]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
Fix PR testsuite/47013
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "output.h"
40 #include "reload.h"
41 #include "target.h"
42 #include "timevar.h"
43 #include "tree-pass.h"
44 #include "df.h"
45
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
49 #else
50 #define STACK_PUSH_CODE PRE_INC
51 #endif
52 #endif
53
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
57 #else
58 #define STACK_POP_CODE POST_DEC
59 #endif
60 #endif
61
62 #ifndef HAVE_ATTR_enabled
63 static inline bool
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
65 {
66 return true;
67 }
68 #endif
69
70 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
71 static void validate_replace_src_1 (rtx *, void *);
72 static rtx split_insn (rtx);
73
74 /* Nonzero means allow operands to be volatile.
75 This should be 0 if you are generating rtl, such as if you are calling
76 the functions in optabs.c and expmed.c (most of the time).
77 This should be 1 if all valid insns need to be recognized,
78 such as in reginfo.c and final.c and reload.c.
79
80 init_recog and init_recog_no_volatile are responsible for setting this. */
81
82 int volatile_ok;
83
84 struct recog_data recog_data;
85
86 /* Contains a vector of operand_alternative structures for every operand.
87 Set up by preprocess_constraints. */
88 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
89
90 /* On return from `constrain_operands', indicate which alternative
91 was satisfied. */
92
93 int which_alternative;
94
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
98
99 int reload_completed;
100
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed;
103
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
107
108 void
109 init_recog_no_volatile (void)
110 {
111 volatile_ok = 0;
112 }
113
114 void
115 init_recog (void)
116 {
117 volatile_ok = 1;
118 }
119
120 \f
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
122
123 static bool
124 asm_labels_ok (rtx body)
125 {
126 rtx asmop;
127 int i;
128
129 asmop = extract_asm_operands (body);
130 if (asmop == NULL_RTX)
131 return true;
132
133 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135 return false;
136
137 return true;
138 }
139
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
142
143 int
144 check_asm_operands (rtx x)
145 {
146 int noperands;
147 rtx *operands;
148 const char **constraints;
149 int i;
150
151 if (!asm_labels_ok (x))
152 return 0;
153
154 /* Post-reload, be more strict with things. */
155 if (reload_completed)
156 {
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x));
159 constrain_operands (1);
160 return which_alternative >= 0;
161 }
162
163 noperands = asm_noperands (x);
164 if (noperands < 0)
165 return 0;
166 if (noperands == 0)
167 return 1;
168
169 operands = XALLOCAVEC (rtx, noperands);
170 constraints = XALLOCAVEC (const char *, noperands);
171
172 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
173
174 for (i = 0; i < noperands; i++)
175 {
176 const char *c = constraints[i];
177 if (c[0] == '%')
178 c++;
179 if (! asm_operand_ok (operands[i], c, constraints))
180 return 0;
181 }
182
183 return 1;
184 }
185 \f
186 /* Static data for the next two routines. */
187
188 typedef struct change_t
189 {
190 rtx object;
191 int old_code;
192 rtx *loc;
193 rtx old;
194 bool unshare;
195 } change_t;
196
197 static change_t *changes;
198 static int changes_allocated;
199
200 static int num_changes = 0;
201
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
205
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 the change in place.
210
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
214
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
219
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
222 {
223 rtx old = *loc;
224
225 if (old == new_rtx || rtx_equal_p (old, new_rtx))
226 return 1;
227
228 gcc_assert (in_group != 0 || num_changes == 0);
229
230 *loc = new_rtx;
231
232 /* Save the information describing this change. */
233 if (num_changes >= changes_allocated)
234 {
235 if (changes_allocated == 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated = MAX_RECOG_OPERANDS * 5;
239 else
240 changes_allocated *= 2;
241
242 changes = XRESIZEVEC (change_t, changes, changes_allocated);
243 }
244
245 changes[num_changes].object = object;
246 changes[num_changes].loc = loc;
247 changes[num_changes].old = old;
248 changes[num_changes].unshare = unshare;
249
250 if (object && !MEM_P (object))
251 {
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
253 case invalid. */
254 changes[num_changes].old_code = INSN_CODE (object);
255 INSN_CODE (object) = -1;
256 }
257
258 num_changes++;
259
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
262
263 if (in_group)
264 return 1;
265 else
266 return apply_change_group ();
267 }
268
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to false. */
271
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
274 {
275 return validate_change_1 (object, loc, new_rtx, in_group, false);
276 }
277
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279 UNSHARE to true. */
280
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
283 {
284 return validate_change_1 (object, loc, new_rtx, in_group, true);
285 }
286
287
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
291
292 Return true if anything was changed. */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
295 {
296 if (COMMUTATIVE_P (x)
297 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
298 {
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem = XEXP (x, 0);
302 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304 return true;
305 }
306 else
307 return false;
308 }
309
310
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized. */
313
314 int
315 insn_invalid_p (rtx insn)
316 {
317 rtx pat = PATTERN (insn);
318 int num_clobbers = 0;
319 /* If we are before reload and the pattern is a SET, see if we can add
320 clobbers. */
321 int icode = recog (pat, insn,
322 (GET_CODE (pat) == SET
323 && ! reload_completed && ! reload_in_progress)
324 ? &num_clobbers : 0);
325 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
326
327
328 /* If this is an asm and the operand aren't legal, then fail. Likewise if
329 this is not an asm and the insn wasn't recognized. */
330 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
331 || (!is_asm && icode < 0))
332 return 1;
333
334 /* If we have to add CLOBBERs, fail if we have to add ones that reference
335 hard registers since our callers can't know if they are live or not.
336 Otherwise, add them. */
337 if (num_clobbers > 0)
338 {
339 rtx newpat;
340
341 if (added_clobbers_hard_reg_p (icode))
342 return 1;
343
344 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
345 XVECEXP (newpat, 0, 0) = pat;
346 add_clobbers (newpat, icode);
347 PATTERN (insn) = pat = newpat;
348 }
349
350 /* After reload, verify that all constraints are satisfied. */
351 if (reload_completed)
352 {
353 extract_insn (insn);
354
355 if (! constrain_operands (1))
356 return 1;
357 }
358
359 INSN_CODE (insn) = icode;
360 return 0;
361 }
362
363 /* Return number of changes made and not validated yet. */
364 int
365 num_changes_pending (void)
366 {
367 return num_changes;
368 }
369
370 /* Tentatively apply the changes numbered NUM and up.
371 Return 1 if all changes are valid, zero otherwise. */
372
373 int
374 verify_changes (int num)
375 {
376 int i;
377 rtx last_validated = NULL_RTX;
378
379 /* The changes have been applied and all INSN_CODEs have been reset to force
380 rerecognition.
381
382 The changes are valid if we aren't given an object, or if we are
383 given a MEM and it still is a valid address, or if this is in insn
384 and it is recognized. In the latter case, if reload has completed,
385 we also require that the operands meet the constraints for
386 the insn. */
387
388 for (i = num; i < num_changes; i++)
389 {
390 rtx object = changes[i].object;
391
392 /* If there is no object to test or if it is the same as the one we
393 already tested, ignore it. */
394 if (object == 0 || object == last_validated)
395 continue;
396
397 if (MEM_P (object))
398 {
399 if (! memory_address_addr_space_p (GET_MODE (object),
400 XEXP (object, 0),
401 MEM_ADDR_SPACE (object)))
402 break;
403 }
404 else if (REG_P (changes[i].old)
405 && asm_noperands (PATTERN (object)) > 0
406 && REG_EXPR (changes[i].old) != NULL_TREE
407 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
408 && DECL_REGISTER (REG_EXPR (changes[i].old)))
409 {
410 /* Don't allow changes of hard register operands to inline
411 assemblies if they have been defined as register asm ("x"). */
412 break;
413 }
414 else if (DEBUG_INSN_P (object))
415 continue;
416 else if (insn_invalid_p (object))
417 {
418 rtx pat = PATTERN (object);
419
420 /* Perhaps we couldn't recognize the insn because there were
421 extra CLOBBERs at the end. If so, try to re-recognize
422 without the last CLOBBER (later iterations will cause each of
423 them to be eliminated, in turn). But don't do this if we
424 have an ASM_OPERAND. */
425 if (GET_CODE (pat) == PARALLEL
426 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
427 && asm_noperands (PATTERN (object)) < 0)
428 {
429 rtx newpat;
430
431 if (XVECLEN (pat, 0) == 2)
432 newpat = XVECEXP (pat, 0, 0);
433 else
434 {
435 int j;
436
437 newpat
438 = gen_rtx_PARALLEL (VOIDmode,
439 rtvec_alloc (XVECLEN (pat, 0) - 1));
440 for (j = 0; j < XVECLEN (newpat, 0); j++)
441 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
442 }
443
444 /* Add a new change to this group to replace the pattern
445 with this new pattern. Then consider this change
446 as having succeeded. The change we added will
447 cause the entire call to fail if things remain invalid.
448
449 Note that this can lose if a later change than the one
450 we are processing specified &XVECEXP (PATTERN (object), 0, X)
451 but this shouldn't occur. */
452
453 validate_change (object, &PATTERN (object), newpat, 1);
454 continue;
455 }
456 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
457 || GET_CODE (pat) == VAR_LOCATION)
458 /* If this insn is a CLOBBER or USE, it is always valid, but is
459 never recognized. */
460 continue;
461 else
462 break;
463 }
464 last_validated = object;
465 }
466
467 return (i == num_changes);
468 }
469
470 /* A group of changes has previously been issued with validate_change
471 and verified with verify_changes. Call df_insn_rescan for each of
472 the insn changed and clear num_changes. */
473
474 void
475 confirm_change_group (void)
476 {
477 int i;
478 rtx last_object = NULL;
479
480 for (i = 0; i < num_changes; i++)
481 {
482 rtx object = changes[i].object;
483
484 if (changes[i].unshare)
485 *changes[i].loc = copy_rtx (*changes[i].loc);
486
487 /* Avoid unnecessary rescanning when multiple changes to same instruction
488 are made. */
489 if (object)
490 {
491 if (object != last_object && last_object && INSN_P (last_object))
492 df_insn_rescan (last_object);
493 last_object = object;
494 }
495 }
496
497 if (last_object && INSN_P (last_object))
498 df_insn_rescan (last_object);
499 num_changes = 0;
500 }
501
502 /* Apply a group of changes previously issued with `validate_change'.
503 If all changes are valid, call confirm_change_group and return 1,
504 otherwise, call cancel_changes and return 0. */
505
506 int
507 apply_change_group (void)
508 {
509 if (verify_changes (0))
510 {
511 confirm_change_group ();
512 return 1;
513 }
514 else
515 {
516 cancel_changes (0);
517 return 0;
518 }
519 }
520
521
522 /* Return the number of changes so far in the current group. */
523
524 int
525 num_validated_changes (void)
526 {
527 return num_changes;
528 }
529
530 /* Retract the changes numbered NUM and up. */
531
532 void
533 cancel_changes (int num)
534 {
535 int i;
536
537 /* Back out all the changes. Do this in the opposite order in which
538 they were made. */
539 for (i = num_changes - 1; i >= num; i--)
540 {
541 *changes[i].loc = changes[i].old;
542 if (changes[i].object && !MEM_P (changes[i].object))
543 INSN_CODE (changes[i].object) = changes[i].old_code;
544 }
545 num_changes = num;
546 }
547
548 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
549 rtx. */
550
551 static void
552 simplify_while_replacing (rtx *loc, rtx to, rtx object,
553 enum machine_mode op0_mode)
554 {
555 rtx x = *loc;
556 enum rtx_code code = GET_CODE (x);
557 rtx new_rtx;
558
559 if (SWAPPABLE_OPERANDS_P (x)
560 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
561 {
562 validate_unshare_change (object, loc,
563 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
564 : swap_condition (code),
565 GET_MODE (x), XEXP (x, 1),
566 XEXP (x, 0)), 1);
567 x = *loc;
568 code = GET_CODE (x);
569 }
570
571 switch (code)
572 {
573 case PLUS:
574 /* If we have a PLUS whose second operand is now a CONST_INT, use
575 simplify_gen_binary to try to simplify it.
