]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
2015-10-29 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "alias.h"
37 #include "rtl-error.h"
38 #include "insn-attr.h"
39 #include "addresses.h"
40 #include "flags.h"
41 #include "dojump.h"
42 #include "explow.h"
43 #include "calls.h"
44 #include "varasm.h"
45 #include "stmt.h"
46 #include "expr.h"
47 #include "cfgrtl.h"
48 #include "cfgbuild.h"
49 #include "cfgcleanup.h"
50 #include "reload.h"
51 #include "tree-pass.h"
52
53 #ifndef STACK_POP_CODE
54 #if STACK_GROWS_DOWNWARD
55 #define STACK_POP_CODE POST_INC
56 #else
57 #define STACK_POP_CODE POST_DEC
58 #endif
59 #endif
60
61 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
62 static void validate_replace_src_1 (rtx *, void *);
63 static rtx_insn *split_insn (rtx_insn *);
64
65 struct target_recog default_target_recog;
66 #if SWITCHABLE_TARGET
67 struct target_recog *this_target_recog = &default_target_recog;
68 #endif
69
70 /* Nonzero means allow operands to be volatile.
71 This should be 0 if you are generating rtl, such as if you are calling
72 the functions in optabs.c and expmed.c (most of the time).
73 This should be 1 if all valid insns need to be recognized,
74 such as in reginfo.c and final.c and reload.c.
75
76 init_recog and init_recog_no_volatile are responsible for setting this. */
77
78 int volatile_ok;
79
80 struct recog_data_d recog_data;
81
82 /* Contains a vector of operand_alternative structures, such that
83 operand OP of alternative A is at index A * n_operands + OP.
84 Set up by preprocess_constraints. */
85 const operand_alternative *recog_op_alt;
86
87 /* Used to provide recog_op_alt for asms. */
88 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
89 * MAX_RECOG_ALTERNATIVES];
90
91 /* On return from `constrain_operands', indicate which alternative
92 was satisfied. */
93
94 int which_alternative;
95
96 /* Nonzero after end of reload pass.
97 Set to 1 or 0 by toplev.c.
98 Controls the significance of (SUBREG (MEM)). */
99
100 int reload_completed;
101
102 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
103 int epilogue_completed;
104
105 /* Initialize data used by the function `recog'.
106 This must be called once in the compilation of a function
107 before any insn recognition may be done in the function. */
108
109 void
110 init_recog_no_volatile (void)
111 {
112 volatile_ok = 0;
113 }
114
115 void
116 init_recog (void)
117 {
118 volatile_ok = 1;
119 }
120
121 \f
122 /* Return true if labels in asm operands BODY are LABEL_REFs. */
123
124 static bool
125 asm_labels_ok (rtx body)
126 {
127 rtx asmop;
128 int i;
129
130 asmop = extract_asm_operands (body);
131 if (asmop == NULL_RTX)
132 return true;
133
134 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
135 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
136 return false;
137
138 return true;
139 }
140
141 /* Check that X is an insn-body for an `asm' with operands
142 and that the operands mentioned in it are legitimate. */
143
144 int
145 check_asm_operands (rtx x)
146 {
147 int noperands;
148 rtx *operands;
149 const char **constraints;
150 int i;
151
152 if (!asm_labels_ok (x))
153 return 0;
154
155 /* Post-reload, be more strict with things. */
156 if (reload_completed)
157 {
158 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
159 rtx_insn *insn = make_insn_raw (x);
160 extract_insn (insn);
161 constrain_operands (1, get_enabled_alternatives (insn));
162 return which_alternative >= 0;
163 }
164
165 noperands = asm_noperands (x);
166 if (noperands < 0)
167 return 0;
168 if (noperands == 0)
169 return 1;
170
171 operands = XALLOCAVEC (rtx, noperands);
172 constraints = XALLOCAVEC (const char *, noperands);
173
174 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
175
176 for (i = 0; i < noperands; i++)
177 {
178 const char *c = constraints[i];
179 if (c[0] == '%')
180 c++;
181 if (! asm_operand_ok (operands[i], c, constraints))
182 return 0;
183 }
184
185 return 1;
186 }
187 \f
188 /* Static data for the next two routines. */
189
190 struct change_t
191 {
192 rtx object;
193 int old_code;
194 rtx *loc;
195 rtx old;
196 bool unshare;
197 };
198
199 static change_t *changes;
200 static int changes_allocated;
201
202 static int num_changes = 0;
203
204 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
205 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
206 the change is simply made.
207
208 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
209 will be called with the address and mode as parameters. If OBJECT is
210 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
211 the change in place.
212
213 IN_GROUP is nonzero if this is part of a group of changes that must be
214 performed as a group. In that case, the changes will be stored. The
215 function `apply_change_group' will validate and apply the changes.
216
217 If IN_GROUP is zero, this is a single change. Try to recognize the insn
218 or validate the memory reference with the change applied. If the result
219 is not valid for the machine, suppress the change and return zero.
220 Otherwise, perform the change and return 1. */
221
222 static bool
223 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
224 {
225 rtx old = *loc;
226
227 if (old == new_rtx || rtx_equal_p (old, new_rtx))
228 return 1;
229
230 gcc_assert (in_group != 0 || num_changes == 0);
231
232 *loc = new_rtx;
233
234 /* Save the information describing this change. */
235 if (num_changes >= changes_allocated)
236 {
237 if (changes_allocated == 0)
238 /* This value allows for repeated substitutions inside complex
239 indexed addresses, or changes in up to 5 insns. */
240 changes_allocated = MAX_RECOG_OPERANDS * 5;
241 else
242 changes_allocated *= 2;
243
244 changes = XRESIZEVEC (change_t, changes, changes_allocated);
245 }
246
247 changes[num_changes].object = object;
248 changes[num_changes].loc = loc;
249 changes[num_changes].old = old;
250 changes[num_changes].unshare = unshare;
251
252 if (object && !MEM_P (object))
253 {
254 /* Set INSN_CODE to force rerecognition of insn. Save old code in
255 case invalid. */
256 changes[num_changes].old_code = INSN_CODE (object);
257 INSN_CODE (object) = -1;
258 }
259
260 num_changes++;
261
262 /* If we are making a group of changes, return 1. Otherwise, validate the
263 change group we made. */
264
265 if (in_group)
266 return 1;
267 else
268 return apply_change_group ();
269 }
270
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272 UNSHARE to false. */
273
274 bool
275 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
276 {
277 return validate_change_1 (object, loc, new_rtx, in_group, false);
278 }
279
280 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
281 UNSHARE to true. */
282
283 bool
284 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
285 {
286 return validate_change_1 (object, loc, new_rtx, in_group, true);
287 }
288
289
290 /* Keep X canonicalized if some changes have made it non-canonical; only
291 modifies the operands of X, not (for example) its code. Simplifications
292 are not the job of this routine.
293
294 Return true if anything was changed. */
295 bool
296 canonicalize_change_group (rtx_insn *insn, rtx x)
297 {
298 if (COMMUTATIVE_P (x)
299 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
300 {
301 /* Oops, the caller has made X no longer canonical.
302 Let's redo the changes in the correct order. */
303 rtx tem = XEXP (x, 0);
304 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
305 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
306 return true;
307 }
308 else
309 return false;
310 }
311
312
313 /* This subroutine of apply_change_group verifies whether the changes to INSN
314 were valid; i.e. whether INSN can still be recognized.
315
316 If IN_GROUP is true clobbers which have to be added in order to
317 match the instructions will be added to the current change group.
318 Otherwise the changes will take effect immediately. */
319
320 int
321 insn_invalid_p (rtx_insn *insn, bool in_group)
322 {
323 rtx pat = PATTERN (insn);
324 int num_clobbers = 0;
325 /* If we are before reload and the pattern is a SET, see if we can add
326 clobbers. */
327 int icode = recog (pat, insn,
328 (GET_CODE (pat) == SET
329 && ! reload_completed
330 && ! reload_in_progress)
331 ? &num_clobbers : 0);
332 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
333
334
335 /* If this is an asm and the operand aren't legal, then fail. Likewise if
336 this is not an asm and the insn wasn't recognized. */
337 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
338 || (!is_asm && icode < 0))
339 return 1;
340
341 /* If we have to add CLOBBERs, fail if we have to add ones that reference
342 hard registers since our callers can't know if they are live or not.
343 Otherwise, add them. */
344 if (num_clobbers > 0)
345 {
346 rtx newpat;
347
348 if (added_clobbers_hard_reg_p (icode))
349 return 1;
350
351 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
352 XVECEXP (newpat, 0, 0) = pat;
353 add_clobbers (newpat, icode);
354 if (in_group)
355 validate_change (insn, &PATTERN (insn), newpat, 1);
356 else
357 PATTERN (insn) = pat = newpat;
358 }
359
360 /* After reload, verify that all constraints are satisfied. */
361 if (reload_completed)
362 {
363 extract_insn (insn);
364
365 if (! constrain_operands (1, get_preferred_alternatives (insn)))
366 return 1;
367 }
368
369 INSN_CODE (insn) = icode;
370 return 0;
371 }
372
373 /* Return number of changes made and not validated yet. */
374 int
375 num_changes_pending (void)
376 {
377 return num_changes;
378 }
379
380 /* Tentatively apply the changes numbered NUM and up.
381 Return 1 if all changes are valid, zero otherwise. */
382
383 int
384 verify_changes (int num)
385 {
386 int i;
387 rtx last_validated = NULL_RTX;
388
389 /* The changes have been applied and all INSN_CODEs have been reset to force
390 rerecognition.
391
392 The changes are valid if we aren't given an object, or if we are
393 given a MEM and it still is a valid address, or if this is in insn
394 and it is recognized. In the latter case, if reload has completed,
395 we also require that the operands meet the constraints for
396 the insn. */
397
398 for (i = num; i < num_changes; i++)
399 {
400 rtx object = changes[i].object;
401
402 /* If there is no object to test or if it is the same as the one we
403 already tested, ignore it. */
404 if (object == 0 || object == last_validated)
405 continue;
406
407 if (MEM_P (object))
408 {
409 if (! memory_address_addr_space_p (GET_MODE (object),
410 XEXP (object, 0),
411 MEM_ADDR_SPACE (object)))
412 break;
413 }
414 else if (/* changes[i].old might be zero, e.g. when putting a
415 REG_FRAME_RELATED_EXPR into a previously empty list. */
416 changes[i].old
417 && REG_P (changes[i].old)
418 && asm_noperands (PATTERN (object)) > 0
419 && REG_EXPR (changes[i].old) != NULL_TREE
420 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
421 && DECL_REGISTER (REG_EXPR (changes[i].old)))
422 {
423 /* Don't allow changes of hard register operands to inline
424 assemblies if they have been defined as register asm ("x"). */
425 break;
426 }
427 else if (DEBUG_INSN_P (object))
428 continue;
429 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
430 {
431 rtx pat = PATTERN (object);
432
433 /* Perhaps we couldn't recognize the insn because there were
434 extra CLOBBERs at the end. If so, try to re-recognize
435 without the last CLOBBER (later iterations will cause each of
436 them to be eliminated, in turn). But don't do this if we
437 have an ASM_OPERAND. */
438 if (GET_CODE (pat) == PARALLEL
439 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
440 && asm_noperands (PATTERN (object)) < 0)
441 {
442 rtx newpat;
443
444 if (XVECLEN (pat, 0) == 2)
445 newpat = XVECEXP (pat, 0, 0);
446 else
447 {
448 int j;
449
450 newpat
451 = gen_rtx_PARALLEL (VOIDmode,
452 rtvec_alloc (XVECLEN (pat, 0) - 1));
453 for (j = 0; j < XVECLEN (newpat, 0); j++)
454 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
455 }
456
457 /* Add a new change to this group to replace the pattern
458 with this new pattern. Then consider this change
459 as having succeeded. The change we added will
460 cause the entire call to fail if things remain invalid.
461
462 Note that this can lose if a later change than the one
463 we are processing specified &XVECEXP (PATTERN (object), 0, X)
464 but this shouldn't occur. */
465
466 validate_change (object, &PATTERN (object), newpat, 1);
467 continue;
468 }
469 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
470 || GET_CODE (pat) == VAR_LOCATION)
471 /* If this insn is a CLOBBER or USE, it is always valid, but is
472 never recognized. */
473 continue;
474 else
475 break;
476 }
477 last_validated = object;
478 }
479
480 return (i == num_changes);
481 }
482
483 /* A group of changes has previously been issued with validate_change
484 and verified with verify_changes. Call df_insn_rescan for each of
485 the insn changed and clear num_changes. */
486
487 void
488 confirm_change_group (void)
489 {
490 int i;
491 rtx last_object = NULL;
492
493 for (i = 0; i < num_changes; i++)
494 {
495 rtx object = changes[i].object;
496
497 if (changes[i].unshare)
498 *changes[i].loc = copy_rtx (*changes[i].loc);
499
500 /* Avoid unnecessary rescanning when multiple changes to same instruction
501 are made. */
502 if (object)
503 {
504 if (object != last_object && last_object && INSN_P (last_object))
505 df_insn_rescan (as_a <rtx_insn *> (last_object));
506 last_object = object;
507 }
508 }
509
510 if (last_object && INSN_P (last_object))
511 df_insn_rescan (as_a <rtx_insn *> (last_object));
512 num_changes = 0;
513 }
514
515 /* Apply a group of changes previously issued with `validate_change'.
