]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/real.c
cgraph.c: Fix typos in comments.
[thirdparty/gcc.git] / gcc / real.c
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "toplev.h"
29 #include "real.h"
30 #include "tm_p.h"
31 #include "dfp.h"
32
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
36
37 Specifically
38
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
40
41 where
42 s = sign (+- 1)
43 b = base or radix, here always 2
44 e = exponent
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
47
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
50 range [0.5, 1.0).
51
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
56 in a normalized form.
57
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
61
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits. */
68
69
70 /* Used to classify two numbers simultaneously. */
71 #define CLASS2(A, B) ((A) << 2 | (B))
72
73 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
74 #error "Some constant folding done by hand to avoid shift count warnings"
75 #endif
76
77 static void get_zero (REAL_VALUE_TYPE *, int);
78 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
79 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
80 static void get_inf (REAL_VALUE_TYPE *, int);
81 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
82 const REAL_VALUE_TYPE *, unsigned int);
83 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
84 unsigned int);
85 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
86 unsigned int);
87 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
88 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
89 const REAL_VALUE_TYPE *);
90 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 const REAL_VALUE_TYPE *, int);
92 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
93 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
94 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
95 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
96 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
97 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
98 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
99 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
100 const REAL_VALUE_TYPE *);
101 static void normalize (REAL_VALUE_TYPE *);
102
103 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
104 const REAL_VALUE_TYPE *, int);
105 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
106 const REAL_VALUE_TYPE *);
107 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
108 const REAL_VALUE_TYPE *);
109 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
110 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
111
112 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
113
114 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
115 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
116 static const REAL_VALUE_TYPE * real_digit (int);
117 static void times_pten (REAL_VALUE_TYPE *, int);
118
119 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
120 \f
121 /* Initialize R with a positive zero. */
122
123 static inline void
124 get_zero (REAL_VALUE_TYPE *r, int sign)
125 {
126 memset (r, 0, sizeof (*r));
127 r->sign = sign;
128 }
129
130 /* Initialize R with the canonical quiet NaN. */
131
132 static inline void
133 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
134 {
135 memset (r, 0, sizeof (*r));
136 r->cl = rvc_nan;
137 r->sign = sign;
138 r->canonical = 1;
139 }
140
141 static inline void
142 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
143 {
144 memset (r, 0, sizeof (*r));
145 r->cl = rvc_nan;
146 r->sign = sign;
147 r->signalling = 1;
148 r->canonical = 1;
149 }
150
151 static inline void
152 get_inf (REAL_VALUE_TYPE *r, int sign)
153 {
154 memset (r, 0, sizeof (*r));
155 r->cl = rvc_inf;
156 r->sign = sign;
157 }
158
159 \f
160 /* Right-shift the significand of A by N bits; put the result in the
161 significand of R. If any one bits are shifted out, return true. */
162
163 static bool
164 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
165 unsigned int n)
166 {
167 unsigned long sticky = 0;
168 unsigned int i, ofs = 0;
169
170 if (n >= HOST_BITS_PER_LONG)
171 {
172 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
173 sticky |= a->sig[i];
174 n &= HOST_BITS_PER_LONG - 1;
175 }
176
177 if (n != 0)
178 {
179 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
180 for (i = 0; i < SIGSZ; ++i)
181 {
182 r->sig[i]
183 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
184 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
185 << (HOST_BITS_PER_LONG - n)));
186 }
187 }
188 else
189 {
190 for (i = 0; ofs + i < SIGSZ; ++i)
191 r->sig[i] = a->sig[ofs + i];
192 for (; i < SIGSZ; ++i)
193 r->sig[i] = 0;
194 }
195
196 return sticky != 0;
197 }
198
199 /* Right-shift the significand of A by N bits; put the result in the
200 significand of R. */
201
202 static void
203 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
204 unsigned int n)
205 {
206 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
207
208 n &= HOST_BITS_PER_LONG - 1;
209 if (n != 0)
210 {
211 for (i = 0; i < SIGSZ; ++i)
212 {
213 r->sig[i]
214 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
215 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
216 << (HOST_BITS_PER_LONG - n)));
217 }
218 }
219 else
220 {
221 for (i = 0; ofs + i < SIGSZ; ++i)
222 r->sig[i] = a->sig[ofs + i];
223 for (; i < SIGSZ; ++i)
224 r->sig[i] = 0;
225 }
226 }
227
228 /* Left-shift the significand of A by N bits; put the result in the
229 significand of R. */
230
231 static void
232 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
233 unsigned int n)
234 {
235 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
236
237 n &= HOST_BITS_PER_LONG - 1;
238 if (n == 0)
239 {
240 for (i = 0; ofs + i < SIGSZ; ++i)
241 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
242 for (; i < SIGSZ; ++i)
243 r->sig[SIGSZ-1-i] = 0;
244 }
245 else
246 for (i = 0; i < SIGSZ; ++i)
247 {
248 r->sig[SIGSZ-1-i]
249 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
250 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
251 >> (HOST_BITS_PER_LONG - n)));
252 }
253 }
254
255 /* Likewise, but N is specialized to 1. */
256
257 static inline void
258 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
259 {
260 unsigned int i;
261
262 for (i = SIGSZ - 1; i > 0; --i)
263 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
264 r->sig[0] = a->sig[0] << 1;
265 }
266
267 /* Add the significands of A and B, placing the result in R. Return
268 true if there was carry out of the most significant word. */
269
270 static inline bool
271 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
272 const REAL_VALUE_TYPE *b)
273 {
274 bool carry = false;
275 int i;
276
277 for (i = 0; i < SIGSZ; ++i)
278 {
279 unsigned long ai = a->sig[i];
280 unsigned long ri = ai + b->sig[i];
281
282 if (carry)
283 {
284 carry = ri < ai;
285 carry |= ++ri == 0;
286 }
287 else
288 carry = ri < ai;
289
290 r->sig[i] = ri;
291 }
292
293 return carry;
294 }
295
296 /* Subtract the significands of A and B, placing the result in R. CARRY is
297 true if there's a borrow incoming to the least significant word.
298 Return true if there was borrow out of the most significant word. */
299
300 static inline bool
301 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
302 const REAL_VALUE_TYPE *b, int carry)
303 {
304 int i;
305
306 for (i = 0; i < SIGSZ; ++i)
307 {
308 unsigned long ai = a->sig[i];
309 unsigned long ri = ai - b->sig[i];
310
311 if (carry)
312 {
313 carry = ri > ai;
314 carry |= ~--ri == 0;
315 }
316 else
317 carry = ri > ai;
318
319 r->sig[i] = ri;
320 }
321
322 return carry;
323 }
324
325 /* Negate the significand A, placing the result in R. */
326
327 static inline void
328 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
329 {
330 bool carry = true;
331 int i;
332
333 for (i = 0; i < SIGSZ; ++i)
334 {
335 unsigned long ri, ai = a->sig[i];
336
337 if (carry)
338 {
339 if (ai)
340 {
341 ri = -ai;
342 carry = false;
343 }
344 else
345 ri = ai;
346 }
347 else
348 ri = ~ai;
349
350 r->sig[i] = ri;
351 }
352 }
353
354 /* Compare significands. Return tri-state vs zero. */
355
356 static inline int
357 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
358 {
359 int i;
360
361 for (i = SIGSZ - 1; i >= 0; --i)
362 {
363 unsigned long ai = a->sig[i];
364 unsigned long bi = b->sig[i];
365
366 if (ai > bi)
367 return 1;
368 if (ai < bi)
369 return -1;
370 }
371
372 return 0;
373 }
374
375 /* Return true if A is nonzero. */
376
377 static inline int
378 cmp_significand_0 (const REAL_VALUE_TYPE *a)
379 {
380 int i;
381
382 for (i = SIGSZ - 1; i >= 0; --i)
383 if (a->sig[i])
384 return 1;
385
386 return 0;
387 }
388
389 /* Set bit N of the significand of R. */
390
391 static inline void
392 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
393 {
394 r->sig[n / HOST_BITS_PER_LONG]
395 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
396 }
397
398 /* Clear bit N of the significand of R. */
399
400 static inline void
401 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
402 {
403 r->sig[n / HOST_BITS_PER_LONG]
404 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
405 }
406
407 /* Test bit N of the significand of R. */
408
409 static inline bool
410 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
411 {
412 /* ??? Compiler bug here if we return this expression directly.
413 The conversion to bool strips the "&1" and we wind up testing
414 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
415 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
416 return t;
417 }
418
419 /* Clear bits 0..N-1 of the significand of R. */
420
421 static void
422 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
423 {
424 int i, w = n / HOST_BITS_PER_LONG;
425
426 for (i = 0; i < w; ++i)
427 r->sig[i] = 0;
428
429 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
430 }
431
432 /* Divide the significands of A and B, placing the result in R. Return
433 true if the division was inexact. */
434
435 static inline bool
436 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
437 const REAL_VALUE_TYPE *b)
438 {
439 REAL_VALUE_TYPE u;
440 int i, bit = SIGNIFICAND_BITS - 1;
441 unsigned long msb, inexact;
442
443 u = *a;
444 memset (r->sig, 0, sizeof (r->sig));
445
446 msb = 0;
447 goto start;
448 do
449 {
450 msb = u.sig[SIGSZ-1] & SIG_MSB;
451 lshift_significand_1 (&u, &u);
452 start:
453 if (msb || cmp_significands (&u, b) >= 0)
454 {
455 sub_significands (&u, &u, b, 0);
456 set_significand_bit (r, bit);
457 }
458 }
459 while (--bit >= 0);
460
461 for (i = 0, inexact = 0; i < SIGSZ; i++)
462 inexact |= u.sig[i];
463
464 return inexact != 0;
465 }
466
467 /* Adjust the exponent and significand of R such that the most
468 significant bit is set. We underflow to zero and overflow to
469 infinity here, without denormals. (The intermediate representation
470 exponent is large enough to handle target denormals normalized.) */
471
472 static void
473 normalize (REAL_VALUE_TYPE *r)
474 {
475 int shift = 0, exp;
476 int i, j;
477
478 if (r->decimal)
479 return;
480
481 /* Find the first word that is nonzero. */
482 for (i = SIGSZ - 1; i >= 0; i--)
483 if (r->sig[i] == 0)
484 shift += HOST_BITS_PER_LONG;
485 else
486 break;
487
488 /* Zero significand flushes to zero. */
489 if (i < 0)
490 {
491 r->cl = rvc_zero;
492 SET_REAL_EXP (r, 0);
493 return;
494 }
495
496 /* Find the first bit that is nonzero. */
497 for (j = 0; ; j++)
498 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
499 break;
500 shift += j;
501
502 if (shift > 0)
503 {
504 exp = REAL_EXP (r) - shift;
505 if (exp > MAX_EXP)
506 get_inf (r, r->sign);
507 else if (exp < -MAX_EXP)
508 get_zero (r, r->sign);
509 else
510 {
511 SET_REAL_EXP (r, exp);
512 lshift_significand (r, r, shift);
513 }
514 }
515 }
516 \f
517 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
518 result may be inexact due to a loss of precision. */
519
520 static bool
521 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
522 const REAL_VALUE_TYPE *b, int subtract_p)
523 {
524 int dexp, sign, exp;
525 REAL_VALUE_TYPE t;
526 bool inexact = false;
527
528 /* Determine if we need to add or subtract. */
529 sign = a->sign;
530 subtract_p = (sign ^ b->sign) ^ subtract_p;
531
532 switch (CLASS2 (a->cl, b->cl))
533 {
534 case CLASS2 (rvc_zero, rvc_zero):
535 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
536 get_zero (r, sign & !subtract_p);
537 return false;
538
539 case CLASS2 (rvc_zero, rvc_normal):
540 case CLASS2 (rvc_zero, rvc_inf):
541 case CLASS2 (rvc_zero, rvc_nan):
542 /* 0 + ANY = ANY. */
543 case CLASS2 (rvc_normal, rvc_nan):
544 case CLASS2 (rvc_inf, rvc_nan):
545 case CLASS2 (rvc_nan, rvc_nan):
546 /* ANY + NaN = NaN. */
547 case CLASS2 (rvc_normal, rvc_inf):
548 /* R + Inf = Inf. */
549 *r = *b;
550 r->sign = sign ^ subtract_p;
551 return false;
552
553 case CLASS2 (rvc_normal, rvc_zero):
554 case CLASS2 (rvc_inf, rvc_zero):
555 case CLASS2 (rvc_nan, rvc_zero):
556 /* ANY + 0 = ANY. */
557 case CLASS2 (rvc_nan, rvc_normal):
558 case CLASS2 (rvc_nan, rvc_inf):
559 /* NaN + ANY = NaN. */
560 case CLASS2 (rvc_inf, rvc_normal):
561 /* Inf + R = Inf. */
562 *r = *a;
563 return false;
564
565 case CLASS2 (rvc_inf, rvc_inf):
566 if (subtract_p)
567 /* Inf - Inf = NaN. */
568 get_canonical_qnan (r, 0);
569 else
570 /* Inf + Inf = Inf. */
571 *r = *a;
572 return false;
573
574 case CLASS2 (rvc_normal, rvc_normal):
575 break;
576
577 default:
578 gcc_unreachable ();
579 }
580
581 /* Swap the arguments such that A has the larger exponent. */
582 dexp = REAL_EXP (a) - REAL_EXP (b);
583 if (dexp < 0)
584 {
585 const REAL_VALUE_TYPE *t;
586 t = a, a = b, b = t;
587 dexp = -dexp;
588 sign ^= subtract_p;
589 }
590 exp = REAL_EXP (a);
591
592 /* If the exponents are not identical, we need to shift the
593 significand of B down. */
594 if (dexp > 0)
595 {
596 /* If the exponents are too far apart, the significands
597 do not overlap, which makes the subtraction a noop. */
598 if (dexp >= SIGNIFICAND_BITS)
599 {
600 *r = *a;
601 r->sign = sign;
602 return true;
603 }
604
605 inexact |= sticky_rshift_significand (&t, b, dexp);
606 b = &t;
607 }
608
609 if (subtract_p)
610 {
611 if (sub_significands (r, a, b, inexact))
612 {
613 /* We got a borrow out of the subtraction. That means that
614 A and B had the same exponent, and B had the larger
615 significand. We need to swap the sign and negate the
616 significand. */
617 sign ^= 1;
618 neg_significand (r, r);
619 }
620 }
621 else
622 {
623 if (add_significands (r, a, b))
624 {
625 /* We got carry out of the addition. This means we need to
626 shift the significand back down one bit and increase the
627 exponent. */
628 inexact |= sticky_rshift_significand (r, r, 1);
629 r->sig[SIGSZ-1] |= SIG_MSB;
630 if (++exp > MAX_EXP)
631 {
632 get_inf (r, sign);
633 return true;
634 }
635 }
636 }
637
638 r->cl = rvc_normal;
639 r->sign = sign;
640 SET_REAL_EXP (r, exp);
641 /* Zero out the remaining fields. */
642 r->signalling = 0;
643 r->canonical = 0;
644 r->decimal = 0;
645
646 /* Re-normalize the result. */
647 normalize (r);
648
649 /* Special case: if the subtraction results in zero, the result
650 is positive. */
651 if (r->cl == rvc_zero)
652 r->sign = 0;
653 else
654 r->sig[0] |= inexact;
655
656 return inexact;
657 }
658
659 /* Calculate R = A * B. Return true if the result may be inexact. */
660
661 static bool
662 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
663 const REAL_VALUE_TYPE *b)
664 {
665 REAL_VALUE_TYPE u, t, *rr;
666 unsigned int i, j, k;
667 int sign = a->sign ^ b->sign;
668 bool inexact = false;
669
670 switch (CLASS2 (a->cl, b->cl))
671 {
672 case CLASS2 (rvc_zero, rvc_zero):
673 case CLASS2 (rvc_zero, rvc_normal):
674 case CLASS2 (rvc_normal, rvc_zero):
675 /* +-0 * ANY = 0 with appropriate sign. */
676 get_zero (r, sign);
677 return false;
678
679 case CLASS2 (rvc_zero, rvc_nan):
680 case CLASS2 (rvc_normal, rvc_nan):
681 case CLASS2 (rvc_inf, rvc_nan):
682 case CLASS2 (rvc_nan, rvc_nan):
683 /* ANY * NaN = NaN. */
684 *r = *b;
685 r->sign = sign;
686 return false;
687
688 case CLASS2 (rvc_nan, rvc_zero):
689 case CLASS2 (rvc_nan, rvc_normal):
690 case CLASS2 (rvc_nan, rvc_inf):
691 /* NaN * ANY = NaN. */
692 *r = *a;
693 r->sign = sign;
694 return false;
695
696 case CLASS2 (rvc_zero, rvc_inf):
697 case CLASS2 (rvc_inf, rvc_zero):
698 /* 0 * Inf = NaN */
699 get_canonical_qnan (r, sign);
700 return false;
701
702 case CLASS2 (rvc_inf, rvc_inf):
703 case CLASS2 (rvc_normal, rvc_inf):
704 case CLASS2 (rvc_inf, rvc_normal):
705 /* Inf * Inf = Inf, R * Inf = Inf */
706 get_inf (r, sign);
707 return false;
708
709 case CLASS2 (rvc_normal, rvc_normal):
710 break;
711
712 default:
713 gcc_unreachable ();
714 }
715
716 if (r == a || r == b)
717 rr = &t;
718 else
719 rr = r;
720 get_zero (rr, 0);
721
722 /* Collect all the partial products. Since we don't have sure access
723 to a widening multiply, we split each long into two half-words.
