
271 computed_count *= frequency * unlikely_count_fraction;
272 }
273 if (computed_count >= profile_info->runs)
274 return false;
275 }
276 return true;
277 }
278 if ((!profile_info || !flag_branch_probabilities)
279 && (cgraph_node::get (fun->decl)->frequency
280 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
281 return true;
282 return false;
283 }
284
285
286 /* Return true in case BB is probably never executed. */
287
288 bool
289 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
290 {
291 return probably_never_executed (fun, bb->count, bb->frequency);
292 }
293
294
295 /* Return true in case edge E is probably never executed. */
296
297 bool
298 probably_never_executed_edge_p (struct function *fun, edge e)
299 {
300 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
301 }
302
303 /* Return true if function should be optimized for size. */
304
305 bool
306 cgraph_node::optimize_for_size_p (void)
307 {
308 if (optimize_size)
309 return true;
310 if (frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
311 return true;
312 else
313 return false;
314 }
315
316 /* Return true when current function should always be optimized for size. */
317
318 bool
319 optimize_function_for_size_p (struct function *fun)
320 {
321 if (optimize_size)
322 return true;
323 if (!fun || !fun->decl)
324 return false;
325
326 cgraph_node *n = cgraph_node::get (fun->decl);
327 return n && n->optimize_for_size_p ();
328 }
329
330 /* Return true when current function should always be optimized for speed. */
331
332 bool
333 optimize_function_for_speed_p (struct function *fun)
334 {
335 return !optimize_function_for_size_p (fun);
336 }
337
338 /* Return TRUE when BB should be optimized for size. */
339
340 bool
341 optimize_bb_for_size_p (const_basic_block bb)
342 {
343 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
344 }
345
346 /* Return TRUE when BB should be optimized for speed. */
347
348 bool
349 optimize_bb_for_speed_p (const_basic_block bb)
350 {
351 return !optimize_bb_for_size_p (bb);
352 }
353
354 /* Return TRUE when BB should be optimized for size. */
355
356 bool
357 optimize_edge_for_size_p (edge e)
358 {
359 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
360 }
361
362 /* Return TRUE when BB should be optimized for speed. */
363
364 bool
365 optimize_edge_for_speed_p (edge e)
366 {
367 return !optimize_edge_for_size_p (e);
368 }
369
370 /* Return TRUE when BB should be optimized for size. */
371
372 bool
373 optimize_insn_for_size_p (void)
374 {
375 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
376 }
377
378 /* Return TRUE when BB should be optimized for speed. */
379
380 bool
381 optimize_insn_for_speed_p (void)
382 {
383 return !optimize_insn_for_size_p ();
384 }
385
386 /* Return TRUE when LOOP should be optimized for size. */
387
388 bool
389 optimize_loop_for_size_p (struct loop *loop)
390 {
391 return optimize_bb_for_size_p (loop->header);
392 }
393
394 /* Return TRUE when LOOP should be optimized for speed. */
395
396 bool
397 optimize_loop_for_speed_p (struct loop *loop)
398 {
399 return optimize_bb_for_speed_p (loop->header);
400 }
401
402 /* Return TRUE when LOOP nest should be optimized for speed. */
403
404 bool
405 optimize_loop_nest_for_speed_p (struct loop *loop)
406 {
407 struct loop *l = loop;
408 if (optimize_loop_for_speed_p (loop))
409 return true;
410 l = loop->inner;
411 while (l && l != loop)
412 {
413 if (optimize_loop_for_speed_p (l))
414 return true;
415 if (l->inner)
416 l = l->inner;
417 else if (l->next)
418 l = l->next;
419 else
420 {
421 while (l != loop && !l->next)
422 l = loop_outer (l);
423 if (l != loop)
424 l = l->next;
425 }
426 }
427 return false;
428 }
429
430 /* Return TRUE when LOOP nest should be optimized for size. */
431
432 bool
433 optimize_loop_nest_for_size_p (struct loop *loop)
434 {
435 return !optimize_loop_nest_for_speed_p (loop);
436 }
437
438 /* Return true when edge E is likely to be well predictable by branch
439 predictor. */
440
441 bool
442 predictable_edge_p (edge e)
443 {
444 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
445 return false;
446 if ((e->probability
447 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
448 || (REG_BR_PROB_BASE - e->probability
449 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
450 return true;
451 return false;
452 }
453
454
455 /* Set RTL expansion for BB profile. */
456
457 void
458 rtl_profile_for_bb (basic_block bb)
459 {
460 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
461 }
462
463 /* Set RTL expansion for edge profile. */
464
465 void
466 rtl_profile_for_edge (edge e)
467 {
468 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
469 }
470
471 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
472 void
473 default_rtl_profile (void)
474 {
475 crtl->maybe_hot_insn_p = true;
476 }
477
478 /* Return true if the one of outgoing edges is already predicted by
479 PREDICTOR. */
480
481 bool
482 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
483 {
484 rtx note;
485 if (!INSN_P (BB_END (bb)))
486 return false;
487 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
488 if (REG_NOTE_KIND (note) == REG_BR_PRED
489 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
490 return true;
491 return false;
492 }
493
494 /* Structure representing predictions in tree level. */
495
496 struct edge_prediction {
497 struct edge_prediction *ep_next;
498 edge ep_edge;
499 enum br_predictor ep_predictor;
500 int ep_probability;
501 };
502
503 /* This map contains for a basic block the list of predictions for the
504 outgoing edges. */
505
506 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
507
508 /* Return true if the one of outgoing edges is already predicted by
509 PREDICTOR. */
510
511 bool
512 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
513 {
514 struct edge_prediction *i;
515 edge_prediction **preds = bb_predictions->get (bb);
516
517 if (!preds)
518 return false;
519
520 for (i = *preds; i; i = i->ep_next)
521 if (i->ep_predictor == predictor)
522 return true;
523 return false;
524 }
525
526 /* Return true when the probability of edge is reliable.
527
528 The profile guessing code is good at predicting branch outcome (ie.
529 taken/not taken), that is predicted right slightly over 75% of time.
530 It is however notoriously poor on predicting the probability itself.
531 In general the profile appear a lot flatter (with probabilities closer
532 to 50%) than the reality so it is bad idea to use it to drive optimization
533 such as those disabling dynamic branch prediction for well predictable
534 branches.
535
536 There are two exceptions - edges leading to noreturn edges and edges
537 predicted by number of iterations heuristics are predicted well. This macro
538 should be able to distinguish those, but at the moment it simply check for
539 noreturn heuristic that is only one giving probability over 99% or bellow
540 1%. In future we might want to propagate reliability information across the
541 CFG if we find this information useful on multiple places. */
542 static bool
543 probability_reliable_p (int prob)
544 {
545 return (profile_status_for_fn (cfun) == PROFILE_READ
546 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
547 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
548 }
549
550 /* Same predicate as above, working on edges. */
551 bool
552 edge_probability_reliable_p (const_edge e)
553 {
554 return probability_reliable_p (e->probability);
555 }
556
557 /* Same predicate as edge_probability_reliable_p, working on notes. */
558 bool
559 br_prob_note_reliable_p (const_rtx note)
560 {
561 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
562 return probability_reliable_p (XINT (note, 0));
563 }
564
565 static void
566 predict_insn (rtx insn, enum br_predictor predictor, int probability)
567 {
568 gcc_assert (any_condjump_p (insn));
569 if (!flag_guess_branch_prob)
570 return;
571
572 add_reg_note (insn, REG_BR_PRED,
573 gen_rtx_CONCAT (VOIDmode,
574 GEN_INT ((int) predictor),
575 GEN_INT ((int) probability)));
576 }
577
578 /* Predict insn by given predictor. */
579
580 void
581 predict_insn_def (rtx insn, enum br_predictor predictor,
582 enum prediction taken)
583 {
584 int probability = predictor_info[(int) predictor].hitrate;
585
586 if (taken != TAKEN)
587 probability = REG_BR_PROB_BASE - probability;
588
589 predict_insn (insn, predictor, probability);
590 }
591
592 /* Predict edge E with given probability if possible. */
593
594 void
595 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
596 {
597 rtx last_insn;
598 last_insn = BB_END (e->src);
599
600 /* We can store the branch prediction information only about
601 conditional jumps. */
602 if (!any_condjump_p (last_insn))
603 return;
604
605 /* We always store probability of branching. */
606 if (e->flags & EDGE_FALLTHRU)
607 probability = REG_BR_PROB_BASE - probability;
608
609 predict_insn (last_insn, predictor, probability);
610 }
611
612 /* Predict edge E with the given PROBABILITY. */
613 void
614 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
615 {
616 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
617 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
618 1)
619 && flag_guess_branch_prob && optimize)
620 {
621 struct edge_prediction *i = XNEW (struct edge_prediction);
622 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
623
624 i->ep_next = preds;
625 preds = i;
626 i->ep_probability = probability;
627 i->ep_predictor = predictor;
628 i->ep_edge = e;
629 }
630 }
631
632 /* Remove all predictions on given basic block that are attached
633 to edge E. */
634 void
635 remove_predictions_associated_with_edge (edge e)
636 {
637 if (!bb_predictions)
638 return;
639
640 edge_prediction **preds = bb_predictions->get (e->src);
641
642 if (preds)
643 {
644 struct edge_prediction **prediction = preds;
645 struct edge_prediction *next;
646
647 while (*prediction)
648 {
649 if ((*prediction)->ep_edge == e)
650 {
651 next = (*prediction)->ep_next;
652 free (*prediction);
653 *prediction = next;
654 }
655 else
656 prediction = &((*prediction)->ep_next);
657 }
658 }
659 }
660
661 /* Clears the list of predictions stored for BB. */
662
663 static void
664 clear_bb_predictions (basic_block bb)
665 {
666 edge_prediction **preds = bb_predictions->get (bb);
667 struct edge_prediction *pred, *next;
668
669 if (!preds)
670 return;
671
672 for (pred = *preds; pred; pred = next)
673 {
674 next = pred->ep_next;
675 free (pred);
676 }
677 *preds = NULL;
678 }
679
680 /* Return true when we can store prediction on insn INSN.