516 If all changes are valid, call confirm_change_group and return 1,
517 otherwise, call cancel_changes and return 0. */
518
519 int
520 apply_change_group (void)
521 {
522 if (verify_changes (0))
523 {
524 confirm_change_group ();
525 return 1;
526 }
527 else
528 {
529 cancel_changes (0);
530 return 0;
531 }
532 }
533
534
535 /* Return the number of changes so far in the current group. */
536
537 int
538 num_validated_changes (void)
539 {
540 return num_changes;
541 }
542
543 /* Retract the changes numbered NUM and up. */
544
545 void
546 cancel_changes (int num)
547 {
548 int i;
549
550 /* Back out all the changes. Do this in the opposite order in which
551 they were made. */
552 for (i = num_changes - 1; i >= num; i--)
553 {
554 *changes[i].loc = changes[i].old;
555 if (changes[i].object && !MEM_P (changes[i].object))
556 INSN_CODE (changes[i].object) = changes[i].old_code;
557 }
558 num_changes = num;
559 }
560
561 /* Reduce conditional compilation elsewhere. */
562 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
563 rtx. */
564
565 static void
566 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
567 machine_mode op0_mode)
568 {
569 rtx x = *loc;
570 enum rtx_code code = GET_CODE (x);
571 rtx new_rtx = NULL_RTX;
572
573 if (SWAPPABLE_OPERANDS_P (x)
574 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
575 {
576 validate_unshare_change (object, loc,
577 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
578 : swap_condition (code),
579 GET_MODE (x), XEXP (x, 1),
580 XEXP (x, 0)), 1);
581 x = *loc;
582 code = GET_CODE (x);
583 }
584
585 /* Canonicalize arithmetics with all constant operands. */
586 switch (GET_RTX_CLASS (code))
587 {
588 case RTX_UNARY:
589 if (CONSTANT_P (XEXP (x, 0)))
590 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
591 op0_mode);
592 break;
593 case RTX_COMM_ARITH:
594 case RTX_BIN_ARITH:
595 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
596 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
597 XEXP (x, 1));
598 break;
599 case RTX_COMPARE:
600 case RTX_COMM_COMPARE:
601 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
602 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
603 XEXP (x, 0), XEXP (x, 1));
604 break;
605 default:
606 break;
607 }
608 if (new_rtx)
609 {
610 validate_change (object, loc, new_rtx, 1);
611 return;
612 }
613
614 switch (code)
615 {
616 case PLUS:
617 /* If we have a PLUS whose second operand is now a CONST_INT, use
618 simplify_gen_binary to try to simplify it.
619 ??? We may want later to remove this, once simplification is
620 separated from this function. */
621 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
622 validate_change (object, loc,
623 simplify_gen_binary
624 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
625 break;
626 case MINUS:
627 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
628 validate_change (object, loc,
629 simplify_gen_binary
630 (PLUS, GET_MODE (x), XEXP (x, 0),
631 simplify_gen_unary (NEG,
632 GET_MODE (x), XEXP (x, 1),
633 GET_MODE (x))), 1);
634 break;
635 case ZERO_EXTEND:
636 case SIGN_EXTEND:
637 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
638 {
639 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
640 op0_mode);
641 /* If any of the above failed, substitute in something that
642 we know won't be recognized. */
643 if (!new_rtx)
644 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
645 validate_change (object, loc, new_rtx, 1);
646 }
647 break;
648 case SUBREG:
649 /* All subregs possible to simplify should be simplified. */
650 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
651 SUBREG_BYTE (x));
652
653 /* Subregs of VOIDmode operands are incorrect. */
654 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
655 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
656 if (new_rtx)
657 validate_change (object, loc, new_rtx, 1);
658 break;
659 case ZERO_EXTRACT:
660 case SIGN_EXTRACT:
661 /* If we are replacing a register with memory, try to change the memory
662 to be the mode required for memory in extract operations (this isn't
663 likely to be an insertion operation; if it was, nothing bad will
664 happen, we might just fail in some cases). */
665
666 if (MEM_P (XEXP (x, 0))
667 && CONST_INT_P (XEXP (x, 1))
668 && CONST_INT_P (XEXP (x, 2))
669 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
670 MEM_ADDR_SPACE (XEXP (x, 0)))
671 && !MEM_VOLATILE_P (XEXP (x, 0)))
672 {
673 machine_mode wanted_mode = VOIDmode;
674 machine_mode is_mode = GET_MODE (XEXP (x, 0));
675 int pos = INTVAL (XEXP (x, 2));
676
677 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
678 {
679 wanted_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
680 if (wanted_mode == VOIDmode)
681 wanted_mode = word_mode;
682 }
683 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
684 {
685 wanted_mode = insn_data[targetm.code_for_extv].operand[1].mode;
686 if (wanted_mode == VOIDmode)
687 wanted_mode = word_mode;
688 }
689
690 /* If we have a narrower mode, we can do something. */
691 if (wanted_mode != VOIDmode
692 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
693 {
694 int offset = pos / BITS_PER_UNIT;
695 rtx newmem;
696
697 /* If the bytes and bits are counted differently, we
698 must adjust the offset. */
699 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
700 offset =
701 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
702 offset);
703
704 gcc_assert (GET_MODE_PRECISION (wanted_mode)
705 == GET_MODE_BITSIZE (wanted_mode));
706 pos %= GET_MODE_BITSIZE (wanted_mode);
707
708 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
709
710 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
711 validate_change (object, &XEXP (x, 0), newmem, 1);
712 }
713 }
714
715 break;
716
717 default:
718 break;
719 }
720 }
721
722 /* Replace every occurrence of FROM in X with TO. Mark each change with
723 validate_change passing OBJECT. */
724
725 static void
726 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
727 bool simplify)
728 {
729 int i, j;
730 const char *fmt;
731 rtx x = *loc;
732 enum rtx_code code;
733 machine_mode op0_mode = VOIDmode;
734 int prev_changes = num_changes;
735
736 if (!x)
737 return;
738
739 code = GET_CODE (x);
740 fmt = GET_RTX_FORMAT (code);
741 if (fmt[0] == 'e')
742 op0_mode = GET_MODE (XEXP (x, 0));
743
744 /* X matches FROM if it is the same rtx or they are both referring to the
745 same register in the same mode. Avoid calling rtx_equal_p unless the
746 operands look similar. */
747
748 if (x == from
749 || (REG_P (x) && REG_P (from)
750 && GET_MODE (x) == GET_MODE (from)
751 && REGNO (x) == REGNO (from))
752 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
753 && rtx_equal_p (x, from)))
754 {
755 validate_unshare_change (object, loc, to, 1);
756 return;
757 }
758
759 /* Call ourself recursively to perform the replacements.
760 We must not replace inside already replaced expression, otherwise we
761 get infinite recursion for replacements like (reg X)->(subreg (reg X))
762 so we must special case shared ASM_OPERANDS. */
763
764 if (GET_CODE (x) == PARALLEL)
765 {
766 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
767 {
768 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
769 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
770 {
771 /* Verify that operands are really shared. */
772 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
773 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
774 (x, 0, j))));
775 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
776 from, to, object, simplify);
777 }
778 else
779 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
780 simplify);
781 }
782 }
783 else
784 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
785 {
786 if (fmt[i] == 'e')
787 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
788 else if (fmt[i] == 'E')
789 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
790 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
791 simplify);
792 }
793
794 /* If we didn't substitute, there is nothing more to do. */
795 if (num_changes == prev_changes)
796 return;
797
798 /* ??? The regmove is no more, so is this aberration still necessary? */
799 /* Allow substituted expression to have different mode. This is used by
800 regmove to change mode of pseudo register. */
801 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
802 op0_mode = GET_MODE (XEXP (x, 0));
803
804 /* Do changes needed to keep rtx consistent. Don't do any other
805 simplifications, as it is not our job. */
806 if (simplify)
807 simplify_while_replacing (loc, to, object, op0_mode);
808 }
809
810 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
811 with TO. After all changes have been made, validate by seeing
812 if INSN is still valid. */
813
814 int
815 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
816 {
817 validate_replace_rtx_1 (loc, from, to, insn, true);
818 return apply_change_group ();
819 }
820
821 /* Try replacing every occurrence of FROM in INSN with TO. After all
822 changes have been made, validate by seeing if INSN is still valid. */
823
824 int
825 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
826 {
827 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
828 return apply_change_group ();
829 }
830
831 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
832 is a part of INSN. After all changes have been made, validate by seeing if
833 INSN is still valid.
834 validate_replace_rtx (from, to, insn) is equivalent to
835 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
836
837 int
838 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
839 {
840 validate_replace_rtx_1 (where, from, to, insn, true);
841 return apply_change_group ();
842 }
843
844 /* Same as above, but do not simplify rtx afterwards. */
845 int
846 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
847 rtx_insn *insn)
848 {
849 validate_replace_rtx_1 (where, from, to, insn, false);
850 return apply_change_group ();
851
852 }
853
854 /* Try replacing every occurrence of FROM in INSN with TO. This also
855 will replace in REG_EQUAL and REG_EQUIV notes. */
856
857 void
858 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
859 {
860 rtx note;
861 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
862 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
863 if (REG_NOTE_KIND (note) == REG_EQUAL
864 || REG_NOTE_KIND (note) == REG_EQUIV)
865 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
866 }
867
868 /* Function called by note_uses to replace used subexpressions. */
869 struct validate_replace_src_data
870 {
871 rtx from; /* Old RTX */
872 rtx to; /* New RTX */
873 rtx_insn *insn; /* Insn in which substitution is occurring. */
874 };
875
876 static void
877 validate_replace_src_1 (rtx *x, void *data)
878 {
879 struct validate_replace_src_data *d
880 = (struct validate_replace_src_data *) data;
881
882 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
883 }
884
885 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
886 SET_DESTs. */
887
888 void
889 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
890 {
891 struct validate_replace_src_data d;
892
893 d.from = from;
894 d.to = to;
895 d.insn = insn;
896 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
897 }
898
899 /* Try simplify INSN.
900 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
901 pattern and return true if something was simplified. */
902
903 bool
904 validate_simplify_insn (rtx_insn *insn)
905 {
906 int i;
907 rtx pat = NULL;
908 rtx newpat = NULL;
909
910 pat = PATTERN (insn);
911
912 if (GET_CODE (pat) == SET)
913 {
914 newpat = simplify_rtx (SET_SRC (pat));
915 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
916 validate_change (insn, &SET_SRC (pat), newpat, 1);
917 newpat = simplify_rtx (SET_DEST (pat));
918 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
919 validate_change (insn, &SET_DEST (pat), newpat, 1);
920 }
921 else if (GET_CODE (pat) == PARALLEL)
922 for (i = 0; i < XVECLEN (pat, 0); i++)
923 {
924 rtx s = XVECEXP (pat, 0, i);
925
926 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
927 {
928 newpat = simplify_rtx (SET_SRC (s));
929 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
930 validate_change (insn, &SET_SRC (s), newpat, 1);
931 newpat = simplify_rtx (SET_DEST (s));
932 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
933 validate_change (insn, &SET_DEST (s), newpat, 1);
934 }
935 }
936 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
937 }
938 \f
939 /* Return 1 if the insn using CC0 set by INSN does not contain
940 any ordered tests applied to the condition codes.
941 EQ and NE tests do not count. */
942
943 int
944 next_insn_tests_no_inequality (rtx_insn *insn)
945 {
946 rtx_insn *next = next_cc0_user (insn);
947
948 /* If there is no next insn, we have to take the conservative choice. */
949 if (next == 0)
950 return 0;
951
952 return (INSN_P (next)
953 && ! inequality_comparisons_p (PATTERN (next)));
954 }
955 \f
956 /* Return 1 if OP is a valid general operand for machine mode MODE.
957 This is either a register reference, a memory reference,
958 or a constant. In the case of a memory reference, the address
959 is checked for general validity for the target machine.
960
961 Register and memory references must have mode MODE in order to be valid,
962 but some constants have no machine mode and are valid for any mode.
963
964 If MODE is VOIDmode, OP is checked for validity for whatever mode
965 it has.
