]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
backport: As described in http://gcc.gnu.org/ml/gcc/2012-08/msg00015.html...
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
51
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
59
60 #ifndef HAVE_ATTR_enabled
61 static inline bool
62 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
63 {
64 return true;
65 }
66 #endif
67
68 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
69 static void validate_replace_src_1 (rtx *, void *);
70 static rtx split_insn (rtx);
71
72 /* Nonzero means allow operands to be volatile.
73 This should be 0 if you are generating rtl, such as if you are calling
74 the functions in optabs.c and expmed.c (most of the time).
75 This should be 1 if all valid insns need to be recognized,
76 such as in reginfo.c and final.c and reload.c.
77
78 init_recog and init_recog_no_volatile are responsible for setting this. */
79
80 int volatile_ok;
81
82 struct recog_data recog_data;
83
84 /* Contains a vector of operand_alternative structures for every operand.
85 Set up by preprocess_constraints. */
86 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
87
88 /* On return from `constrain_operands', indicate which alternative
89 was satisfied. */
90
91 int which_alternative;
92
93 /* Nonzero after end of reload pass.
94 Set to 1 or 0 by toplev.c.
95 Controls the significance of (SUBREG (MEM)). */
96
97 int reload_completed;
98
99 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
100 int epilogue_completed;
101
102 /* Initialize data used by the function `recog'.
103 This must be called once in the compilation of a function
104 before any insn recognition may be done in the function. */
105
106 void
107 init_recog_no_volatile (void)
108 {
109 volatile_ok = 0;
110 }
111
112 void
113 init_recog (void)
114 {
115 volatile_ok = 1;
116 }
117
118 \f
119 /* Return true if labels in asm operands BODY are LABEL_REFs. */
120
121 static bool
122 asm_labels_ok (rtx body)
123 {
124 rtx asmop;
125 int i;
126
127 asmop = extract_asm_operands (body);
128 if (asmop == NULL_RTX)
129 return true;
130
131 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
132 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
133 return false;
134
135 return true;
136 }
137
138 /* Check that X is an insn-body for an `asm' with operands
139 and that the operands mentioned in it are legitimate. */
140
141 int
142 check_asm_operands (rtx x)
143 {
144 int noperands;
145 rtx *operands;
146 const char **constraints;
147 int i;
148
149 if (!asm_labels_ok (x))
150 return 0;
151
152 /* Post-reload, be more strict with things. */
153 if (reload_completed)
154 {
155 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
156 extract_insn (make_insn_raw (x));
157 constrain_operands (1);
158 return which_alternative >= 0;
159 }
160
161 noperands = asm_noperands (x);
162 if (noperands < 0)
163 return 0;
164 if (noperands == 0)
165 return 1;
166
167 operands = XALLOCAVEC (rtx, noperands);
168 constraints = XALLOCAVEC (const char *, noperands);
169
170 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
171
172 for (i = 0; i < noperands; i++)
173 {
174 const char *c = constraints[i];
175 if (c[0] == '%')
176 c++;
177 if (! asm_operand_ok (operands[i], c, constraints))
178 return 0;
179 }
180
181 return 1;
182 }
183 \f
184 /* Static data for the next two routines. */
185
186 typedef struct change_t
187 {
188 rtx object;
189 int old_code;
190 rtx *loc;
191 rtx old;
192 bool unshare;
193 } change_t;
194
195 static change_t *changes;
196 static int changes_allocated;
197
198 static int num_changes = 0;
199
200 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
201 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
202 the change is simply made.
203
204 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
205 will be called with the address and mode as parameters. If OBJECT is
206 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
207 the change in place.
208
209 IN_GROUP is nonzero if this is part of a group of changes that must be
210 performed as a group. In that case, the changes will be stored. The
211 function `apply_change_group' will validate and apply the changes.
212
213 If IN_GROUP is zero, this is a single change. Try to recognize the insn
214 or validate the memory reference with the change applied. If the result
215 is not valid for the machine, suppress the change and return zero.
216 Otherwise, perform the change and return 1. */
217
218 static bool
219 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
220 {
221 rtx old = *loc;
222
223 if (old == new_rtx || rtx_equal_p (old, new_rtx))
224 return 1;
225
226 gcc_assert (in_group != 0 || num_changes == 0);
227
228 *loc = new_rtx;
229
230 /* Save the information describing this change. */
231 if (num_changes >= changes_allocated)
232 {
233 if (changes_allocated == 0)
234 /* This value allows for repeated substitutions inside complex
235 indexed addresses, or changes in up to 5 insns. */
236 changes_allocated = MAX_RECOG_OPERANDS * 5;
237 else
238 changes_allocated *= 2;
239
240 changes = XRESIZEVEC (change_t, changes, changes_allocated);
241 }
242
243 changes[num_changes].object = object;
244 changes[num_changes].loc = loc;
245 changes[num_changes].old = old;
246 changes[num_changes].unshare = unshare;
247
248 if (object && !MEM_P (object))
249 {
250 /* Set INSN_CODE to force rerecognition of insn. Save old code in
251 case invalid. */
252 changes[num_changes].old_code = INSN_CODE (object);
253 INSN_CODE (object) = -1;
254 }
255
256 num_changes++;
257
258 /* If we are making a group of changes, return 1. Otherwise, validate the
259 change group we made. */
260
261 if (in_group)
262 return 1;
263 else
264 return apply_change_group ();
265 }
266
267 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
268 UNSHARE to false. */
269
270 bool
271 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
272 {
273 return validate_change_1 (object, loc, new_rtx, in_group, false);
274 }
275
276 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
277 UNSHARE to true. */
278
279 bool
280 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
281 {
282 return validate_change_1 (object, loc, new_rtx, in_group, true);
283 }
284
285
286 /* Keep X canonicalized if some changes have made it non-canonical; only
287 modifies the operands of X, not (for example) its code. Simplifications
288 are not the job of this routine.
289
290 Return true if anything was changed. */
291 bool
292 canonicalize_change_group (rtx insn, rtx x)
293 {
294 if (COMMUTATIVE_P (x)
295 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
296 {
297 /* Oops, the caller has made X no longer canonical.
298 Let's redo the changes in the correct order. */
299 rtx tem = XEXP (x, 0);
300 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
301 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
302 return true;
303 }
304 else
305 return false;
306 }
307
308
309 /* This subroutine of apply_change_group verifies whether the changes to INSN
310 were valid; i.e. whether INSN can still be recognized.
311
312 If IN_GROUP is true clobbers which have to be added in order to
313 match the instructions will be added to the current change group.
314 Otherwise the changes will take effect immediately. */
315
316 int
317 insn_invalid_p (rtx insn, bool in_group)
318 {
319 rtx pat = PATTERN (insn);
320 int num_clobbers = 0;
321 /* If we are before reload and the pattern is a SET, see if we can add
322 clobbers. */
323 int icode = recog (pat, insn,
324 (GET_CODE (pat) == SET
325 && ! reload_completed && ! reload_in_progress)
326 ? &num_clobbers : 0);
327 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
328
329
330 /* If this is an asm and the operand aren't legal, then fail. Likewise if
331 this is not an asm and the insn wasn't recognized. */
332 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
333 || (!is_asm && icode < 0))
334 return 1;
335
336 /* If we have to add CLOBBERs, fail if we have to add ones that reference
337 hard registers since our callers can't know if they are live or not.
338 Otherwise, add them. */
339 if (num_clobbers > 0)
340 {
341 rtx newpat;
342
343 if (added_clobbers_hard_reg_p (icode))
344 return 1;
345
346 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
347 XVECEXP (newpat, 0, 0) = pat;
348 add_clobbers (newpat, icode);
349 if (in_group)
350 validate_change (insn, &PATTERN (insn), newpat, 1);
351 else
352 PATTERN (insn) = pat = newpat;
353 }
354
355 /* After reload, verify that all constraints are satisfied. */
356 if (reload_completed)
357 {
358 extract_insn (insn);
359
360 if (! constrain_operands (1))
361 return 1;
362 }
363
364 INSN_CODE (insn) = icode;
365 return 0;
366 }
367
368 /* Return number of changes made and not validated yet. */
369 int
370 num_changes_pending (void)
371 {
372 return num_changes;
373 }
374
375 /* Tentatively apply the changes numbered NUM and up.
376 Return 1 if all changes are valid, zero otherwise. */
377
378 int
379 verify_changes (int num)
380 {
381 int i;
382 rtx last_validated = NULL_RTX;
383
384 /* The changes have been applied and all INSN_CODEs have been reset to force
385 rerecognition.
386
387 The changes are valid if we aren't given an object, or if we are
388 given a MEM and it still is a valid address, or if this is in insn
389 and it is recognized. In the latter case, if reload has completed,
390 we also require that the operands meet the constraints for
391 the insn. */
392
393 for (i = num; i < num_changes; i++)
394 {
395 rtx object = changes[i].object;
396
397 /* If there is no object to test or if it is the same as the one we
398 already tested, ignore it. */
399 if (object == 0 || object == last_validated)
400 continue;
401
402 if (MEM_P (object))
403 {
404 if (! memory_address_addr_space_p (GET_MODE (object),
405 XEXP (object, 0),
406 MEM_ADDR_SPACE (object)))
407 break;
408 }
409 else if (REG_P (changes[i].old)
410 && asm_noperands (PATTERN (object)) > 0
411 && REG_EXPR (changes[i].old) != NULL_TREE
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
413 && DECL_REGISTER (REG_EXPR (changes[i].old)))
414 {
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
417 break;
418 }
419 else if (DEBUG_INSN_P (object))
420 continue;
421 else if (insn_invalid_p (object, true))
422 {
423 rtx pat = PATTERN (object);
424
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat) == PARALLEL
431 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object)) < 0)
433 {
434 rtx newpat;
435
436 if (XVECLEN (pat, 0) == 2)
437 newpat = XVECEXP (pat, 0, 0);
438 else
439 {
440 int j;
441
442 newpat
443 = gen_rtx_PARALLEL (VOIDmode,
444 rtvec_alloc (XVECLEN (pat, 0) - 1));
445 for (j = 0; j < XVECLEN (newpat, 0); j++)
446 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
447 }
448
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
453
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
457
458 validate_change (object, &PATTERN (object), newpat, 1);
459 continue;
460 }
461 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
462 || GET_CODE (pat) == VAR_LOCATION)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
464 never recognized. */
465 continue;
466 else
467 break;
468 }
469 last_validated = object;
470 }
471
472 return (i == num_changes);
473 }
474
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
478
479 void
480 confirm_change_group (void)
481 {
482 int i;
483 rtx last_object = NULL;
484
485 for (i = 0; i < num_changes; i++)
486 {
487 rtx object = changes[i].object;
488
489 if (changes[i].unshare)
490 *changes[i].loc = copy_rtx (*changes[i].loc);
491
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
493 are made. */
494 if (object)
495 {
496 if (object != last_object && last_object && INSN_P (last_object))
497 df_insn_rescan (last_object);
498 last_object = object;
499 }
500 }
501
502 if (last_object && INSN_P (last_object))
503 df_insn_rescan (last_object);
504 num_changes = 0;
505 }
506
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
510
511 int
512 apply_change_group (void)
513 {
514 if (verify_changes (0))
515 {
516 confirm_change_group ();
517 return 1;
518 }
519 else
520 {
521 cancel_changes (0);
522 return 0;
523 }
524 }
525
526
527 /* Return the number of changes so far in the current group. */
528
529 int
530 num_validated_changes (void)
531 {
532 return num_changes;
533 }
534
535 /* Retract the changes numbered NUM and up. */
536
537 void
538 cancel_changes (int num)
539 {
540 int i;
541
542 /* Back out all the changes. Do this in the opposite order in which
543 they were made. */
544 for (i = num_changes - 1; i >= num; i--)
545 {
546 *changes[i].loc = changes[i].old;
547 if (changes[i].object && !MEM_P (changes[i].object))
548 INSN_CODE (changes[i].object) = changes[i].old_code;
549 }
550 num_changes = num;
551 }
552
553 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
554 rtx. */
555
556 static void
557 simplify_while_replacing (rtx *loc, rtx to, rtx object,
558 enum machine_mode op0_mode)
559 {
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx new_rtx;
563
564 if (SWAPPABLE_OPERANDS_P (x)
565 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
566 {
567 validate_unshare_change (object, loc,
568 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
569 : swap_condition (code),
570 GET_MODE (x), XEXP (x, 1),
571 XEXP (x, 0)), 1);
572 x = *loc;
573 code = GET_CODE (x);
574 }
575
576 switch (code)
577 {
578 case PLUS:
579 /* If we have a PLUS whose second operand is now a CONST_INT, use
580 simplify_gen_binary to try to simplify it.
