]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
Merge in trunk.
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "insn-attr.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "target.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "insn-codes.h"
43
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
51
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
59
60 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx);
63
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in reginfo.c and final.c and reload.c.
69
70 init_recog and init_recog_no_volatile are responsible for setting this. */
71
72 int volatile_ok;
73
74 struct recog_data_d recog_data;
75
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
79
80 /* On return from `constrain_operands', indicate which alternative
81 was satisfied. */
82
83 int which_alternative;
84
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
88
89 int reload_completed;
90
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed;
93
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
97
98 void
99 init_recog_no_volatile (void)
100 {
101 volatile_ok = 0;
102 }
103
104 void
105 init_recog (void)
106 {
107 volatile_ok = 1;
108 }
109
110 \f
111 /* Return true if labels in asm operands BODY are LABEL_REFs. */
112
113 static bool
114 asm_labels_ok (rtx body)
115 {
116 rtx asmop;
117 int i;
118
119 asmop = extract_asm_operands (body);
120 if (asmop == NULL_RTX)
121 return true;
122
123 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
124 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
125 return false;
126
127 return true;
128 }
129
130 /* Check that X is an insn-body for an `asm' with operands
131 and that the operands mentioned in it are legitimate. */
132
133 int
134 check_asm_operands (rtx x)
135 {
136 int noperands;
137 rtx *operands;
138 const char **constraints;
139 int i;
140
141 if (!asm_labels_ok (x))
142 return 0;
143
144 /* Post-reload, be more strict with things. */
145 if (reload_completed)
146 {
147 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
148 extract_insn (make_insn_raw (x));
149 constrain_operands (1);
150 return which_alternative >= 0;
151 }
152
153 noperands = asm_noperands (x);
154 if (noperands < 0)
155 return 0;
156 if (noperands == 0)
157 return 1;
158
159 operands = XALLOCAVEC (rtx, noperands);
160 constraints = XALLOCAVEC (const char *, noperands);
161
162 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
163
164 for (i = 0; i < noperands; i++)
165 {
166 const char *c = constraints[i];
167 if (c[0] == '%')
168 c++;
169 if (! asm_operand_ok (operands[i], c, constraints))
170 return 0;
171 }
172
173 return 1;
174 }
175 \f
176 /* Static data for the next two routines. */
177
178 typedef struct change_t
179 {
180 rtx object;
181 int old_code;
182 rtx *loc;
183 rtx old;
184 bool unshare;
185 } change_t;
186
187 static change_t *changes;
188 static int changes_allocated;
189
190 static int num_changes = 0;
191
192 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
193 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
194 the change is simply made.
195
196 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
197 will be called with the address and mode as parameters. If OBJECT is
198 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
199 the change in place.
200
201 IN_GROUP is nonzero if this is part of a group of changes that must be
202 performed as a group. In that case, the changes will be stored. The
203 function `apply_change_group' will validate and apply the changes.
204
205 If IN_GROUP is zero, this is a single change. Try to recognize the insn
206 or validate the memory reference with the change applied. If the result
207 is not valid for the machine, suppress the change and return zero.
208 Otherwise, perform the change and return 1. */
209
210 static bool
211 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
212 {
213 rtx old = *loc;
214
215 if (old == new_rtx || rtx_equal_p (old, new_rtx))
216 return 1;
217
218 gcc_assert (in_group != 0 || num_changes == 0);
219
220 *loc = new_rtx;
221
222 /* Save the information describing this change. */
223 if (num_changes >= changes_allocated)
224 {
225 if (changes_allocated == 0)
226 /* This value allows for repeated substitutions inside complex
227 indexed addresses, or changes in up to 5 insns. */
228 changes_allocated = MAX_RECOG_OPERANDS * 5;
229 else
230 changes_allocated *= 2;
231
232 changes = XRESIZEVEC (change_t, changes, changes_allocated);
233 }
234
235 changes[num_changes].object = object;
236 changes[num_changes].loc = loc;
237 changes[num_changes].old = old;
238 changes[num_changes].unshare = unshare;
239
240 if (object && !MEM_P (object))
241 {
242 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 case invalid. */
244 changes[num_changes].old_code = INSN_CODE (object);
245 INSN_CODE (object) = -1;
246 }
247
248 num_changes++;
249
250 /* If we are making a group of changes, return 1. Otherwise, validate the
251 change group we made. */
252
253 if (in_group)
254 return 1;
255 else
256 return apply_change_group ();
257 }
258
259 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
260 UNSHARE to false. */
261
262 bool
263 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
264 {
265 return validate_change_1 (object, loc, new_rtx, in_group, false);
266 }
267
268 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
269 UNSHARE to true. */
270
271 bool
272 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
273 {
274 return validate_change_1 (object, loc, new_rtx, in_group, true);
275 }
276
277
278 /* Keep X canonicalized if some changes have made it non-canonical; only
279 modifies the operands of X, not (for example) its code. Simplifications
280 are not the job of this routine.
281
282 Return true if anything was changed. */
283 bool
284 canonicalize_change_group (rtx insn, rtx x)
285 {
286 if (COMMUTATIVE_P (x)
287 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
288 {
289 /* Oops, the caller has made X no longer canonical.
290 Let's redo the changes in the correct order. */
291 rtx tem = XEXP (x, 0);
292 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
293 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
294 return true;
295 }
296 else
297 return false;
298 }
299
300
301 /* This subroutine of apply_change_group verifies whether the changes to INSN
302 were valid; i.e. whether INSN can still be recognized.
303
304 If IN_GROUP is true clobbers which have to be added in order to
305 match the instructions will be added to the current change group.
306 Otherwise the changes will take effect immediately. */
307
308 int
309 insn_invalid_p (rtx insn, bool in_group)
310 {
311 rtx pat = PATTERN (insn);
312 int num_clobbers = 0;
313 /* If we are before reload and the pattern is a SET, see if we can add
314 clobbers. */
315 int icode = recog (pat, insn,
316 (GET_CODE (pat) == SET
317 && ! reload_completed
318 && ! reload_in_progress)
319 ? &num_clobbers : 0);
320 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
321
322
323 /* If this is an asm and the operand aren't legal, then fail. Likewise if
324 this is not an asm and the insn wasn't recognized. */
325 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
326 || (!is_asm && icode < 0))
327 return 1;
328
329 /* If we have to add CLOBBERs, fail if we have to add ones that reference
330 hard registers since our callers can't know if they are live or not.
331 Otherwise, add them. */
332 if (num_clobbers > 0)
333 {
334 rtx newpat;
335
336 if (added_clobbers_hard_reg_p (icode))
337 return 1;
338
339 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
340 XVECEXP (newpat, 0, 0) = pat;
341 add_clobbers (newpat, icode);
342 if (in_group)
343 validate_change (insn, &PATTERN (insn), newpat, 1);
344 else
345 PATTERN (insn) = pat = newpat;
346 }
347
348 /* After reload, verify that all constraints are satisfied. */
349 if (reload_completed)
350 {
351 extract_insn (insn);
352
353 if (! constrain_operands (1))
354 return 1;
355 }
356
357 INSN_CODE (insn) = icode;
358 return 0;
359 }
360
361 /* Return number of changes made and not validated yet. */
362 int
363 num_changes_pending (void)
364 {
365 return num_changes;
366 }
367
368 /* Tentatively apply the changes numbered NUM and up.
369 Return 1 if all changes are valid, zero otherwise. */
370
371 int
372 verify_changes (int num)
373 {
374 int i;
375 rtx last_validated = NULL_RTX;
376
377 /* The changes have been applied and all INSN_CODEs have been reset to force
378 rerecognition.
379
380 The changes are valid if we aren't given an object, or if we are
381 given a MEM and it still is a valid address, or if this is in insn
382 and it is recognized. In the latter case, if reload has completed,
383 we also require that the operands meet the constraints for
384 the insn. */
385
386 for (i = num; i < num_changes; i++)
387 {
388 rtx object = changes[i].object;
389
390 /* If there is no object to test or if it is the same as the one we
391 already tested, ignore it. */
392 if (object == 0 || object == last_validated)
393 continue;
394
395 if (MEM_P (object))
396 {
397 if (! memory_address_addr_space_p (GET_MODE (object),
398 XEXP (object, 0),
399 MEM_ADDR_SPACE (object)))
400 break;
401 }
402 else if (/* changes[i].old might be zero, e.g. when putting a
403 REG_FRAME_RELATED_EXPR into a previously empty list. */
404 changes[i].old
405 && REG_P (changes[i].old)
406 && asm_noperands (PATTERN (object)) > 0
407 && REG_EXPR (changes[i].old) != NULL_TREE
408 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
409 && DECL_REGISTER (REG_EXPR (changes[i].old)))
410 {
411 /* Don't allow changes of hard register operands to inline
412 assemblies if they have been defined as register asm ("x"). */
413 break;
414 }
415 else if (DEBUG_INSN_P (object))
416 continue;
417 else if (insn_invalid_p (object, true))
418 {
419 rtx pat = PATTERN (object);
420
421 /* Perhaps we couldn't recognize the insn because there were
422 extra CLOBBERs at the end. If so, try to re-recognize
423 without the last CLOBBER (later iterations will cause each of
424 them to be eliminated, in turn). But don't do this if we
425 have an ASM_OPERAND. */
426 if (GET_CODE (pat) == PARALLEL
427 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
428 && asm_noperands (PATTERN (object)) < 0)
429 {
430 rtx newpat;
431
432 if (XVECLEN (pat, 0) == 2)
433 newpat = XVECEXP (pat, 0, 0);
434 else
435 {
436 int j;
437
438 newpat
439 = gen_rtx_PARALLEL (VOIDmode,
440 rtvec_alloc (XVECLEN (pat, 0) - 1));
441 for (j = 0; j < XVECLEN (newpat, 0); j++)
442 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
443 }
444
445 /* Add a new change to this group to replace the pattern
446 with this new pattern. Then consider this change
447 as having succeeded. The change we added will
448 cause the entire call to fail if things remain invalid.
449
450 Note that this can lose if a later change than the one
451 we are processing specified &XVECEXP (PATTERN (object), 0, X)
452 but this shouldn't occur. */
453
454 validate_change (object, &PATTERN (object), newpat, 1);
455 continue;
456 }
457 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
458 || GET_CODE (pat) == VAR_LOCATION)
459 /* If this insn is a CLOBBER or USE, it is always valid, but is
460 never recognized. */
461 continue;
462 else
463 break;
464 }
465 last_validated = object;
466 }
467
468 return (i == num_changes);
469 }
470
471 /* A group of changes has previously been issued with validate_change
472 and verified with verify_changes. Call df_insn_rescan for each of
473 the insn changed and clear num_changes. */
474
475 void
476 confirm_change_group (void)
477 {
478 int i;
479 rtx last_object = NULL;
480
481 for (i = 0; i < num_changes; i++)
482 {
483 rtx object = changes[i].object;
484
485 if (changes[i].unshare)
486 *changes[i].loc = copy_rtx (*changes[i].loc);
487
488 /* Avoid unnecessary rescanning when multiple changes to same instruction
489 are made. */
490 if (object)
491 {
492 if (object != last_object && last_object && INSN_P (last_object))
493 df_insn_rescan (last_object);
494 last_object = object;
495 }
496 }
497
498 if (last_object && INSN_P (last_object))
499 df_insn_rescan (last_object);
500 num_changes = 0;
501 }
502
503 /* Apply a group of changes previously issued with `validate_change'.
504 If all changes are valid, call confirm_change_group and return 1,
505 otherwise, call cancel_changes and return 0. */
506
507 int
508 apply_change_group (void)
509 {
510 if (verify_changes (0))
511 {
512 confirm_change_group ();
513 return 1;
514 }
515 else
516 {
517 cancel_changes (0);
518 return 0;
519 }
520 }
521
522
523 /* Return the number of changes so far in the current group. */
524
525 int
526 num_validated_changes (void)
527 {
528 return num_changes;
529 }
530
531 /* Retract the changes numbered NUM and up. */
532
533 void
534 cancel_changes (int num)
535 {
536 int i;
537
538 /* Back out all the changes. Do this in the opposite order in which
539 they were made. */
540 for (i = num_changes - 1; i >= num; i--)
541 {
542 *changes[i].loc = changes[i].old;
543 if (changes[i].object && !MEM_P (changes[i].object))
544 INSN_CODE (changes[i].object) = changes[i].old_code;
545 }
546 num_changes = num;
547 }
548
549 /* Reduce conditional compilation elsewhere. */
550 #ifndef HAVE_extv
551 #define HAVE_extv 0
552 #define CODE_FOR_extv CODE_FOR_nothing
553 #endif
554 #ifndef HAVE_extzv
555 #define HAVE_extzv 0
556 #define CODE_FOR_extzv CODE_FOR_nothing
557 #endif
558
559 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
560 rtx. */
561
562 static void
563 simplify_while_replacing (rtx *loc, rtx to, rtx object,
564 enum machine_mode op0_mode)
565 {
566 rtx x = *loc;
567 enum rtx_code code = GET_CODE (x);
568 rtx new_rtx = NULL_RTX;
569
570 if (SWAPPABLE_OPERANDS_P (x)
571 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
572 {
573 validate_unshare_change (object, loc,
574 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
575 : swap_condition (code),
576 GET_MODE (x), XEXP (x, 1),
577 XEXP (x, 0)), 1);
578 x = *loc;
579 code = GET_CODE (x);
580 }
581
582 /* Canonicalize arithmetics with all constant operands. */
583 switch (GET_RTX_CLASS (code))
584 {
585 case RTX_UNARY:
586 if (CONSTANT_P (XEXP (x, 0)))
587 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
588 op0_mode);
589 break;
590 case RTX_COMM_ARITH:
591 case RTX_BIN_ARITH:
592 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
593 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
594 XEXP (x, 1));
595 break;
596 case RTX_COMPARE:
597 case RTX_COMM_COMPARE:
598 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
599 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
600 XEXP (x, 0), XEXP (x, 1));
601 break;
602 default:
603 break;
604 }
605 if (new_rtx)
606 {
607 validate_change (object, loc, new_rtx, 1);
608 return;
609 }
610
611 switch (code)
612 {
613 case PLUS:
614 /* If we have a PLUS whose second operand is now a CONST_INT, use
615 simplify_gen_binary to try to simplify it.