966
967 The main use of this function is as a predicate in match_operand
968 expressions in the machine description. */
969
970 int
971 general_operand (rtx op, machine_mode mode)
972 {
973 enum rtx_code code = GET_CODE (op);
974
975 if (mode == VOIDmode)
976 mode = GET_MODE (op);
977
978 /* Don't accept CONST_INT or anything similar
979 if the caller wants something floating. */
980 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
981 && GET_MODE_CLASS (mode) != MODE_INT
982 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
983 return 0;
984
985 if (CONST_INT_P (op)
986 && mode != VOIDmode
987 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
988 return 0;
989
990 if (CONSTANT_P (op))
991 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
992 || mode == VOIDmode)
993 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
994 && targetm.legitimate_constant_p (mode == VOIDmode
995 ? GET_MODE (op)
996 : mode, op));
997
998 /* Except for certain constants with VOIDmode, already checked for,
999 OP's mode must match MODE if MODE specifies a mode. */
1000
1001 if (GET_MODE (op) != mode)
1002 return 0;
1003
1004 if (code == SUBREG)
1005 {
1006 rtx sub = SUBREG_REG (op);
1007
1008 #ifdef INSN_SCHEDULING
1009 /* On machines that have insn scheduling, we want all memory
1010 reference to be explicit, so outlaw paradoxical SUBREGs.
1011 However, we must allow them after reload so that they can
1012 get cleaned up by cleanup_subreg_operands. */
1013 if (!reload_completed && MEM_P (sub)
1014 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1015 return 0;
1016 #endif
1017 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1018 may result in incorrect reference. We should simplify all valid
1019 subregs of MEM anyway. But allow this after reload because we
1020 might be called from cleanup_subreg_operands.
1021
1022 ??? This is a kludge. */
1023 if (!reload_completed && SUBREG_BYTE (op) != 0
1024 && MEM_P (sub))
1025 return 0;
1026
1027 #ifdef CANNOT_CHANGE_MODE_CLASS
1028 if (REG_P (sub)
1029 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1030 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1031 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1032 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1033 /* LRA can generate some invalid SUBREGS just for matched
1034 operand reload presentation. LRA needs to treat them as
1035 valid. */
1036 && ! LRA_SUBREG_P (op))
1037 return 0;
1038 #endif
1039
1040 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1041 create such rtl, and we must reject it. */
1042 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1043 /* LRA can use subreg to store a floating point value in an
1044 integer mode. Although the floating point and the
1045 integer modes need the same number of hard registers, the
1046 size of floating point mode can be less than the integer
1047 mode. */
1048 && ! lra_in_progress
1049 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1050 return 0;
1051
1052 op = sub;
1053 code = GET_CODE (op);
1054 }
1055
1056 if (code == REG)
1057 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1058 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1059
1060 if (code == MEM)
1061 {
1062 rtx y = XEXP (op, 0);
1063
1064 if (! volatile_ok && MEM_VOLATILE_P (op))
1065 return 0;
1066
1067 /* Use the mem's mode, since it will be reloaded thus. LRA can
1068 generate move insn with invalid addresses which is made valid
1069 and efficiently calculated by LRA through further numerous
1070 transformations. */
1071 if (lra_in_progress
1072 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1073 return 1;
1074 }
1075
1076 return 0;
1077 }
1078 \f
1079 /* Return 1 if OP is a valid memory address for a memory reference
1080 of mode MODE.
1081
1082 The main use of this function is as a predicate in match_operand
1083 expressions in the machine description. */
1084
1085 int
1086 address_operand (rtx op, machine_mode mode)
1087 {
1088 return memory_address_p (mode, op);
1089 }
1090
1091 /* Return 1 if OP is a register reference of mode MODE.
1092 If MODE is VOIDmode, accept a register in any mode.
1093
1094 The main use of this function is as a predicate in match_operand
1095 expressions in the machine description. */
1096
1097 int
1098 register_operand (rtx op, machine_mode mode)
1099 {
1100 if (GET_CODE (op) == SUBREG)
1101 {
1102 rtx sub = SUBREG_REG (op);
1103
1104 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1105 because it is guaranteed to be reloaded into one.
1106 Just make sure the MEM is valid in itself.
1107 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1108 but currently it does result from (SUBREG (REG)...) where the
1109 reg went on the stack.) */
1110 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1111 return 0;
1112 }
1113 else if (!REG_P (op))
1114 return 0;
1115 return general_operand (op, mode);
1116 }
1117
1118 /* Return 1 for a register in Pmode; ignore the tested mode. */
1119
1120 int
1121 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1122 {
1123 return register_operand (op, Pmode);
1124 }
1125
1126 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1127 or a hard register. */
1128
1129 int
1130 scratch_operand (rtx op, machine_mode mode)
1131 {
1132 if (GET_MODE (op) != mode && mode != VOIDmode)
1133 return 0;
1134
1135 return (GET_CODE (op) == SCRATCH
1136 || (REG_P (op)
1137 && (lra_in_progress
1138 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1139 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1140 }
1141
1142 /* Return 1 if OP is a valid immediate operand for mode MODE.
1143
1144 The main use of this function is as a predicate in match_operand
1145 expressions in the machine description. */
1146
1147 int
1148 immediate_operand (rtx op, machine_mode mode)
1149 {
1150 /* Don't accept CONST_INT or anything similar
1151 if the caller wants something floating. */
1152 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1153 && GET_MODE_CLASS (mode) != MODE_INT
1154 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1155 return 0;
1156
1157 if (CONST_INT_P (op)
1158 && mode != VOIDmode
1159 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1160 return 0;
1161
1162 return (CONSTANT_P (op)
1163 && (GET_MODE (op) == mode || mode == VOIDmode
1164 || GET_MODE (op) == VOIDmode)
1165 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1166 && targetm.legitimate_constant_p (mode == VOIDmode
1167 ? GET_MODE (op)
1168 : mode, op));
1169 }
1170
1171 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1172
1173 int
1174 const_int_operand (rtx op, machine_mode mode)
1175 {
1176 if (!CONST_INT_P (op))
1177 return 0;
1178
1179 if (mode != VOIDmode
1180 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1181 return 0;
1182
1183 return 1;
1184 }
1185
1186 #if TARGET_SUPPORTS_WIDE_INT
1187 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1188 of mode MODE. */
1189 int
1190 const_scalar_int_operand (rtx op, machine_mode mode)
1191 {
1192 if (!CONST_SCALAR_INT_P (op))
1193 return 0;
1194
1195 if (CONST_INT_P (op))
1196 return const_int_operand (op, mode);
1197
1198 if (mode != VOIDmode)
1199 {
1200 int prec = GET_MODE_PRECISION (mode);
1201 int bitsize = GET_MODE_BITSIZE (mode);
1202
1203 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1204 return 0;
1205
1206 if (prec == bitsize)
1207 return 1;
1208 else
1209 {
1210 /* Multiword partial int. */
1211 HOST_WIDE_INT x
1212 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1213 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1214 }
1215 }
1216 return 1;
1217 }
1218
1219 /* Returns 1 if OP is an operand that is a constant integer or constant
1220 floating-point number of MODE. */
1221
1222 int
1223 const_double_operand (rtx op, machine_mode mode)
1224 {
1225 return (GET_CODE (op) == CONST_DOUBLE)
1226 && (GET_MODE (op) == mode || mode == VOIDmode);
1227 }
1228 #else
1229 /* Returns 1 if OP is an operand that is a constant integer or constant
1230 floating-point number of MODE. */
1231
1232 int
1233 const_double_operand (rtx op, machine_mode mode)
1234 {
1235 /* Don't accept CONST_INT or anything similar
1236 if the caller wants something floating. */
1237 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1238 && GET_MODE_CLASS (mode) != MODE_INT
1239 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1240 return 0;
1241
1242 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1243 && (mode == VOIDmode || GET_MODE (op) == mode
1244 || GET_MODE (op) == VOIDmode));
1245 }
1246 #endif
1247 /* Return 1 if OP is a general operand that is not an immediate
1248 operand of mode MODE. */
1249
1250 int
1251 nonimmediate_operand (rtx op, machine_mode mode)
1252 {
1253 return (general_operand (op, mode) && ! CONSTANT_P (op));
1254 }
1255
1256 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1257
1258 int
1259 nonmemory_operand (rtx op, machine_mode mode)
1260 {
1261 if (CONSTANT_P (op))
1262 return immediate_operand (op, mode);
1263 return register_operand (op, mode);
1264 }
1265
1266 /* Return 1 if OP is a valid operand that stands for pushing a
1267 value of mode MODE onto the stack.
1268
1269 The main use of this function is as a predicate in match_operand
1270 expressions in the machine description. */
1271
1272 int
1273 push_operand (rtx op, machine_mode mode)
1274 {
1275 unsigned int rounded_size = GET_MODE_SIZE (mode);
1276
1277 #ifdef PUSH_ROUNDING
1278 rounded_size = PUSH_ROUNDING (rounded_size);
1279 #endif
1280
1281 if (!MEM_P (op))
1282 return 0;
1283
1284 if (mode != VOIDmode && GET_MODE (op) != mode)
1285 return 0;
1286
1287 op = XEXP (op, 0);
1288
1289 if (rounded_size == GET_MODE_SIZE (mode))
1290 {
1291 if (GET_CODE (op) != STACK_PUSH_CODE)
1292 return 0;
1293 }
1294 else
1295 {
1296 if (GET_CODE (op) != PRE_MODIFY
1297 || GET_CODE (XEXP (op, 1)) != PLUS
1298 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1299 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1300 || INTVAL (XEXP (XEXP (op, 1), 1))
1301 != ((STACK_GROWS_DOWNWARD ? -1 : 1) * (int) rounded_size))
1302 return 0;
1303 }
1304
1305 return XEXP (op, 0) == stack_pointer_rtx;
1306 }
1307
1308 /* Return 1 if OP is a valid operand that stands for popping a
1309 value of mode MODE off the stack.
1310
1311 The main use of this function is as a predicate in match_operand
1312 expressions in the machine description. */
1313
1314 int
1315 pop_operand (rtx op, machine_mode mode)
1316 {
1317 if (!MEM_P (op))
1318 return 0;
1319
1320 if (mode != VOIDmode && GET_MODE (op) != mode)
1321 return 0;
1322
1323 op = XEXP (op, 0);
1324
1325 if (GET_CODE (op) != STACK_POP_CODE)
1326 return 0;
1327
1328 return XEXP (op, 0) == stack_pointer_rtx;
1329 }
1330
1331 /* Return 1 if ADDR is a valid memory address
1332 for mode MODE in address space AS. */
1333
1334 int
1335 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1336 rtx addr, addr_space_t as)
1337 {
1338 #ifdef GO_IF_LEGITIMATE_ADDRESS
1339 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1340 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1341 return 0;
1342
1343 win:
1344 return 1;
1345 #else
1346 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1347 #endif
1348 }
1349
1350 /* Return 1 if OP is a valid memory reference with mode MODE,
1351 including a valid address.
1352
1353 The main use of this function is as a predicate in match_operand
1354 expressions in the machine description. */
1355
1356 int
1357 memory_operand (rtx op, machine_mode mode)
1358 {
1359 rtx inner;
1360
1361 if (! reload_completed)
1362 /* Note that no SUBREG is a memory operand before end of reload pass,
1363 because (SUBREG (MEM...)) forces reloading into a register. */
1364 return MEM_P (op) && general_operand (op, mode);
1365
1366 if (mode != VOIDmode && GET_MODE (op) != mode)
1367 return 0;
1368
1369 inner = op;
1370 if (GET_CODE (inner) == SUBREG)
1371 inner = SUBREG_REG (inner);
1372
1373 return (MEM_P (inner) && general_operand (op, mode));
1374 }
1375
1376 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1377 that is, a memory reference whose address is a general_operand. */
1378
1379 int
1380 indirect_operand (rtx op, machine_mode mode)
1381 {
1382 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1383 if (! reload_completed
1384 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1385 {
1386 int offset = SUBREG_BYTE (op);
1387 rtx inner = SUBREG_REG (op);
1388
1389 if (mode != VOIDmode && GET_MODE (op) != mode)
1390 return 0;
1391
1392 /* The only way that we can have a general_operand as the resulting
1393 address is if OFFSET is zero and the address already is an operand
1394 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1395 operand. */
1396
1397 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1398 || (GET_CODE (XEXP (inner, 0)) == PLUS
1399 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1400 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1401 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1402 }
1403
1404 return (MEM_P (op)
1405 && memory_operand (op, mode)
1406 && general_operand (XEXP (op, 0), Pmode));
1407 }
1408
1409 /* Return 1 if this is an ordered comparison operator (not including
1410 ORDERED and UNORDERED). */
1411
1412 int
1413 ordered_comparison_operator (rtx op, machine_mode mode)
1414 {
1415 if (mode != VOIDmode && GET_MODE (op) != mode)
1416 return false;
1417 switch (GET_CODE (op))
1418 {
1419 case EQ:
1420 case NE:
1421 case LT:
1422 case LTU:
1423 case LE:
1424 case LEU:
1425 case GT:
1426 case GTU:
1427 case GE:
1428 case GEU:
1429 return true;
1430 default:
1431 return false;
1432 }
1433 }
1434
1435 /* Return 1 if this is a comparison operator. This allows the use of
1436 MATCH_OPERATOR to recognize all the branch insns. */
1437
1438 int
1439 comparison_operator (rtx op, machine_mode mode)
1440 {
1441 return ((mode == VOIDmode || GET_MODE (op) == mode)
1442 && COMPARISON_P (op));
1443 }
1444 \f
1445 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1446
1447 rtx
1448 extract_asm_operands (rtx body)
1449 {
1450 rtx tmp;
1451 switch (GET_CODE (body))
1452 {
1453 case ASM_OPERANDS:
1454 return body;
1455
1456 case SET:
1457 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1458 tmp = SET_SRC (body);
1459 if (GET_CODE (tmp) == ASM_OPERANDS)
1460 return tmp;
1461 break;
1462
1463 case PARALLEL:
1464 tmp = XVECEXP (body, 0, 0);
1465 if (GET_CODE (tmp) == ASM_OPERANDS)
1466 return tmp;
1467 if (GET_CODE (tmp) == SET)
1468 {
1469 tmp = SET_SRC (tmp);
1470 if (GET_CODE (tmp) == ASM_OPERANDS)
1471 return tmp;
1472 }
1473 break;
1474
1475 default:
1476 break;
1477 }
1478 return NULL;
1479 }
1480
1481 /* If BODY is an insn body that uses ASM_OPERANDS,
1482 return the number of operands (both input and output) in the insn.