581 ??? We may want later to remove this, once simplification is
582 separated from this function. */
583 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
584 validate_change (object, loc,
585 simplify_gen_binary
586 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
587 break;
588 case MINUS:
589 if (CONST_INT_P (XEXP (x, 1))
590 || CONST_DOUBLE_AS_INT_P (XEXP (x, 1)))
591 validate_change (object, loc,
592 simplify_gen_binary
593 (PLUS, GET_MODE (x), XEXP (x, 0),
594 simplify_gen_unary (NEG,
595 GET_MODE (x), XEXP (x, 1),
596 GET_MODE (x))), 1);
597 break;
598 case ZERO_EXTEND:
599 case SIGN_EXTEND:
600 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
601 {
602 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
603 op0_mode);
604 /* If any of the above failed, substitute in something that
605 we know won't be recognized. */
606 if (!new_rtx)
607 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
608 validate_change (object, loc, new_rtx, 1);
609 }
610 break;
611 case SUBREG:
612 /* All subregs possible to simplify should be simplified. */
613 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
614 SUBREG_BYTE (x));
615
616 /* Subregs of VOIDmode operands are incorrect. */
617 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
618 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
619 if (new_rtx)
620 validate_change (object, loc, new_rtx, 1);
621 break;
622 case ZERO_EXTRACT:
623 case SIGN_EXTRACT:
624 /* If we are replacing a register with memory, try to change the memory
625 to be the mode required for memory in extract operations (this isn't
626 likely to be an insertion operation; if it was, nothing bad will
627 happen, we might just fail in some cases). */
628
629 if (MEM_P (XEXP (x, 0))
630 && CONST_INT_P (XEXP (x, 1))
631 && CONST_INT_P (XEXP (x, 2))
632 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
633 && !MEM_VOLATILE_P (XEXP (x, 0)))
634 {
635 enum machine_mode wanted_mode = VOIDmode;
636 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
637 int pos = INTVAL (XEXP (x, 2));
638
639 if (GET_CODE (x) == ZERO_EXTRACT)
640 {
641 enum machine_mode new_mode
642 = mode_for_extraction (EP_extzv, 1);
643 if (new_mode != MAX_MACHINE_MODE)
644 wanted_mode = new_mode;
645 }
646 else if (GET_CODE (x) == SIGN_EXTRACT)
647 {
648 enum machine_mode new_mode
649 = mode_for_extraction (EP_extv, 1);
650 if (new_mode != MAX_MACHINE_MODE)
651 wanted_mode = new_mode;
652 }
653
654 /* If we have a narrower mode, we can do something. */
655 if (wanted_mode != VOIDmode
656 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
657 {
658 int offset = pos / BITS_PER_UNIT;
659 rtx newmem;
660
661 /* If the bytes and bits are counted differently, we
662 must adjust the offset. */
663 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
664 offset =
665 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
666 offset);
667
668 gcc_assert (GET_MODE_PRECISION (wanted_mode)
669 == GET_MODE_BITSIZE (wanted_mode));
670 pos %= GET_MODE_BITSIZE (wanted_mode);
671
672 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
673
674 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
675 validate_change (object, &XEXP (x, 0), newmem, 1);
676 }
677 }
678
679 break;
680
681 default:
682 break;
683 }
684 }
685
686 /* Replace every occurrence of FROM in X with TO. Mark each change with
687 validate_change passing OBJECT. */
688
689 static void
690 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
691 bool simplify)
692 {
693 int i, j;
694 const char *fmt;
695 rtx x = *loc;
696 enum rtx_code code;
697 enum machine_mode op0_mode = VOIDmode;
698 int prev_changes = num_changes;
699
700 if (!x)
701 return;
702
703 code = GET_CODE (x);
704 fmt = GET_RTX_FORMAT (code);
705 if (fmt[0] == 'e')
706 op0_mode = GET_MODE (XEXP (x, 0));
707
708 /* X matches FROM if it is the same rtx or they are both referring to the
709 same register in the same mode. Avoid calling rtx_equal_p unless the
710 operands look similar. */
711
712 if (x == from
713 || (REG_P (x) && REG_P (from)
714 && GET_MODE (x) == GET_MODE (from)
715 && REGNO (x) == REGNO (from))
716 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
717 && rtx_equal_p (x, from)))
718 {
719 validate_unshare_change (object, loc, to, 1);
720 return;
721 }
722
723 /* Call ourself recursively to perform the replacements.
724 We must not replace inside already replaced expression, otherwise we
725 get infinite recursion for replacements like (reg X)->(subreg (reg X))
726 done by regmove, so we must special case shared ASM_OPERANDS. */
727
728 if (GET_CODE (x) == PARALLEL)
729 {
730 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
731 {
732 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
733 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
734 {
735 /* Verify that operands are really shared. */
736 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
737 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
738 (x, 0, j))));
739 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
740 from, to, object, simplify);
741 }
742 else
743 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
744 simplify);
745 }
746 }
747 else
748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
749 {
750 if (fmt[i] == 'e')
751 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
752 else if (fmt[i] == 'E')
753 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
754 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
755 simplify);
756 }
757
758 /* If we didn't substitute, there is nothing more to do. */
759 if (num_changes == prev_changes)
760 return;
761
762 /* Allow substituted expression to have different mode. This is used by
763 regmove to change mode of pseudo register. */
764 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
765 op0_mode = GET_MODE (XEXP (x, 0));
766
767 /* Do changes needed to keep rtx consistent. Don't do any other
768 simplifications, as it is not our job. */
769 if (simplify)
770 simplify_while_replacing (loc, to, object, op0_mode);
771 }
772
773 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
774 with TO. After all changes have been made, validate by seeing
775 if INSN is still valid. */
776
777 int
778 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
779 {
780 validate_replace_rtx_1 (loc, from, to, insn, true);
781 return apply_change_group ();
782 }
783
784 /* Try replacing every occurrence of FROM in INSN with TO. After all
785 changes have been made, validate by seeing if INSN is still valid. */
786
787 int
788 validate_replace_rtx (rtx from, rtx to, rtx insn)
789 {
790 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
791 return apply_change_group ();
792 }
793
794 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
795 is a part of INSN. After all changes have been made, validate by seeing if
796 INSN is still valid.
797 validate_replace_rtx (from, to, insn) is equivalent to
798 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
799
800 int
801 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
802 {
803 validate_replace_rtx_1 (where, from, to, insn, true);
804 return apply_change_group ();
805 }
806
807 /* Same as above, but do not simplify rtx afterwards. */
808 int
809 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
810 rtx insn)
811 {
812 validate_replace_rtx_1 (where, from, to, insn, false);
813 return apply_change_group ();
814
815 }
816
817 /* Try replacing every occurrence of FROM in INSN with TO. This also
818 will replace in REG_EQUAL and REG_EQUIV notes. */
819
820 void
821 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
822 {
823 rtx note;
824 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
825 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
826 if (REG_NOTE_KIND (note) == REG_EQUAL
827 || REG_NOTE_KIND (note) == REG_EQUIV)
828 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
829 }
830
831 /* Function called by note_uses to replace used subexpressions. */
832 struct validate_replace_src_data
833 {
834 rtx from; /* Old RTX */
835 rtx to; /* New RTX */
836 rtx insn; /* Insn in which substitution is occurring. */
837 };
838
839 static void
840 validate_replace_src_1 (rtx *x, void *data)
841 {
842 struct validate_replace_src_data *d
843 = (struct validate_replace_src_data *) data;
844
845 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
846 }
847
848 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
849 SET_DESTs. */
850
851 void
852 validate_replace_src_group (rtx from, rtx to, rtx insn)
853 {
854 struct validate_replace_src_data d;
855
856 d.from = from;
857 d.to = to;
858 d.insn = insn;
859 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
860 }
861
862 /* Try simplify INSN.
863 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
864 pattern and return true if something was simplified. */
865
866 bool
867 validate_simplify_insn (rtx insn)
868 {
869 int i;
870 rtx pat = NULL;
871 rtx newpat = NULL;
872
873 pat = PATTERN (insn);
874
875 if (GET_CODE (pat) == SET)
876 {
877 newpat = simplify_rtx (SET_SRC (pat));
878 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
879 validate_change (insn, &SET_SRC (pat), newpat, 1);
880 newpat = simplify_rtx (SET_DEST (pat));
881 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
882 validate_change (insn, &SET_DEST (pat), newpat, 1);
883 }
884 else if (GET_CODE (pat) == PARALLEL)
885 for (i = 0; i < XVECLEN (pat, 0); i++)
886 {
887 rtx s = XVECEXP (pat, 0, i);
888
889 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
890 {
891 newpat = simplify_rtx (SET_SRC (s));
892 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
893 validate_change (insn, &SET_SRC (s), newpat, 1);
894 newpat = simplify_rtx (SET_DEST (s));
895 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
896 validate_change (insn, &SET_DEST (s), newpat, 1);
897 }
898 }
899 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
900 }
901 \f
902 #ifdef HAVE_cc0
903 /* Return 1 if the insn using CC0 set by INSN does not contain
904 any ordered tests applied to the condition codes.
905 EQ and NE tests do not count. */
906
907 int
908 next_insn_tests_no_inequality (rtx insn)
909 {
910 rtx next = next_cc0_user (insn);
911
912 /* If there is no next insn, we have to take the conservative choice. */
913 if (next == 0)
914 return 0;
915
916 return (INSN_P (next)
917 && ! inequality_comparisons_p (PATTERN (next)));
918 }
919 #endif
920 \f
921 /* Return 1 if OP is a valid general operand for machine mode MODE.
922 This is either a register reference, a memory reference,
923 or a constant. In the case of a memory reference, the address
924 is checked for general validity for the target machine.
925
926 Register and memory references must have mode MODE in order to be valid,
927 but some constants have no machine mode and are valid for any mode.
928
929 If MODE is VOIDmode, OP is checked for validity for whatever mode
930 it has.
931
932 The main use of this function is as a predicate in match_operand
933 expressions in the machine description. */
934
935 int
936 general_operand (rtx op, enum machine_mode mode)
937 {
938 enum rtx_code code = GET_CODE (op);
939
940 if (mode == VOIDmode)
941 mode = GET_MODE (op);
942
943 /* Don't accept CONST_INT or anything similar
944 if the caller wants something floating. */
945 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
946 && GET_MODE_CLASS (mode) != MODE_INT
947 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
948 return 0;
949
950 if (CONST_INT_P (op)
951 && mode != VOIDmode
952 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
953 return 0;
954
955 if (CONSTANT_P (op))
956 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
957 || mode == VOIDmode)
958 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
959 && targetm.legitimate_constant_p (mode == VOIDmode
960 ? GET_MODE (op)
961 : mode, op));
962
963 /* Except for certain constants with VOIDmode, already checked for,
964 OP's mode must match MODE if MODE specifies a mode. */
965
966 if (GET_MODE (op) != mode)
967 return 0;
968
969 if (code == SUBREG)
970 {
971 rtx sub = SUBREG_REG (op);
972
973 #ifdef INSN_SCHEDULING
974 /* On machines that have insn scheduling, we want all memory
975 reference to be explicit, so outlaw paradoxical SUBREGs.
976 However, we must allow them after reload so that they can
977 get cleaned up by cleanup_subreg_operands. */
978 if (!reload_completed && MEM_P (sub)
979 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
980 return 0;
981 #endif
982 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
983 may result in incorrect reference. We should simplify all valid
984 subregs of MEM anyway. But allow this after reload because we
985 might be called from cleanup_subreg_operands.
986
987 ??? This is a kludge. */
988 if (!reload_completed && SUBREG_BYTE (op) != 0
989 && MEM_P (sub))
990 return 0;
991
992 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
993 create such rtl, and we must reject it. */
994 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
995 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
996 return 0;
997
998 op = sub;
999 code = GET_CODE (op);
1000 }
1001
1002 if (code == REG)
1003 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1004 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1005
1006 if (code == MEM)
1007 {
1008 rtx y = XEXP (op, 0);
1009
1010 if (! volatile_ok && MEM_VOLATILE_P (op))
1011 return 0;
1012
1013 /* Use the mem's mode, since it will be reloaded thus. */
1014 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1015 return 1;
1016 }
1017
1018 return 0;
1019 }
1020 \f
1021 /* Return 1 if OP is a valid memory address for a memory reference
1022 of mode MODE.
1023
1024 The main use of this function is as a predicate in match_operand
1025 expressions in the machine description. */
1026
1027 int
1028 address_operand (rtx op, enum machine_mode mode)
1029 {
1030 return memory_address_p (mode, op);
1031 }
1032
1033 /* Return 1 if OP is a register reference of mode MODE.
1034 If MODE is VOIDmode, accept a register in any mode.
1035
1036 The main use of this function is as a predicate in match_operand
1037 expressions in the machine description. */
1038
1039 int
1040 register_operand (rtx op, enum machine_mode mode)
1041 {
1042 if (GET_MODE (op) != mode && mode != VOIDmode)
1043 return 0;
1044
1045 if (GET_CODE (op) == SUBREG)
1046 {
1047 rtx sub = SUBREG_REG (op);
1048
1049 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1050 because it is guaranteed to be reloaded into one.
1051 Just make sure the MEM is valid in itself.
1052 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1053 but currently it does result from (SUBREG (REG)...) where the
1054 reg went on the stack.) */
1055 if (! reload_completed && MEM_P (sub))
1056 return general_operand (op, mode);
1057
1058 #ifdef CANNOT_CHANGE_MODE_CLASS
1059 if (REG_P (sub)
1060 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1061 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1062 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1063 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1064 return 0;
1065 #endif
1066
1067 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1068 create such rtl, and we must reject it. */
1069 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1070 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1071 return 0;
1072
1073 op = sub;
1074 }
1075
1076 return (REG_P (op)
1077 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1078 || in_hard_reg_set_p (operand_reg_set,
1079 GET_MODE (op), REGNO (op))));
1080 }
1081
1082 /* Return 1 for a register in Pmode; ignore the tested mode. */
1083
1084 int
1085 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1086 {
1087 return register_operand (op, Pmode);
1088 }
1089
1090 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1091 or a hard register. */
1092
1093 int
1094 scratch_operand (rtx op, enum machine_mode mode)
1095 {
1096 if (GET_MODE (op) != mode && mode != VOIDmode)
1097 return 0;
1098
1099 return (GET_CODE (op) == SCRATCH
1100 || (REG_P (op)
1101 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1102 }
1103
1104 /* Return 1 if OP is a valid immediate operand for mode MODE.