724
725 Consider the long-hand form of a four half-word multiplication:
726
727 A B C D
728 * E F G H
729 --------------
730 DE DF DG DH
731 CE CF CG CH
732 BE BF BG BH
733 AE AF AG AH
734
735 We construct partial products of the widened half-word products
736 that are known to not overlap, e.g. DF+DH. Each such partial
737 product is given its proper exponent, which allows us to sum them
738 and obtain the finished product. */
739
740 for (i = 0; i < SIGSZ * 2; ++i)
741 {
742 unsigned long ai = a->sig[i / 2];
743 if (i & 1)
744 ai >>= HOST_BITS_PER_LONG / 2;
745 else
746 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
747
748 if (ai == 0)
749 continue;
750
751 for (j = 0; j < 2; ++j)
752 {
753 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
754 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
755
756 if (exp > MAX_EXP)
757 {
758 get_inf (r, sign);
759 return true;
760 }
761 if (exp < -MAX_EXP)
762 {
763 /* Would underflow to zero, which we shouldn't bother adding. */
764 inexact = true;
765 continue;
766 }
767
768 memset (&u, 0, sizeof (u));
769 u.cl = rvc_normal;
770 SET_REAL_EXP (&u, exp);
771
772 for (k = j; k < SIGSZ * 2; k += 2)
773 {
774 unsigned long bi = b->sig[k / 2];
775 if (k & 1)
776 bi >>= HOST_BITS_PER_LONG / 2;
777 else
778 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
779
780 u.sig[k / 2] = ai * bi;
781 }
782
783 normalize (&u);
784 inexact |= do_add (rr, rr, &u, 0);
785 }
786 }
787
788 rr->sign = sign;
789 if (rr != r)
790 *r = t;
791
792 return inexact;
793 }
794
795 /* Calculate R = A / B. Return true if the result may be inexact. */
796
797 static bool
798 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
799 const REAL_VALUE_TYPE *b)
800 {
801 int exp, sign = a->sign ^ b->sign;
802 REAL_VALUE_TYPE t, *rr;
803 bool inexact;
804
805 switch (CLASS2 (a->cl, b->cl))
806 {
807 case CLASS2 (rvc_zero, rvc_zero):
808 /* 0 / 0 = NaN. */
809 case CLASS2 (rvc_inf, rvc_inf):
810 /* Inf / Inf = NaN. */
811 get_canonical_qnan (r, sign);
812 return false;
813
814 case CLASS2 (rvc_zero, rvc_normal):
815 case CLASS2 (rvc_zero, rvc_inf):
816 /* 0 / ANY = 0. */
817 case CLASS2 (rvc_normal, rvc_inf):
818 /* R / Inf = 0. */
819 get_zero (r, sign);
820 return false;
821
822 case CLASS2 (rvc_normal, rvc_zero):
823 /* R / 0 = Inf. */
824 case CLASS2 (rvc_inf, rvc_zero):
825 /* Inf / 0 = Inf. */
826 get_inf (r, sign);
827 return false;
828
829 case CLASS2 (rvc_zero, rvc_nan):
830 case CLASS2 (rvc_normal, rvc_nan):
831 case CLASS2 (rvc_inf, rvc_nan):
832 case CLASS2 (rvc_nan, rvc_nan):
833 /* ANY / NaN = NaN. */
834 *r = *b;
835 r->sign = sign;
836 return false;
837
838 case CLASS2 (rvc_nan, rvc_zero):
839 case CLASS2 (rvc_nan, rvc_normal):
840 case CLASS2 (rvc_nan, rvc_inf):
841 /* NaN / ANY = NaN. */
842 *r = *a;
843 r->sign = sign;
844 return false;
845
846 case CLASS2 (rvc_inf, rvc_normal):
847 /* Inf / R = Inf. */
848 get_inf (r, sign);
849 return false;
850
851 case CLASS2 (rvc_normal, rvc_normal):
852 break;
853
854 default:
855 gcc_unreachable ();
856 }
857
858 if (r == a || r == b)
859 rr = &t;
860 else
861 rr = r;
862
863 /* Make sure all fields in the result are initialized. */
864 get_zero (rr, 0);
865 rr->cl = rvc_normal;
866 rr->sign = sign;
867
868 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
869 if (exp > MAX_EXP)
870 {
871 get_inf (r, sign);
872 return true;
873 }
874 if (exp < -MAX_EXP)
875 {
876 get_zero (r, sign);
877 return true;
878 }
879 SET_REAL_EXP (rr, exp);
880
881 inexact = div_significands (rr, a, b);
882
883 /* Re-normalize the result. */
884 normalize (rr);
885 rr->sig[0] |= inexact;
886
887 if (rr != r)
888 *r = t;
889
890 return inexact;
891 }
892
893 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
894 one of the two operands is a NaN. */
895
896 static int
897 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
898 int nan_result)
899 {
900 int ret;
901
902 switch (CLASS2 (a->cl, b->cl))
903 {
904 case CLASS2 (rvc_zero, rvc_zero):
905 /* Sign of zero doesn't matter for compares. */
906 return 0;
907
908 case CLASS2 (rvc_inf, rvc_zero):
909 case CLASS2 (rvc_inf, rvc_normal):
910 case CLASS2 (rvc_normal, rvc_zero):
911 return (a->sign ? -1 : 1);
912
913 case CLASS2 (rvc_inf, rvc_inf):
914 return -a->sign - -b->sign;
915
916 case CLASS2 (rvc_zero, rvc_normal):
917 case CLASS2 (rvc_zero, rvc_inf):
918 case CLASS2 (rvc_normal, rvc_inf):
919 return (b->sign ? 1 : -1);
920
921 case CLASS2 (rvc_zero, rvc_nan):
922 case CLASS2 (rvc_normal, rvc_nan):
923 case CLASS2 (rvc_inf, rvc_nan):
924 case CLASS2 (rvc_nan, rvc_nan):
925 case CLASS2 (rvc_nan, rvc_zero):
926 case CLASS2 (rvc_nan, rvc_normal):
927 case CLASS2 (rvc_nan, rvc_inf):
928 return nan_result;
929
930 case CLASS2 (rvc_normal, rvc_normal):
931 break;
932
933 default:
934 gcc_unreachable ();
935 }
936
937 if (a->sign != b->sign)
938 return -a->sign - -b->sign;
939
940 if (a->decimal || b->decimal)
941 return decimal_do_compare (a, b, nan_result);
942
943 if (REAL_EXP (a) > REAL_EXP (b))
944 ret = 1;
945 else if (REAL_EXP (a) < REAL_EXP (b))
946 ret = -1;
947 else
948 ret = cmp_significands (a, b);
949
950 return (a->sign ? -ret : ret);
951 }
952
953 /* Return A truncated to an integral value toward zero. */
954
955 static void
956 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
957 {
958 *r = *a;
959
960 switch (r->cl)
961 {
962 case rvc_zero:
963 case rvc_inf:
964 case rvc_nan:
965 break;
966
967 case rvc_normal:
968 if (r->decimal)
969 {
970 decimal_do_fix_trunc (r, a);
971 return;
972 }
973 if (REAL_EXP (r) <= 0)
974 get_zero (r, r->sign);
975 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
976 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
977 break;
978
979 default:
980 gcc_unreachable ();
981 }
982 }
983
984 /* Perform the binary or unary operation described by CODE.
985 For a unary operation, leave OP1 NULL. This function returns
986 true if the result may be inexact due to loss of precision. */
987
988 bool
989 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
990 const REAL_VALUE_TYPE *op1)
991 {
992 enum tree_code code = icode;
993
994 if (op0->decimal || (op1 && op1->decimal))
995 return decimal_real_arithmetic (r, icode, op0, op1);
996
997 switch (code)
998 {
999 case PLUS_EXPR:
1000 return do_add (r, op0, op1, 0);
1001
1002 case MINUS_EXPR:
1003 return do_add (r, op0, op1, 1);
1004
1005 case MULT_EXPR:
1006 return do_multiply (r, op0, op1);
1007
1008 case RDIV_EXPR:
1009 return do_divide (r, op0, op1);
1010
1011 case MIN_EXPR:
1012 if (op1->cl == rvc_nan)
1013 *r = *op1;
1014 else if (do_compare (op0, op1, -1) < 0)
1015 *r = *op0;
1016 else
1017 *r = *op1;
1018 break;
1019
1020 case MAX_EXPR:
1021 if (op1->cl == rvc_nan)
1022 *r = *op1;
1023 else if (do_compare (op0, op1, 1) < 0)
1024 *r = *op1;
1025 else
1026 *r = *op0;
1027 break;
1028
1029 case NEGATE_EXPR:
1030 *r = *op0;
1031 r->sign ^= 1;
1032 break;
1033
1034 case ABS_EXPR:
1035 *r = *op0;
1036 r->sign = 0;
1037 break;
1038
1039 case FIX_TRUNC_EXPR:
1040 do_fix_trunc (r, op0);
1041 break;
1042
1043 default:
1044 gcc_unreachable ();
1045 }
1046 return false;
1047 }
1048
1049 /* Legacy. Similar, but return the result directly. */
1050
1051 REAL_VALUE_TYPE
1052 real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
1053 const REAL_VALUE_TYPE *op1)
1054 {
1055 REAL_VALUE_TYPE r;
1056 real_arithmetic (&r, icode, op0, op1);
1057 return r;
1058 }
1059
1060 bool
1061 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1062 const REAL_VALUE_TYPE *op1)
1063 {
1064 enum tree_code code = icode;
1065
1066 switch (code)
1067 {
1068 case LT_EXPR:
1069 return do_compare (op0, op1, 1) < 0;
1070 case LE_EXPR:
1071 return do_compare (op0, op1, 1) <= 0;
1072 case GT_EXPR:
1073 return do_compare (op0, op1, -1) > 0;
1074 case GE_EXPR:
1075 return do_compare (op0, op1, -1) >= 0;
1076 case EQ_EXPR:
1077 return do_compare (op0, op1, -1) == 0;
1078 case NE_EXPR:
1079 return do_compare (op0, op1, -1) != 0;
1080 case UNORDERED_EXPR:
1081 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1082 case ORDERED_EXPR:
1083 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1084 case UNLT_EXPR:
1085 return do_compare (op0, op1, -1) < 0;
1086 case UNLE_EXPR:
1087 return do_compare (op0, op1, -1) <= 0;
1088 case UNGT_EXPR:
1089 return do_compare (op0, op1, 1) > 0;
1090 case UNGE_EXPR:
1091 return do_compare (op0, op1, 1) >= 0;
1092 case UNEQ_EXPR:
1093 return do_compare (op0, op1, 0) == 0;
1094 case LTGT_EXPR:
1095 return do_compare (op0, op1, 0) != 0;
1096
1097 default:
1098 gcc_unreachable ();
1099 }
1100 }
1101
1102 /* Return floor log2(R). */
1103
1104 int
1105 real_exponent (const REAL_VALUE_TYPE *r)
1106 {
1107 switch (r->cl)
1108 {
1109 case rvc_zero:
1110 return 0;
1111 case rvc_inf:
1112 case rvc_nan:
1113 return (unsigned int)-1 >> 1;
1114 case rvc_normal:
1115 return REAL_EXP (r);
1116 default:
1117 gcc_unreachable ();
1118 }
1119 }
1120
1121 /* R = OP0 * 2**EXP. */
1122
1123 void
1124 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1125 {
1126 *r = *op0;
1127 switch (r->cl)
1128 {
1129 case rvc_zero:
1130 case rvc_inf:
1131 case rvc_nan:
1132 break;
1133
1134 case rvc_normal:
1135 exp += REAL_EXP (op0);
1136 if (exp > MAX_EXP)
1137 get_inf (r, r->sign);
1138 else if (exp < -MAX_EXP)
1139 get_zero (r, r->sign);
1140 else
1141 SET_REAL_EXP (r, exp);
1142 break;
1143
1144 default:
1145 gcc_unreachable ();
1146 }
1147 }
1148
1149 /* Determine whether a floating-point value X is infinite. */
1150
1151 bool
1152 real_isinf (const REAL_VALUE_TYPE *r)
1153 {
1154 return (r->cl == rvc_inf);
1155 }
1156
1157 /* Determine whether a floating-point value X is a NaN. */
1158
1159 bool
1160 real_isnan (const REAL_VALUE_TYPE *r)
1161 {
1162 return (r->cl == rvc_nan);
1163 }
1164
1165 /* Determine whether a floating-point value X is finite. */
1166
1167 bool
1168 real_isfinite (const REAL_VALUE_TYPE *r)
1169 {
1170 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1171 }
1172
1173 /* Determine whether a floating-point value X is negative. */
1174
1175 bool
1176 real_isneg (const REAL_VALUE_TYPE *r)
1177 {
1178 return r->sign;
1179 }
1180
1181 /* Determine whether a floating-point value X is minus zero. */
1182
1183 bool
1184 real_isnegzero (const REAL_VALUE_TYPE *r)
1185 {
1186 return r->sign && r->cl == rvc_zero;
1187 }
1188
1189 /* Compare two floating-point objects for bitwise identity. */
1190
1191 bool
1192 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1193 {
1194 int i;
1195
1196 if (a->cl != b->cl)
1197 return false;
1198 if (a->sign != b->sign)
1199 return false;
1200
1201 switch (a->cl)
1202 {
1203 case rvc_zero:
1204 case rvc_inf:
1205 return true;
1206
1207 case rvc_normal:
1208 if (a->decimal != b->decimal)
1209 return false;
1210 if (REAL_EXP (a) != REAL_EXP (b))
1211 return false;
1212 break;
1213
1214 case rvc_nan:
1215 if (a->signalling != b->signalling)
1216 return false;
1217 /* The significand is ignored for canonical NaNs. */
1218 if (a->canonical || b->canonical)
1219 return a->canonical == b->canonical;
1220 break;
1221
1222 default:
1223 gcc_unreachable ();
1224 }
1225
1226 for (i = 0; i < SIGSZ; ++i)
1227 if (a->sig[i] != b->sig[i])
1228 return false;
1229
1230 return true;
1231 }
1232
1233 /* Try to change R into its exact multiplicative inverse in machine
1234 mode MODE. Return true if successful. */
1235
1236 bool
1237 exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
1238 {
1239 const REAL_VALUE_TYPE *one = real_digit (1);
1240 REAL_VALUE_TYPE u;
1241 int i;
1242
1243 if (r->cl != rvc_normal)
1244 return false;
1245
1246 /* Check for a power of two: all significand bits zero except the MSB. */
1247 for (i = 0; i < SIGSZ-1; ++i)
1248 if (r->sig[i] != 0)
1249 return false;
1250 if (r->sig[SIGSZ-1] != SIG_MSB)
1251 return false;
1252
1253 /* Find the inverse and truncate to the required mode. */
1254 do_divide (&u, one, r);
1255 real_convert (&u, mode, &u);
1256
1257 /* The rounding may have overflowed. */
1258 if (u.cl != rvc_normal)
1259 return false;
1260 for (i = 0; i < SIGSZ-1; ++i)
1261 if (u.sig[i] != 0)
1262 return false;
1263 if (u.sig[SIGSZ-1] != SIG_MSB)
1264 return false;
1265
1266 *r = u;
1267 return true;
1268 }
1269 \f
1270 /* Render R as an integer. */
1271
1272 HOST_WIDE_INT
1273 real_to_integer (const REAL_VALUE_TYPE *r)
1274 {
1275 unsigned HOST_WIDE_INT i;
1276
1277 switch (r->cl)
1278 {
1279 case rvc_zero:
1280 underflow:
1281 return 0;
1282
1283 case rvc_inf:
1284 case rvc_nan:
1285 overflow:
1286 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1287 if (!r->sign)
1288 i--;
1289 return i;
1290
1291 case rvc_normal:
1292 if (r->decimal)
1293 return decimal_real_to_integer (r);
1294
1295 if (REAL_EXP (r) <= 0)
1296 goto underflow;
1297 /* Only force overflow for unsigned overflow. Signed overflow is
1298 undefined, so it doesn't matter what we return, and some callers
1299 expect to be able to use this routine for both signed and
1300 unsigned conversions. */
1301 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1302 goto overflow;
1303
1304 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1305 i = r->sig[SIGSZ-1];
1306 else
1307 {
1308 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1309 i = r->sig[SIGSZ-1];
1310 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1311 i |= r->sig[SIGSZ-2];
1312 }
1313
1314 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1315
1316 if (r->sign)
1317 i = -i;
1318 return i;
1319
1320 default:
1321 gcc_unreachable ();
1322 }
1323 }
1324
1325 /* Likewise, but to an integer pair, HI+LOW. */
1326
1327 void
1328 real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
1329 const REAL_VALUE_TYPE *r)
1330 {
1331 REAL_VALUE_TYPE t;
1332 HOST_WIDE_INT low, high;
1333 int exp;
1334
1335 switch (r->cl)
1336 {
1337 case rvc_zero:
1338 underflow:
1339 low = high = 0;
1340 break;
1341
1342 case rvc_inf:
1343 case rvc_nan:
1344 overflow:
1345 high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1346 if (r->sign)
1347 low = 0;
1348 else
1349 {
1350 high--;
1351 low = -1;
1352 }
1353 break;
1354
1355 case rvc_normal:
1356 if (r->decimal)
1357 {
1358 decimal_real_to_integer2 (plow, phigh, r);
1359 return;
1360 }
1361
1362 exp = REAL_EXP (r);
1363 if (exp <= 0)
1364 goto underflow;
1365 /* Only force overflow for unsigned overflow. Signed overflow is
1366 undefined, so it doesn't matter what we return, and some callers
1367 expect to be able to use this routine for both signed and
1368 unsigned conversions. */
1369 if (exp > 2*HOST_BITS_PER_WIDE_INT)
1370 goto overflow;
1371
1372 rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
1373 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1374 {
1375 high = t.sig[SIGSZ-1];
1376 low = t.sig[SIGSZ-2];
1377 }
1378 else
1379 {
1380 gcc_assert (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG);
1381 high = t.sig[SIGSZ-1];
1382 high = high << (HOST_BITS_PER_LONG - 1) << 1;
1383 high |= t.sig[SIGSZ-2];
1384
1385 low = t.sig[SIGSZ-3];
1386 low = low << (HOST_BITS_PER_LONG - 1) << 1;
1387 low |= t.sig[SIGSZ-4];
1388 }
1389
1390 if (r->sign)
1391 {
1392 if (low == 0)
1393 high = -high;
1394 else
1395 low = -low, high = ~high;
1396 }
1397 break;
1398
1399 default:
1400 gcc_unreachable ();
1401 }
1402
1403 *plow = low;
1404 *phigh = high;
1405 }
1406
1407 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1408 of NUM / DEN. Return the quotient and place the remainder in NUM.