576 ??? We may want later to remove this, once simplification is
577 separated from this function. */
578 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
579 validate_change (object, loc,
580 simplify_gen_binary
581 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
582 break;
583 case MINUS:
584 if (CONST_INT_P (XEXP (x, 1))
585 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
586 validate_change (object, loc,
587 simplify_gen_binary
588 (PLUS, GET_MODE (x), XEXP (x, 0),
589 simplify_gen_unary (NEG,
590 GET_MODE (x), XEXP (x, 1),
591 GET_MODE (x))), 1);
592 break;
593 case ZERO_EXTEND:
594 case SIGN_EXTEND:
595 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
596 {
597 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
598 op0_mode);
599 /* If any of the above failed, substitute in something that
600 we know won't be recognized. */
601 if (!new_rtx)
602 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
603 validate_change (object, loc, new_rtx, 1);
604 }
605 break;
606 case SUBREG:
607 /* All subregs possible to simplify should be simplified. */
608 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
609 SUBREG_BYTE (x));
610
611 /* Subregs of VOIDmode operands are incorrect. */
612 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
613 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
614 if (new_rtx)
615 validate_change (object, loc, new_rtx, 1);
616 break;
617 case ZERO_EXTRACT:
618 case SIGN_EXTRACT:
619 /* If we are replacing a register with memory, try to change the memory
620 to be the mode required for memory in extract operations (this isn't
621 likely to be an insertion operation; if it was, nothing bad will
622 happen, we might just fail in some cases). */
623
624 if (MEM_P (XEXP (x, 0))
625 && CONST_INT_P (XEXP (x, 1))
626 && CONST_INT_P (XEXP (x, 2))
627 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
628 && !MEM_VOLATILE_P (XEXP (x, 0)))
629 {
630 enum machine_mode wanted_mode = VOIDmode;
631 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
632 int pos = INTVAL (XEXP (x, 2));
633
634 if (GET_CODE (x) == ZERO_EXTRACT)
635 {
636 enum machine_mode new_mode
637 = mode_for_extraction (EP_extzv, 1);
638 if (new_mode != MAX_MACHINE_MODE)
639 wanted_mode = new_mode;
640 }
641 else if (GET_CODE (x) == SIGN_EXTRACT)
642 {
643 enum machine_mode new_mode
644 = mode_for_extraction (EP_extv, 1);
645 if (new_mode != MAX_MACHINE_MODE)
646 wanted_mode = new_mode;
647 }
648
649 /* If we have a narrower mode, we can do something. */
650 if (wanted_mode != VOIDmode
651 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
652 {
653 int offset = pos / BITS_PER_UNIT;
654 rtx newmem;
655
656 /* If the bytes and bits are counted differently, we
657 must adjust the offset. */
658 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
659 offset =
660 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
661 offset);
662
663 gcc_assert (GET_MODE_PRECISION (wanted_mode)
664 == GET_MODE_BITSIZE (wanted_mode));
665 pos %= GET_MODE_BITSIZE (wanted_mode);
666
667 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
668
669 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
670 validate_change (object, &XEXP (x, 0), newmem, 1);
671 }
672 }
673
674 break;
675
676 default:
677 break;
678 }
679 }
680
681 /* Replace every occurrence of FROM in X with TO. Mark each change with
682 validate_change passing OBJECT. */
683
684 static void
685 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
686 bool simplify)
687 {
688 int i, j;
689 const char *fmt;
690 rtx x = *loc;
691 enum rtx_code code;
692 enum machine_mode op0_mode = VOIDmode;
693 int prev_changes = num_changes;
694
695 if (!x)
696 return;
697
698 code = GET_CODE (x);
699 fmt = GET_RTX_FORMAT (code);
700 if (fmt[0] == 'e')
701 op0_mode = GET_MODE (XEXP (x, 0));
702
703 /* X matches FROM if it is the same rtx or they are both referring to the
704 same register in the same mode. Avoid calling rtx_equal_p unless the
705 operands look similar. */
706
707 if (x == from
708 || (REG_P (x) && REG_P (from)
709 && GET_MODE (x) == GET_MODE (from)
710 && REGNO (x) == REGNO (from))
711 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
712 && rtx_equal_p (x, from)))
713 {
714 validate_unshare_change (object, loc, to, 1);
715 return;
716 }
717
718 /* Call ourself recursively to perform the replacements.
719 We must not replace inside already replaced expression, otherwise we
720 get infinite recursion for replacements like (reg X)->(subreg (reg X))
721 done by regmove, so we must special case shared ASM_OPERANDS. */
722
723 if (GET_CODE (x) == PARALLEL)
724 {
725 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
726 {
727 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
728 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
729 {
730 /* Verify that operands are really shared. */
731 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
732 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
733 (x, 0, j))));
734 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
735 from, to, object, simplify);
736 }
737 else
738 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
739 simplify);
740 }
741 }
742 else
743 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
744 {
745 if (fmt[i] == 'e')
746 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
747 else if (fmt[i] == 'E')
748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
749 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
750 simplify);
751 }
752
753 /* If we didn't substitute, there is nothing more to do. */
754 if (num_changes == prev_changes)
755 return;
756
757 /* Allow substituted expression to have different mode. This is used by
758 regmove to change mode of pseudo register. */
759 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
760 op0_mode = GET_MODE (XEXP (x, 0));
761
762 /* Do changes needed to keep rtx consistent. Don't do any other
763 simplifications, as it is not our job. */
764 if (simplify)
765 simplify_while_replacing (loc, to, object, op0_mode);
766 }
767
768 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
769 with TO. After all changes have been made, validate by seeing
770 if INSN is still valid. */
771
772 int
773 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
774 {
775 validate_replace_rtx_1 (loc, from, to, insn, true);
776 return apply_change_group ();
777 }
778
779 /* Try replacing every occurrence of FROM in INSN with TO. After all
780 changes have been made, validate by seeing if INSN is still valid. */
781
782 int
783 validate_replace_rtx (rtx from, rtx to, rtx insn)
784 {
785 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
786 return apply_change_group ();
787 }
788
789 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
790 is a part of INSN. After all changes have been made, validate by seeing if
791 INSN is still valid.
792 validate_replace_rtx (from, to, insn) is equivalent to
793 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
794
795 int
796 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
797 {
798 validate_replace_rtx_1 (where, from, to, insn, true);
799 return apply_change_group ();
800 }
801
802 /* Same as above, but do not simplify rtx afterwards. */
803 int
804 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
805 rtx insn)
806 {
807 validate_replace_rtx_1 (where, from, to, insn, false);
808 return apply_change_group ();
809
810 }
811
812 /* Try replacing every occurrence of FROM in INSN with TO. This also
813 will replace in REG_EQUAL and REG_EQUIV notes. */
814
815 void
816 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
817 {
818 rtx note;
819 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
820 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
821 if (REG_NOTE_KIND (note) == REG_EQUAL
822 || REG_NOTE_KIND (note) == REG_EQUIV)
823 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
824 }
825
826 /* Function called by note_uses to replace used subexpressions. */
827 struct validate_replace_src_data
828 {
829 rtx from; /* Old RTX */
830 rtx to; /* New RTX */
831 rtx insn; /* Insn in which substitution is occurring. */
832 };
833
834 static void
835 validate_replace_src_1 (rtx *x, void *data)
836 {
837 struct validate_replace_src_data *d
838 = (struct validate_replace_src_data *) data;
839
840 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
841 }
842
843 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
844 SET_DESTs. */
845
846 void
847 validate_replace_src_group (rtx from, rtx to, rtx insn)
848 {
849 struct validate_replace_src_data d;
850
851 d.from = from;
852 d.to = to;
853 d.insn = insn;
854 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
855 }
856
857 /* Try simplify INSN.
858 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
859 pattern and return true if something was simplified. */
860
861 bool
862 validate_simplify_insn (rtx insn)
863 {
864 int i;
865 rtx pat = NULL;
866 rtx newpat = NULL;
867
868 pat = PATTERN (insn);
869
870 if (GET_CODE (pat) == SET)
871 {
872 newpat = simplify_rtx (SET_SRC (pat));
873 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
874 validate_change (insn, &SET_SRC (pat), newpat, 1);
875 newpat = simplify_rtx (SET_DEST (pat));
876 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
877 validate_change (insn, &SET_DEST (pat), newpat, 1);
878 }
879 else if (GET_CODE (pat) == PARALLEL)
880 for (i = 0; i < XVECLEN (pat, 0); i++)
881 {
882 rtx s = XVECEXP (pat, 0, i);
883
884 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
885 {
886 newpat = simplify_rtx (SET_SRC (s));
887 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
888 validate_change (insn, &SET_SRC (s), newpat, 1);
889 newpat = simplify_rtx (SET_DEST (s));
890 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
891 validate_change (insn, &SET_DEST (s), newpat, 1);
892 }
893 }
894 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
895 }
896 \f
897 #ifdef HAVE_cc0
898 /* Return 1 if the insn using CC0 set by INSN does not contain
899 any ordered tests applied to the condition codes.
900 EQ and NE tests do not count. */
901
902 int
903 next_insn_tests_no_inequality (rtx insn)
904 {
905 rtx next = next_cc0_user (insn);
906
907 /* If there is no next insn, we have to take the conservative choice. */
908 if (next == 0)
909 return 0;
910
911 return (INSN_P (next)
912 && ! inequality_comparisons_p (PATTERN (next)));
913 }
914 #endif
915 \f
916 /* Return 1 if OP is a valid general operand for machine mode MODE.
917 This is either a register reference, a memory reference,
918 or a constant. In the case of a memory reference, the address
919 is checked for general validity for the target machine.
920
921 Register and memory references must have mode MODE in order to be valid,
922 but some constants have no machine mode and are valid for any mode.
923
924 If MODE is VOIDmode, OP is checked for validity for whatever mode
925 it has.
926
927 The main use of this function is as a predicate in match_operand
928 expressions in the machine description. */
929
930 int
931 general_operand (rtx op, enum machine_mode mode)
932 {
933 enum rtx_code code = GET_CODE (op);
934
935 if (mode == VOIDmode)
936 mode = GET_MODE (op);
937
938 /* Don't accept CONST_INT or anything similar
939 if the caller wants something floating. */
940 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
941 && GET_MODE_CLASS (mode) != MODE_INT
942 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
943 return 0;
944
945 if (CONST_INT_P (op)
946 && mode != VOIDmode
947 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
948 return 0;
949
950 if (CONSTANT_P (op))
951 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
952 || mode == VOIDmode)
953 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
954 && targetm.legitimate_constant_p (mode == VOIDmode
955 ? GET_MODE (op)
956 : mode, op));
957
958 /* Except for certain constants with VOIDmode, already checked for,
959 OP's mode must match MODE if MODE specifies a mode. */
960
961 if (GET_MODE (op) != mode)
962 return 0;
963
964 if (code == SUBREG)
965 {
966 rtx sub = SUBREG_REG (op);
967
968 #ifdef INSN_SCHEDULING
969 /* On machines that have insn scheduling, we want all memory
970 reference to be explicit, so outlaw paradoxical SUBREGs.
971 However, we must allow them after reload so that they can
972 get cleaned up by cleanup_subreg_operands. */
973 if (!reload_completed && MEM_P (sub)
974 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
975 return 0;
976 #endif
977 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
978 may result in incorrect reference. We should simplify all valid
979 subregs of MEM anyway. But allow this after reload because we
980 might be called from cleanup_subreg_operands.
981
982 ??? This is a kludge. */
983 if (!reload_completed && SUBREG_BYTE (op) != 0
984 && MEM_P (sub))
985 return 0;
986
987 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
988 create such rtl, and we must reject it. */
989 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
990 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
991 return 0;
992
993 op = sub;
994 code = GET_CODE (op);
995 }
996
997 if (code == REG)
998 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
999 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1000
1001 if (code == MEM)
1002 {
1003 rtx y = XEXP (op, 0);
1004
1005 if (! volatile_ok && MEM_VOLATILE_P (op))
1006 return 0;
1007
1008 /* Use the mem's mode, since it will be reloaded thus. */
1009 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1010 return 1;
1011 }
1012
1013 return 0;
1014 }
1015 \f
1016 /* Return 1 if OP is a valid memory address for a memory reference
1017 of mode MODE.
1018
1019 The main use of this function is as a predicate in match_operand
1020 expressions in the machine description. */
1021
1022 int
1023 address_operand (rtx op, enum machine_mode mode)
1024 {
1025 return memory_address_p (mode, op);
1026 }
1027
1028 /* Return 1 if OP is a register reference of mode MODE.
1029 If MODE is VOIDmode, accept a register in any mode.
1030
1031 The main use of this function is as a predicate in match_operand
1032 expressions in the machine description. */
1033
1034 int
1035 register_operand (rtx op, enum machine_mode mode)
1036 {
1037 if (GET_MODE (op) != mode && mode != VOIDmode)
1038 return 0;
1039
1040 if (GET_CODE (op) == SUBREG)
1041 {
1042 rtx sub = SUBREG_REG (op);
1043
1044 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1045 because it is guaranteed to be reloaded into one.
1046 Just make sure the MEM is valid in itself.
1047 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1048 but currently it does result from (SUBREG (REG)...) where the
1049 reg went on the stack.) */
1050 if (! reload_completed && MEM_P (sub))
1051 return general_operand (op, mode);
1052
1053 #ifdef CANNOT_CHANGE_MODE_CLASS
1054 if (REG_P (sub)
1055 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1056 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1057 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1058 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1059 return 0;
1060 #endif
1061
1062 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1063 create such rtl, and we must reject it. */
1064 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1065 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1066 return 0;
1067
1068 op = sub;
1069 }
1070
1071 return (REG_P (op)
1072 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1073 || in_hard_reg_set_p (operand_reg_set,
1074 GET_MODE (op), REGNO (op))));
1075 }
1076
1077 /* Return 1 for a register in Pmode; ignore the tested mode. */
1078
1079 int
1080 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1081 {
1082 return register_operand (op, Pmode);
1083 }
1084
1085 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1086 or a hard register. */
1087
1088 int
1089 scratch_operand (rtx op, enum machine_mode mode)
1090 {
1091 if (GET_MODE (op) != mode && mode != VOIDmode)
1092 return 0;
1093
1094 return (GET_CODE (op) == SCRATCH
1095 || (REG_P (op)
1096 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1097 }
1098
1099 /* Return 1 if OP is a valid immediate operand for mode MODE.