1105
1106 The main use of this function is as a predicate in match_operand
1107 expressions in the machine description. */
1108
1109 int
1110 immediate_operand (rtx op, enum machine_mode mode)
1111 {
1112 /* Don't accept CONST_INT or anything similar
1113 if the caller wants something floating. */
1114 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1115 && GET_MODE_CLASS (mode) != MODE_INT
1116 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1117 return 0;
1118
1119 if (CONST_INT_P (op)
1120 && mode != VOIDmode
1121 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1122 return 0;
1123
1124 return (CONSTANT_P (op)
1125 && (GET_MODE (op) == mode || mode == VOIDmode
1126 || GET_MODE (op) == VOIDmode)
1127 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1128 && targetm.legitimate_constant_p (mode == VOIDmode
1129 ? GET_MODE (op)
1130 : mode, op));
1131 }
1132
1133 /* Returns 1 if OP is an operand that is a CONST_INT. */
1134
1135 int
1136 const_int_operand (rtx op, enum machine_mode mode)
1137 {
1138 if (!CONST_INT_P (op))
1139 return 0;
1140
1141 if (mode != VOIDmode
1142 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1143 return 0;
1144
1145 return 1;
1146 }
1147
1148 /* Returns 1 if OP is an operand that is a constant integer or constant
1149 floating-point number. */
1150
1151 int
1152 const_double_operand (rtx op, enum machine_mode mode)
1153 {
1154 /* Don't accept CONST_INT or anything similar
1155 if the caller wants something floating. */
1156 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1157 && GET_MODE_CLASS (mode) != MODE_INT
1158 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1159 return 0;
1160
1161 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1162 && (mode == VOIDmode || GET_MODE (op) == mode
1163 || GET_MODE (op) == VOIDmode));
1164 }
1165
1166 /* Return 1 if OP is a general operand that is not an immediate operand. */
1167
1168 int
1169 nonimmediate_operand (rtx op, enum machine_mode mode)
1170 {
1171 return (general_operand (op, mode) && ! CONSTANT_P (op));
1172 }
1173
1174 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1175
1176 int
1177 nonmemory_operand (rtx op, enum machine_mode mode)
1178 {
1179 if (CONSTANT_P (op))
1180 return immediate_operand (op, mode);
1181
1182 if (GET_MODE (op) != mode && mode != VOIDmode)
1183 return 0;
1184
1185 if (GET_CODE (op) == SUBREG)
1186 {
1187 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1188 because it is guaranteed to be reloaded into one.
1189 Just make sure the MEM is valid in itself.
1190 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1191 but currently it does result from (SUBREG (REG)...) where the
1192 reg went on the stack.) */
1193 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1194 return general_operand (op, mode);
1195 op = SUBREG_REG (op);
1196 }
1197
1198 return (REG_P (op)
1199 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1200 || in_hard_reg_set_p (operand_reg_set,
1201 GET_MODE (op), REGNO (op))));
1202 }
1203
1204 /* Return 1 if OP is a valid operand that stands for pushing a
1205 value of mode MODE onto the stack.
1206
1207 The main use of this function is as a predicate in match_operand
1208 expressions in the machine description. */
1209
1210 int
1211 push_operand (rtx op, enum machine_mode mode)
1212 {
1213 unsigned int rounded_size = GET_MODE_SIZE (mode);
1214
1215 #ifdef PUSH_ROUNDING
1216 rounded_size = PUSH_ROUNDING (rounded_size);
1217 #endif
1218
1219 if (!MEM_P (op))
1220 return 0;
1221
1222 if (mode != VOIDmode && GET_MODE (op) != mode)
1223 return 0;
1224
1225 op = XEXP (op, 0);
1226
1227 if (rounded_size == GET_MODE_SIZE (mode))
1228 {
1229 if (GET_CODE (op) != STACK_PUSH_CODE)
1230 return 0;
1231 }
1232 else
1233 {
1234 if (GET_CODE (op) != PRE_MODIFY
1235 || GET_CODE (XEXP (op, 1)) != PLUS
1236 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1237 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1238 #ifdef STACK_GROWS_DOWNWARD
1239 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1240 #else
1241 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1242 #endif
1243 )
1244 return 0;
1245 }
1246
1247 return XEXP (op, 0) == stack_pointer_rtx;
1248 }
1249
1250 /* Return 1 if OP is a valid operand that stands for popping a
1251 value of mode MODE off the stack.
1252
1253 The main use of this function is as a predicate in match_operand
1254 expressions in the machine description. */
1255
1256 int
1257 pop_operand (rtx op, enum machine_mode mode)
1258 {
1259 if (!MEM_P (op))
1260 return 0;
1261
1262 if (mode != VOIDmode && GET_MODE (op) != mode)
1263 return 0;
1264
1265 op = XEXP (op, 0);
1266
1267 if (GET_CODE (op) != STACK_POP_CODE)
1268 return 0;
1269
1270 return XEXP (op, 0) == stack_pointer_rtx;
1271 }
1272
1273 /* Return 1 if ADDR is a valid memory address
1274 for mode MODE in address space AS. */
1275
1276 int
1277 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1278 rtx addr, addr_space_t as)
1279 {
1280 #ifdef GO_IF_LEGITIMATE_ADDRESS
1281 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1282 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1283 return 0;
1284
1285 win:
1286 return 1;
1287 #else
1288 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1289 #endif
1290 }
1291
1292 /* Return 1 if OP is a valid memory reference with mode MODE,
1293 including a valid address.
1294
1295 The main use of this function is as a predicate in match_operand
1296 expressions in the machine description. */
1297
1298 int
1299 memory_operand (rtx op, enum machine_mode mode)
1300 {
1301 rtx inner;
1302
1303 if (! reload_completed)
1304 /* Note that no SUBREG is a memory operand before end of reload pass,
1305 because (SUBREG (MEM...)) forces reloading into a register. */
1306 return MEM_P (op) && general_operand (op, mode);
1307
1308 if (mode != VOIDmode && GET_MODE (op) != mode)
1309 return 0;
1310
1311 inner = op;
1312 if (GET_CODE (inner) == SUBREG)
1313 inner = SUBREG_REG (inner);
1314
1315 return (MEM_P (inner) && general_operand (op, mode));
1316 }
1317
1318 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1319 that is, a memory reference whose address is a general_operand. */
1320
1321 int
1322 indirect_operand (rtx op, enum machine_mode mode)
1323 {
1324 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1325 if (! reload_completed
1326 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1327 {
1328 int offset = SUBREG_BYTE (op);
1329 rtx inner = SUBREG_REG (op);
1330
1331 if (mode != VOIDmode && GET_MODE (op) != mode)
1332 return 0;
1333
1334 /* The only way that we can have a general_operand as the resulting
1335 address is if OFFSET is zero and the address already is an operand
1336 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1337 operand. */
1338
1339 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1340 || (GET_CODE (XEXP (inner, 0)) == PLUS
1341 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1342 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1343 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1344 }
1345
1346 return (MEM_P (op)
1347 && memory_operand (op, mode)
1348 && general_operand (XEXP (op, 0), Pmode));
1349 }
1350
1351 /* Return 1 if this is an ordered comparison operator (not including
1352 ORDERED and UNORDERED). */
1353
1354 int
1355 ordered_comparison_operator (rtx op, enum machine_mode mode)
1356 {
1357 if (mode != VOIDmode && GET_MODE (op) != mode)
1358 return false;
1359 switch (GET_CODE (op))
1360 {
1361 case EQ:
1362 case NE:
1363 case LT:
1364 case LTU:
1365 case LE:
1366 case LEU:
1367 case GT:
1368 case GTU:
1369 case GE:
1370 case GEU:
1371 return true;
1372 default:
1373 return false;
1374 }
1375 }
1376
1377 /* Return 1 if this is a comparison operator. This allows the use of
1378 MATCH_OPERATOR to recognize all the branch insns. */
1379
1380 int
1381 comparison_operator (rtx op, enum machine_mode mode)
1382 {
1383 return ((mode == VOIDmode || GET_MODE (op) == mode)
1384 && COMPARISON_P (op));
1385 }
1386 \f
1387 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1388
1389 rtx
1390 extract_asm_operands (rtx body)
1391 {
1392 rtx tmp;
1393 switch (GET_CODE (body))
1394 {
1395 case ASM_OPERANDS:
1396 return body;
1397
1398 case SET:
1399 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1400 tmp = SET_SRC (body);
1401 if (GET_CODE (tmp) == ASM_OPERANDS)
1402 return tmp;
1403 break;
1404
1405 case PARALLEL:
1406 tmp = XVECEXP (body, 0, 0);
1407 if (GET_CODE (tmp) == ASM_OPERANDS)
1408 return tmp;
1409 if (GET_CODE (tmp) == SET)
1410 {
1411 tmp = SET_SRC (tmp);
1412 if (GET_CODE (tmp) == ASM_OPERANDS)
1413 return tmp;
1414 }
1415 break;
1416
1417 default:
1418 break;
1419 }
1420 return NULL;
1421 }
1422
1423 /* If BODY is an insn body that uses ASM_OPERANDS,
1424 return the number of operands (both input and output) in the insn.
1425 Otherwise return -1. */
1426
1427 int
1428 asm_noperands (const_rtx body)
1429 {
1430 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1431 int n_sets = 0;
1432
1433 if (asm_op == NULL)
1434 return -1;
1435
1436 if (GET_CODE (body) == SET)
1437 n_sets = 1;
1438 else if (GET_CODE (body) == PARALLEL)
1439 {
1440 int i;
1441 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1442 {
1443 /* Multiple output operands, or 1 output plus some clobbers:
1444 body is
1445 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1446 /* Count backwards through CLOBBERs to determine number of SETs. */
1447 for (i = XVECLEN (body, 0); i > 0; i--)
1448 {
1449 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1450 break;
1451 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1452 return -1;
1453 }
1454
1455 /* N_SETS is now number of output operands. */
1456 n_sets = i;
1457
1458 /* Verify that all the SETs we have
1459 came from a single original asm_operands insn
1460 (so that invalid combinations are blocked). */
1461 for (i = 0; i < n_sets; i++)
1462 {
1463 rtx elt = XVECEXP (body, 0, i);
1464 if (GET_CODE (elt) != SET)
1465 return -1;
1466 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1467 return -1;
1468 /* If these ASM_OPERANDS rtx's came from different original insns
1469 then they aren't allowed together. */
1470 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1471 != ASM_OPERANDS_INPUT_VEC (asm_op))
1472 return -1;
1473 }
1474 }
1475 else
1476 {
1477 /* 0 outputs, but some clobbers:
1478 body is [(asm_operands ...) (clobber (reg ...))...]. */
1479 /* Make sure all the other parallel things really are clobbers. */
1480 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1481 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1482 return -1;
1483 }
1484 }
1485
1486 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1487 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1488 }
1489
1490 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1491 copy its operands (both input and output) into the vector OPERANDS,
1492 the locations of the operands within the insn into the vector OPERAND_LOCS,
1493 and the constraints for the operands into CONSTRAINTS.
1494 Write the modes of the operands into MODES.
1495 Return the assembler-template.
1496
1497 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1498 we don't store that info. */
1499
1500 const char *
1501 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1502 const char **constraints, enum machine_mode *modes,
1503 location_t *loc)
1504 {
1505 int nbase = 0, n, i;
1506 rtx asmop;
1507
1508 switch (GET_CODE (body))
1509 {
1510 case ASM_OPERANDS:
1511 /* Zero output asm: BODY is (asm_operands ...). */
1512 asmop = body;
1513 break;
1514
1515 case SET:
1516 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1517 asmop = SET_SRC (body);
1518
1519 /* The output is in the SET.
1520 Its constraint is in the ASM_OPERANDS itself. */
1521 if (operands)
1522 operands[0] = SET_DEST (body);
1523 if (operand_locs)
1524 operand_locs[0] = &SET_DEST (body);
1525 if (constraints)
1526 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1527 if (modes)
1528 modes[0] = GET_MODE (SET_DEST (body));
1529 nbase = 1;
1530 break;
1531
1532 case PARALLEL:
1533 {
1534 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1535
1536 asmop = XVECEXP (body, 0, 0);
1537 if (GET_CODE (asmop) == SET)
1538 {
1539 asmop = SET_SRC (asmop);
1540
1541 /* At least one output, plus some CLOBBERs. The outputs are in
1542 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1543 for (i = 0; i < nparallel; i++)
1544 {
1545 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1546 break; /* Past last SET */
1547 if (operands)
1548 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1549 if (operand_locs)
1550 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1551 if (constraints)
1552 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1553 if (modes)
1554 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1555 }
1556 nbase = i;
1557 }
1558 break;
1559 }
1560
1561 default:
1562 gcc_unreachable ();
1563 }
1564
1565 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1566 for (i = 0; i < n; i++)
1567 {
1568 if (operand_locs)
1569 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1570 if (operands)
1571 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1572 if (constraints)
1573 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1574 if (modes)
1575 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1576 }
1577 nbase += n;
1578
1579 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1580 for (i = 0; i < n; i++)
1581 {
1582 if (operand_locs)
1583 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1584 if (operands)
1585 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1586 if (constraints)
1587 constraints[nbase + i] = "";
1588 if (modes)
1589 modes[nbase + i] = Pmode;
1590 }
1591
1592 if (loc)
1593 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1594
1595 return ASM_OPERANDS_TEMPLATE (asmop);
1596 }
1597
1598 /* Check if an asm_operand matches its constraints.