1409 It is expected that NUM / DEN are close enough that the quotient is
1410 small. */
1411
1412 static unsigned long
1413 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1414 {
1415 unsigned long q, msb;
1416 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1417
1418 if (expn < expd)
1419 return 0;
1420
1421 q = msb = 0;
1422 goto start;
1423 do
1424 {
1425 msb = num->sig[SIGSZ-1] & SIG_MSB;
1426 q <<= 1;
1427 lshift_significand_1 (num, num);
1428 start:
1429 if (msb || cmp_significands (num, den) >= 0)
1430 {
1431 sub_significands (num, num, den, 0);
1432 q |= 1;
1433 }
1434 }
1435 while (--expn >= expd);
1436
1437 SET_REAL_EXP (num, expd);
1438 normalize (num);
1439
1440 return q;
1441 }
1442
1443 /* Render R as a decimal floating point constant. Emit DIGITS significant
1444 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1445 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1446 zeros. */
1447
1448 #define M_LOG10_2 0.30102999566398119521
1449
1450 void
1451 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1452 size_t digits, int crop_trailing_zeros)
1453 {
1454 const REAL_VALUE_TYPE *one, *ten;
1455 REAL_VALUE_TYPE r, pten, u, v;
1456 int dec_exp, cmp_one, digit;
1457 size_t max_digits;
1458 char *p, *first, *last;
1459 bool sign;
1460
1461 r = *r_orig;
1462 switch (r.cl)
1463 {
1464 case rvc_zero:
1465 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1466 return;
1467 case rvc_normal:
1468 break;
1469 case rvc_inf:
1470 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1471 return;
1472 case rvc_nan:
1473 /* ??? Print the significand as well, if not canonical? */
1474 sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1475 (r_orig->signalling ? 'S' : 'Q'));
1476 return;
1477 default:
1478 gcc_unreachable ();
1479 }
1480
1481 if (r.decimal)
1482 {
1483 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1484 return;
1485 }
1486
1487 /* Bound the number of digits printed by the size of the representation. */
1488 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1489 if (digits == 0 || digits > max_digits)
1490 digits = max_digits;
1491
1492 /* Estimate the decimal exponent, and compute the length of the string it
1493 will print as. Be conservative and add one to account for possible
1494 overflow or rounding error. */
1495 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1496 for (max_digits = 1; dec_exp ; max_digits++)
1497 dec_exp /= 10;
1498
1499 /* Bound the number of digits printed by the size of the output buffer. */
1500 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1501 gcc_assert (max_digits <= buf_size);
1502 if (digits > max_digits)
1503 digits = max_digits;
1504
1505 one = real_digit (1);
1506 ten = ten_to_ptwo (0);
1507
1508 sign = r.sign;
1509 r.sign = 0;
1510
1511 dec_exp = 0;
1512 pten = *one;
1513
1514 cmp_one = do_compare (&r, one, 0);
1515 if (cmp_one > 0)
1516 {
1517 int m;
1518
1519 /* Number is greater than one. Convert significand to an integer
1520 and strip trailing decimal zeros. */
1521
1522 u = r;
1523 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1524
1525 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1526 m = floor_log2 (max_digits);
1527
1528 /* Iterate over the bits of the possible powers of 10 that might
1529 be present in U and eliminate them. That is, if we find that
1530 10**2**M divides U evenly, keep the division and increase
1531 DEC_EXP by 2**M. */
1532 do
1533 {
1534 REAL_VALUE_TYPE t;
1535
1536 do_divide (&t, &u, ten_to_ptwo (m));
1537 do_fix_trunc (&v, &t);
1538 if (cmp_significands (&v, &t) == 0)
1539 {
1540 u = t;
1541 dec_exp += 1 << m;
1542 }
1543 }
1544 while (--m >= 0);
1545
1546 /* Revert the scaling to integer that we performed earlier. */
1547 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1548 - (SIGNIFICAND_BITS - 1));
1549 r = u;
1550
1551 /* Find power of 10. Do this by dividing out 10**2**M when
1552 this is larger than the current remainder. Fill PTEN with
1553 the power of 10 that we compute. */
1554 if (REAL_EXP (&r) > 0)
1555 {
1556 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1557 do
1558 {
1559 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1560 if (do_compare (&u, ptentwo, 0) >= 0)
1561 {
1562 do_divide (&u, &u, ptentwo);
1563 do_multiply (&pten, &pten, ptentwo);
1564 dec_exp += 1 << m;
1565 }
1566 }
1567 while (--m >= 0);
1568 }
1569 else
1570 /* We managed to divide off enough tens in the above reduction
1571 loop that we've now got a negative exponent. Fall into the
1572 less-than-one code to compute the proper value for PTEN. */
1573 cmp_one = -1;
1574 }
1575 if (cmp_one < 0)
1576 {
1577 int m;
1578
1579 /* Number is less than one. Pad significand with leading
1580 decimal zeros. */
1581
1582 v = r;
1583 while (1)
1584 {
1585 /* Stop if we'd shift bits off the bottom. */
1586 if (v.sig[0] & 7)
1587 break;
1588
1589 do_multiply (&u, &v, ten);
1590
1591 /* Stop if we're now >= 1. */
1592 if (REAL_EXP (&u) > 0)
1593 break;
1594
1595 v = u;
1596 dec_exp -= 1;
1597 }
1598 r = v;
1599
1600 /* Find power of 10. Do this by multiplying in P=10**2**M when
1601 the current remainder is smaller than 1/P. Fill PTEN with the
1602 power of 10 that we compute. */
1603 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1604 do
1605 {
1606 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1607 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1608
1609 if (do_compare (&v, ptenmtwo, 0) <= 0)
1610 {
1611 do_multiply (&v, &v, ptentwo);
1612 do_multiply (&pten, &pten, ptentwo);
1613 dec_exp -= 1 << m;
1614 }
1615 }
1616 while (--m >= 0);
1617
1618 /* Invert the positive power of 10 that we've collected so far. */
1619 do_divide (&pten, one, &pten);
1620 }
1621
1622 p = str;
1623 if (sign)
1624 *p++ = '-';
1625 first = p++;
1626
1627 /* At this point, PTEN should contain the nearest power of 10 smaller
1628 than R, such that this division produces the first digit.
1629
1630 Using a divide-step primitive that returns the complete integral
1631 remainder avoids the rounding error that would be produced if
1632 we were to use do_divide here and then simply multiply by 10 for
1633 each subsequent digit. */
1634
1635 digit = rtd_divmod (&r, &pten);
1636
1637 /* Be prepared for error in that division via underflow ... */
1638 if (digit == 0 && cmp_significand_0 (&r))
1639 {
1640 /* Multiply by 10 and try again. */
1641 do_multiply (&r, &r, ten);
1642 digit = rtd_divmod (&r, &pten);
1643 dec_exp -= 1;
1644 gcc_assert (digit != 0);
1645 }
1646
1647 /* ... or overflow. */
1648 if (digit == 10)
1649 {
1650 *p++ = '1';
1651 if (--digits > 0)
1652 *p++ = '0';
1653 dec_exp += 1;
1654 }
1655 else
1656 {
1657 gcc_assert (digit <= 10);
1658 *p++ = digit + '0';
1659 }
1660
1661 /* Generate subsequent digits. */
1662 while (--digits > 0)
1663 {
1664 do_multiply (&r, &r, ten);
1665 digit = rtd_divmod (&r, &pten);
1666 *p++ = digit + '0';
1667 }
1668 last = p;
1669
1670 /* Generate one more digit with which to do rounding. */
1671 do_multiply (&r, &r, ten);
1672 digit = rtd_divmod (&r, &pten);
1673
1674 /* Round the result. */
1675 if (digit == 5)
1676 {
1677 /* Round to nearest. If R is nonzero there are additional
1678 nonzero digits to be extracted. */
1679 if (cmp_significand_0 (&r))
1680 digit++;
1681 /* Round to even. */
1682 else if ((p[-1] - '0') & 1)
1683 digit++;
1684 }
1685 if (digit > 5)
1686 {
1687 while (p > first)
1688 {
1689 digit = *--p;
1690 if (digit == '9')
1691 *p = '0';
1692 else
1693 {
1694 *p = digit + 1;
1695 break;
1696 }
1697 }
1698
1699 /* Carry out of the first digit. This means we had all 9's and
1700 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1701 if (p == first)
1702 {
1703 first[1] = '1';
1704 dec_exp++;
1705 }
1706 }
1707
1708 /* Insert the decimal point. */
1709 first[0] = first[1];
1710 first[1] = '.';
1711
1712 /* If requested, drop trailing zeros. Never crop past "1.0". */
1713 if (crop_trailing_zeros)
1714 while (last > first + 3 && last[-1] == '0')
1715 last--;
1716
1717 /* Append the exponent. */
1718 sprintf (last, "e%+d", dec_exp);
1719 }
1720
1721 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1722 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1723 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1724 strip trailing zeros. */
1725
1726 void
1727 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1728 size_t digits, int crop_trailing_zeros)
1729 {
1730 int i, j, exp = REAL_EXP (r);
1731 char *p, *first;
1732 char exp_buf[16];
1733 size_t max_digits;
1734
1735 switch (r->cl)
1736 {
1737 case rvc_zero:
1738 exp = 0;
1739 break;
1740 case rvc_normal:
1741 break;
1742 case rvc_inf:
1743 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1744 return;
1745 case rvc_nan:
1746 /* ??? Print the significand as well, if not canonical? */
1747 sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1748 (r->signalling ? 'S' : 'Q'));
1749 return;
1750 default:
1751 gcc_unreachable ();
1752 }
1753
1754 if (r->decimal)
1755 {
1756 /* Hexadecimal format for decimal floats is not interesting. */
1757 strcpy (str, "N/A");
1758 return;
1759 }
1760
1761 if (digits == 0)
1762 digits = SIGNIFICAND_BITS / 4;
1763
1764 /* Bound the number of digits printed by the size of the output buffer. */
1765
1766 sprintf (exp_buf, "p%+d", exp);
1767 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1768 gcc_assert (max_digits <= buf_size);
1769 if (digits > max_digits)
1770 digits = max_digits;
1771
1772 p = str;
1773 if (r->sign)
1774 *p++ = '-';
1775 *p++ = '0';
1776 *p++ = 'x';
1777 *p++ = '0';
1778 *p++ = '.';
1779 first = p;
1780
1781 for (i = SIGSZ - 1; i >= 0; --i)
1782 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1783 {
1784 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1785 if (--digits == 0)
1786 goto out;
1787 }
1788
1789 out:
1790 if (crop_trailing_zeros)
1791 while (p > first + 1 && p[-1] == '0')
1792 p--;
1793
1794 sprintf (p, "p%+d", exp);
1795 }
1796
1797 /* Initialize R from a decimal or hexadecimal string. The string is
1798 assumed to have been syntax checked already. Return -1 if the
1799 value underflows, +1 if overflows, and 0 otherwise. */
1800
1801 int
1802 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1803 {
1804 int exp = 0;
1805 bool sign = false;
1806
1807 get_zero (r, 0);
1808
1809 if (*str == '-')
1810 {
1811 sign = true;
1812 str++;
1813 }
1814 else if (*str == '+')
1815 str++;
1816
1817 if (!strncmp (str, "QNaN", 4))
1818 {
1819 get_canonical_qnan (r, sign);
1820 return 0;
1821 }
1822 else if (!strncmp (str, "SNaN", 4))
1823 {
1824 get_canonical_snan (r, sign);
1825 return 0;
1826 }
1827 else if (!strncmp (str, "Inf", 3))
1828 {
1829 get_inf (r, sign);
1830 return 0;
1831 }
1832
1833 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1834 {
1835 /* Hexadecimal floating point. */
1836 int pos = SIGNIFICAND_BITS - 4, d;
1837
1838 str += 2;
1839
1840 while (*str == '0')
1841 str++;
1842 while (1)
1843 {
1844 d = hex_value (*str);
1845 if (d == _hex_bad)
1846 break;
1847 if (pos >= 0)
1848 {
1849 r->sig[pos / HOST_BITS_PER_LONG]
1850 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1851 pos -= 4;
1852 }
1853 else if (d)
1854 /* Ensure correct rounding by setting last bit if there is
1855 a subsequent nonzero digit. */
1856 r->sig[0] |= 1;
1857 exp += 4;
1858 str++;
1859 }
1860 if (*str == '.')