1100
1101 The main use of this function is as a predicate in match_operand
1102 expressions in the machine description. */
1103
1104 int
1105 immediate_operand (rtx op, enum machine_mode mode)
1106 {
1107 /* Don't accept CONST_INT or anything similar
1108 if the caller wants something floating. */
1109 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1110 && GET_MODE_CLASS (mode) != MODE_INT
1111 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1112 return 0;
1113
1114 if (CONST_INT_P (op)
1115 && mode != VOIDmode
1116 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1117 return 0;
1118
1119 return (CONSTANT_P (op)
1120 && (GET_MODE (op) == mode || mode == VOIDmode
1121 || GET_MODE (op) == VOIDmode)
1122 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1123 && targetm.legitimate_constant_p (mode == VOIDmode
1124 ? GET_MODE (op)
1125 : mode, op));
1126 }
1127
1128 /* Returns 1 if OP is an operand that is a CONST_INT. */
1129
1130 int
1131 const_int_operand (rtx op, enum machine_mode mode)
1132 {
1133 if (!CONST_INT_P (op))
1134 return 0;
1135
1136 if (mode != VOIDmode
1137 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1138 return 0;
1139
1140 return 1;
1141 }
1142
1143 /* Returns 1 if OP is an operand that is a constant integer or constant
1144 floating-point number. */
1145
1146 int
1147 const_double_operand (rtx op, enum machine_mode mode)
1148 {
1149 /* Don't accept CONST_INT or anything similar
1150 if the caller wants something floating. */
1151 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1152 && GET_MODE_CLASS (mode) != MODE_INT
1153 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1154 return 0;
1155
1156 return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op))
1157 && (mode == VOIDmode || GET_MODE (op) == mode
1158 || GET_MODE (op) == VOIDmode));
1159 }
1160
1161 /* Return 1 if OP is a general operand that is not an immediate operand. */
1162
1163 int
1164 nonimmediate_operand (rtx op, enum machine_mode mode)
1165 {
1166 return (general_operand (op, mode) && ! CONSTANT_P (op));
1167 }
1168
1169 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1170
1171 int
1172 nonmemory_operand (rtx op, enum machine_mode mode)
1173 {
1174 if (CONSTANT_P (op))
1175 return immediate_operand (op, mode);
1176
1177 if (GET_MODE (op) != mode && mode != VOIDmode)
1178 return 0;
1179
1180 if (GET_CODE (op) == SUBREG)
1181 {
1182 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1183 because it is guaranteed to be reloaded into one.
1184 Just make sure the MEM is valid in itself.
1185 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1186 but currently it does result from (SUBREG (REG)...) where the
1187 reg went on the stack.) */
1188 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1189 return general_operand (op, mode);
1190 op = SUBREG_REG (op);
1191 }
1192
1193 return (REG_P (op)
1194 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1195 || in_hard_reg_set_p (operand_reg_set,
1196 GET_MODE (op), REGNO (op))));
1197 }
1198
1199 /* Return 1 if OP is a valid operand that stands for pushing a
1200 value of mode MODE onto the stack.
1201
1202 The main use of this function is as a predicate in match_operand
1203 expressions in the machine description. */
1204
1205 int
1206 push_operand (rtx op, enum machine_mode mode)
1207 {
1208 unsigned int rounded_size = GET_MODE_SIZE (mode);
1209
1210 #ifdef PUSH_ROUNDING
1211 rounded_size = PUSH_ROUNDING (rounded_size);
1212 #endif
1213
1214 if (!MEM_P (op))
1215 return 0;
1216
1217 if (mode != VOIDmode && GET_MODE (op) != mode)
1218 return 0;
1219
1220 op = XEXP (op, 0);
1221
1222 if (rounded_size == GET_MODE_SIZE (mode))
1223 {
1224 if (GET_CODE (op) != STACK_PUSH_CODE)
1225 return 0;
1226 }
1227 else
1228 {
1229 if (GET_CODE (op) != PRE_MODIFY
1230 || GET_CODE (XEXP (op, 1)) != PLUS
1231 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1232 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1233 #ifdef STACK_GROWS_DOWNWARD
1234 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1235 #else
1236 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1237 #endif
1238 )
1239 return 0;
1240 }
1241
1242 return XEXP (op, 0) == stack_pointer_rtx;
1243 }
1244
1245 /* Return 1 if OP is a valid operand that stands for popping a
1246 value of mode MODE off the stack.
1247
1248 The main use of this function is as a predicate in match_operand
1249 expressions in the machine description. */
1250
1251 int
1252 pop_operand (rtx op, enum machine_mode mode)
1253 {
1254 if (!MEM_P (op))
1255 return 0;
1256
1257 if (mode != VOIDmode && GET_MODE (op) != mode)
1258 return 0;
1259
1260 op = XEXP (op, 0);
1261
1262 if (GET_CODE (op) != STACK_POP_CODE)
1263 return 0;
1264
1265 return XEXP (op, 0) == stack_pointer_rtx;
1266 }
1267
1268 /* Return 1 if ADDR is a valid memory address
1269 for mode MODE in address space AS. */
1270
1271 int
1272 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1273 rtx addr, addr_space_t as)
1274 {
1275 #ifdef GO_IF_LEGITIMATE_ADDRESS
1276 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1277 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1278 return 0;
1279
1280 win:
1281 return 1;
1282 #else
1283 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1284 #endif
1285 }
1286
1287 /* Return 1 if OP is a valid memory reference with mode MODE,
1288 including a valid address.
1289
1290 The main use of this function is as a predicate in match_operand
1291 expressions in the machine description. */
1292
1293 int
1294 memory_operand (rtx op, enum machine_mode mode)
1295 {
1296 rtx inner;
1297
1298 if (! reload_completed)
1299 /* Note that no SUBREG is a memory operand before end of reload pass,
1300 because (SUBREG (MEM...)) forces reloading into a register. */
1301 return MEM_P (op) && general_operand (op, mode);
1302
1303 if (mode != VOIDmode && GET_MODE (op) != mode)
1304 return 0;
1305
1306 inner = op;
1307 if (GET_CODE (inner) == SUBREG)
1308 inner = SUBREG_REG (inner);
1309
1310 return (MEM_P (inner) && general_operand (op, mode));
1311 }
1312
1313 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1314 that is, a memory reference whose address is a general_operand. */
1315
1316 int
1317 indirect_operand (rtx op, enum machine_mode mode)
1318 {
1319 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1320 if (! reload_completed
1321 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1322 {
1323 int offset = SUBREG_BYTE (op);
1324 rtx inner = SUBREG_REG (op);
1325
1326 if (mode != VOIDmode && GET_MODE (op) != mode)
1327 return 0;
1328
1329 /* The only way that we can have a general_operand as the resulting
1330 address is if OFFSET is zero and the address already is an operand
1331 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1332 operand. */
1333
1334 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1335 || (GET_CODE (XEXP (inner, 0)) == PLUS
1336 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1337 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1338 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1339 }
1340
1341 return (MEM_P (op)
1342 && memory_operand (op, mode)
1343 && general_operand (XEXP (op, 0), Pmode));
1344 }
1345
1346 /* Return 1 if this is an ordered comparison operator (not including
1347 ORDERED and UNORDERED). */
1348
1349 int
1350 ordered_comparison_operator (rtx op, enum machine_mode mode)
1351 {
1352 if (mode != VOIDmode && GET_MODE (op) != mode)
1353 return false;
1354 switch (GET_CODE (op))
1355 {
1356 case EQ:
1357 case NE:
1358 case LT:
1359 case LTU:
1360 case LE:
1361 case LEU:
1362 case GT:
1363 case GTU:
1364 case GE:
1365 case GEU:
1366 return true;
1367 default:
1368 return false;
1369 }
1370 }
1371
1372 /* Return 1 if this is a comparison operator. This allows the use of
1373 MATCH_OPERATOR to recognize all the branch insns. */
1374
1375 int
1376 comparison_operator (rtx op, enum machine_mode mode)
1377 {
1378 return ((mode == VOIDmode || GET_MODE (op) == mode)
1379 && COMPARISON_P (op));
1380 }
1381 \f
1382 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1383
1384 rtx
1385 extract_asm_operands (rtx body)
1386 {
1387 rtx tmp;
1388 switch (GET_CODE (body))
1389 {
1390 case ASM_OPERANDS:
1391 return body;
1392
1393 case SET:
1394 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1395 tmp = SET_SRC (body);
1396 if (GET_CODE (tmp) == ASM_OPERANDS)
1397 return tmp;
1398 break;
1399
1400 case PARALLEL:
1401 tmp = XVECEXP (body, 0, 0);
1402 if (GET_CODE (tmp) == ASM_OPERANDS)
1403 return tmp;
1404 if (GET_CODE (tmp) == SET)
1405 {
1406 tmp = SET_SRC (tmp);
1407 if (GET_CODE (tmp) == ASM_OPERANDS)
1408 return tmp;
1409 }
1410 break;
1411
1412 default:
1413 break;
1414 }
1415 return NULL;
1416 }
1417
1418 /* If BODY is an insn body that uses ASM_OPERANDS,
1419 return the number of operands (both input and output) in the insn.
1420 Otherwise return -1. */
1421
1422 int
1423 asm_noperands (const_rtx body)
1424 {
1425 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1426 int n_sets = 0;
1427
1428 if (asm_op == NULL)
1429 return -1;
1430
1431 if (GET_CODE (body) == SET)
1432 n_sets = 1;
1433 else if (GET_CODE (body) == PARALLEL)
1434 {
1435 int i;
1436 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1437 {
1438 /* Multiple output operands, or 1 output plus some clobbers:
1439 body is
1440 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1441 /* Count backwards through CLOBBERs to determine number of SETs. */
1442 for (i = XVECLEN (body, 0); i > 0; i--)
1443 {
1444 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1445 break;
1446 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1447 return -1;
1448 }
1449
1450 /* N_SETS is now number of output operands. */
1451 n_sets = i;
1452
1453 /* Verify that all the SETs we have
1454 came from a single original asm_operands insn
1455 (so that invalid combinations are blocked). */
1456 for (i = 0; i < n_sets; i++)
1457 {
1458 rtx elt = XVECEXP (body, 0, i);
1459 if (GET_CODE (elt) != SET)
1460 return -1;
1461 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1462 return -1;
1463 /* If these ASM_OPERANDS rtx's came from different original insns
1464 then they aren't allowed together. */
1465 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1466 != ASM_OPERANDS_INPUT_VEC (asm_op))
1467 return -1;
1468 }
1469 }
1470 else
1471 {
1472 /* 0 outputs, but some clobbers:
1473 body is [(asm_operands ...) (clobber (reg ...))...]. */
1474 /* Make sure all the other parallel things really are clobbers. */
1475 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1476 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1477 return -1;
1478 }
1479 }
1480
1481 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1482 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1483 }
1484
1485 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1486 copy its operands (both input and output) into the vector OPERANDS,
1487 the locations of the operands within the insn into the vector OPERAND_LOCS,
1488 and the constraints for the operands into CONSTRAINTS.
1489 Write the modes of the operands into MODES.
1490 Return the assembler-template.
1491
1492 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1493 we don't store that info. */
1494
1495 const char *
1496 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1497 const char **constraints, enum machine_mode *modes,
1498 location_t *loc)
1499 {
1500 int nbase = 0, n, i;
1501 rtx asmop;
1502
1503 switch (GET_CODE (body))
1504 {
1505 case ASM_OPERANDS:
1506 /* Zero output asm: BODY is (asm_operands ...). */
1507 asmop = body;
1508 break;
1509
1510 case SET:
1511 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1512 asmop = SET_SRC (body);
1513
1514 /* The output is in the SET.
1515 Its constraint is in the ASM_OPERANDS itself. */
1516 if (operands)
1517 operands[0] = SET_DEST (body);
1518 if (operand_locs)
1519 operand_locs[0] = &SET_DEST (body);
1520 if (constraints)
1521 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1522 if (modes)
1523 modes[0] = GET_MODE (SET_DEST (body));
1524 nbase = 1;
1525 break;
1526
1527 case PARALLEL:
1528 {
1529 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1530
1531 asmop = XVECEXP (body, 0, 0);
1532 if (GET_CODE (asmop) == SET)
1533 {
1534 asmop = SET_SRC (asmop);
1535
1536 /* At least one output, plus some CLOBBERs. The outputs are in
1537 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1538 for (i = 0; i < nparallel; i++)
1539 {
1540 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1541 break; /* Past last SET */
1542 if (operands)
1543 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1544 if (operand_locs)
1545 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1546 if (constraints)
1547 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1548 if (modes)
1549 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1550 }
1551 nbase = i;
1552 }
1553 break;
1554 }
1555
1556 default:
1557 gcc_unreachable ();
1558 }
1559
1560 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1561 for (i = 0; i < n; i++)
1562 {
1563 if (operand_locs)
1564 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1565 if (operands)
1566 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1567 if (constraints)
1568 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1569 if (modes)
1570 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1571 }
1572 nbase += n;
1573
1574 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1575 for (i = 0; i < n; i++)
1576 {
1577 if (operand_locs)
1578 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1579 if (operands)
1580 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1581 if (constraints)
1582 constraints[nbase + i] = "";
1583 if (modes)
1584 modes[nbase + i] = Pmode;
1585 }
1586
1587 if (loc)
1588 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1589
1590 return ASM_OPERANDS_TEMPLATE (asmop);
1591 }
1592
1593 /* Check if an asm_operand matches its constraints.