1483 Otherwise return -1. */
1484
1485 int
1486 asm_noperands (const_rtx body)
1487 {
1488 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1489 int n_sets = 0;
1490
1491 if (asm_op == NULL)
1492 return -1;
1493
1494 if (GET_CODE (body) == SET)
1495 n_sets = 1;
1496 else if (GET_CODE (body) == PARALLEL)
1497 {
1498 int i;
1499 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1500 {
1501 /* Multiple output operands, or 1 output plus some clobbers:
1502 body is
1503 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1504 /* Count backwards through CLOBBERs to determine number of SETs. */
1505 for (i = XVECLEN (body, 0); i > 0; i--)
1506 {
1507 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1508 break;
1509 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1510 return -1;
1511 }
1512
1513 /* N_SETS is now number of output operands. */
1514 n_sets = i;
1515
1516 /* Verify that all the SETs we have
1517 came from a single original asm_operands insn
1518 (so that invalid combinations are blocked). */
1519 for (i = 0; i < n_sets; i++)
1520 {
1521 rtx elt = XVECEXP (body, 0, i);
1522 if (GET_CODE (elt) != SET)
1523 return -1;
1524 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1525 return -1;
1526 /* If these ASM_OPERANDS rtx's came from different original insns
1527 then they aren't allowed together. */
1528 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1529 != ASM_OPERANDS_INPUT_VEC (asm_op))
1530 return -1;
1531 }
1532 }
1533 else
1534 {
1535 /* 0 outputs, but some clobbers:
1536 body is [(asm_operands ...) (clobber (reg ...))...]. */
1537 /* Make sure all the other parallel things really are clobbers. */
1538 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1539 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1540 return -1;
1541 }
1542 }
1543
1544 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1545 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1546 }
1547
1548 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1549 copy its operands (both input and output) into the vector OPERANDS,
1550 the locations of the operands within the insn into the vector OPERAND_LOCS,
1551 and the constraints for the operands into CONSTRAINTS.
1552 Write the modes of the operands into MODES.
1553 Return the assembler-template.
1554
1555 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1556 we don't store that info. */
1557
1558 const char *
1559 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1560 const char **constraints, machine_mode *modes,
1561 location_t *loc)
1562 {
1563 int nbase = 0, n, i;
1564 rtx asmop;
1565
1566 switch (GET_CODE (body))
1567 {
1568 case ASM_OPERANDS:
1569 /* Zero output asm: BODY is (asm_operands ...). */
1570 asmop = body;
1571 break;
1572
1573 case SET:
1574 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1575 asmop = SET_SRC (body);
1576
1577 /* The output is in the SET.
1578 Its constraint is in the ASM_OPERANDS itself. */
1579 if (operands)
1580 operands[0] = SET_DEST (body);
1581 if (operand_locs)
1582 operand_locs[0] = &SET_DEST (body);
1583 if (constraints)
1584 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1585 if (modes)
1586 modes[0] = GET_MODE (SET_DEST (body));
1587 nbase = 1;
1588 break;
1589
1590 case PARALLEL:
1591 {
1592 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1593
1594 asmop = XVECEXP (body, 0, 0);
1595 if (GET_CODE (asmop) == SET)
1596 {
1597 asmop = SET_SRC (asmop);
1598
1599 /* At least one output, plus some CLOBBERs. The outputs are in
1600 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1601 for (i = 0; i < nparallel; i++)
1602 {
1603 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1604 break; /* Past last SET */
1605 if (operands)
1606 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1607 if (operand_locs)
1608 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1609 if (constraints)
1610 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1611 if (modes)
1612 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1613 }
1614 nbase = i;
1615 }
1616 break;
1617 }
1618
1619 default:
1620 gcc_unreachable ();
1621 }
1622
1623 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1624 for (i = 0; i < n; i++)
1625 {
1626 if (operand_locs)
1627 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1628 if (operands)
1629 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1630 if (constraints)
1631 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1632 if (modes)
1633 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1634 }
1635 nbase += n;
1636
1637 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1638 for (i = 0; i < n; i++)
1639 {
1640 if (operand_locs)
1641 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1642 if (operands)
1643 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1644 if (constraints)
1645 constraints[nbase + i] = "";
1646 if (modes)
1647 modes[nbase + i] = Pmode;
1648 }
1649
1650 if (loc)
1651 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1652
1653 return ASM_OPERANDS_TEMPLATE (asmop);
1654 }
1655
1656 /* Parse inline assembly string STRING and determine which operands are
1657 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1658 to true if operand I is referenced.
1659
1660 This is intended to distinguish barrier-like asms such as:
1661
1662 asm ("" : "=m" (...));
1663
1664 from real references such as:
1665
1666 asm ("sw\t$0, %0" : "=m" (...)); */
1667
1668 void
1669 get_referenced_operands (const char *string, bool *used,
1670 unsigned int noperands)
1671 {
1672 memset (used, 0, sizeof (bool) * noperands);
1673 const char *p = string;
1674 while (*p)
1675 switch (*p)
1676 {
1677 case '%':
1678 p += 1;
1679 /* A letter followed by a digit indicates an operand number. */
1680 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1681 p += 1;
1682 if (ISDIGIT (*p))
1683 {
1684 char *endptr;
1685 unsigned long opnum = strtoul (p, &endptr, 10);
1686 if (endptr != p && opnum < noperands)
1687 used[opnum] = true;
1688 p = endptr;
1689 }
1690 else
1691 p += 1;
1692 break;
1693
1694 default:
1695 p++;
1696 break;
1697 }
1698 }
1699
1700 /* Check if an asm_operand matches its constraints.
1701 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1702
1703 int
1704 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1705 {
1706 int result = 0;
1707 bool incdec_ok = false;
1708
1709 /* Use constrain_operands after reload. */
1710 gcc_assert (!reload_completed);
1711
1712 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1713 many alternatives as required to match the other operands. */
1714 if (*constraint == '\0')
1715 result = 1;
1716
1717 while (*constraint)
1718 {
1719 enum constraint_num cn;
1720 char c = *constraint;
1721 int len;
1722 switch (c)
1723 {
1724 case ',':
1725 constraint++;
1726 continue;
1727
1728 case '0': case '1': case '2': case '3': case '4':
1729 case '5': case '6': case '7': case '8': case '9':
1730 /* If caller provided constraints pointer, look up
1731 the matching constraint. Otherwise, our caller should have
1732 given us the proper matching constraint, but we can't
1733 actually fail the check if they didn't. Indicate that
1734 results are inconclusive. */
1735 if (constraints)
1736 {
1737 char *end;
1738 unsigned long match;
1739
1740 match = strtoul (constraint, &end, 10);
1741 if (!result)
1742 result = asm_operand_ok (op, constraints[match], NULL);
1743 constraint = (const char *) end;
1744 }
1745 else
1746 {
1747 do
1748 constraint++;
1749 while (ISDIGIT (*constraint));
1750 if (! result)
1751 result = -1;
1752 }
1753 continue;
1754
1755 /* The rest of the compiler assumes that reloading the address
1756 of a MEM into a register will make it fit an 'o' constraint.
1757 That is, if it sees a MEM operand for an 'o' constraint,
1758 it assumes that (mem (base-reg)) will fit.
1759
1760 That assumption fails on targets that don't have offsettable
1761 addresses at all. We therefore need to treat 'o' asm
1762 constraints as a special case and only accept operands that
1763 are already offsettable, thus proving that at least one
1764 offsettable address exists. */
1765 case 'o': /* offsettable */
1766 if (offsettable_nonstrict_memref_p (op))
1767 result = 1;
1768 break;
1769
1770 case 'g':
1771 if (general_operand (op, VOIDmode))
1772 result = 1;
1773 break;
1774
1775 case '<':
1776 case '>':
1777 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1778 to exist, excepting those that expand_call created. Further,
1779 on some machines which do not have generalized auto inc/dec,
1780 an inc/dec is not a memory_operand.
1781
1782 Match any memory and hope things are resolved after reload. */
1783 incdec_ok = true;
1784 default:
1785 cn = lookup_constraint (constraint);
1786 switch (get_constraint_type (cn))
1787 {
1788 case CT_REGISTER:
1789 if (!result
1790 && reg_class_for_constraint (cn) != NO_REGS
1791 && GET_MODE (op) != BLKmode
1792 && register_operand (op, VOIDmode))
1793 result = 1;
1794 break;
1795
1796 case CT_CONST_INT:
1797 if (!result
1798 && CONST_INT_P (op)
1799 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1800 result = 1;
1801 break;
1802
1803 case CT_MEMORY:
1804 /* Every memory operand can be reloaded to fit. */
1805 result = result || memory_operand (op, VOIDmode);
1806 break;
1807
1808 case CT_ADDRESS:
1809 /* Every address operand can be reloaded to fit. */
1810 result = result || address_operand (op, VOIDmode);
1811 break;
1812
1813 case CT_FIXED_FORM:
1814 result = result || constraint_satisfied_p (op, cn);
1815 break;
1816 }
1817 break;
1818 }
1819 len = CONSTRAINT_LEN (c, constraint);
1820 do
1821 constraint++;
1822 while (--len && *constraint);
1823 if (len)
1824 return 0;
1825 }
1826
1827 /* For operands without < or > constraints reject side-effects. */
1828 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1829 switch (GET_CODE (XEXP (op, 0)))
1830 {
1831 case PRE_INC:
1832 case POST_INC:
1833 case PRE_DEC:
1834 case POST_DEC:
1835 case PRE_MODIFY:
1836 case POST_MODIFY:
1837 return 0;
1838 default:
1839 break;
1840 }
1841
1842 return result;
1843 }
1844 \f
1845 /* Given an rtx *P, if it is a sum containing an integer constant term,
1846 return the location (type rtx *) of the pointer to that constant term.
1847 Otherwise, return a null pointer. */
1848
1849 rtx *
1850 find_constant_term_loc (rtx *p)
1851 {
1852 rtx *tem;
1853 enum rtx_code code = GET_CODE (*p);
1854
1855 /* If *P IS such a constant term, P is its location. */
1856
1857 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1858 || code == CONST)
1859 return p;
1860
1861 /* Otherwise, if not a sum, it has no constant term. */
1862
1863 if (GET_CODE (*p) != PLUS)
1864 return 0;
1865
1866 /* If one of the summands is constant, return its location. */
1867
1868 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1869 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1870 return p;
1871
1872 /* Otherwise, check each summand for containing a constant term. */
1873
1874 if (XEXP (*p, 0) != 0)
1875 {
1876 tem = find_constant_term_loc (&XEXP (*p, 0));
1877 if (tem != 0)
1878 return tem;
1879 }
1880
1881 if (XEXP (*p, 1) != 0)
1882 {
1883 tem = find_constant_term_loc (&XEXP (*p, 1));
1884 if (tem != 0)
1885 return tem;
1886 }
1887
1888 return 0;
1889 }
1890 \f
1891 /* Return 1 if OP is a memory reference
1892 whose address contains no side effects
1893 and remains valid after the addition
1894 of a positive integer less than the
1895 size of the object being referenced.
1896
1897 We assume that the original address is valid and do not check it.
1898
1899 This uses strict_memory_address_p as a subroutine, so
1900 don't use it before reload. */
1901
1902 int
1903 offsettable_memref_p (rtx op)
1904 {
1905 return ((MEM_P (op))
1906 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1907 MEM_ADDR_SPACE (op)));
1908 }
1909
1910 /* Similar, but don't require a strictly valid mem ref:
1911 consider pseudo-regs valid as index or base regs. */
1912
1913 int
1914 offsettable_nonstrict_memref_p (rtx op)
1915 {
1916 return ((MEM_P (op))
1917 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1918 MEM_ADDR_SPACE (op)));
1919 }
1920
1921 /* Return 1 if Y is a memory address which contains no side effects
1922 and would remain valid for address space AS after the addition of
1923 a positive integer less than the size of that mode.