616 ??? We may want later to remove this, once simplification is
617 separated from this function. */
618 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
619 validate_change (object, loc,
620 simplify_gen_binary
621 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
622 break;
623 case MINUS:
624 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
625 validate_change (object, loc,
626 simplify_gen_binary
627 (PLUS, GET_MODE (x), XEXP (x, 0),
628 simplify_gen_unary (NEG,
629 GET_MODE (x), XEXP (x, 1),
630 GET_MODE (x))), 1);
631 break;
632 case ZERO_EXTEND:
633 case SIGN_EXTEND:
634 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
635 {
636 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
637 op0_mode);
638 /* If any of the above failed, substitute in something that
639 we know won't be recognized. */
640 if (!new_rtx)
641 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
642 validate_change (object, loc, new_rtx, 1);
643 }
644 break;
645 case SUBREG:
646 /* All subregs possible to simplify should be simplified. */
647 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
648 SUBREG_BYTE (x));
649
650 /* Subregs of VOIDmode operands are incorrect. */
651 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
652 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
653 if (new_rtx)
654 validate_change (object, loc, new_rtx, 1);
655 break;
656 case ZERO_EXTRACT:
657 case SIGN_EXTRACT:
658 /* If we are replacing a register with memory, try to change the memory
659 to be the mode required for memory in extract operations (this isn't
660 likely to be an insertion operation; if it was, nothing bad will
661 happen, we might just fail in some cases). */
662
663 if (MEM_P (XEXP (x, 0))
664 && CONST_INT_P (XEXP (x, 1))
665 && CONST_INT_P (XEXP (x, 2))
666 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
667 MEM_ADDR_SPACE (XEXP (x, 0)))
668 && !MEM_VOLATILE_P (XEXP (x, 0)))
669 {
670 enum machine_mode wanted_mode = VOIDmode;
671 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
672 int pos = INTVAL (XEXP (x, 2));
673
674 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
675 {
676 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
677 if (wanted_mode == VOIDmode)
678 wanted_mode = word_mode;
679 }
680 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
681 {
682 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
683 if (wanted_mode == VOIDmode)
684 wanted_mode = word_mode;
685 }
686
687 /* If we have a narrower mode, we can do something. */
688 if (wanted_mode != VOIDmode
689 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
690 {
691 int offset = pos / BITS_PER_UNIT;
692 rtx newmem;
693
694 /* If the bytes and bits are counted differently, we
695 must adjust the offset. */
696 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
697 offset =
698 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
699 offset);
700
701 gcc_assert (GET_MODE_PRECISION (wanted_mode)
702 == GET_MODE_BITSIZE (wanted_mode));
703 pos %= GET_MODE_BITSIZE (wanted_mode);
704
705 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
706
707 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
708 validate_change (object, &XEXP (x, 0), newmem, 1);
709 }
710 }
711
712 break;
713
714 default:
715 break;
716 }
717 }
718
719 /* Replace every occurrence of FROM in X with TO. Mark each change with
720 validate_change passing OBJECT. */
721
722 static void
723 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
724 bool simplify)
725 {
726 int i, j;
727 const char *fmt;
728 rtx x = *loc;
729 enum rtx_code code;
730 enum machine_mode op0_mode = VOIDmode;
731 int prev_changes = num_changes;
732
733 if (!x)
734 return;
735
736 code = GET_CODE (x);
737 fmt = GET_RTX_FORMAT (code);
738 if (fmt[0] == 'e')
739 op0_mode = GET_MODE (XEXP (x, 0));
740
741 /* X matches FROM if it is the same rtx or they are both referring to the
742 same register in the same mode. Avoid calling rtx_equal_p unless the
743 operands look similar. */
744
745 if (x == from
746 || (REG_P (x) && REG_P (from)
747 && GET_MODE (x) == GET_MODE (from)
748 && REGNO (x) == REGNO (from))
749 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
750 && rtx_equal_p (x, from)))
751 {
752 validate_unshare_change (object, loc, to, 1);
753 return;
754 }
755
756 /* Call ourself recursively to perform the replacements.
757 We must not replace inside already replaced expression, otherwise we
758 get infinite recursion for replacements like (reg X)->(subreg (reg X))
759 so we must special case shared ASM_OPERANDS. */
760
761 if (GET_CODE (x) == PARALLEL)
762 {
763 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
764 {
765 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
766 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
767 {
768 /* Verify that operands are really shared. */
769 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
770 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
771 (x, 0, j))));
772 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
773 from, to, object, simplify);
774 }
775 else
776 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
777 simplify);
778 }
779 }
780 else
781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
782 {
783 if (fmt[i] == 'e')
784 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
785 else if (fmt[i] == 'E')
786 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
787 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
788 simplify);
789 }
790
791 /* If we didn't substitute, there is nothing more to do. */
792 if (num_changes == prev_changes)
793 return;
794
795 /* ??? The regmove is no more, so is this aberration still necessary? */
796 /* Allow substituted expression to have different mode. This is used by
797 regmove to change mode of pseudo register. */
798 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
799 op0_mode = GET_MODE (XEXP (x, 0));
800
801 /* Do changes needed to keep rtx consistent. Don't do any other
802 simplifications, as it is not our job. */
803 if (simplify)
804 simplify_while_replacing (loc, to, object, op0_mode);
805 }
806
807 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
808 with TO. After all changes have been made, validate by seeing
809 if INSN is still valid. */
810
811 int
812 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
813 {
814 validate_replace_rtx_1 (loc, from, to, insn, true);
815 return apply_change_group ();
816 }
817
818 /* Try replacing every occurrence of FROM in INSN with TO. After all
819 changes have been made, validate by seeing if INSN is still valid. */
820
821 int
822 validate_replace_rtx (rtx from, rtx to, rtx insn)
823 {
824 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
825 return apply_change_group ();
826 }
827
828 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
829 is a part of INSN. After all changes have been made, validate by seeing if
830 INSN is still valid.
831 validate_replace_rtx (from, to, insn) is equivalent to
832 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
833
834 int
835 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
836 {
837 validate_replace_rtx_1 (where, from, to, insn, true);
838 return apply_change_group ();
839 }
840
841 /* Same as above, but do not simplify rtx afterwards. */
842 int
843 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
844 rtx insn)
845 {
846 validate_replace_rtx_1 (where, from, to, insn, false);
847 return apply_change_group ();
848
849 }
850
851 /* Try replacing every occurrence of FROM in INSN with TO. This also
852 will replace in REG_EQUAL and REG_EQUIV notes. */
853
854 void
855 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
856 {
857 rtx note;
858 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
859 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
860 if (REG_NOTE_KIND (note) == REG_EQUAL
861 || REG_NOTE_KIND (note) == REG_EQUIV)
862 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
863 }
864
865 /* Function called by note_uses to replace used subexpressions. */
866 struct validate_replace_src_data
867 {
868 rtx from; /* Old RTX */
869 rtx to; /* New RTX */
870 rtx insn; /* Insn in which substitution is occurring. */
871 };
872
873 static void
874 validate_replace_src_1 (rtx *x, void *data)
875 {
876 struct validate_replace_src_data *d
877 = (struct validate_replace_src_data *) data;
878
879 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
880 }
881
882 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
883 SET_DESTs. */
884
885 void
886 validate_replace_src_group (rtx from, rtx to, rtx insn)
887 {
888 struct validate_replace_src_data d;
889
890 d.from = from;
891 d.to = to;
892 d.insn = insn;
893 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
894 }
895
896 /* Try simplify INSN.
897 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
898 pattern and return true if something was simplified. */
899
900 bool
901 validate_simplify_insn (rtx insn)
902 {
903 int i;
904 rtx pat = NULL;
905 rtx newpat = NULL;
906
907 pat = PATTERN (insn);
908
909 if (GET_CODE (pat) == SET)
910 {
911 newpat = simplify_rtx (SET_SRC (pat));
912 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
913 validate_change (insn, &SET_SRC (pat), newpat, 1);
914 newpat = simplify_rtx (SET_DEST (pat));
915 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
916 validate_change (insn, &SET_DEST (pat), newpat, 1);
917 }
918 else if (GET_CODE (pat) == PARALLEL)
919 for (i = 0; i < XVECLEN (pat, 0); i++)
920 {
921 rtx s = XVECEXP (pat, 0, i);
922
923 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
924 {
925 newpat = simplify_rtx (SET_SRC (s));
926 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
927 validate_change (insn, &SET_SRC (s), newpat, 1);
928 newpat = simplify_rtx (SET_DEST (s));
929 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
930 validate_change (insn, &SET_DEST (s), newpat, 1);
931 }
932 }
933 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
934 }
935 \f
936 #ifdef HAVE_cc0
937 /* Return 1 if the insn using CC0 set by INSN does not contain
938 any ordered tests applied to the condition codes.
939 EQ and NE tests do not count. */
940
941 int
942 next_insn_tests_no_inequality (rtx insn)
943 {
944 rtx next = next_cc0_user (insn);
945
946 /* If there is no next insn, we have to take the conservative choice. */
947 if (next == 0)
948 return 0;
949
950 return (INSN_P (next)
951 && ! inequality_comparisons_p (PATTERN (next)));
952 }
953 #endif
954 \f
955 /* Return 1 if OP is a valid general operand for machine mode MODE.
956 This is either a register reference, a memory reference,
957 or a constant. In the case of a memory reference, the address
958 is checked for general validity for the target machine.
959
960 Register and memory references must have mode MODE in order to be valid,
961 but some constants have no machine mode and are valid for any mode.
962
963 If MODE is VOIDmode, OP is checked for validity for whatever mode
964 it has.
965
966 The main use of this function is as a predicate in match_operand
967 expressions in the machine description. */
968
969 int
970 general_operand (rtx op, enum machine_mode mode)
971 {
972 enum rtx_code code = GET_CODE (op);
973
974 if (mode == VOIDmode)
975 mode = GET_MODE (op);
976
977 /* Don't accept CONST_INT or anything similar
978 if the caller wants something floating. */
979 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
980 && GET_MODE_CLASS (mode) != MODE_INT
981 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
982 return 0;
983
984 if (CONST_INT_P (op)
985 && mode != VOIDmode
986 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
987 return 0;
988
989 if (CONSTANT_P (op))
990 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
991 || mode == VOIDmode)
992 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
993 && targetm.legitimate_constant_p (mode == VOIDmode
994 ? GET_MODE (op)
995 : mode, op));
996
997 /* Except for certain constants with VOIDmode, already checked for,
998 OP's mode must match MODE if MODE specifies a mode. */
999
1000 if (GET_MODE (op) != mode)
1001 return 0;
1002
1003 if (code == SUBREG)
1004 {
1005 rtx sub = SUBREG_REG (op);
1006
1007 #ifdef INSN_SCHEDULING
1008 /* On machines that have insn scheduling, we want all memory
1009 reference to be explicit, so outlaw paradoxical SUBREGs.
1010 However, we must allow them after reload so that they can
1011 get cleaned up by cleanup_subreg_operands. */
1012 if (!reload_completed && MEM_P (sub)
1013 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1014 return 0;
1015 #endif
1016 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1017 may result in incorrect reference. We should simplify all valid
1018 subregs of MEM anyway. But allow this after reload because we
1019 might be called from cleanup_subreg_operands.
1020
1021 ??? This is a kludge. */
1022 if (!reload_completed && SUBREG_BYTE (op) != 0
1023 && MEM_P (sub))
1024 return 0;
1025
1026 #ifdef CANNOT_CHANGE_MODE_CLASS
1027 if (REG_P (sub)
1028 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1029 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1030 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1031 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1032 /* LRA can generate some invalid SUBREGS just for matched
1033 operand reload presentation. LRA needs to treat them as
1034 valid. */
1035 && ! LRA_SUBREG_P (op))
1036 return 0;
1037 #endif
1038
1039 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1040 create such rtl, and we must reject it. */
1041 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1042 /* LRA can use subreg to store a floating point value in an
1043 integer mode. Although the floating point and the
1044 integer modes need the same number of hard registers, the
1045 size of floating point mode can be less than the integer
1046 mode. */
1047 && ! lra_in_progress
1048 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1049 return 0;
1050
1051 op = sub;
1052 code = GET_CODE (op);
1053 }
1054
1055 if (code == REG)
1056 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1057 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1058
1059 if (code == MEM)
1060 {
1061 rtx y = XEXP (op, 0);
1062
1063 if (! volatile_ok && MEM_VOLATILE_P (op))
1064 return 0;
1065
1066 /* Use the mem's mode, since it will be reloaded thus. LRA can
1067 generate move insn with invalid addresses which is made valid
1068 and efficiently calculated by LRA through further numerous
1069 transformations. */
1070 if (lra_in_progress
1071 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1072 return 1;
1073 }
1074
1075 return 0;
1076 }
1077 \f
1078 /* Return 1 if OP is a valid memory address for a memory reference
1079 of mode MODE.
1080
1081 The main use of this function is as a predicate in match_operand
1082 expressions in the machine description. */
1083
1084 int
1085 address_operand (rtx op, enum machine_mode mode)
1086 {
1087 return memory_address_p (mode, op);
1088 }
1089
1090 /* Return 1 if OP is a register reference of mode MODE.
1091 If MODE is VOIDmode, accept a register in any mode.
1092
1093 The main use of this function is as a predicate in match_operand
1094 expressions in the machine description. */
1095
1096 int
1097 register_operand (rtx op, enum machine_mode mode)
1098 {
1099 if (GET_CODE (op) == SUBREG)
1100 {
1101 rtx sub = SUBREG_REG (op);
1102
1103 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1104 because it is guaranteed to be reloaded into one.
1105 Just make sure the MEM is valid in itself.
1106 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1107 but currently it does result from (SUBREG (REG)...) where the
1108 reg went on the stack.) */
1109 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1110 return 0;
1111 }
1112 else if (!REG_P (op))
1113 return 0;
1114 return general_operand (op, mode);
1115 }
1116
1117 /* Return 1 for a register in Pmode; ignore the tested mode. */
1118
1119 int
1120 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1121 {
1122 return register_operand (op, Pmode);
1123 }
1124
1125 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1126 or a hard register. */
1127
1128 int
1129 scratch_operand (rtx op, enum machine_mode mode)
1130 {
1131 if (GET_MODE (op) != mode && mode != VOIDmode)
1132 return 0;
1133
1134 return (GET_CODE (op) == SCRATCH
1135 || (REG_P (op)
1136 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1137 }
1138
1139 /* Return 1 if OP is a valid immediate operand for mode MODE.
