]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/profile.c
Update copyright years.
[thirdparty/gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4 based on some ideas from Dain Samples of UC Berkeley.
5 Further mangling by Bob Manson, Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Generate basic block profile instrumentation and auxiliary files.
24 Profile generation is optimized, so that not all arcs in the basic
25 block graph need instrumenting. First, the BB graph is closed with
26 one entry (function start), and one exit (function exit). Any
27 ABNORMAL_EDGE cannot be instrumented (because there is no control
28 path to place the code). We close the graph by inserting fake
29 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
30 edges that do not go to the exit_block. We ignore such abnormal
31 edges. Naturally these fake edges are never directly traversed,
32 and so *cannot* be directly instrumented. Some other graph
33 massaging is done. To optimize the instrumentation we generate the
34 BB minimal span tree, only edges that are not on the span tree
35 (plus the entry point) need instrumenting. From that information
36 all other edge counts can be deduced. By construction all fake
37 edges must be on the spanning tree. We also attempt to place
38 EDGE_CRITICAL edges on the spanning tree.
39
40 The auxiliary files generated are <dumpbase>.gcno (at compile time)
41 and <dumpbase>.gcda (at run time). The format is
42 described in full in gcov-io.h. */
43
44 /* ??? Register allocation should use basic block execution counts to
45 give preference to the most commonly executed blocks. */
46
47 /* ??? Should calculate branch probabilities before instrumenting code, since
48 then we can use arc counts to help decide which arcs to instrument. */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "backend.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "gimple.h"
57 #include "cfghooks.h"
58 #include "cgraph.h"
59 #include "coverage.h"
60 #include "diagnostic-core.h"
61 #include "cfganal.h"
62 #include "value-prof.h"
63 #include "gimple-iterator.h"
64 #include "tree-cfg.h"
65 #include "dumpfile.h"
66
67 #include "profile.h"
68
69 struct bb_profile_info {
70 unsigned int count_valid : 1;
71
72 /* Number of successor and predecessor edges. */
73 gcov_type succ_count;
74 gcov_type pred_count;
75 };
76
77 #define BB_INFO(b) ((struct bb_profile_info *) (b)->aux)
78
79
80 /* Counter summary from the last set of coverage counts read. */
81
82 const struct gcov_ctr_summary *profile_info;
83
84 /* Counter working set information computed from the current counter
85 summary. Not initialized unless profile_info summary is non-NULL. */
86 static gcov_working_set_t gcov_working_sets[NUM_GCOV_WORKING_SETS];
87
88 /* Collect statistics on the performance of this pass for the entire source
89 file. */
90
91 static int total_num_blocks;
92 static int total_num_edges;
93 static int total_num_edges_ignored;
94 static int total_num_edges_instrumented;
95 static int total_num_blocks_created;
96 static int total_num_passes;
97 static int total_num_times_called;
98 static int total_hist_br_prob[20];
99 static int total_num_branches;
100
101 /* Helper function to update gcov_working_sets. */
102
103 void add_working_set (gcov_working_set_t *set) {
104 int i = 0;
105 for (; i < NUM_GCOV_WORKING_SETS; i++)
106 gcov_working_sets[i] = set[i];
107 }
108
109 /* Forward declarations. */
110 static void find_spanning_tree (struct edge_list *);
111
112 /* Add edge instrumentation code to the entire insn chain.
113
114 F is the first insn of the chain.
115 NUM_BLOCKS is the number of basic blocks found in F. */
116
117 static unsigned
118 instrument_edges (struct edge_list *el)
119 {
120 unsigned num_instr_edges = 0;
121 int num_edges = NUM_EDGES (el);
122 basic_block bb;
123
124 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
125 {
126 edge e;
127 edge_iterator ei;
128
129 FOR_EACH_EDGE (e, ei, bb->succs)
130 {
131 struct edge_profile_info *inf = EDGE_INFO (e);
132
133 if (!inf->ignore && !inf->on_tree)
134 {
135 gcc_assert (!(e->flags & EDGE_ABNORMAL));
136 if (dump_file)
137 fprintf (dump_file, "Edge %d to %d instrumented%s\n",
138 e->src->index, e->dest->index,
139 EDGE_CRITICAL_P (e) ? " (and split)" : "");
140 gimple_gen_edge_profiler (num_instr_edges++, e);
141 }
142 }
143 }
144
145 total_num_blocks_created += num_edges;
146 if (dump_file)
147 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
148 return num_instr_edges;
149 }
150
151 /* Add code to measure histograms for values in list VALUES. */
152 static void
153 instrument_values (histogram_values values)
154 {
155 unsigned i;
156
157 /* Emit code to generate the histograms before the insns. */
158