1924
1925 We assume that the original address is valid and do not check it.
1926 We do check that it is valid for narrower modes.
1927
1928 If STRICTP is nonzero, we require a strictly valid address,
1929 for the sake of use in reload.c. */
1930
1931 int
1932 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1933 addr_space_t as)
1934 {
1935 enum rtx_code ycode = GET_CODE (y);
1936 rtx z;
1937 rtx y1 = y;
1938 rtx *y2;
1939 int (*addressp) (machine_mode, rtx, addr_space_t) =
1940 (strictp ? strict_memory_address_addr_space_p
1941 : memory_address_addr_space_p);
1942 unsigned int mode_sz = GET_MODE_SIZE (mode);
1943
1944 if (CONSTANT_ADDRESS_P (y))
1945 return 1;
1946
1947 /* Adjusting an offsettable address involves changing to a narrower mode.
1948 Make sure that's OK. */
1949
1950 if (mode_dependent_address_p (y, as))
1951 return 0;
1952
1953 machine_mode address_mode = GET_MODE (y);
1954 if (address_mode == VOIDmode)
1955 address_mode = targetm.addr_space.address_mode (as);
1956 #ifdef POINTERS_EXTEND_UNSIGNED
1957 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1958 #endif
1959
1960 /* ??? How much offset does an offsettable BLKmode reference need?
1961 Clearly that depends on the situation in which it's being used.
1962 However, the current situation in which we test 0xffffffff is
1963 less than ideal. Caveat user. */
1964 if (mode_sz == 0)
1965 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1966
1967 /* If the expression contains a constant term,
1968 see if it remains valid when max possible offset is added. */
1969
1970 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1971 {
1972 int good;
1973
1974 y1 = *y2;
1975 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1976 /* Use QImode because an odd displacement may be automatically invalid
1977 for any wider mode. But it should be valid for a single byte. */
1978 good = (*addressp) (QImode, y, as);
1979
1980 /* In any case, restore old contents of memory. */
1981 *y2 = y1;
1982 return good;
1983 }
1984
1985 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1986 return 0;
1987
1988 /* The offset added here is chosen as the maximum offset that
1989 any instruction could need to add when operating on something
1990 of the specified mode. We assume that if Y and Y+c are
1991 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1992 go inside a LO_SUM here, so we do so as well. */
1993 if (GET_CODE (y) == LO_SUM
1994 && mode != BLKmode
1995 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1996 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
1997 plus_constant (address_mode, XEXP (y, 1),
1998 mode_sz - 1));
1999 #ifdef POINTERS_EXTEND_UNSIGNED
2000 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2001 else if (POINTERS_EXTEND_UNSIGNED > 0
2002 && GET_CODE (y) == ZERO_EXTEND
2003 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2004 z = gen_rtx_ZERO_EXTEND (address_mode,
2005 plus_constant (pointer_mode, XEXP (y, 0),
2006 mode_sz - 1));
2007 #endif
2008 else
2009 z = plus_constant (address_mode, y, mode_sz - 1);
2010
2011 /* Use QImode because an odd displacement may be automatically invalid
2012 for any wider mode. But it should be valid for a single byte. */
2013 return (*addressp) (QImode, z, as);
2014 }
2015
2016 /* Return 1 if ADDR is an address-expression whose effect depends
2017 on the mode of the memory reference it is used in.
2018
2019 ADDRSPACE is the address space associated with the address.
2020
2021 Autoincrement addressing is a typical example of mode-dependence
2022 because the amount of the increment depends on the mode. */
2023
2024 bool
2025 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2026 {
2027 /* Auto-increment addressing with anything other than post_modify
2028 or pre_modify always introduces a mode dependency. Catch such
2029 cases now instead of deferring to the target. */
2030 if (GET_CODE (addr) == PRE_INC
2031 || GET_CODE (addr) == POST_INC
2032 || GET_CODE (addr) == PRE_DEC
2033 || GET_CODE (addr) == POST_DEC)
2034 return true;
2035
2036 return targetm.mode_dependent_address_p (addr, addrspace);
2037 }
2038 \f
2039 /* Return true if boolean attribute ATTR is supported. */
2040
2041 static bool
2042 have_bool_attr (bool_attr attr)
2043 {
2044 switch (attr)
2045 {
2046 case BA_ENABLED:
2047 return HAVE_ATTR_enabled;
2048 case BA_PREFERRED_FOR_SIZE:
2049 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2050 case BA_PREFERRED_FOR_SPEED:
2051 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2052 }
2053 gcc_unreachable ();
2054 }
2055
2056 /* Return the value of ATTR for instruction INSN. */
2057
2058 static bool
2059 get_bool_attr (rtx_insn *insn, bool_attr attr)
2060 {
2061 switch (attr)
2062 {
2063 case BA_ENABLED:
2064 return get_attr_enabled (insn);
2065 case BA_PREFERRED_FOR_SIZE:
2066 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2067 case BA_PREFERRED_FOR_SPEED:
2068 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2069 }
2070 gcc_unreachable ();
2071 }
2072
2073 /* Like get_bool_attr_mask, but don't use the cache. */
2074
2075 static alternative_mask
2076 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2077 {
2078 /* Temporarily install enough information for get_attr_<foo> to assume
2079 that the insn operands are already cached. As above, the attribute
2080 mustn't depend on the values of operands, so we don't provide their
2081 real values here. */
2082 rtx_insn *old_insn = recog_data.insn;
2083 int old_alternative = which_alternative;
2084
2085 recog_data.insn = insn;
2086 alternative_mask mask = ALL_ALTERNATIVES;
2087 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2088 for (int i = 0; i < n_alternatives; i++)
2089 {
2090 which_alternative = i;
2091 if (!get_bool_attr (insn, attr))
2092 mask &= ~ALTERNATIVE_BIT (i);
2093 }
2094
2095 recog_data.insn = old_insn;
2096 which_alternative = old_alternative;
2097 return mask;
2098 }
2099
2100 /* Return the mask of operand alternatives that are allowed for INSN
2101 by boolean attribute ATTR. This mask depends only on INSN and on
2102 the current target; it does not depend on things like the values of
2103 operands. */
2104
2105 static alternative_mask
2106 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2107 {
2108 /* Quick exit for asms and for targets that don't use these attributes. */
2109 int code = INSN_CODE (insn);
2110 if (code < 0 || !have_bool_attr (attr))
2111 return ALL_ALTERNATIVES;
2112
2113 /* Calling get_attr_<foo> can be expensive, so cache the mask
2114 for speed. */
2115 if (!this_target_recog->x_bool_attr_masks[code][attr])
2116 this_target_recog->x_bool_attr_masks[code][attr]
2117 = get_bool_attr_mask_uncached (insn, attr);
2118 return this_target_recog->x_bool_attr_masks[code][attr];
2119 }
2120
2121 /* Return the set of alternatives of INSN that are allowed by the current
2122 target. */
2123
2124 alternative_mask
2125 get_enabled_alternatives (rtx_insn *insn)
2126 {
2127 return get_bool_attr_mask (insn, BA_ENABLED);
2128 }
2129
2130 /* Return the set of alternatives of INSN that are allowed by the current
2131 target and are preferred for the current size/speed optimization
2132 choice. */
2133
2134 alternative_mask
2135 get_preferred_alternatives (rtx_insn *insn)
2136 {
2137 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2138 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2139 else
2140 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2141 }
2142
2143 /* Return the set of alternatives of INSN that are allowed by the current
2144 target and are preferred for the size/speed optimization choice
2145 associated with BB. Passing a separate BB is useful if INSN has not
2146 been emitted yet or if we are considering moving it to a different
2147 block. */
2148
2149 alternative_mask
2150 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2151 {
2152 if (optimize_bb_for_speed_p (bb))
2153 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2154 else
2155 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2156 }
2157
2158 /* Assert that the cached boolean attributes for INSN are still accurate.
2159 The backend is required to define these attributes in a way that only
2160 depends on the current target (rather than operands, compiler phase,
2161 etc.). */
2162
2163 bool
2164 check_bool_attrs (rtx_insn *insn)
2165 {
2166 int code = INSN_CODE (insn);
2167 if (code >= 0)
2168 for (int i = 0; i <= BA_LAST; ++i)
2169 {
2170 enum bool_attr attr = (enum bool_attr) i;
2171 if (this_target_recog->x_bool_attr_masks[code][attr])
2172 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2173 == get_bool_attr_mask_uncached (insn, attr));
2174 }
2175 return true;
2176 }
2177
2178 /* Like extract_insn, but save insn extracted and don't extract again, when
2179 called again for the same insn expecting that recog_data still contain the
2180 valid information. This is used primary by gen_attr infrastructure that
2181 often does extract insn again and again. */
2182 void
2183 extract_insn_cached (rtx_insn *insn)
2184 {
2185 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2186 return;
2187 extract_insn (insn);
2188 recog_data.insn = insn;
2189 }
2190
2191 /* Do uncached extract_insn, constrain_operands and complain about failures.
2192 This should be used when extracting a pre-existing constrained instruction
2193 if the caller wants to know which alternative was chosen. */
2194 void
2195 extract_constrain_insn (rtx_insn *insn)
2196 {
2197 extract_insn (insn);
2198 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2199 fatal_insn_not_found (insn);
2200 }
2201
2202 /* Do cached extract_insn, constrain_operands and complain about failures.