1140
1141 The main use of this function is as a predicate in match_operand
1142 expressions in the machine description. */
1143
1144 int
1145 immediate_operand (rtx op, enum machine_mode mode)
1146 {
1147 /* Don't accept CONST_INT or anything similar
1148 if the caller wants something floating. */
1149 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1150 && GET_MODE_CLASS (mode) != MODE_INT
1151 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1152 return 0;
1153
1154 if (CONST_INT_P (op)
1155 && mode != VOIDmode
1156 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1157 return 0;
1158
1159 return (CONSTANT_P (op)
1160 && (GET_MODE (op) == mode || mode == VOIDmode
1161 || GET_MODE (op) == VOIDmode)
1162 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1163 && targetm.legitimate_constant_p (mode == VOIDmode
1164 ? GET_MODE (op)
1165 : mode, op));
1166 }
1167
1168 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1169
1170 int
1171 const_int_operand (rtx op, enum machine_mode mode)
1172 {
1173 if (!CONST_INT_P (op))
1174 return 0;
1175
1176 if (mode != VOIDmode
1177 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1178 return 0;
1179
1180 return 1;
1181 }
1182
1183 #if TARGET_SUPPORTS_WIDE_INT
1184 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1185 of mode MODE. */
1186 int
1187 const_scalar_int_operand (rtx op, enum machine_mode mode)
1188 {
1189 if (!CONST_SCALAR_INT_P (op))
1190 return 0;
1191
1192 if (CONST_INT_P (op))
1193 return const_int_operand (op, mode);
1194
1195 if (mode != VOIDmode)
1196 {
1197 int prec = GET_MODE_PRECISION (mode);
1198 int bitsize = GET_MODE_BITSIZE (mode);
1199
1200 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1201 return 0;
1202
1203 if (prec == bitsize)
1204 return 1;
1205 else
1206 {
1207 /* Multiword partial int. */
1208 HOST_WIDE_INT x
1209 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1210 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1211 }
1212 }
1213 return 1;
1214 }
1215
1216 /* Returns 1 if OP is an operand that is a constant integer or constant
1217 floating-point number of MODE. */
1218
1219 int
1220 const_double_operand (rtx op, enum machine_mode mode)
1221 {
1222 return (GET_CODE (op) == CONST_DOUBLE)
1223 && (GET_MODE (op) == mode || mode == VOIDmode);
1224 }
1225 #else
1226 /* Returns 1 if OP is an operand that is a constant integer or constant
1227 floating-point number of MODE. */
1228
1229 int
1230 const_double_operand (rtx op, enum machine_mode mode)
1231 {
1232 /* Don't accept CONST_INT or anything similar
1233 if the caller wants something floating. */
1234 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1235 && GET_MODE_CLASS (mode) != MODE_INT
1236 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1237 return 0;
1238
1239 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1240 && (mode == VOIDmode || GET_MODE (op) == mode
1241 || GET_MODE (op) == VOIDmode));
1242 }
1243 #endif
1244 /* Return 1 if OP is a general operand that is not an immediate
1245 operand of mode MODE. */
1246
1247 int
1248 nonimmediate_operand (rtx op, enum machine_mode mode)
1249 {
1250 return (general_operand (op, mode) && ! CONSTANT_P (op));
1251 }
1252
1253 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1254
1255 int
1256 nonmemory_operand (rtx op, enum machine_mode mode)
1257 {
1258 if (CONSTANT_P (op))
1259 return immediate_operand (op, mode);
1260 return register_operand (op, mode);
1261 }
1262
1263 /* Return 1 if OP is a valid operand that stands for pushing a
1264 value of mode MODE onto the stack.
1265
1266 The main use of this function is as a predicate in match_operand
1267 expressions in the machine description. */
1268
1269 int
1270 push_operand (rtx op, enum machine_mode mode)
1271 {
1272 unsigned int rounded_size = GET_MODE_SIZE (mode);
1273
1274 #ifdef PUSH_ROUNDING
1275 rounded_size = PUSH_ROUNDING (rounded_size);
1276 #endif
1277
1278 if (!MEM_P (op))
1279 return 0;
1280
1281 if (mode != VOIDmode && GET_MODE (op) != mode)
1282 return 0;
1283
1284 op = XEXP (op, 0);
1285
1286 if (rounded_size == GET_MODE_SIZE (mode))
1287 {
1288 if (GET_CODE (op) != STACK_PUSH_CODE)
1289 return 0;
1290 }
1291 else
1292 {
1293 if (GET_CODE (op) != PRE_MODIFY
1294 || GET_CODE (XEXP (op, 1)) != PLUS
1295 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1296 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1297 #ifdef STACK_GROWS_DOWNWARD
1298 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1299 #else
1300 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1301 #endif
1302 )
1303 return 0;
1304 }
1305
1306 return XEXP (op, 0) == stack_pointer_rtx;
1307 }
1308
1309 /* Return 1 if OP is a valid operand that stands for popping a
1310 value of mode MODE off the stack.
1311
1312 The main use of this function is as a predicate in match_operand
1313 expressions in the machine description. */
1314
1315 int
1316 pop_operand (rtx op, enum machine_mode mode)
1317 {
1318 if (!MEM_P (op))
1319 return 0;
1320
1321 if (mode != VOIDmode && GET_MODE (op) != mode)
1322 return 0;
1323
1324 op = XEXP (op, 0);
1325
1326 if (GET_CODE (op) != STACK_POP_CODE)
1327 return 0;
1328
1329 return XEXP (op, 0) == stack_pointer_rtx;
1330 }
1331
1332 /* Return 1 if ADDR is a valid memory address
1333 for mode MODE in address space AS. */
1334
1335 int
1336 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1337 rtx addr, addr_space_t as)
1338 {
1339 #ifdef GO_IF_LEGITIMATE_ADDRESS
1340 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1341 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1342 return 0;
1343
1344 win:
1345 return 1;
1346 #else
1347 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1348 #endif
1349 }
1350
1351 /* Return 1 if OP is a valid memory reference with mode MODE,
1352 including a valid address.
1353
1354 The main use of this function is as a predicate in match_operand
1355 expressions in the machine description. */
1356
1357 int
1358 memory_operand (rtx op, enum machine_mode mode)
1359 {
1360 rtx inner;
1361
1362 if (! reload_completed)
1363 /* Note that no SUBREG is a memory operand before end of reload pass,
1364 because (SUBREG (MEM...)) forces reloading into a register. */
1365 return MEM_P (op) && general_operand (op, mode);
1366
1367 if (mode != VOIDmode && GET_MODE (op) != mode)
1368 return 0;
1369
1370 inner = op;
1371 if (GET_CODE (inner) == SUBREG)
1372 inner = SUBREG_REG (inner);
1373
1374 return (MEM_P (inner) && general_operand (op, mode));
1375 }
1376
1377 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1378 that is, a memory reference whose address is a general_operand. */
1379
1380 int
1381 indirect_operand (rtx op, enum machine_mode mode)
1382 {
1383 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1384 if (! reload_completed
1385 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1386 {
1387 int offset = SUBREG_BYTE (op);
1388 rtx inner = SUBREG_REG (op);
1389
1390 if (mode != VOIDmode && GET_MODE (op) != mode)
1391 return 0;
1392
1393 /* The only way that we can have a general_operand as the resulting
1394 address is if OFFSET is zero and the address already is an operand
1395 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1396 operand. */
1397
1398 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1399 || (GET_CODE (XEXP (inner, 0)) == PLUS
1400 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1401 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1402 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1403 }
1404
1405 return (MEM_P (op)
1406 && memory_operand (op, mode)
1407 && general_operand (XEXP (op, 0), Pmode));
1408 }
1409
1410 /* Return 1 if this is an ordered comparison operator (not including
1411 ORDERED and UNORDERED). */
1412
1413 int
1414 ordered_comparison_operator (rtx op, enum machine_mode mode)
1415 {
1416 if (mode != VOIDmode && GET_MODE (op) != mode)
1417 return false;
1418 switch (GET_CODE (op))
1419 {
1420 case EQ:
1421 case NE:
1422 case LT:
1423 case LTU:
1424 case LE:
1425 case LEU:
1426 case GT:
1427 case GTU:
1428 case GE:
1429 case GEU:
1430 return true;
1431 default:
1432 return false;
1433 }
1434 }
1435
1436 /* Return 1 if this is a comparison operator. This allows the use of
1437 MATCH_OPERATOR to recognize all the branch insns. */
1438
1439 int
1440 comparison_operator (rtx op, enum machine_mode mode)
1441 {
1442 return ((mode == VOIDmode || GET_MODE (op) == mode)
1443 && COMPARISON_P (op));
1444 }
1445 \f
1446 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1447
1448 rtx
1449 extract_asm_operands (rtx body)
1450 {
1451 rtx tmp;
1452 switch (GET_CODE (body))
1453 {
1454 case ASM_OPERANDS:
1455 return body;
1456
1457 case SET:
1458 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1459 tmp = SET_SRC (body);
1460 if (GET_CODE (tmp) == ASM_OPERANDS)
1461 return tmp;
1462 break;
1463
1464 case PARALLEL:
1465 tmp = XVECEXP (body, 0, 0);
1466 if (GET_CODE (tmp) == ASM_OPERANDS)
1467 return tmp;
1468 if (GET_CODE (tmp) == SET)
1469 {
1470 tmp = SET_SRC (tmp);
1471 if (GET_CODE (tmp) == ASM_OPERANDS)
1472 return tmp;
1473 }
1474 break;
1475
1476 default:
1477 break;
1478 }
1479 return NULL;
1480 }
1481
1482 /* If BODY is an insn body that uses ASM_OPERANDS,
1483 return the number of operands (both input and output) in the insn.
1484 Otherwise return -1. */
1485
1486 int
1487 asm_noperands (const_rtx body)
1488 {
1489 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1490 int n_sets = 0;
1491
1492 if (asm_op == NULL)
1493 return -1;
1494
1495 if (GET_CODE (body) == SET)
1496 n_sets = 1;
1497 else if (GET_CODE (body) == PARALLEL)
1498 {
1499 int i;
1500 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1501 {
1502 /* Multiple output operands, or 1 output plus some clobbers:
1503 body is
1504 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1505 /* Count backwards through CLOBBERs to determine number of SETs. */
1506 for (i = XVECLEN (body, 0); i > 0; i--)
1507 {
1508 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1509 break;
1510 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1511 return -1;
1512 }
1513
1514 /* N_SETS is now number of output operands. */
1515 n_sets = i;
1516
1517 /* Verify that all the SETs we have
1518 came from a single original asm_operands insn
1519 (so that invalid combinations are blocked). */
1520 for (i = 0; i < n_sets; i++)
1521 {
1522 rtx elt = XVECEXP (body, 0, i);
1523 if (GET_CODE (elt) != SET)
1524 return -1;
1525 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1526 return -1;
1527 /* If these ASM_OPERANDS rtx's came from different original insns
1528 then they aren't allowed together. */
1529 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1530 != ASM_OPERANDS_INPUT_VEC (asm_op))
1531 return -1;
1532 }
1533 }
1534 else
1535 {
1536 /* 0 outputs, but some clobbers:
1537 body is [(asm_operands ...) (clobber (reg ...))...]. */
1538 /* Make sure all the other parallel things really are clobbers. */
1539 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1540 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1541 return -1;
1542 }
1543 }
1544
1545 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1546 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1547 }
1548
1549 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1550 copy its operands (both input and output) into the vector OPERANDS,
1551 the locations of the operands within the insn into the vector OPERAND_LOCS,
1552 and the constraints for the operands into CONSTRAINTS.
1553 Write the modes of the operands into MODES.
1554 Return the assembler-template.
1555
1556 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1557 we don't store that info. */
1558
1559 const char *
1560 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1561 const char **constraints, enum machine_mode *modes,
1562 location_t *loc)
1563 {
1564 int nbase = 0, n, i;
1565 rtx asmop;
1566
1567 switch (GET_CODE (body))
1568 {
1569 case ASM_OPERANDS:
1570 /* Zero output asm: BODY is (asm_operands ...). */
1571 asmop = body;
1572 break;
1573
1574 case SET:
1575 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1576 asmop = SET_SRC (body);
1577
1578 /* The output is in the SET.
1579 Its constraint is in the ASM_OPERANDS itself. */
1580 if (operands)
1581 operands[0] = SET_DEST (body);
1582 if (operand_locs)
1583 operand_locs[0] = &SET_DEST (body);
1584 if (constraints)
1585 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1586 if (modes)
1587 modes[0] = GET_MODE (SET_DEST (body));
1588 nbase = 1;
1589 break;
1590
1591 case PARALLEL:
1592 {
1593 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1594
1595 asmop = XVECEXP (body, 0, 0);
1596 if (GET_CODE (asmop) == SET)
1597 {
1598 asmop = SET_SRC (asmop);
1599
1600 /* At least one output, plus some CLOBBERs. The outputs are in
1601 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1602 for (i = 0; i < nparallel; i++)
1603 {
1604 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1605 break; /* Past last SET */
1606 if (operands)
1607 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1608 if (operand_locs)
1609 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1610 if (constraints)
1611 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1612 if (modes)
1613 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1614 }
1615 nbase = i;
1616 }
1617 break;
1618 }
1619
1620 default:
1621 gcc_unreachable ();
1622 }
1623
1624 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1625 for (i = 0; i < n; i++)
1626 {
1627 if (operand_locs)
1628 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1629 if (operands)
1630 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1631 if (constraints)
1632 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1633 if (modes)
1634 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1635 }
1636 nbase += n;
1637
1638 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1639 for (i = 0; i < n; i++)
1640 {
1641 if (operand_locs)
1642 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1643 if (operands)
1644 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1645 if (constraints)
1646 constraints[nbase + i] = "";
1647 if (modes)
1648 modes[nbase + i] = Pmode;
1649 }
1650
1651 if (loc)
1652 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1653
1654 return ASM_OPERANDS_TEMPLATE (asmop);
1655 }
1656
1657 /* Parse inline assembly string STRING and determine which operands are
1658 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1659 to true if operand I is referenced.