159 for (i = 0; i < values.length (); i++)
160 {
161 histogram_value hist = values[i];
162 unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
163
164 if (!coverage_counter_alloc (t, hist->n_counters))
165 continue;
166
167 switch (hist->type)
168 {
169 case HIST_TYPE_INTERVAL:
170 gimple_gen_interval_profiler (hist, t, 0);
171 break;
172
173 case HIST_TYPE_POW2:
174 gimple_gen_pow2_profiler (hist, t, 0);
175 break;
176
177 case HIST_TYPE_SINGLE_VALUE:
178 gimple_gen_one_value_profiler (hist, t, 0);
179 break;
180
181 case HIST_TYPE_CONST_DELTA:
182 gimple_gen_const_delta_profiler (hist, t, 0);
183 break;
184
185 case HIST_TYPE_INDIR_CALL:
186 case HIST_TYPE_INDIR_CALL_TOPN:
187 gimple_gen_ic_profiler (hist, t, 0);
188 break;
189
190 case HIST_TYPE_AVERAGE:
191 gimple_gen_average_profiler (hist, t, 0);
192 break;
193
194 case HIST_TYPE_IOR:
195 gimple_gen_ior_profiler (hist, t, 0);
196 break;
197
198 case HIST_TYPE_TIME_PROFILE:
199 {
200 basic_block bb =
201 split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
202 gimple_stmt_iterator gsi = gsi_start_bb (bb);
203
204 gimple_gen_time_profiler (t, 0, gsi);
205 break;
206 }
207
208 default:
209 gcc_unreachable ();
210 }
211 }
212 }
213 \f
214
215 /* Fill the working set information into the profile_info structure. */
216
217 void
218 get_working_sets (void)
219 {
220 unsigned ws_ix, pctinc, pct;
221 gcov_working_set_t *ws_info;
222
223 if (!profile_info)
224 return;
225
226 compute_working_sets (profile_info, gcov_working_sets);
227
228 if (dump_file)
229 {
230 fprintf (dump_file, "Counter working sets:\n");
231 /* Multiply the percentage by 100 to avoid float. */
232 pctinc = 100 * 100 / NUM_GCOV_WORKING_SETS;
233 for (ws_ix = 0, pct = pctinc; ws_ix < NUM_GCOV_WORKING_SETS;
234 ws_ix++, pct += pctinc)
235 {
236 if (ws_ix == NUM_GCOV_WORKING_SETS - 1)
237 pct = 9990;
238 ws_info = &gcov_working_sets[ws_ix];
239 /* Print out the percentage using int arithmatic to avoid float. */
240 fprintf (dump_file, "\t\t%u.%02u%%: num counts=%u, min counter="
241 "%" PRId64 "\n",
242 pct / 100, pct - (pct / 100 * 100),
243 ws_info->num_counters,
244 (int64_t)ws_info->min_counter);
245 }
246 }
247 }
248
249 /* Given a the desired percentage of the full profile (sum_all from the
250 summary), multiplied by 10 to avoid float in PCT_TIMES_10, returns
251 the corresponding working set information. If an exact match for
252 the percentage isn't found, the closest value is used. */
253
254 gcov_working_set_t *
255 find_working_set (unsigned pct_times_10)
256 {
257 unsigned i;
258 if (!profile_info)
259 return NULL;
260 gcc_assert (pct_times_10 <= 1000);
261 if (pct_times_10 >= 999)
262 return &gcov_working_sets[NUM_GCOV_WORKING_SETS - 1];
263 i = pct_times_10 * NUM_GCOV_WORKING_SETS / 1000;
264 if (!i)
265 return &gcov_working_sets[0];
266 return &gcov_working_sets[i - 1];
267 }
268
269 /* Computes hybrid profile for all matching entries in da_file.
270
271 CFG_CHECKSUM is the precomputed checksum for the CFG. */
272
273 static gcov_type *
274 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
275 {
276 unsigned num_edges = 0;
277 basic_block bb;
278 gcov_type *counts;
279
280 /* Count the edges to be (possibly) instrumented. */
281 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
282 {
283 edge e;
284 edge_iterator ei;
285
286 FOR_EACH_EDGE (e, ei, bb->succs)
287 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
288 num_edges++;
289 }
290
291 counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, cfg_checksum,
292 lineno_checksum, &profile_info);
293 if (!counts)
294 return NULL;
295
296 get_working_sets ();
297
298 if (dump_file && profile_info)
299 fprintf (dump_file, "Merged %u profiles with maximal count %u.\n",
300 profile_info->runs, (unsigned) profile_info->sum_max);
301
302 return counts;
303 }
304
305
306 static bool
307 is_edge_inconsistent (vec<edge, va_gc> *edges)
308 {
309 edge e;
310 edge_iterator ei;
311 FOR_EACH_EDGE (e, ei, edges)
312 {
313 if (!EDGE_INFO (e)->ignore)
314 {
315 if (e->count < 0
316 && (!(e->flags & EDGE_FAKE)
317 || !block_ends_with_call_p (e->src)))
318 {
319 if (dump_file)
320 {
321 fprintf (dump_file,
322 "Edge %i->%i is inconsistent, count%" PRId64,
323 e->src->index, e->dest->index, e->count);
324 dump_bb (dump_file, e->src, 0, TDF_DETAILS);
325 dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
326 }
327 return true;
328 }
329 }
330 }
331 return false;
332 }
333
334 static void
335 correct_negative_edge_counts (void)
336 {
337 basic_block bb;
338 edge e;
339 edge_iterator ei;
340
341 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
342 {
343 FOR_EACH_EDGE (e, ei, bb->succs)
344 {
345 if (e->count < 0)
346 e->count = 0;
347 }
348 }
349 }
350
351 /* Check consistency.