1599 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1600
1601 int
1602 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1603 {
1604 int result = 0;
1605 #ifdef AUTO_INC_DEC
1606 bool incdec_ok = false;
1607 #endif
1608
1609 /* Use constrain_operands after reload. */
1610 gcc_assert (!reload_completed);
1611
1612 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1613 many alternatives as required to match the other operands. */
1614 if (*constraint == '\0')
1615 result = 1;
1616
1617 while (*constraint)
1618 {
1619 char c = *constraint;
1620 int len;
1621 switch (c)
1622 {
1623 case ',':
1624 constraint++;
1625 continue;
1626 case '=':
1627 case '+':
1628 case '*':
1629 case '%':
1630 case '!':
1631 case '#':
1632 case '&':
1633 case '?':
1634 break;
1635
1636 case '0': case '1': case '2': case '3': case '4':
1637 case '5': case '6': case '7': case '8': case '9':
1638 /* If caller provided constraints pointer, look up
1639 the maching constraint. Otherwise, our caller should have
1640 given us the proper matching constraint, but we can't
1641 actually fail the check if they didn't. Indicate that
1642 results are inconclusive. */
1643 if (constraints)
1644 {
1645 char *end;
1646 unsigned long match;
1647
1648 match = strtoul (constraint, &end, 10);
1649 if (!result)
1650 result = asm_operand_ok (op, constraints[match], NULL);
1651 constraint = (const char *) end;
1652 }
1653 else
1654 {
1655 do
1656 constraint++;
1657 while (ISDIGIT (*constraint));
1658 if (! result)
1659 result = -1;
1660 }
1661 continue;
1662
1663 case 'p':
1664 if (address_operand (op, VOIDmode))
1665 result = 1;
1666 break;
1667
1668 case TARGET_MEM_CONSTRAINT:
1669 case 'V': /* non-offsettable */
1670 if (memory_operand (op, VOIDmode))
1671 result = 1;
1672 break;
1673
1674 case 'o': /* offsettable */
1675 if (offsettable_nonstrict_memref_p (op))
1676 result = 1;
1677 break;
1678
1679 case '<':
1680 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1681 excepting those that expand_call created. Further, on some
1682 machines which do not have generalized auto inc/dec, an inc/dec
1683 is not a memory_operand.
1684
1685 Match any memory and hope things are resolved after reload. */
1686
1687 if (MEM_P (op)
1688 && (1
1689 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1690 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1691 result = 1;
1692 #ifdef AUTO_INC_DEC
1693 incdec_ok = true;
1694 #endif
1695 break;
1696
1697 case '>':
1698 if (MEM_P (op)
1699 && (1
1700 || GET_CODE (XEXP (op, 0)) == PRE_INC
1701 || GET_CODE (XEXP (op, 0)) == POST_INC))
1702 result = 1;
1703 #ifdef AUTO_INC_DEC
1704 incdec_ok = true;
1705 #endif
1706 break;
1707
1708 case 'E':
1709 case 'F':
1710 if (CONST_DOUBLE_AS_FLOAT_P (op)
1711 || (GET_CODE (op) == CONST_VECTOR
1712 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1713 result = 1;
1714 break;
1715
1716 case 'G':
1717 if (CONST_DOUBLE_AS_FLOAT_P (op)
1718 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1719 result = 1;
1720 break;
1721 case 'H':
1722 if (CONST_DOUBLE_AS_FLOAT_P (op)
1723 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1724 result = 1;
1725 break;
1726
1727 case 's':
1728 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
1729 break;
1730 /* Fall through. */
1731
1732 case 'i':
1733 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1734 result = 1;
1735 break;
1736
1737 case 'n':
1738 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
1739 result = 1;
1740 break;
1741
1742 case 'I':
1743 if (CONST_INT_P (op)
1744 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1745 result = 1;
1746 break;
1747 case 'J':
1748 if (CONST_INT_P (op)
1749 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1750 result = 1;
1751 break;
1752 case 'K':
1753 if (CONST_INT_P (op)
1754 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1755 result = 1;
1756 break;
1757 case 'L':
1758 if (CONST_INT_P (op)
1759 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1760 result = 1;
1761 break;
1762 case 'M':
1763 if (CONST_INT_P (op)
1764 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1765 result = 1;
1766 break;
1767 case 'N':
1768 if (CONST_INT_P (op)
1769 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1770 result = 1;
1771 break;
1772 case 'O':
1773 if (CONST_INT_P (op)
1774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1775 result = 1;
1776 break;
1777 case 'P':
1778 if (CONST_INT_P (op)
1779 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1780 result = 1;
1781 break;
1782
1783 case 'X':
1784 result = 1;
1785 break;
1786
1787 case 'g':
1788 if (general_operand (op, VOIDmode))
1789 result = 1;
1790 break;
1791
1792 default:
1793 /* For all other letters, we first check for a register class,
1794 otherwise it is an EXTRA_CONSTRAINT. */
1795 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1796 {
1797 case 'r':
1798 if (GET_MODE (op) == BLKmode)
1799 break;
1800 if (register_operand (op, VOIDmode))
1801 result = 1;
1802 }
1803 #ifdef EXTRA_CONSTRAINT_STR
1804 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1805 /* Every memory operand can be reloaded to fit. */
1806 result = result || memory_operand (op, VOIDmode);
1807 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1808 /* Every address operand can be reloaded to fit. */
1809 result = result || address_operand (op, VOIDmode);
1810 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1811 result = 1;
1812 #endif
1813 break;
1814 }
1815 len = CONSTRAINT_LEN (c, constraint);
1816 do
1817 constraint++;
1818 while (--len && *constraint);
1819 if (len)
1820 return 0;
1821 }
1822
1823 #ifdef AUTO_INC_DEC
1824 /* For operands without < or > constraints reject side-effects. */
1825 if (!incdec_ok && result && MEM_P (op))
1826 switch (GET_CODE (XEXP (op, 0)))
1827 {
1828 case PRE_INC:
1829 case POST_INC:
1830 case PRE_DEC:
1831 case POST_DEC:
1832 case PRE_MODIFY:
1833 case POST_MODIFY:
1834 return 0;
1835 default:
1836 break;
1837 }
1838 #endif
1839
1840 return result;
1841 }
1842 \f
1843 /* Given an rtx *P, if it is a sum containing an integer constant term,
1844 return the location (type rtx *) of the pointer to that constant term.
1845 Otherwise, return a null pointer. */
1846
1847 rtx *
1848 find_constant_term_loc (rtx *p)
1849 {
1850 rtx *tem;
1851 enum rtx_code code = GET_CODE (*p);
1852
1853 /* If *P IS such a constant term, P is its location. */
1854
1855 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1856 || code == CONST)
1857 return p;
1858
1859 /* Otherwise, if not a sum, it has no constant term. */
1860
1861 if (GET_CODE (*p) != PLUS)
1862 return 0;
1863
1864 /* If one of the summands is constant, return its location. */
1865
1866 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1867 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1868 return p;
1869
1870 /* Otherwise, check each summand for containing a constant term. */
1871
1872 if (XEXP (*p, 0) != 0)
1873 {
1874 tem = find_constant_term_loc (&XEXP (*p, 0));
1875 if (tem != 0)
1876 return tem;
1877 }
1878
1879 if (XEXP (*p, 1) != 0)
1880 {
1881 tem = find_constant_term_loc (&XEXP (*p, 1));
1882 if (tem != 0)
1883 return tem;
1884 }
1885
1886 return 0;
1887 }
1888 \f
1889 /* Return 1 if OP is a memory reference
1890 whose address contains no side effects
1891 and remains valid after the addition
1892 of a positive integer less than the
1893 size of the object being referenced.
1894
1895 We assume that the original address is valid and do not check it.
1896
1897 This uses strict_memory_address_p as a subroutine, so
1898 don't use it before reload. */
1899
1900 int
1901 offsettable_memref_p (rtx op)
1902 {
1903 return ((MEM_P (op))
1904 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1905 MEM_ADDR_SPACE (op)));
1906 }
1907
1908 /* Similar, but don't require a strictly valid mem ref:
1909 consider pseudo-regs valid as index or base regs. */
1910
1911 int
1912 offsettable_nonstrict_memref_p (rtx op)
1913 {
1914 return ((MEM_P (op))
1915 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1916 MEM_ADDR_SPACE (op)));
1917 }
1918
1919 /* Return 1 if Y is a memory address which contains no side effects
1920 and would remain valid for address space AS after the addition of
1921 a positive integer less than the size of that mode.
1922
1923 We assume that the original address is valid and do not check it.
1924 We do check that it is valid for narrower modes.
1925
1926 If STRICTP is nonzero, we require a strictly valid address,
1927 for the sake of use in reload.c. */
1928
1929 int
1930 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1931 addr_space_t as)
1932 {
1933 enum rtx_code ycode = GET_CODE (y);
1934 rtx z;
1935 rtx y1 = y;
1936 rtx *y2;
1937 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1938 (strictp ? strict_memory_address_addr_space_p
1939 : memory_address_addr_space_p);
1940 unsigned int mode_sz = GET_MODE_SIZE (mode);
1941
1942 if (CONSTANT_ADDRESS_P (y))
1943 return 1;
1944
1945 /* Adjusting an offsettable address involves changing to a narrower mode.
1946 Make sure that's OK. */
1947
1948 if (mode_dependent_address_p (y))
1949 return 0;
1950
1951 /* ??? How much offset does an offsettable BLKmode reference need?
1952 Clearly that depends on the situation in which it's being used.
1953 However, the current situation in which we test 0xffffffff is
1954 less than ideal. Caveat user. */
1955 if (mode_sz == 0)
1956 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1957
1958 /* If the expression contains a constant term,
1959 see if it remains valid when max possible offset is added. */
1960
1961 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1962 {
1963 int good;
1964
1965 y1 = *y2;
1966 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1967 /* Use QImode because an odd displacement may be automatically invalid
1968 for any wider mode. But it should be valid for a single byte. */
1969 good = (*addressp) (QImode, y, as);
1970
1971 /* In any case, restore old contents of memory. */
1972 *y2 = y1;
1973 return good;
1974 }
1975
1976 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1977 return 0;
1978
1979 /* The offset added here is chosen as the maximum offset that
1980 any instruction could need to add when operating on something
1981 of the specified mode. We assume that if Y and Y+c are
1982 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1983 go inside a LO_SUM here, so we do so as well. */
1984 if (GET_CODE (y) == LO_SUM
1985 && mode != BLKmode
1986 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1987 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1988 plus_constant (GET_MODE (y), XEXP (y, 1),
1989 mode_sz - 1));
1990 else
1991 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
1992
1993 /* Use QImode because an odd displacement may be automatically invalid
1994 for any wider mode. But it should be valid for a single byte. */
1995 return (*addressp) (QImode, z, as);
1996 }
1997
1998 /* Return 1 if ADDR is an address-expression whose effect depends
1999 on the mode of the memory reference it is used in.
2000
2001 Autoincrement addressing is a typical example of mode-dependence
2002 because the amount of the increment depends on the mode. */
2003
2004 bool
2005 mode_dependent_address_p (rtx addr)
2006 {
2007 /* Auto-increment addressing with anything other than post_modify
2008 or pre_modify always introduces a mode dependency. Catch such
2009 cases now instead of deferring to the target. */
2010 if (GET_CODE (addr) == PRE_INC
2011 || GET_CODE (addr) == POST_INC
2012 || GET_CODE (addr) == PRE_DEC
2013 || GET_CODE (addr) == POST_DEC)
2014 return true;
2015
2016 return targetm.mode_dependent_address_p (addr);
2017 }
2018 \f
2019 /* Like extract_insn, but save insn extracted and don't extract again, when
2020 called again for the same insn expecting that recog_data still contain the
2021 valid information. This is used primary by gen_attr infrastructure that
2022 often does extract insn again and again. */
2023 void
2024 extract_insn_cached (rtx insn)
2025 {
2026 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2027 return;
2028 extract_insn (insn);
2029 recog_data.insn = insn;
2030 }
2031
2032 /* Do cached extract_insn, constrain_operands and complain about failures.