1660
1661 This is intended to distinguish barrier-like asms such as:
1662
1663 asm ("" : "=m" (...));
1664
1665 from real references such as:
1666
1667 asm ("sw\t$0, %0" : "=m" (...)); */
1668
1669 void
1670 get_referenced_operands (const char *string, bool *used,
1671 unsigned int noperands)
1672 {
1673 memset (used, 0, sizeof (bool) * noperands);
1674 const char *p = string;
1675 while (*p)
1676 switch (*p)
1677 {
1678 case '%':
1679 p += 1;
1680 /* A letter followed by a digit indicates an operand number. */
1681 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1682 p += 1;
1683 if (ISDIGIT (*p))
1684 {
1685 char *endptr;
1686 unsigned long opnum = strtoul (p, &endptr, 10);
1687 if (endptr != p && opnum < noperands)
1688 used[opnum] = true;
1689 p = endptr;
1690 }
1691 else
1692 p += 1;
1693 break;
1694
1695 default:
1696 p++;
1697 break;
1698 }
1699 }
1700
1701 /* Check if an asm_operand matches its constraints.
1702 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1703
1704 int
1705 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1706 {
1707 int result = 0;
1708 #ifdef AUTO_INC_DEC
1709 bool incdec_ok = false;
1710 #endif
1711
1712 /* Use constrain_operands after reload. */
1713 gcc_assert (!reload_completed);
1714
1715 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1716 many alternatives as required to match the other operands. */
1717 if (*constraint == '\0')
1718 result = 1;
1719
1720 while (*constraint)
1721 {
1722 char c = *constraint;
1723 int len;
1724 switch (c)
1725 {
1726 case ',':
1727 constraint++;
1728 continue;
1729 case '=':
1730 case '+':
1731 case '*':
1732 case '%':
1733 case '!':
1734 case '#':
1735 case '&':
1736 case '?':
1737 break;
1738
1739 case '0': case '1': case '2': case '3': case '4':
1740 case '5': case '6': case '7': case '8': case '9':
1741 /* If caller provided constraints pointer, look up
1742 the matching constraint. Otherwise, our caller should have
1743 given us the proper matching constraint, but we can't
1744 actually fail the check if they didn't. Indicate that
1745 results are inconclusive. */
1746 if (constraints)
1747 {
1748 char *end;
1749 unsigned long match;
1750
1751 match = strtoul (constraint, &end, 10);
1752 if (!result)
1753 result = asm_operand_ok (op, constraints[match], NULL);
1754 constraint = (const char *) end;
1755 }
1756 else
1757 {
1758 do
1759 constraint++;
1760 while (ISDIGIT (*constraint));
1761 if (! result)
1762 result = -1;
1763 }
1764 continue;
1765
1766 case 'p':
1767 if (address_operand (op, VOIDmode))
1768 result = 1;
1769 break;
1770
1771 case TARGET_MEM_CONSTRAINT:
1772 case 'V': /* non-offsettable */
1773 if (memory_operand (op, VOIDmode))
1774 result = 1;
1775 break;
1776
1777 case 'o': /* offsettable */
1778 if (offsettable_nonstrict_memref_p (op))
1779 result = 1;
1780 break;
1781
1782 case '<':
1783 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1784 excepting those that expand_call created. Further, on some
1785 machines which do not have generalized auto inc/dec, an inc/dec
1786 is not a memory_operand.
1787
1788 Match any memory and hope things are resolved after reload. */
1789
1790 if (MEM_P (op)
1791 && (1
1792 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1793 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1794 result = 1;
1795 #ifdef AUTO_INC_DEC
1796 incdec_ok = true;
1797 #endif
1798 break;
1799
1800 case '>':
1801 if (MEM_P (op)
1802 && (1
1803 || GET_CODE (XEXP (op, 0)) == PRE_INC
1804 || GET_CODE (XEXP (op, 0)) == POST_INC))
1805 result = 1;
1806 #ifdef AUTO_INC_DEC
1807 incdec_ok = true;
1808 #endif
1809 break;
1810
1811 case 'E':
1812 case 'F':
1813 if (CONST_DOUBLE_AS_FLOAT_P (op)
1814 || (GET_CODE (op) == CONST_VECTOR
1815 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1816 result = 1;
1817 break;
1818
1819 case 'G':
1820 if (CONST_DOUBLE_AS_FLOAT_P (op)
1821 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1822 result = 1;
1823 break;
1824 case 'H':
1825 if (CONST_DOUBLE_AS_FLOAT_P (op)
1826 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1827 result = 1;
1828 break;
1829
1830 case 's':
1831 if (CONST_SCALAR_INT_P (op))
1832 break;
1833 /* Fall through. */
1834
1835 case 'i':
1836 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1837 result = 1;
1838 break;
1839
1840 case 'n':
1841 if (CONST_SCALAR_INT_P (op))
1842 result = 1;
1843 break;
1844
1845 case 'I':
1846 if (CONST_INT_P (op)
1847 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1848 result = 1;
1849 break;
1850 case 'J':
1851 if (CONST_INT_P (op)
1852 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1853 result = 1;
1854 break;
1855 case 'K':
1856 if (CONST_INT_P (op)
1857 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1858 result = 1;
1859 break;
1860 case 'L':
1861 if (CONST_INT_P (op)
1862 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1863 result = 1;
1864 break;
1865 case 'M':
1866 if (CONST_INT_P (op)
1867 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1868 result = 1;
1869 break;
1870 case 'N':
1871 if (CONST_INT_P (op)
1872 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1873 result = 1;
1874 break;
1875 case 'O':
1876 if (CONST_INT_P (op)
1877 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1878 result = 1;
1879 break;
1880 case 'P':
1881 if (CONST_INT_P (op)
1882 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1883 result = 1;
1884 break;
1885
1886 case 'X':
1887 result = 1;
1888 break;
1889
1890 case 'g':
1891 if (general_operand (op, VOIDmode))
1892 result = 1;
1893 break;
1894
1895 default:
1896 /* For all other letters, we first check for a register class,
1897 otherwise it is an EXTRA_CONSTRAINT. */
1898 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1899 {
1900 case 'r':
1901 if (GET_MODE (op) == BLKmode)
1902 break;
1903 if (register_operand (op, VOIDmode))
1904 result = 1;
1905 }
1906 #ifdef EXTRA_CONSTRAINT_STR
1907 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1908 /* Every memory operand can be reloaded to fit. */
1909 result = result || memory_operand (op, VOIDmode);
1910 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1911 /* Every address operand can be reloaded to fit. */
1912 result = result || address_operand (op, VOIDmode);
1913 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1914 result = 1;
1915 #endif
1916 break;
1917 }
1918 len = CONSTRAINT_LEN (c, constraint);
1919 do
1920 constraint++;
1921 while (--len && *constraint);
1922 if (len)
1923 return 0;
1924 }
1925
1926 #ifdef AUTO_INC_DEC
1927 /* For operands without < or > constraints reject side-effects. */
1928 if (!incdec_ok && result && MEM_P (op))
1929 switch (GET_CODE (XEXP (op, 0)))
1930 {
1931 case PRE_INC:
1932 case POST_INC:
1933 case PRE_DEC:
1934 case POST_DEC:
1935 case PRE_MODIFY:
1936 case POST_MODIFY:
1937 return 0;
1938 default:
1939 break;
1940 }
1941 #endif
1942
1943 return result;
1944 }
1945 \f
1946 /* Given an rtx *P, if it is a sum containing an integer constant term,
1947 return the location (type rtx *) of the pointer to that constant term.
1948 Otherwise, return a null pointer. */
1949
1950 rtx *
1951 find_constant_term_loc (rtx *p)
1952 {
1953 rtx *tem;
1954 enum rtx_code code = GET_CODE (*p);
1955
1956 /* If *P IS such a constant term, P is its location. */
1957
1958 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1959 || code == CONST)
1960 return p;
1961
1962 /* Otherwise, if not a sum, it has no constant term. */
1963
1964 if (GET_CODE (*p) != PLUS)
1965 return 0;
1966
1967 /* If one of the summands is constant, return its location. */
1968
1969 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1970 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1971 return p;
1972
1973 /* Otherwise, check each summand for containing a constant term. */
1974
1975 if (XEXP (*p, 0) != 0)
1976 {
1977 tem = find_constant_term_loc (&XEXP (*p, 0));
1978 if (tem != 0)
1979 return tem;
1980 }
1981
1982 if (XEXP (*p, 1) != 0)
1983 {
1984 tem = find_constant_term_loc (&XEXP (*p, 1));
1985 if (tem != 0)
1986 return tem;
1987 }
1988
1989 return 0;
1990 }
1991 \f
1992 /* Return 1 if OP is a memory reference
1993 whose address contains no side effects
1994 and remains valid after the addition
1995 of a positive integer less than the
1996 size of the object being referenced.
1997
1998 We assume that the original address is valid and do not check it.
1999
2000 This uses strict_memory_address_p as a subroutine, so
2001 don't use it before reload. */
2002
2003 int
2004 offsettable_memref_p (rtx op)
2005 {
2006 return ((MEM_P (op))
2007 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
2008 MEM_ADDR_SPACE (op)));
2009 }
2010
2011 /* Similar, but don't require a strictly valid mem ref:
2012 consider pseudo-regs valid as index or base regs. */
2013
2014 int
2015 offsettable_nonstrict_memref_p (rtx op)
2016 {
2017 return ((MEM_P (op))
2018 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
2019 MEM_ADDR_SPACE (op)));
2020 }
2021
2022 /* Return 1 if Y is a memory address which contains no side effects
2023 and would remain valid for address space AS after the addition of
2024 a positive integer less than the size of that mode.
2025
2026 We assume that the original address is valid and do not check it.
2027 We do check that it is valid for narrower modes.
2028
2029 If STRICTP is nonzero, we require a strictly valid address,
2030 for the sake of use in reload.c. */
2031
2032 int
2033 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
2034 addr_space_t as)
2035 {
2036 enum rtx_code ycode = GET_CODE (y);
2037 rtx z;
2038 rtx y1 = y;
2039 rtx *y2;
2040 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
2041 (strictp ? strict_memory_address_addr_space_p
2042 : memory_address_addr_space_p);
2043 unsigned int mode_sz = GET_MODE_SIZE (mode);
2044
2045 if (CONSTANT_ADDRESS_P (y))
2046 return 1;
2047
2048 /* Adjusting an offsettable address involves changing to a narrower mode.
2049 Make sure that's OK. */
2050
2051 if (mode_dependent_address_p (y, as))
2052 return 0;
2053
2054 enum machine_mode address_mode = GET_MODE (y);
2055 if (address_mode == VOIDmode)
2056 address_mode = targetm.addr_space.address_mode (as);
2057 #ifdef POINTERS_EXTEND_UNSIGNED
2058 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
2059 #endif
2060
2061 /* ??? How much offset does an offsettable BLKmode reference need?
2062 Clearly that depends on the situation in which it's being used.
2063 However, the current situation in which we test 0xffffffff is
2064 less than ideal. Caveat user. */
2065 if (mode_sz == 0)
2066 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2067
2068 /* If the expression contains a constant term,
2069 see if it remains valid when max possible offset is added. */
2070
2071 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
2072 {
2073 int good;
2074
2075 y1 = *y2;
2076 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
2077 /* Use QImode because an odd displacement may be automatically invalid
2078 for any wider mode. But it should be valid for a single byte. */
2079 good = (*addressp) (QImode, y, as);
2080
2081 /* In any case, restore old contents of memory. */
2082 *y2 = y1;
2083 return good;
2084 }
2085
2086 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2087 return 0;
2088
2089 /* The offset added here is chosen as the maximum offset that
2090 any instruction could need to add when operating on something
2091 of the specified mode. We assume that if Y and Y+c are
2092 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2093 go inside a LO_SUM here, so we do so as well. */
2094 if (GET_CODE (y) == LO_SUM
2095 && mode != BLKmode
2096 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2097 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2098 plus_constant (address_mode, XEXP (y, 1),
2099 mode_sz - 1));
2100 #ifdef POINTERS_EXTEND_UNSIGNED
2101 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2102 else if (POINTERS_EXTEND_UNSIGNED > 0
2103 && GET_CODE (y) == ZERO_EXTEND
2104 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2105 z = gen_rtx_ZERO_EXTEND (address_mode,
2106 plus_constant (pointer_mode, XEXP (y, 0),
2107 mode_sz - 1));
2108 #endif
2109 else
2110 z = plus_constant (address_mode, y, mode_sz - 1);
2111
2112 /* Use QImode because an odd displacement may be automatically invalid
2113 for any wider mode. But it should be valid for a single byte. */
2114 return (*addressp) (QImode, z, as);
2115 }
2116
2117 /* Return 1 if ADDR is an address-expression whose effect depends
2118 on the mode of the memory reference it is used in.
2119
2120 ADDRSPACE is the address space associated with the address.
2121
2122 Autoincrement addressing is a typical example of mode-dependence
2123 because the amount of the increment depends on the mode. */
2124
2125 bool
2126 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2127 {
2128 /* Auto-increment addressing with anything other than post_modify
2129 or pre_modify always introduces a mode dependency. Catch such
2130 cases now instead of deferring to the target. */
2131 if (GET_CODE (addr) == PRE_INC
2132 || GET_CODE (addr) == POST_INC
2133 || GET_CODE (addr) == PRE_DEC
2134 || GET_CODE (addr) == POST_DEC)
2135 return true;
2136
2137 return targetm.mode_dependent_address_p (addr, addrspace);
2138 }
2139 \f
2140 /* Like extract_insn, but save insn extracted and don't extract again, when
2141 called again for the same insn expecting that recog_data still contain the
2142 valid information. This is used primary by gen_attr infrastructure that
2143 often does extract insn again and again. */
2144 void
2145 extract_insn_cached (rtx insn)
2146 {
2147 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2148 return;
2149 extract_insn (insn);
2150 recog_data.insn = insn;
2151 }
2152
2153 /* Do cached extract_insn, constrain_operands and complain about failures.