352 Return true if inconsistency is found. */
353 static bool
354 is_inconsistent (void)
355 {
356 basic_block bb;
357 bool inconsistent = false;
358 FOR_EACH_BB_FN (bb, cfun)
359 {
360 inconsistent |= is_edge_inconsistent (bb->preds);
361 if (!dump_file && inconsistent)
362 return true;
363 inconsistent |= is_edge_inconsistent (bb->succs);
364 if (!dump_file && inconsistent)
365 return true;
366 if (bb->count < 0)
367 {
368 if (dump_file)
369 {
370 fprintf (dump_file, "BB %i count is negative "
371 "%" PRId64,
372 bb->index,
373 bb->count);
374 dump_bb (dump_file, bb, 0, TDF_DETAILS);
375 }
376 inconsistent = true;
377 }
378 if (bb->count != sum_edge_counts (bb->preds))
379 {
380 if (dump_file)
381 {
382 fprintf (dump_file, "BB %i count does not match sum of incoming edges "
383 "%" PRId64" should be %" PRId64,
384 bb->index,
385 bb->count,
386 sum_edge_counts (bb->preds));
387 dump_bb (dump_file, bb, 0, TDF_DETAILS);
388 }
389 inconsistent = true;
390 }
391 if (bb->count != sum_edge_counts (bb->succs) &&
392 ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL
393 && block_ends_with_call_p (bb)))
394 {
395 if (dump_file)
396 {
397 fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
398 "%" PRId64" should be %" PRId64,
399 bb->index,
400 bb->count,
401 sum_edge_counts (bb->succs));
402 dump_bb (dump_file, bb, 0, TDF_DETAILS);
403 }
404 inconsistent = true;
405 }
406 if (!dump_file && inconsistent)
407 return true;
408 }
409
410 return inconsistent;
411 }
412
413 /* Set each basic block count to the sum of its outgoing edge counts */
414 static void
415 set_bb_counts (void)
416 {
417 basic_block bb;
418 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
419 {
420 bb->count = sum_edge_counts (bb->succs);
421 gcc_assert (bb->count >= 0);
422 }
423 }
424
425 /* Reads profile data and returns total number of edge counts read */
426 static int
427 read_profile_edge_counts (gcov_type *exec_counts)
428 {
429 basic_block bb;
430 int num_edges = 0;
431 int exec_counts_pos = 0;
432 /* For each edge not on the spanning tree, set its execution count from
433 the .da file. */
434 /* The first count in the .da file is the number of times that the function
435 was entered. This is the exec_count for block zero. */
436
437 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
438 {
439 edge e;
440 edge_iterator ei;
441
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
444 {
445 num_edges++;
446 if (exec_counts)
447 {
448 e->count = exec_counts[exec_counts_pos++];
449 if (e->count > profile_info->sum_max)
450 {
451 if (flag_profile_correction)
452 {
453 static bool informed = 0;
454 if (dump_enabled_p () && !informed)
455 dump_printf_loc (MSG_NOTE, input_location,
456 "corrupted profile info: edge count"
457 " exceeds maximal count\n");
458 informed = 1;
459 }
460 else
461 error ("corrupted profile info: edge from %i to %i exceeds maximal count",
462 bb->index, e->dest->index);
463 }
464 }
465 else
466 e->count = 0;
467
468 EDGE_INFO (e)->count_valid = 1;
469 BB_INFO (bb)->succ_count--;
470 BB_INFO (e->dest)->pred_count--;
471 if (dump_file)
472 {
473 fprintf (dump_file, "\nRead edge from %i to %i, count:",
474 bb->index, e->dest->index);
475 fprintf (dump_file, "%" PRId64,
476 (int64_t) e->count);
477 }
478 }
479 }
480
481 return num_edges;
482 }
483
484 #define OVERLAP_BASE 10000
485
486 /* Compare the static estimated profile to the actual profile, and
487 return the "degree of overlap" measure between them.
488
489 Degree of overlap is a number between 0 and OVERLAP_BASE. It is
490 the sum of each basic block's minimum relative weights between
491 two profiles. And overlap of OVERLAP_BASE means two profiles are
492 identical. */
493
494 static int
495 compute_frequency_overlap (void)
496 {
497 gcov_type count_total = 0, freq_total = 0;
498 int overlap = 0;
499 basic_block bb;
500
501 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
502 {
503 count_total += bb->count;
504 freq_total += bb->frequency;
505 }
506
507 if (count_total == 0 || freq_total == 0)
508 return 0;
509
510 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
511 overlap += MIN (bb->count * OVERLAP_BASE / count_total,
512 bb->frequency * OVERLAP_BASE / freq_total);
513
514 return overlap;
515 }
516
517 /* Compute the branch probabilities for the various branches.
518 Annotate them accordingly.
519
520 CFG_CHECKSUM is the precomputed checksum for the CFG. */
521
522 static void
523 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
524 {
525 basic_block bb;
526 int i;
527 int num_edges = 0;
528 int changes;
529 int passes;
530 int hist_br_prob[20];
531 int num_branches;
532 gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
533 int inconsistent = 0;
534
535 /* Very simple sanity checks so we catch bugs in our profiling code. */
536 if (!profile_info)
537 return;
538
539 if (profile_info->sum_all < profile_info->sum_max)
540 {
541 error ("corrupted profile info: sum_all is smaller than sum_max");
542 exec_counts = NULL;
543 }
544
545 /* Attach extra info block to each bb. */
546 alloc_aux_for_blocks (sizeof (struct bb_profile_info));
547 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
548 {
549 edge e;
550 edge_iterator ei;
551
552 FOR_EACH_EDGE (e, ei, bb->succs)
553 if (!EDGE_INFO (e)->ignore)
554 BB_INFO (bb)->succ_count++;
555 FOR_EACH_EDGE (e, ei, bb->preds)
556 if (!EDGE_INFO (e)->ignore)
557 BB_INFO (bb)->pred_count++;
558 }
559
560 /* Avoid predicting entry on exit nodes. */
561 BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2;
562 BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2;
563
564 num_edges = read_profile_edge_counts (exec_counts);
565
566 if (dump_file)
567 fprintf (dump_file, "\n%d edge counts read\n", num_edges);
568
569 /* For every block in the file,
570 - if every exit/entrance edge has a known count, then set the block count
571 - if the block count is known, and every exit/entrance edge but one has
572 a known execution count, then set the count of the remaining edge
573
574 As edge counts are set, decrement the succ/pred count, but don't delete
575 the edge, that way we can easily tell when all edges are known, or only
576 one edge is unknown. */
577
578 /* The order that the basic blocks are iterated through is important.
579 Since the code that finds spanning trees starts with block 0, low numbered
580 edges are put on the spanning tree in preference to high numbered edges.