2203 Used by insn_attrtab. */
2204 void
2205 extract_constrain_insn_cached (rtx_insn *insn)
2206 {
2207 extract_insn_cached (insn);
2208 if (which_alternative == -1
2209 && !constrain_operands (reload_completed,
2210 get_enabled_alternatives (insn)))
2211 fatal_insn_not_found (insn);
2212 }
2213
2214 /* Do cached constrain_operands on INSN and complain about failures. */
2215 int
2216 constrain_operands_cached (rtx_insn *insn, int strict)
2217 {
2218 if (which_alternative == -1)
2219 return constrain_operands (strict, get_enabled_alternatives (insn));
2220 else
2221 return 1;
2222 }
2223 \f
2224 /* Analyze INSN and fill in recog_data. */
2225
2226 void
2227 extract_insn (rtx_insn *insn)
2228 {
2229 int i;
2230 int icode;
2231 int noperands;
2232 rtx body = PATTERN (insn);
2233
2234 recog_data.n_operands = 0;
2235 recog_data.n_alternatives = 0;
2236 recog_data.n_dups = 0;
2237 recog_data.is_asm = false;
2238
2239 switch (GET_CODE (body))
2240 {
2241 case USE:
2242 case CLOBBER:
2243 case ASM_INPUT:
2244 case ADDR_VEC:
2245 case ADDR_DIFF_VEC:
2246 case VAR_LOCATION:
2247 return;
2248
2249 case SET:
2250 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2251 goto asm_insn;
2252 else
2253 goto normal_insn;
2254 case PARALLEL:
2255 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2256 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2257 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2258 goto asm_insn;
2259 else
2260 goto normal_insn;
2261 case ASM_OPERANDS:
2262 asm_insn:
2263 recog_data.n_operands = noperands = asm_noperands (body);
2264 if (noperands >= 0)
2265 {
2266 /* This insn is an `asm' with operands. */
2267
2268 /* expand_asm_operands makes sure there aren't too many operands. */
2269 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2270
2271 /* Now get the operand values and constraints out of the insn. */
2272 decode_asm_operands (body, recog_data.operand,
2273 recog_data.operand_loc,
2274 recog_data.constraints,
2275 recog_data.operand_mode, NULL);
2276 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2277 if (noperands > 0)
2278 {
2279 const char *p = recog_data.constraints[0];
2280 recog_data.n_alternatives = 1;
2281 while (*p)
2282 recog_data.n_alternatives += (*p++ == ',');
2283 }
2284 recog_data.is_asm = true;
2285 break;
2286 }
2287 fatal_insn_not_found (insn);
2288
2289 default:
2290 normal_insn:
2291 /* Ordinary insn: recognize it, get the operands via insn_extract
2292 and get the constraints. */
2293
2294 icode = recog_memoized (insn);
2295 if (icode < 0)
2296 fatal_insn_not_found (insn);
2297
2298 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2299 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2300 recog_data.n_dups = insn_data[icode].n_dups;
2301
2302 insn_extract (insn);
2303
2304 for (i = 0; i < noperands; i++)
2305 {
2306 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2307 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2308 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2309 /* VOIDmode match_operands gets mode from their real operand. */
2310 if (recog_data.operand_mode[i] == VOIDmode)
2311 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2312 }
2313 }
2314 for (i = 0; i < noperands; i++)
2315 recog_data.operand_type[i]
2316 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2317 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2318 : OP_IN);
2319
2320 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2321
2322 recog_data.insn = NULL;
2323 which_alternative = -1;
2324 }
2325
2326 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2327 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2328 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2329 has N_OPERANDS entries. */
2330
2331 void
2332 preprocess_constraints (int n_operands, int n_alternatives,
2333 const char **constraints,
2334 operand_alternative *op_alt_base)
2335 {
2336 for (int i = 0; i < n_operands; i++)
2337 {
2338 int j;
2339 struct operand_alternative *op_alt;
2340 const char *p = constraints[i];
2341
2342 op_alt = op_alt_base;
2343
2344 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2345 {
2346 op_alt[i].cl = NO_REGS;
2347 op_alt[i].constraint = p;
2348 op_alt[i].matches = -1;
2349 op_alt[i].matched = -1;
2350
2351 if (*p == '\0' || *p == ',')
2352 {
2353 op_alt[i].anything_ok = 1;
2354 continue;
2355 }
2356
2357 for (;;)
2358 {
2359 char c = *p;
2360 if (c == '#')
2361 do
2362 c = *++p;
2363 while (c != ',' && c != '\0');
2364 if (c == ',' || c == '\0')
2365 {
2366 p++;
2367 break;
2368 }
2369
2370 switch (c)
2371 {
2372 case '?':
2373 op_alt[i].reject += 6;
2374 break;
2375 case '!':
2376 op_alt[i].reject += 600;
2377 break;
2378 case '&':
2379 op_alt[i].earlyclobber = 1;
2380 break;
2381
2382 case '0': case '1': case '2': case '3': case '4':
2383 case '5': case '6': case '7': case '8': case '9':
2384 {
2385 char *end;
2386 op_alt[i].matches = strtoul (p, &end, 10);
2387 op_alt[op_alt[i].matches].matched = i;
2388 p = end;
2389 }
2390 continue;
2391
2392 case 'X':
2393 op_alt[i].anything_ok = 1;
2394 break;
2395
2396 case 'g':
2397 op_alt[i].cl =
2398 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2399 break;
2400
2401 default:
2402 enum constraint_num cn = lookup_constraint (p);
2403 enum reg_class cl;
2404 switch (get_constraint_type (cn))
2405 {
2406 case CT_REGISTER:
2407 cl = reg_class_for_constraint (cn);
2408 if (cl != NO_REGS)
2409 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2410 break;
2411
2412 case CT_CONST_INT:
2413 break;
2414
2415 case CT_MEMORY:
2416 op_alt[i].memory_ok = 1;
2417 break;
2418
2419 case CT_ADDRESS:
2420 op_alt[i].is_address = 1;
2421 op_alt[i].cl
2422 = (reg_class_subunion
2423 [(int) op_alt[i].cl]
2424 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2425 ADDRESS, SCRATCH)]);
2426 break;
2427
2428 case CT_FIXED_FORM:
2429 break;
2430 }
2431 break;
2432 }
2433 p += CONSTRAINT_LEN (c, p);
2434 }
2435 }
2436 }
2437 }
2438
2439 /* Return an array of operand_alternative instructions for
2440 instruction ICODE. */
2441
2442 const operand_alternative *
2443 preprocess_insn_constraints (unsigned int icode)
2444 {
2445 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2446 if (this_target_recog->x_op_alt[icode])
2447 return this_target_recog->x_op_alt[icode];
2448
2449 int n_operands = insn_data[icode].n_operands;
2450 if (n_operands == 0)
2451 return 0;
2452 /* Always provide at least one alternative so that which_op_alt ()
2453 works correctly. If the instruction has 0 alternatives (i.e. all
2454 constraint strings are empty) then each operand in this alternative
2455 will have anything_ok set. */
2456 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2457 int n_entries = n_operands * n_alternatives;
2458
2459 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2460 const char **constraints = XALLOCAVEC (const char *, n_operands);
2461
2462 for (int i = 0; i < n_operands; ++i)
2463 constraints[i] = insn_data[icode].operand[i].constraint;
2464 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2465
2466 this_target_recog->x_op_alt[icode] = op_alt;
2467 return op_alt;
2468 }
2469
2470 /* After calling extract_insn, you can use this function to extract some
2471 information from the constraint strings into a more usable form.
2472 The collected data is stored in recog_op_alt. */
2473
2474 void
2475 preprocess_constraints (rtx_insn *insn)
2476 {
2477 int icode = INSN_CODE (insn);
2478 if (icode >= 0)
2479 recog_op_alt = preprocess_insn_constraints (icode);
2480 else
2481 {
2482 int n_operands = recog_data.n_operands;
2483 int n_alternatives = recog_data.n_alternatives;
2484 int n_entries = n_operands * n_alternatives;
2485 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2486 preprocess_constraints (n_operands, n_alternatives,
2487 recog_data.constraints, asm_op_alt);
2488 recog_op_alt = asm_op_alt;
2489 }
2490 }
2491
2492 /* Check the operands of an insn against the insn's operand constraints
2493 and return 1 if they match any of the alternatives in ALTERNATIVES.
2494
2495 The information about the insn's operands, constraints, operand modes
2496 etc. is obtained from the global variables set up by extract_insn.
2497
2498 WHICH_ALTERNATIVE is set to a number which indicates which
2499 alternative of constraints was matched: 0 for the first alternative,
2500 1 for the next, etc.
2501
2502 In addition, when two operands are required to match
2503 and it happens that the output operand is (reg) while the
2504 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2505 make the output operand look like the input.
2506 This is because the output operand is the one the template will print.
2507
2508 This is used in final, just before printing the assembler code and by
2509 the routines that determine an insn's attribute.
2510
2511 If STRICT is a positive nonzero value, it means that we have been
2512 called after reload has been completed. In that case, we must
2513 do all checks strictly. If it is zero, it means that we have been called
2514 before reload has completed. In that case, we first try to see if we can
2515 find an alternative that matches strictly. If not, we try again, this
2516 time assuming that reload will fix up the insn. This provides a "best
2517 guess" for the alternative and is used to compute attributes of insns prior
2518 to reload. A negative value of STRICT is used for this internal call. */
2519
2520 struct funny_match
2521 {
2522 int this_op, other;
2523 };
2524
2525 int
2526 constrain_operands (int strict, alternative_mask alternatives)
2527 {
2528 const char *constraints[MAX_RECOG_OPERANDS];
2529 int matching_operands[MAX_RECOG_OPERANDS];
2530 int earlyclobber[MAX_RECOG_OPERANDS];
2531 int c;
2532
2533 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2534 int funny_match_index;
2535
2536 which_alternative = 0;
2537 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2538 return 1;
2539
2540 for (c = 0; c < recog_data.n_operands; c++)
2541 {
2542 constraints[c] = recog_data.constraints[c];
2543 matching_operands[c] = -1;
2544 }
2545
2546 do
2547 {
2548 int seen_earlyclobber_at = -1;
2549 int opno;
2550 int lose = 0;
2551 funny_match_index = 0;
2552
2553 if (!TEST_BIT (alternatives, which_alternative))
2554 {
2555 int i;
2556
2557 for (i = 0; i < recog_data.n_operands; i++)
2558 constraints[i] = skip_alternative (constraints[i]);
2559
2560 which_alternative++;
2561 continue;
2562 }
2563
2564 for (opno = 0; opno < recog_data.n_operands; opno++)
2565 {
2566 rtx op = recog_data.operand[opno];
2567 machine_mode mode = GET_MODE (op);
2568 const char *p = constraints[opno];
2569 int offset = 0;
2570 int win = 0;
2571 int val;
2572 int len;
2573
2574 earlyclobber[opno] = 0;
2575
2576 /* A unary operator may be accepted by the predicate, but it
2577 is irrelevant for matching constraints. */
2578 if (UNARY_P (op))
2579 op = XEXP (op, 0);
2580
2581 if (GET_CODE (op) == SUBREG)
2582 {
2583 if (REG_P (SUBREG_REG (op))
2584 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2585 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2586 GET_MODE (SUBREG_REG (op)),
2587 SUBREG_BYTE (op),
2588 GET_MODE (op));
2589 op = SUBREG_REG (op);
2590 }
2591
2592 /* An empty constraint or empty alternative
2593 allows anything which matched the pattern. */
2594 if (*p == 0 || *p == ',')
2595 win = 1;
2596
2597 do
2598 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2599 {
2600 case '\0':
2601 len = 0;
2602 break;
2603 case ',':
2604 c = '\0';
2605 break;
2606
2607 case '#':
2608 /* Ignore rest of this alternative as far as
2609 constraint checking is concerned. */
2610 do
2611 p++;
2612 while (*p && *p != ',');
2613 len = 0;
2614 break;
2615
2616 case '&':
2617 earlyclobber[opno] = 1;
2618 if (seen_earlyclobber_at < 0)
2619 seen_earlyclobber_at = opno;
2620 break;
2621
2622 case '0': case '1': case '2': case '3': case '4':
2623 case '5': case '6': case '7': case '8': case '9':
2624 {
2625 /* This operand must be the same as a previous one.
2626 This kind of constraint is used for instructions such
2627 as add when they take only two operands.
2628
2629 Note that the lower-numbered operand is passed first.
2630
2631 If we are not testing strictly, assume that this
2632 constraint will be satisfied. */
2633
2634 char *end;
2635 int match;
2636
2637 match = strtoul (p, &end, 10);
2638 p = end;
2639
2640 if (strict < 0)
2641 val = 1;
2642 else
2643 {
2644 rtx op1 = recog_data.operand[match];
2645 rtx op2 = recog_data.operand[opno];
2646
2647 /* A unary operator may be accepted by the predicate,
2648 but it is irrelevant for matching constraints. */
2649 if (UNARY_P (op1))
2650 op1 = XEXP (op1, 0);
2651 if (UNARY_P (op2))
2652 op2 = XEXP (op2, 0);
2653
2654 val = operands_match_p (op1, op2);
2655 }
2656
2657 matching_operands[opno] = match;
2658 matching_operands[match] = opno;
2659
2660 if (val != 0)
2661 win = 1;
2662
2663 /* If output is *x and input is *--x, arrange later
2664 to change the output to *--x as well, since the
2665 output op is the one that will be printed. */
2666 if (val == 2 && strict > 0)
2667 {
2668 funny_match[funny_match_index].this_op = opno;
2669 funny_match[funny_match_index++].other = match;
2670 }
2671 }
2672 len = 0;
2673 break;
2674
2675 case 'p':
2676 /* p is used for address_operands. When we are called by
2677 gen_reload, no one will have checked that the address is
2678 strictly valid, i.e., that all pseudos requiring hard regs
2679 have gotten them. */
2680 if (strict <= 0
2681 || (strict_memory_address_p (recog_data.operand_mode[opno],
2682 op)))
2683 win = 1;
2684 break;
2685
2686 /* No need to check general_operand again;
2687 it was done in insn-recog.c. Well, except that reload
2688 doesn't check the validity of its replacements, but
2689 that should only matter when there's a bug. */
2690 case 'g':
2691 /* Anything goes unless it is a REG and really has a hard reg
2692 but the hard reg is not in the class GENERAL_REGS. */
2693 if (REG_P (op))
2694 {
2695 if (strict < 0
2696 || GENERAL_REGS == ALL_REGS
2697 || (reload_in_progress
2698 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2699 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2700 win = 1;
2701 }
2702 else if (strict < 0 || general_operand (op, mode))
2703 win = 1;
2704 break;
2705
2706 default:
2707 {
2708 enum constraint_num cn = lookup_constraint (p);
2709 enum reg_class cl = reg_class_for_constraint (cn);
2710 if (cl != NO_REGS)
2711 {
2712 if (strict < 0
2713 || (strict == 0
2714 && REG_P (op)
2715 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2716 || (strict == 0 && GET_CODE (op) == SCRATCH)
2717 || (REG_P (op)
2718 && reg_fits_class_p (op, cl, offset, mode)))
2719 win = 1;
2720 }
2721
2722 else if (constraint_satisfied_p (op, cn))
2723 win = 1;
2724
2725 else if (insn_extra_memory_constraint (cn)
2726 /* Every memory operand can be reloaded to fit. */
2727 && ((strict < 0 && MEM_P (op))
2728 /* Before reload, accept what reload can turn
2729 into a mem. */
2730 || (strict < 0 && CONSTANT_P (op))
2731 /* Before reload, accept a pseudo,
2732 since LRA can turn it into a mem. */
2733 || (strict < 0 && targetm.lra_p () && REG_P (op)
2734 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2735 /* During reload, accept a pseudo */
2736 || (reload_in_progress && REG_P (op)
2737 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2738 win = 1;
2739 else if (insn_extra_address_constraint (cn)
2740 /* Every address operand can be reloaded to fit. */
2741 && strict < 0)
2742 win = 1;
2743 /* Cater to architectures like IA-64 that define extra memory
2744 constraints without using define_memory_constraint. */
2745 else if (reload_in_progress
2746 && REG_P (op)
2747 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2748 && reg_renumber[REGNO (op)] < 0
2749 && reg_equiv_mem (REGNO (op)) != 0
2750 && constraint_satisfied_p
2751 (reg_equiv_mem (REGNO (op)), cn))
2752 win = 1;
2753 break;
2754 }
2755 }
2756 while (p += len, c);
2757
2758 constraints[opno] = p;
2759 /* If this operand did not win somehow,
2760 this alternative loses. */
2761 if (! win)
2762 lose = 1;
2763 }
2764 /* This alternative won; the operands are ok.