1861 {
1862 str++;
1863 if (pos == SIGNIFICAND_BITS - 4)
1864 {
1865 while (*str == '0')
1866 str++, exp -= 4;
1867 }
1868 while (1)
1869 {
1870 d = hex_value (*str);
1871 if (d == _hex_bad)
1872 break;
1873 if (pos >= 0)
1874 {
1875 r->sig[pos / HOST_BITS_PER_LONG]
1876 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1877 pos -= 4;
1878 }
1879 else if (d)
1880 /* Ensure correct rounding by setting last bit if there is
1881 a subsequent nonzero digit. */
1882 r->sig[0] |= 1;
1883 str++;
1884 }
1885 }
1886
1887 /* If the mantissa is zero, ignore the exponent. */
1888 if (!cmp_significand_0 (r))
1889 goto is_a_zero;
1890
1891 if (*str == 'p' || *str == 'P')
1892 {
1893 bool exp_neg = false;
1894
1895 str++;
1896 if (*str == '-')
1897 {
1898 exp_neg = true;
1899 str++;
1900 }
1901 else if (*str == '+')
1902 str++;
1903
1904 d = 0;
1905 while (ISDIGIT (*str))
1906 {
1907 d *= 10;
1908 d += *str - '0';
1909 if (d > MAX_EXP)
1910 {
1911 /* Overflowed the exponent. */
1912 if (exp_neg)
1913 goto underflow;
1914 else
1915 goto overflow;
1916 }
1917 str++;
1918 }
1919 if (exp_neg)
1920 d = -d;
1921
1922 exp += d;
1923 }
1924
1925 r->cl = rvc_normal;
1926 SET_REAL_EXP (r, exp);
1927
1928 normalize (r);
1929 }
1930 else
1931 {
1932 /* Decimal floating point. */
1933 const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
1934 int d;
1935
1936 while (*str == '0')
1937 str++;
1938 while (ISDIGIT (*str))
1939 {
1940 d = *str++ - '0';
1941 do_multiply (r, r, ten);
1942 if (d)
1943 do_add (r, r, real_digit (d), 0);
1944 }
1945 if (*str == '.')
1946 {
1947 str++;
1948 if (r->cl == rvc_zero)
1949 {
1950 while (*str == '0')
1951 str++, exp--;
1952 }
1953 while (ISDIGIT (*str))
1954 {
1955 d = *str++ - '0';
1956 do_multiply (r, r, ten);
1957 if (d)
1958 do_add (r, r, real_digit (d), 0);
1959 exp--;
1960 }
1961 }
1962
1963 /* If the mantissa is zero, ignore the exponent. */
1964 if (r->cl == rvc_zero)
1965 goto is_a_zero;
1966
1967 if (*str == 'e' || *str == 'E')
1968 {
1969 bool exp_neg = false;
1970
1971 str++;
1972 if (*str == '-')
1973 {
1974 exp_neg = true;
1975 str++;
1976 }
1977 else if (*str == '+')
1978 str++;
1979
1980 d = 0;
1981 while (ISDIGIT (*str))
1982 {
1983 d *= 10;
1984 d += *str - '0';
1985 if (d > MAX_EXP)
1986 {
1987 /* Overflowed the exponent. */
1988 if (exp_neg)
1989 goto underflow;
1990 else
1991 goto overflow;
1992 }
1993 str++;
1994 }
1995 if (exp_neg)
1996 d = -d;
1997 exp += d;
1998 }
1999
2000 if (exp)
2001 times_pten (r, exp);
2002 }
2003
2004 r->sign = sign;
2005 return 0;
2006
2007 is_a_zero:
2008 get_zero (r, sign);
2009 return 0;
2010
2011 underflow:
2012 get_zero (r, sign);
2013 return -1;
2014
2015 overflow:
2016 get_inf (r, sign);
2017 return 1;
2018 }
2019
2020 /* Legacy. Similar, but return the result directly. */
2021
2022 REAL_VALUE_TYPE
2023 real_from_string2 (const char *s, enum machine_mode mode)
2024 {
2025 REAL_VALUE_TYPE r;
2026
2027 real_from_string (&r, s);
2028 if (mode != VOIDmode)
2029 real_convert (&r, mode, &r);
2030
2031 return r;
2032 }
2033
2034 /* Initialize R from string S and desired MODE. */
2035
2036 void
2037 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, enum machine_mode mode)
2038 {
2039 if (DECIMAL_FLOAT_MODE_P (mode))
2040 decimal_real_from_string (r, s);
2041 else
2042 real_from_string (r, s);
2043
2044 if (mode != VOIDmode)
2045 real_convert (r, mode, r);
2046 }
2047
2048 /* Initialize R from the integer pair HIGH+LOW. */
2049
2050 void
2051 real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
2052 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
2053 int unsigned_p)
2054 {
2055 if (low == 0 && high == 0)
2056 get_zero (r, 0);
2057 else
2058 {
2059 memset (r, 0, sizeof (*r));
2060 r->cl = rvc_normal;
2061 r->sign = high < 0 && !unsigned_p;
2062 SET_REAL_EXP (r, 2 * HOST_BITS_PER_WIDE_INT);
2063
2064 if (r->sign)
2065 {
2066 high = ~high;
2067 if (low == 0)
2068 high += 1;
2069 else
2070 low = -low;
2071 }
2072
2073 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2074 {
2075 r->sig[SIGSZ-1] = high;
2076 r->sig[SIGSZ-2] = low;
2077 }
2078 else
2079 {
2080 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2081 r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
2082 r->sig[SIGSZ-2] = high;
2083 r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
2084 r->sig[SIGSZ-4] = low;
2085 }
2086
2087 normalize (r);
2088 }
2089
2090 if (mode != VOIDmode)
2091 real_convert (r, mode, r);
2092 }
2093
2094 /* Returns 10**2**N. */
2095
2096 static const REAL_VALUE_TYPE *
2097 ten_to_ptwo (int n)
2098 {
2099 static REAL_VALUE_TYPE tens[EXP_BITS];
2100
2101 gcc_assert (n >= 0);
2102 gcc_assert (n < EXP_BITS);
2103
2104 if (tens[n].cl == rvc_zero)
2105 {
2106 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2107 {
2108 HOST_WIDE_INT t = 10;
2109 int i;
2110
2111 for (i = 0; i < n; ++i)
2112 t *= t;
2113
2114 real_from_integer (&tens[n], VOIDmode, t, 0, 1);
2115 }
2116 else
2117 {
2118 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2119 do_multiply (&tens[n], t, t);
2120 }
2121 }
2122
2123 return &tens[n];
2124 }
2125
2126 /* Returns 10**(-2**N). */
2127
2128 static const REAL_VALUE_TYPE *
2129 ten_to_mptwo (int n)
2130 {
2131 static REAL_VALUE_TYPE tens[EXP_BITS];
2132
2133 gcc_assert (n >= 0);
2134 gcc_assert (n < EXP_BITS);
2135
2136 if (tens[n].cl == rvc_zero)
2137 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2138
2139 return &tens[n];
2140 }
2141
2142 /* Returns N. */
2143
2144 static const REAL_VALUE_TYPE *
2145 real_digit (int n)
2146 {
2147 static REAL_VALUE_TYPE num[10];
2148
2149 gcc_assert (n >= 0);
2150 gcc_assert (n <= 9);
2151
2152 if (n > 0 && num[n].cl == rvc_zero)
2153 real_from_integer (&num[n], VOIDmode, n, 0, 1);
2154
2155 return &num[n];
2156 }
2157
2158 /* Multiply R by 10**EXP. */
2159
2160 static void
2161 times_pten (REAL_VALUE_TYPE *r, int exp)
2162 {
2163 REAL_VALUE_TYPE pten, *rr;
2164 bool negative = (exp < 0);
2165 int i;
2166
2167 if (negative)
2168 {
2169 exp = -exp;
2170 pten = *real_digit (1);
2171 rr = &pten;
2172 }
2173 else
2174 rr = r;
2175
2176 for (i = 0; exp > 0; ++i, exp >>= 1)
2177 if (exp & 1)
2178 do_multiply (rr, rr, ten_to_ptwo (i));
2179
2180 if (negative)
2181 do_divide (r, r, &pten);
2182 }
2183
2184 /* Returns the special REAL_VALUE_TYPE enumerated by E. */
2185
2186 const REAL_VALUE_TYPE *
2187 get_real_const (enum real_value_const e)
2188 {
2189 static REAL_VALUE_TYPE value[rv_max];
2190
2191 gcc_assert (e < rv_max);
2192
2193 /* Initialize mathematical constants for constant folding builtins.
2194 These constants need to be given to at least 160 bits precision. */
2195 if (value[e].cl == rvc_zero)
2196 switch (e)
2197 {
2198 case rv_e:
2199 {
2200 mpfr_t m;
2201 mpfr_init2 (m, SIGNIFICAND_BITS);
2202 mpfr_set_ui (m, 1, GMP_RNDN);
2203 mpfr_exp (m, m, GMP_RNDN);
2204 real_from_mpfr (&value[e], m, NULL_TREE, GMP_RNDN);
2205 mpfr_clear (m);
2206 }
2207 break;
2208 case rv_third:
2209 real_arithmetic (&value[e], RDIV_EXPR, &dconst1, real_digit (3));
2210 break;
2211 case rv_sqrt2:
2212 {
2213 mpfr_t m;
2214 mpfr_init2 (m, SIGNIFICAND_BITS);
2215 mpfr_sqrt_ui (m, 2, GMP_RNDN);
2216 real_from_mpfr (&value[e], m, NULL_TREE, GMP_RNDN);
2217 mpfr_clear (m);
2218 }
2219 break;
2220 default:
2221 gcc_unreachable();
2222 }
2223
2224 return &value[e];
2225 }
2226
2227 /* Fills R with +Inf. */
2228
2229 void
2230 real_inf (REAL_VALUE_TYPE *r)
2231 {
2232 get_inf (r, 0);
2233 }
2234
2235 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2236 we force a QNaN, else we force an SNaN. The string, if not empty,
2237 is parsed as a number and placed in the significand. Return true
2238 if the string was successfully parsed. */
2239
2240 bool
2241 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2242 enum machine_mode mode)
2243 {
2244 const struct real_format *fmt;
2245
2246 fmt = REAL_MODE_FORMAT (mode);
2247 gcc_assert (fmt);
2248
2249 if (*str == 0)
2250 {
2251 if (quiet)
2252 get_canonical_qnan (r, 0);
2253 else
2254 get_canonical_snan (r, 0);
2255 }
2256 else
2257 {
2258 int base = 10, d;
2259
2260 memset (r, 0, sizeof (*r));
2261 r->cl = rvc_nan;
2262
2263 /* Parse akin to strtol into the significand of R. */
2264
2265 while (ISSPACE (*str))
2266 str++;
2267 if (*str == '-')
2268 str++;
2269 else if (*str == '+')
2270 str++;
2271 if (*str == '0')
2272 {
2273 str++;
2274 if (*str == 'x' || *str == 'X')
2275 {
2276 base = 16;
2277 str++;
2278 }
2279 else
2280 base = 8;
2281 }
2282
2283 while ((d = hex_value (*str)) < base)
2284 {
2285 REAL_VALUE_TYPE u;
2286
2287 switch (base)
2288 {
2289 case 8:
2290 lshift_significand (r, r, 3);
2291 break;
2292 case 16:
2293 lshift_significand (r, r, 4);
2294 break;
2295 case 10:
2296 lshift_significand_1 (&u, r);
2297 lshift_significand (r, r, 3);
2298 add_significands (r, r, &u);
2299 break;
2300 default:
2301 gcc_unreachable ();
2302 }
2303
2304 get_zero (&u, 0);
2305 u.sig[0] = d;
2306 add_significands (r, r, &u);
2307
2308 str++;
2309 }
2310
2311 /* Must have consumed the entire string for success. */
2312 if (*str != 0)
2313 return false;
2314
2315 /* Shift the significand into place such that the bits
2316 are in the most significant bits for the format. */
2317 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2318
2319 /* Our MSB is always unset for NaNs. */
2320 r->sig[SIGSZ-1] &= ~SIG_MSB;
2321
2322 /* Force quiet or signalling NaN. */
2323 r->signalling = !quiet;
2324 }
2325
2326 return true;
2327 }
2328
2329 /* Fills R with the largest finite value representable in mode MODE.