581 Hence, most instrumented edges are at the end. Graph solving works much
582 faster if we propagate numbers from the end to the start.
583
584 This takes an average of slightly more than 3 passes. */
585
586 changes = 1;
587 passes = 0;
588 while (changes)
589 {
590 passes++;
591 changes = 0;
592 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb)
593 {
594 struct bb_profile_info *bi = BB_INFO (bb);
595 if (! bi->count_valid)
596 {
597 if (bi->succ_count == 0)
598 {
599 edge e;
600 edge_iterator ei;
601 gcov_type total = 0;
602
603 FOR_EACH_EDGE (e, ei, bb->succs)
604 total += e->count;
605 bb->count = total;
606 bi->count_valid = 1;
607 changes = 1;
608 }
609 else if (bi->pred_count == 0)
610 {
611 edge e;
612 edge_iterator ei;
613 gcov_type total = 0;
614
615 FOR_EACH_EDGE (e, ei, bb->preds)
616 total += e->count;
617 bb->count = total;
618 bi->count_valid = 1;
619 changes = 1;
620 }
621 }
622 if (bi->count_valid)
623 {
624 if (bi->succ_count == 1)
625 {
626 edge e;
627 edge_iterator ei;
628 gcov_type total = 0;
629
630 /* One of the counts will be invalid, but it is zero,
631 so adding it in also doesn't hurt. */
632 FOR_EACH_EDGE (e, ei, bb->succs)
633 total += e->count;
634
635 /* Search for the invalid edge, and set its count. */
636 FOR_EACH_EDGE (e, ei, bb->succs)
637 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
638 break;
639
640 /* Calculate count for remaining edge by conservation. */
641 total = bb->count - total;
642
643 gcc_assert (e);
644 EDGE_INFO (e)->count_valid = 1;
645 e->count = total;
646 bi->succ_count--;
647
648 BB_INFO (e->dest)->pred_count--;
649 changes = 1;
650 }
651 if (bi->pred_count == 1)
652 {
653 edge e;
654 edge_iterator ei;
655 gcov_type total = 0;
656
657 /* One of the counts will be invalid, but it is zero,
658 so adding it in also doesn't hurt. */
659 FOR_EACH_EDGE (e, ei, bb->preds)
660 total += e->count;
661
662 /* Search for the invalid edge, and set its count. */
663 FOR_EACH_EDGE (e, ei, bb->preds)
664 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
665 break;
666
667 /* Calculate count for remaining edge by conservation. */
668 total = bb->count - total + e->count;
669
670 gcc_assert (e);
671 EDGE_INFO (e)->count_valid = 1;
672 e->count = total;
673 bi->pred_count--;
674
675 BB_INFO (e->src)->succ_count--;
676 changes = 1;
677 }
678 }
679 }
680 }
681 if (dump_file)
682 {
683 int overlap = compute_frequency_overlap ();
684 gimple_dump_cfg (dump_file, dump_flags);
685 fprintf (dump_file, "Static profile overlap: %d.%d%%\n",
686 overlap / (OVERLAP_BASE / 100),
687 overlap % (OVERLAP_BASE / 100));
688 }
689
690 total_num_passes += passes;
691 if (dump_file)
692 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
693
694 /* If the graph has been correctly solved, every block will have a
695 succ and pred count of zero. */
696 FOR_EACH_BB_FN (bb, cfun)
697 {
698 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
699 }
700
701 /* Check for inconsistent basic block counts */
702 inconsistent = is_inconsistent ();
703
704 if (inconsistent)
705 {
706 if (flag_profile_correction)
707 {
708 /* Inconsistency detected. Make it flow-consistent. */
709 static int informed = 0;
710 if (dump_enabled_p () && informed == 0)
711 {
712 informed = 1;
713 dump_printf_loc (MSG_NOTE, input_location,
714 "correcting inconsistent profile data\n");
715 }
716 correct_negative_edge_counts ();
717 /* Set bb counts to the sum of the outgoing edge counts */
718 set_bb_counts ();
719 if (dump_file)
720 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
721 mcf_smooth_cfg ();
722 }
723 else
724 error ("corrupted profile info: profile data is not flow-consistent");
725 }
726
727 /* For every edge, calculate its branch probability and add a reg_note
728 to the branch insn to indicate this. */
729
730 for (i = 0; i < 20; i++)
731 hist_br_prob[i] = 0;
732 num_branches = 0;
733
734 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
735 {
736 edge e;
737 edge_iterator ei;
738
739 if (bb->count < 0)
740 {
741 error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
742 bb->index, (int)bb->count);
743 bb->count = 0;
744 }
745 FOR_EACH_EDGE (e, ei, bb->succs)
746 {
747 /* Function may return twice in the cased the called function is
748 setjmp or calls fork, but we can't represent this by extra
749 edge from the entry, since extra edge from the exit is
750 already present. We get negative frequency from the entry
751 point. */
752 if ((e->count < 0
753 && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
754 || (e->count > bb->count
755 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
756 {
757 if (block_ends_with_call_p (bb))
758 e->count = e->count < 0 ? 0 : bb->count;
759 }
760 if (e->count < 0 || e->count > bb->count)
761 {
762 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
763 e->src->index, e->dest->index,
764 (int)e->count);
765 e->count = bb->count / 2;
766 }
767 }
768 if (bb->count)
769 {
770 FOR_EACH_EDGE (e, ei, bb->succs)
771 e->probability = GCOV_COMPUTE_SCALE (e->count, bb->count);
772 if (bb->index >= NUM_FIXED_BLOCKS
773 && block_ends_with_condjump_p (bb)
774 && EDGE_COUNT (bb->succs) >= 2)
775 {
776 int prob;
777 edge e;
778 int index;
779
780 /* Find the branch edge. It is possible that we do have fake
781 edges here. */
782 FOR_EACH_EDGE (e, ei, bb->succs)
783 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
784 break;
785
786 prob = e->probability;
787 index = prob * 20 / REG_BR_PROB_BASE;
788
789 if (index == 20)
790 index = 19;
791 hist_br_prob[index]++;
792
793 num_branches++;
794 }
795 }
796 /* As a last resort, distribute the probabilities evenly.