1594 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1595
1596 int
1597 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1598 {
1599 int result = 0;
1600 #ifdef AUTO_INC_DEC
1601 bool incdec_ok = false;
1602 #endif
1603
1604 /* Use constrain_operands after reload. */
1605 gcc_assert (!reload_completed);
1606
1607 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1608 many alternatives as required to match the other operands. */
1609 if (*constraint == '\0')
1610 result = 1;
1611
1612 while (*constraint)
1613 {
1614 char c = *constraint;
1615 int len;
1616 switch (c)
1617 {
1618 case ',':
1619 constraint++;
1620 continue;
1621 case '=':
1622 case '+':
1623 case '*':
1624 case '%':
1625 case '!':
1626 case '#':
1627 case '&':
1628 case '?':
1629 break;
1630
1631 case '0': case '1': case '2': case '3': case '4':
1632 case '5': case '6': case '7': case '8': case '9':
1633 /* If caller provided constraints pointer, look up
1634 the maching constraint. Otherwise, our caller should have
1635 given us the proper matching constraint, but we can't
1636 actually fail the check if they didn't. Indicate that
1637 results are inconclusive. */
1638 if (constraints)
1639 {
1640 char *end;
1641 unsigned long match;
1642
1643 match = strtoul (constraint, &end, 10);
1644 if (!result)
1645 result = asm_operand_ok (op, constraints[match], NULL);
1646 constraint = (const char *) end;
1647 }
1648 else
1649 {
1650 do
1651 constraint++;
1652 while (ISDIGIT (*constraint));
1653 if (! result)
1654 result = -1;
1655 }
1656 continue;
1657
1658 case 'p':
1659 if (address_operand (op, VOIDmode))
1660 result = 1;
1661 break;
1662
1663 case TARGET_MEM_CONSTRAINT:
1664 case 'V': /* non-offsettable */
1665 if (memory_operand (op, VOIDmode))
1666 result = 1;
1667 break;
1668
1669 case 'o': /* offsettable */
1670 if (offsettable_nonstrict_memref_p (op))
1671 result = 1;
1672 break;
1673
1674 case '<':
1675 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1676 excepting those that expand_call created. Further, on some
1677 machines which do not have generalized auto inc/dec, an inc/dec
1678 is not a memory_operand.
1679
1680 Match any memory and hope things are resolved after reload. */
1681
1682 if (MEM_P (op)
1683 && (1
1684 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1685 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1686 result = 1;
1687 #ifdef AUTO_INC_DEC
1688 incdec_ok = true;
1689 #endif
1690 break;
1691
1692 case '>':
1693 if (MEM_P (op)
1694 && (1
1695 || GET_CODE (XEXP (op, 0)) == PRE_INC
1696 || GET_CODE (XEXP (op, 0)) == POST_INC))
1697 result = 1;
1698 #ifdef AUTO_INC_DEC
1699 incdec_ok = true;
1700 #endif
1701 break;
1702
1703 case 'E':
1704 case 'F':
1705 if (GET_CODE (op) == CONST_DOUBLE
1706 || (GET_CODE (op) == CONST_VECTOR
1707 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1708 result = 1;
1709 break;
1710
1711 case 'G':
1712 if (GET_CODE (op) == CONST_DOUBLE
1713 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1714 result = 1;
1715 break;
1716 case 'H':
1717 if (GET_CODE (op) == CONST_DOUBLE
1718 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1719 result = 1;
1720 break;
1721
1722 case 's':
1723 if (CONST_INT_P (op)
1724 || (GET_CODE (op) == CONST_DOUBLE
1725 && GET_MODE (op) == VOIDmode))
1726 break;
1727 /* Fall through. */
1728
1729 case 'i':
1730 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1731 result = 1;
1732 break;
1733
1734 case 'n':
1735 if (CONST_INT_P (op)
1736 || (GET_CODE (op) == CONST_DOUBLE
1737 && GET_MODE (op) == VOIDmode))
1738 result = 1;
1739 break;
1740
1741 case 'I':
1742 if (CONST_INT_P (op)
1743 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1744 result = 1;
1745 break;
1746 case 'J':
1747 if (CONST_INT_P (op)
1748 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1749 result = 1;
1750 break;
1751 case 'K':
1752 if (CONST_INT_P (op)
1753 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1754 result = 1;
1755 break;
1756 case 'L':
1757 if (CONST_INT_P (op)
1758 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1759 result = 1;
1760 break;
1761 case 'M':
1762 if (CONST_INT_P (op)
1763 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1764 result = 1;
1765 break;
1766 case 'N':
1767 if (CONST_INT_P (op)
1768 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1769 result = 1;
1770 break;
1771 case 'O':
1772 if (CONST_INT_P (op)
1773 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1774 result = 1;
1775 break;
1776 case 'P':
1777 if (CONST_INT_P (op)
1778 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1779 result = 1;
1780 break;
1781
1782 case 'X':
1783 result = 1;
1784 break;
1785
1786 case 'g':
1787 if (general_operand (op, VOIDmode))
1788 result = 1;
1789 break;
1790
1791 default:
1792 /* For all other letters, we first check for a register class,
1793 otherwise it is an EXTRA_CONSTRAINT. */
1794 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1795 {
1796 case 'r':
1797 if (GET_MODE (op) == BLKmode)
1798 break;
1799 if (register_operand (op, VOIDmode))
1800 result = 1;
1801 }
1802 #ifdef EXTRA_CONSTRAINT_STR
1803 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1804 /* Every memory operand can be reloaded to fit. */
1805 result = result || memory_operand (op, VOIDmode);
1806 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1807 /* Every address operand can be reloaded to fit. */
1808 result = result || address_operand (op, VOIDmode);
1809 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1810 result = 1;
1811 #endif
1812 break;
1813 }
1814 len = CONSTRAINT_LEN (c, constraint);
1815 do
1816 constraint++;
1817 while (--len && *constraint);
1818 if (len)
1819 return 0;
1820 }
1821
1822 #ifdef AUTO_INC_DEC
1823 /* For operands without < or > constraints reject side-effects. */
1824 if (!incdec_ok && result && MEM_P (op))
1825 switch (GET_CODE (XEXP (op, 0)))
1826 {
1827 case PRE_INC:
1828 case POST_INC:
1829 case PRE_DEC:
1830 case POST_DEC:
1831 case PRE_MODIFY:
1832 case POST_MODIFY:
1833 return 0;
1834 default:
1835 break;
1836 }
1837 #endif
1838
1839 return result;
1840 }
1841 \f
1842 /* Given an rtx *P, if it is a sum containing an integer constant term,
1843 return the location (type rtx *) of the pointer to that constant term.
1844 Otherwise, return a null pointer. */
1845
1846 rtx *
1847 find_constant_term_loc (rtx *p)
1848 {
1849 rtx *tem;
1850 enum rtx_code code = GET_CODE (*p);
1851
1852 /* If *P IS such a constant term, P is its location. */
1853
1854 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1855 || code == CONST)
1856 return p;
1857
1858 /* Otherwise, if not a sum, it has no constant term. */
1859
1860 if (GET_CODE (*p) != PLUS)
1861 return 0;
1862
1863 /* If one of the summands is constant, return its location. */
1864
1865 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1866 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1867 return p;
1868
1869 /* Otherwise, check each summand for containing a constant term. */
1870
1871 if (XEXP (*p, 0) != 0)
1872 {
1873 tem = find_constant_term_loc (&XEXP (*p, 0));
1874 if (tem != 0)
1875 return tem;
1876 }
1877
1878 if (XEXP (*p, 1) != 0)
1879 {
1880 tem = find_constant_term_loc (&XEXP (*p, 1));
1881 if (tem != 0)
1882 return tem;
1883 }
1884
1885 return 0;
1886 }
1887 \f
1888 /* Return 1 if OP is a memory reference
1889 whose address contains no side effects
1890 and remains valid after the addition
1891 of a positive integer less than the
1892 size of the object being referenced.
1893
1894 We assume that the original address is valid and do not check it.
1895
1896 This uses strict_memory_address_p as a subroutine, so
1897 don't use it before reload. */
1898
1899 int
1900 offsettable_memref_p (rtx op)
1901 {
1902 return ((MEM_P (op))
1903 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1904 MEM_ADDR_SPACE (op)));
1905 }
1906
1907 /* Similar, but don't require a strictly valid mem ref:
1908 consider pseudo-regs valid as index or base regs. */
1909
1910 int
1911 offsettable_nonstrict_memref_p (rtx op)
1912 {
1913 return ((MEM_P (op))
1914 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1915 MEM_ADDR_SPACE (op)));
1916 }
1917
1918 /* Return 1 if Y is a memory address which contains no side effects
1919 and would remain valid for address space AS after the addition of
1920 a positive integer less than the size of that mode.
1921
1922 We assume that the original address is valid and do not check it.
1923 We do check that it is valid for narrower modes.
1924
1925 If STRICTP is nonzero, we require a strictly valid address,
1926 for the sake of use in reload.c. */
1927
1928 int
1929 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1930 addr_space_t as)
1931 {
1932 enum rtx_code ycode = GET_CODE (y);
1933 rtx z;
1934 rtx y1 = y;
1935 rtx *y2;
1936 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1937 (strictp ? strict_memory_address_addr_space_p
1938 : memory_address_addr_space_p);
1939 unsigned int mode_sz = GET_MODE_SIZE (mode);
1940
1941 if (CONSTANT_ADDRESS_P (y))
1942 return 1;
1943
1944 /* Adjusting an offsettable address involves changing to a narrower mode.
1945 Make sure that's OK. */
1946
1947 if (mode_dependent_address_p (y))
1948 return 0;
1949
1950 /* ??? How much offset does an offsettable BLKmode reference need?
1951 Clearly that depends on the situation in which it's being used.
1952 However, the current situation in which we test 0xffffffff is
1953 less than ideal. Caveat user. */
1954 if (mode_sz == 0)
1955 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1956
1957 /* If the expression contains a constant term,
1958 see if it remains valid when max possible offset is added. */
1959
1960 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1961 {
1962 int good;
1963
1964 y1 = *y2;
1965 *y2 = plus_constant (*y2, mode_sz - 1);
1966 /* Use QImode because an odd displacement may be automatically invalid
1967 for any wider mode. But it should be valid for a single byte. */
1968 good = (*addressp) (QImode, y, as);
1969
1970 /* In any case, restore old contents of memory. */
1971 *y2 = y1;
1972 return good;
1973 }
1974
1975 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1976 return 0;
1977
1978 /* The offset added here is chosen as the maximum offset that
1979 any instruction could need to add when operating on something
1980 of the specified mode. We assume that if Y and Y+c are
1981 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1982 go inside a LO_SUM here, so we do so as well. */
1983 if (GET_CODE (y) == LO_SUM
1984 && mode != BLKmode
1985 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1986 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1987 plus_constant (XEXP (y, 1), mode_sz - 1));
1988 else
1989 z = plus_constant (y, mode_sz - 1);
1990
1991 /* Use QImode because an odd displacement may be automatically invalid
1992 for any wider mode. But it should be valid for a single byte. */
1993 return (*addressp) (QImode, z, as);
1994 }
1995
1996 /* Return 1 if ADDR is an address-expression whose effect depends
1997 on the mode of the memory reference it is used in.
1998
1999 Autoincrement addressing is a typical example of mode-dependence
2000 because the amount of the increment depends on the mode. */
2001
2002 bool
2003 mode_dependent_address_p (rtx addr)
2004 {
2005 /* Auto-increment addressing with anything other than post_modify
2006 or pre_modify always introduces a mode dependency. Catch such
2007 cases now instead of deferring to the target. */
2008 if (GET_CODE (addr) == PRE_INC
2009 || GET_CODE (addr) == POST_INC
2010 || GET_CODE (addr) == PRE_DEC
2011 || GET_CODE (addr) == POST_DEC)
2012 return true;
2013
2014 return targetm.mode_dependent_address_p (addr);
2015 }
2016 \f
2017 /* Like extract_insn, but save insn extracted and don't extract again, when
2018 called again for the same insn expecting that recog_data still contain the
2019 valid information. This is used primary by gen_attr infrastructure that
2020 often does extract insn again and again. */
2021 void
2022 extract_insn_cached (rtx insn)
2023 {
2024 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2025 return;
2026 extract_insn (insn);
2027 recog_data.insn = insn;
2028 }
2029
2030 /* Do cached extract_insn, constrain_operands and complain about failures.