681 At the moment we represent predictions only on conditional
682 jumps, not at computed jump or other complicated cases. */
683 static bool
684 can_predict_insn_p (const_rtx insn)
685 {
686 return (JUMP_P (insn)
687 && any_condjump_p (insn)
688 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
689 }
690
691 /* Predict edge E by given predictor if possible. */
692
693 void
694 predict_edge_def (edge e, enum br_predictor predictor,
695 enum prediction taken)
696 {
697 int probability = predictor_info[(int) predictor].hitrate;
698
699 if (taken != TAKEN)
700 probability = REG_BR_PROB_BASE - probability;
701
702 predict_edge (e, predictor, probability);
703 }
704
705 /* Invert all branch predictions or probability notes in the INSN. This needs
706 to be done each time we invert the condition used by the jump. */
707
708 void
709 invert_br_probabilities (rtx insn)
710 {
711 rtx note;
712
713 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
714 if (REG_NOTE_KIND (note) == REG_BR_PROB)
715 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
716 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
717 XEXP (XEXP (note, 0), 1)
718 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
719 }
720
721 /* Dump information about the branch prediction to the output file. */
722
723 static void
724 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
725 basic_block bb, int used)
726 {
727 edge e;
728 edge_iterator ei;
729
730 if (!file)
731 return;
732
733 FOR_EACH_EDGE (e, ei, bb->succs)
734 if (! (e->flags & EDGE_FALLTHRU))
735 break;
736
737 fprintf (file, " %s heuristics%s: %.1f%%",
738 predictor_info[predictor].name,
739 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
740
741 if (bb->count)
742 {
743 fprintf (file, " exec %"PRId64, bb->count);
744 if (e)
745 {
746 fprintf (file, " hit %"PRId64, e->count);
747 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
748 }
749 }
750
751 fprintf (file, "\n");
752 }
753
754 /* We can not predict the probabilities of outgoing edges of bb. Set them
755 evenly and hope for the best. */
756 static void
757 set_even_probabilities (basic_block bb)
758 {
759 int nedges = 0;
760 edge e;
761 edge_iterator ei;
762
763 FOR_EACH_EDGE (e, ei, bb->succs)
764 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
765 nedges ++;
766 FOR_EACH_EDGE (e, ei, bb->succs)
767 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
768 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
769 else
770 e->probability = 0;
771 }
772
773 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
774 note if not already present. Remove now useless REG_BR_PRED notes. */
775
776 static void
777 combine_predictions_for_insn (rtx insn, basic_block bb)
778 {
779 rtx prob_note;
780 rtx *pnote;
781 rtx note;
782 int best_probability = PROB_EVEN;
783 enum br_predictor best_predictor = END_PREDICTORS;
784 int combined_probability = REG_BR_PROB_BASE / 2;
785 int d;
786 bool first_match = false;
787 bool found = false;
788
789 if (!can_predict_insn_p (insn))
790 {
791 set_even_probabilities (bb);
792 return;
793 }
794
795 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
796 pnote = &REG_NOTES (insn);
797 if (dump_file)
798 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
799 bb->index);
800
801 /* We implement "first match" heuristics and use probability guessed
802 by predictor with smallest index. */
803 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
804 if (REG_NOTE_KIND (note) == REG_BR_PRED)
805 {
806 enum br_predictor predictor = ((enum br_predictor)
807 INTVAL (XEXP (XEXP (note, 0), 0)));
808 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
809
810 found = true;
811 if (best_predictor > predictor)
812 best_probability = probability, best_predictor = predictor;
813
814 d = (combined_probability * probability
815 + (REG_BR_PROB_BASE - combined_probability)
816 * (REG_BR_PROB_BASE - probability));
817
818 /* Use FP math to avoid overflows of 32bit integers. */
819 if (d == 0)
820 /* If one probability is 0% and one 100%, avoid division by zero. */
821 combined_probability = REG_BR_PROB_BASE / 2;
822 else
823 combined_probability = (((double) combined_probability) * probability
824 * REG_BR_PROB_BASE / d + 0.5);
825 }
826
827 /* Decide which heuristic to use. In case we didn't match anything,
828 use no_prediction heuristic, in case we did match, use either
829 first match or Dempster-Shaffer theory depending on the flags. */
830
831 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
832 first_match = true;
833
834 if (!found)
835 dump_prediction (dump_file, PRED_NO_PREDICTION,
836 combined_probability, bb, true);
837 else
838 {
839 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
840 bb, !first_match);
841 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
842 bb, first_match);
843 }
844
845 if (first_match)
846 combined_probability = best_probability;
847 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
848
849 while (*pnote)
850 {
851 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
852 {
853 enum br_predictor predictor = ((enum br_predictor)
854 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
855 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
856
857 dump_prediction (dump_file, predictor, probability, bb,
858 !first_match || best_predictor == predictor);
859 *pnote = XEXP (*pnote, 1);
860 }
861 else
862 pnote = &XEXP (*pnote, 1);
863 }
864
865 if (!prob_note)
866 {
867 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
868
869 /* Save the prediction into CFG in case we are seeing non-degenerated
870 conditional jump. */
871 if (!single_succ_p (bb))
872 {
873 BRANCH_EDGE (bb)->probability = combined_probability;
874 FALLTHRU_EDGE (bb)->probability
875 = REG_BR_PROB_BASE - combined_probability;
876 }
877 }
878 else if (!single_succ_p (bb))
879 {
880 int prob = XINT (prob_note, 0);
881
882 BRANCH_EDGE (bb)->probability = prob;
883 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
884 }
885 else
886 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
887 }
888
889 /* Combine predictions into single probability and store them into CFG.
890 Remove now useless prediction entries. */
891
892 static void
893 combine_predictions_for_bb (basic_block bb)
894 {
895 int best_probability = PROB_EVEN;
896 enum br_predictor best_predictor = END_PREDICTORS;
897 int combined_probability = REG_BR_PROB_BASE / 2;
898 int d;
899 bool first_match = false;
900 bool found = false;
901 struct edge_prediction *pred;
902 int nedges = 0;
903 edge e, first = NULL, second = NULL;
904 edge_iterator ei;
905
906 FOR_EACH_EDGE (e, ei, bb->succs)
907 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
908 {
909 nedges ++;
910 if (first && !second)
911 second = e;
912 if (!first)
913 first = e;
914 }
915
916 /* When there is no successor or only one choice, prediction is easy.
917
918 We are lazy for now and predict only basic blocks with two outgoing
919 edges. It is possible to predict generic case too, but we have to
920 ignore first match heuristics and do more involved combining. Implement
921 this later. */
922 if (nedges != 2)
923 {
924 if (!bb->count)
925 set_even_probabilities (bb);
926 clear_bb_predictions (bb);
927 if (dump_file)
928 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
929 nedges, bb->index);
930 return;
931 }
932
933 if (dump_file)
934 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
935
936 edge_prediction **preds = bb_predictions->get (bb);
937 if (preds)
938 {
939 /* We implement "first match" heuristics and use probability guessed
940 by predictor with smallest index. */
941 for (pred = *preds; pred; pred = pred->ep_next)
942 {
943 enum br_predictor predictor = pred->ep_predictor;
944 int probability = pred->ep_probability;
945
946 if (pred->ep_edge != first)
947 probability = REG_BR_PROB_BASE - probability;
948
949 found = true;
950 /* First match heuristics would be widly confused if we predicted
951 both directions. */
952 if (best_predictor > predictor)
953 {
954 struct edge_prediction *pred2;
955 int prob = probability;
956
957 for (pred2 = (struct edge_prediction *) *preds;
958 pred2; pred2 = pred2->ep_next)
959 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
960 {
961 int probability2 = pred->ep_probability;
962
963 if (pred2->ep_edge != first)
964 probability2 = REG_BR_PROB_BASE - probability2;
965
966 if ((probability < REG_BR_PROB_BASE / 2) !=
967 (probability2 < REG_BR_PROB_BASE / 2))
968 break;
969
970 /* If the same predictor later gave better result, go for it! */
971 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
972 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
973 prob = probability2;
974 }
975 if (!pred2)
976 best_probability = prob, best_predictor = predictor;
977 }
978
979 d = (combined_probability * probability
980 + (REG_BR_PROB_BASE - combined_probability)
981 * (REG_BR_PROB_BASE - probability));
982
983 /* Use FP math to avoid overflows of 32bit integers. */
984 if (d == 0)
985 /* If one probability is 0% and one 100%, avoid division by zero. */
986 combined_probability = REG_BR_PROB_BASE / 2;
987 else
988 combined_probability = (((double) combined_probability)
989 * probability
990 * REG_BR_PROB_BASE / d + 0.5);
991 }
992 }
993
994 /* Decide which heuristic to use. In case we didn't match anything,
995 use no_prediction heuristic, in case we did match, use either
996 first match or Dempster-Shaffer theory depending on the flags. */
997
998 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
999 first_match = true;
1000
1001 if (!found)
1002 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1003 else
1004 {
1005 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1006 !first_match);
1007 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1008 first_match);
1009 }
1010
1011 if (first_match)
1012 combined_probability = best_probability;
1013 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1014
1015 if (preds)
1016 {
1017 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1018 {
1019 enum br_predictor predictor = pred->ep_predictor;
1020 int probability = pred->ep_probability;
1021
1022 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1023 probability = REG_BR_PROB_BASE - probability;
1024 dump_prediction (dump_file, predictor, probability, bb,
1025 !first_match || best_predictor == predictor);
1026 }
1027 }
1028 clear_bb_predictions (bb);
1029
1030 if (!bb->count)
1031 {
1032 first->probability = combined_probability;
1033 second->probability = REG_BR_PROB_BASE - combined_probability;
1034 }
1035 }
1036
1037 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1038 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1039
1040 T1 and T2 should be one of the following cases:
1041 1. T1 is SSA_NAME, T2 is NULL
1042 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1043 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1044
1045 static tree
1046 strips_small_constant (tree t1, tree t2)
1047 {
1048 tree ret = NULL;
1049 int value = 0;
1050
1051 if (!t1)
1052 return NULL;
1053 else if (TREE_CODE (t1) == SSA_NAME)
1054 ret = t1;
1055 else if (tree_fits_shwi_p (t1))
1056 value = tree_to_shwi (t1);
1057 else
1058 return NULL;
1059
1060 if (!t2)
1061 return ret;
1062 else if (tree_fits_shwi_p (t2))
1063 value = tree_to_shwi (t2);
1064 else if (TREE_CODE (t2) == SSA_NAME)
1065 {
1066 if (ret)
1067 return NULL;
1068 else
1069 ret = t2;
1070 }
1071
1072 if (value <= 4 && value >= -4)
1073 return ret;
1074 else
1075 return NULL;
1076 }
1077
1078 /* Return the SSA_NAME in T or T's operands.