797 Use simple heuristics that if there are normal edges,
798 give all abnormals frequency of 0, otherwise distribute the
799 frequency over abnormals (this is the case of noreturn
800 calls). */
801 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
802 {
803 int total = 0;
804
805 FOR_EACH_EDGE (e, ei, bb->succs)
806 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
807 total ++;
808 if (total)
809 {
810 FOR_EACH_EDGE (e, ei, bb->succs)
811 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
812 e->probability = REG_BR_PROB_BASE / total;
813 else
814 e->probability = 0;
815 }
816 else
817 {
818 total += EDGE_COUNT (bb->succs);
819 FOR_EACH_EDGE (e, ei, bb->succs)
820 e->probability = REG_BR_PROB_BASE / total;
821 }
822 if (bb->index >= NUM_FIXED_BLOCKS
823 && block_ends_with_condjump_p (bb)
824 && EDGE_COUNT (bb->succs) >= 2)
825 num_branches++;
826 }
827 }
828 counts_to_freqs ();
829 profile_status_for_fn (cfun) = PROFILE_READ;
830 compute_function_frequency ();
831
832 if (dump_file)
833 {
834 fprintf (dump_file, "%d branches\n", num_branches);
835 if (num_branches)
836 for (i = 0; i < 10; i++)
837 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
838 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
839 5 * i, 5 * i + 5);
840
841 total_num_branches += num_branches;
842 for (i = 0; i < 20; i++)
843 total_hist_br_prob[i] += hist_br_prob[i];
844
845 fputc ('\n', dump_file);
846 fputc ('\n', dump_file);
847 }
848
849 free_aux_for_blocks ();
850 }
851
852 /* Load value histograms values whose description is stored in VALUES array
853 from .gcda file.
854
855 CFG_CHECKSUM is the precomputed checksum for the CFG. */
856
857 static void
858 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
859 unsigned lineno_checksum)
860 {
861 unsigned i, j, t, any;
862 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
863 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
864 gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
865 gcov_type *aact_count;
866 struct cgraph_node *node;
867
868 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
869 n_histogram_counters[t] = 0;
870
871 for (i = 0; i < values.length (); i++)
872 {
873 histogram_value hist = values[i];
874 n_histogram_counters[(int) hist->type] += hist->n_counters;
875 }
876
877 any = 0;
878 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
879 {
880 if (!n_histogram_counters[t])
881 {
882 histogram_counts[t] = NULL;
883 continue;
884 }
885
886 histogram_counts[t] =
887 get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
888 n_histogram_counters[t], cfg_checksum,
889 lineno_checksum, NULL);
890 if (histogram_counts[t])
891 any = 1;
892 act_count[t] = histogram_counts[t];
893 }
894 if (!any)
895 return;
896
897 for (i = 0; i < values.length (); i++)
898 {
899 histogram_value hist = values[i];
900 gimple *stmt = hist->hvalue.stmt;
901
902 t = (int) hist->type;
903
904 aact_count = act_count[t];
905
906 if (act_count[t])
907 act_count[t] += hist->n_counters;
908
909 gimple_add_histogram_value (cfun, stmt, hist);
910 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
911 for (j = 0; j < hist->n_counters; j++)
912 if (aact_count)
913 hist->hvalue.counters[j] = aact_count[j];
914 else
915 hist->hvalue.counters[j] = 0;
916
917 /* Time profiler counter is not related to any statement,
918 so that we have to read the counter and set the value to
919 the corresponding call graph node. */
920 if (hist->type == HIST_TYPE_TIME_PROFILE)
921 {
922 node = cgraph_node::get (hist->fun->decl);
923 node->tp_first_run = hist->hvalue.counters[0];
924
925 if (dump_file)
926 fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run);
927 }
928 }
929
930 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
931 free (histogram_counts[t]);
932 }
933
934 /* When passed NULL as file_name, initialize.
935 When passed something else, output the necessary commands to change
936 line to LINE and offset to FILE_NAME. */
937 static void
938 output_location (char const *file_name, int line,
939 gcov_position_t *offset, basic_block bb)
940 {
941 static char const *prev_file_name;
942 static int prev_line;
943 bool name_differs, line_differs;
944
945 if (!file_name)
946 {
947 prev_file_name = NULL;
948 prev_line = -1;
949 return;
950 }
951
952 name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
953 line_differs = prev_line != line;
954
955 if (name_differs || line_differs)
956 {
957 if (!*offset)
958 {
959 *offset = gcov_write_tag (GCOV_TAG_LINES);
960 gcov_write_unsigned (bb->index);
961 name_differs = line_differs=true;
962 }
963
964 /* If this is a new source file, then output the
965 file's name to the .bb file. */
966 if (name_differs)
967 {
968 prev_file_name = file_name;
969 gcov_write_unsigned (0);
970 gcov_write_string (prev_file_name);
971 }
972 if (line_differs)
973 {
974 gcov_write_unsigned (line);
975 prev_line = line;
976 }
977 }
978 }
979
980 /* Instrument and/or analyze program behavior based on program the CFG.
981
982 This function creates a representation of the control flow graph (of
983 the function being compiled) that is suitable for the instrumentation
984 of edges and/or converting measured edge counts to counts on the
985 complete CFG.