2330 If SIGN is nonzero, R is set to the most negative finite value. */
2331
2332 void
2333 real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
2334 {
2335 const struct real_format *fmt;
2336 int np2;
2337
2338 fmt = REAL_MODE_FORMAT (mode);
2339 gcc_assert (fmt);
2340 memset (r, 0, sizeof (*r));
2341
2342 if (fmt->b == 10)
2343 decimal_real_maxval (r, sign, mode);
2344 else
2345 {
2346 r->cl = rvc_normal;
2347 r->sign = sign;
2348 SET_REAL_EXP (r, fmt->emax);
2349
2350 np2 = SIGNIFICAND_BITS - fmt->p;
2351 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2352 clear_significand_below (r, np2);
2353
2354 if (fmt->pnan < fmt->p)
2355 /* This is an IBM extended double format made up of two IEEE
2356 doubles. The value of the long double is the sum of the
2357 values of the two parts. The most significant part is
2358 required to be the value of the long double rounded to the
2359 nearest double. Rounding means we need a slightly smaller
2360 value for LDBL_MAX. */
2361 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan);
2362 }
2363 }
2364
2365 /* Fills R with 2**N. */
2366
2367 void
2368 real_2expN (REAL_VALUE_TYPE *r, int n, enum machine_mode fmode)
2369 {
2370 memset (r, 0, sizeof (*r));
2371
2372 n++;
2373 if (n > MAX_EXP)
2374 r->cl = rvc_inf;
2375 else if (n < -MAX_EXP)
2376 ;
2377 else
2378 {
2379 r->cl = rvc_normal;
2380 SET_REAL_EXP (r, n);
2381 r->sig[SIGSZ-1] = SIG_MSB;
2382 }
2383 if (DECIMAL_FLOAT_MODE_P (fmode))
2384 decimal_real_convert (r, fmode, r);
2385 }
2386
2387 \f
2388 static void
2389 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2390 {
2391 int p2, np2, i, w;
2392 unsigned long sticky;
2393 bool guard, lsb;
2394 int emin2m1, emax2;
2395
2396 if (r->decimal)
2397 {
2398 if (fmt->b == 10)
2399 {
2400 decimal_round_for_format (fmt, r);
2401 return;
2402 }
2403 /* FIXME. We can come here via fp_easy_constant
2404 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2405 investigated whether this convert needs to be here, or
2406 something else is missing. */
2407 decimal_real_convert (r, DFmode, r);
2408 }
2409
2410 p2 = fmt->p;
2411 emin2m1 = fmt->emin - 1;
2412 emax2 = fmt->emax;
2413
2414 np2 = SIGNIFICAND_BITS - p2;
2415 switch (r->cl)
2416 {
2417 underflow:
2418 get_zero (r, r->sign);
2419 case rvc_zero:
2420 if (!fmt->has_signed_zero)
2421 r->sign = 0;
2422 return;
2423
2424 overflow:
2425 get_inf (r, r->sign);
2426 case rvc_inf:
2427 return;
2428
2429 case rvc_nan:
2430 clear_significand_below (r, np2);
2431 return;
2432
2433 case rvc_normal:
2434 break;
2435
2436 default:
2437 gcc_unreachable ();
2438 }
2439
2440 /* Check the range of the exponent. If we're out of range,
2441 either underflow or overflow. */
2442 if (REAL_EXP (r) > emax2)
2443 goto overflow;
2444 else if (REAL_EXP (r) <= emin2m1)
2445 {
2446 int diff;
2447
2448 if (!fmt->has_denorm)
2449 {
2450 /* Don't underflow completely until we've had a chance to round. */
2451 if (REAL_EXP (r) < emin2m1)
2452 goto underflow;
2453 }
2454 else
2455 {
2456 diff = emin2m1 - REAL_EXP (r) + 1;
2457 if (diff > p2)
2458 goto underflow;
2459
2460 /* De-normalize the significand. */
2461 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2462 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2463 }
2464 }
2465
2466 /* There are P2 true significand bits, followed by one guard bit,
2467 followed by one sticky bit, followed by stuff. Fold nonzero
2468 stuff into the sticky bit. */
2469
2470 sticky = 0;
2471 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2472 sticky |= r->sig[i];
2473 sticky |=
2474 r->sig[w] & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2475
2476 guard = test_significand_bit (r, np2 - 1);
2477 lsb = test_significand_bit (r, np2);
2478
2479 /* Round to even. */
2480 if (guard && (sticky || lsb))
2481 {
2482 REAL_VALUE_TYPE u;
2483 get_zero (&u, 0);
2484 set_significand_bit (&u, np2);
2485
2486 if (add_significands (r, r, &u))
2487 {
2488 /* Overflow. Means the significand had been all ones, and
2489 is now all zeros. Need to increase the exponent, and
2490 possibly re-normalize it. */
2491 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2492 if (REAL_EXP (r) > emax2)
2493 goto overflow;
2494 r->sig[SIGSZ-1] = SIG_MSB;
2495 }
2496 }
2497
2498 /* Catch underflow that we deferred until after rounding. */
2499 if (REAL_EXP (r) <= emin2m1)
2500 goto underflow;
2501
2502 /* Clear out trailing garbage. */
2503 clear_significand_below (r, np2);
2504 }
2505
2506 /* Extend or truncate to a new mode. */
2507
2508 void
2509 real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
2510 const REAL_VALUE_TYPE *a)
2511 {
2512 const struct real_format *fmt;
2513
2514 fmt = REAL_MODE_FORMAT (mode);
2515 gcc_assert (fmt);
2516
2517 *r = *a;
2518
2519 if (a->decimal || fmt->b == 10)
2520 decimal_real_convert (r, mode, a);
2521
2522 round_for_format (fmt, r);
2523
2524 /* round_for_format de-normalizes denormals. Undo just that part. */
2525 if (r->cl == rvc_normal)
2526 normalize (r);
2527 }
2528
2529 /* Legacy. Likewise, except return the struct directly. */
2530
2531 REAL_VALUE_TYPE
2532 real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
2533 {
2534 REAL_VALUE_TYPE r;
2535 real_convert (&r, mode, &a);
2536 return r;
2537 }
2538
2539 /* Return true if truncating to MODE is exact. */
2540
2541 bool
2542 exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
2543 {
2544 const struct real_format *fmt;
2545 REAL_VALUE_TYPE t;
2546 int emin2m1;
2547
2548 fmt = REAL_MODE_FORMAT (mode);
2549 gcc_assert (fmt);
2550
2551 /* Don't allow conversion to denormals. */
2552 emin2m1 = fmt->emin - 1;
2553 if (REAL_EXP (a) <= emin2m1)
2554 return false;
2555
2556 /* After conversion to the new mode, the value must be identical. */
2557 real_convert (&t, mode, a);
2558 return real_identical (&t, a);
2559 }
2560
2561 /* Write R to the given target format. Place the words of the result
2562 in target word order in BUF. There are always 32 bits in each
2563 long, no matter the size of the host long.
2564
2565 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2566
2567 long
2568 real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2569 const struct real_format *fmt)
2570 {
2571 REAL_VALUE_TYPE r;
2572 long buf1;
2573
2574 r = *r_orig;
2575 round_for_format (fmt, &r);
2576
2577 if (!buf)
2578 buf = &buf1;
2579 (*fmt->encode) (fmt, buf, &r);
2580
2581 return *buf;
2582 }
2583
2584 /* Similar, but look up the format from MODE. */
2585
2586 long
2587 real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
2588 {
2589 const struct real_format *fmt;
2590
2591 fmt = REAL_MODE_FORMAT (mode);
2592 gcc_assert (fmt);
2593
2594 return real_to_target_fmt (buf, r, fmt);
2595 }
2596
2597 /* Read R from the given target format. Read the words of the result
2598 in target word order in BUF. There are always 32 bits in each
2599 long, no matter the size of the host long. */
2600
2601 void
2602 real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2603 const struct real_format *fmt)
2604 {
2605 (*fmt->decode) (fmt, r, buf);
2606 }
2607
2608 /* Similar, but look up the format from MODE. */
2609
2610 void
2611 real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
2612 {
2613 const struct real_format *fmt;
2614
2615 fmt = REAL_MODE_FORMAT (mode);
2616 gcc_assert (fmt);
2617
2618 (*fmt->decode) (fmt, r, buf);
2619 }
2620
2621 /* Return the number of bits of the largest binary value that the
2622 significand of MODE will hold. */
2623 /* ??? Legacy. Should get access to real_format directly. */
2624
2625 int
2626 significand_size (enum machine_mode mode)
2627 {
2628 const struct real_format *fmt;
2629
2630 fmt = REAL_MODE_FORMAT (mode);
2631 if (fmt == NULL)
2632 return 0;
2633
2634 if (fmt->b == 10)
2635 {
2636 /* Return the size in bits of the largest binary value that can be
2637 held by the decimal coefficient for this mode. This is one more
2638 than the number of bits required to hold the largest coefficient
2639 of this mode. */
2640 double log2_10 = 3.3219281;
2641 return fmt->p * log2_10;
2642 }
2643 return fmt->p;
2644 }
2645
2646 /* Return a hash value for the given real value. */
2647 /* ??? The "unsigned int" return value is intended to be hashval_t,
2648 but I didn't want to pull hashtab.h into real.h. */
2649
2650 unsigned int
2651 real_hash (const REAL_VALUE_TYPE *r)
2652 {
2653 unsigned int h;
2654 size_t i;
2655
2656 h = r->cl | (r->sign << 2);
2657 switch (r->cl)
2658 {
2659 case rvc_zero:
2660 case rvc_inf:
2661 return h;
2662
2663 case rvc_normal:
2664 h |= REAL_EXP (r) << 3;
2665 break;
2666
2667 case rvc_nan:
2668 if (r->signalling)
2669 h ^= (unsigned int)-1;
2670 if (r->canonical)
2671 return h;
2672 break;
2673
2674 default:
2675 gcc_unreachable ();
2676 }
2677
2678 if (sizeof(unsigned long) > sizeof(unsigned int))
2679 for (i = 0; i < SIGSZ; ++i)
2680 {
2681 unsigned long s = r->sig[i];
2682 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2683 }
2684 else
2685 for (i = 0; i < SIGSZ; ++i)
2686 h ^= r->sig[i];
2687
2688 return h;
2689 }
2690 \f
2691 /* IEEE single-precision format. */
2692
2693 static void encode_ieee_single (const struct real_format *fmt,
2694 long *, const REAL_VALUE_TYPE *);
2695 static void decode_ieee_single (const struct real_format *,
2696 REAL_VALUE_TYPE *, const long *);
2697
2698 static void
2699 encode_ieee_single (const struct real_format *fmt, long *buf,
2700 const REAL_VALUE_TYPE *r)
2701 {
2702 unsigned long image, sig, exp;
2703 unsigned long sign = r->sign;
2704 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2705
2706 image = sign << 31;
2707 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2708
2709 switch (r->cl)
2710 {
2711 case rvc_zero:
2712 break;
2713
2714 case rvc_inf:
2715 if (fmt->has_inf)
2716 image |= 255 << 23;
2717 else
2718 image |= 0x7fffffff;
2719 break;
2720
2721 case rvc_nan:
2722 if (fmt->has_nans)
2723 {
2724 if (r->canonical)
2725 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2726 if (r->signalling == fmt->qnan_msb_set)
2727 sig &= ~(1 << 22);
2728 else
2729 sig |= 1 << 22;
2730 if (sig == 0)
2731 sig = 1 << 21;
2732
2733 image |= 255 << 23;
2734 image |= sig;
2735 }
2736 else
2737 image |= 0x7fffffff;
2738 break;
2739
2740 case rvc_normal:
2741 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2742 whereas the intermediate representation is 0.F x 2**exp.
2743 Which means we're off by one. */
2744 if (denormal)
2745 exp = 0;
2746 else
2747 exp = REAL_EXP (r) + 127 - 1;
2748 image |= exp << 23;
2749 image |= sig;
2750 break;
2751
2752 default:
2753 gcc_unreachable ();
2754 }
2755
2756 buf[0] = image;
2757 }
2758
2759 static void
2760 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2761 const long *buf)
2762 {
2763 unsigned long image = buf[0] & 0xffffffff;
2764 bool sign = (image >> 31) & 1;
2765 int exp = (image >> 23) & 0xff;
2766
2767 memset (r, 0, sizeof (*r));
2768 image <<= HOST_BITS_PER_LONG - 24;
2769 image &= ~SIG_MSB;
2770
2771 if (exp == 0)
2772 {
2773 if (image && fmt->has_denorm)
2774 {
2775 r->cl = rvc_normal;
2776 r->sign = sign;
2777 SET_REAL_EXP (r, -126);
2778 r->sig[SIGSZ-1] = image << 1;
2779 normalize (r);
2780 }
2781 else if (fmt->has_signed_zero)
2782 r->sign = sign;
2783 }
2784 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2785 {
2786 if (image)
2787 {
2788 r->cl = rvc_nan;
2789 r->sign = sign;
2790 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2791 ^ fmt->qnan_msb_set);
2792 r->sig[SIGSZ-1] = image;
2793 }
2794 else
2795 {
2796 r->cl = rvc_inf;
2797 r->sign = sign;
2798 }
2799 }
2800 else
2801 {
2802 r->cl = rvc_normal;
2803 r->sign = sign;
2804 SET_REAL_EXP (r, exp - 127 + 1);
2805 r->sig[SIGSZ-1] = image | SIG_MSB;
2806 }
2807 }
2808
2809 const struct real_format ieee_single_format =
2810 {
2811 encode_ieee_single,
2812 decode_ieee_single,
2813 2,
2814 24,
2815 24,
2816 -125,
2817 128,
2818 31,
2819 31,
2820 true,
2821 true,
2822 true,
2823 true,
2824 true,
2825 false
2826 };
2827
2828 const struct real_format mips_single_format =
2829 {
2830 encode_ieee_single,
2831 decode_ieee_single,
2832 2,
2833 24,
2834 24,
2835 -125,
2836 128,
2837 31,
2838 31,
2839 true,
2840 true,
2841 true,
2842 true,
2843 false,
2844 true
2845 };
2846
2847 const struct real_format motorola_single_format =
2848 {
2849 encode_ieee_single,
2850 decode_ieee_single,
2851 2,
2852 24,
2853 24,
2854 -125,
2855 128,
2856 31,
2857 31,
2858 true,
2859 true,
2860 true,
2861 true,
2862 true,
2863 true
2864 };
2865 \f
2866 /* IEEE double-precision format. */
2867
2868 static void encode_ieee_double (const struct real_format *fmt,
2869 long *, const REAL_VALUE_TYPE *);
2870 static void decode_ieee_double (const struct real_format *,
2871 REAL_VALUE_TYPE *, const long *);
2872
2873 static void
2874 encode_ieee_double (const struct real_format *fmt, long *buf,
2875 const REAL_VALUE_TYPE *r)
2876 {
2877 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
2878 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2879
2880 image_hi = r->sign << 31;
2881 image_lo = 0;
2882
2883 if (HOST_BITS_PER_LONG == 64)
2884 {
2885 sig_hi = r->sig[SIGSZ-1];
2886 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
2887 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
2888 }
2889 else
2890 {
2891 sig_hi = r->sig[SIGSZ-1];
2892 sig_lo = r->sig[SIGSZ-2];
2893 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
2894 sig_hi = (sig_hi >> 11) & 0xfffff;
2895 }
2896
2897 switch (r->cl)
2898 {
2899 case rvc_zero:
2900 break;
2901
2902 case rvc_inf:
2903 if (fmt->has_inf)
2904 image_hi |= 2047 << 20;
2905 else
2906 {
2907 image_hi |= 0x7fffffff;
2908 image_lo = 0xffffffff;
2909 }
2910 break;
2911
2912 case rvc_nan:
2913 if (fmt->has_nans)
2914 {
2915 if (r->canonical)
2916 {
2917 if (fmt->canonical_nan_lsbs_set)
2918 {
2919 sig_hi = (1 << 19) - 1;
2920 sig_lo = 0xffffffff;
2921 }
2922 else
2923 {
2924 sig_hi = 0;
2925 sig_lo = 0;
2926 }
2927 }
2928 if (r->signalling == fmt->qnan_msb_set)
2929 sig_hi &= ~(1 << 19);
2930 else
2931 sig_hi |= 1 << 19;
2932 if (sig_hi == 0 && sig_lo == 0)
2933 sig_hi = 1 << 18;
2934
2935 image_hi |= 2047 << 20;
2936 image_hi |= sig_hi;
2937 image_lo = sig_lo;
2938 }
2939 else
2940 {
2941 image_hi |= 0x7fffffff;
2942 image_lo = 0xffffffff;
2943 }
2944 break;
2945
2946 case rvc_normal:
2947 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2948 whereas the intermediate representation is 0.F x 2**exp.