2033 Used by insn_attrtab. */
2034 void
2035 extract_constrain_insn_cached (rtx insn)
2036 {
2037 extract_insn_cached (insn);
2038 if (which_alternative == -1
2039 && !constrain_operands (reload_completed))
2040 fatal_insn_not_found (insn);
2041 }
2042
2043 /* Do cached constrain_operands and complain about failures. */
2044 int
2045 constrain_operands_cached (int strict)
2046 {
2047 if (which_alternative == -1)
2048 return constrain_operands (strict);
2049 else
2050 return 1;
2051 }
2052 \f
2053 /* Analyze INSN and fill in recog_data. */
2054
2055 void
2056 extract_insn (rtx insn)
2057 {
2058 int i;
2059 int icode;
2060 int noperands;
2061 rtx body = PATTERN (insn);
2062
2063 recog_data.n_operands = 0;
2064 recog_data.n_alternatives = 0;
2065 recog_data.n_dups = 0;
2066 recog_data.is_asm = false;
2067
2068 switch (GET_CODE (body))
2069 {
2070 case USE:
2071 case CLOBBER:
2072 case ASM_INPUT:
2073 case ADDR_VEC:
2074 case ADDR_DIFF_VEC:
2075 case VAR_LOCATION:
2076 return;
2077
2078 case SET:
2079 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2080 goto asm_insn;
2081 else
2082 goto normal_insn;
2083 case PARALLEL:
2084 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2085 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2086 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2087 goto asm_insn;
2088 else
2089 goto normal_insn;
2090 case ASM_OPERANDS:
2091 asm_insn:
2092 recog_data.n_operands = noperands = asm_noperands (body);
2093 if (noperands >= 0)
2094 {
2095 /* This insn is an `asm' with operands. */
2096
2097 /* expand_asm_operands makes sure there aren't too many operands. */
2098 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2099
2100 /* Now get the operand values and constraints out of the insn. */
2101 decode_asm_operands (body, recog_data.operand,
2102 recog_data.operand_loc,
2103 recog_data.constraints,
2104 recog_data.operand_mode, NULL);
2105 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2106 if (noperands > 0)
2107 {
2108 const char *p = recog_data.constraints[0];
2109 recog_data.n_alternatives = 1;
2110 while (*p)
2111 recog_data.n_alternatives += (*p++ == ',');
2112 }
2113 recog_data.is_asm = true;
2114 break;
2115 }
2116 fatal_insn_not_found (insn);
2117
2118 default:
2119 normal_insn:
2120 /* Ordinary insn: recognize it, get the operands via insn_extract
2121 and get the constraints. */
2122
2123 icode = recog_memoized (insn);
2124 if (icode < 0)
2125 fatal_insn_not_found (insn);
2126
2127 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2128 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2129 recog_data.n_dups = insn_data[icode].n_dups;
2130
2131 insn_extract (insn);
2132
2133 for (i = 0; i < noperands; i++)
2134 {
2135 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2136 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2137 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2138 /* VOIDmode match_operands gets mode from their real operand. */
2139 if (recog_data.operand_mode[i] == VOIDmode)
2140 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2141 }
2142 }
2143 for (i = 0; i < noperands; i++)
2144 recog_data.operand_type[i]
2145 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2146 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2147 : OP_IN);
2148
2149 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2150
2151 if (INSN_CODE (insn) < 0)
2152 for (i = 0; i < recog_data.n_alternatives; i++)
2153 recog_data.alternative_enabled_p[i] = true;
2154 else
2155 {
2156 recog_data.insn = insn;
2157 for (i = 0; i < recog_data.n_alternatives; i++)
2158 {
2159 which_alternative = i;
2160 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2161 }
2162 }
2163
2164 recog_data.insn = NULL;
2165 which_alternative = -1;
2166 }
2167
2168 /* After calling extract_insn, you can use this function to extract some
2169 information from the constraint strings into a more usable form.
2170 The collected data is stored in recog_op_alt. */
2171 void
2172 preprocess_constraints (void)
2173 {
2174 int i;
2175
2176 for (i = 0; i < recog_data.n_operands; i++)
2177 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2178 * sizeof (struct operand_alternative)));
2179
2180 for (i = 0; i < recog_data.n_operands; i++)
2181 {
2182 int j;
2183 struct operand_alternative *op_alt;
2184 const char *p = recog_data.constraints[i];
2185
2186 op_alt = recog_op_alt[i];
2187
2188 for (j = 0; j < recog_data.n_alternatives; j++)
2189 {
2190 op_alt[j].cl = NO_REGS;
2191 op_alt[j].constraint = p;
2192 op_alt[j].matches = -1;
2193 op_alt[j].matched = -1;
2194
2195 if (!recog_data.alternative_enabled_p[j])
2196 {
2197 p = skip_alternative (p);
2198 continue;
2199 }
2200
2201 if (*p == '\0' || *p == ',')
2202 {
2203 op_alt[j].anything_ok = 1;
2204 continue;
2205 }
2206
2207 for (;;)
2208 {
2209 char c = *p;
2210 if (c == '#')
2211 do
2212 c = *++p;
2213 while (c != ',' && c != '\0');
2214 if (c == ',' || c == '\0')
2215 {
2216 p++;
2217 break;
2218 }
2219
2220 switch (c)
2221 {
2222 case '=': case '+': case '*': case '%':
2223 case 'E': case 'F': case 'G': case 'H':
2224 case 's': case 'i': case 'n':
2225 case 'I': case 'J': case 'K': case 'L':
2226 case 'M': case 'N': case 'O': case 'P':
2227 /* These don't say anything we care about. */
2228 break;
2229
2230 case '?':
2231 op_alt[j].reject += 6;
2232 break;
2233 case '!':
2234 op_alt[j].reject += 600;
2235 break;
2236 case '&':
2237 op_alt[j].earlyclobber = 1;
2238 break;
2239
2240 case '0': case '1': case '2': case '3': case '4':
2241 case '5': case '6': case '7': case '8': case '9':
2242 {
2243 char *end;
2244 op_alt[j].matches = strtoul (p, &end, 10);
2245 recog_op_alt[op_alt[j].matches][j].matched = i;
2246 p = end;
2247 }
2248 continue;
2249
2250 case TARGET_MEM_CONSTRAINT:
2251 op_alt[j].memory_ok = 1;
2252 break;
2253 case '<':
2254 op_alt[j].decmem_ok = 1;
2255 break;
2256 case '>':
2257 op_alt[j].incmem_ok = 1;
2258 break;
2259 case 'V':
2260 op_alt[j].nonoffmem_ok = 1;
2261 break;
2262 case 'o':
2263 op_alt[j].offmem_ok = 1;
2264 break;
2265 case 'X':
2266 op_alt[j].anything_ok = 1;
2267 break;
2268
2269 case 'p':
2270 op_alt[j].is_address = 1;
2271 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2272 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2273 ADDRESS, SCRATCH)];
2274 break;
2275
2276 case 'g':
2277 case 'r':
2278 op_alt[j].cl =
2279 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2280 break;
2281
2282 default:
2283 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2284 {
2285 op_alt[j].memory_ok = 1;
2286 break;
2287 }
2288 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2289 {
2290 op_alt[j].is_address = 1;
2291 op_alt[j].cl
2292 = (reg_class_subunion
2293 [(int) op_alt[j].cl]
2294 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2295 ADDRESS, SCRATCH)]);
2296 break;
2297 }
2298
2299 op_alt[j].cl
2300 = (reg_class_subunion
2301 [(int) op_alt[j].cl]
2302 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2303 break;
2304 }
2305 p += CONSTRAINT_LEN (c, p);
2306 }
2307 }
2308 }
2309 }
2310
2311 /* Check the operands of an insn against the insn's operand constraints
2312 and return 1 if they are valid.
2313 The information about the insn's operands, constraints, operand modes
2314 etc. is obtained from the global variables set up by extract_insn.
2315
2316 WHICH_ALTERNATIVE is set to a number which indicates which
2317 alternative of constraints was matched: 0 for the first alternative,
2318 1 for the next, etc.
2319
2320 In addition, when two operands are required to match
2321 and it happens that the output operand is (reg) while the
2322 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2323 make the output operand look like the input.
2324 This is because the output operand is the one the template will print.
2325
2326 This is used in final, just before printing the assembler code and by
2327 the routines that determine an insn's attribute.
2328
2329 If STRICT is a positive nonzero value, it means that we have been
2330 called after reload has been completed. In that case, we must
2331 do all checks strictly. If it is zero, it means that we have been called
2332 before reload has completed. In that case, we first try to see if we can
2333 find an alternative that matches strictly. If not, we try again, this
2334 time assuming that reload will fix up the insn. This provides a "best
2335 guess" for the alternative and is used to compute attributes of insns prior
2336 to reload. A negative value of STRICT is used for this internal call. */
2337
2338 struct funny_match
2339 {
2340 int this_op, other;
2341 };
2342
2343 int
2344 constrain_operands (int strict)
2345 {
2346 const char *constraints[MAX_RECOG_OPERANDS];
2347 int matching_operands[MAX_RECOG_OPERANDS];
2348 int earlyclobber[MAX_RECOG_OPERANDS];
2349 int c;
2350
2351 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2352 int funny_match_index;
2353
2354 which_alternative = 0;
2355 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2356 return 1;
2357
2358 for (c = 0; c < recog_data.n_operands; c++)
2359 {
2360 constraints[c] = recog_data.constraints[c];
2361 matching_operands[c] = -1;
2362 }
2363
2364 do
2365 {
2366 int seen_earlyclobber_at = -1;
2367 int opno;
2368 int lose = 0;
2369 funny_match_index = 0;
2370
2371 if (!recog_data.alternative_enabled_p[which_alternative])
2372 {
2373 int i;
2374
2375 for (i = 0; i < recog_data.n_operands; i++)
2376 constraints[i] = skip_alternative (constraints[i]);
2377
2378 which_alternative++;
2379 continue;
2380 }
2381
2382 for (opno = 0; opno < recog_data.n_operands; opno++)
2383 {
2384 rtx op = recog_data.operand[opno];
2385 enum machine_mode mode = GET_MODE (op);
2386 const char *p = constraints[opno];
2387 int offset = 0;
2388 int win = 0;
2389 int val;
2390 int len;
2391
2392 earlyclobber[opno] = 0;
2393
2394 /* A unary operator may be accepted by the predicate, but it
2395 is irrelevant for matching constraints. */
2396 if (UNARY_P (op))
2397 op = XEXP (op, 0);
2398
2399 if (GET_CODE (op) == SUBREG)
2400 {
2401 if (REG_P (SUBREG_REG (op))
2402 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2403 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2404 GET_MODE (SUBREG_REG (op)),
2405 SUBREG_BYTE (op),
2406 GET_MODE (op));
2407 op = SUBREG_REG (op);
2408 }
2409
2410 /* An empty constraint or empty alternative
2411 allows anything which matched the pattern. */
2412 if (*p == 0 || *p == ',')
2413 win = 1;
2414
2415 do
2416 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2417 {
2418 case '\0':
2419 len = 0;
2420 break;
2421 case ',':
2422 c = '\0';
2423 break;
2424
2425 case '?': case '!': case '*': case '%':
2426 case '=': case '+':
2427 break;
2428
2429 case '#':
2430 /* Ignore rest of this alternative as far as
2431 constraint checking is concerned. */
2432 do
2433 p++;
2434 while (*p && *p != ',');
2435 len = 0;
2436 break;
2437
2438 case '&':
2439 earlyclobber[opno] = 1;
2440 if (seen_earlyclobber_at < 0)
2441 seen_earlyclobber_at = opno;
2442 break;
2443
2444 case '0': case '1': case '2': case '3': case '4':
2445 case '5': case '6': case '7': case '8': case '9':
2446 {
2447 /* This operand must be the same as a previous one.
2448 This kind of constraint is used for instructions such
2449 as add when they take only two operands.