1079 Return NULL if SSA_NAME cannot be found. */
1080
1081 static tree
1082 get_base_value (tree t)
1083 {
1084 if (TREE_CODE (t) == SSA_NAME)
1085 return t;
1086
1087 if (!BINARY_CLASS_P (t))
1088 return NULL;
1089
1090 switch (TREE_OPERAND_LENGTH (t))
1091 {
1092 case 1:
1093 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1094 case 2:
1095 return strips_small_constant (TREE_OPERAND (t, 0),
1096 TREE_OPERAND (t, 1));
1097 default:
1098 return NULL;
1099 }
1100 }
1101
1102 /* Check the compare STMT in LOOP. If it compares an induction
1103 variable to a loop invariant, return true, and save
1104 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1105 Otherwise return false and set LOOP_INVAIANT to NULL. */
1106
1107 static bool
1108 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1109 tree *loop_invariant,
1110 enum tree_code *compare_code,
1111 tree *loop_step,
1112 tree *loop_iv_base)
1113 {
1114 tree op0, op1, bound, base;
1115 affine_iv iv0, iv1;
1116 enum tree_code code;
1117 tree step;
1118
1119 code = gimple_cond_code (stmt);
1120 *loop_invariant = NULL;
1121
1122 switch (code)
1123 {
1124 case GT_EXPR:
1125 case GE_EXPR:
1126 case NE_EXPR:
1127 case LT_EXPR:
1128 case LE_EXPR:
1129 case EQ_EXPR:
1130 break;
1131
1132 default:
1133 return false;
1134 }
1135
1136 op0 = gimple_cond_lhs (stmt);
1137 op1 = gimple_cond_rhs (stmt);
1138
1139 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1140 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1141 return false;
1142 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1143 return false;
1144 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1145 return false;
1146 if (TREE_CODE (iv0.step) != INTEGER_CST
1147 || TREE_CODE (iv1.step) != INTEGER_CST)
1148 return false;
1149 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1150 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1151 return false;
1152
1153 if (integer_zerop (iv0.step))
1154 {
1155 if (code != NE_EXPR && code != EQ_EXPR)
1156 code = invert_tree_comparison (code, false);
1157 bound = iv0.base;
1158 base = iv1.base;
1159 if (tree_fits_shwi_p (iv1.step))
1160 step = iv1.step;
1161 else
1162 return false;
1163 }
1164 else
1165 {
1166 bound = iv1.base;
1167 base = iv0.base;
1168 if (tree_fits_shwi_p (iv0.step))
1169 step = iv0.step;
1170 else
1171 return false;
1172 }
1173
1174 if (TREE_CODE (bound) != INTEGER_CST)
1175 bound = get_base_value (bound);
1176 if (!bound)
1177 return false;
1178 if (TREE_CODE (base) != INTEGER_CST)
1179 base = get_base_value (base);
1180 if (!base)
1181 return false;
1182
1183 *loop_invariant = bound;
1184 *compare_code = code;
1185 *loop_step = step;
1186 *loop_iv_base = base;
1187 return true;
1188 }
1189
1190 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1191
1192 static bool
1193 expr_coherent_p (tree t1, tree t2)
1194 {
1195 gimple stmt;
1196 tree ssa_name_1 = NULL;
1197 tree ssa_name_2 = NULL;
1198
1199 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1200 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1201
1202 if (t1 == t2)
1203 return true;
1204
1205 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1206 return true;
1207 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1208 return false;
1209
1210 /* Check to see if t1 is expressed/defined with t2. */
1211 stmt = SSA_NAME_DEF_STMT (t1);
1212 gcc_assert (stmt != NULL);
1213 if (is_gimple_assign (stmt))
1214 {
1215 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1216 if (ssa_name_1 && ssa_name_1 == t2)
1217 return true;
1218 }
1219
1220 /* Check to see if t2 is expressed/defined with t1. */
1221 stmt = SSA_NAME_DEF_STMT (t2);
1222 gcc_assert (stmt != NULL);
1223 if (is_gimple_assign (stmt))
1224 {
1225 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1226 if (ssa_name_2 && ssa_name_2 == t1)
1227 return true;
1228 }
1229
1230 /* Compare if t1 and t2's def_stmts are identical. */
1231 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1232 return true;
1233 else
1234 return false;
1235 }
1236
1237 /* Predict branch probability of BB when BB contains a branch that compares
1238 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1239 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1240
1241 E.g.
1242 for (int i = 0; i < bound; i++) {
1243 if (i < bound - 2)
1244 computation_1();
1245 else
1246 computation_2();
1247 }
1248
1249 In this loop, we will predict the branch inside the loop to be taken. */
1250
1251 static void
1252 predict_iv_comparison (struct loop *loop, basic_block bb,
1253 tree loop_bound_var,
1254 tree loop_iv_base_var,
1255 enum tree_code loop_bound_code,
1256 int loop_bound_step)
1257 {
1258 gimple stmt;
1259 tree compare_var, compare_base;
1260 enum tree_code compare_code;
1261 tree compare_step_var;
1262 edge then_edge;
1263 edge_iterator ei;
1264
1265 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1266 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1267 || predicted_by_p (bb, PRED_LOOP_EXIT))
1268 return;
1269
1270 stmt = last_stmt (bb);
1271 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1272 return;
1273 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1274 &compare_code,
1275 &compare_step_var,
1276 &compare_base))
1277 return;
1278
1279 /* Find the taken edge. */
1280 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1281 if (then_edge->flags & EDGE_TRUE_VALUE)
1282 break;
1283
1284 /* When comparing an IV to a loop invariant, NE is more likely to be
1285 taken while EQ is more likely to be not-taken. */
1286 if (compare_code == NE_EXPR)
1287 {
1288 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1289 return;
1290 }
1291 else if (compare_code == EQ_EXPR)
1292 {
1293 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1294 return;
1295 }
1296
1297 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1298 return;
1299
1300 /* If loop bound, base and compare bound are all constants, we can
1301 calculate the probability directly. */
1302 if (tree_fits_shwi_p (loop_bound_var)
1303 && tree_fits_shwi_p (compare_var)
1304 && tree_fits_shwi_p (compare_base))
1305 {
1306 int probability;
1307 bool overflow, overall_overflow = false;
1308 widest_int compare_count, tem;
1309
1310 /* (loop_bound - base) / compare_step */
1311 tem = wi::sub (wi::to_widest (loop_bound_var),
1312 wi::to_widest (compare_base), SIGNED, &overflow);
1313 overall_overflow |= overflow;
1314 widest_int loop_count = wi::div_trunc (tem,
1315 wi::to_widest (compare_step_var),
1316 SIGNED, &overflow);
1317 overall_overflow |= overflow;
1318
1319 if (!wi::neg_p (wi::to_widest (compare_step_var))
1320 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1321 {
1322 /* (loop_bound - compare_bound) / compare_step */
1323 tem = wi::sub (wi::to_widest (loop_bound_var),
1324 wi::to_widest (compare_var), SIGNED, &overflow);
1325 overall_overflow |= overflow;
1326 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1327 SIGNED, &overflow);
1328 overall_overflow |= overflow;
1329 }
1330 else
1331 {
1332 /* (compare_bound - base) / compare_step */
1333 tem = wi::sub (wi::to_widest (compare_var),
1334 wi::to_widest (compare_base), SIGNED, &overflow);
1335 overall_overflow |= overflow;
1336 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1337 SIGNED, &overflow);
1338 overall_overflow |= overflow;
1339 }
1340 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1341 ++compare_count;
1342 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1343 ++loop_count;
1344 if (wi::neg_p (compare_count))
1345 compare_count = 0;
1346 if (wi::neg_p (loop_count))
1347 loop_count = 0;
1348 if (loop_count == 0)
1349 probability = 0;
1350 else if (wi::cmps (compare_count, loop_count) == 1)
1351 probability = REG_BR_PROB_BASE;
1352 else
1353 {
1354 tem = compare_count * REG_BR_PROB_BASE;
1355 tem = wi::udiv_trunc (tem, loop_count);
1356 probability = tem.to_uhwi ();
1357 }
1358
1359 if (!overall_overflow)
1360 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1361
1362 return;
1363 }
1364
1365 if (expr_coherent_p (loop_bound_var, compare_var))
1366 {
1367 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1368 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1369 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1370 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1371 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1372 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1373 else if (loop_bound_code == NE_EXPR)
1374 {
1375 /* If the loop backedge condition is "(i != bound)", we do
1376 the comparison based on the step of IV:
1377 * step < 0 : backedge condition is like (i > bound)
1378 * step > 0 : backedge condition is like (i < bound) */
1379 gcc_assert (loop_bound_step != 0);
1380 if (loop_bound_step > 0
1381 && (compare_code == LT_EXPR
1382 || compare_code == LE_EXPR))
1383 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1384 else if (loop_bound_step < 0
1385 && (compare_code == GT_EXPR
1386 || compare_code == GE_EXPR))
1387 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1388 else
1389 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1390 }
1391 else
1392 /* The branch is predicted not-taken if loop_bound_code is
1393 opposite with compare_code. */
1394 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1395 }
1396 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1397 {
1398 /* For cases like:
1399 for (i = s; i < h; i++)
1400 if (i > s + 2) ....
1401 The branch should be predicted taken. */
1402 if (loop_bound_step > 0
1403 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1404 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1405 else if (loop_bound_step < 0
1406 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1407 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1408 else
1409 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1410 }
1411 }
1412
1413 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1414 exits are resulted from short-circuit conditions that will generate an
1415 if_tmp. E.g.:
1416
1417 if (foo() || global > 10)
1418 break;
1419
1420 This will be translated into:
1421
1422 BB3:
1423 loop header...
1424 BB4:
1425 if foo() goto BB6 else goto BB5
1426 BB5:
1427 if global > 10 goto BB6 else goto BB7
1428 BB6:
1429 goto BB7
1430 BB7:
1431 iftmp = (PHI 0(BB5), 1(BB6))
1432 if iftmp == 1 goto BB8 else goto BB3
1433 BB8:
1434 outside of the loop...