2765 Change whichever operands this alternative says to change. */
2766 if (! lose)
2767 {
2768 int opno, eopno;
2769
2770 /* See if any earlyclobber operand conflicts with some other
2771 operand. */
2772
2773 if (strict > 0 && seen_earlyclobber_at >= 0)
2774 for (eopno = seen_earlyclobber_at;
2775 eopno < recog_data.n_operands;
2776 eopno++)
2777 /* Ignore earlyclobber operands now in memory,
2778 because we would often report failure when we have
2779 two memory operands, one of which was formerly a REG. */
2780 if (earlyclobber[eopno]
2781 && REG_P (recog_data.operand[eopno]))
2782 for (opno = 0; opno < recog_data.n_operands; opno++)
2783 if ((MEM_P (recog_data.operand[opno])
2784 || recog_data.operand_type[opno] != OP_OUT)
2785 && opno != eopno
2786 /* Ignore things like match_operator operands. */
2787 && *recog_data.constraints[opno] != 0
2788 && ! (matching_operands[opno] == eopno
2789 && operands_match_p (recog_data.operand[opno],
2790 recog_data.operand[eopno]))
2791 && ! safe_from_earlyclobber (recog_data.operand[opno],
2792 recog_data.operand[eopno]))
2793 lose = 1;
2794
2795 if (! lose)
2796 {
2797 while (--funny_match_index >= 0)
2798 {
2799 recog_data.operand[funny_match[funny_match_index].other]
2800 = recog_data.operand[funny_match[funny_match_index].this_op];
2801 }
2802
2803 /* For operands without < or > constraints reject side-effects. */
2804 if (AUTO_INC_DEC && recog_data.is_asm)
2805 {
2806 for (opno = 0; opno < recog_data.n_operands; opno++)
2807 if (MEM_P (recog_data.operand[opno]))
2808 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2809 {
2810 case PRE_INC:
2811 case POST_INC:
2812 case PRE_DEC:
2813 case POST_DEC:
2814 case PRE_MODIFY:
2815 case POST_MODIFY:
2816 if (strchr (recog_data.constraints[opno], '<') == NULL
2817 && strchr (recog_data.constraints[opno], '>')
2818 == NULL)
2819 return 0;
2820 break;
2821 default:
2822 break;
2823 }
2824 }
2825
2826 return 1;
2827 }
2828 }
2829
2830 which_alternative++;
2831 }
2832 while (which_alternative < recog_data.n_alternatives);
2833
2834 which_alternative = -1;
2835 /* If we are about to reject this, but we are not to test strictly,
2836 try a very loose test. Only return failure if it fails also. */
2837 if (strict == 0)
2838 return constrain_operands (-1, alternatives);
2839 else
2840 return 0;
2841 }
2842
2843 /* Return true iff OPERAND (assumed to be a REG rtx)
2844 is a hard reg in class CLASS when its regno is offset by OFFSET
2845 and changed to mode MODE.
2846 If REG occupies multiple hard regs, all of them must be in CLASS. */
2847
2848 bool
2849 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2850 machine_mode mode)
2851 {
2852 unsigned int regno = REGNO (operand);
2853
2854 if (cl == NO_REGS)
2855 return false;
2856
2857 /* Regno must not be a pseudo register. Offset may be negative. */
2858 return (HARD_REGISTER_NUM_P (regno)
2859 && HARD_REGISTER_NUM_P (regno + offset)
2860 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2861 regno + offset));
2862 }
2863 \f
2864 /* Split single instruction. Helper function for split_all_insns and
2865 split_all_insns_noflow. Return last insn in the sequence if successful,
2866 or NULL if unsuccessful. */
2867
2868 static rtx_insn *
2869 split_insn (rtx_insn *insn)
2870 {
2871 /* Split insns here to get max fine-grain parallelism. */
2872 rtx_insn *first = PREV_INSN (insn);
2873 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2874 rtx insn_set, last_set, note;
2875
2876 if (last == insn)
2877 return NULL;
2878
2879 /* If the original instruction was a single set that was known to be
2880 equivalent to a constant, see if we can say the same about the last
2881 instruction in the split sequence. The two instructions must set
2882 the same destination. */
2883 insn_set = single_set (insn);
2884 if (insn_set)
2885 {
2886 last_set = single_set (last);
2887 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2888 {
2889 note = find_reg_equal_equiv_note (insn);
2890 if (note && CONSTANT_P (XEXP (note, 0)))
2891 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2892 else if (CONSTANT_P (SET_SRC (insn_set)))
2893 set_unique_reg_note (last, REG_EQUAL,
2894 copy_rtx (SET_SRC (insn_set)));
2895 }
2896 }
2897
2898 /* try_split returns the NOTE that INSN became. */
2899 SET_INSN_DELETED (insn);
2900
2901 /* ??? Coddle to md files that generate subregs in post-reload
2902 splitters instead of computing the proper hard register. */
2903 if (reload_completed && first != last)
2904 {
2905 first = NEXT_INSN (first);
2906 for (;;)
2907 {
2908 if (INSN_P (first))
2909 cleanup_subreg_operands (first);
2910 if (first == last)
2911 break;
2912 first = NEXT_INSN (first);
2913 }
2914 }
2915
2916 return last;
2917 }
2918
2919 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2920
2921 void
2922 split_all_insns (void)
2923 {
2924 sbitmap blocks;
2925 bool changed;
2926 basic_block bb;
2927
2928 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2929 bitmap_clear (blocks);
2930 changed = false;
2931
2932 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2933 {
2934 rtx_insn *insn, *next;
2935 bool finish = false;
2936
2937 rtl_profile_for_bb (bb);
2938 for (insn = BB_HEAD (bb); !finish ; insn = next)
2939 {
2940 /* Can't use `next_real_insn' because that might go across
2941 CODE_LABELS and short-out basic blocks. */
2942 next = NEXT_INSN (insn);
2943 finish = (insn == BB_END (bb));
2944 if (INSN_P (insn))
2945 {
2946 rtx set = single_set (insn);
2947
2948 /* Don't split no-op move insns. These should silently
2949 disappear later in final. Splitting such insns would
2950 break the code that handles LIBCALL blocks. */
2951 if (set && set_noop_p (set))
2952 {
2953 /* Nops get in the way while scheduling, so delete them
2954 now if register allocation has already been done. It
2955 is too risky to try to do this before register
2956 allocation, and there are unlikely to be very many
2957 nops then anyways. */
2958 if (reload_completed)
2959 delete_insn_and_edges (insn);
2960 }
2961 else
2962 {
2963 if (split_insn (insn))
2964 {
2965 bitmap_set_bit (blocks, bb->index);
2966 changed = true;
2967 }
2968 }
2969 }
2970 }
2971 }
2972
2973 default_rtl_profile ();
2974 if (changed)
2975 find_many_sub_basic_blocks (blocks);
2976
2977 checking_verify_flow_info ();
2978
2979 sbitmap_free (blocks);
2980 }
2981
2982 /* Same as split_all_insns, but do not expect CFG to be available.
2983 Used by machine dependent reorg passes. */
2984
2985 unsigned int
2986 split_all_insns_noflow (void)
2987 {
2988 rtx_insn *next, *insn;
2989
2990 for (insn = get_insns (); insn; insn = next)
2991 {
2992 next = NEXT_INSN (insn);
2993 if (INSN_P (insn))
2994 {
2995 /* Don't split no-op move insns. These should silently
2996 disappear later in final. Splitting such insns would
2997 break the code that handles LIBCALL blocks. */
2998 rtx set = single_set (insn);
2999 if (set && set_noop_p (set))
3000 {
3001 /* Nops get in the way while scheduling, so delete them
3002 now if register allocation has already been done. It
3003 is too risky to try to do this before register
3004 allocation, and there are unlikely to be very many
3005 nops then anyways.
3006
3007 ??? Should we use delete_insn when the CFG isn't valid? */
3008 if (reload_completed)
3009 delete_insn_and_edges (insn);
3010 }
3011 else
3012 split_insn (insn);
3013 }
3014 }
3015 return 0;
3016 }
3017 \f
3018 struct peep2_insn_data
3019 {
3020 rtx_insn *insn;
3021 regset live_before;
3022 };
3023
3024 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3025 static int peep2_current;
3026
3027 static bool peep2_do_rebuild_jump_labels;
3028 static bool peep2_do_cleanup_cfg;
3029
3030 /* The number of instructions available to match a peep2. */
3031 int peep2_current_count;
3032
3033 /* A marker indicating the last insn of the block. The live_before regset
3034 for this element is correct, indicating DF_LIVE_OUT for the block. */
3035 #define PEEP2_EOB invalid_insn_rtx
3036
3037 /* Wrap N to fit into the peep2_insn_data buffer. */
3038
3039 static int
3040 peep2_buf_position (int n)
3041 {
3042 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3043 n -= MAX_INSNS_PER_PEEP2 + 1;
3044 return n;
3045 }
3046
3047 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3048 does not exist. Used by the recognizer to find the next insn to match
3049 in a multi-insn pattern. */
3050
3051 rtx_insn *
3052 peep2_next_insn (int n)
3053 {
3054 gcc_assert (n <= peep2_current_count);
3055
3056 n = peep2_buf_position (peep2_current + n);
3057
3058 return peep2_insn_data[n].insn;
3059 }
3060
3061 /* Return true if REGNO is dead before the Nth non-note insn
3062 after `current'. */
3063
3064 int
3065 peep2_regno_dead_p (int ofs, int regno)
3066 {
3067 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3068
3069 ofs = peep2_buf_position (peep2_current + ofs);
3070
3071 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3072
3073 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3074 }
3075
3076 /* Similarly for a REG. */
3077
3078 int
3079 peep2_reg_dead_p (int ofs, rtx reg)
3080 {
3081 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3082
3083 ofs = peep2_buf_position (peep2_current + ofs);
3084
3085 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3086
3087 unsigned int end_regno = END_REGNO (reg);
3088 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3089 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3090 return 0;
3091 return 1;
3092 }
3093
3094 /* Regno offset to be used in the register search. */
3095 static int search_ofs;
3096
3097 /* Try to find a hard register of mode MODE, matching the register class in
3098 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3099 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3100 in which case the only condition is that the register must be available
3101 before CURRENT_INSN.