986
987 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
988 the flow graph that are needed to reconstruct the dynamic behavior of the
989 flow graph. This data is written to the gcno file for gcov.
990
991 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
992 information from the gcda file containing edge count information from
993 previous executions of the function being compiled. In this case, the
994 control flow graph is annotated with actual execution counts by
995 compute_branch_probabilities().
996
997 Main entry point of this file. */
998
999 void
1000 branch_prob (void)
1001 {
1002 basic_block bb;
1003 unsigned i;
1004 unsigned num_edges, ignored_edges;
1005 unsigned num_instrumented;
1006 struct edge_list *el;
1007 histogram_values values = histogram_values ();
1008 unsigned cfg_checksum, lineno_checksum;
1009
1010 total_num_times_called++;
1011
1012 flow_call_edges_add (NULL);
1013 add_noreturn_fake_exit_edges ();
1014
1015 /* We can't handle cyclic regions constructed using abnormal edges.
1016 To avoid these we replace every source of abnormal edge by a fake
1017 edge from entry node and every destination by fake edge to exit.
1018 This keeps graph acyclic and our calculation exact for all normal
1019 edges except for exit and entrance ones.
1020
1021 We also add fake exit edges for each call and asm statement in the
1022 basic, since it may not return. */
1023
1024 FOR_EACH_BB_FN (bb, cfun)
1025 {
1026 int need_exit_edge = 0, need_entry_edge = 0;
1027 int have_exit_edge = 0, have_entry_edge = 0;
1028 edge e;
1029 edge_iterator ei;
1030
1031 /* Functions returning multiple times are not handled by extra edges.
1032 Instead we simply allow negative counts on edges from exit to the
1033 block past call and corresponding probabilities. We can't go
1034 with the extra edges because that would result in flowgraph that
1035 needs to have fake edges outside the spanning tree. */
1036
1037 FOR_EACH_EDGE (e, ei, bb->succs)
1038 {
1039 gimple_stmt_iterator gsi;
1040 gimple *last = NULL;
1041
1042 /* It may happen that there are compiler generated statements
1043 without a locus at all. Go through the basic block from the
1044 last to the first statement looking for a locus. */
1045 for (gsi = gsi_last_nondebug_bb (bb);
1046 !gsi_end_p (gsi);
1047 gsi_prev_nondebug (&gsi))
1048 {
1049 last = gsi_stmt (gsi);
1050 if (gimple_has_location (last))
1051 break;
1052 }
1053
1054 /* Edge with goto locus might get wrong coverage info unless
1055 it is the only edge out of BB.
1056 Don't do that when the locuses match, so
1057 if (blah) goto something;
1058 is not computed twice. */
1059 if (last
1060 && gimple_has_location (last)
1061 && LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
1062 && !single_succ_p (bb)
1063 && (LOCATION_FILE (e->goto_locus)
1064 != LOCATION_FILE (gimple_location (last))
1065 || (LOCATION_LINE (e->goto_locus)
1066 != LOCATION_LINE (gimple_location (last)))))
1067 {
1068 basic_block new_bb = split_edge (e);
1069 edge ne = single_succ_edge (new_bb);
1070 ne->goto_locus = e->goto_locus;
1071 }
1072 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1073 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1074 need_exit_edge = 1;
1075 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1076 have_exit_edge = 1;
1077 }
1078 FOR_EACH_EDGE (e, ei, bb->preds)
1079 {
1080 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1081 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1082 need_entry_edge = 1;
1083 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1084 have_entry_edge = 1;
1085 }
1086
1087 if (need_exit_edge && !have_exit_edge)
1088 {
1089 if (dump_file)
1090 fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1091 bb->index);
1092 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
1093 }
1094 if (need_entry_edge && !have_entry_edge)
1095 {
1096 if (dump_file)
1097 fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1098 bb->index);
1099 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE);
1100 /* Avoid bbs that have both fake entry edge and also some
1101 exit edge. One of those edges wouldn't be added to the
1102 spanning tree, but we can't instrument any of them. */
1103 if (have_exit_edge || need_exit_edge)
1104 {
1105 gimple_stmt_iterator gsi;
1106 gimple *first;
1107
1108 gsi = gsi_start_nondebug_after_labels_bb (bb);
1109 gcc_checking_assert (!gsi_end_p (gsi));
1110 first = gsi_stmt (gsi);
1111 /* Don't split the bbs containing __builtin_setjmp_receiver
1112 or ABNORMAL_DISPATCHER calls. These are very
1113 special and don't expect anything to be inserted before
1114 them. */
1115 if (is_gimple_call (first)
1116 && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER)
1117 || (gimple_call_flags (first) & ECF_RETURNS_TWICE)
1118 || (gimple_call_internal_p (first)
1119 && (gimple_call_internal_fn (first)
1120 == IFN_ABNORMAL_DISPATCHER))))
1121 continue;
1122
1123 if (dump_file)
1124 fprintf (dump_file, "Splitting bb %i after labels\n",
1125 bb->index);
1126 split_block_after_labels (bb);
1127 }
1128 }
1129 }
1130
1131 el = create_edge_list ();
1132 num_edges = NUM_EDGES (el);
1133 alloc_aux_for_edges (sizeof (struct edge_profile_info));
1134
1135 /* The basic blocks are expected to be numbered sequentially. */
1136 compact_blocks ();
1137
1138 ignored_edges = 0;
1139 for (i = 0 ; i < num_edges ; i++)
1140 {