2031 Used by insn_attrtab. */
2032 void
2033 extract_constrain_insn_cached (rtx insn)
2034 {
2035 extract_insn_cached (insn);
2036 if (which_alternative == -1
2037 && !constrain_operands (reload_completed))
2038 fatal_insn_not_found (insn);
2039 }
2040
2041 /* Do cached constrain_operands and complain about failures. */
2042 int
2043 constrain_operands_cached (int strict)
2044 {
2045 if (which_alternative == -1)
2046 return constrain_operands (strict);
2047 else
2048 return 1;
2049 }
2050 \f
2051 /* Analyze INSN and fill in recog_data. */
2052
2053 void
2054 extract_insn (rtx insn)
2055 {
2056 int i;
2057 int icode;
2058 int noperands;
2059 rtx body = PATTERN (insn);
2060
2061 recog_data.n_operands = 0;
2062 recog_data.n_alternatives = 0;
2063 recog_data.n_dups = 0;
2064 recog_data.is_asm = false;
2065
2066 switch (GET_CODE (body))
2067 {
2068 case USE:
2069 case CLOBBER:
2070 case ASM_INPUT:
2071 case ADDR_VEC:
2072 case ADDR_DIFF_VEC:
2073 case VAR_LOCATION:
2074 return;
2075
2076 case SET:
2077 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2078 goto asm_insn;
2079 else
2080 goto normal_insn;
2081 case PARALLEL:
2082 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2083 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2084 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2085 goto asm_insn;
2086 else
2087 goto normal_insn;
2088 case ASM_OPERANDS:
2089 asm_insn:
2090 recog_data.n_operands = noperands = asm_noperands (body);
2091 if (noperands >= 0)
2092 {
2093 /* This insn is an `asm' with operands. */
2094
2095 /* expand_asm_operands makes sure there aren't too many operands. */
2096 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2097
2098 /* Now get the operand values and constraints out of the insn. */
2099 decode_asm_operands (body, recog_data.operand,
2100 recog_data.operand_loc,
2101 recog_data.constraints,
2102 recog_data.operand_mode, NULL);
2103 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2104 if (noperands > 0)
2105 {
2106 const char *p = recog_data.constraints[0];
2107 recog_data.n_alternatives = 1;
2108 while (*p)
2109 recog_data.n_alternatives += (*p++ == ',');
2110 }
2111 recog_data.is_asm = true;
2112 break;
2113 }
2114 fatal_insn_not_found (insn);
2115
2116 default:
2117 normal_insn:
2118 /* Ordinary insn: recognize it, get the operands via insn_extract
2119 and get the constraints. */
2120
2121 icode = recog_memoized (insn);
2122 if (icode < 0)
2123 fatal_insn_not_found (insn);
2124
2125 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2126 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2127 recog_data.n_dups = insn_data[icode].n_dups;
2128
2129 insn_extract (insn);
2130
2131 for (i = 0; i < noperands; i++)
2132 {
2133 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2134 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2135 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2136 /* VOIDmode match_operands gets mode from their real operand. */
2137 if (recog_data.operand_mode[i] == VOIDmode)
2138 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2139 }
2140 }
2141 for (i = 0; i < noperands; i++)
2142 recog_data.operand_type[i]
2143 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2144 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2145 : OP_IN);
2146
2147 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2148
2149 if (INSN_CODE (insn) < 0)
2150 for (i = 0; i < recog_data.n_alternatives; i++)
2151 recog_data.alternative_enabled_p[i] = true;
2152 else
2153 {
2154 recog_data.insn = insn;
2155 for (i = 0; i < recog_data.n_alternatives; i++)
2156 {
2157 which_alternative = i;
2158 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2159 }
2160 }
2161
2162 recog_data.insn = NULL;
2163 which_alternative = -1;
2164 }
2165
2166 /* After calling extract_insn, you can use this function to extract some
2167 information from the constraint strings into a more usable form.
2168 The collected data is stored in recog_op_alt. */
2169 void
2170 preprocess_constraints (void)
2171 {
2172 int i;
2173
2174 for (i = 0; i < recog_data.n_operands; i++)
2175 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2176 * sizeof (struct operand_alternative)));
2177
2178 for (i = 0; i < recog_data.n_operands; i++)
2179 {
2180 int j;
2181 struct operand_alternative *op_alt;
2182 const char *p = recog_data.constraints[i];
2183
2184 op_alt = recog_op_alt[i];
2185
2186 for (j = 0; j < recog_data.n_alternatives; j++)
2187 {
2188 op_alt[j].cl = NO_REGS;
2189 op_alt[j].constraint = p;
2190 op_alt[j].matches = -1;
2191 op_alt[j].matched = -1;
2192
2193 if (!recog_data.alternative_enabled_p[j])
2194 {
2195 p = skip_alternative (p);
2196 continue;
2197 }
2198
2199 if (*p == '\0' || *p == ',')
2200 {
2201 op_alt[j].anything_ok = 1;
2202 continue;
2203 }
2204
2205 for (;;)
2206 {
2207 char c = *p;
2208 if (c == '#')
2209 do
2210 c = *++p;
2211 while (c != ',' && c != '\0');
2212 if (c == ',' || c == '\0')
2213 {
2214 p++;
2215 break;
2216 }
2217
2218 switch (c)
2219 {
2220 case '=': case '+': case '*': case '%':
2221 case 'E': case 'F': case 'G': case 'H':
2222 case 's': case 'i': case 'n':
2223 case 'I': case 'J': case 'K': case 'L':
2224 case 'M': case 'N': case 'O': case 'P':
2225 /* These don't say anything we care about. */
2226 break;
2227
2228 case '?':
2229 op_alt[j].reject += 6;
2230 break;
2231 case '!':
2232 op_alt[j].reject += 600;
2233 break;
2234 case '&':
2235 op_alt[j].earlyclobber = 1;
2236 break;
2237
2238 case '0': case '1': case '2': case '3': case '4':
2239 case '5': case '6': case '7': case '8': case '9':
2240 {
2241 char *end;
2242 op_alt[j].matches = strtoul (p, &end, 10);
2243 recog_op_alt[op_alt[j].matches][j].matched = i;
2244 p = end;
2245 }
2246 continue;
2247
2248 case TARGET_MEM_CONSTRAINT:
2249 op_alt[j].memory_ok = 1;
2250 break;
2251 case '<':
2252 op_alt[j].decmem_ok = 1;
2253 break;
2254 case '>':
2255 op_alt[j].incmem_ok = 1;
2256 break;
2257 case 'V':
2258 op_alt[j].nonoffmem_ok = 1;
2259 break;
2260 case 'o':
2261 op_alt[j].offmem_ok = 1;
2262 break;
2263 case 'X':
2264 op_alt[j].anything_ok = 1;
2265 break;
2266
2267 case 'p':
2268 op_alt[j].is_address = 1;
2269 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2270 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2271 ADDRESS, SCRATCH)];
2272 break;
2273
2274 case 'g':
2275 case 'r':
2276 op_alt[j].cl =
2277 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2278 break;
2279
2280 default:
2281 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2282 {
2283 op_alt[j].memory_ok = 1;
2284 break;
2285 }
2286 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2287 {
2288 op_alt[j].is_address = 1;
2289 op_alt[j].cl
2290 = (reg_class_subunion
2291 [(int) op_alt[j].cl]
2292 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2293 ADDRESS, SCRATCH)]);
2294 break;
2295 }
2296
2297 op_alt[j].cl
2298 = (reg_class_subunion
2299 [(int) op_alt[j].cl]
2300 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2301 break;
2302 }
2303 p += CONSTRAINT_LEN (c, p);
2304 }
2305 }
2306 }
2307 }
2308
2309 /* Check the operands of an insn against the insn's operand constraints
2310 and return 1 if they are valid.
2311 The information about the insn's operands, constraints, operand modes
2312 etc. is obtained from the global variables set up by extract_insn.
2313
2314 WHICH_ALTERNATIVE is set to a number which indicates which
2315 alternative of constraints was matched: 0 for the first alternative,
2316 1 for the next, etc.
2317
2318 In addition, when two operands are required to match
2319 and it happens that the output operand is (reg) while the
2320 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2321 make the output operand look like the input.
2322 This is because the output operand is the one the template will print.
2323
2324 This is used in final, just before printing the assembler code and by
2325 the routines that determine an insn's attribute.
2326
2327 If STRICT is a positive nonzero value, it means that we have been
2328 called after reload has been completed. In that case, we must
2329 do all checks strictly. If it is zero, it means that we have been called
2330 before reload has completed. In that case, we first try to see if we can
2331 find an alternative that matches strictly. If not, we try again, this
2332 time assuming that reload will fix up the insn. This provides a "best
2333 guess" for the alternative and is used to compute attributes of insns prior
2334 to reload. A negative value of STRICT is used for this internal call. */
2335
2336 struct funny_match
2337 {
2338 int this_op, other;
2339 };
2340
2341 int
2342 constrain_operands (int strict)
2343 {
2344 const char *constraints[MAX_RECOG_OPERANDS];
2345 int matching_operands[MAX_RECOG_OPERANDS];
2346 int earlyclobber[MAX_RECOG_OPERANDS];
2347 int c;
2348
2349 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2350 int funny_match_index;
2351
2352 which_alternative = 0;
2353 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2354 return 1;
2355
2356 for (c = 0; c < recog_data.n_operands; c++)
2357 {
2358 constraints[c] = recog_data.constraints[c];
2359 matching_operands[c] = -1;
2360 }
2361
2362 do
2363 {
2364 int seen_earlyclobber_at = -1;
2365 int opno;
2366 int lose = 0;
2367 funny_match_index = 0;
2368
2369 if (!recog_data.alternative_enabled_p[which_alternative])
2370 {
2371 int i;
2372
2373 for (i = 0; i < recog_data.n_operands; i++)
2374 constraints[i] = skip_alternative (constraints[i]);
2375
2376 which_alternative++;
2377 continue;
2378 }
2379
2380 for (opno = 0; opno < recog_data.n_operands; opno++)
2381 {
2382 rtx op = recog_data.operand[opno];
2383 enum machine_mode mode = GET_MODE (op);
2384 const char *p = constraints[opno];
2385 int offset = 0;
2386 int win = 0;
2387 int val;
2388 int len;
2389
2390 earlyclobber[opno] = 0;
2391
2392 /* A unary operator may be accepted by the predicate, but it
2393 is irrelevant for matching constraints. */
2394 if (UNARY_P (op))
2395 op = XEXP (op, 0);
2396
2397 if (GET_CODE (op) == SUBREG)
2398 {
2399 if (REG_P (SUBREG_REG (op))
2400 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2401 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2402 GET_MODE (SUBREG_REG (op)),
2403 SUBREG_BYTE (op),
2404 GET_MODE (op));
2405 op = SUBREG_REG (op);
2406 }
2407
2408 /* An empty constraint or empty alternative
2409 allows anything which matched the pattern. */
2410 if (*p == 0 || *p == ',')
2411 win = 1;
2412
2413 do
2414 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2415 {
2416 case '\0':
2417 len = 0;
2418 break;
2419 case ',':
2420 c = '\0';
2421 break;
2422
2423 case '?': case '!': case '*': case '%':
2424 case '=': case '+':
2425 break;
2426
2427 case '#':
2428 /* Ignore rest of this alternative as far as
2429 constraint checking is concerned. */
2430 do
2431 p++;
2432 while (*p && *p != ',');
2433 len = 0;
2434 break;
2435
2436 case '&':
2437 earlyclobber[opno] = 1;
2438 if (seen_earlyclobber_at < 0)
2439 seen_earlyclobber_at = opno;
2440 break;
2441
2442 case '0': case '1': case '2': case '3': case '4':
2443 case '5': case '6': case '7': case '8': case '9':
2444 {
2445 /* This operand must be the same as a previous one.
2446 This kind of constraint is used for instructions such
2447 as add when they take only two operands.