2154 Used by insn_attrtab. */
2155 void
2156 extract_constrain_insn_cached (rtx insn)
2157 {
2158 extract_insn_cached (insn);
2159 if (which_alternative == -1
2160 && !constrain_operands (reload_completed))
2161 fatal_insn_not_found (insn);
2162 }
2163
2164 /* Do cached constrain_operands and complain about failures. */
2165 int
2166 constrain_operands_cached (int strict)
2167 {
2168 if (which_alternative == -1)
2169 return constrain_operands (strict);
2170 else
2171 return 1;
2172 }
2173 \f
2174 /* Analyze INSN and fill in recog_data. */
2175
2176 void
2177 extract_insn (rtx insn)
2178 {
2179 int i;
2180 int icode;
2181 int noperands;
2182 rtx body = PATTERN (insn);
2183
2184 recog_data.n_operands = 0;
2185 recog_data.n_alternatives = 0;
2186 recog_data.n_dups = 0;
2187 recog_data.is_asm = false;
2188
2189 switch (GET_CODE (body))
2190 {
2191 case USE:
2192 case CLOBBER:
2193 case ASM_INPUT:
2194 case ADDR_VEC:
2195 case ADDR_DIFF_VEC:
2196 case VAR_LOCATION:
2197 return;
2198
2199 case SET:
2200 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2201 goto asm_insn;
2202 else
2203 goto normal_insn;
2204 case PARALLEL:
2205 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2206 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2207 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2208 goto asm_insn;
2209 else
2210 goto normal_insn;
2211 case ASM_OPERANDS:
2212 asm_insn:
2213 recog_data.n_operands = noperands = asm_noperands (body);
2214 if (noperands >= 0)
2215 {
2216 /* This insn is an `asm' with operands. */
2217
2218 /* expand_asm_operands makes sure there aren't too many operands. */
2219 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2220
2221 /* Now get the operand values and constraints out of the insn. */
2222 decode_asm_operands (body, recog_data.operand,
2223 recog_data.operand_loc,
2224 recog_data.constraints,
2225 recog_data.operand_mode, NULL);
2226 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2227 if (noperands > 0)
2228 {
2229 const char *p = recog_data.constraints[0];
2230 recog_data.n_alternatives = 1;
2231 while (*p)
2232 recog_data.n_alternatives += (*p++ == ',');
2233 }
2234 recog_data.is_asm = true;
2235 break;
2236 }
2237 fatal_insn_not_found (insn);
2238
2239 default:
2240 normal_insn:
2241 /* Ordinary insn: recognize it, get the operands via insn_extract
2242 and get the constraints. */
2243
2244 icode = recog_memoized (insn);
2245 if (icode < 0)
2246 fatal_insn_not_found (insn);
2247
2248 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2249 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2250 recog_data.n_dups = insn_data[icode].n_dups;
2251
2252 insn_extract (insn);
2253
2254 for (i = 0; i < noperands; i++)
2255 {
2256 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2257 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2258 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2259 /* VOIDmode match_operands gets mode from their real operand. */
2260 if (recog_data.operand_mode[i] == VOIDmode)
2261 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2262 }
2263 }
2264 for (i = 0; i < noperands; i++)
2265 recog_data.operand_type[i]
2266 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2267 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2268 : OP_IN);
2269
2270 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2271
2272 if (INSN_CODE (insn) < 0)
2273 for (i = 0; i < recog_data.n_alternatives; i++)
2274 recog_data.alternative_enabled_p[i] = true;
2275 else
2276 {
2277 recog_data.insn = insn;
2278 for (i = 0; i < recog_data.n_alternatives; i++)
2279 {
2280 which_alternative = i;
2281 recog_data.alternative_enabled_p[i]
2282 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2283 }
2284 }
2285
2286 recog_data.insn = NULL;
2287 which_alternative = -1;
2288 }
2289
2290 /* After calling extract_insn, you can use this function to extract some
2291 information from the constraint strings into a more usable form.
2292 The collected data is stored in recog_op_alt. */
2293 void
2294 preprocess_constraints (void)
2295 {
2296 int i;
2297
2298 for (i = 0; i < recog_data.n_operands; i++)
2299 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2300 * sizeof (struct operand_alternative)));
2301
2302 for (i = 0; i < recog_data.n_operands; i++)
2303 {
2304 int j;
2305 struct operand_alternative *op_alt;
2306 const char *p = recog_data.constraints[i];
2307
2308 op_alt = recog_op_alt[i];
2309
2310 for (j = 0; j < recog_data.n_alternatives; j++)
2311 {
2312 op_alt[j].cl = NO_REGS;
2313 op_alt[j].constraint = p;
2314 op_alt[j].matches = -1;
2315 op_alt[j].matched = -1;
2316
2317 if (!recog_data.alternative_enabled_p[j])
2318 {
2319 p = skip_alternative (p);
2320 continue;
2321 }
2322
2323 if (*p == '\0' || *p == ',')
2324 {
2325 op_alt[j].anything_ok = 1;
2326 continue;
2327 }
2328
2329 for (;;)
2330 {
2331 char c = *p;
2332 if (c == '#')
2333 do
2334 c = *++p;
2335 while (c != ',' && c != '\0');
2336 if (c == ',' || c == '\0')
2337 {
2338 p++;
2339 break;
2340 }
2341
2342 switch (c)
2343 {
2344 case '=': case '+': case '*': case '%':
2345 case 'E': case 'F': case 'G': case 'H':
2346 case 's': case 'i': case 'n':
2347 case 'I': case 'J': case 'K': case 'L':
2348 case 'M': case 'N': case 'O': case 'P':
2349 /* These don't say anything we care about. */
2350 break;
2351
2352 case '?':
2353 op_alt[j].reject += 6;
2354 break;
2355 case '!':
2356 op_alt[j].reject += 600;
2357 break;
2358 case '&':
2359 op_alt[j].earlyclobber = 1;
2360 break;
2361
2362 case '0': case '1': case '2': case '3': case '4':
2363 case '5': case '6': case '7': case '8': case '9':
2364 {
2365 char *end;
2366 op_alt[j].matches = strtoul (p, &end, 10);
2367 recog_op_alt[op_alt[j].matches][j].matched = i;
2368 p = end;
2369 }
2370 continue;
2371
2372 case TARGET_MEM_CONSTRAINT:
2373 op_alt[j].memory_ok = 1;
2374 break;
2375 case '<':
2376 op_alt[j].decmem_ok = 1;
2377 break;
2378 case '>':
2379 op_alt[j].incmem_ok = 1;
2380 break;
2381 case 'V':
2382 op_alt[j].nonoffmem_ok = 1;
2383 break;
2384 case 'o':
2385 op_alt[j].offmem_ok = 1;
2386 break;
2387 case 'X':
2388 op_alt[j].anything_ok = 1;
2389 break;
2390
2391 case 'p':
2392 op_alt[j].is_address = 1;
2393 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2394 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2395 ADDRESS, SCRATCH)];
2396 break;
2397
2398 case 'g':
2399 case 'r':
2400 op_alt[j].cl =
2401 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2402 break;
2403
2404 default:
2405 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2406 {
2407 op_alt[j].memory_ok = 1;
2408 break;
2409 }
2410 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2411 {
2412 op_alt[j].is_address = 1;
2413 op_alt[j].cl
2414 = (reg_class_subunion
2415 [(int) op_alt[j].cl]
2416 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2417 ADDRESS, SCRATCH)]);
2418 break;
2419 }
2420
2421 op_alt[j].cl
2422 = (reg_class_subunion
2423 [(int) op_alt[j].cl]
2424 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2425 break;
2426 }
2427 p += CONSTRAINT_LEN (c, p);
2428 }
2429 }
2430 }
2431 }
2432
2433 /* Check the operands of an insn against the insn's operand constraints
2434 and return 1 if they are valid.
2435 The information about the insn's operands, constraints, operand modes
2436 etc. is obtained from the global variables set up by extract_insn.
2437
2438 WHICH_ALTERNATIVE is set to a number which indicates which
2439 alternative of constraints was matched: 0 for the first alternative,
2440 1 for the next, etc.
2441
2442 In addition, when two operands are required to match
2443 and it happens that the output operand is (reg) while the
2444 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2445 make the output operand look like the input.
2446 This is because the output operand is the one the template will print.
2447
2448 This is used in final, just before printing the assembler code and by
2449 the routines that determine an insn's attribute.
2450
2451 If STRICT is a positive nonzero value, it means that we have been
2452 called after reload has been completed. In that case, we must
2453 do all checks strictly. If it is zero, it means that we have been called
2454 before reload has completed. In that case, we first try to see if we can
2455 find an alternative that matches strictly. If not, we try again, this
2456 time assuming that reload will fix up the insn. This provides a "best
2457 guess" for the alternative and is used to compute attributes of insns prior
2458 to reload. A negative value of STRICT is used for this internal call. */
2459
2460 struct funny_match
2461 {
2462 int this_op, other;
2463 };
2464
2465 int
2466 constrain_operands (int strict)
2467 {
2468 const char *constraints[MAX_RECOG_OPERANDS];
2469 int matching_operands[MAX_RECOG_OPERANDS];
2470 int earlyclobber[MAX_RECOG_OPERANDS];
2471 int c;
2472
2473 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2474 int funny_match_index;
2475
2476 which_alternative = 0;
2477 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2478 return 1;
2479
2480 for (c = 0; c < recog_data.n_operands; c++)
2481 {
2482 constraints[c] = recog_data.constraints[c];
2483 matching_operands[c] = -1;
2484 }
2485
2486 do
2487 {
2488 int seen_earlyclobber_at = -1;
2489 int opno;
2490 int lose = 0;
2491 funny_match_index = 0;
2492
2493 if (!recog_data.alternative_enabled_p[which_alternative])
2494 {
2495 int i;
2496
2497 for (i = 0; i < recog_data.n_operands; i++)
2498 constraints[i] = skip_alternative (constraints[i]);
2499
2500 which_alternative++;
2501 continue;
2502 }
2503
2504 for (opno = 0; opno < recog_data.n_operands; opno++)
2505 {
2506 rtx op = recog_data.operand[opno];
2507 enum machine_mode mode = GET_MODE (op);
2508 const char *p = constraints[opno];
2509 int offset = 0;
2510 int win = 0;
2511 int val;
2512 int len;
2513
2514 earlyclobber[opno] = 0;
2515
2516 /* A unary operator may be accepted by the predicate, but it
2517 is irrelevant for matching constraints. */
2518 if (UNARY_P (op))
2519 op = XEXP (op, 0);
2520
2521 if (GET_CODE (op) == SUBREG)
2522 {
2523 if (REG_P (SUBREG_REG (op))
2524 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2525 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2526 GET_MODE (SUBREG_REG (op)),
2527 SUBREG_BYTE (op),
2528 GET_MODE (op));
2529 op = SUBREG_REG (op);
2530 }
2531
2532 /* An empty constraint or empty alternative
2533 allows anything which matched the pattern. */
2534 if (*p == 0 || *p == ',')
2535 win = 1;
2536
2537 do
2538 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2539 {
2540 case '\0':
2541 len = 0;
2542 break;
2543 case ',':
2544 c = '\0';
2545 break;
2546
2547 case '?': case '!': case '*': case '%':
2548 case '=': case '+':
2549 break;
2550
2551 case '#':
2552 /* Ignore rest of this alternative as far as
2553 constraint checking is concerned. */
2554 do
2555 p++;
2556 while (*p && *p != ',');
2557 len = 0;
2558 break;
2559
2560 case '&':
2561 earlyclobber[opno] = 1;
2562 if (seen_earlyclobber_at < 0)
2563 seen_earlyclobber_at = opno;
2564 break;
2565
2566 case '0': case '1': case '2': case '3': case '4':
2567 case '5': case '6': case '7': case '8': case '9':
2568 {
2569 /* This operand must be the same as a previous one.
2570 This kind of constraint is used for instructions such
2571 as add when they take only two operands.