1435
1436 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1437 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1438 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1439 exits to predict them using PRED_LOOP_EXIT. */
1440
1441 static void
1442 predict_extra_loop_exits (edge exit_edge)
1443 {
1444 unsigned i;
1445 bool check_value_one;
1446 gimple phi_stmt;
1447 tree cmp_rhs, cmp_lhs;
1448 gimple cmp_stmt = last_stmt (exit_edge->src);
1449
1450 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1451 return;
1452 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1453 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1454 if (!TREE_CONSTANT (cmp_rhs)
1455 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1456 return;
1457 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1458 return;
1459
1460 /* If check_value_one is true, only the phi_args with value '1' will lead
1461 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1462 loop exit. */
1463 check_value_one = (((integer_onep (cmp_rhs))
1464 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1465 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1466
1467 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1468 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1469 return;
1470
1471 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1472 {
1473 edge e1;
1474 edge_iterator ei;
1475 tree val = gimple_phi_arg_def (phi_stmt, i);
1476 edge e = gimple_phi_arg_edge (phi_stmt, i);
1477
1478 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1479 continue;
1480 if ((check_value_one ^ integer_onep (val)) == 1)
1481 continue;
1482 if (EDGE_COUNT (e->src->succs) != 1)
1483 {
1484 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1485 continue;
1486 }
1487
1488 FOR_EACH_EDGE (e1, ei, e->src->preds)
1489 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1490 }
1491 }
1492
1493 /* Predict edge probabilities by exploiting loop structure. */
1494
1495 static void
1496 predict_loops (void)
1497 {
1498 struct loop *loop;
1499
1500 /* Try to predict out blocks in a loop that are not part of a
1501 natural loop. */
1502 FOR_EACH_LOOP (loop, 0)
1503 {
1504 basic_block bb, *bbs;
1505 unsigned j, n_exits;
1506 vec<edge> exits;
1507 struct tree_niter_desc niter_desc;
1508 edge ex;
1509 struct nb_iter_bound *nb_iter;
1510 enum tree_code loop_bound_code = ERROR_MARK;
1511 tree loop_bound_step = NULL;
1512 tree loop_bound_var = NULL;
1513 tree loop_iv_base = NULL;
1514 gimple stmt = NULL;
1515
1516 exits = get_loop_exit_edges (loop);
1517 n_exits = exits.length ();
1518 if (!n_exits)
1519 {
1520 exits.release ();
1521 continue;
1522 }
1523
1524 FOR_EACH_VEC_ELT (exits, j, ex)
1525 {
1526 tree niter = NULL;
1527 HOST_WIDE_INT nitercst;
1528 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1529 int probability;
1530 enum br_predictor predictor;
1531
1532 predict_extra_loop_exits (ex);
1533
1534 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1535 niter = niter_desc.niter;
1536 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1537 niter = loop_niter_by_eval (loop, ex);
1538
1539 if (TREE_CODE (niter) == INTEGER_CST)
1540 {
1541 if (tree_fits_uhwi_p (niter)
1542 && max
1543 && compare_tree_int (niter, max - 1) == -1)
1544 nitercst = tree_to_uhwi (niter) + 1;
1545 else
1546 nitercst = max;
1547 predictor = PRED_LOOP_ITERATIONS;
1548 }
1549 /* If we have just one exit and we can derive some information about
1550 the number of iterations of the loop from the statements inside
1551 the loop, use it to predict this exit. */
1552 else if (n_exits == 1)
1553 {
1554 nitercst = estimated_stmt_executions_int (loop);
1555 if (nitercst < 0)
1556 continue;
1557 if (nitercst > max)
1558 nitercst = max;
1559
1560 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1561 }
1562 else
1563 continue;
1564
1565 /* If the prediction for number of iterations is zero, do not
1566 predict the exit edges. */
1567 if (nitercst == 0)
1568 continue;
1569
1570 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1571 predict_edge (ex, predictor, probability);
1572 }
1573 exits.release ();
1574
1575 /* Find information about loop bound variables. */
1576 for (nb_iter = loop->bounds; nb_iter;
1577 nb_iter = nb_iter->next)
1578 if (nb_iter->stmt
1579 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1580 {
1581 stmt = nb_iter->stmt;
1582 break;
1583 }
1584 if (!stmt && last_stmt (loop->header)
1585 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1586 stmt = last_stmt (loop->header);
1587 if (stmt)
1588 is_comparison_with_loop_invariant_p (stmt, loop,
1589 &loop_bound_var,
1590 &loop_bound_code,
1591 &loop_bound_step,
1592 &loop_iv_base);
1593
1594 bbs = get_loop_body (loop);
1595
1596 for (j = 0; j < loop->num_nodes; j++)
1597 {
1598 int header_found = 0;
1599 edge e;
1600 edge_iterator ei;
1601
1602 bb = bbs[j];
1603
1604 /* Bypass loop heuristics on continue statement. These
1605 statements construct loops via "non-loop" constructs
1606 in the source language and are better to be handled
1607 separately. */
1608 if (predicted_by_p (bb, PRED_CONTINUE))
1609 continue;
1610
1611 /* Loop branch heuristics - predict an edge back to a
1612 loop's head as taken. */
1613 if (bb == loop->latch)
1614 {
1615 e = find_edge (loop->latch, loop->header);
1616 if (e)
1617 {
1618 header_found = 1;
1619 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1620 }
1621 }
1622
1623 /* Loop exit heuristics - predict an edge exiting the loop if the
1624 conditional has no loop header successors as not taken. */
1625 if (!header_found
1626 /* If we already used more reliable loop exit predictors, do not
1627 bother with PRED_LOOP_EXIT. */
1628 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1629 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1630 {
1631 /* For loop with many exits we don't want to predict all exits
1632 with the pretty large probability, because if all exits are
1633 considered in row, the loop would be predicted to iterate
1634 almost never. The code to divide probability by number of
1635 exits is very rough. It should compute the number of exits
1636 taken in each patch through function (not the overall number
1637 of exits that might be a lot higher for loops with wide switch
1638 statements in them) and compute n-th square root.
1639
1640 We limit the minimal probability by 2% to avoid
1641 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1642 as this was causing regression in perl benchmark containing such
1643 a wide loop. */
1644
1645 int probability = ((REG_BR_PROB_BASE
1646 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1647 / n_exits);
1648 if (probability < HITRATE (2))
1649 probability = HITRATE (2);
1650 FOR_EACH_EDGE (e, ei, bb->succs)
1651 if (e->dest->index < NUM_FIXED_BLOCKS
1652 || !flow_bb_inside_loop_p (loop, e->dest))
1653 predict_edge (e, PRED_LOOP_EXIT, probability);
1654 }
1655 if (loop_bound_var)
1656 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1657 loop_bound_code,
1658 tree_to_shwi (loop_bound_step));
1659 }
1660
1661 /* Free basic blocks from get_loop_body. */
1662 free (bbs);
1663 }
1664 }
1665
1666 /* Attempt to predict probabilities of BB outgoing edges using local
1667 properties. */
1668 static void
1669 bb_estimate_probability_locally (basic_block bb)
1670 {
1671 rtx last_insn = BB_END (bb);
1672 rtx cond;
1673
1674 if (! can_predict_insn_p (last_insn))
1675 return;
1676 cond = get_condition (last_insn, NULL, false, false);
1677 if (! cond)
1678 return;
1679
1680 /* Try "pointer heuristic."
1681 A comparison ptr == 0 is predicted as false.
1682 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1683 if (COMPARISON_P (cond)
1684 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1685 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1686 {
1687 if (GET_CODE (cond) == EQ)
1688 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1689 else if (GET_CODE (cond) == NE)
1690 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1691 }
1692 else
1693
1694 /* Try "opcode heuristic."
1695 EQ tests are usually false and NE tests are usually true. Also,
1696 most quantities are positive, so we can make the appropriate guesses
1697 about signed comparisons against zero. */
1698 switch (GET_CODE (cond))
1699 {
1700 case CONST_INT:
1701 /* Unconditional branch. */
1702 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1703 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1704 break;
1705
1706 case EQ:
1707 case UNEQ:
1708 /* Floating point comparisons appears to behave in a very
1709 unpredictable way because of special role of = tests in
1710 FP code. */
1711 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1712 ;
1713 /* Comparisons with 0 are often used for booleans and there is
1714 nothing useful to predict about them. */
1715 else if (XEXP (cond, 1) == const0_rtx
1716 || XEXP (cond, 0) == const0_rtx)
1717 ;
1718 else
1719 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1720 break;
1721
1722 case NE:
1723 case LTGT:
1724 /* Floating point comparisons appears to behave in a very
1725 unpredictable way because of special role of = tests in
1726 FP code. */
1727 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1728 ;
1729 /* Comparisons with 0 are often used for booleans and there is
1730 nothing useful to predict about them. */
1731 else if (XEXP (cond, 1) == const0_rtx
1732 || XEXP (cond, 0) == const0_rtx)
1733 ;
1734 else
1735 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1736 break;
1737
1738 case ORDERED:
1739 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1740 break;
1741
1742 case UNORDERED:
1743 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1744 break;
1745
1746 case LE:
1747 case LT:
1748 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1749 || XEXP (cond, 1) == constm1_rtx)
1750 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1751 break;
1752
1753 case GE:
1754 case GT:
1755 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1756 || XEXP (cond, 1) == constm1_rtx)
1757 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1758 break;
1759
1760 default:
1761 break;
1762 }
1763 }
1764
1765 /* Set edge->probability for each successor edge of BB. */
1766 void
1767 guess_outgoing_edge_probabilities (basic_block bb)
1768 {
1769 bb_estimate_probability_locally (bb);
1770 combine_predictions_for_insn (BB_END (bb), bb);
1771 }