2448
2449 Note that the lower-numbered operand is passed first.
2450
2451 If we are not testing strictly, assume that this
2452 constraint will be satisfied. */
2453
2454 char *end;
2455 int match;
2456
2457 match = strtoul (p, &end, 10);
2458 p = end;
2459
2460 if (strict < 0)
2461 val = 1;
2462 else
2463 {
2464 rtx op1 = recog_data.operand[match];
2465 rtx op2 = recog_data.operand[opno];
2466
2467 /* A unary operator may be accepted by the predicate,
2468 but it is irrelevant for matching constraints. */
2469 if (UNARY_P (op1))
2470 op1 = XEXP (op1, 0);
2471 if (UNARY_P (op2))
2472 op2 = XEXP (op2, 0);
2473
2474 val = operands_match_p (op1, op2);
2475 }
2476
2477 matching_operands[opno] = match;
2478 matching_operands[match] = opno;
2479
2480 if (val != 0)
2481 win = 1;
2482
2483 /* If output is *x and input is *--x, arrange later
2484 to change the output to *--x as well, since the
2485 output op is the one that will be printed. */
2486 if (val == 2 && strict > 0)
2487 {
2488 funny_match[funny_match_index].this_op = opno;
2489 funny_match[funny_match_index++].other = match;
2490 }
2491 }
2492 len = 0;
2493 break;
2494
2495 case 'p':
2496 /* p is used for address_operands. When we are called by
2497 gen_reload, no one will have checked that the address is
2498 strictly valid, i.e., that all pseudos requiring hard regs
2499 have gotten them. */
2500 if (strict <= 0
2501 || (strict_memory_address_p (recog_data.operand_mode[opno],
2502 op)))
2503 win = 1;
2504 break;
2505
2506 /* No need to check general_operand again;
2507 it was done in insn-recog.c. Well, except that reload
2508 doesn't check the validity of its replacements, but
2509 that should only matter when there's a bug. */
2510 case 'g':
2511 /* Anything goes unless it is a REG and really has a hard reg
2512 but the hard reg is not in the class GENERAL_REGS. */
2513 if (REG_P (op))
2514 {
2515 if (strict < 0
2516 || GENERAL_REGS == ALL_REGS
2517 || (reload_in_progress
2518 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2519 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2520 win = 1;
2521 }
2522 else if (strict < 0 || general_operand (op, mode))
2523 win = 1;
2524 break;
2525
2526 case 'X':
2527 /* This is used for a MATCH_SCRATCH in the cases when
2528 we don't actually need anything. So anything goes
2529 any time. */
2530 win = 1;
2531 break;
2532
2533 case TARGET_MEM_CONSTRAINT:
2534 /* Memory operands must be valid, to the extent
2535 required by STRICT. */
2536 if (MEM_P (op))
2537 {
2538 if (strict > 0
2539 && !strict_memory_address_addr_space_p
2540 (GET_MODE (op), XEXP (op, 0),
2541 MEM_ADDR_SPACE (op)))
2542 break;
2543 if (strict == 0
2544 && !memory_address_addr_space_p
2545 (GET_MODE (op), XEXP (op, 0),
2546 MEM_ADDR_SPACE (op)))
2547 break;
2548 win = 1;
2549 }
2550 /* Before reload, accept what reload can turn into mem. */
2551 else if (strict < 0 && CONSTANT_P (op))
2552 win = 1;
2553 /* During reload, accept a pseudo */
2554 else if (reload_in_progress && REG_P (op)
2555 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2556 win = 1;
2557 break;
2558
2559 case '<':
2560 if (MEM_P (op)
2561 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2562 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2563 win = 1;
2564 break;
2565
2566 case '>':
2567 if (MEM_P (op)
2568 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2569 || GET_CODE (XEXP (op, 0)) == POST_INC))
2570 win = 1;
2571 break;
2572
2573 case 'E':
2574 case 'F':
2575 if (GET_CODE (op) == CONST_DOUBLE
2576 || (GET_CODE (op) == CONST_VECTOR
2577 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2578 win = 1;
2579 break;
2580
2581 case 'G':
2582 case 'H':
2583 if (GET_CODE (op) == CONST_DOUBLE
2584 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2585 win = 1;
2586 break;
2587
2588 case 's':
2589 if (CONST_INT_P (op)
2590 || (GET_CODE (op) == CONST_DOUBLE
2591 && GET_MODE (op) == VOIDmode))
2592 break;
2593 case 'i':
2594 if (CONSTANT_P (op))
2595 win = 1;
2596 break;
2597
2598 case 'n':
2599 if (CONST_INT_P (op)
2600 || (GET_CODE (op) == CONST_DOUBLE
2601 && GET_MODE (op) == VOIDmode))
2602 win = 1;
2603 break;
2604
2605 case 'I':
2606 case 'J':
2607 case 'K':
2608 case 'L':
2609 case 'M':
2610 case 'N':
2611 case 'O':
2612 case 'P':
2613 if (CONST_INT_P (op)
2614 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2615 win = 1;
2616 break;
2617
2618 case 'V':
2619 if (MEM_P (op)
2620 && ((strict > 0 && ! offsettable_memref_p (op))
2621 || (strict < 0
2622 && !(CONSTANT_P (op) || MEM_P (op)))
2623 || (reload_in_progress
2624 && !(REG_P (op)
2625 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2626 win = 1;
2627 break;
2628
2629 case 'o':
2630 if ((strict > 0 && offsettable_memref_p (op))
2631 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2632 /* Before reload, accept what reload can handle. */
2633 || (strict < 0
2634 && (CONSTANT_P (op) || MEM_P (op)))
2635 /* During reload, accept a pseudo */
2636 || (reload_in_progress && REG_P (op)
2637 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2638 win = 1;
2639 break;
2640
2641 default:
2642 {
2643 enum reg_class cl;
2644
2645 cl = (c == 'r'
2646 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2647 if (cl != NO_REGS)
2648 {
2649 if (strict < 0
2650 || (strict == 0
2651 && REG_P (op)
2652 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2653 || (strict == 0 && GET_CODE (op) == SCRATCH)
2654 || (REG_P (op)
2655 && reg_fits_class_p (op, cl, offset, mode)))
2656 win = 1;
2657 }
2658 #ifdef EXTRA_CONSTRAINT_STR
2659 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2660 win = 1;
2661
2662 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2663 /* Every memory operand can be reloaded to fit. */
2664 && ((strict < 0 && MEM_P (op))
2665 /* Before reload, accept what reload can turn
2666 into mem. */
2667 || (strict < 0 && CONSTANT_P (op))
2668 /* During reload, accept a pseudo */
2669 || (reload_in_progress && REG_P (op)
2670 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2671 win = 1;
2672 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2673 /* Every address operand can be reloaded to fit. */
2674 && strict < 0)
2675 win = 1;
2676 #endif
2677 break;
2678 }
2679 }
2680 while (p += len, c);
2681
2682 constraints[opno] = p;
2683 /* If this operand did not win somehow,
2684 this alternative loses. */
2685 if (! win)
2686 lose = 1;
2687 }
2688 /* This alternative won; the operands are ok.
2689 Change whichever operands this alternative says to change. */
2690 if (! lose)
2691 {
2692 int opno, eopno;
2693
2694 /* See if any earlyclobber operand conflicts with some other
2695 operand. */
2696
2697 if (strict > 0 && seen_earlyclobber_at >= 0)
2698 for (eopno = seen_earlyclobber_at;
2699 eopno < recog_data.n_operands;
2700 eopno++)
2701 /* Ignore earlyclobber operands now in memory,
2702 because we would often report failure when we have
2703 two memory operands, one of which was formerly a REG. */
2704 if (earlyclobber[eopno]
2705 && REG_P (recog_data.operand[eopno]))
2706 for (opno = 0; opno < recog_data.n_operands; opno++)
2707 if ((MEM_P (recog_data.operand[opno])
2708 || recog_data.operand_type[opno] != OP_OUT)
2709 && opno != eopno
2710 /* Ignore things like match_operator operands. */
2711 && *recog_data.constraints[opno] != 0
2712 && ! (matching_operands[opno] == eopno
2713 && operands_match_p (recog_data.operand[opno],
2714 recog_data.operand[eopno]))
2715 && ! safe_from_earlyclobber (recog_data.operand[opno],
2716 recog_data.operand[eopno]))
2717 lose = 1;
2718
2719 if (! lose)
2720 {
2721 while (--funny_match_index >= 0)
2722 {
2723 recog_data.operand[funny_match[funny_match_index].other]
2724 = recog_data.operand[funny_match[funny_match_index].this_op];
2725 }
2726
2727 #ifdef AUTO_INC_DEC
2728 /* For operands without < or > constraints reject side-effects. */
2729 if (recog_data.is_asm)
2730 {
2731 for (opno = 0; opno < recog_data.n_operands; opno++)
2732 if (MEM_P (recog_data.operand[opno]))
2733 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2734 {
2735 case PRE_INC:
2736 case POST_INC:
2737 case PRE_DEC:
2738 case POST_DEC:
2739 case PRE_MODIFY:
2740 case POST_MODIFY:
2741 if (strchr (recog_data.constraints[opno], '<') == NULL
2742 && strchr (recog_data.constraints[opno], '>')
2743 == NULL)
2744 return 0;
2745 break;
2746 default:
2747 break;
2748 }
2749 }
2750 #endif
2751 return 1;
2752 }
2753 }
2754
2755 which_alternative++;
2756 }
2757 while (which_alternative < recog_data.n_alternatives);
2758
2759 which_alternative = -1;
2760 /* If we are about to reject this, but we are not to test strictly,
2761 try a very loose test. Only return failure if it fails also. */
2762 if (strict == 0)
2763 return constrain_operands (-1);
2764 else
2765 return 0;
2766 }
2767
2768 /* Return true iff OPERAND (assumed to be a REG rtx)
2769 is a hard reg in class CLASS when its regno is offset by OFFSET
2770 and changed to mode MODE.
2771 If REG occupies multiple hard regs, all of them must be in CLASS. */
2772
2773 bool
2774 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2775 enum machine_mode mode)
2776 {
2777 int regno = REGNO (operand);
2778
2779 if (cl == NO_REGS)
2780 return false;
2781
2782 return (HARD_REGISTER_NUM_P (regno)
2783 && in_hard_reg_set_p (reg_class_contents[(int) cl],
2784 mode, regno + offset));
2785 }
2786 \f
2787 /* Split single instruction. Helper function for split_all_insns and
2788 split_all_insns_noflow. Return last insn in the sequence if successful,
2789 or NULL if unsuccessful. */
2790
2791 static rtx
2792 split_insn (rtx insn)
2793 {
2794 /* Split insns here to get max fine-grain parallelism. */
2795 rtx first = PREV_INSN (insn);
2796 rtx last = try_split (PATTERN (insn), insn, 1);
2797 rtx insn_set, last_set, note;
2798
2799 if (last == insn)
2800 return NULL_RTX;
2801
2802 /* If the original instruction was a single set that was known to be
2803 equivalent to a constant, see if we can say the same about the last
2804 instruction in the split sequence. The two instructions must set
2805 the same destination. */
2806 insn_set = single_set (insn);
2807 if (insn_set)
2808 {
2809 last_set = single_set (last);
2810 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2811 {
2812 note = find_reg_equal_equiv_note (insn);
2813 if (note && CONSTANT_P (XEXP (note, 0)))
2814 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2815 else if (CONSTANT_P (SET_SRC (insn_set)))
2816 set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set));
2817 }
2818 }
2819
2820 /* try_split returns the NOTE that INSN became. */
2821 SET_INSN_DELETED (insn);
2822
2823 /* ??? Coddle to md files that generate subregs in post-reload
2824 splitters instead of computing the proper hard register. */
2825 if (reload_completed && first != last)
2826 {
2827 first = NEXT_INSN (first);
2828 for (;;)
2829 {
2830 if (INSN_P (first))
2831 cleanup_subreg_operands (first);
2832 if (first == last)
2833 break;
2834 first = NEXT_INSN (first);
2835 }
2836 }
2837
2838 return last;
2839 }
2840
2841 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2842
2843 void
2844 split_all_insns (void)
2845 {
2846 sbitmap blocks;
2847 bool changed;
2848 basic_block bb;
2849
2850 blocks = sbitmap_alloc (last_basic_block);
2851 sbitmap_zero (blocks);
2852 changed = false;
2853
2854 FOR_EACH_BB_REVERSE (bb)
2855 {
2856 rtx insn, next;
2857 bool finish = false;
2858
2859 rtl_profile_for_bb (bb);
2860 for (insn = BB_HEAD (bb); !finish ; insn = next)
2861 {
2862 /* Can't use `next_real_insn' because that might go across
2863 CODE_LABELS and short-out basic blocks. */
2864 next = NEXT_INSN (insn);
2865 finish = (insn == BB_END (bb));
2866 if (INSN_P (insn))
2867 {
2868 rtx set = single_set (insn);
2869
2870 /* Don't split no-op move insns. These should silently
2871 disappear later in final. Splitting such insns would
2872 break the code that handles LIBCALL blocks. */
2873 if (set && set_noop_p (set))
2874 {
2875 /* Nops get in the way while scheduling, so delete them
2876 now if register allocation has already been done. It
2877 is too risky to try to do this before register
2878 allocation, and there are unlikely to be very many
2879 nops then anyways. */
2880 if (reload_completed)
2881 delete_insn_and_edges (insn);
2882 }
2883 else
2884 {
2885 if (split_insn (insn))
2886 {
2887 SET_BIT (blocks, bb->index);
2888 changed = true;
2889 }
2890 }
2891 }
2892 }
2893 }
2894
2895 default_rtl_profile ();
2896 if (changed)
2897 find_many_sub_basic_blocks (blocks);
2898
2899 #ifdef ENABLE_CHECKING
2900 verify_flow_info ();
2901 #endif
2902
2903 sbitmap_free (blocks);
2904 }
2905
2906 /* Same as split_all_insns, but do not expect CFG to be available.
2907 Used by machine dependent reorg passes. */
2908
2909 unsigned int
2910 split_all_insns_noflow (void)
2911 {
2912 rtx next, insn;
2913
2914 for (insn = get_insns (); insn; insn = next)
2915 {
2916 next = NEXT_INSN (insn);
2917 if (INSN_P (insn))
2918 {
2919 /* Don't split no-op move insns. These should silently
2920 disappear later in final. Splitting such insns would
2921 break the code that handles LIBCALL blocks. */
2922 rtx set = single_set (insn);
2923 if (set && set_noop_p (set))
2924 {
2925 /* Nops get in the way while scheduling, so delete them
2926 now if register allocation has already been done. It
2927 is too risky to try to do this before register
2928 allocation, and there are unlikely to be very many
2929 nops then anyways.
2930
2931 ??? Should we use delete_insn when the CFG isn't valid? */
2932 if (reload_completed)
2933 delete_insn_and_edges (insn);
2934 }
2935 else
2936 split_insn (insn);
2937 }
2938 }
2939 return 0;
2940 }
2941 \f
2942 #ifdef HAVE_peephole2
2943 struct peep2_insn_data
2944 {
2945 rtx insn;
2946 regset live_before;
2947 };
2948
2949 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2950 static int peep2_current;
2951
2952 static bool peep2_do_rebuild_jump_labels;
2953 static bool peep2_do_cleanup_cfg;
2954
2955 /* The number of instructions available to match a peep2. */
2956 int peep2_current_count;
2957
2958 /* A non-insn marker indicating the last insn of the block.