1141 edge e = INDEX_EDGE (el, i);
1142 e->count = 0;
1143
1144 /* Mark edges we've replaced by fake edges above as ignored. */
1145 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1146 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1147 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1148 {
1149 EDGE_INFO (e)->ignore = 1;
1150 ignored_edges++;
1151 }
1152 }
1153
1154 /* Create spanning tree from basic block graph, mark each edge that is
1155 on the spanning tree. We insert as many abnormal and critical edges
1156 as possible to minimize number of edge splits necessary. */
1157
1158 find_spanning_tree (el);
1159
1160 /* Fake edges that are not on the tree will not be instrumented, so
1161 mark them ignored. */
1162 for (num_instrumented = i = 0; i < num_edges; i++)
1163 {
1164 edge e = INDEX_EDGE (el, i);
1165 struct edge_profile_info *inf = EDGE_INFO (e);
1166
1167 if (inf->ignore || inf->on_tree)
1168 /*NOP*/;
1169 else if (e->flags & EDGE_FAKE)
1170 {
1171 inf->ignore = 1;
1172 ignored_edges++;
1173 }
1174 else
1175 num_instrumented++;
1176 }
1177
1178 total_num_blocks += n_basic_blocks_for_fn (cfun);
1179 if (dump_file)
1180 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun));
1181
1182 total_num_edges += num_edges;
1183 if (dump_file)
1184 fprintf (dump_file, "%d edges\n", num_edges);
1185
1186 total_num_edges_ignored += ignored_edges;
1187 if (dump_file)
1188 fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1189
1190 total_num_edges_instrumented += num_instrumented;
1191 if (dump_file)
1192 fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);
1193
1194 /* Compute two different checksums. Note that we want to compute
1195 the checksum in only once place, since it depends on the shape
1196 of the control flow which can change during
1197 various transformations. */
1198 cfg_checksum = coverage_compute_cfg_checksum (cfun);
1199 lineno_checksum = coverage_compute_lineno_checksum ();
1200
1201 /* Write the data from which gcov can reconstruct the basic block
1202 graph and function line numbers (the gcno file). */
1203 if (coverage_begin_function (lineno_checksum, cfg_checksum))
1204 {
1205 gcov_position_t offset;
1206
1207 /* Basic block flags */
1208 offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1209 for (i = 0; i != (unsigned) (n_basic_blocks_for_fn (cfun)); i++)
1210 gcov_write_unsigned (0);
1211 gcov_write_length (offset);
1212
1213 /* Arcs */
1214 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1215 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1216 {
1217 edge e;
1218 edge_iterator ei;
1219
1220 offset = gcov_write_tag (GCOV_TAG_ARCS);
1221 gcov_write_unsigned (bb->index);
1222
1223 FOR_EACH_EDGE (e, ei, bb->succs)
1224 {
1225 struct edge_profile_info *i = EDGE_INFO (e);
1226 if (!i->ignore)
1227 {
1228 unsigned flag_bits = 0;
1229
1230 if (i->on_tree)
1231 flag_bits |= GCOV_ARC_ON_TREE;
1232 if (e->flags & EDGE_FAKE)
1233 flag_bits |= GCOV_ARC_FAKE;
1234 if (e->flags & EDGE_FALLTHRU)
1235 flag_bits |= GCOV_ARC_FALLTHROUGH;
1236 /* On trees we don't have fallthru flags, but we can
1237 recompute them from CFG shape. */
1238 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1239 && e->src->next_bb == e->dest)
1240 flag_bits |= GCOV_ARC_FALLTHROUGH;
1241
1242 gcov_write_unsigned (e->dest->index);
1243 gcov_write_unsigned (flag_bits);
1244 }
1245 }
1246
1247 gcov_write_length (offset);
1248 }
1249
1250 /* Line numbers. */
1251 /* Initialize the output. */
1252 output_location (NULL, 0, NULL, NULL);
1253
1254 FOR_EACH_BB_FN (bb, cfun)
1255 {
1256 gimple_stmt_iterator gsi;
1257 gcov_position_t offset = 0;
1258
1259 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
1260 {
1261 expanded_location curr_location =
1262 expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1263 output_location (curr_location.file, curr_location.line,
1264 &offset, bb);
1265 }
1266
1267 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1268 {
1269 gimple *stmt = gsi_stmt (gsi);
1270 if (gimple_has_location (stmt))
1271 output_location (gimple_filename (stmt), gimple_lineno (stmt),
1272 &offset, bb);
1273 }
1274
1275 /* Notice GOTO expressions eliminated while constructing the CFG. */
1276 if (single_succ_p (bb)
1277 && LOCATION_LOCUS (single_succ_edge (bb)->goto_locus)
1278 != UNKNOWN_LOCATION)
1279 {
1280 expanded_location curr_location
1281 = expand_location (single_succ_edge (bb)->goto_locus);
1282 output_location (curr_location.file, curr_location.line,
1283 &offset, bb);
1284 }
1285
1286 if (offset)
1287 {
1288 /* A file of NULL indicates the end of run. */
1289 gcov_write_unsigned (0);
1290 gcov_write_string (NULL);
1291 gcov_write_length (offset);
1292 }
1293 }
1294 }
1295
1296 if (flag_profile_values)
1297 gimple_find_values_to_profile (&values);
1298
1299 if (flag_branch_probabilities)
1300 {
1301 compute_branch_probabilities (cfg_checksum, lineno_checksum);
1302 if (flag_profile_values)
1303 compute_value_histograms (values, cfg_checksum, lineno_checksum);
1304 }
1305
1306 remove_fake_edges ();
1307
1308 /* For each edge not on the spanning tree, add counting code. */
1309 if (profile_arc_flag
1310 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1311 {
1312 unsigned n_instrumented;
1313
1314 gimple_init_edge_profiler ();
1315
1316 n_instrumented = instrument_edges (el);
1317
1318 gcc_assert (n_instrumented == num_instrumented);
1319