1772 \f
1773 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1774
1775 /* Helper function for expr_expected_value. */
1776
1777 static tree
1778 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1779 tree op1, bitmap visited, enum br_predictor *predictor)
1780 {
1781 gimple def;
1782
1783 if (predictor)
1784 *predictor = PRED_UNCONDITIONAL;
1785
1786 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1787 {
1788 if (TREE_CONSTANT (op0))
1789 return op0;
1790
1791 if (code != SSA_NAME)
1792 return NULL_TREE;
1793
1794 def = SSA_NAME_DEF_STMT (op0);
1795
1796 /* If we were already here, break the infinite cycle. */
1797 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1798 return NULL;
1799
1800 if (gimple_code (def) == GIMPLE_PHI)
1801 {
1802 /* All the arguments of the PHI node must have the same constant
1803 length. */
1804 int i, n = gimple_phi_num_args (def);
1805 tree val = NULL, new_val;
1806
1807 for (i = 0; i < n; i++)
1808 {
1809 tree arg = PHI_ARG_DEF (def, i);
1810 enum br_predictor predictor2;
1811
1812 /* If this PHI has itself as an argument, we cannot
1813 determine the string length of this argument. However,
1814 if we can find an expected constant value for the other
1815 PHI args then we can still be sure that this is
1816 likely a constant. So be optimistic and just
1817 continue with the next argument. */
1818 if (arg == PHI_RESULT (def))
1819 continue;
1820
1821 new_val = expr_expected_value (arg, visited, &predictor2);
1822
1823 /* It is difficult to combine value predictors. Simply assume
1824 that later predictor is weaker and take its prediction. */
1825 if (predictor && *predictor < predictor2)
1826 *predictor = predictor2;
1827 if (!new_val)
1828 return NULL;
1829 if (!val)
1830 val = new_val;
1831 else if (!operand_equal_p (val, new_val, false))
1832 return NULL;
1833 }
1834 return val;
1835 }
1836 if (is_gimple_assign (def))
1837 {
1838 if (gimple_assign_lhs (def) != op0)
1839 return NULL;
1840
1841 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1842 gimple_assign_rhs1 (def),
1843 gimple_assign_rhs_code (def),
1844 gimple_assign_rhs2 (def),
1845 visited, predictor);
1846 }
1847
1848 if (is_gimple_call (def))
1849 {
1850 tree decl = gimple_call_fndecl (def);
1851 if (!decl)
1852 {
1853 if (gimple_call_internal_p (def)
1854 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1855 {
1856 gcc_assert (gimple_call_num_args (def) == 3);
1857 tree val = gimple_call_arg (def, 0);
1858 if (TREE_CONSTANT (val))
1859 return val;
1860 if (predictor)
1861 {
1862 *predictor = PRED_BUILTIN_EXPECT;
1863 tree val2 = gimple_call_arg (def, 2);
1864 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1865 && tree_fits_uhwi_p (val2)
1866 && tree_to_uhwi (val2) < END_PREDICTORS);
1867 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1868 }
1869 return gimple_call_arg (def, 1);
1870 }
1871 return NULL;
1872 }
1873 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1874 switch (DECL_FUNCTION_CODE (decl))
1875 {
1876 case BUILT_IN_EXPECT:
1877 {
1878 tree val;
1879 if (gimple_call_num_args (def) != 2)
1880 return NULL;
1881 val = gimple_call_arg (def, 0);
1882 if (TREE_CONSTANT (val))
1883 return val;
1884 if (predictor)
1885 *predictor = PRED_BUILTIN_EXPECT;
1886 return gimple_call_arg (def, 1);
1887 }
1888
1889 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1890 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1892 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1893 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1894 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1895 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1897 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1898 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1899 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1900 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1901 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1902 /* Assume that any given atomic operation has low contention,
1903 and thus the compare-and-swap operation succeeds. */
1904 if (predictor)
1905 *predictor = PRED_COMPARE_AND_SWAP;
1906 return boolean_true_node;
1907 }
1908 }
1909
1910 return NULL;
1911 }
1912
1913 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1914 {
1915 tree res;
1916 enum br_predictor predictor2;
1917 op0 = expr_expected_value (op0, visited, predictor);
1918 if (!op0)
1919 return NULL;
1920 op1 = expr_expected_value (op1, visited, &predictor2);
1921 if (predictor && *predictor < predictor2)
1922 *predictor = predictor2;
1923 if (!op1)
1924 return NULL;
1925 res = fold_build2 (code, type, op0, op1);
1926 if (TREE_CONSTANT (res))
1927 return res;
1928 return NULL;
1929 }
1930 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1931 {
1932 tree res;
1933 op0 = expr_expected_value (op0, visited, predictor);
1934 if (!op0)
1935 return NULL;
1936 res = fold_build1 (code, type, op0);
1937 if (TREE_CONSTANT (res))
1938 return res;
1939 return NULL;
1940 }
1941 return NULL;
1942 }
1943
1944 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1945 The function is used by builtin_expect branch predictor so the evidence
1946 must come from this construct and additional possible constant folding.
1947
1948 We may want to implement more involved value guess (such as value range
1949 propagation based prediction), but such tricks shall go to new
1950 implementation. */
1951
1952 static tree
1953 expr_expected_value (tree expr, bitmap visited,
1954 enum br_predictor *predictor)
1955 {
1956 enum tree_code code;
1957 tree op0, op1;
1958
1959 if (TREE_CONSTANT (expr))
1960 {
1961 if (predictor)
1962 *predictor = PRED_UNCONDITIONAL;
1963 return expr;
1964 }
1965
1966 extract_ops_from_tree (expr, &code, &op0, &op1);
1967 return expr_expected_value_1 (TREE_TYPE (expr),
1968 op0, code, op1, visited, predictor);
1969 }
1970 \f
1971 /* Predict using opcode of the last statement in basic block. */
1972 static void
1973 tree_predict_by_opcode (basic_block bb)
1974 {
1975 gimple stmt = last_stmt (bb);
1976 edge then_edge;
1977 tree op0, op1;
1978 tree type;
1979 tree val;
1980 enum tree_code cmp;
1981 bitmap visited;
1982 edge_iterator ei;
1983 enum br_predictor predictor;
1984
1985 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1986 return;
1987 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1988 if (then_edge->flags & EDGE_TRUE_VALUE)
1989 break;
1990 op0 = gimple_cond_lhs (stmt);
1991 op1 = gimple_cond_rhs (stmt);
1992 cmp = gimple_cond_code (stmt);
1993 type = TREE_TYPE (op0);
1994 visited = BITMAP_ALLOC (NULL);
1995 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
1996 &predictor);
1997 BITMAP_FREE (visited);
1998 if (val && TREE_CODE (val) == INTEGER_CST)
1999 {
2000 if (predictor == PRED_BUILTIN_EXPECT)
2001 {
2002 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2003
2004 gcc_assert (percent >= 0 && percent <= 100);
2005 if (integer_zerop (val))
2006 percent = 100 - percent;
2007 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2008 }
2009 else
2010 predict_edge (then_edge, predictor,
2011 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2012 }
2013 /* Try "pointer heuristic."
2014 A comparison ptr == 0 is predicted as false.
2015 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2016 if (POINTER_TYPE_P (type))
2017 {
2018 if (cmp == EQ_EXPR)
2019 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2020 else if (cmp == NE_EXPR)
2021 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2022 }
2023 else
2024
2025 /* Try "opcode heuristic."
2026 EQ tests are usually false and NE tests are usually true. Also,
2027 most quantities are positive, so we can make the appropriate guesses
2028 about signed comparisons against zero. */
2029 switch (cmp)
2030 {
2031 case EQ_EXPR:
2032 case UNEQ_EXPR:
2033 /* Floating point comparisons appears to behave in a very
2034 unpredictable way because of special role of = tests in
2035 FP code. */
2036 if (FLOAT_TYPE_P (type))
2037 ;
2038 /* Comparisons with 0 are often used for booleans and there is
2039 nothing useful to predict about them. */
2040 else if (integer_zerop (op0) || integer_zerop (op1))
2041 ;
2042 else
2043 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2044 break;
2045
2046 case NE_EXPR:
2047 case LTGT_EXPR:
2048 /* Floating point comparisons appears to behave in a very
2049 unpredictable way because of special role of = tests in
2050 FP code. */
2051 if (FLOAT_TYPE_P (type))
2052 ;
2053 /* Comparisons with 0 are often used for booleans and there is
2054 nothing useful to predict about them. */
2055 else if (integer_zerop (op0)
2056 || integer_zerop (op1))
2057 ;
2058 else
2059 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2060 break;
2061
2062 case ORDERED_EXPR:
2063 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2064 break;
2065
2066 case UNORDERED_EXPR:
2067 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2068 break;
2069
2070 case LE_EXPR:
2071 case LT_EXPR:
2072 if (integer_zerop (op1)
2073 || integer_onep (op1)
2074 || integer_all_onesp (op1)
2075 || real_zerop (op1)
2076 || real_onep (op1)
2077 || real_minus_onep (op1))
2078 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2079 break;
2080
2081 case GE_EXPR:
2082 case GT_EXPR:
2083 if (integer_zerop (op1)
2084 || integer_onep (op1)
2085 || integer_all_onesp (op1)
2086 || real_zerop (op1)
2087 || real_onep (op1)
2088 || real_minus_onep (op1))
2089 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2090 break;
2091
2092 default:
2093 break;
2094 }
2095 }
2096
2097 /* Try to guess whether the value of return means error code. */
2098
2099 static enum br_predictor
2100 return_prediction (tree val, enum prediction *prediction)
2101 {
2102 /* VOID. */
2103 if (!val)
2104 return PRED_NO_PREDICTION;
2105 /* Different heuristics for pointers and scalars. */
2106 if (POINTER_TYPE_P (TREE_TYPE (val)))
2107 {
2108 /* NULL is usually not returned. */
2109 if (integer_zerop (val))
2110 {
2111 *prediction = NOT_TAKEN;
2112 return PRED_NULL_RETURN;
2113 }
2114 }
2115 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2116 {
2117 /* Negative return values are often used to indicate
2118 errors. */
2119 if (TREE_CODE (val) == INTEGER_CST
2120 && tree_int_cst_sgn (val) < 0)
2121 {
2122 *prediction = NOT_TAKEN;
2123 return PRED_NEGATIVE_RETURN;
2124 }
2125 /* Constant return values seems to be commonly taken.