2959 The live_before regset for this element is correct, indicating
2960 DF_LIVE_OUT for the block. */
2961 #define PEEP2_EOB pc_rtx
2962
2963 /* Wrap N to fit into the peep2_insn_data buffer. */
2964
2965 static int
2966 peep2_buf_position (int n)
2967 {
2968 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2969 n -= MAX_INSNS_PER_PEEP2 + 1;
2970 return n;
2971 }
2972
2973 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2974 does not exist. Used by the recognizer to find the next insn to match
2975 in a multi-insn pattern. */
2976
2977 rtx
2978 peep2_next_insn (int n)
2979 {
2980 gcc_assert (n <= peep2_current_count);
2981
2982 n = peep2_buf_position (peep2_current + n);
2983
2984 return peep2_insn_data[n].insn;
2985 }
2986
2987 /* Return true if REGNO is dead before the Nth non-note insn
2988 after `current'. */
2989
2990 int
2991 peep2_regno_dead_p (int ofs, int regno)
2992 {
2993 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2994
2995 ofs = peep2_buf_position (peep2_current + ofs);
2996
2997 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2998
2999 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3000 }
3001
3002 /* Similarly for a REG. */
3003
3004 int
3005 peep2_reg_dead_p (int ofs, rtx reg)
3006 {
3007 int regno, n;
3008
3009 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3010
3011 ofs = peep2_buf_position (peep2_current + ofs);
3012
3013 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3014
3015 regno = REGNO (reg);
3016 n = hard_regno_nregs[regno][GET_MODE (reg)];
3017 while (--n >= 0)
3018 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3019 return 0;
3020 return 1;
3021 }
3022
3023 /* Try to find a hard register of mode MODE, matching the register class in
3024 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3025 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3026 in which case the only condition is that the register must be available
3027 before CURRENT_INSN.
3028 Registers that already have bits set in REG_SET will not be considered.
3029
3030 If an appropriate register is available, it will be returned and the
3031 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3032 returned. */
3033
3034 rtx
3035 peep2_find_free_register (int from, int to, const char *class_str,
3036 enum machine_mode mode, HARD_REG_SET *reg_set)
3037 {
3038 static int search_ofs;
3039 enum reg_class cl;
3040 HARD_REG_SET live;
3041 int i;
3042
3043 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3044 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3045
3046 from = peep2_buf_position (peep2_current + from);
3047 to = peep2_buf_position (peep2_current + to);
3048
3049 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3050 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3051
3052 while (from != to)
3053 {
3054 HARD_REG_SET this_live;
3055
3056 from = peep2_buf_position (from + 1);
3057 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3058 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
3059 IOR_HARD_REG_SET (live, this_live);
3060 }
3061
3062 cl = (class_str[0] == 'r' ? GENERAL_REGS
3063 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3064
3065 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3066 {
3067 int raw_regno, regno, success, j;
3068
3069 /* Distribute the free registers as much as possible. */
3070 raw_regno = search_ofs + i;
3071 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3072 raw_regno -= FIRST_PSEUDO_REGISTER;
3073 #ifdef REG_ALLOC_ORDER
3074 regno = reg_alloc_order[raw_regno];
3075 #else
3076 regno = raw_regno;
3077 #endif
3078
3079 /* Don't allocate fixed registers. */
3080 if (fixed_regs[regno])
3081 continue;
3082 /* Don't allocate global registers. */
3083 if (global_regs[regno])
3084 continue;
3085 /* Make sure the register is of the right class. */
3086 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3087 continue;
3088 /* And can support the mode we need. */
3089 if (! HARD_REGNO_MODE_OK (regno, mode))
3090 continue;
3091 /* And that we don't create an extra save/restore. */
3092 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3093 continue;
3094 if (! targetm.hard_regno_scratch_ok (regno))
3095 continue;
3096
3097 /* And we don't clobber traceback for noreturn functions. */
3098 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3099 && (! reload_completed || frame_pointer_needed))
3100 continue;
3101
3102 success = 1;
3103 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3104 {
3105 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3106 || TEST_HARD_REG_BIT (live, regno + j))
3107 {
3108 success = 0;
3109 break;
3110 }
3111 }
3112 if (success)
3113 {
3114 add_to_hard_reg_set (reg_set, mode, regno);
3115
3116 /* Start the next search with the next register. */
3117 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3118 raw_regno = 0;
3119 search_ofs = raw_regno;
3120
3121 return gen_rtx_REG (mode, regno);
3122 }
3123 }
3124
3125 search_ofs = 0;
3126 return NULL_RTX;
3127 }
3128
3129 /* Forget all currently tracked instructions, only remember current
3130 LIVE regset. */
3131
3132 static void
3133 peep2_reinit_state (regset live)
3134 {
3135 int i;
3136
3137 /* Indicate that all slots except the last holds invalid data. */
3138 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3139 peep2_insn_data[i].insn = NULL_RTX;
3140 peep2_current_count = 0;
3141
3142 /* Indicate that the last slot contains live_after data. */
3143 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3144 peep2_current = MAX_INSNS_PER_PEEP2;
3145
3146 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3147 }
3148
3149 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3150 starting at INSN. Perform the replacement, removing the old insns and
3151 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3152 if the replacement is rejected. */
3153
3154 static rtx
3155 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3156 {
3157 int i;
3158 rtx last, eh_note, as_note, before_try, x;
3159 rtx old_insn, new_insn;
3160 bool was_call = false;
3161
3162 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3163 match more than one insn, or to be split into more than one insn. */
3164 old_insn = peep2_insn_data[peep2_current].insn;
3165 if (RTX_FRAME_RELATED_P (old_insn))
3166 {
3167 bool any_note = false;
3168 rtx note;
3169
3170 if (match_len != 0)
3171 return NULL;
3172
3173 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3174 may be in the stream for the purpose of register allocation. */
3175 if (active_insn_p (attempt))
3176 new_insn = attempt;
3177 else
3178 new_insn = next_active_insn (attempt);
3179 if (next_active_insn (new_insn))
3180 return NULL;
3181
3182 /* We have a 1-1 replacement. Copy over any frame-related info. */
3183 RTX_FRAME_RELATED_P (new_insn) = 1;
3184
3185 /* Allow the backend to fill in a note during the split. */
3186 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3187 switch (REG_NOTE_KIND (note))
3188 {
3189 case REG_FRAME_RELATED_EXPR:
3190 case REG_CFA_DEF_CFA:
3191 case REG_CFA_ADJUST_CFA:
3192 case REG_CFA_OFFSET:
3193 case REG_CFA_REGISTER:
3194 case REG_CFA_EXPRESSION:
3195 case REG_CFA_RESTORE:
3196 case REG_CFA_SET_VDRAP:
3197 any_note = true;
3198 break;
3199 default:
3200 break;
3201 }
3202
3203 /* If the backend didn't supply a note, copy one over. */
3204 if (!any_note)
3205 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3206 switch (REG_NOTE_KIND (note))
3207 {
3208 case REG_FRAME_RELATED_EXPR:
3209 case REG_CFA_DEF_CFA:
3210 case REG_CFA_ADJUST_CFA:
3211 case REG_CFA_OFFSET:
3212 case REG_CFA_REGISTER:
3213 case REG_CFA_EXPRESSION:
3214 case REG_CFA_RESTORE:
3215 case REG_CFA_SET_VDRAP:
3216 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3217 any_note = true;
3218 break;
3219 default:
3220 break;
3221 }
3222
3223 /* If there still isn't a note, make sure the unwind info sees the
3224 same expression as before the split. */
3225 if (!any_note)
3226 {
3227 rtx old_set, new_set;
3228
3229 /* The old insn had better have been simple, or annotated. */
3230 old_set = single_set (old_insn);
3231 gcc_assert (old_set != NULL);
3232
3233 new_set = single_set (new_insn);
3234 if (!new_set || !rtx_equal_p (new_set, old_set))
3235 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3236 }
3237
3238 /* Copy prologue/epilogue status. This is required in order to keep
3239 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3240 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3241 }
3242
3243 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3244 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3245 cfg-related call notes. */
3246 for (i = 0; i <= match_len; ++i)
3247 {
3248 int j;
3249 rtx note;
3250
3251 j = peep2_buf_position (peep2_current + i);
3252 old_insn = peep2_insn_data[j].insn;
3253 if (!CALL_P (old_insn))
3254 continue;
3255 was_call = true;
3256
3257 new_insn = attempt;
3258 while (new_insn != NULL_RTX)
3259 {
3260 if (CALL_P (new_insn))
3261 break;
3262 new_insn = NEXT_INSN (new_insn);
3263 }
3264
3265 gcc_assert (new_insn != NULL_RTX);
3266
3267 CALL_INSN_FUNCTION_USAGE (new_insn)
3268 = CALL_INSN_FUNCTION_USAGE (old_insn);
3269
3270 for (note = REG_NOTES (old_insn);
3271 note;
3272 note = XEXP (note, 1))
3273 switch (REG_NOTE_KIND (note))
3274 {
3275 case REG_NORETURN:
3276 case REG_SETJMP:
3277 case REG_TM:
3278 add_reg_note (new_insn, REG_NOTE_KIND (note),
3279 XEXP (note, 0));
3280 break;
3281 default:
3282 /* Discard all other reg notes. */
3283 break;
3284 }
3285
3286 /* Croak if there is another call in the sequence. */
3287 while (++i <= match_len)
3288 {
3289 j = peep2_buf_position (peep2_current + i);
3290 old_insn = peep2_insn_data[j].insn;
3291 gcc_assert (!CALL_P (old_insn));
3292 }
3293 break;
3294 }
3295
3296 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3297 move those notes over to the new sequence. */
3298 as_note = NULL;
3299 for (i = match_len; i >= 0; --i)
3300 {
3301 int j = peep2_buf_position (peep2_current + i);
3302 old_insn = peep2_insn_data[j].insn;
3303
3304 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3305 if (as_note)
3306 break;
3307 }
3308
3309 i = peep2_buf_position (peep2_current + match_len);
3310 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3311
3312 /* Replace the old sequence with the new. */
3313 last = emit_insn_after_setloc (attempt,
3314 peep2_insn_data[i].insn,
3315 INSN_LOCATOR (peep2_insn_data[i].insn));
3316 before_try = PREV_INSN (insn);
3317 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3318
3319 /* Re-insert the EH_REGION notes. */
3320 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3321 {
3322 edge eh_edge;
3323 edge_iterator ei;
3324
3325 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3326 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3327 break;
3328
3329 if (eh_note)
3330 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3331
3332 if (eh_edge)
3333 for (x = last; x != before_try; x = PREV_INSN (x))
3334 if (x != BB_END (bb)
3335 && (can_throw_internal (x)
3336 || can_nonlocal_goto (x)))
3337 {
3338 edge nfte, nehe;
3339 int flags;
3340
3341 nfte = split_block (bb, x);
3342 flags = (eh_edge->flags
3343 & (EDGE_EH | EDGE_ABNORMAL));
3344 if (CALL_P (x))
3345 flags |= EDGE_ABNORMAL_CALL;
3346 nehe = make_edge (nfte->src, eh_edge->dest,
3347 flags);
3348
3349 nehe->probability = eh_edge->probability;
3350 nfte->probability
3351 = REG_BR_PROB_BASE - nehe->probability;
3352
3353 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3354 bb = nfte->src;
3355 eh_edge = nehe;
3356 }
3357
3358 /* Converting possibly trapping insn to non-trapping is
3359 possible. Zap dummy outgoing edges. */
3360 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3361 }
3362
3363 /* Re-insert the ARGS_SIZE notes. */
3364 if (as_note)
3365 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3366
3367 /* If we generated a jump instruction, it won't have
3368 JUMP_LABEL set. Recompute after we're done. */
3369 for (x = last; x != before_try; x = PREV_INSN (x))
3370 if (JUMP_P (x))
3371 {
3372 peep2_do_rebuild_jump_labels = true;
3373 break;
3374 }
3375
3376 return last;
3377 }
3378
3379 /* After performing a replacement in basic block BB, fix up the life
3380 information in our buffer. LAST is the last of the insns that we
3381 emitted as a replacement. PREV is the insn before the start of
3382 the replacement. MATCH_LEN is the number of instructions that were
3383 matched, and which now need to be replaced in the buffer. */
3384
3385 static void
3386 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3387 {
3388 int i = peep2_buf_position (peep2_current + match_len + 1);
3389 rtx x;
3390 regset_head live;
3391
3392 INIT_REG_SET (&live);
3393 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3394
3395 gcc_assert (peep2_current_count >= match_len + 1);