2572
2573 Note that the lower-numbered operand is passed first.
2574
2575 If we are not testing strictly, assume that this
2576 constraint will be satisfied. */
2577
2578 char *end;
2579 int match;
2580
2581 match = strtoul (p, &end, 10);
2582 p = end;
2583
2584 if (strict < 0)
2585 val = 1;
2586 else
2587 {
2588 rtx op1 = recog_data.operand[match];
2589 rtx op2 = recog_data.operand[opno];
2590
2591 /* A unary operator may be accepted by the predicate,
2592 but it is irrelevant for matching constraints. */
2593 if (UNARY_P (op1))
2594 op1 = XEXP (op1, 0);
2595 if (UNARY_P (op2))
2596 op2 = XEXP (op2, 0);
2597
2598 val = operands_match_p (op1, op2);
2599 }
2600
2601 matching_operands[opno] = match;
2602 matching_operands[match] = opno;
2603
2604 if (val != 0)
2605 win = 1;
2606
2607 /* If output is *x and input is *--x, arrange later
2608 to change the output to *--x as well, since the
2609 output op is the one that will be printed. */
2610 if (val == 2 && strict > 0)
2611 {
2612 funny_match[funny_match_index].this_op = opno;
2613 funny_match[funny_match_index++].other = match;
2614 }
2615 }
2616 len = 0;
2617 break;
2618
2619 case 'p':
2620 /* p is used for address_operands. When we are called by
2621 gen_reload, no one will have checked that the address is
2622 strictly valid, i.e., that all pseudos requiring hard regs
2623 have gotten them. */
2624 if (strict <= 0
2625 || (strict_memory_address_p (recog_data.operand_mode[opno],
2626 op)))
2627 win = 1;
2628 break;
2629
2630 /* No need to check general_operand again;
2631 it was done in insn-recog.c. Well, except that reload
2632 doesn't check the validity of its replacements, but
2633 that should only matter when there's a bug. */
2634 case 'g':
2635 /* Anything goes unless it is a REG and really has a hard reg
2636 but the hard reg is not in the class GENERAL_REGS. */
2637 if (REG_P (op))
2638 {
2639 if (strict < 0
2640 || GENERAL_REGS == ALL_REGS
2641 || (reload_in_progress
2642 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2643 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2644 win = 1;
2645 }
2646 else if (strict < 0 || general_operand (op, mode))
2647 win = 1;
2648 break;
2649
2650 case 'X':
2651 /* This is used for a MATCH_SCRATCH in the cases when
2652 we don't actually need anything. So anything goes
2653 any time. */
2654 win = 1;
2655 break;
2656
2657 case TARGET_MEM_CONSTRAINT:
2658 /* Memory operands must be valid, to the extent
2659 required by STRICT. */
2660 if (MEM_P (op))
2661 {
2662 if (strict > 0
2663 && !strict_memory_address_addr_space_p
2664 (GET_MODE (op), XEXP (op, 0),
2665 MEM_ADDR_SPACE (op)))
2666 break;
2667 if (strict == 0
2668 && !memory_address_addr_space_p
2669 (GET_MODE (op), XEXP (op, 0),
2670 MEM_ADDR_SPACE (op)))
2671 break;
2672 win = 1;
2673 }
2674 /* Before reload, accept what reload can turn into mem. */
2675 else if (strict < 0 && CONSTANT_P (op))
2676 win = 1;
2677 /* During reload, accept a pseudo */
2678 else if (reload_in_progress && REG_P (op)
2679 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2680 win = 1;
2681 break;
2682
2683 case '<':
2684 if (MEM_P (op)
2685 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2686 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2687 win = 1;
2688 break;
2689
2690 case '>':
2691 if (MEM_P (op)
2692 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2693 || GET_CODE (XEXP (op, 0)) == POST_INC))
2694 win = 1;
2695 break;
2696
2697 case 'E':
2698 case 'F':
2699 if (CONST_DOUBLE_AS_FLOAT_P (op)
2700 || (GET_CODE (op) == CONST_VECTOR
2701 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2702 win = 1;
2703 break;
2704
2705 case 'G':
2706 case 'H':
2707 if (CONST_DOUBLE_AS_FLOAT_P (op)
2708 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2709 win = 1;
2710 break;
2711
2712 case 's':
2713 if (CONST_SCALAR_INT_P (op))
2714 break;
2715 case 'i':
2716 if (CONSTANT_P (op))
2717 win = 1;
2718 break;
2719
2720 case 'n':
2721 if (CONST_SCALAR_INT_P (op))
2722 win = 1;
2723 break;
2724
2725 case 'I':
2726 case 'J':
2727 case 'K':
2728 case 'L':
2729 case 'M':
2730 case 'N':
2731 case 'O':
2732 case 'P':
2733 if (CONST_INT_P (op)
2734 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2735 win = 1;
2736 break;
2737
2738 case 'V':
2739 if (MEM_P (op)
2740 && ((strict > 0 && ! offsettable_memref_p (op))
2741 || (strict < 0
2742 && !(CONSTANT_P (op) || MEM_P (op)))
2743 || (reload_in_progress
2744 && !(REG_P (op)
2745 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2746 win = 1;
2747 break;
2748
2749 case 'o':
2750 if ((strict > 0 && offsettable_memref_p (op))
2751 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2752 /* Before reload, accept what reload can handle. */
2753 || (strict < 0
2754 && (CONSTANT_P (op) || MEM_P (op)))
2755 /* During reload, accept a pseudo */
2756 || (reload_in_progress && REG_P (op)
2757 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2758 win = 1;
2759 break;
2760
2761 default:
2762 {
2763 enum reg_class cl;
2764
2765 cl = (c == 'r'
2766 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2767 if (cl != NO_REGS)
2768 {
2769 if (strict < 0
2770 || (strict == 0
2771 && REG_P (op)
2772 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2773 || (strict == 0 && GET_CODE (op) == SCRATCH)
2774 || (REG_P (op)
2775 && reg_fits_class_p (op, cl, offset, mode)))
2776 win = 1;
2777 }
2778 #ifdef EXTRA_CONSTRAINT_STR
2779 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2780 win = 1;
2781
2782 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2783 /* Every memory operand can be reloaded to fit. */
2784 && ((strict < 0 && MEM_P (op))
2785 /* Before reload, accept what reload can turn
2786 into mem. */
2787 || (strict < 0 && CONSTANT_P (op))
2788 /* During reload, accept a pseudo */
2789 || (reload_in_progress && REG_P (op)
2790 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2791 win = 1;
2792 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2793 /* Every address operand can be reloaded to fit. */
2794 && strict < 0)
2795 win = 1;
2796 /* Cater to architectures like IA-64 that define extra memory
2797 constraints without using define_memory_constraint. */
2798 else if (reload_in_progress
2799 && REG_P (op)
2800 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2801 && reg_renumber[REGNO (op)] < 0
2802 && reg_equiv_mem (REGNO (op)) != 0
2803 && EXTRA_CONSTRAINT_STR
2804 (reg_equiv_mem (REGNO (op)), c, p))
2805 win = 1;
2806 #endif
2807 break;
2808 }
2809 }
2810 while (p += len, c);
2811
2812 constraints[opno] = p;
2813 /* If this operand did not win somehow,
2814 this alternative loses. */
2815 if (! win)
2816 lose = 1;
2817 }
2818 /* This alternative won; the operands are ok.
2819 Change whichever operands this alternative says to change. */
2820 if (! lose)
2821 {
2822 int opno, eopno;
2823
2824 /* See if any earlyclobber operand conflicts with some other
2825 operand. */
2826
2827 if (strict > 0 && seen_earlyclobber_at >= 0)
2828 for (eopno = seen_earlyclobber_at;
2829 eopno < recog_data.n_operands;
2830 eopno++)
2831 /* Ignore earlyclobber operands now in memory,
2832 because we would often report failure when we have
2833 two memory operands, one of which was formerly a REG. */
2834 if (earlyclobber[eopno]
2835 && REG_P (recog_data.operand[eopno]))
2836 for (opno = 0; opno < recog_data.n_operands; opno++)
2837 if ((MEM_P (recog_data.operand[opno])
2838 || recog_data.operand_type[opno] != OP_OUT)
2839 && opno != eopno
2840 /* Ignore things like match_operator operands. */
2841 && *recog_data.constraints[opno] != 0
2842 && ! (matching_operands[opno] == eopno
2843 && operands_match_p (recog_data.operand[opno],
2844 recog_data.operand[eopno]))
2845 && ! safe_from_earlyclobber (recog_data.operand[opno],
2846 recog_data.operand[eopno]))
2847 lose = 1;
2848
2849 if (! lose)
2850 {
2851 while (--funny_match_index >= 0)
2852 {
2853 recog_data.operand[funny_match[funny_match_index].other]
2854 = recog_data.operand[funny_match[funny_match_index].this_op];
2855 }
2856
2857 #ifdef AUTO_INC_DEC
2858 /* For operands without < or > constraints reject side-effects. */
2859 if (recog_data.is_asm)
2860 {
2861 for (opno = 0; opno < recog_data.n_operands; opno++)
2862 if (MEM_P (recog_data.operand[opno]))
2863 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2864 {
2865 case PRE_INC:
2866 case POST_INC:
2867 case PRE_DEC:
2868 case POST_DEC:
2869 case PRE_MODIFY:
2870 case POST_MODIFY:
2871 if (strchr (recog_data.constraints[opno], '<') == NULL
2872 && strchr (recog_data.constraints[opno], '>')
2873 == NULL)
2874 return 0;
2875 break;
2876 default:
2877 break;
2878 }
2879 }
2880 #endif
2881 return 1;
2882 }
2883 }
2884
2885 which_alternative++;
2886 }
2887 while (which_alternative < recog_data.n_alternatives);
2888
2889 which_alternative = -1;
2890 /* If we are about to reject this, but we are not to test strictly,
2891 try a very loose test. Only return failure if it fails also. */
2892 if (strict == 0)
2893 return constrain_operands (-1);
2894 else
2895 return 0;
2896 }
2897
2898 /* Return true iff OPERAND (assumed to be a REG rtx)
2899 is a hard reg in class CLASS when its regno is offset by OFFSET
2900 and changed to mode MODE.
2901 If REG occupies multiple hard regs, all of them must be in CLASS. */
2902
2903 bool
2904 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2905 enum machine_mode mode)
2906 {
2907 unsigned int regno = REGNO (operand);
2908
2909 if (cl == NO_REGS)
2910 return false;
2911
2912 /* Regno must not be a pseudo register. Offset may be negative. */
2913 return (HARD_REGISTER_NUM_P (regno)
2914 && HARD_REGISTER_NUM_P (regno + offset)
2915 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2916 regno + offset));
2917 }
2918 \f
2919 /* Split single instruction. Helper function for split_all_insns and
2920 split_all_insns_noflow. Return last insn in the sequence if successful,
2921 or NULL if unsuccessful. */
2922
2923 static rtx
2924 split_insn (rtx insn)
2925 {
2926 /* Split insns here to get max fine-grain parallelism. */
2927 rtx first = PREV_INSN (insn);
2928 rtx last = try_split (PATTERN (insn), insn, 1);
2929 rtx insn_set, last_set, note;
2930
2931 if (last == insn)
2932 return NULL_RTX;
2933
2934 /* If the original instruction was a single set that was known to be
2935 equivalent to a constant, see if we can say the same about the last
2936 instruction in the split sequence. The two instructions must set
2937 the same destination. */
2938 insn_set = single_set (insn);
2939 if (insn_set)
2940 {
2941 last_set = single_set (last);
2942 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2943 {
2944 note = find_reg_equal_equiv_note (insn);
2945 if (note && CONSTANT_P (XEXP (note, 0)))
2946 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2947 else if (CONSTANT_P (SET_SRC (insn_set)))
2948 set_unique_reg_note (last, REG_EQUAL,
2949 copy_rtx (SET_SRC (insn_set)));
2950 }
2951 }
2952
2953 /* try_split returns the NOTE that INSN became. */
2954 SET_INSN_DELETED (insn);
2955
2956 /* ??? Coddle to md files that generate subregs in post-reload
2957 splitters instead of computing the proper hard register. */
2958 if (reload_completed && first != last)
2959 {
2960 first = NEXT_INSN (first);
2961 for (;;)
2962 {
2963 if (INSN_P (first))
2964 cleanup_subreg_operands (first);
2965 if (first == last)
2966 break;
2967 first = NEXT_INSN (first);
2968 }
2969 }
2970
2971 return last;
2972 }
2973
2974 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2975
2976 void
2977 split_all_insns (void)
2978 {
2979 sbitmap blocks;
2980 bool changed;
2981 basic_block bb;
2982
2983 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2984 bitmap_clear (blocks);
2985 changed = false;
2986
2987 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2988 {
2989 rtx insn, next;
2990 bool finish = false;
2991
2992 rtl_profile_for_bb (bb);
2993 for (insn = BB_HEAD (bb); !finish ; insn = next)
2994 {
2995 /* Can't use `next_real_insn' because that might go across
2996 CODE_LABELS and short-out basic blocks. */
2997 next = NEXT_INSN (insn);
2998 finish = (insn == BB_END (bb));
2999 if (INSN_P (insn))
3000 {
3001 rtx set = single_set (insn);
3002
3003 /* Don't split no-op move insns. These should silently
3004 disappear later in final. Splitting such insns would
3005 break the code that handles LIBCALL blocks. */
3006 if (set && set_noop_p (set))
3007 {
3008 /* Nops get in the way while scheduling, so delete them
3009 now if register allocation has already been done. It
3010 is too risky to try to do this before register
3011 allocation, and there are unlikely to be very many
3012 nops then anyways. */
3013 if (reload_completed)
3014 delete_insn_and_edges (insn);
3015 }
3016 else
3017 {
3018 if (split_insn (insn))
3019 {
3020 bitmap_set_bit (blocks, bb->index);
3021 changed = true;
3022 }
3023 }
3024 }
3025 }
3026 }
3027
3028 default_rtl_profile ();
3029 if (changed)
3030 find_many_sub_basic_blocks (blocks);
3031
3032 #ifdef ENABLE_CHECKING
3033 verify_flow_info ();
3034 #endif
3035
3036 sbitmap_free (blocks);
3037 }
3038
3039 /* Same as split_all_insns, but do not expect CFG to be available.
3040 Used by machine dependent reorg passes. */
3041
3042 unsigned int
3043 split_all_insns_noflow (void)
3044 {
3045 rtx next, insn;
3046
3047 for (insn = get_insns (); insn; insn = next)
3048 {
3049 next = NEXT_INSN (insn);
3050 if (INSN_P (insn))
3051 {
3052 /* Don't split no-op move insns. These should silently
3053 disappear later in final. Splitting such insns would
3054 break the code that handles LIBCALL blocks. */
3055 rtx set = single_set (insn);
3056 if (set && set_noop_p (set))
3057 {
3058 /* Nops get in the way while scheduling, so delete them
3059 now if register allocation has already been done. It
3060 is too risky to try to do this before register
3061 allocation, and there are unlikely to be very many
3062 nops then anyways.
3063
3064 ??? Should we use delete_insn when the CFG isn't valid? */
3065 if (reload_completed)
3066 delete_insn_and_edges (insn);
3067 }
3068 else
3069 split_insn (insn);
3070 }
3071 }
3072 return 0;
3073 }
3074 \f
3075 #ifdef HAVE_peephole2
3076 struct peep2_insn_data
3077 {
3078 rtx insn;
3079 regset live_before;
3080 };
3081
3082 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3083 static int peep2_current;
3084
3085 static bool peep2_do_rebuild_jump_labels;
3086 static bool peep2_do_cleanup_cfg;
3087
3088 /* The number of instructions available to match a peep2. */
3089 int peep2_current_count;
3090
3091 /* A non-insn marker indicating the last insn of the block.
3092 The live_before regset for this element is correct, indicating
3093 DF_LIVE_OUT for the block. */
3094 #define PEEP2_EOB pc_rtx
3095
3096 /* Wrap N to fit into the peep2_insn_data buffer. */
3097
3098 static int
3099 peep2_buf_position (int n)
3100 {
3101 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3102 n -= MAX_INSNS_PER_PEEP2 + 1;
3103 return n;
3104 }
3105
3106 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3107 does not exist. Used by the recognizer to find the next insn to match
3108 in a multi-insn pattern. */
3109
3110 rtx
3111 peep2_next_insn (int n)
3112 {
3113 gcc_assert (n <= peep2_current_count);
3114
3115 n = peep2_buf_position (peep2_current + n);
3116
3117 return peep2_insn_data[n].insn;
3118 }
3119
3120 /* Return true if REGNO is dead before the Nth non-note insn
3121 after `current'. */
3122
3123 int
3124 peep2_regno_dead_p (int ofs, int regno)
3125 {
3126 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3127
3128 ofs = peep2_buf_position (peep2_current + ofs);
3129
3130 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3131
3132 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3133 }
3134
3135 /* Similarly for a REG. */
3136
3137 int
3138 peep2_reg_dead_p (int ofs, rtx reg)
3139 {
3140 int regno, n;
3141
3142 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3143
3144 ofs = peep2_buf_position (peep2_current + ofs);
3145
3146 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3147
3148 regno = REGNO (reg);
3149 n = hard_regno_nregs[regno][GET_MODE (reg)];
3150 while (--n >= 0)
3151 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3152 return 0;
3153 return 1;
3154 }
3155
3156 /* Regno offset to be used in the register search. */
3157 static int search_ofs;
3158
3159 /* Try to find a hard register of mode MODE, matching the register class in
3160 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3161 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3162 in which case the only condition is that the register must be available
3163 before CURRENT_INSN.