2450
2451 Note that the lower-numbered operand is passed first.
2452
2453 If we are not testing strictly, assume that this
2454 constraint will be satisfied. */
2455
2456 char *end;
2457 int match;
2458
2459 match = strtoul (p, &end, 10);
2460 p = end;
2461
2462 if (strict < 0)
2463 val = 1;
2464 else
2465 {
2466 rtx op1 = recog_data.operand[match];
2467 rtx op2 = recog_data.operand[opno];
2468
2469 /* A unary operator may be accepted by the predicate,
2470 but it is irrelevant for matching constraints. */
2471 if (UNARY_P (op1))
2472 op1 = XEXP (op1, 0);
2473 if (UNARY_P (op2))
2474 op2 = XEXP (op2, 0);
2475
2476 val = operands_match_p (op1, op2);
2477 }
2478
2479 matching_operands[opno] = match;
2480 matching_operands[match] = opno;
2481
2482 if (val != 0)
2483 win = 1;
2484
2485 /* If output is *x and input is *--x, arrange later
2486 to change the output to *--x as well, since the
2487 output op is the one that will be printed. */
2488 if (val == 2 && strict > 0)
2489 {
2490 funny_match[funny_match_index].this_op = opno;
2491 funny_match[funny_match_index++].other = match;
2492 }
2493 }
2494 len = 0;
2495 break;
2496
2497 case 'p':
2498 /* p is used for address_operands. When we are called by
2499 gen_reload, no one will have checked that the address is
2500 strictly valid, i.e., that all pseudos requiring hard regs
2501 have gotten them. */
2502 if (strict <= 0
2503 || (strict_memory_address_p (recog_data.operand_mode[opno],
2504 op)))
2505 win = 1;
2506 break;
2507
2508 /* No need to check general_operand again;
2509 it was done in insn-recog.c. Well, except that reload
2510 doesn't check the validity of its replacements, but
2511 that should only matter when there's a bug. */
2512 case 'g':
2513 /* Anything goes unless it is a REG and really has a hard reg
2514 but the hard reg is not in the class GENERAL_REGS. */
2515 if (REG_P (op))
2516 {
2517 if (strict < 0
2518 || GENERAL_REGS == ALL_REGS
2519 || (reload_in_progress
2520 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2521 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2522 win = 1;
2523 }
2524 else if (strict < 0 || general_operand (op, mode))
2525 win = 1;
2526 break;
2527
2528 case 'X':
2529 /* This is used for a MATCH_SCRATCH in the cases when
2530 we don't actually need anything. So anything goes
2531 any time. */
2532 win = 1;
2533 break;
2534
2535 case TARGET_MEM_CONSTRAINT:
2536 /* Memory operands must be valid, to the extent
2537 required by STRICT. */
2538 if (MEM_P (op))
2539 {
2540 if (strict > 0
2541 && !strict_memory_address_addr_space_p
2542 (GET_MODE (op), XEXP (op, 0),
2543 MEM_ADDR_SPACE (op)))
2544 break;
2545 if (strict == 0
2546 && !memory_address_addr_space_p
2547 (GET_MODE (op), XEXP (op, 0),
2548 MEM_ADDR_SPACE (op)))
2549 break;
2550 win = 1;
2551 }
2552 /* Before reload, accept what reload can turn into mem. */
2553 else if (strict < 0 && CONSTANT_P (op))
2554 win = 1;
2555 /* During reload, accept a pseudo */
2556 else if (reload_in_progress && REG_P (op)
2557 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2558 win = 1;
2559 break;
2560
2561 case '<':
2562 if (MEM_P (op)
2563 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2564 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2565 win = 1;
2566 break;
2567
2568 case '>':
2569 if (MEM_P (op)
2570 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2571 || GET_CODE (XEXP (op, 0)) == POST_INC))
2572 win = 1;
2573 break;
2574
2575 case 'E':
2576 case 'F':
2577 if (CONST_DOUBLE_AS_FLOAT_P (op)
2578 || (GET_CODE (op) == CONST_VECTOR
2579 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2580 win = 1;
2581 break;
2582
2583 case 'G':
2584 case 'H':
2585 if (CONST_DOUBLE_AS_FLOAT_P (op)
2586 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2587 win = 1;
2588 break;
2589
2590 case 's':
2591 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
2592 break;
2593 case 'i':
2594 if (CONSTANT_P (op))
2595 win = 1;
2596 break;
2597
2598 case 'n':
2599 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
2600 win = 1;
2601 break;
2602
2603 case 'I':
2604 case 'J':
2605 case 'K':
2606 case 'L':
2607 case 'M':
2608 case 'N':
2609 case 'O':
2610 case 'P':
2611 if (CONST_INT_P (op)
2612 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2613 win = 1;
2614 break;
2615
2616 case 'V':
2617 if (MEM_P (op)
2618 && ((strict > 0 && ! offsettable_memref_p (op))
2619 || (strict < 0
2620 && !(CONSTANT_P (op) || MEM_P (op)))
2621 || (reload_in_progress
2622 && !(REG_P (op)
2623 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2624 win = 1;
2625 break;
2626
2627 case 'o':
2628 if ((strict > 0 && offsettable_memref_p (op))
2629 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2630 /* Before reload, accept what reload can handle. */
2631 || (strict < 0
2632 && (CONSTANT_P (op) || MEM_P (op)))
2633 /* During reload, accept a pseudo */
2634 || (reload_in_progress && REG_P (op)
2635 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2636 win = 1;
2637 break;
2638
2639 default:
2640 {
2641 enum reg_class cl;
2642
2643 cl = (c == 'r'
2644 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2645 if (cl != NO_REGS)
2646 {
2647 if (strict < 0
2648 || (strict == 0
2649 && REG_P (op)
2650 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2651 || (strict == 0 && GET_CODE (op) == SCRATCH)
2652 || (REG_P (op)
2653 && reg_fits_class_p (op, cl, offset, mode)))
2654 win = 1;
2655 }
2656 #ifdef EXTRA_CONSTRAINT_STR
2657 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2658 win = 1;
2659
2660 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2661 /* Every memory operand can be reloaded to fit. */
2662 && ((strict < 0 && MEM_P (op))
2663 /* Before reload, accept what reload can turn
2664 into mem. */
2665 || (strict < 0 && CONSTANT_P (op))
2666 /* During reload, accept a pseudo */
2667 || (reload_in_progress && REG_P (op)
2668 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2669 win = 1;
2670 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2671 /* Every address operand can be reloaded to fit. */
2672 && strict < 0)
2673 win = 1;
2674 /* Cater to architectures like IA-64 that define extra memory
2675 constraints without using define_memory_constraint. */
2676 else if (reload_in_progress
2677 && REG_P (op)
2678 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2679 && reg_renumber[REGNO (op)] < 0
2680 && reg_equiv_mem (REGNO (op)) != 0
2681 && EXTRA_CONSTRAINT_STR
2682 (reg_equiv_mem (REGNO (op)), c, p))
2683 win = 1;
2684 #endif
2685 break;
2686 }
2687 }
2688 while (p += len, c);
2689
2690 constraints[opno] = p;
2691 /* If this operand did not win somehow,
2692 this alternative loses. */
2693 if (! win)
2694 lose = 1;
2695 }
2696 /* This alternative won; the operands are ok.
2697 Change whichever operands this alternative says to change. */
2698 if (! lose)
2699 {
2700 int opno, eopno;
2701
2702 /* See if any earlyclobber operand conflicts with some other
2703 operand. */
2704
2705 if (strict > 0 && seen_earlyclobber_at >= 0)
2706 for (eopno = seen_earlyclobber_at;
2707 eopno < recog_data.n_operands;
2708 eopno++)
2709 /* Ignore earlyclobber operands now in memory,
2710 because we would often report failure when we have
2711 two memory operands, one of which was formerly a REG. */
2712 if (earlyclobber[eopno]
2713 && REG_P (recog_data.operand[eopno]))
2714 for (opno = 0; opno < recog_data.n_operands; opno++)
2715 if ((MEM_P (recog_data.operand[opno])
2716 || recog_data.operand_type[opno] != OP_OUT)
2717 && opno != eopno
2718 /* Ignore things like match_operator operands. */
2719 && *recog_data.constraints[opno] != 0
2720 && ! (matching_operands[opno] == eopno
2721 && operands_match_p (recog_data.operand[opno],
2722 recog_data.operand[eopno]))
2723 && ! safe_from_earlyclobber (recog_data.operand[opno],
2724 recog_data.operand[eopno]))
2725 lose = 1;
2726
2727 if (! lose)
2728 {
2729 while (--funny_match_index >= 0)
2730 {
2731 recog_data.operand[funny_match[funny_match_index].other]
2732 = recog_data.operand[funny_match[funny_match_index].this_op];
2733 }
2734
2735 #ifdef AUTO_INC_DEC
2736 /* For operands without < or > constraints reject side-effects. */
2737 if (recog_data.is_asm)
2738 {
2739 for (opno = 0; opno < recog_data.n_operands; opno++)
2740 if (MEM_P (recog_data.operand[opno]))
2741 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2742 {
2743 case PRE_INC:
2744 case POST_INC:
2745 case PRE_DEC:
2746 case POST_DEC:
2747 case PRE_MODIFY:
2748 case POST_MODIFY:
2749 if (strchr (recog_data.constraints[opno], '<') == NULL
2750 && strchr (recog_data.constraints[opno], '>')
2751 == NULL)
2752 return 0;
2753 break;
2754 default:
2755 break;
2756 }
2757 }
2758 #endif
2759 return 1;
2760 }
2761 }
2762
2763 which_alternative++;
2764 }
2765 while (which_alternative < recog_data.n_alternatives);
2766
2767 which_alternative = -1;
2768 /* If we are about to reject this, but we are not to test strictly,
2769 try a very loose test. Only return failure if it fails also. */
2770 if (strict == 0)
2771 return constrain_operands (-1);
2772 else
2773 return 0;
2774 }
2775
2776 /* Return true iff OPERAND (assumed to be a REG rtx)
2777 is a hard reg in class CLASS when its regno is offset by OFFSET
2778 and changed to mode MODE.
2779 If REG occupies multiple hard regs, all of them must be in CLASS. */
2780
2781 bool
2782 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2783 enum machine_mode mode)
2784 {
2785 unsigned int regno = REGNO (operand);
2786
2787 if (cl == NO_REGS)
2788 return false;
2789
2790 /* Regno must not be a pseudo register. Offset may be negative. */
2791 return (HARD_REGISTER_NUM_P (regno)
2792 && HARD_REGISTER_NUM_P (regno + offset)
2793 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2794 regno + offset));
2795 }
2796 \f
2797 /* Split single instruction. Helper function for split_all_insns and
2798 split_all_insns_noflow. Return last insn in the sequence if successful,
2799 or NULL if unsuccessful. */
2800
2801 static rtx
2802 split_insn (rtx insn)
2803 {
2804 /* Split insns here to get max fine-grain parallelism. */
2805 rtx first = PREV_INSN (insn);
2806 rtx last = try_split (PATTERN (insn), insn, 1);
2807 rtx insn_set, last_set, note;
2808
2809 if (last == insn)
2810 return NULL_RTX;
2811
2812 /* If the original instruction was a single set that was known to be
2813 equivalent to a constant, see if we can say the same about the last
2814 instruction in the split sequence. The two instructions must set
2815 the same destination. */
2816 insn_set = single_set (insn);
2817 if (insn_set)
2818 {
2819 last_set = single_set (last);
2820 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2821 {
2822 note = find_reg_equal_equiv_note (insn);
2823 if (note && CONSTANT_P (XEXP (note, 0)))
2824 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2825 else if (CONSTANT_P (SET_SRC (insn_set)))
2826 set_unique_reg_note (last, REG_EQUAL,
2827 copy_rtx (SET_SRC (insn_set)));
2828 }
2829 }
2830
2831 /* try_split returns the NOTE that INSN became. */
2832 SET_INSN_DELETED (insn);
2833
2834 /* ??? Coddle to md files that generate subregs in post-reload
2835 splitters instead of computing the proper hard register. */
2836 if (reload_completed && first != last)
2837 {
2838 first = NEXT_INSN (first);
2839 for (;;)
2840 {
2841 if (INSN_P (first))
2842 cleanup_subreg_operands (first);
2843 if (first == last)
2844 break;
2845 first = NEXT_INSN (first);
2846 }
2847 }
2848
2849 return last;
2850 }
2851
2852 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2853
2854 void
2855 split_all_insns (void)
2856 {
2857 sbitmap blocks;
2858 bool changed;
2859 basic_block bb;
2860
2861 blocks = sbitmap_alloc (last_basic_block);
2862 sbitmap_zero (blocks);
2863 changed = false;
2864
2865 FOR_EACH_BB_REVERSE (bb)
2866 {
2867 rtx insn, next;
2868 bool finish = false;
2869
2870 rtl_profile_for_bb (bb);
2871 for (insn = BB_HEAD (bb); !finish ; insn = next)
2872 {
2873 /* Can't use `next_real_insn' because that might go across
2874 CODE_LABELS and short-out basic blocks. */
2875 next = NEXT_INSN (insn);
2876 finish = (insn == BB_END (bb));
2877 if (INSN_P (insn))
2878 {
2879 rtx set = single_set (insn);
2880
2881 /* Don't split no-op move insns. These should silently
2882 disappear later in final. Splitting such insns would
2883 break the code that handles LIBCALL blocks. */
2884 if (set && set_noop_p (set))
2885 {
2886 /* Nops get in the way while scheduling, so delete them
2887 now if register allocation has already been done. It
2888 is too risky to try to do this before register
2889 allocation, and there are unlikely to be very many
2890 nops then anyways. */
2891 if (reload_completed)
2892 delete_insn_and_edges (insn);
2893 }
2894 else
2895 {
2896 if (split_insn (insn))
2897 {
2898 SET_BIT (blocks, bb->index);
2899 changed = true;
2900 }
2901 }
2902 }
2903 }
2904 }
2905
2906 default_rtl_profile ();
2907 if (changed)
2908 find_many_sub_basic_blocks (blocks);
2909
2910 #ifdef ENABLE_CHECKING
2911 verify_flow_info ();
2912 #endif
2913
2914 sbitmap_free (blocks);
2915 }
2916
2917 /* Same as split_all_insns, but do not expect CFG to be available.
2918 Used by machine dependent reorg passes. */
2919
2920 unsigned int
2921 split_all_insns_noflow (void)
2922 {
2923 rtx next, insn;
2924
2925 for (insn = get_insns (); insn; insn = next)
2926 {
2927 next = NEXT_INSN (insn);
2928 if (INSN_P (insn))
2929 {
2930 /* Don't split no-op move insns. These should silently
2931 disappear later in final. Splitting such insns would
2932 break the code that handles LIBCALL blocks. */
2933 rtx set = single_set (insn);
2934 if (set && set_noop_p (set))
2935 {
2936 /* Nops get in the way while scheduling, so delete them
2937 now if register allocation has already been done. It
2938 is too risky to try to do this before register
2939 allocation, and there are unlikely to be very many
2940 nops then anyways.
2941
2942 ??? Should we use delete_insn when the CFG isn't valid? */
2943 if (reload_completed)
2944 delete_insn_and_edges (insn);
2945 }
2946 else
2947 split_insn (insn);
2948 }
2949 }
2950 return 0;
2951 }
2952 \f
2953 #ifdef HAVE_peephole2
2954 struct peep2_insn_data
2955 {
2956 rtx insn;
2957 regset live_before;
2958 };
2959
2960 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2961 static int peep2_current;
2962
2963 static bool peep2_do_rebuild_jump_labels;
2964 static bool peep2_do_cleanup_cfg;
2965
2966 /* The number of instructions available to match a peep2. */
2967 int peep2_current_count;
2968
2969 /* A non-insn marker indicating the last insn of the block.