1320 if (flag_profile_values)
1321 instrument_values (values);
1322
1323 /* Commit changes done by instrumentation. */
1324 gsi_commit_edge_inserts ();
1325 }
1326
1327 free_aux_for_edges ();
1328
1329 values.release ();
1330 free_edge_list (el);
1331 coverage_end_function (lineno_checksum, cfg_checksum);
1332 }
1333 \f
1334 /* Union find algorithm implementation for the basic blocks using
1335 aux fields. */
1336
1337 static basic_block
1338 find_group (basic_block bb)
1339 {
1340 basic_block group = bb, bb1;
1341
1342 while ((basic_block) group->aux != group)
1343 group = (basic_block) group->aux;
1344
1345 /* Compress path. */
1346 while ((basic_block) bb->aux != group)
1347 {
1348 bb1 = (basic_block) bb->aux;
1349 bb->aux = (void *) group;
1350 bb = bb1;
1351 }
1352 return group;
1353 }
1354
1355 static void
1356 union_groups (basic_block bb1, basic_block bb2)
1357 {
1358 basic_block bb1g = find_group (bb1);
1359 basic_block bb2g = find_group (bb2);
1360
1361 /* ??? I don't have a place for the rank field. OK. Lets go w/o it,
1362 this code is unlikely going to be performance problem anyway. */
1363 gcc_assert (bb1g != bb2g);
1364
1365 bb1g->aux = bb2g;
1366 }
1367 \f
1368 /* This function searches all of the edges in the program flow graph, and puts
1369 as many bad edges as possible onto the spanning tree. Bad edges include
1370 abnormals edges, which can't be instrumented at the moment. Since it is
1371 possible for fake edges to form a cycle, we will have to develop some
1372 better way in the future. Also put critical edges to the tree, since they
1373 are more expensive to instrument. */
1374
1375 static void
1376 find_spanning_tree (struct edge_list *el)
1377 {
1378 int i;
1379 int num_edges = NUM_EDGES (el);
1380 basic_block bb;
1381
1382 /* We use aux field for standard union-find algorithm. */
1383 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
1384 bb->aux = bb;
1385
1386 /* Add fake edge exit to entry we can't instrument. */
1387 union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun));
1388
1389 /* First add all abnormal edges to the tree unless they form a cycle. Also
1390 add all edges to the exit block to avoid inserting profiling code behind
1391 setting return value from function. */
1392 for (i = 0; i < num_edges; i++)
1393 {
1394 edge e = INDEX_EDGE (el, i);
1395 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1396 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1397 && !EDGE_INFO (e)->ignore
1398 && (find_group (e->src) != find_group (e->dest)))
1399 {
1400 if (dump_file)
1401 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1402 e->src->index, e->dest->index);
1403 EDGE_INFO (e)->on_tree = 1;
1404 union_groups (e->src, e->dest);
1405 }
1406 }
1407
1408 /* Now insert all critical edges to the tree unless they form a cycle. */
1409 for (i = 0; i < num_edges; i++)
1410 {
1411 edge e = INDEX_EDGE (el, i);
1412 if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
1413 && find_group (e->src) != find_group (e->dest))
1414 {
1415 if (dump_file)
1416 fprintf (dump_file, "Critical edge %d to %d put to tree\n",
1417 e->src->index, e->dest->index);
1418 EDGE_INFO (e)->on_tree = 1;
1419 union_groups (e->src, e->dest);
1420 }
1421 }
1422
1423 /* And now the rest. */
1424 for (i = 0; i < num_edges; i++)
1425 {
1426 edge e = INDEX_EDGE (el, i);
1427 if (!EDGE_INFO (e)->ignore
1428 && find_group (e->src) != find_group (e->dest))
1429 {
1430 if (dump_file)
1431 fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1432 e->src->index, e->dest->index);
1433 EDGE_INFO (e)->on_tree = 1;
1434 union_groups (e->src, e->dest);
1435 }
1436 }
1437
1438 clear_aux_for_blocks ();
1439 }
1440 \f
1441 /* Perform file-level initialization for branch-prob processing. */
1442
1443 void
1444 init_branch_prob (void)
1445 {
1446 int i;
1447
1448 total_num_blocks = 0;
1449 total_num_edges = 0;
1450 total_num_edges_ignored = 0;
1451 total_num_edges_instrumented = 0;
1452 total_num_blocks_created = 0;
1453 total_num_passes = 0;
1454 total_num_times_called = 0;
1455 total_num_branches = 0;
1456 for (i = 0; i < 20; i++)
1457 total_hist_br_prob[i] = 0;
1458 }
1459
1460 /* Performs file-level cleanup after branch-prob processing
1461 is completed. */
1462
1463 void
1464 end_branch_prob (void)
1465 {
1466 if (dump_file)
1467 {
1468 fprintf (dump_file, "\n");
1469 fprintf (dump_file, "Total number of blocks: %d\n",
1470 total_num_blocks);
1471 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1472 fprintf (dump_file, "Total number of ignored edges: %d\n",
1473 total_num_edges_ignored);
1474 fprintf (dump_file, "Total number of instrumented edges: %d\n",
1475 total_num_edges_instrumented);
1476 fprintf (dump_file, "Total number of blocks created: %d\n",
1477 total_num_blocks_created);
1478 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1479 total_num_passes);
1480 if (total_num_times_called != 0)
1481 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1482 (total_num_passes + (total_num_times_called >> 1))
1483 / total_num_times_called);
1484 fprintf (dump_file, "Total number of branches: %d\n",
1485 total_num_branches);
1486 if (total_num_branches)
1487 {
1488 int i;
1489
1490 for (i = 0; i < 10; i++)
1491 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1492 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1493 / total_num_branches, 5*i, 5*i+5);
1494 }
1495 }
1496 }