2949 Which means we're off by one. */
2950 if (denormal)
2951 exp = 0;
2952 else
2953 exp = REAL_EXP (r) + 1023 - 1;
2954 image_hi |= exp << 20;
2955 image_hi |= sig_hi;
2956 image_lo = sig_lo;
2957 break;
2958
2959 default:
2960 gcc_unreachable ();
2961 }
2962
2963 if (FLOAT_WORDS_BIG_ENDIAN)
2964 buf[0] = image_hi, buf[1] = image_lo;
2965 else
2966 buf[0] = image_lo, buf[1] = image_hi;
2967 }
2968
2969 static void
2970 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2971 const long *buf)
2972 {
2973 unsigned long image_hi, image_lo;
2974 bool sign;
2975 int exp;
2976
2977 if (FLOAT_WORDS_BIG_ENDIAN)
2978 image_hi = buf[0], image_lo = buf[1];
2979 else
2980 image_lo = buf[0], image_hi = buf[1];
2981 image_lo &= 0xffffffff;
2982 image_hi &= 0xffffffff;
2983
2984 sign = (image_hi >> 31) & 1;
2985 exp = (image_hi >> 20) & 0x7ff;
2986
2987 memset (r, 0, sizeof (*r));
2988
2989 image_hi <<= 32 - 21;
2990 image_hi |= image_lo >> 21;
2991 image_hi &= 0x7fffffff;
2992 image_lo <<= 32 - 21;
2993
2994 if (exp == 0)
2995 {
2996 if ((image_hi || image_lo) && fmt->has_denorm)
2997 {
2998 r->cl = rvc_normal;
2999 r->sign = sign;
3000 SET_REAL_EXP (r, -1022);
3001 if (HOST_BITS_PER_LONG == 32)
3002 {
3003 image_hi = (image_hi << 1) | (image_lo >> 31);
3004 image_lo <<= 1;
3005 r->sig[SIGSZ-1] = image_hi;
3006 r->sig[SIGSZ-2] = image_lo;
3007 }
3008 else
3009 {
3010 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3011 r->sig[SIGSZ-1] = image_hi;
3012 }
3013 normalize (r);
3014 }
3015 else if (fmt->has_signed_zero)
3016 r->sign = sign;
3017 }
3018 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3019 {
3020 if (image_hi || image_lo)
3021 {
3022 r->cl = rvc_nan;
3023 r->sign = sign;
3024 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3025 if (HOST_BITS_PER_LONG == 32)
3026 {
3027 r->sig[SIGSZ-1] = image_hi;
3028 r->sig[SIGSZ-2] = image_lo;
3029 }
3030 else
3031 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3032 }
3033 else
3034 {
3035 r->cl = rvc_inf;
3036 r->sign = sign;
3037 }
3038 }
3039 else
3040 {
3041 r->cl = rvc_normal;
3042 r->sign = sign;
3043 SET_REAL_EXP (r, exp - 1023 + 1);
3044 if (HOST_BITS_PER_LONG == 32)
3045 {
3046 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3047 r->sig[SIGSZ-2] = image_lo;
3048 }
3049 else
3050 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3051 }
3052 }
3053
3054 const struct real_format ieee_double_format =
3055 {
3056 encode_ieee_double,
3057 decode_ieee_double,
3058 2,
3059 53,
3060 53,
3061 -1021,
3062 1024,
3063 63,
3064 63,
3065 true,
3066 true,
3067 true,
3068 true,
3069 true,
3070 false
3071 };
3072
3073 const struct real_format mips_double_format =
3074 {
3075 encode_ieee_double,
3076 decode_ieee_double,
3077 2,
3078 53,
3079 53,
3080 -1021,
3081 1024,
3082 63,
3083 63,
3084 true,
3085 true,
3086 true,
3087 true,
3088 false,
3089 true
3090 };
3091
3092 const struct real_format motorola_double_format =
3093 {
3094 encode_ieee_double,
3095 decode_ieee_double,
3096 2,
3097 53,
3098 53,
3099 -1021,
3100 1024,
3101 63,
3102 63,
3103 true,
3104 true,
3105 true,
3106 true,
3107 true,
3108 true
3109 };
3110 \f
3111 /* IEEE extended real format. This comes in three flavors: Intel's as
3112 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3113 12- and 16-byte images may be big- or little endian; Motorola's is
3114 always big endian. */
3115
3116 /* Helper subroutine which converts from the internal format to the
3117 12-byte little-endian Intel format. Functions below adjust this
3118 for the other possible formats. */
3119 static void
3120 encode_ieee_extended (const struct real_format *fmt, long *buf,
3121 const REAL_VALUE_TYPE *r)
3122 {
3123 unsigned long image_hi, sig_hi, sig_lo;
3124 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3125
3126 image_hi = r->sign << 15;
3127 sig_hi = sig_lo = 0;
3128
3129 switch (r->cl)
3130 {
3131 case rvc_zero:
3132 break;
3133
3134 case rvc_inf:
3135 if (fmt->has_inf)
3136 {
3137 image_hi |= 32767;
3138
3139 /* Intel requires the explicit integer bit to be set, otherwise
3140 it considers the value a "pseudo-infinity". Motorola docs
3141 say it doesn't care. */
3142 sig_hi = 0x80000000;
3143 }
3144 else
3145 {
3146 image_hi |= 32767;
3147 sig_lo = sig_hi = 0xffffffff;
3148 }
3149 break;
3150
3151 case rvc_nan:
3152 if (fmt->has_nans)
3153 {
3154 image_hi |= 32767;
3155 if (r->canonical)
3156 {
3157 if (fmt->canonical_nan_lsbs_set)
3158 {
3159 sig_hi = (1 << 30) - 1;
3160 sig_lo = 0xffffffff;
3161 }
3162 }
3163 else if (HOST_BITS_PER_LONG == 32)
3164 {
3165 sig_hi = r->sig[SIGSZ-1];
3166 sig_lo = r->sig[SIGSZ-2];
3167 }
3168 else
3169 {
3170 sig_lo = r->sig[SIGSZ-1];
3171 sig_hi = sig_lo >> 31 >> 1;
3172 sig_lo &= 0xffffffff;
3173 }
3174 if (r->signalling == fmt->qnan_msb_set)
3175 sig_hi &= ~(1 << 30);
3176 else
3177 sig_hi |= 1 << 30;
3178 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3179 sig_hi = 1 << 29;
3180
3181 /* Intel requires the explicit integer bit to be set, otherwise
3182 it considers the value a "pseudo-nan". Motorola docs say it
3183 doesn't care. */
3184 sig_hi |= 0x80000000;
3185 }
3186 else
3187 {
3188 image_hi |= 32767;
3189 sig_lo = sig_hi = 0xffffffff;
3190 }
3191 break;
3192
3193 case rvc_normal:
3194 {
3195 int exp = REAL_EXP (r);
3196
3197 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3198 whereas the intermediate representation is 0.F x 2**exp.
3199 Which means we're off by one.
3200
3201 Except for Motorola, which consider exp=0 and explicit
3202 integer bit set to continue to be normalized. In theory
3203 this discrepancy has been taken care of by the difference
3204 in fmt->emin in round_for_format. */
3205
3206 if (denormal)
3207 exp = 0;
3208 else
3209 {
3210 exp += 16383 - 1;
3211 gcc_assert (exp >= 0);
3212 }
3213 image_hi |= exp;
3214
3215 if (HOST_BITS_PER_LONG == 32)
3216 {
3217 sig_hi = r->sig[SIGSZ-1];
3218 sig_lo = r->sig[SIGSZ-2];
3219 }
3220 else
3221 {
3222 sig_lo = r->sig[SIGSZ-1];
3223 sig_hi = sig_lo >> 31 >> 1;
3224 sig_lo &= 0xffffffff;
3225 }
3226 }
3227 break;
3228
3229 default:
3230 gcc_unreachable ();
3231 }
3232
3233 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3234 }
3235
3236 /* Convert from the internal format to the 12-byte Motorola format
3237 for an IEEE extended real. */
3238 static void
3239 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3240 const REAL_VALUE_TYPE *r)
3241 {
3242 long intermed[3];
3243 encode_ieee_extended (fmt, intermed, r);
3244
3245 /* Motorola chips are assumed always to be big-endian. Also, the
3246 padding in a Motorola extended real goes between the exponent and
3247 the mantissa. At this point the mantissa is entirely within
3248 elements 0 and 1 of intermed, and the exponent entirely within
3249 element 2, so all we have to do is swap the order around, and
3250 shift element 2 left 16 bits. */
3251 buf[0] = intermed[2] << 16;
3252 buf[1] = intermed[1];
3253 buf[2] = intermed[0];
3254 }
3255
3256 /* Convert from the internal format to the 12-byte Intel format for
3257 an IEEE extended real. */
3258 static void
3259 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3260 const REAL_VALUE_TYPE *r)
3261 {
3262 if (FLOAT_WORDS_BIG_ENDIAN)
3263 {
3264 /* All the padding in an Intel-format extended real goes at the high
3265 end, which in this case is after the mantissa, not the exponent.
3266 Therefore we must shift everything down 16 bits. */
3267 long intermed[3];
3268 encode_ieee_extended (fmt, intermed, r);
3269 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3270 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3271 buf[2] = (intermed[0] << 16);
3272 }
3273 else
3274 /* encode_ieee_extended produces what we want directly. */
3275 encode_ieee_extended (fmt, buf, r);
3276 }
3277
3278 /* Convert from the internal format to the 16-byte Intel format for
3279 an IEEE extended real. */
3280 static void
3281 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3282 const REAL_VALUE_TYPE *r)
3283 {
3284 /* All the padding in an Intel-format extended real goes at the high end. */
3285 encode_ieee_extended_intel_96 (fmt, buf, r);
3286 buf[3] = 0;
3287 }
3288
3289 /* As above, we have a helper function which converts from 12-byte
3290 little-endian Intel format to internal format. Functions below
3291 adjust for the other possible formats. */
3292 static void
3293 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3294 const long *buf)
3295 {
3296 unsigned long image_hi, sig_hi, sig_lo;
3297 bool sign;
3298 int exp;
3299
3300 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3301 sig_lo &= 0xffffffff;
3302 sig_hi &= 0xffffffff;
3303 image_hi &= 0xffffffff;
3304
3305 sign = (image_hi >> 15) & 1;
3306 exp = image_hi & 0x7fff;
3307
3308 memset (r, 0, sizeof (*r));
3309
3310 if (exp == 0)
3311 {
3312 if ((sig_hi || sig_lo) && fmt->has_denorm)
3313 {
3314 r->cl = rvc_normal;
3315 r->sign = sign;
3316
3317 /* When the IEEE format contains a hidden bit, we know that
3318 it's zero at this point, and so shift up the significand
3319 and decrease the exponent to match. In this case, Motorola
3320 defines the explicit integer bit to be valid, so we don't
3321 know whether the msb is set or not. */
3322 SET_REAL_EXP (r, fmt->emin);
3323 if (HOST_BITS_PER_LONG == 32)
3324 {
3325 r->sig[SIGSZ-1] = sig_hi;
3326 r->sig[SIGSZ-2] = sig_lo;
3327 }
3328 else
3329 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3330
3331 normalize (r);
3332 }
3333 else if (fmt->has_signed_zero)
3334 r->sign = sign;
3335 }
3336 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3337 {
3338 /* See above re "pseudo-infinities" and "pseudo-nans".
3339 Short summary is that the MSB will likely always be
3340 set, and that we don't care about it. */
3341 sig_hi &= 0x7fffffff;
3342
3343 if (sig_hi || sig_lo)
3344 {
3345 r->cl = rvc_nan;
3346 r->sign = sign;
3347 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3348 if (HOST_BITS_PER_LONG == 32)
3349 {
3350 r->sig[SIGSZ-1] = sig_hi;
3351 r->sig[SIGSZ-2] = sig_lo;
3352 }
3353 else
3354 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3355 }
3356 else
3357 {
3358 r->cl = rvc_inf;
3359 r->sign = sign;
3360 }
3361 }
3362 else
3363 {
3364 r->cl = rvc_normal;
3365 r->sign = sign;
3366 SET_REAL_EXP (r, exp - 16383 + 1);
3367 if (HOST_BITS_PER_LONG == 32)
3368 {
3369 r->sig[SIGSZ-1] = sig_hi;
3370 r->sig[SIGSZ-2] = sig_lo;
3371 }
3372 else
3373 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3374 }
3375 }
3376
3377 /* Convert from the internal format to the 12-byte Motorola format
3378 for an IEEE extended real. */
3379 static void
3380 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3381 const long *buf)
3382 {
3383 long intermed[3];
3384
3385 /* Motorola chips are assumed always to be big-endian. Also, the
3386 padding in a Motorola extended real goes between the exponent and
3387 the mantissa; remove it. */
3388 intermed[0] = buf[2];
3389 intermed[1] = buf[1];
3390 intermed[2] = (unsigned long)buf[0] >> 16;
3391
3392 decode_ieee_extended (fmt, r, intermed);
3393 }
3394
3395 /* Convert from the internal format to the 12-byte Intel format for
3396 an IEEE extended real. */
3397 static void
3398 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3399 const long *buf)
3400 {
3401 if (FLOAT_WORDS_BIG_ENDIAN)
3402 {
3403 /* All the padding in an Intel-format extended real goes at the high
3404 end, which in this case is after the mantissa, not the exponent.
3405 Therefore we must shift everything up 16 bits. */
3406 long intermed[3];
3407
3408 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3409 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3410 intermed[2] = ((unsigned long)buf[0] >> 16);
3411
3412 decode_ieee_extended (fmt, r, intermed);
3413 }
3414 else
3415 /* decode_ieee_extended produces what we want directly. */
3416 decode_ieee_extended (fmt, r, buf);
3417 }
3418
3419 /* Convert from the internal format to the 16-byte Intel format for
3420 an IEEE extended real. */
3421 static void
3422 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3423 const long *buf)
3424 {
3425 /* All the padding in an Intel-format extended real goes at the high end. */
3426 decode_ieee_extended_intel_96 (fmt, r, buf);
3427 }
3428
3429 const struct real_format ieee_extended_motorola_format =
3430 {
3431 encode_ieee_extended_motorola,
3432 decode_ieee_extended_motorola,
3433 2,
3434 64,
3435 64,
3436 -16382,
3437 16384,
3438 95,
3439 95,
3440 true,
3441 true,
3442 true,
3443 true,
3444 true,
3445 true
3446 };
3447
3448 const struct real_format ieee_extended_intel_96_format =
3449 {
3450 encode_ieee_extended_intel_96,
3451 decode_ieee_extended_intel_96,
3452 2,
3453 64,
3454 64,
3455 -16381,
3456 16384,
3457 79,
3458 79,
3459 true,
3460 true,
3461 true,
3462 true,
3463 true,
3464 false
3465 };
3466
3467 const struct real_format ieee_extended_intel_128_format =
3468 {
3469 encode_ieee_extended_intel_128,
3470 decode_ieee_extended_intel_128,
3471 2,
3472 64,
3473 64,
3474 -16381,
3475 16384,
3476 79,
3477 79,
3478 true,
3479 true,
3480 true,
3481 true,
3482 true,
3483 false
3484 };
3485
3486 /* The following caters to i386 systems that set the rounding precision
3487 to 53 bits instead of 64, e.g. FreeBSD. */
3488 const struct real_format ieee_extended_intel_96_round_53_format =
3489 {
3490 encode_ieee_extended_intel_96,
3491 decode_ieee_extended_intel_96,
3492 2,
3493 53,
3494 53,
3495 -16381,
3496 16384,
3497 79,
3498 79,
3499 true,
3500 true,
3501 true,
3502 true,
3503 true,
3504 false
3505 };
3506 \f
3507 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3508 numbers whose sum is equal to the extended precision value. The number
3509 with greater magnitude is first. This format has the same magnitude
3510 range as an IEEE double precision value, but effectively 106 bits of
3511 significand precision. Infinity and NaN are represented by their IEEE
3512 double precision value stored in the first number, the second number is
3513 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3514
3515 static void encode_ibm_extended (const struct real_format *fmt,
3516 long *, const REAL_VALUE_TYPE *);
3517 static void decode_ibm_extended (const struct real_format *,
3518 REAL_VALUE_TYPE *, const long *);
3519
3520 static void
3521 encode_ibm_extended (const struct real_format *fmt, long *buf,
3522 const REAL_VALUE_TYPE *r)
3523 {
3524 REAL_VALUE_TYPE u, normr, v;
3525 const struct real_format *base_fmt;
3526
3527 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3528
3529 /* Renormalize R before doing any arithmetic on it. */
3530 normr = *r;
3531 if (normr.cl == rvc_normal)
3532 normalize (&normr);
3533
3534 /* u = IEEE double precision portion of significand. */
3535 u = normr;
3536 round_for_format (base_fmt, &u);
3537 encode_ieee_double (base_fmt, &buf[0], &u);
3538
3539 if (u.cl == rvc_normal)
3540 {
3541 do_add (&v, &normr, &u, 1);
3542 /* Call round_for_format since we might need to denormalize. */
3543 round_for_format (base_fmt, &v);
3544 encode_ieee_double (base_fmt, &buf[2], &v);
3545 }
3546 else
3547 {
3548 /* Inf, NaN, 0 are all representable as doubles, so the
3549 least-significant part can be 0.0. */
3550 buf[2] = 0;
3551 buf[3] = 0;
3552 }
3553 }
3554
3555 static void
3556 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3557 const long *buf)
3558 {
3559 REAL_VALUE_TYPE u, v;
3560 const struct real_format *base_fmt;
3561
3562 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3563 decode_ieee_double (base_fmt, &u, &buf[0]);
3564
3565 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3566 {
3567 decode_ieee_double (base_fmt, &v, &buf[2]);
3568 do_add (r, &u, &v, 0);
3569 }
3570 else
3571 *r = u;
3572 }
3573
3574 const struct real_format ibm_extended_format =
3575 {
3576 encode_ibm_extended,
3577 decode_ibm_extended,
3578 2,
3579 53 + 53,
3580 53,
3581 -1021 + 53,
3582 1024,
3583 127,
3584 -1,
3585 true,
3586 true,
3587 true,
3588 true,
3589 true,
3590 false
3591 };
3592
3593 const struct real_format mips_extended_format =
3594 {
3595 encode_ibm_extended,
3596 decode_ibm_extended,
3597 2,
3598 53 + 53,
3599 53,
3600 -1021 + 53,
3601 1024,
3602 127,
3603 -1,
3604 true,
3605 true,
3606 true,
3607 true,
3608 false,
3609 true
3610 };
3611
3612 \f
3613 /* IEEE quad precision format. */
3614
3615 static void encode_ieee_quad (const struct real_format *fmt,
3616 long *, const REAL_VALUE_TYPE *);
3617 static void decode_ieee_quad (const struct real_format *,
3618 REAL_VALUE_TYPE *, const long *);
3619
3620 static void
3621 encode_ieee_quad (const struct real_format *fmt, long *buf,
3622 const REAL_VALUE_TYPE *r)
3623 {
3624 unsigned long image3, image2, image1, image0, exp;
3625 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3626 REAL_VALUE_TYPE u;
3627
3628 image3 = r->sign << 31;
3629 image2 = 0;
3630 image1 = 0;
3631 image0 = 0;
3632
3633 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3634
3635 switch (r->cl)
3636 {
3637 case rvc_zero:
3638 break;
3639
3640 case rvc_inf:
3641 if (fmt->has_inf)
3642 image3 |= 32767 << 16;
3643 else
3644 {
3645 image3 |= 0x7fffffff;
3646 image2 = 0xffffffff;
3647 image1 = 0xffffffff;
3648 image0 = 0xffffffff;
3649 }
3650 break;
3651
3652 case rvc_nan:
3653 if (fmt->has_nans)
3654 {
3655 image3 |= 32767 << 16;
3656
3657 if (r->canonical)
3658 {
3659 if (fmt->canonical_nan_lsbs_set)
3660 {
3661 image3 |= 0x7fff;
3662 image2 = image1 = image0 = 0xffffffff;
3663 }
3664 }
3665 else if (HOST_BITS_PER_LONG == 32)
3666 {
3667 image0 = u.sig[0];
3668 image1 = u.sig[1];
3669 image2 = u.sig[2];
3670 image3 |= u.sig[3] & 0xffff;
3671 }
3672 else
3673 {
3674 image0 = u.sig[0];
3675 image1 = image0 >> 31 >> 1;
3676 image2 = u.sig[1];
3677 image3 |= (image2 >> 31 >> 1) & 0xffff;
3678 image0 &= 0xffffffff;
3679 image2 &= 0xffffffff;
3680 }
3681 if (r->signalling == fmt->qnan_msb_set)
3682 image3 &= ~0x8000;
3683 else
3684 image3 |= 0x8000;
3685 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3686 image3 |= 0x4000;
3687 }
3688 else
3689 {
3690 image3 |= 0x7fffffff;
3691 image2 = 0xffffffff;
3692 image1 = 0xffffffff;
3693 image0 = 0xffffffff;
3694 }
3695 break;
3696
3697 case rvc_normal:
3698 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3699 whereas the intermediate representation is 0.F x 2**exp.