3164 Registers that already have bits set in REG_SET will not be considered.
3165
3166 If an appropriate register is available, it will be returned and the
3167 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3168 returned. */
3169
3170 rtx
3171 peep2_find_free_register (int from, int to, const char *class_str,
3172 enum machine_mode mode, HARD_REG_SET *reg_set)
3173 {
3174 enum reg_class cl;
3175 HARD_REG_SET live;
3176 df_ref *def_rec;
3177 int i;
3178
3179 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3180 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3181
3182 from = peep2_buf_position (peep2_current + from);
3183 to = peep2_buf_position (peep2_current + to);
3184
3185 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3186 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3187
3188 while (from != to)
3189 {
3190 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3191
3192 /* Don't use registers set or clobbered by the insn. */
3193 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3194 *def_rec; def_rec++)
3195 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3196
3197 from = peep2_buf_position (from + 1);
3198 }
3199
3200 cl = (class_str[0] == 'r' ? GENERAL_REGS
3201 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3202
3203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3204 {
3205 int raw_regno, regno, success, j;
3206
3207 /* Distribute the free registers as much as possible. */
3208 raw_regno = search_ofs + i;
3209 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3210 raw_regno -= FIRST_PSEUDO_REGISTER;
3211 #ifdef REG_ALLOC_ORDER
3212 regno = reg_alloc_order[raw_regno];
3213 #else
3214 regno = raw_regno;
3215 #endif
3216
3217 /* Can it support the mode we need? */
3218 if (! HARD_REGNO_MODE_OK (regno, mode))
3219 continue;
3220
3221 success = 1;
3222 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3223 {
3224 /* Don't allocate fixed registers. */
3225 if (fixed_regs[regno + j])
3226 {
3227 success = 0;
3228 break;
3229 }
3230 /* Don't allocate global registers. */
3231 if (global_regs[regno + j])
3232 {
3233 success = 0;
3234 break;
3235 }
3236 /* Make sure the register is of the right class. */
3237 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3238 {
3239 success = 0;
3240 break;
3241 }
3242 /* And that we don't create an extra save/restore. */
3243 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3244 {
3245 success = 0;
3246 break;
3247 }
3248
3249 if (! targetm.hard_regno_scratch_ok (regno + j))
3250 {
3251 success = 0;
3252 break;
3253 }
3254
3255 /* And we don't clobber traceback for noreturn functions. */
3256 if ((regno + j == FRAME_POINTER_REGNUM
3257 || regno + j == HARD_FRAME_POINTER_REGNUM)
3258 && (! reload_completed || frame_pointer_needed))
3259 {
3260 success = 0;
3261 break;
3262 }
3263
3264 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3265 || TEST_HARD_REG_BIT (live, regno + j))
3266 {
3267 success = 0;
3268 break;
3269 }
3270 }
3271
3272 if (success)
3273 {
3274 add_to_hard_reg_set (reg_set, mode, regno);
3275
3276 /* Start the next search with the next register. */
3277 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3278 raw_regno = 0;
3279 search_ofs = raw_regno;
3280
3281 return gen_rtx_REG (mode, regno);
3282 }
3283 }
3284
3285 search_ofs = 0;
3286 return NULL_RTX;
3287 }
3288
3289 /* Forget all currently tracked instructions, only remember current
3290 LIVE regset. */
3291
3292 static void
3293 peep2_reinit_state (regset live)
3294 {
3295 int i;
3296
3297 /* Indicate that all slots except the last holds invalid data. */
3298 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3299 peep2_insn_data[i].insn = NULL_RTX;
3300 peep2_current_count = 0;
3301
3302 /* Indicate that the last slot contains live_after data. */
3303 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3304 peep2_current = MAX_INSNS_PER_PEEP2;
3305
3306 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3307 }
3308
3309 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3310 starting at INSN. Perform the replacement, removing the old insns and
3311 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3312 if the replacement is rejected. */
3313
3314 static rtx
3315 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3316 {
3317 int i;
3318 rtx last, eh_note, as_note, before_try, x;
3319 rtx old_insn, new_insn;
3320 bool was_call = false;
3321
3322 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3323 match more than one insn, or to be split into more than one insn. */
3324 old_insn = peep2_insn_data[peep2_current].insn;
3325 if (RTX_FRAME_RELATED_P (old_insn))
3326 {
3327 bool any_note = false;
3328 rtx note;
3329
3330 if (match_len != 0)
3331 return NULL;
3332
3333 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3334 may be in the stream for the purpose of register allocation. */
3335 if (active_insn_p (attempt))
3336 new_insn = attempt;
3337 else
3338 new_insn = next_active_insn (attempt);
3339 if (next_active_insn (new_insn))
3340 return NULL;
3341
3342 /* We have a 1-1 replacement. Copy over any frame-related info. */
3343 RTX_FRAME_RELATED_P (new_insn) = 1;
3344
3345 /* Allow the backend to fill in a note during the split. */
3346 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3347 switch (REG_NOTE_KIND (note))
3348 {
3349 case REG_FRAME_RELATED_EXPR:
3350 case REG_CFA_DEF_CFA:
3351 case REG_CFA_ADJUST_CFA:
3352 case REG_CFA_OFFSET:
3353 case REG_CFA_REGISTER:
3354 case REG_CFA_EXPRESSION:
3355 case REG_CFA_RESTORE:
3356 case REG_CFA_SET_VDRAP:
3357 any_note = true;
3358 break;
3359 default:
3360 break;
3361 }
3362
3363 /* If the backend didn't supply a note, copy one over. */
3364 if (!any_note)
3365 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3366 switch (REG_NOTE_KIND (note))
3367 {
3368 case REG_FRAME_RELATED_EXPR:
3369 case REG_CFA_DEF_CFA:
3370 case REG_CFA_ADJUST_CFA:
3371 case REG_CFA_OFFSET:
3372 case REG_CFA_REGISTER:
3373 case REG_CFA_EXPRESSION:
3374 case REG_CFA_RESTORE:
3375 case REG_CFA_SET_VDRAP:
3376 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3377 any_note = true;
3378 break;
3379 default:
3380 break;
3381 }
3382
3383 /* If there still isn't a note, make sure the unwind info sees the
3384 same expression as before the split. */
3385 if (!any_note)
3386 {
3387 rtx old_set, new_set;
3388
3389 /* The old insn had better have been simple, or annotated. */
3390 old_set = single_set (old_insn);
3391 gcc_assert (old_set != NULL);
3392
3393 new_set = single_set (new_insn);
3394 if (!new_set || !rtx_equal_p (new_set, old_set))
3395 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3396 }
3397
3398 /* Copy prologue/epilogue status. This is required in order to keep
3399 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3400 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3401 }
3402
3403 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3404 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3405 cfg-related call notes. */
3406 for (i = 0; i <= match_len; ++i)
3407 {
3408 int j;
3409 rtx note;
3410
3411 j = peep2_buf_position (peep2_current + i);
3412 old_insn = peep2_insn_data[j].insn;
3413 if (!CALL_P (old_insn))
3414 continue;
3415 was_call = true;
3416
3417 new_insn = attempt;
3418 while (new_insn != NULL_RTX)
3419 {
3420 if (CALL_P (new_insn))
3421 break;
3422 new_insn = NEXT_INSN (new_insn);
3423 }
3424
3425 gcc_assert (new_insn != NULL_RTX);
3426
3427 CALL_INSN_FUNCTION_USAGE (new_insn)
3428 = CALL_INSN_FUNCTION_USAGE (old_insn);
3429
3430 for (note = REG_NOTES (old_insn);
3431 note;
3432 note = XEXP (note, 1))
3433 switch (REG_NOTE_KIND (note))
3434 {
3435 case REG_NORETURN:
3436 case REG_SETJMP:
3437 case REG_TM:
3438 add_reg_note (new_insn, REG_NOTE_KIND (note),
3439 XEXP (note, 0));
3440 break;
3441 default:
3442 /* Discard all other reg notes. */
3443 break;
3444 }
3445
3446 /* Croak if there is another call in the sequence. */
3447 while (++i <= match_len)
3448 {
3449 j = peep2_buf_position (peep2_current + i);
3450 old_insn = peep2_insn_data[j].insn;
3451 gcc_assert (!CALL_P (old_insn));
3452 }
3453 break;
3454 }
3455
3456 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3457 move those notes over to the new sequence. */
3458 as_note = NULL;
3459 for (i = match_len; i >= 0; --i)
3460 {
3461 int j = peep2_buf_position (peep2_current + i);
3462 old_insn = peep2_insn_data[j].insn;
3463
3464 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3465 if (as_note)
3466 break;
3467 }
3468
3469 i = peep2_buf_position (peep2_current + match_len);
3470 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3471
3472 /* Replace the old sequence with the new. */
3473 last = emit_insn_after_setloc (attempt,
3474 peep2_insn_data[i].insn,
3475 INSN_LOCATION (peep2_insn_data[i].insn));
3476 before_try = PREV_INSN (insn);
3477 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3478
3479 /* Re-insert the EH_REGION notes. */
3480 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3481 {
3482 edge eh_edge;
3483 edge_iterator ei;
3484
3485 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3486 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3487 break;
3488
3489 if (eh_note)
3490 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3491
3492 if (eh_edge)
3493 for (x = last; x != before_try; x = PREV_INSN (x))
3494 if (x != BB_END (bb)
3495 && (can_throw_internal (x)
3496 || can_nonlocal_goto (x)))
3497 {
3498 edge nfte, nehe;
3499 int flags;
3500
3501 nfte = split_block (bb, x);
3502 flags = (eh_edge->flags
3503 & (EDGE_EH | EDGE_ABNORMAL));
3504 if (CALL_P (x))
3505 flags |= EDGE_ABNORMAL_CALL;
3506 nehe = make_edge (nfte->src, eh_edge->dest,
3507 flags);
3508
3509 nehe->probability = eh_edge->probability;
3510 nfte->probability
3511 = REG_BR_PROB_BASE - nehe->probability;
3512
3513 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3514 bb = nfte->src;
3515 eh_edge = nehe;
3516 }
3517
3518 /* Converting possibly trapping insn to non-trapping is
3519 possible. Zap dummy outgoing edges. */
3520 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3521 }
3522
3523 /* Re-insert the ARGS_SIZE notes. */
3524 if (as_note)
3525 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3526
3527 /* If we generated a jump instruction, it won't have
3528 JUMP_LABEL set. Recompute after we're done. */
3529 for (x = last; x != before_try; x = PREV_INSN (x))
3530 if (JUMP_P (x))
3531 {
3532 peep2_do_rebuild_jump_labels = true;
3533 break;
3534 }
3535
3536 return last;
3537 }
3538
3539 /* After performing a replacement in basic block BB, fix up the life
3540 information in our buffer. LAST is the last of the insns that we
3541 emitted as a replacement. PREV is the insn before the start of
3542 the replacement. MATCH_LEN is the number of instructions that were
3543 matched, and which now need to be replaced in the buffer. */
3544
3545 static void
3546 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3547 {
3548 int i = peep2_buf_position (peep2_current + match_len + 1);
3549 rtx x;
3550 regset_head live;
3551
3552 INIT_REG_SET (&live);
3553 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3554
3555 gcc_assert (peep2_current_count >= match_len + 1);
3556 peep2_current_count -= match_len + 1;
3557
3558 x = last;
3559 do
3560 {
3561 if (INSN_P (x))
3562 {
3563 df_insn_rescan (x);
3564 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3565 {
3566 peep2_current_count++;
3567 if (--i < 0)
3568 i = MAX_INSNS_PER_PEEP2;
3569 peep2_insn_data[i].insn = x;
3570 df_simulate_one_insn_backwards (bb, x, &live);
3571 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3572 }
3573 }
3574 x = PREV_INSN (x);
3575 }
3576 while (x != prev);
3577 CLEAR_REG_SET (&live);
3578
3579 peep2_current = i;
3580 }
3581
3582 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3583 Return true if we added it, false otherwise. The caller will try to match
3584 peepholes against the buffer if we return false; otherwise it will try to
3585 add more instructions to the buffer. */
3586
3587 static bool
3588 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3589 {
3590 int pos;
3591
3592 /* Once we have filled the maximum number of insns the buffer can hold,
3593 allow the caller to match the insns against peepholes. We wait until
3594 the buffer is full in case the target has similar peepholes of different
3595 length; we always want to match the longest if possible. */
3596 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3597 return false;
3598
3599 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3600 any other pattern, lest it change the semantics of the frame info. */
3601 if (RTX_FRAME_RELATED_P (insn))
3602 {
3603 /* Let the buffer drain first. */
3604 if (peep2_current_count > 0)
3605 return false;
3606 /* Now the insn will be the only thing in the buffer. */
3607 }
3608
3609 pos = peep2_buf_position (peep2_current + peep2_current_count);
3610 peep2_insn_data[pos].insn = insn;
3611 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3612 peep2_current_count++;
3613
3614 df_simulate_one_insn_forwards (bb, insn, live);
3615 return true;
3616 }
3617
3618 /* Perform the peephole2 optimization pass. */
3619
3620 static void
3621 peephole2_optimize (void)
3622 {
3623 rtx insn;
3624 bitmap live;
3625 int i;
3626 basic_block bb;
3627
3628 peep2_do_cleanup_cfg = false;
3629 peep2_do_rebuild_jump_labels = false;
3630
3631 df_set_flags (DF_LR_RUN_DCE);
3632 df_note_add_problem ();