2970 The live_before regset for this element is correct, indicating
2971 DF_LIVE_OUT for the block. */
2972 #define PEEP2_EOB pc_rtx
2973
2974 /* Wrap N to fit into the peep2_insn_data buffer. */
2975
2976 static int
2977 peep2_buf_position (int n)
2978 {
2979 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2980 n -= MAX_INSNS_PER_PEEP2 + 1;
2981 return n;
2982 }
2983
2984 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2985 does not exist. Used by the recognizer to find the next insn to match
2986 in a multi-insn pattern. */
2987
2988 rtx
2989 peep2_next_insn (int n)
2990 {
2991 gcc_assert (n <= peep2_current_count);
2992
2993 n = peep2_buf_position (peep2_current + n);
2994
2995 return peep2_insn_data[n].insn;
2996 }
2997
2998 /* Return true if REGNO is dead before the Nth non-note insn
2999 after `current'. */
3000
3001 int
3002 peep2_regno_dead_p (int ofs, int regno)
3003 {
3004 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3005
3006 ofs = peep2_buf_position (peep2_current + ofs);
3007
3008 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3009
3010 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3011 }
3012
3013 /* Similarly for a REG. */
3014
3015 int
3016 peep2_reg_dead_p (int ofs, rtx reg)
3017 {
3018 int regno, n;
3019
3020 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3021
3022 ofs = peep2_buf_position (peep2_current + ofs);
3023
3024 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3025
3026 regno = REGNO (reg);
3027 n = hard_regno_nregs[regno][GET_MODE (reg)];
3028 while (--n >= 0)
3029 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3030 return 0;
3031 return 1;
3032 }
3033
3034 /* Try to find a hard register of mode MODE, matching the register class in
3035 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3036 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3037 in which case the only condition is that the register must be available
3038 before CURRENT_INSN.
3039 Registers that already have bits set in REG_SET will not be considered.
3040
3041 If an appropriate register is available, it will be returned and the
3042 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3043 returned. */
3044
3045 rtx
3046 peep2_find_free_register (int from, int to, const char *class_str,
3047 enum machine_mode mode, HARD_REG_SET *reg_set)
3048 {
3049 static int search_ofs;
3050 enum reg_class cl;
3051 HARD_REG_SET live;
3052 df_ref *def_rec;
3053 int i;
3054
3055 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3056 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3057
3058 from = peep2_buf_position (peep2_current + from);
3059 to = peep2_buf_position (peep2_current + to);
3060
3061 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3062 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3063
3064 while (from != to)
3065 {
3066 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3067
3068 /* Don't use registers set or clobbered by the insn. */
3069 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3070 *def_rec; def_rec++)
3071 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3072
3073 from = peep2_buf_position (from + 1);
3074 }
3075
3076 cl = (class_str[0] == 'r' ? GENERAL_REGS
3077 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3078
3079 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3080 {
3081 int raw_regno, regno, success, j;
3082
3083 /* Distribute the free registers as much as possible. */
3084 raw_regno = search_ofs + i;
3085 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3086 raw_regno -= FIRST_PSEUDO_REGISTER;
3087 #ifdef REG_ALLOC_ORDER
3088 regno = reg_alloc_order[raw_regno];
3089 #else
3090 regno = raw_regno;
3091 #endif
3092
3093 /* Don't allocate fixed registers. */
3094 if (fixed_regs[regno])
3095 continue;
3096 /* Don't allocate global registers. */
3097 if (global_regs[regno])
3098 continue;
3099 /* Make sure the register is of the right class. */
3100 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3101 continue;
3102 /* And can support the mode we need. */
3103 if (! HARD_REGNO_MODE_OK (regno, mode))
3104 continue;
3105 /* And that we don't create an extra save/restore. */
3106 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3107 continue;
3108 if (! targetm.hard_regno_scratch_ok (regno))
3109 continue;
3110
3111 /* And we don't clobber traceback for noreturn functions. */
3112 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3113 && (! reload_completed || frame_pointer_needed))
3114 continue;
3115
3116 success = 1;
3117 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3118 {
3119 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3120 || TEST_HARD_REG_BIT (live, regno + j))
3121 {
3122 success = 0;
3123 break;
3124 }
3125 }
3126 if (success)
3127 {
3128 add_to_hard_reg_set (reg_set, mode, regno);
3129
3130 /* Start the next search with the next register. */
3131 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3132 raw_regno = 0;
3133 search_ofs = raw_regno;
3134
3135 return gen_rtx_REG (mode, regno);
3136 }
3137 }
3138
3139 search_ofs = 0;
3140 return NULL_RTX;
3141 }
3142
3143 /* Forget all currently tracked instructions, only remember current
3144 LIVE regset. */
3145
3146 static void
3147 peep2_reinit_state (regset live)
3148 {
3149 int i;
3150
3151 /* Indicate that all slots except the last holds invalid data. */
3152 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3153 peep2_insn_data[i].insn = NULL_RTX;
3154 peep2_current_count = 0;
3155
3156 /* Indicate that the last slot contains live_after data. */
3157 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3158 peep2_current = MAX_INSNS_PER_PEEP2;
3159
3160 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3161 }
3162
3163 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3164 starting at INSN. Perform the replacement, removing the old insns and
3165 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3166 if the replacement is rejected. */
3167
3168 static rtx
3169 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3170 {
3171 int i;
3172 rtx last, eh_note, as_note, before_try, x;
3173 rtx old_insn, new_insn;
3174 bool was_call = false;
3175
3176 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3177 match more than one insn, or to be split into more than one insn. */
3178 old_insn = peep2_insn_data[peep2_current].insn;
3179 if (RTX_FRAME_RELATED_P (old_insn))
3180 {
3181 bool any_note = false;
3182 rtx note;
3183
3184 if (match_len != 0)
3185 return NULL;
3186
3187 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3188 may be in the stream for the purpose of register allocation. */
3189 if (active_insn_p (attempt))
3190 new_insn = attempt;
3191 else
3192 new_insn = next_active_insn (attempt);
3193 if (next_active_insn (new_insn))
3194 return NULL;
3195
3196 /* We have a 1-1 replacement. Copy over any frame-related info. */
3197 RTX_FRAME_RELATED_P (new_insn) = 1;
3198
3199 /* Allow the backend to fill in a note during the split. */
3200 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3201 switch (REG_NOTE_KIND (note))
3202 {
3203 case REG_FRAME_RELATED_EXPR:
3204 case REG_CFA_DEF_CFA:
3205 case REG_CFA_ADJUST_CFA:
3206 case REG_CFA_OFFSET:
3207 case REG_CFA_REGISTER:
3208 case REG_CFA_EXPRESSION:
3209 case REG_CFA_RESTORE:
3210 case REG_CFA_SET_VDRAP:
3211 any_note = true;
3212 break;
3213 default:
3214 break;
3215 }
3216
3217 /* If the backend didn't supply a note, copy one over. */
3218 if (!any_note)
3219 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3220 switch (REG_NOTE_KIND (note))
3221 {
3222 case REG_FRAME_RELATED_EXPR:
3223 case REG_CFA_DEF_CFA:
3224 case REG_CFA_ADJUST_CFA:
3225 case REG_CFA_OFFSET:
3226 case REG_CFA_REGISTER:
3227 case REG_CFA_EXPRESSION:
3228 case REG_CFA_RESTORE:
3229 case REG_CFA_SET_VDRAP:
3230 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3231 any_note = true;
3232 break;
3233 default:
3234 break;
3235 }
3236
3237 /* If there still isn't a note, make sure the unwind info sees the
3238 same expression as before the split. */
3239 if (!any_note)
3240 {
3241 rtx old_set, new_set;
3242
3243 /* The old insn had better have been simple, or annotated. */
3244 old_set = single_set (old_insn);
3245 gcc_assert (old_set != NULL);
3246
3247 new_set = single_set (new_insn);
3248 if (!new_set || !rtx_equal_p (new_set, old_set))
3249 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3250 }
3251
3252 /* Copy prologue/epilogue status. This is required in order to keep
3253 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3254 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3255 }
3256
3257 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3258 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3259 cfg-related call notes. */
3260 for (i = 0; i <= match_len; ++i)
3261 {
3262 int j;
3263 rtx note;
3264
3265 j = peep2_buf_position (peep2_current + i);
3266 old_insn = peep2_insn_data[j].insn;
3267 if (!CALL_P (old_insn))
3268 continue;
3269 was_call = true;
3270
3271 new_insn = attempt;
3272 while (new_insn != NULL_RTX)
3273 {
3274 if (CALL_P (new_insn))
3275 break;
3276 new_insn = NEXT_INSN (new_insn);
3277 }
3278
3279 gcc_assert (new_insn != NULL_RTX);
3280
3281 CALL_INSN_FUNCTION_USAGE (new_insn)
3282 = CALL_INSN_FUNCTION_USAGE (old_insn);
3283
3284 for (note = REG_NOTES (old_insn);
3285 note;
3286 note = XEXP (note, 1))
3287 switch (REG_NOTE_KIND (note))
3288 {
3289 case REG_NORETURN:
3290 case REG_SETJMP:
3291 case REG_TM:
3292 add_reg_note (new_insn, REG_NOTE_KIND (note),
3293 XEXP (note, 0));
3294 break;
3295 default:
3296 /* Discard all other reg notes. */
3297 break;
3298 }
3299
3300 /* Croak if there is another call in the sequence. */
3301 while (++i <= match_len)
3302 {
3303 j = peep2_buf_position (peep2_current + i);
3304 old_insn = peep2_insn_data[j].insn;
3305 gcc_assert (!CALL_P (old_insn));
3306 }
3307 break;
3308 }
3309
3310 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3311 move those notes over to the new sequence. */
3312 as_note = NULL;
3313 for (i = match_len; i >= 0; --i)
3314 {
3315 int j = peep2_buf_position (peep2_current + i);
3316 old_insn = peep2_insn_data[j].insn;
3317
3318 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3319 if (as_note)
3320 break;
3321 }
3322
3323 i = peep2_buf_position (peep2_current + match_len);
3324 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3325
3326 /* Replace the old sequence with the new. */
3327 last = emit_insn_after_setloc (attempt,
3328 peep2_insn_data[i].insn,
3329 INSN_LOCATOR (peep2_insn_data[i].insn));
3330 before_try = PREV_INSN (insn);
3331 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3332
3333 /* Re-insert the EH_REGION notes. */
3334 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3335 {
3336 edge eh_edge;
3337 edge_iterator ei;
3338
3339 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3340 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3341 break;
3342
3343 if (eh_note)
3344 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3345
3346 if (eh_edge)
3347 for (x = last; x != before_try; x = PREV_INSN (x))
3348 if (x != BB_END (bb)
3349 && (can_throw_internal (x)
3350 || can_nonlocal_goto (x)))
3351 {
3352 edge nfte, nehe;
3353 int flags;
3354
3355 nfte = split_block (bb, x);
3356 flags = (eh_edge->flags
3357 & (EDGE_EH | EDGE_ABNORMAL));
3358 if (CALL_P (x))
3359 flags |= EDGE_ABNORMAL_CALL;
3360 nehe = make_edge (nfte->src, eh_edge->dest,
3361 flags);
3362
3363 nehe->probability = eh_edge->probability;
3364 nfte->probability
3365 = REG_BR_PROB_BASE - nehe->probability;
3366
3367 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3368 bb = nfte->src;
3369 eh_edge = nehe;
3370 }
3371
3372 /* Converting possibly trapping insn to non-trapping is
3373 possible. Zap dummy outgoing edges. */
3374 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3375 }
3376
3377 /* Re-insert the ARGS_SIZE notes. */
3378 if (as_note)
3379 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3380
3381 /* If we generated a jump instruction, it won't have
3382 JUMP_LABEL set. Recompute after we're done. */
3383 for (x = last; x != before_try; x = PREV_INSN (x))
3384 if (JUMP_P (x))
3385 {
3386 peep2_do_rebuild_jump_labels = true;
3387 break;
3388 }
3389
3390 return last;
3391 }
3392
3393 /* After performing a replacement in basic block BB, fix up the life
3394 information in our buffer. LAST is the last of the insns that we
3395 emitted as a replacement. PREV is the insn before the start of
3396 the replacement. MATCH_LEN is the number of instructions that were
3397 matched, and which now need to be replaced in the buffer. */
3398
3399 static void
3400 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3401 {
3402 int i = peep2_buf_position (peep2_current + match_len + 1);
3403 rtx x;
3404 regset_head live;
3405
3406 INIT_REG_SET (&live);
3407 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3408