3700 Which means we're off by one. */
3701 if (denormal)
3702 exp = 0;
3703 else
3704 exp = REAL_EXP (r) + 16383 - 1;
3705 image3 |= exp << 16;
3706
3707 if (HOST_BITS_PER_LONG == 32)
3708 {
3709 image0 = u.sig[0];
3710 image1 = u.sig[1];
3711 image2 = u.sig[2];
3712 image3 |= u.sig[3] & 0xffff;
3713 }
3714 else
3715 {
3716 image0 = u.sig[0];
3717 image1 = image0 >> 31 >> 1;
3718 image2 = u.sig[1];
3719 image3 |= (image2 >> 31 >> 1) & 0xffff;
3720 image0 &= 0xffffffff;
3721 image2 &= 0xffffffff;
3722 }
3723 break;
3724
3725 default:
3726 gcc_unreachable ();
3727 }
3728
3729 if (FLOAT_WORDS_BIG_ENDIAN)
3730 {
3731 buf[0] = image3;
3732 buf[1] = image2;
3733 buf[2] = image1;
3734 buf[3] = image0;
3735 }
3736 else
3737 {
3738 buf[0] = image0;
3739 buf[1] = image1;
3740 buf[2] = image2;
3741 buf[3] = image3;
3742 }
3743 }
3744
3745 static void
3746 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3747 const long *buf)
3748 {
3749 unsigned long image3, image2, image1, image0;
3750 bool sign;
3751 int exp;
3752
3753 if (FLOAT_WORDS_BIG_ENDIAN)
3754 {
3755 image3 = buf[0];
3756 image2 = buf[1];
3757 image1 = buf[2];
3758 image0 = buf[3];
3759 }
3760 else
3761 {
3762 image0 = buf[0];
3763 image1 = buf[1];
3764 image2 = buf[2];
3765 image3 = buf[3];
3766 }
3767 image0 &= 0xffffffff;
3768 image1 &= 0xffffffff;
3769 image2 &= 0xffffffff;
3770
3771 sign = (image3 >> 31) & 1;
3772 exp = (image3 >> 16) & 0x7fff;
3773 image3 &= 0xffff;
3774
3775 memset (r, 0, sizeof (*r));
3776
3777 if (exp == 0)
3778 {
3779 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
3780 {
3781 r->cl = rvc_normal;
3782 r->sign = sign;
3783
3784 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
3785 if (HOST_BITS_PER_LONG == 32)
3786 {
3787 r->sig[0] = image0;
3788 r->sig[1] = image1;
3789 r->sig[2] = image2;
3790 r->sig[3] = image3;
3791 }
3792 else
3793 {
3794 r->sig[0] = (image1 << 31 << 1) | image0;
3795 r->sig[1] = (image3 << 31 << 1) | image2;
3796 }
3797
3798 normalize (r);
3799 }
3800 else if (fmt->has_signed_zero)
3801 r->sign = sign;
3802 }
3803 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3804 {
3805 if (image3 | image2 | image1 | image0)
3806 {
3807 r->cl = rvc_nan;
3808 r->sign = sign;
3809 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
3810
3811 if (HOST_BITS_PER_LONG == 32)
3812 {
3813 r->sig[0] = image0;
3814 r->sig[1] = image1;
3815 r->sig[2] = image2;
3816 r->sig[3] = image3;
3817 }
3818 else
3819 {
3820 r->sig[0] = (image1 << 31 << 1) | image0;
3821 r->sig[1] = (image3 << 31 << 1) | image2;
3822 }
3823 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3824 }
3825 else
3826 {
3827 r->cl = rvc_inf;
3828 r->sign = sign;
3829 }
3830 }
3831 else
3832 {
3833 r->cl = rvc_normal;
3834 r->sign = sign;
3835 SET_REAL_EXP (r, exp - 16383 + 1);
3836
3837 if (HOST_BITS_PER_LONG == 32)
3838 {
3839 r->sig[0] = image0;
3840 r->sig[1] = image1;
3841 r->sig[2] = image2;
3842 r->sig[3] = image3;
3843 }
3844 else
3845 {
3846 r->sig[0] = (image1 << 31 << 1) | image0;
3847 r->sig[1] = (image3 << 31 << 1) | image2;
3848 }
3849 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3850 r->sig[SIGSZ-1] |= SIG_MSB;
3851 }
3852 }
3853
3854 const struct real_format ieee_quad_format =
3855 {
3856 encode_ieee_quad,
3857 decode_ieee_quad,
3858 2,
3859 113,
3860 113,
3861 -16381,
3862 16384,
3863 127,
3864 127,
3865 true,
3866 true,
3867 true,
3868 true,
3869 true,
3870 false
3871 };
3872
3873 const struct real_format mips_quad_format =
3874 {
3875 encode_ieee_quad,
3876 decode_ieee_quad,
3877 2,
3878 113,
3879 113,
3880 -16381,
3881 16384,
3882 127,
3883 127,
3884 true,
3885 true,
3886 true,
3887 true,
3888 false,
3889 true
3890 };
3891 \f
3892 /* Descriptions of VAX floating point formats can be found beginning at
3893
3894 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3895
3896 The thing to remember is that they're almost IEEE, except for word
3897 order, exponent bias, and the lack of infinities, nans, and denormals.
3898
3899 We don't implement the H_floating format here, simply because neither
3900 the VAX or Alpha ports use it. */
3901
3902 static void encode_vax_f (const struct real_format *fmt,
3903 long *, const REAL_VALUE_TYPE *);
3904 static void decode_vax_f (const struct real_format *,
3905 REAL_VALUE_TYPE *, const long *);
3906 static void encode_vax_d (const struct real_format *fmt,
3907 long *, const REAL_VALUE_TYPE *);
3908 static void decode_vax_d (const struct real_format *,
3909 REAL_VALUE_TYPE *, const long *);
3910 static void encode_vax_g (const struct real_format *fmt,
3911 long *, const REAL_VALUE_TYPE *);
3912 static void decode_vax_g (const struct real_format *,
3913 REAL_VALUE_TYPE *, const long *);
3914
3915 static void
3916 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3917 const REAL_VALUE_TYPE *r)
3918 {
3919 unsigned long sign, exp, sig, image;
3920
3921 sign = r->sign << 15;
3922
3923 switch (r->cl)
3924 {
3925 case rvc_zero:
3926 image = 0;
3927 break;
3928
3929 case rvc_inf:
3930 case rvc_nan:
3931 image = 0xffff7fff | sign;
3932 break;
3933
3934 case rvc_normal:
3935 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
3936 exp = REAL_EXP (r) + 128;
3937
3938 image = (sig << 16) & 0xffff0000;
3939 image |= sign;
3940 image |= exp << 7;
3941 image |= sig >> 16;
3942 break;
3943
3944 default:
3945 gcc_unreachable ();
3946 }
3947
3948 buf[0] = image;
3949 }
3950
3951 static void
3952 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
3953 REAL_VALUE_TYPE *r, const long *buf)
3954 {
3955 unsigned long image = buf[0] & 0xffffffff;
3956 int exp = (image >> 7) & 0xff;
3957
3958 memset (r, 0, sizeof (*r));
3959
3960 if (exp != 0)
3961 {
3962 r->cl = rvc_normal;
3963 r->sign = (image >> 15) & 1;
3964 SET_REAL_EXP (r, exp - 128);
3965
3966 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
3967 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
3968 }
3969 }
3970
3971 static void
3972 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3973 const REAL_VALUE_TYPE *r)
3974 {
3975 unsigned long image0, image1, sign = r->sign << 15;
3976
3977 switch (r->cl)
3978 {
3979 case rvc_zero:
3980 image0 = image1 = 0;
3981 break;
3982
3983 case rvc_inf:
3984 case rvc_nan:
3985 image0 = 0xffff7fff | sign;
3986 image1 = 0xffffffff;
3987 break;
3988
3989 case rvc_normal:
3990 /* Extract the significand into straight hi:lo. */
3991 if (HOST_BITS_PER_LONG == 64)
3992 {
3993 image0 = r->sig[SIGSZ-1];
3994 image1 = (image0 >> (64 - 56)) & 0xffffffff;
3995 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
3996 }
3997 else
3998 {
3999 image0 = r->sig[SIGSZ-1];
4000 image1 = r->sig[SIGSZ-2];
4001 image1 = (image0 << 24) | (image1 >> 8);
4002 image0 = (image0 >> 8) & 0xffffff;
4003 }
4004
4005 /* Rearrange the half-words of the significand to match the
4006 external format. */
4007 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4008 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4009
4010 /* Add the sign and exponent. */
4011 image0 |= sign;
4012 image0 |= (REAL_EXP (r) + 128) << 7;
4013 break;
4014
4015 default:
4016 gcc_unreachable ();
4017 }
4018
4019 if (FLOAT_WORDS_BIG_ENDIAN)
4020 buf[0] = image1, buf[1] = image0;
4021 else
4022 buf[0] = image0, buf[1] = image1;
4023 }
4024
4025 static void
4026 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4027 REAL_VALUE_TYPE *r, const long *buf)
4028 {
4029 unsigned long image0, image1;
4030 int exp;
4031
4032 if (FLOAT_WORDS_BIG_ENDIAN)
4033 image1 = buf[0], image0 = buf[1];
4034 else
4035 image0 = buf[0], image1 = buf[1];
4036 image0 &= 0xffffffff;
4037 image1 &= 0xffffffff;
4038
4039 exp = (image0 >> 7) & 0xff;
4040
4041 memset (r, 0, sizeof (*r));
4042
4043 if (exp != 0)
4044 {
4045 r->cl = rvc_normal;
4046 r->sign = (image0 >> 15) & 1;
4047 SET_REAL_EXP (r, exp - 128);
4048
4049 /* Rearrange the half-words of the external format into
4050 proper ascending order. */
4051 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4052 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4053
4054 if (HOST_BITS_PER_LONG == 64)
4055 {
4056 image0 = (image0 << 31 << 1) | image1;
4057 image0 <<= 64 - 56;
4058 image0 |= SIG_MSB;
4059 r->sig[SIGSZ-1] = image0;
4060 }
4061 else
4062 {
4063 r->sig[SIGSZ-1] = image0;
4064 r->sig[SIGSZ-2] = image1;
4065 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4066 r->sig[SIGSZ-1] |= SIG_MSB;
4067 }
4068 }
4069 }
4070
4071 static void
4072 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4073 const REAL_VALUE_TYPE *r)
4074 {
4075 unsigned long image0, image1, sign = r->sign << 15;
4076
4077 switch (r->cl)
4078 {
4079 case rvc_zero:
4080 image0 = image1 = 0;
4081 break;
4082
4083 case rvc_inf:
4084 case rvc_nan:
4085 image0 = 0xffff7fff | sign;
4086 image1 = 0xffffffff;
4087 break;
4088
4089 case rvc_normal:
4090 /* Extract the significand into straight hi:lo. */
4091 if (HOST_BITS_PER_LONG == 64)
4092 {
4093 image0 = r->sig[SIGSZ-1];
4094 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4095 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4096 }
4097 else
4098 {
4099 image0 = r->sig[SIGSZ-1];
4100 image1 = r->sig[SIGSZ-2];
4101 image1 = (image0 << 21) | (image1 >> 11);
4102 image0 = (image0 >> 11) & 0xfffff;
4103 }
4104
4105 /* Rearrange the half-words of the significand to match the
4106 external format. */
4107 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4108 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4109
4110 /* Add the sign and exponent. */
4111 image0 |= sign;
4112 image0 |= (REAL_EXP (r) + 1024) << 4;
4113 break;
4114
4115 default:
4116 gcc_unreachable ();
4117 }
4118
4119 if (FLOAT_WORDS_BIG_ENDIAN)
4120 buf[0] = image1, buf[1] = image0;
4121 else
4122 buf[0] = image0, buf[1] = image1;
4123 }
4124
4125 static void
4126 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4127 REAL_VALUE_TYPE *r, const long *buf)
4128 {
4129 unsigned long image0, image1;
4130 int exp;
4131
4132 if (FLOAT_WORDS_BIG_ENDIAN)
4133 image1 = buf[0], image0 = buf[1];
4134 else
4135 image0 = buf[0], image1 = buf[1];
4136 image0 &= 0xffffffff;
4137 image1 &= 0xffffffff;
4138
4139 exp = (image0 >> 4) & 0x7ff;
4140
4141 memset (r, 0, sizeof (*r));
4142
4143 if (exp != 0)
4144 {
4145 r->cl = rvc_normal;
4146 r->sign = (image0 >> 15) & 1;
4147 SET_REAL_EXP (r, exp - 1024);
4148
4149 /* Rearrange the half-words of the external format into
4150 proper ascending order. */
4151 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4152 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4153
4154 if (HOST_BITS_PER_LONG == 64)
4155 {
4156 image0 = (image0 << 31 << 1) | image1;
4157 image0 <<= 64 - 53;
4158 image0 |= SIG_MSB;
4159 r->sig[SIGSZ-1] = image0;
4160 }
4161 else
4162 {
4163 r->sig[SIGSZ-1] = image0;
4164 r->sig[SIGSZ-2] = image1;
4165 lshift_significand (r, r, 64 - 53);
4166 r->sig[SIGSZ-1] |= SIG_MSB;
4167 }
4168 }
4169 }
4170
4171 const struct real_format vax_f_format =
4172 {
4173 encode_vax_f,
4174 decode_vax_f,
4175 2,
4176 24,
4177 24,
4178 -127,
4179 127,
4180 15,
4181 15,
4182 false,
4183 false,
4184 false,
4185 false,
4186 false,
4187 false
4188 };
4189
4190 const struct real_format vax_d_format =
4191 {
4192 encode_vax_d,
4193 decode_vax_d,
4194 2,
4195 56,
4196 56,
4197 -127,
4198 127,
4199 15,
4200 15,
4201 false,
4202 false,
4203 false,
4204 false,
4205 false,
4206 false
4207 };
4208
4209 const struct real_format vax_g_format =
4210 {
4211 encode_vax_g,
4212 decode_vax_g,
4213 2,
4214 53,
4215 53,
4216 -1023,
4217 1023,
4218 15,
4219 15,
4220 false,
4221 false,
4222 false,
4223 false,
4224 false,
4225 false
4226 };
4227 \f
4228 /* Encode real R into a single precision DFP value in BUF. */
4229 static void
4230 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4231 long *buf ATTRIBUTE_UNUSED,
4232 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4233 {
4234 encode_decimal32 (fmt, buf, r);
4235 }
4236
4237 /* Decode a single precision DFP value in BUF into a real R. */
4238 static void
4239 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4240 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4241 const long *buf ATTRIBUTE_UNUSED)
4242 {
4243 decode_decimal32 (fmt, r, buf);
4244 }
4245
4246 /* Encode real R into a double precision DFP value in BUF. */
4247 static void
4248 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4249 long *buf ATTRIBUTE_UNUSED,
4250 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4251 {
4252 encode_decimal64 (fmt, buf, r);
4253 }
4254
4255 /* Decode a double precision DFP value in BUF into a real R. */
4256 static void
4257 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4258 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4259 const long *buf ATTRIBUTE_UNUSED)
4260 {
4261 decode_decimal64 (fmt, r, buf);
4262 }
4263
4264 /* Encode real R into a quad precision DFP value in BUF. */
4265 static void
4266 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4267 long *buf ATTRIBUTE_UNUSED,
4268 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4269 {
4270 encode_decimal128 (fmt, buf, r);
4271 }
4272
4273 /* Decode a quad precision DFP value in BUF into a real R. */
4274 static void
4275 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4276 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4277 const long *buf ATTRIBUTE_UNUSED)
4278 {
4279 decode_decimal128 (fmt, r, buf);
4280 }
4281
4282 /* Single precision decimal floating point (IEEE 754R). */
4283 const struct real_format decimal_single_format =
4284 {
4285 encode_decimal_single,
4286 decode_decimal_single,
4287 10,
4288 7,
4289 7,
4290 -95,
4291 96,
4292 31,
4293 31,
4294 true,
4295 true,
4296 true,
4297 true,
4298 true,
4299 false
4300 };
4301
4302 /* Double precision decimal floating point (IEEE 754R). */
4303 const struct real_format decimal_double_format =
4304 {
4305 encode_decimal_double,
4306 decode_decimal_double,
4307 10,
4308 16,
4309 16,
4310 -383,
4311 384,
4312 63,
4313 63,
4314 true,
4315 true,
4316 true,
4317 true,
4318 true,
4319 false
4320 };
4321
4322 /* Quad precision decimal floating point (IEEE 754R). */
4323 const struct real_format decimal_quad_format =
4324 {
4325 encode_decimal_quad,
4326 decode_decimal_quad,
4327 10,
4328 34,
4329 34,
4330 -6143,
4331 6144,
4332 127,
4333 127,
4334 true,
4335 true,
4336 true,
4337 true,
4338 true,
4339 false
4340 };
4341 \f
4342 /* A synthetic "format" for internal arithmetic. It's the size of the
4343 internal significand minus the two bits needed for proper rounding.