2126 Zero/one often represent booleans so exclude them from the
2127 heuristics. */
2128 if (TREE_CONSTANT (val)
2129 && (!integer_zerop (val) && !integer_onep (val)))
2130 {
2131 *prediction = TAKEN;
2132 return PRED_CONST_RETURN;
2133 }
2134 }
2135 return PRED_NO_PREDICTION;
2136 }
2137
2138 /* Find the basic block with return expression and look up for possible
2139 return value trying to apply RETURN_PREDICTION heuristics. */
2140 static void
2141 apply_return_prediction (void)
2142 {
2143 gimple return_stmt = NULL;
2144 tree return_val;
2145 edge e;
2146 gimple phi;
2147 int phi_num_args, i;
2148 enum br_predictor pred;
2149 enum prediction direction;
2150 edge_iterator ei;
2151
2152 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2153 {
2154 return_stmt = last_stmt (e->src);
2155 if (return_stmt
2156 && gimple_code (return_stmt) == GIMPLE_RETURN)
2157 break;
2158 }
2159 if (!e)
2160 return;
2161 return_val = gimple_return_retval (return_stmt);
2162 if (!return_val)
2163 return;
2164 if (TREE_CODE (return_val) != SSA_NAME
2165 || !SSA_NAME_DEF_STMT (return_val)
2166 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2167 return;
2168 phi = SSA_NAME_DEF_STMT (return_val);
2169 phi_num_args = gimple_phi_num_args (phi);
2170 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2171
2172 /* Avoid the degenerate case where all return values form the function
2173 belongs to same category (ie they are all positive constants)
2174 so we can hardly say something about them. */
2175 for (i = 1; i < phi_num_args; i++)
2176 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2177 break;
2178 if (i != phi_num_args)
2179 for (i = 0; i < phi_num_args; i++)
2180 {
2181 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2182 if (pred != PRED_NO_PREDICTION)
2183 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2184 direction);
2185 }
2186 }
2187
2188 /* Look for basic block that contains unlikely to happen events
2189 (such as noreturn calls) and mark all paths leading to execution
2190 of this basic blocks as unlikely. */
2191
2192 static void
2193 tree_bb_level_predictions (void)
2194 {
2195 basic_block bb;
2196 bool has_return_edges = false;
2197 edge e;
2198 edge_iterator ei;
2199
2200 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2201 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2202 {
2203 has_return_edges = true;
2204 break;
2205 }
2206
2207 apply_return_prediction ();
2208
2209 FOR_EACH_BB_FN (bb, cfun)
2210 {
2211 gimple_stmt_iterator gsi;
2212
2213 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2214 {
2215 gimple stmt = gsi_stmt (gsi);
2216 tree decl;
2217
2218 if (is_gimple_call (stmt))
2219 {
2220 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2221 && has_return_edges)
2222 predict_paths_leading_to (bb, PRED_NORETURN,
2223 NOT_TAKEN);
2224 decl = gimple_call_fndecl (stmt);
2225 if (decl
2226 && lookup_attribute ("cold",
2227 DECL_ATTRIBUTES (decl)))
2228 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2229 NOT_TAKEN);
2230 }
2231 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2232 {
2233 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2234 gimple_predict_outcome (stmt));
2235 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2236 hints to callers. */
2237 }
2238 }
2239 }
2240 }
2241
2242 #ifdef ENABLE_CHECKING
2243
2244 /* Callback for hash_map::traverse, asserts that the pointer map is
2245 empty. */
2246
2247 bool
2248 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2249 void *)
2250 {
2251 gcc_assert (!value);
2252 return false;
2253 }
2254 #endif
2255
2256 /* Predict branch probabilities and estimate profile for basic block BB. */
2257
2258 static void
2259 tree_estimate_probability_bb (basic_block bb)
2260 {
2261 edge e;
2262 edge_iterator ei;
2263 gimple last;
2264
2265 FOR_EACH_EDGE (e, ei, bb->succs)
2266 {
2267 /* Predict edges to user labels with attributes. */
2268 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2269 {
2270 gimple_stmt_iterator gi;
2271 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2272 {
2273 gimple stmt = gsi_stmt (gi);
2274 tree decl;
2275
2276 if (gimple_code (stmt) != GIMPLE_LABEL)
2277 break;
2278 decl = gimple_label_label (stmt);
2279 if (DECL_ARTIFICIAL (decl))
2280 continue;
2281
2282 /* Finally, we have a user-defined label. */
2283 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2284 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2285 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2286 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2287 }
2288 }
2289
2290 /* Predict early returns to be probable, as we've already taken
2291 care for error returns and other cases are often used for
2292 fast paths through function.
2293
2294 Since we've already removed the return statements, we are
2295 looking for CFG like:
2296
2297 if (conditional)
2298 {
2299 ..
2300 goto return_block
2301 }
2302 some other blocks
2303 return_block:
2304 return_stmt. */
2305 if (e->dest != bb->next_bb
2306 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2307 && single_succ_p (e->dest)
2308 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2309 && (last = last_stmt (e->dest)) != NULL
2310 && gimple_code (last) == GIMPLE_RETURN)
2311 {
2312 edge e1;
2313 edge_iterator ei1;
2314
2315 if (single_succ_p (bb))
2316 {
2317 FOR_EACH_EDGE (e1, ei1, bb->preds)
2318 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2319 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2320 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2321 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2322 }
2323 else
2324 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2325 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2326 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2327 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2328 }
2329
2330 /* Look for block we are guarding (ie we dominate it,
2331 but it doesn't postdominate us). */
2332 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2333 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2334 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2335 {
2336 gimple_stmt_iterator bi;
2337
2338 /* The call heuristic claims that a guarded function call
2339 is improbable. This is because such calls are often used
2340 to signal exceptional situations such as printing error
2341 messages. */
2342 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2343 gsi_next (&bi))
2344 {
2345 gimple stmt = gsi_stmt (bi);
2346 if (is_gimple_call (stmt)
2347 /* Constant and pure calls are hardly used to signalize
2348 something exceptional. */
2349 && gimple_has_side_effects (stmt))
2350 {
2351 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2352 break;
2353 }
2354 }
2355 }
2356 }
2357 tree_predict_by_opcode (bb);
2358 }
2359
2360 /* Predict branch probabilities and estimate profile of the tree CFG.
2361 This function can be called from the loop optimizers to recompute
2362 the profile information. */
2363
2364 void
2365 tree_estimate_probability (void)
2366 {
2367 basic_block bb;
2368
2369 add_noreturn_fake_exit_edges ();
2370 connect_infinite_loops_to_exit ();
2371 /* We use loop_niter_by_eval, which requires that the loops have
2372 preheaders. */
2373 create_preheaders (CP_SIMPLE_PREHEADERS);
2374 calculate_dominance_info (CDI_POST_DOMINATORS);
2375
2376 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2377 tree_bb_level_predictions ();
2378 record_loop_exits ();
2379
2380 if (number_of_loops (cfun) > 1)
2381 predict_loops ();
2382
2383 FOR_EACH_BB_FN (bb, cfun)
2384 tree_estimate_probability_bb (bb);
2385
2386 FOR_EACH_BB_FN (bb, cfun)
2387 combine_predictions_for_bb (bb);
2388
2389 #ifdef ENABLE_CHECKING
2390 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2391 #endif
2392 delete bb_predictions;
2393 bb_predictions = NULL;
2394
2395 estimate_bb_frequencies (false);
2396 free_dominance_info (CDI_POST_DOMINATORS);
2397 remove_fake_exit_edges ();
2398 }
2399 \f
2400 /* Predict edges to successors of CUR whose sources are not postdominated by
2401 BB by PRED and recurse to all postdominators. */
2402
2403 static void
2404 predict_paths_for_bb (basic_block cur, basic_block bb,
2405 enum br_predictor pred,
2406 enum prediction taken,
2407 bitmap visited)
2408 {
2409 edge e;
2410 edge_iterator ei;
2411 basic_block son;
2412
2413 /* We are looking for all edges forming edge cut induced by
2414 set of all blocks postdominated by BB. */
2415 FOR_EACH_EDGE (e, ei, cur->preds)
2416 if (e->src->index >= NUM_FIXED_BLOCKS
2417 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2418 {
2419 edge e2;
2420 edge_iterator ei2;
2421 bool found = false;
2422
2423 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2424 if (e->flags & (EDGE_EH | EDGE_FAKE))
2425 continue;
2426 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2427
2428 /* See if there is an edge from e->src that is not abnormal
2429 and does not lead to BB. */
2430 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2431 if (e2 != e
2432 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2433 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2434 {
2435 found = true;
2436 break;
2437 }
2438
2439 /* If there is non-abnormal path leaving e->src, predict edge
2440 using predictor. Otherwise we need to look for paths
2441 leading to e->src.
2442
2443 The second may lead to infinite loop in the case we are predicitng
2444 regions that are only reachable by abnormal edges. We simply
2445 prevent visiting given BB twice. */
2446 if (found)
2447 predict_edge_def (e, pred, taken);
2448 else if (bitmap_set_bit (visited, e->src->index))
2449 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2450 }
2451 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2452 son;
2453 son = next_dom_son (CDI_POST_DOMINATORS, son))
2454 predict_paths_for_bb (son, bb, pred, taken, visited);
2455 }
2456
2457 /* Sets branch probabilities according to PREDiction and
2458 FLAGS. */
2459
2460 static void
2461 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2462 enum prediction taken)
2463 {
2464 bitmap visited = BITMAP_ALLOC (NULL);
2465 predict_paths_for_bb (bb, bb, pred, taken, visited);
2466 BITMAP_FREE (visited);
2467 }
2468
2469 /* Like predict_paths_leading_to but take edge instead of basic block. */
2470
2471 static void
2472 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2473 enum prediction taken)
2474 {
2475 bool has_nonloop_edge = false;
2476 edge_iterator ei;
2477 edge e2;
2478
2479 basic_block bb = e->src;
2480 FOR_EACH_EDGE (e2, ei, bb->succs)
2481 if (e2->dest != e->src && e2->dest != e->dest
2482 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2483 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2484 {
2485 has_nonloop_edge = true;
2486 break;
2487 }
2488 if (!has_nonloop_edge)
2489 {
2490 bitmap visited = BITMAP_ALLOC (NULL);
2491 predict_paths_for_bb (bb, bb, pred, taken, visited);
2492 BITMAP_FREE (visited);
2493 }
2494 else
2495 predict_edge_def (e, pred, taken);
2496 }
2497 \f
2498 /* This is used to carry information about basic blocks. It is
2499 attached to the AUX field of the standard CFG block. */
2500
2501 typedef struct block_info_def
2502 {
2503 /* Estimated frequency of execution of basic_block. */
2504 sreal frequency;
2505
2506 /* To keep queue of basic blocks to process. */
2507 basic_block next;
2508
2509 /* Number of predecessors we need to visit first. */
2510 int npredecessors;
2511 } *block_info;
2512
2513 /* Similar information for edges. */
2514 typedef struct edge_info_def
2515 {
2516 /* In case edge is a loopback edge, the probability edge will be reached
2517 in case header is. Estimated number of iterations of the loop can be
2518 then computed as 1 / (1 - back_edge_prob). */
2519 sreal back_edge_prob;
2520 /* True if the edge is a loopback edge in the natural loop. */
2521 unsigned int back_edge:1;
2522 } *edge_info;
2523
2524 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2525 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2526
2527 /* Helper function for estimate_bb_frequencies.