3633 df_analyze ();
3634
3635 /* Initialize the regsets we're going to use. */
3636 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3637 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3638 search_ofs = 0;
3639 live = BITMAP_ALLOC (&reg_obstack);
3640
3641 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3642 {
3643 bool past_end = false;
3644 int pos;
3645
3646 rtl_profile_for_bb (bb);
3647
3648 /* Start up propagation. */
3649 bitmap_copy (live, DF_LR_IN (bb));
3650 df_simulate_initialize_forwards (bb, live);
3651 peep2_reinit_state (live);
3652
3653 insn = BB_HEAD (bb);
3654 for (;;)
3655 {
3656 rtx attempt, head;
3657 int match_len;
3658
3659 if (!past_end && !NONDEBUG_INSN_P (insn))
3660 {
3661 next_insn:
3662 insn = NEXT_INSN (insn);
3663 if (insn == NEXT_INSN (BB_END (bb)))
3664 past_end = true;
3665 continue;
3666 }
3667 if (!past_end && peep2_fill_buffer (bb, insn, live))
3668 goto next_insn;
3669
3670 /* If we did not fill an empty buffer, it signals the end of the
3671 block. */
3672 if (peep2_current_count == 0)
3673 break;
3674
3675 /* The buffer filled to the current maximum, so try to match. */
3676
3677 pos = peep2_buf_position (peep2_current + peep2_current_count);
3678 peep2_insn_data[pos].insn = PEEP2_EOB;
3679 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3680
3681 /* Match the peephole. */
3682 head = peep2_insn_data[peep2_current].insn;
3683 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3684 if (attempt != NULL)
3685 {
3686 rtx last = peep2_attempt (bb, head, match_len, attempt);
3687 if (last)
3688 {
3689 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3690 continue;
3691 }
3692 }
3693
3694 /* No match: advance the buffer by one insn. */
3695 peep2_current = peep2_buf_position (peep2_current + 1);
3696 peep2_current_count--;
3697 }
3698 }
3699
3700 default_rtl_profile ();
3701 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3702 BITMAP_FREE (peep2_insn_data[i].live_before);
3703 BITMAP_FREE (live);
3704 if (peep2_do_rebuild_jump_labels)
3705 rebuild_jump_labels (get_insns ());
3706 }
3707 #endif /* HAVE_peephole2 */
3708
3709 /* Common predicates for use with define_bypass. */
3710
3711 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3712 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3713 must be either a single_set or a PARALLEL with SETs inside. */
3714
3715 int
3716 store_data_bypass_p (rtx out_insn, rtx in_insn)
3717 {
3718 rtx out_set, in_set;
3719 rtx out_pat, in_pat;
3720 rtx out_exp, in_exp;
3721 int i, j;
3722
3723 in_set = single_set (in_insn);
3724 if (in_set)
3725 {
3726 if (!MEM_P (SET_DEST (in_set)))
3727 return false;
3728
3729 out_set = single_set (out_insn);
3730 if (out_set)
3731 {
3732 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3733 return false;
3734 }
3735 else
3736 {
3737 out_pat = PATTERN (out_insn);
3738
3739 if (GET_CODE (out_pat) != PARALLEL)
3740 return false;
3741
3742 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3743 {
3744 out_exp = XVECEXP (out_pat, 0, i);
3745
3746 if (GET_CODE (out_exp) == CLOBBER)
3747 continue;
3748
3749 gcc_assert (GET_CODE (out_exp) == SET);
3750
3751 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3752 return false;
3753 }
3754 }
3755 }
3756 else
3757 {
3758 in_pat = PATTERN (in_insn);
3759 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3760
3761 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3762 {
3763 in_exp = XVECEXP (in_pat, 0, i);
3764
3765 if (GET_CODE (in_exp) == CLOBBER)
3766 continue;
3767
3768 gcc_assert (GET_CODE (in_exp) == SET);
3769
3770 if (!MEM_P (SET_DEST (in_exp)))
3771 return false;
3772
3773 out_set = single_set (out_insn);
3774 if (out_set)
3775 {
3776 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3777 return false;
3778 }
3779 else
3780 {
3781 out_pat = PATTERN (out_insn);
3782 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3783
3784 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3785 {
3786 out_exp = XVECEXP (out_pat, 0, j);
3787
3788 if (GET_CODE (out_exp) == CLOBBER)
3789 continue;
3790
3791 gcc_assert (GET_CODE (out_exp) == SET);
3792
3793 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3794 return false;
3795 }
3796 }
3797 }
3798 }
3799
3800 return true;
3801 }
3802
3803 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3804 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3805 or multiple set; IN_INSN should be single_set for truth, but for convenience
3806 of insn categorization may be any JUMP or CALL insn. */
3807
3808 int
3809 if_test_bypass_p (rtx out_insn, rtx in_insn)
3810 {
3811 rtx out_set, in_set;
3812
3813 in_set = single_set (in_insn);
3814 if (! in_set)
3815 {
3816 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3817 return false;
3818 }
3819
3820 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3821 return false;
3822 in_set = SET_SRC (in_set);
3823
3824 out_set = single_set (out_insn);
3825 if (out_set)
3826 {
3827 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3828 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3829 return false;
3830 }
3831 else
3832 {
3833 rtx out_pat;
3834 int i;
3835
3836 out_pat = PATTERN (out_insn);
3837 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3838
3839 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3840 {
3841 rtx exp = XVECEXP (out_pat, 0, i);
3842
3843 if (GET_CODE (exp) == CLOBBER)
3844 continue;
3845
3846 gcc_assert (GET_CODE (exp) == SET);
3847
3848 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3849 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3850 return false;
3851 }
3852 }
3853
3854 return true;
3855 }
3856 \f
3857 static unsigned int
3858 rest_of_handle_peephole2 (void)
3859 {
3860 #ifdef HAVE_peephole2
3861 peephole2_optimize ();
3862 #endif
3863 return 0;
3864 }
3865
3866 namespace {
3867
3868 const pass_data pass_data_peephole2 =
3869 {
3870 RTL_PASS, /* type */
3871 "peephole2", /* name */
3872 OPTGROUP_NONE, /* optinfo_flags */
3873 true, /* has_execute */
3874 TV_PEEPHOLE2, /* tv_id */
3875 0, /* properties_required */
3876 0, /* properties_provided */
3877 0, /* properties_destroyed */
3878 0, /* todo_flags_start */
3879 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
3880 };
3881
3882 class pass_peephole2 : public rtl_opt_pass
3883 {
3884 public:
3885 pass_peephole2 (gcc::context *ctxt)
3886 : rtl_opt_pass (pass_data_peephole2, ctxt)
3887 {}
3888
3889 /* opt_pass methods: */
3890 /* The epiphany backend creates a second instance of this pass, so we need
3891 a clone method. */
3892 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3893 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3894 virtual unsigned int execute (function *)
3895 {
3896 return rest_of_handle_peephole2 ();
3897 }
3898
3899 }; // class pass_peephole2
3900
3901 } // anon namespace
3902
3903 rtl_opt_pass *
3904 make_pass_peephole2 (gcc::context *ctxt)
3905 {
3906 return new pass_peephole2 (ctxt);
3907 }
3908
3909 namespace {
3910
3911 const pass_data pass_data_split_all_insns =
3912 {
3913 RTL_PASS, /* type */
3914 "split1", /* name */
3915 OPTGROUP_NONE, /* optinfo_flags */
3916 true, /* has_execute */
3917 TV_NONE, /* tv_id */
3918 0, /* properties_required */
3919 0, /* properties_provided */
3920 0, /* properties_destroyed */
3921 0, /* todo_flags_start */
3922 0, /* todo_flags_finish */
3923 };
3924
3925 class pass_split_all_insns : public rtl_opt_pass
3926 {
3927 public:
3928 pass_split_all_insns (gcc::context *ctxt)
3929 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3930 {}
3931
3932 /* opt_pass methods: */
3933 /* The epiphany backend creates a second instance of this pass, so
3934 we need a clone method. */
3935 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3936 virtual unsigned int execute (function *)
3937 {
3938 split_all_insns ();
3939 return 0;
3940 }
3941
3942 }; // class pass_split_all_insns
3943
3944 } // anon namespace
3945
3946 rtl_opt_pass *
3947 make_pass_split_all_insns (gcc::context *ctxt)
3948 {
3949 return new pass_split_all_insns (ctxt);
3950 }
3951
3952 static unsigned int
3953 rest_of_handle_split_after_reload (void)
3954 {
3955 /* If optimizing, then go ahead and split insns now. */
3956 #ifndef STACK_REGS
3957 if (optimize > 0)
3958 #endif
3959 split_all_insns ();
3960 return 0;
3961 }
3962
3963 namespace {
3964
3965 const pass_data pass_data_split_after_reload =
3966 {
3967 RTL_PASS, /* type */
3968 "split2", /* name */
3969 OPTGROUP_NONE, /* optinfo_flags */
3970 true, /* has_execute */
3971 TV_NONE, /* tv_id */
3972 0, /* properties_required */
3973 0, /* properties_provided */
3974 0, /* properties_destroyed */
3975 0, /* todo_flags_start */
3976 0, /* todo_flags_finish */
3977 };
3978
3979 class pass_split_after_reload : public rtl_opt_pass
3980 {
3981 public:
3982 pass_split_after_reload (gcc::context *ctxt)
3983 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3984 {}
3985
3986 /* opt_pass methods: */
3987 virtual unsigned int execute (function *)
3988 {
3989 return rest_of_handle_split_after_reload ();
3990 }
3991
3992 }; // class pass_split_after_reload
3993
3994 } // anon namespace
3995
3996 rtl_opt_pass *
3997 make_pass_split_after_reload (gcc::context *ctxt)
3998 {
3999 return new pass_split_after_reload (ctxt);
4000 }
4001
4002 namespace {
4003
4004 const pass_data pass_data_split_before_regstack =
4005 {
4006 RTL_PASS, /* type */
4007 "split3", /* name */
4008 OPTGROUP_NONE, /* optinfo_flags */
4009 true, /* has_execute */
4010 TV_NONE, /* tv_id */
4011 0, /* properties_required */
4012 0, /* properties_provided */
4013 0, /* properties_destroyed */
4014 0, /* todo_flags_start */
4015 0, /* todo_flags_finish */
4016 };
4017
4018 class pass_split_before_regstack : public rtl_opt_pass
4019 {
4020 public:
4021 pass_split_before_regstack (gcc::context *ctxt)
4022 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
4023 {}
4024
4025 /* opt_pass methods: */
4026 virtual bool gate (function *);
4027 virtual unsigned int execute (function *)
4028 {
4029 split_all_insns ();
4030 return 0;
4031 }
4032
4033 }; // class pass_split_before_regstack
4034
4035 bool
4036 pass_split_before_regstack::gate (function *)
4037 {
4038 #if HAVE_ATTR_length && defined (STACK_REGS)
4039 /* If flow2 creates new instructions which need splitting
4040 and scheduling after reload is not done, they might not be
4041 split until final which doesn't allow splitting
4042 if HAVE_ATTR_length. */
4043 # ifdef INSN_SCHEDULING
4044 return (optimize && !flag_schedule_insns_after_reload);
4045 # else
4046 return (optimize);
4047 # endif
4048 #else
4049 return 0;
4050 #endif
4051 }
4052
4053 } // anon namespace
4054
4055 rtl_opt_pass *
4056 make_pass_split_before_regstack (gcc::context *ctxt)
4057 {
4058 return new pass_split_before_regstack (ctxt);
4059 }
4060
4061 static unsigned int
4062 rest_of_handle_split_before_sched2 (void)
4063 {
4064 #ifdef INSN_SCHEDULING
4065 split_all_insns ();
4066 #endif
4067 return 0;
4068 }
4069
4070 namespace {
4071
4072 const pass_data pass_data_split_before_sched2 =
4073 {
4074 RTL_PASS, /* type */
4075 "split4", /* name */
4076 OPTGROUP_NONE, /* optinfo_flags */
4077 true, /* has_execute */
4078 TV_NONE, /* tv_id */
4079 0, /* properties_required */
4080 0, /* properties_provided */
4081 0, /* properties_destroyed */
4082 0, /* todo_flags_start */
4083 TODO_verify_flow, /* todo_flags_finish */
4084 };
4085
4086 class pass_split_before_sched2 : public rtl_opt_pass
4087 {
4088 public:
4089 pass_split_before_sched2 (gcc::context *ctxt)
4090 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4091 {}
4092
4093 /* opt_pass methods: */
4094 virtual bool gate (function *)
4095 {
4096 #ifdef INSN_SCHEDULING
4097 return optimize > 0 && flag_schedule_insns_after_reload;
4098 #else
4099 return false;
4100 #endif
4101 }
4102
4103 virtual unsigned int execute (function *)
4104 {
4105 return rest_of_handle_split_before_sched2 ();
4106 }
4107
4108 }; // class pass_split_before_sched2
4109
4110 } // anon namespace
4111
4112 rtl_opt_pass *
4113 make_pass_split_before_sched2 (gcc::context *ctxt)
4114 {
4115 return new pass_split_before_sched2 (ctxt);
4116 }
4117
4118 namespace {
4119
4120 const pass_data pass_data_split_for_shorten_branches =
4121 {
4122 RTL_PASS, /* type */
4123 "split5", /* name */
4124 OPTGROUP_NONE, /* optinfo_flags */
4125 true, /* has_execute */
4126 TV_NONE, /* tv_id */
4127 0, /* properties_required */
4128 0, /* properties_provided */
4129 0, /* properties_destroyed */
4130 0, /* todo_flags_start */
4131 TODO_verify_rtl_sharing, /* todo_flags_finish */
4132 };
4133
4134 class pass_split_for_shorten_branches : public rtl_opt_pass
4135 {
4136 public:
4137 pass_split_for_shorten_branches (gcc::context *ctxt)
4138 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4139 {}
4140
4141 /* opt_pass methods: */
4142 virtual bool gate (function *)
4143 {
4144 /* The placement of the splitting that we do for shorten_branches
4145 depends on whether regstack is used by the target or not. */
4146 #if HAVE_ATTR_length && !defined (STACK_REGS)
4147 return true;
4148 #else
4149 return false;
4150 #endif
4151 }
4152
4153 virtual unsigned int execute (function *)
4154 {
4155 return split_all_insns_noflow ();
4156 }
4157
4158 }; // class pass_split_for_shorten_branches
4159
4160 } // anon namespace
4161
4162 rtl_opt_pass *
4163 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4164 {
4165 return new pass_split_for_shorten_branches (ctxt);
4166 }