4344 The encode and decode routines exist only to satisfy our paranoia
4345 harness. */
4346
4347 static void encode_internal (const struct real_format *fmt,
4348 long *, const REAL_VALUE_TYPE *);
4349 static void decode_internal (const struct real_format *,
4350 REAL_VALUE_TYPE *, const long *);
4351
4352 static void
4353 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4354 const REAL_VALUE_TYPE *r)
4355 {
4356 memcpy (buf, r, sizeof (*r));
4357 }
4358
4359 static void
4360 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4361 REAL_VALUE_TYPE *r, const long *buf)
4362 {
4363 memcpy (r, buf, sizeof (*r));
4364 }
4365
4366 const struct real_format real_internal_format =
4367 {
4368 encode_internal,
4369 decode_internal,
4370 2,
4371 SIGNIFICAND_BITS - 2,
4372 SIGNIFICAND_BITS - 2,
4373 -MAX_EXP,
4374 MAX_EXP,
4375 -1,
4376 -1,
4377 true,
4378 true,
4379 false,
4380 true,
4381 true,
4382 false
4383 };
4384 \f
4385 /* Calculate the square root of X in mode MODE, and store the result
4386 in R. Return TRUE if the operation does not raise an exception.
4387 For details see "High Precision Division and Square Root",
4388 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4389 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4390
4391 bool
4392 real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
4393 const REAL_VALUE_TYPE *x)
4394 {
4395 static REAL_VALUE_TYPE halfthree;
4396 static bool init = false;
4397 REAL_VALUE_TYPE h, t, i;
4398 int iter, exp;
4399
4400 /* sqrt(-0.0) is -0.0. */
4401 if (real_isnegzero (x))
4402 {
4403 *r = *x;
4404 return false;
4405 }
4406
4407 /* Negative arguments return NaN. */
4408 if (real_isneg (x))
4409 {
4410 get_canonical_qnan (r, 0);
4411 return false;
4412 }
4413
4414 /* Infinity and NaN return themselves. */
4415 if (!real_isfinite (x))
4416 {
4417 *r = *x;
4418 return false;
4419 }
4420
4421 if (!init)
4422 {
4423 do_add (&halfthree, &dconst1, &dconsthalf, 0);
4424 init = true;
4425 }
4426
4427 /* Initial guess for reciprocal sqrt, i. */
4428 exp = real_exponent (x);
4429 real_ldexp (&i, &dconst1, -exp/2);
4430
4431 /* Newton's iteration for reciprocal sqrt, i. */
4432 for (iter = 0; iter < 16; iter++)
4433 {
4434 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4435 do_multiply (&t, x, &i);
4436 do_multiply (&h, &t, &i);
4437 do_multiply (&t, &h, &dconsthalf);
4438 do_add (&h, &halfthree, &t, 1);
4439 do_multiply (&t, &i, &h);
4440
4441 /* Check for early convergence. */
4442 if (iter >= 6 && real_identical (&i, &t))
4443 break;
4444
4445 /* ??? Unroll loop to avoid copying. */
4446 i = t;
4447 }
4448
4449 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4450 do_multiply (&t, x, &i);
4451 do_multiply (&h, &t, &i);
4452 do_add (&i, &dconst1, &h, 1);
4453 do_multiply (&h, &t, &i);
4454 do_multiply (&i, &dconsthalf, &h);
4455 do_add (&h, &t, &i, 0);
4456
4457 /* ??? We need a Tuckerman test to get the last bit. */
4458
4459 real_convert (r, mode, &h);
4460 return true;
4461 }
4462
4463 /* Calculate X raised to the integer exponent N in mode MODE and store
4464 the result in R. Return true if the result may be inexact due to
4465 loss of precision. The algorithm is the classic "left-to-right binary
4466 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4467 Algorithms", "The Art of Computer Programming", Volume 2. */
4468
4469 bool
4470 real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
4471 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4472 {
4473 unsigned HOST_WIDE_INT bit;
4474 REAL_VALUE_TYPE t;
4475 bool inexact = false;
4476 bool init = false;
4477 bool neg;
4478 int i;
4479
4480 if (n == 0)
4481 {
4482 *r = dconst1;
4483 return false;
4484 }
4485 else if (n < 0)
4486 {
4487 /* Don't worry about overflow, from now on n is unsigned. */
4488 neg = true;
4489 n = -n;
4490 }
4491 else
4492 neg = false;
4493
4494 t = *x;
4495 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4496 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4497 {
4498 if (init)
4499 {
4500 inexact |= do_multiply (&t, &t, &t);
4501 if (n & bit)
4502 inexact |= do_multiply (&t, &t, x);
4503 }
4504 else if (n & bit)
4505 init = true;
4506 bit >>= 1;
4507 }
4508
4509 if (neg)
4510 inexact |= do_divide (&t, &dconst1, &t);
4511
4512 real_convert (r, mode, &t);
4513 return inexact;
4514 }
4515
4516 /* Round X to the nearest integer not larger in absolute value, i.e.
4517 towards zero, placing the result in R in mode MODE. */
4518
4519 void
4520 real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
4521 const REAL_VALUE_TYPE *x)
4522 {
4523 do_fix_trunc (r, x);
4524 if (mode != VOIDmode)
4525 real_convert (r, mode, r);
4526 }
4527
4528 /* Round X to the largest integer not greater in value, i.e. round
4529 down, placing the result in R in mode MODE. */
4530
4531 void
4532 real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
4533 const REAL_VALUE_TYPE *x)
4534 {
4535 REAL_VALUE_TYPE t;
4536
4537 do_fix_trunc (&t, x);
4538 if (! real_identical (&t, x) && x->sign)
4539 do_add (&t, &t, &dconstm1, 0);
4540 if (mode != VOIDmode)
4541 real_convert (r, mode, &t);
4542 else
4543 *r = t;
4544 }
4545
4546 /* Round X to the smallest integer not less then argument, i.e. round
4547 up, placing the result in R in mode MODE. */
4548
4549 void
4550 real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
4551 const REAL_VALUE_TYPE *x)
4552 {
4553 REAL_VALUE_TYPE t;
4554
4555 do_fix_trunc (&t, x);
4556 if (! real_identical (&t, x) && ! x->sign)
4557 do_add (&t, &t, &dconst1, 0);
4558 if (mode != VOIDmode)
4559 real_convert (r, mode, &t);
4560 else
4561 *r = t;
4562 }
4563
4564 /* Round X to the nearest integer, but round halfway cases away from
4565 zero. */
4566
4567 void
4568 real_round (REAL_VALUE_TYPE *r, enum machine_mode mode,
4569 const REAL_VALUE_TYPE *x)
4570 {
4571 do_add (r, x, &dconsthalf, x->sign);
4572 do_fix_trunc (r, r);
4573 if (mode != VOIDmode)
4574 real_convert (r, mode, r);
4575 }
4576
4577 /* Set the sign of R to the sign of X. */
4578
4579 void
4580 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4581 {
4582 r->sign = x->sign;
4583 }
4584
4585 /* Convert from REAL_VALUE_TYPE to MPFR. The caller is responsible
4586 for initializing and clearing the MPFR parameter. */
4587
4588 void
4589 mpfr_from_real (mpfr_ptr m, const REAL_VALUE_TYPE *r, mp_rnd_t rndmode)
4590 {
4591 /* We use a string as an intermediate type. */
4592 char buf[128];
4593 int ret;
4594
4595 /* Take care of Infinity and NaN. */
4596 if (r->cl == rvc_inf)
4597 {
4598 mpfr_set_inf (m, r->sign == 1 ? -1 : 1);
4599 return;
4600 }
4601
4602 if (r->cl == rvc_nan)
4603 {
4604 mpfr_set_nan (m);
4605 return;
4606 }
4607
4608 real_to_hexadecimal (buf, r, sizeof (buf), 0, 1);
4609 /* mpfr_set_str() parses hexadecimal floats from strings in the same
4610 format that GCC will output them. Nothing extra is needed. */
4611 ret = mpfr_set_str (m, buf, 16, rndmode);
4612 gcc_assert (ret == 0);
4613 }
4614
4615 /* Convert from MPFR to REAL_VALUE_TYPE, for a given type TYPE and rounding
4616 mode RNDMODE. TYPE is only relevant if M is a NaN. */
4617
4618 void
4619 real_from_mpfr (REAL_VALUE_TYPE *r, mpfr_srcptr m, tree type, mp_rnd_t rndmode)
4620 {
4621 /* We use a string as an intermediate type. */
4622 char buf[128], *rstr;
4623 mp_exp_t exp;
4624
4625 /* Take care of Infinity and NaN. */
4626 if (mpfr_inf_p (m))
4627 {
4628 real_inf (r);
4629 if (mpfr_sgn (m) < 0)
4630 *r = REAL_VALUE_NEGATE (*r);
4631 return;
4632 }
4633
4634 if (mpfr_nan_p (m))
4635 {
4636 real_nan (r, "", 1, TYPE_MODE (type));
4637 return;
4638 }
4639
4640 rstr = mpfr_get_str (NULL, &exp, 16, 0, m, rndmode);
4641
4642 /* The additional 12 chars add space for the sprintf below. This
4643 leaves 6 digits for the exponent which is supposedly enough. */
4644 gcc_assert (rstr != NULL && strlen (rstr) < sizeof (buf) - 12);
4645
4646 /* REAL_VALUE_ATOF expects the exponent for mantissa * 2**exp,
4647 mpfr_get_str returns the exponent for mantissa * 16**exp, adjust
4648 for that. */
4649 exp *= 4;
4650
4651 if (rstr[0] == '-')
4652 sprintf (buf, "-0x.%sp%d", &rstr[1], (int) exp);
4653 else
4654 sprintf (buf, "0x.%sp%d", rstr, (int) exp);
4655
4656 mpfr_free_str (rstr);
4657
4658 real_from_string (r, buf);
4659 }
4660
4661 /* Check whether the real constant value given is an integer. */
4662
4663 bool
4664 real_isinteger (const REAL_VALUE_TYPE *c, enum machine_mode mode)
4665 {
4666 REAL_VALUE_TYPE cint;
4667
4668 real_trunc (&cint, mode, c);
4669 return real_identical (c, &cint);
4670 }
4671
4672 /* Write into BUF the maximum representable finite floating-point
4673 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
4674 float string. LEN is the size of BUF, and the buffer must be large
4675 enough to contain the resulting string. */
4676
4677 void
4678 get_max_float (const struct real_format *fmt, char *buf, size_t len)
4679 {
4680 int i, n;
4681 char *p;
4682
4683 strcpy (buf, "0x0.");
4684 n = fmt->p;
4685 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
4686 *p++ = 'f';
4687 if (i < n)
4688 *p++ = "08ce"[n - i];
4689 sprintf (p, "p%d", fmt->emax);
4690 if (fmt->pnan < fmt->p)
4691 {
4692 /* This is an IBM extended double format made up of two IEEE
4693 doubles. The value of the long double is the sum of the
4694 values of the two parts. The most significant part is
4695 required to be the value of the long double rounded to the
4696 nearest double. Rounding means we need a slightly smaller
4697 value for LDBL_MAX. */
4698 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
4699 }
4700
4701 gcc_assert (strlen (buf) < len);
4702 }