2528 Propagate the frequencies in blocks marked in
2529 TOVISIT, starting in HEAD. */
2530
2531 static void
2532 propagate_freq (basic_block head, bitmap tovisit)
2533 {
2534 basic_block bb;
2535 basic_block last;
2536 unsigned i;
2537 edge e;
2538 basic_block nextbb;
2539 bitmap_iterator bi;
2540
2541 /* For each basic block we need to visit count number of his predecessors
2542 we need to visit first. */
2543 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2544 {
2545 edge_iterator ei;
2546 int count = 0;
2547
2548 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2549
2550 FOR_EACH_EDGE (e, ei, bb->preds)
2551 {
2552 bool visit = bitmap_bit_p (tovisit, e->src->index);
2553
2554 if (visit && !(e->flags & EDGE_DFS_BACK))
2555 count++;
2556 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2557 fprintf (dump_file,
2558 "Irreducible region hit, ignoring edge to %i->%i\n",
2559 e->src->index, bb->index);
2560 }
2561 BLOCK_INFO (bb)->npredecessors = count;
2562 /* When function never returns, we will never process exit block. */
2563 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2564 bb->count = bb->frequency = 0;
2565 }
2566
2567 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2568 last = head;
2569 for (bb = head; bb; bb = nextbb)
2570 {
2571 edge_iterator ei;
2572 sreal cyclic_probability, frequency;
2573
2574 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2575 memcpy (&frequency, &real_zero, sizeof (real_zero));
2576
2577 nextbb = BLOCK_INFO (bb)->next;
2578 BLOCK_INFO (bb)->next = NULL;
2579
2580 /* Compute frequency of basic block. */
2581 if (bb != head)
2582 {
2583 #ifdef ENABLE_CHECKING
2584 FOR_EACH_EDGE (e, ei, bb->preds)
2585 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2586 || (e->flags & EDGE_DFS_BACK));
2587 #endif
2588
2589 FOR_EACH_EDGE (e, ei, bb->preds)
2590 if (EDGE_INFO (e)->back_edge)
2591 {
2592 sreal_add (&cyclic_probability, &cyclic_probability,
2593 &EDGE_INFO (e)->back_edge_prob);
2594 }
2595 else if (!(e->flags & EDGE_DFS_BACK))
2596 {
2597 sreal tmp;
2598
2599 /* frequency += (e->probability
2600 * BLOCK_INFO (e->src)->frequency /
2601 REG_BR_PROB_BASE); */
2602
2603 sreal_init (&tmp, e->probability, 0);
2604 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2605 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2606 sreal_add (&frequency, &frequency, &tmp);
2607 }
2608
2609 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2610 {
2611 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2612 sizeof (frequency));
2613 }
2614 else
2615 {
2616 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2617 {
2618 memcpy (&cyclic_probability, &real_almost_one,
2619 sizeof (real_almost_one));
2620 }
2621
2622 /* BLOCK_INFO (bb)->frequency = frequency
2623 / (1 - cyclic_probability) */
2624
2625 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2626 sreal_div (&BLOCK_INFO (bb)->frequency,
2627 &frequency, &cyclic_probability);
2628 }
2629 }
2630
2631 bitmap_clear_bit (tovisit, bb->index);
2632
2633 e = find_edge (bb, head);
2634 if (e)
2635 {
2636 sreal tmp;
2637
2638 /* EDGE_INFO (e)->back_edge_prob
2639 = ((e->probability * BLOCK_INFO (bb)->frequency)
2640 / REG_BR_PROB_BASE); */
2641
2642 sreal_init (&tmp, e->probability, 0);
2643 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2644 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2645 &tmp, &real_inv_br_prob_base);
2646 }
2647
2648 /* Propagate to successor blocks. */
2649 FOR_EACH_EDGE (e, ei, bb->succs)
2650 if (!(e->flags & EDGE_DFS_BACK)
2651 && BLOCK_INFO (e->dest)->npredecessors)
2652 {
2653 BLOCK_INFO (e->dest)->npredecessors--;
2654 if (!BLOCK_INFO (e->dest)->npredecessors)
2655 {
2656 if (!nextbb)
2657 nextbb = e->dest;
2658 else
2659 BLOCK_INFO (last)->next = e->dest;
2660
2661 last = e->dest;
2662 }
2663 }
2664 }
2665 }
2666
2667 /* Estimate frequencies in loops at same nest level. */
2668
2669 static void
2670 estimate_loops_at_level (struct loop *first_loop)
2671 {
2672 struct loop *loop;
2673
2674 for (loop = first_loop; loop; loop = loop->next)
2675 {
2676 edge e;
2677 basic_block *bbs;
2678 unsigned i;
2679 bitmap tovisit = BITMAP_ALLOC (NULL);
2680
2681 estimate_loops_at_level (loop->inner);
2682
2683 /* Find current loop back edge and mark it. */
2684 e = loop_latch_edge (loop);
2685 EDGE_INFO (e)->back_edge = 1;
2686
2687 bbs = get_loop_body (loop);
2688 for (i = 0; i < loop->num_nodes; i++)
2689 bitmap_set_bit (tovisit, bbs[i]->index);
2690 free (bbs);
2691 propagate_freq (loop->header, tovisit);
2692 BITMAP_FREE (tovisit);
2693 }
2694 }
2695
2696 /* Propagates frequencies through structure of loops. */
2697
2698 static void
2699 estimate_loops (void)
2700 {
2701 bitmap tovisit = BITMAP_ALLOC (NULL);
2702 basic_block bb;
2703
2704 /* Start by estimating the frequencies in the loops. */
2705 if (number_of_loops (cfun) > 1)
2706 estimate_loops_at_level (current_loops->tree_root->inner);
2707
2708 /* Now propagate the frequencies through all the blocks. */
2709 FOR_ALL_BB_FN (bb, cfun)
2710 {
2711 bitmap_set_bit (tovisit, bb->index);
2712 }
2713 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2714 BITMAP_FREE (tovisit);
2715 }
2716
2717 /* Drop the profile for NODE to guessed, and update its frequency based on
2718 whether it is expected to be hot given the CALL_COUNT. */
2719
2720 static void
2721 drop_profile (struct cgraph_node *node, gcov_type call_count)
2722 {
2723 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2724 /* In the case where this was called by another function with a
2725 dropped profile, call_count will be 0. Since there are no
2726 non-zero call counts to this function, we don't know for sure
2727 whether it is hot, and therefore it will be marked normal below. */
2728 bool hot = maybe_hot_count_p (NULL, call_count);
2729
2730 if (dump_file)
2731 fprintf (dump_file,
2732 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2733 node->name (), node->order,
2734 hot ? "Function is hot" : "Function is normal");
2735 /* We only expect to miss profiles for functions that are reached
2736 via non-zero call edges in cases where the function may have
2737 been linked from another module or library (COMDATs and extern
2738 templates). See the comments below for handle_missing_profiles.
2739 Also, only warn in cases where the missing counts exceed the
2740 number of training runs. In certain cases with an execv followed
2741 by a no-return call the profile for the no-return call is not
2742 dumped and there can be a mismatch. */
2743 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2744 && call_count > profile_info->runs)
2745 {
2746 if (flag_profile_correction)
2747 {
2748 if (dump_file)
2749 fprintf (dump_file,
2750 "Missing counts for called function %s/%i\n",
2751 node->name (), node->order);
2752 }
2753 else
2754 warning (0, "Missing counts for called function %s/%i",
2755 node->name (), node->order);
2756 }
2757
2758 profile_status_for_fn (fn)
2759 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2760 node->frequency
2761 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2762 }
2763
2764 /* In the case of COMDAT routines, multiple object files will contain the same
2765 function and the linker will select one for the binary. In that case
2766 all the other copies from the profile instrument binary will be missing
2767 profile counts. Look for cases where this happened, due to non-zero
2768 call counts going to 0-count functions, and drop the profile to guessed
2769 so that we can use the estimated probabilities and avoid optimizing only
2770 for size.
2771
2772 The other case where the profile may be missing is when the routine
2773 is not going to be emitted to the object file, e.g. for "extern template"
2774 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2775 all other cases of non-zero calls to 0-count functions. */
2776
2777 void
2778 handle_missing_profiles (void)
2779 {
2780 struct cgraph_node *node;
2781 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2782 vec<struct cgraph_node *> worklist;
2783 worklist.create (64);
2784
2785 /* See if 0 count function has non-0 count callers. In this case we
2786 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2787 FOR_EACH_DEFINED_FUNCTION (node)
2788 {
2789 struct cgraph_edge *e;
2790 gcov_type call_count = 0;
2791 gcov_type max_tp_first_run = 0;
2792 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2793
2794 if (node->count)
2795 continue;
2796 for (e = node->callers; e; e = e->next_caller)
2797 {
2798 call_count += e->count;
2799
2800 if (e->caller->tp_first_run > max_tp_first_run)
2801 max_tp_first_run = e->caller->tp_first_run;
2802 }
2803
2804 /* If time profile is missing, let assign the maximum that comes from
2805 caller functions. */
2806 if (!node->tp_first_run && max_tp_first_run)
2807 node->tp_first_run = max_tp_first_run + 1;
2808
2809 if (call_count
2810 && fn && fn->cfg
2811 && (call_count * unlikely_count_fraction >= profile_info->runs))
2812 {
2813 drop_profile (node, call_count);
2814 worklist.safe_push (node);
2815 }
2816 }
2817
2818 /* Propagate the profile dropping to other 0-count COMDATs that are
2819 potentially called by COMDATs we already dropped the profile on. */
2820 while (worklist.length () > 0)
2821 {
2822 struct cgraph_edge *e;
2823
2824 node = worklist.pop ();
2825 for (e = node->callees; e; e = e->next_caller)
2826 {
2827 struct cgraph_node *callee = e->callee;
2828 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2829
2830 if (callee->count > 0)
2831 continue;
2832 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2833 && profile_status_for_fn (fn) == PROFILE_READ)
2834 {
2835 drop_profile (node, 0);
2836 worklist.safe_push (callee);
2837 }
2838 }
2839 }
2840 worklist.release ();
2841 }
2842
2843 /* Convert counts measured by profile driven feedback to frequencies.