3396 peep2_current_count -= match_len + 1;
3397
3398 x = last;
3399 do
3400 {
3401 if (INSN_P (x))
3402 {
3403 df_insn_rescan (x);
3404 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3405 {
3406 peep2_current_count++;
3407 if (--i < 0)
3408 i = MAX_INSNS_PER_PEEP2;
3409 peep2_insn_data[i].insn = x;
3410 df_simulate_one_insn_backwards (bb, x, &live);
3411 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3412 }
3413 }
3414 x = PREV_INSN (x);
3415 }
3416 while (x != prev);
3417 CLEAR_REG_SET (&live);
3418
3419 peep2_current = i;
3420 }
3421
3422 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3423 Return true if we added it, false otherwise. The caller will try to match
3424 peepholes against the buffer if we return false; otherwise it will try to
3425 add more instructions to the buffer. */
3426
3427 static bool
3428 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3429 {
3430 int pos;
3431
3432 /* Once we have filled the maximum number of insns the buffer can hold,
3433 allow the caller to match the insns against peepholes. We wait until
3434 the buffer is full in case the target has similar peepholes of different
3435 length; we always want to match the longest if possible. */
3436 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3437 return false;
3438
3439 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3440 any other pattern, lest it change the semantics of the frame info. */
3441 if (RTX_FRAME_RELATED_P (insn))
3442 {
3443 /* Let the buffer drain first. */
3444 if (peep2_current_count > 0)
3445 return false;
3446 /* Now the insn will be the only thing in the buffer. */
3447 }
3448
3449 pos = peep2_buf_position (peep2_current + peep2_current_count);
3450 peep2_insn_data[pos].insn = insn;
3451 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3452 peep2_current_count++;
3453
3454 df_simulate_one_insn_forwards (bb, insn, live);
3455 return true;
3456 }
3457
3458 /* Perform the peephole2 optimization pass. */
3459
3460 static void
3461 peephole2_optimize (void)
3462 {
3463 rtx insn;
3464 bitmap live;
3465 int i;
3466 basic_block bb;
3467
3468 peep2_do_cleanup_cfg = false;
3469 peep2_do_rebuild_jump_labels = false;
3470
3471 df_set_flags (DF_LR_RUN_DCE);
3472 df_note_add_problem ();
3473 df_analyze ();
3474
3475 /* Initialize the regsets we're going to use. */
3476 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3477 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3478 live = BITMAP_ALLOC (&reg_obstack);
3479
3480 FOR_EACH_BB_REVERSE (bb)
3481 {
3482 bool past_end = false;
3483 int pos;
3484
3485 rtl_profile_for_bb (bb);
3486
3487 /* Start up propagation. */
3488 bitmap_copy (live, DF_LR_IN (bb));
3489 df_simulate_initialize_forwards (bb, live);
3490 peep2_reinit_state (live);
3491
3492 insn = BB_HEAD (bb);
3493 for (;;)
3494 {
3495 rtx attempt, head;
3496 int match_len;
3497
3498 if (!past_end && !NONDEBUG_INSN_P (insn))
3499 {
3500 next_insn:
3501 insn = NEXT_INSN (insn);
3502 if (insn == NEXT_INSN (BB_END (bb)))
3503 past_end = true;
3504 continue;
3505 }
3506 if (!past_end && peep2_fill_buffer (bb, insn, live))
3507 goto next_insn;
3508
3509 /* If we did not fill an empty buffer, it signals the end of the
3510 block. */
3511 if (peep2_current_count == 0)
3512 break;
3513
3514 /* The buffer filled to the current maximum, so try to match. */
3515
3516 pos = peep2_buf_position (peep2_current + peep2_current_count);
3517 peep2_insn_data[pos].insn = PEEP2_EOB;
3518 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3519
3520 /* Match the peephole. */
3521 head = peep2_insn_data[peep2_current].insn;
3522 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3523 if (attempt != NULL)
3524 {
3525 rtx last = peep2_attempt (bb, head, match_len, attempt);
3526 if (last)
3527 {
3528 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3529 continue;
3530 }
3531 }
3532
3533 /* No match: advance the buffer by one insn. */
3534 peep2_current = peep2_buf_position (peep2_current + 1);
3535 peep2_current_count--;
3536 }
3537 }
3538
3539 default_rtl_profile ();
3540 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3541 BITMAP_FREE (peep2_insn_data[i].live_before);
3542 BITMAP_FREE (live);
3543 if (peep2_do_rebuild_jump_labels)
3544 rebuild_jump_labels (get_insns ());
3545 }
3546 #endif /* HAVE_peephole2 */
3547
3548 /* Common predicates for use with define_bypass. */
3549
3550 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3551 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3552 must be either a single_set or a PARALLEL with SETs inside. */
3553
3554 int
3555 store_data_bypass_p (rtx out_insn, rtx in_insn)
3556 {
3557 rtx out_set, in_set;
3558 rtx out_pat, in_pat;
3559 rtx out_exp, in_exp;
3560 int i, j;
3561
3562 in_set = single_set (in_insn);
3563 if (in_set)
3564 {
3565 if (!MEM_P (SET_DEST (in_set)))
3566 return false;
3567
3568 out_set = single_set (out_insn);
3569 if (out_set)
3570 {
3571 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3572 return false;
3573 }
3574 else
3575 {
3576 out_pat = PATTERN (out_insn);
3577
3578 if (GET_CODE (out_pat) != PARALLEL)
3579 return false;
3580
3581 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3582 {
3583 out_exp = XVECEXP (out_pat, 0, i);
3584
3585 if (GET_CODE (out_exp) == CLOBBER)
3586 continue;
3587
3588 gcc_assert (GET_CODE (out_exp) == SET);
3589
3590 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3591 return false;
3592 }
3593 }
3594 }
3595 else
3596 {
3597 in_pat = PATTERN (in_insn);
3598 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3599
3600 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3601 {
3602 in_exp = XVECEXP (in_pat, 0, i);
3603
3604 if (GET_CODE (in_exp) == CLOBBER)
3605 continue;
3606
3607 gcc_assert (GET_CODE (in_exp) == SET);
3608
3609 if (!MEM_P (SET_DEST (in_exp)))
3610 return false;
3611
3612 out_set = single_set (out_insn);
3613 if (out_set)
3614 {
3615 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3616 return false;
3617 }
3618 else
3619 {
3620 out_pat = PATTERN (out_insn);
3621 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3622
3623 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3624 {
3625 out_exp = XVECEXP (out_pat, 0, j);
3626
3627 if (GET_CODE (out_exp) == CLOBBER)
3628 continue;
3629
3630 gcc_assert (GET_CODE (out_exp) == SET);
3631
3632 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3633 return false;
3634 }
3635 }
3636 }
3637 }
3638
3639 return true;
3640 }
3641
3642 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3643 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3644 or multiple set; IN_INSN should be single_set for truth, but for convenience
3645 of insn categorization may be any JUMP or CALL insn. */
3646
3647 int
3648 if_test_bypass_p (rtx out_insn, rtx in_insn)
3649 {
3650 rtx out_set, in_set;
3651
3652 in_set = single_set (in_insn);
3653 if (! in_set)
3654 {
3655 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3656 return false;
3657 }
3658
3659 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3660 return false;
3661 in_set = SET_SRC (in_set);
3662
3663 out_set = single_set (out_insn);
3664 if (out_set)
3665 {
3666 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3667 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3668 return false;
3669 }
3670 else
3671 {
3672 rtx out_pat;
3673 int i;
3674
3675 out_pat = PATTERN (out_insn);
3676 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3677
3678 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3679 {
3680 rtx exp = XVECEXP (out_pat, 0, i);
3681
3682 if (GET_CODE (exp) == CLOBBER)
3683 continue;
3684
3685 gcc_assert (GET_CODE (exp) == SET);
3686
3687 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3688 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3689 return false;
3690 }
3691 }
3692
3693 return true;
3694 }
3695 \f
3696 static bool
3697 gate_handle_peephole2 (void)
3698 {
3699 return (optimize > 0 && flag_peephole2);
3700 }
3701
3702 static unsigned int
3703 rest_of_handle_peephole2 (void)
3704 {
3705 #ifdef HAVE_peephole2
3706 peephole2_optimize ();
3707 #endif
3708 return 0;
3709 }
3710
3711 struct rtl_opt_pass pass_peephole2 =
3712 {
3713 {
3714 RTL_PASS,
3715 "peephole2", /* name */
3716 gate_handle_peephole2, /* gate */
3717 rest_of_handle_peephole2, /* execute */
3718 NULL, /* sub */
3719 NULL, /* next */
3720 0, /* static_pass_number */
3721 TV_PEEPHOLE2, /* tv_id */
3722 0, /* properties_required */
3723 0, /* properties_provided */
3724 0, /* properties_destroyed */
3725 0, /* todo_flags_start */
3726 TODO_df_finish | TODO_verify_rtl_sharing |
3727 0 /* todo_flags_finish */
3728 }
3729 };
3730
3731 static unsigned int
3732 rest_of_handle_split_all_insns (void)
3733 {
3734 split_all_insns ();
3735 return 0;
3736 }
3737
3738 struct rtl_opt_pass pass_split_all_insns =
3739 {
3740 {
3741 RTL_PASS,
3742 "split1", /* name */
3743 NULL, /* gate */
3744 rest_of_handle_split_all_insns, /* execute */
3745 NULL, /* sub */
3746 NULL, /* next */
3747 0, /* static_pass_number */
3748 TV_NONE, /* tv_id */
3749 0, /* properties_required */
3750 0, /* properties_provided */
3751 0, /* properties_destroyed */
3752 0, /* todo_flags_start */
3753 0 /* todo_flags_finish */
3754 }
3755 };
3756
3757 static unsigned int
3758 rest_of_handle_split_after_reload (void)
3759 {
3760 /* If optimizing, then go ahead and split insns now. */
3761 #ifndef STACK_REGS
3762 if (optimize > 0)
3763 #endif
3764 split_all_insns ();
3765 return 0;
3766 }
3767
3768 struct rtl_opt_pass pass_split_after_reload =
3769 {
3770 {
3771 RTL_PASS,
3772 "split2", /* name */
3773 NULL, /* gate */
3774 rest_of_handle_split_after_reload, /* execute */
3775 NULL, /* sub */
3776 NULL, /* next */
3777 0, /* static_pass_number */
3778 TV_NONE, /* tv_id */
3779 0, /* properties_required */
3780 0, /* properties_provided */
3781 0, /* properties_destroyed */
3782 0, /* todo_flags_start */
3783 0 /* todo_flags_finish */
3784 }
3785 };
3786
3787 static bool
3788 gate_handle_split_before_regstack (void)
3789 {
3790 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3791 /* If flow2 creates new instructions which need splitting
3792 and scheduling after reload is not done, they might not be
3793 split until final which doesn't allow splitting
3794 if HAVE_ATTR_length. */
3795 # ifdef INSN_SCHEDULING
3796 return (optimize && !flag_schedule_insns_after_reload);
3797 # else
3798 return (optimize);
3799 # endif
3800 #else
3801 return 0;
3802 #endif
3803 }
3804
3805 static unsigned int
3806 rest_of_handle_split_before_regstack (void)
3807 {
3808 split_all_insns ();
3809 return 0;
3810 }
3811
3812 struct rtl_opt_pass pass_split_before_regstack =
3813 {
3814 {
3815 RTL_PASS,
3816 "split3", /* name */
3817 gate_handle_split_before_regstack, /* gate */
3818 rest_of_handle_split_before_regstack, /* execute */
3819 NULL, /* sub */
3820 NULL, /* next */
3821 0, /* static_pass_number */
3822 TV_NONE, /* tv_id */
3823 0, /* properties_required */
3824 0, /* properties_provided */
3825 0, /* properties_destroyed */
3826 0, /* todo_flags_start */
3827 0 /* todo_flags_finish */
3828 }
3829 };
3830
3831 static bool
3832 gate_handle_split_before_sched2 (void)
3833 {
3834 #ifdef INSN_SCHEDULING
3835 return optimize > 0 && flag_schedule_insns_after_reload;
3836 #else
3837 return 0;
3838 #endif
3839 }
3840
3841 static unsigned int
3842 rest_of_handle_split_before_sched2 (void)
3843 {
3844 #ifdef INSN_SCHEDULING
3845 split_all_insns ();
3846 #endif
3847 return 0;
3848 }
3849
3850 struct rtl_opt_pass pass_split_before_sched2 =
3851 {
3852 {
3853 RTL_PASS,
3854 "split4", /* name */
3855 gate_handle_split_before_sched2, /* gate */
3856 rest_of_handle_split_before_sched2, /* execute */
3857 NULL, /* sub */
3858 NULL, /* next */
3859 0, /* static_pass_number */
3860 TV_NONE, /* tv_id */
3861 0, /* properties_required */
3862 0, /* properties_provided */
3863 0, /* properties_destroyed */
3864 0, /* todo_flags_start */
3865 TODO_verify_flow /* todo_flags_finish */
3866 }
3867 };
3868
3869 /* The placement of the splitting that we do for shorten_branches
3870 depends on whether regstack is used by the target or not. */
3871 static bool
3872 gate_do_final_split (void)
3873 {
3874 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3875 return 1;
3876 #else
3877 return 0;
3878 #endif
3879 }
3880
3881 struct rtl_opt_pass pass_split_for_shorten_branches =
3882 {
3883 {
3884 RTL_PASS,
3885 "split5", /* name */
3886 gate_do_final_split, /* gate */
3887 split_all_insns_noflow, /* execute */
3888 NULL, /* sub */
3889 NULL, /* next */
3890 0, /* static_pass_number */
3891 TV_NONE, /* tv_id */
3892 0, /* properties_required */
3893 0, /* properties_provided */
3894 0, /* properties_destroyed */
3895 0, /* todo_flags_start */
3896 TODO_verify_rtl_sharing /* todo_flags_finish */
3897 }
3898 };