3409 gcc_assert (peep2_current_count >= match_len + 1);
3410 peep2_current_count -= match_len + 1;
3411
3412 x = last;
3413 do
3414 {
3415 if (INSN_P (x))
3416 {
3417 df_insn_rescan (x);
3418 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3419 {
3420 peep2_current_count++;
3421 if (--i < 0)
3422 i = MAX_INSNS_PER_PEEP2;
3423 peep2_insn_data[i].insn = x;
3424 df_simulate_one_insn_backwards (bb, x, &live);
3425 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3426 }
3427 }
3428 x = PREV_INSN (x);
3429 }
3430 while (x != prev);
3431 CLEAR_REG_SET (&live);
3432
3433 peep2_current = i;
3434 }
3435
3436 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3437 Return true if we added it, false otherwise. The caller will try to match
3438 peepholes against the buffer if we return false; otherwise it will try to
3439 add more instructions to the buffer. */
3440
3441 static bool
3442 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3443 {
3444 int pos;
3445
3446 /* Once we have filled the maximum number of insns the buffer can hold,
3447 allow the caller to match the insns against peepholes. We wait until
3448 the buffer is full in case the target has similar peepholes of different
3449 length; we always want to match the longest if possible. */
3450 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3451 return false;
3452
3453 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3454 any other pattern, lest it change the semantics of the frame info. */
3455 if (RTX_FRAME_RELATED_P (insn))
3456 {
3457 /* Let the buffer drain first. */
3458 if (peep2_current_count > 0)
3459 return false;
3460 /* Now the insn will be the only thing in the buffer. */
3461 }
3462
3463 pos = peep2_buf_position (peep2_current + peep2_current_count);
3464 peep2_insn_data[pos].insn = insn;
3465 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3466 peep2_current_count++;
3467
3468 df_simulate_one_insn_forwards (bb, insn, live);
3469 return true;
3470 }
3471
3472 /* Perform the peephole2 optimization pass. */
3473
3474 static void
3475 peephole2_optimize (void)
3476 {
3477 rtx insn;
3478 bitmap live;
3479 int i;
3480 basic_block bb;
3481
3482 peep2_do_cleanup_cfg = false;
3483 peep2_do_rebuild_jump_labels = false;
3484
3485 df_set_flags (DF_LR_RUN_DCE);
3486 df_note_add_problem ();
3487 df_analyze ();
3488
3489 /* Initialize the regsets we're going to use. */
3490 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3491 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3492 live = BITMAP_ALLOC (&reg_obstack);
3493
3494 FOR_EACH_BB_REVERSE (bb)
3495 {
3496 bool past_end = false;
3497 int pos;
3498
3499 rtl_profile_for_bb (bb);
3500
3501 /* Start up propagation. */
3502 bitmap_copy (live, DF_LR_IN (bb));
3503 df_simulate_initialize_forwards (bb, live);
3504 peep2_reinit_state (live);
3505
3506 insn = BB_HEAD (bb);
3507 for (;;)
3508 {
3509 rtx attempt, head;
3510 int match_len;
3511
3512 if (!past_end && !NONDEBUG_INSN_P (insn))
3513 {
3514 next_insn:
3515 insn = NEXT_INSN (insn);
3516 if (insn == NEXT_INSN (BB_END (bb)))
3517 past_end = true;
3518 continue;
3519 }
3520 if (!past_end && peep2_fill_buffer (bb, insn, live))
3521 goto next_insn;
3522
3523 /* If we did not fill an empty buffer, it signals the end of the
3524 block. */
3525 if (peep2_current_count == 0)
3526 break;
3527
3528 /* The buffer filled to the current maximum, so try to match. */
3529
3530 pos = peep2_buf_position (peep2_current + peep2_current_count);
3531 peep2_insn_data[pos].insn = PEEP2_EOB;
3532 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3533
3534 /* Match the peephole. */
3535 head = peep2_insn_data[peep2_current].insn;
3536 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3537 if (attempt != NULL)
3538 {
3539 rtx last = peep2_attempt (bb, head, match_len, attempt);
3540 if (last)
3541 {
3542 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3543 continue;
3544 }
3545 }
3546
3547 /* No match: advance the buffer by one insn. */
3548 peep2_current = peep2_buf_position (peep2_current + 1);
3549 peep2_current_count--;
3550 }
3551 }
3552
3553 default_rtl_profile ();
3554 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3555 BITMAP_FREE (peep2_insn_data[i].live_before);
3556 BITMAP_FREE (live);
3557 if (peep2_do_rebuild_jump_labels)
3558 rebuild_jump_labels (get_insns ());
3559 }
3560 #endif /* HAVE_peephole2 */
3561
3562 /* Common predicates for use with define_bypass. */
3563
3564 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3565 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3566 must be either a single_set or a PARALLEL with SETs inside. */
3567
3568 int
3569 store_data_bypass_p (rtx out_insn, rtx in_insn)
3570 {
3571 rtx out_set, in_set;
3572 rtx out_pat, in_pat;
3573 rtx out_exp, in_exp;
3574 int i, j;
3575
3576 in_set = single_set (in_insn);
3577 if (in_set)
3578 {
3579 if (!MEM_P (SET_DEST (in_set)))
3580 return false;
3581
3582 out_set = single_set (out_insn);
3583 if (out_set)
3584 {
3585 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3586 return false;
3587 }
3588 else
3589 {
3590 out_pat = PATTERN (out_insn);
3591
3592 if (GET_CODE (out_pat) != PARALLEL)
3593 return false;
3594
3595 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3596 {
3597 out_exp = XVECEXP (out_pat, 0, i);
3598
3599 if (GET_CODE (out_exp) == CLOBBER)
3600 continue;
3601
3602 gcc_assert (GET_CODE (out_exp) == SET);
3603
3604 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3605 return false;
3606 }
3607 }
3608 }
3609 else
3610 {
3611 in_pat = PATTERN (in_insn);
3612 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3613
3614 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3615 {
3616 in_exp = XVECEXP (in_pat, 0, i);
3617
3618 if (GET_CODE (in_exp) == CLOBBER)
3619 continue;
3620
3621 gcc_assert (GET_CODE (in_exp) == SET);
3622
3623 if (!MEM_P (SET_DEST (in_exp)))
3624 return false;
3625
3626 out_set = single_set (out_insn);
3627 if (out_set)
3628 {
3629 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3630 return false;
3631 }
3632 else
3633 {
3634 out_pat = PATTERN (out_insn);
3635 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3636
3637 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3638 {
3639 out_exp = XVECEXP (out_pat, 0, j);
3640
3641 if (GET_CODE (out_exp) == CLOBBER)
3642 continue;
3643
3644 gcc_assert (GET_CODE (out_exp) == SET);
3645
3646 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3647 return false;
3648 }
3649 }
3650 }
3651 }
3652
3653 return true;
3654 }
3655
3656 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3657 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3658 or multiple set; IN_INSN should be single_set for truth, but for convenience
3659 of insn categorization may be any JUMP or CALL insn. */
3660
3661 int
3662 if_test_bypass_p (rtx out_insn, rtx in_insn)
3663 {
3664 rtx out_set, in_set;
3665
3666 in_set = single_set (in_insn);
3667 if (! in_set)
3668 {
3669 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3670 return false;
3671 }
3672
3673 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3674 return false;
3675 in_set = SET_SRC (in_set);
3676
3677 out_set = single_set (out_insn);
3678 if (out_set)
3679 {
3680 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3681 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3682 return false;
3683 }
3684 else
3685 {
3686 rtx out_pat;
3687 int i;
3688
3689 out_pat = PATTERN (out_insn);
3690 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3691
3692 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3693 {
3694 rtx exp = XVECEXP (out_pat, 0, i);
3695
3696 if (GET_CODE (exp) == CLOBBER)
3697 continue;
3698
3699 gcc_assert (GET_CODE (exp) == SET);
3700
3701 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3702 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3703 return false;
3704 }
3705 }
3706
3707 return true;
3708 }
3709 \f
3710 static bool
3711 gate_handle_peephole2 (void)
3712 {
3713 return (optimize > 0 && flag_peephole2);
3714 }
3715
3716 static unsigned int
3717 rest_of_handle_peephole2 (void)
3718 {
3719 #ifdef HAVE_peephole2
3720 peephole2_optimize ();
3721 #endif
3722 return 0;
3723 }
3724
3725 struct rtl_opt_pass pass_peephole2 =
3726 {
3727 {
3728 RTL_PASS,
3729 "peephole2", /* name */
3730 gate_handle_peephole2, /* gate */
3731 rest_of_handle_peephole2, /* execute */
3732 NULL, /* sub */
3733 NULL, /* next */
3734 0, /* static_pass_number */
3735 TV_PEEPHOLE2, /* tv_id */
3736 0, /* properties_required */
3737 0, /* properties_provided */
3738 0, /* properties_destroyed */
3739 0, /* todo_flags_start */
3740 TODO_df_finish | TODO_verify_rtl_sharing |
3741 0 /* todo_flags_finish */
3742 }
3743 };
3744
3745 static unsigned int
3746 rest_of_handle_split_all_insns (void)
3747 {
3748 split_all_insns ();
3749 return 0;
3750 }
3751
3752 struct rtl_opt_pass pass_split_all_insns =
3753 {
3754 {
3755 RTL_PASS,
3756 "split1", /* name */
3757 NULL, /* gate */
3758 rest_of_handle_split_all_insns, /* execute */
3759 NULL, /* sub */
3760 NULL, /* next */
3761 0, /* static_pass_number */
3762 TV_NONE, /* tv_id */
3763 0, /* properties_required */
3764 0, /* properties_provided */
3765 0, /* properties_destroyed */
3766 0, /* todo_flags_start */
3767 0 /* todo_flags_finish */
3768 }
3769 };
3770
3771 static unsigned int
3772 rest_of_handle_split_after_reload (void)
3773 {
3774 /* If optimizing, then go ahead and split insns now. */
3775 #ifndef STACK_REGS
3776 if (optimize > 0)
3777 #endif
3778 split_all_insns ();
3779 return 0;
3780 }
3781
3782 struct rtl_opt_pass pass_split_after_reload =
3783 {
3784 {
3785 RTL_PASS,
3786 "split2", /* name */
3787 NULL, /* gate */
3788 rest_of_handle_split_after_reload, /* execute */
3789 NULL, /* sub */
3790 NULL, /* next */
3791 0, /* static_pass_number */
3792 TV_NONE, /* tv_id */
3793 0, /* properties_required */
3794 0, /* properties_provided */
3795 0, /* properties_destroyed */
3796 0, /* todo_flags_start */
3797 0 /* todo_flags_finish */
3798 }
3799 };
3800
3801 static bool
3802 gate_handle_split_before_regstack (void)
3803 {
3804 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3805 /* If flow2 creates new instructions which need splitting
3806 and scheduling after reload is not done, they might not be
3807 split until final which doesn't allow splitting
3808 if HAVE_ATTR_length. */
3809 # ifdef INSN_SCHEDULING
3810 return (optimize && !flag_schedule_insns_after_reload);
3811 # else
3812 return (optimize);
3813 # endif
3814 #else
3815 return 0;
3816 #endif
3817 }
3818
3819 static unsigned int
3820 rest_of_handle_split_before_regstack (void)
3821 {
3822 split_all_insns ();
3823 return 0;
3824 }
3825
3826 struct rtl_opt_pass pass_split_before_regstack =
3827 {
3828 {
3829 RTL_PASS,
3830 "split3", /* name */
3831 gate_handle_split_before_regstack, /* gate */
3832 rest_of_handle_split_before_regstack, /* execute */
3833 NULL, /* sub */
3834 NULL, /* next */
3835 0, /* static_pass_number */
3836 TV_NONE, /* tv_id */
3837 0, /* properties_required */
3838 0, /* properties_provided */
3839 0, /* properties_destroyed */
3840 0, /* todo_flags_start */
3841 0 /* todo_flags_finish */
3842 }
3843 };
3844
3845 static bool
3846 gate_handle_split_before_sched2 (void)
3847 {
3848 #ifdef INSN_SCHEDULING
3849 return optimize > 0 && flag_schedule_insns_after_reload;
3850 #else
3851 return 0;
3852 #endif
3853 }
3854
3855 static unsigned int
3856 rest_of_handle_split_before_sched2 (void)
3857 {
3858 #ifdef INSN_SCHEDULING
3859 split_all_insns ();
3860 #endif
3861 return 0;
3862 }
3863
3864 struct rtl_opt_pass pass_split_before_sched2 =
3865 {
3866 {
3867 RTL_PASS,
3868 "split4", /* name */
3869 gate_handle_split_before_sched2, /* gate */
3870 rest_of_handle_split_before_sched2, /* execute */
3871 NULL, /* sub */
3872 NULL, /* next */
3873 0, /* static_pass_number */
3874 TV_NONE, /* tv_id */
3875 0, /* properties_required */
3876 0, /* properties_provided */
3877 0, /* properties_destroyed */
3878 0, /* todo_flags_start */
3879 TODO_verify_flow /* todo_flags_finish */
3880 }
3881 };
3882
3883 /* The placement of the splitting that we do for shorten_branches
3884 depends on whether regstack is used by the target or not. */
3885 static bool
3886 gate_do_final_split (void)
3887 {
3888 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3889 return 1;
3890 #else
3891 return 0;
3892 #endif
3893 }
3894
3895 struct rtl_opt_pass pass_split_for_shorten_branches =
3896 {
3897 {
3898 RTL_PASS,
3899 "split5", /* name */
3900 gate_do_final_split, /* gate */
3901 split_all_insns_noflow, /* execute */
3902 NULL, /* sub */
3903 NULL, /* next */
3904 0, /* static_pass_number */
3905 TV_NONE, /* tv_id */
3906 0, /* properties_required */
3907 0, /* properties_provided */
3908 0, /* properties_destroyed */
3909 0, /* todo_flags_start */
3910 TODO_verify_rtl_sharing /* todo_flags_finish */
3911 }
3912 };