2844 Return nonzero iff there was any nonzero execution count. */
2845
2846 int
2847 counts_to_freqs (void)
2848 {
2849 gcov_type count_max, true_count_max = 0;
2850 basic_block bb;
2851
2852 /* Don't overwrite the estimated frequencies when the profile for
2853 the function is missing. We may drop this function PROFILE_GUESSED
2854 later in drop_profile (). */
2855 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2856 return 0;
2857
2858 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2859 true_count_max = MAX (bb->count, true_count_max);
2860
2861 count_max = MAX (true_count_max, 1);
2862 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2863 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2864
2865 return true_count_max;
2866 }
2867
2868 /* Return true if function is likely to be expensive, so there is no point to
2869 optimize performance of prologue, epilogue or do inlining at the expense
2870 of code size growth. THRESHOLD is the limit of number of instructions
2871 function can execute at average to be still considered not expensive. */
2872
2873 bool
2874 expensive_function_p (int threshold)
2875 {
2876 unsigned int sum = 0;
2877 basic_block bb;
2878 unsigned int limit;
2879
2880 /* We can not compute accurately for large thresholds due to scaled
2881 frequencies. */
2882 gcc_assert (threshold <= BB_FREQ_MAX);
2883
2884 /* Frequencies are out of range. This either means that function contains
2885 internal loop executing more than BB_FREQ_MAX times or profile feedback
2886 is available and function has not been executed at all. */
2887 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2888 return true;
2889
2890 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2891 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2892 FOR_EACH_BB_FN (bb, cfun)
2893 {
2894 rtx insn;
2895
2896 FOR_BB_INSNS (bb, insn)
2897 if (active_insn_p (insn))
2898 {
2899 sum += bb->frequency;
2900 if (sum > limit)
2901 return true;
2902 }
2903 }
2904
2905 return false;
2906 }
2907
2908 /* Estimate and propagate basic block frequencies using the given branch
2909 probabilities. If FORCE is true, the frequencies are used to estimate
2910 the counts even when there are already non-zero profile counts. */
2911
2912 void
2913 estimate_bb_frequencies (bool force)
2914 {
2915 basic_block bb;
2916 sreal freq_max;
2917
2918 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2919 {
2920 static int real_values_initialized = 0;
2921
2922 if (!real_values_initialized)
2923 {
2924 real_values_initialized = 1;
2925 sreal_init (&real_zero, 0, 0);
2926 sreal_init (&real_one, 1, 0);
2927 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2928 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2929 sreal_init (&real_one_half, 1, -1);
2930 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2931 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2932 }
2933
2934 mark_dfs_back_edges ();
2935
2936 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2937 REG_BR_PROB_BASE;
2938
2939 /* Set up block info for each basic block. */
2940 alloc_aux_for_blocks (sizeof (struct block_info_def));
2941 alloc_aux_for_edges (sizeof (struct edge_info_def));
2942 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2943 {
2944 edge e;
2945 edge_iterator ei;
2946
2947 FOR_EACH_EDGE (e, ei, bb->succs)
2948 {
2949 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2950 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2951 &EDGE_INFO (e)->back_edge_prob,
2952 &real_inv_br_prob_base);
2953 }
2954 }
2955
2956 /* First compute frequencies locally for each loop from innermost
2957 to outermost to examine frequencies for back edges. */
2958 estimate_loops ();
2959
2960 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2961 FOR_EACH_BB_FN (bb, cfun)
2962 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2963 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2964
2965 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2966 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2967 {
2968 sreal tmp;
2969
2970 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2971 sreal_add (&tmp, &tmp, &real_one_half);
2972 bb->frequency = sreal_to_int (&tmp);
2973 }
2974
2975 free_aux_for_blocks ();
2976 free_aux_for_edges ();
2977 }
2978 compute_function_frequency ();
2979 }
2980
2981 /* Decide whether function is hot, cold or unlikely executed. */
2982 void
2983 compute_function_frequency (void)
2984 {
2985 basic_block bb;
2986 struct cgraph_node *node = cgraph_node::get (current_function_decl);
2987
2988 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
2989 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
2990 node->only_called_at_startup = true;
2991 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
2992 node->only_called_at_exit = true;
2993
2994 if (profile_status_for_fn (cfun) != PROFILE_READ)
2995 {
2996 int flags = flags_from_decl_or_type (current_function_decl);
2997 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2998 != NULL)
2999 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3000 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3001 != NULL)
3002 node->frequency = NODE_FREQUENCY_HOT;
3003 else if (flags & ECF_NORETURN)
3004 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3005 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3006 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3007 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3008 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3009 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3010 return;
3011 }
3012
3013 /* Only first time try to drop function into unlikely executed.
3014 After inlining the roundoff errors may confuse us.
3015 Ipa-profile pass will drop functions only called from unlikely
3016 functions to unlikely and that is most of what we care about. */
3017 if (!cfun->after_inlining)
3018 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3019 FOR_EACH_BB_FN (bb, cfun)
3020 {
3021 if (maybe_hot_bb_p (cfun, bb))
3022 {
3023 node->frequency = NODE_FREQUENCY_HOT;
3024 return;
3025 }
3026 if (!probably_never_executed_bb_p (cfun, bb))
3027 node->frequency = NODE_FREQUENCY_NORMAL;
3028 }
3029 }
3030
3031 /* Build PREDICT_EXPR. */
3032 tree
3033 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3034 {
3035 tree t = build1 (PREDICT_EXPR, void_type_node,
3036 build_int_cst (integer_type_node, predictor));
3037 SET_PREDICT_EXPR_OUTCOME (t, taken);
3038 return t;
3039 }
3040
3041 const char *
3042 predictor_name (enum br_predictor predictor)
3043 {
3044 return predictor_info[predictor].name;
3045 }
3046
3047 /* Predict branch probabilities and estimate profile of the tree CFG. */
3048
3049 namespace {
3050
3051 const pass_data pass_data_profile =
3052 {
3053 GIMPLE_PASS, /* type */
3054 "profile_estimate", /* name */
3055 OPTGROUP_NONE, /* optinfo_flags */
3056 TV_BRANCH_PROB, /* tv_id */
3057 PROP_cfg, /* properties_required */
3058 0, /* properties_provided */
3059 0, /* properties_destroyed */
3060 0, /* todo_flags_start */
3061 0, /* todo_flags_finish */
3062 };
3063
3064 class pass_profile : public gimple_opt_pass
3065 {
3066 public:
3067 pass_profile (gcc::context *ctxt)
3068 : gimple_opt_pass (pass_data_profile, ctxt)
3069 {}
3070
3071 /* opt_pass methods: */
3072 virtual bool gate (function *) { return flag_guess_branch_prob; }
3073 virtual unsigned int execute (function *);
3074
3075 }; // class pass_profile
3076
3077 unsigned int
3078 pass_profile::execute (function *fun)
3079 {
3080 unsigned nb_loops;
3081
3082 loop_optimizer_init (LOOPS_NORMAL);
3083 if (dump_file && (dump_flags & TDF_DETAILS))
3084 flow_loops_dump (dump_file, NULL, 0);
3085
3086 mark_irreducible_loops ();
3087
3088 nb_loops = number_of_loops (fun);
3089 if (nb_loops > 1)
3090 scev_initialize ();
3091
3092 tree_estimate_probability ();
3093
3094 if (nb_loops > 1)
3095 scev_finalize ();
3096
3097 loop_optimizer_finalize ();
3098 if (dump_file && (dump_flags & TDF_DETAILS))
3099 gimple_dump_cfg (dump_file, dump_flags);
3100 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3101 profile_status_for_fn (fun) = PROFILE_GUESSED;
3102 return 0;
3103 }
3104
3105 } // anon namespace
3106
3107 gimple_opt_pass *
3108 make_pass_profile (gcc::context *ctxt)
3109 {
3110 return new pass_profile (ctxt);
3111 }
3112
3113 namespace {
3114
3115 const pass_data pass_data_strip_predict_hints =
3116 {
3117 GIMPLE_PASS, /* type */
3118 "*strip_predict_hints", /* name */
3119 OPTGROUP_NONE, /* optinfo_flags */
3120 TV_BRANCH_PROB, /* tv_id */
3121 PROP_cfg, /* properties_required */
3122 0, /* properties_provided */
3123 0, /* properties_destroyed */
3124 0, /* todo_flags_start */
3125 0, /* todo_flags_finish */
3126 };
3127
3128 class pass_strip_predict_hints : public gimple_opt_pass
3129 {
3130 public:
3131 pass_strip_predict_hints (gcc::context *ctxt)
3132 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3133 {}
3134
3135 /* opt_pass methods: */
3136 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3137 virtual unsigned int execute (function *);
3138
3139 }; // class pass_strip_predict_hints
3140
3141 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3142 we no longer need. */
3143 unsigned int
3144 pass_strip_predict_hints::execute (function *fun)
3145 {
3146 basic_block bb;
3147 gimple ass_stmt;
3148 tree var;
3149
3150 FOR_EACH_BB_FN (bb, fun)
3151 {
3152 gimple_stmt_iterator bi;
3153 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3154 {
3155 gimple stmt = gsi_stmt (bi);
3156
3157 if (gimple_code (stmt) == GIMPLE_PREDICT)
3158 {
3159 gsi_remove (&bi, true);
3160 continue;
3161 }
3162 else if (is_gimple_call (stmt))
3163 {
3164 tree fndecl = gimple_call_fndecl (stmt);
3165
3166 if ((fndecl
3167 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3168 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3169 && gimple_call_num_args (stmt) == 2)
3170 || (gimple_call_internal_p (stmt)
3171 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3172 {
3173 var = gimple_call_lhs (stmt);
3174 if (var)
3175 {
3176 ass_stmt
3177 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3178 gsi_replace (&bi, ass_stmt, true);
3179 }
3180 else
3181 {
3182 gsi_remove (&bi, true);
3183 continue;
3184 }
3185 }
3186 }
3187 gsi_next (&bi);
3188 }
3189 }
3190 return 0;
3191 }
3192
3193 } // anon namespace
3194
3195 gimple_opt_pass *
3196 make_pass_strip_predict_hints (gcc::context *ctxt)
3197 {
3198 return new pass_strip_predict_hints (ctxt);
3199 }
3200
3201 /* Rebuild function frequencies. Passes are in general expected to
3202 maintain profile by hand, however in some cases this is not possible:
3203 for example when inlining several functions with loops freuqencies might run
3204 out of scale and thus needs to be recomputed. */
3205
3206 void
3207 rebuild_frequencies (void)
3208 {
3209 timevar_push (TV_REBUILD_FREQUENCIES);
3210
3211 /* When the max bb count in the function is small, there is a higher
3212 chance that there were truncation errors in the integer scaling
3213 of counts by inlining and other optimizations. This could lead
3214 to incorrect classification of code as being cold when it isn't.
3215 In that case, force the estimation of bb counts/frequencies from the
3216 branch probabilities, rather than computing frequencies from counts,
3217 which may also lead to frequencies incorrectly reduced to 0. There
3218 is less precision in the probabilities, so we only do this for small
3219 max counts. */
3220 gcov_type count_max = 0;
3221 basic_block bb;
3222 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3223 count_max = MAX (bb->count, count_max);
3224
3225 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3226 || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3227 {
3228 loop_optimizer_init (0);
3229 add_noreturn_fake_exit_edges ();
3230 mark_irreducible_loops ();
3231 connect_infinite_loops_to_exit ();
3232 estimate_bb_frequencies (true);
3233 remove_fake_exit_edges ();
3234 loop_optimizer_finalize ();
3235 }
3236 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3237 counts_to_freqs ();
3238 else
3239 gcc_unreachable ();
3240 timevar_pop (TV_REBUILD_FREQUENCIES);
3241 }