3102 Registers that already have bits set in REG_SET will not be considered.
3103
3104 If an appropriate register is available, it will be returned and the
3105 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3106 returned. */
3107
3108 rtx
3109 peep2_find_free_register (int from, int to, const char *class_str,
3110 machine_mode mode, HARD_REG_SET *reg_set)
3111 {
3112 enum reg_class cl;
3113 HARD_REG_SET live;
3114 df_ref def;
3115 int i;
3116
3117 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3118 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3119
3120 from = peep2_buf_position (peep2_current + from);
3121 to = peep2_buf_position (peep2_current + to);
3122
3123 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3124 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3125
3126 while (from != to)
3127 {
3128 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3129
3130 /* Don't use registers set or clobbered by the insn. */
3131 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3132 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3133
3134 from = peep2_buf_position (from + 1);
3135 }
3136
3137 cl = reg_class_for_constraint (lookup_constraint (class_str));
3138
3139 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3140 {
3141 int raw_regno, regno, success, j;
3142
3143 /* Distribute the free registers as much as possible. */
3144 raw_regno = search_ofs + i;
3145 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3146 raw_regno -= FIRST_PSEUDO_REGISTER;
3147 #ifdef REG_ALLOC_ORDER
3148 regno = reg_alloc_order[raw_regno];
3149 #else
3150 regno = raw_regno;
3151 #endif
3152
3153 /* Can it support the mode we need? */
3154 if (! HARD_REGNO_MODE_OK (regno, mode))
3155 continue;
3156
3157 success = 1;
3158 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3159 {
3160 /* Don't allocate fixed registers. */
3161 if (fixed_regs[regno + j])
3162 {
3163 success = 0;
3164 break;
3165 }
3166 /* Don't allocate global registers. */
3167 if (global_regs[regno + j])
3168 {
3169 success = 0;
3170 break;
3171 }
3172 /* Make sure the register is of the right class. */
3173 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3174 {
3175 success = 0;
3176 break;
3177 }
3178 /* And that we don't create an extra save/restore. */
3179 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3180 {
3181 success = 0;
3182 break;
3183 }
3184
3185 if (! targetm.hard_regno_scratch_ok (regno + j))
3186 {
3187 success = 0;
3188 break;
3189 }
3190
3191 /* And we don't clobber traceback for noreturn functions. */
3192 if ((regno + j == FRAME_POINTER_REGNUM
3193 || regno + j == HARD_FRAME_POINTER_REGNUM)
3194 && (! reload_completed || frame_pointer_needed))
3195 {
3196 success = 0;
3197 break;
3198 }
3199
3200 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3201 || TEST_HARD_REG_BIT (live, regno + j))
3202 {
3203 success = 0;
3204 break;
3205 }
3206 }
3207
3208 if (success)
3209 {
3210 add_to_hard_reg_set (reg_set, mode, regno);
3211
3212 /* Start the next search with the next register. */
3213 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3214 raw_regno = 0;
3215 search_ofs = raw_regno;
3216
3217 return gen_rtx_REG (mode, regno);
3218 }
3219 }
3220
3221 search_ofs = 0;
3222 return NULL_RTX;
3223 }
3224
3225 /* Forget all currently tracked instructions, only remember current
3226 LIVE regset. */
3227
3228 static void
3229 peep2_reinit_state (regset live)
3230 {
3231 int i;
3232
3233 /* Indicate that all slots except the last holds invalid data. */
3234 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3235 peep2_insn_data[i].insn = NULL;
3236 peep2_current_count = 0;
3237
3238 /* Indicate that the last slot contains live_after data. */
3239 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3240 peep2_current = MAX_INSNS_PER_PEEP2;
3241
3242 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3243 }
3244
3245 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3246 starting at INSN. Perform the replacement, removing the old insns and
3247 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3248 if the replacement is rejected. */
3249
3250 static rtx_insn *
3251 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3252 {
3253 int i;
3254 rtx_insn *last, *before_try, *x;
3255 rtx eh_note, as_note;
3256 rtx_insn *old_insn;
3257 rtx_insn *new_insn;
3258 bool was_call = false;
3259
3260 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3261 match more than one insn, or to be split into more than one insn. */
3262 old_insn = peep2_insn_data[peep2_current].insn;
3263 if (RTX_FRAME_RELATED_P (old_insn))
3264 {
3265 bool any_note = false;
3266 rtx note;
3267
3268 if (match_len != 0)
3269 return NULL;
3270
3271 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3272 may be in the stream for the purpose of register allocation. */
3273 if (active_insn_p (attempt))
3274 new_insn = attempt;
3275 else
3276 new_insn = next_active_insn (attempt);
3277 if (next_active_insn (new_insn))
3278 return NULL;
3279
3280 /* We have a 1-1 replacement. Copy over any frame-related info. */
3281 RTX_FRAME_RELATED_P (new_insn) = 1;
3282
3283 /* Allow the backend to fill in a note during the split. */
3284 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3285 switch (REG_NOTE_KIND (note))
3286 {
3287 case REG_FRAME_RELATED_EXPR:
3288 case REG_CFA_DEF_CFA:
3289 case REG_CFA_ADJUST_CFA:
3290 case REG_CFA_OFFSET:
3291 case REG_CFA_REGISTER:
3292 case REG_CFA_EXPRESSION:
3293 case REG_CFA_RESTORE:
3294 case REG_CFA_SET_VDRAP:
3295 any_note = true;
3296 break;
3297 default:
3298 break;
3299 }
3300
3301 /* If the backend didn't supply a note, copy one over. */
3302 if (!any_note)
3303 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3304 switch (REG_NOTE_KIND (note))
3305 {
3306 case REG_FRAME_RELATED_EXPR:
3307 case REG_CFA_DEF_CFA:
3308 case REG_CFA_ADJUST_CFA:
3309 case REG_CFA_OFFSET:
3310 case REG_CFA_REGISTER:
3311 case REG_CFA_EXPRESSION:
3312 case REG_CFA_RESTORE:
3313 case REG_CFA_SET_VDRAP:
3314 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3315 any_note = true;
3316 break;
3317 default:
3318 break;
3319 }
3320
3321 /* If there still isn't a note, make sure the unwind info sees the
3322 same expression as before the split. */
3323 if (!any_note)
3324 {
3325 rtx old_set, new_set;
3326
3327 /* The old insn had better have been simple, or annotated. */
3328 old_set = single_set (old_insn);
3329 gcc_assert (old_set != NULL);
3330
3331 new_set = single_set (new_insn);
3332 if (!new_set || !rtx_equal_p (new_set, old_set))
3333 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3334 }
3335
3336 /* Copy prologue/epilogue status. This is required in order to keep
3337 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3338 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3339 }
3340
3341 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3342 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3343 cfg-related call notes. */
3344 for (i = 0; i <= match_len; ++i)
3345 {
3346 int j;
3347 rtx note;
3348
3349 j = peep2_buf_position (peep2_current + i);
3350 old_insn = peep2_insn_data[j].insn;
3351 if (!CALL_P (old_insn))
3352 continue;
3353 was_call = true;
3354
3355 new_insn = attempt;
3356 while (new_insn != NULL_RTX)
3357 {
3358 if (CALL_P (new_insn))
3359 break;
3360 new_insn = NEXT_INSN (new_insn);
3361 }
3362
3363 gcc_assert (new_insn != NULL_RTX);
3364
3365 CALL_INSN_FUNCTION_USAGE (new_insn)
3366 = CALL_INSN_FUNCTION_USAGE (old_insn);
3367 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3368
3369 for (note = REG_NOTES (old_insn);
3370 note;
3371 note = XEXP (note, 1))
3372 switch (REG_NOTE_KIND (note))
3373 {
3374 case REG_NORETURN:
3375 case REG_SETJMP:
3376 case REG_TM:
3377 add_reg_note (new_insn, REG_NOTE_KIND (note),
3378 XEXP (note, 0));
3379 break;
3380 default:
3381 /* Discard all other reg notes. */
3382 break;
3383 }
3384
3385 /* Croak if there is another call in the sequence. */
3386 while (++i <= match_len)
3387 {
3388 j = peep2_buf_position (peep2_current + i);
3389 old_insn = peep2_insn_data[j].insn;
3390 gcc_assert (!CALL_P (old_insn));
3391 }
3392 break;
3393 }
3394
3395 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3396 move those notes over to the new sequence. */
3397 as_note = NULL;
3398 for (i = match_len; i >= 0; --i)
3399 {
3400 int j = peep2_buf_position (peep2_current + i);
3401 old_insn = peep2_insn_data[j].insn;
3402
3403 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3404 if (as_note)
3405 break;
3406 }
3407
3408 i = peep2_buf_position (peep2_current + match_len);
3409 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3410
3411 /* Replace the old sequence with the new. */
3412 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3413 last = emit_insn_after_setloc (attempt,
3414 peep2_insn_data[i].insn,
3415 INSN_LOCATION (peepinsn));
3416 before_try = PREV_INSN (insn);
3417 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3418
3419 /* Re-insert the EH_REGION notes. */
3420 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3421 {
3422 edge eh_edge;
3423 edge_iterator ei;
3424
3425 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3426 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3427 break;
3428
3429 if (eh_note)
3430 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3431
3432 if (eh_edge)
3433 for (x = last; x != before_try; x = PREV_INSN (x))
3434 if (x != BB_END (bb)
3435 && (can_throw_internal (x)
3436 || can_nonlocal_goto (x)))
3437 {
3438 edge nfte, nehe;
3439 int flags;
3440
3441 nfte = split_block (bb, x);
3442 flags = (eh_edge->flags
3443 & (EDGE_EH | EDGE_ABNORMAL));
3444 if (CALL_P (x))
3445 flags |= EDGE_ABNORMAL_CALL;
3446 nehe = make_edge (nfte->src, eh_edge->dest,
3447 flags);
3448
3449 nehe->probability = eh_edge->probability;
3450 nfte->probability
3451 = REG_BR_PROB_BASE - nehe->probability;
3452
3453 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3454 bb = nfte->src;
3455 eh_edge = nehe;
3456 }
3457
3458 /* Converting possibly trapping insn to non-trapping is
3459 possible. Zap dummy outgoing edges. */
3460 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3461 }
3462
3463 /* Re-insert the ARGS_SIZE notes. */
3464 if (as_note)
3465 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3466
3467 /* If we generated a jump instruction, it won't have
3468 JUMP_LABEL set. Recompute after we're done. */
3469 for (x = last; x != before_try; x = PREV_INSN (x))
3470 if (JUMP_P (x))
3471 {
3472 peep2_do_rebuild_jump_labels = true;
3473 break;
3474 }
3475
3476 return last;
3477 }
3478
3479 /* After performing a replacement in basic block BB, fix up the life
3480 information in our buffer. LAST is the last of the insns that we
3481 emitted as a replacement. PREV is the insn before the start of
3482 the replacement. MATCH_LEN is the number of instructions that were
3483 matched, and which now need to be replaced in the buffer. */
3484
3485 static void
3486 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3487 rtx_insn *prev)
3488 {
3489 int i = peep2_buf_position (peep2_current + match_len + 1);
3490 rtx_insn *x;
3491 regset_head live;
3492
3493 INIT_REG_SET (&live);
3494 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3495
3496 gcc_assert (peep2_current_count >= match_len + 1);
3497 peep2_current_count -= match_len + 1;
3498
3499 x = last;
3500 do
3501 {
3502 if (INSN_P (x))
3503 {
3504 df_insn_rescan (x);
3505 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3506 {
3507 peep2_current_count++;
3508 if (--i < 0)
3509 i = MAX_INSNS_PER_PEEP2;
3510 peep2_insn_data[i].insn = x;
3511 df_simulate_one_insn_backwards (bb, x, &live);
3512 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3513 }
3514 }
3515 x = PREV_INSN (x);
3516 }
3517 while (x != prev);
3518 CLEAR_REG_SET (&live);
3519
3520 peep2_current = i;
3521 }
3522
3523 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3524 Return true if we added it, false otherwise. The caller will try to match
3525 peepholes against the buffer if we return false; otherwise it will try to
3526 add more instructions to the buffer. */
3527
3528 static bool
3529 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3530 {
3531 int pos;
3532
3533 /* Once we have filled the maximum number of insns the buffer can hold,
3534 allow the caller to match the insns against peepholes. We wait until
3535 the buffer is full in case the target has similar peepholes of different
3536 length; we always want to match the longest if possible. */
3537 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3538 return false;
3539
3540 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3541 any other pattern, lest it change the semantics of the frame info. */
3542 if (RTX_FRAME_RELATED_P (insn))
3543 {
3544 /* Let the buffer drain first. */
3545 if (peep2_current_count > 0)
3546 return false;
3547 /* Now the insn will be the only thing in the buffer. */
3548 }
3549
3550 pos = peep2_buf_position (peep2_current + peep2_current_count);
3551 peep2_insn_data[pos].insn = insn;
3552 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3553 peep2_current_count++;
3554
3555 df_simulate_one_insn_forwards (bb, insn, live);
3556 return true;
3557 }
3558
3559 /* Perform the peephole2 optimization pass. */
3560
3561 static void
3562 peephole2_optimize (void)
3563 {
3564 rtx_insn *insn;
3565 bitmap live;
3566 int i;
3567 basic_block bb;
3568
3569 peep2_do_cleanup_cfg = false;
3570 peep2_do_rebuild_jump_labels = false;
3571
3572 df_set_flags (DF_LR_RUN_DCE);
3573 df_note_add_problem ();
3574 df_analyze ();
3575
3576 /* Initialize the regsets we're going to use. */
3577 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3578 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3579 search_ofs = 0;
3580 live = BITMAP_ALLOC (&reg_obstack);
3581
3582 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3583 {
3584 bool past_end = false;
3585 int pos;
3586
3587 rtl_profile_for_bb (bb);
3588
3589 /* Start up propagation. */
3590 bitmap_copy (live, DF_LR_IN (bb));
3591 df_simulate_initialize_forwards (bb, live);
3592 peep2_reinit_state (live);
3593
3594 insn = BB_HEAD (bb);
3595 for (;;)
3596 {
3597 rtx_insn *attempt, *head;
3598 int match_len;
3599
3600 if (!past_end && !NONDEBUG_INSN_P (insn))
3601 {
3602 next_insn:
3603 insn = NEXT_INSN (insn);
3604 if (insn == NEXT_INSN (BB_END (bb)))
3605 past_end = true;
3606 continue;
3607 }
3608 if (!past_end && peep2_fill_buffer (bb, insn, live))
3609 goto next_insn;
3610
3611 /* If we did not fill an empty buffer, it signals the end of the
3612 block. */
3613 if (peep2_current_count == 0)
3614 break;
3615
3616 /* The buffer filled to the current maximum, so try to match. */
3617
3618 pos = peep2_buf_position (peep2_current + peep2_current_count);
3619 peep2_insn_data[pos].insn = PEEP2_EOB;
3620 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3621
3622 /* Match the peephole. */
3623 head = peep2_insn_data[peep2_current].insn;
3624 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3625 if (attempt != NULL)
3626 {
3627 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3628 if (last)
3629 {
3630 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3631 continue;
3632 }
3633 }
3634
3635 /* No match: advance the buffer by one insn. */
3636 peep2_current = peep2_buf_position (peep2_current + 1);
3637 peep2_current_count--;
3638 }
3639 }
3640
3641 default_rtl_profile ();
3642 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3643 BITMAP_FREE (peep2_insn_data[i].live_before);
3644 BITMAP_FREE (live);
3645 if (peep2_do_rebuild_jump_labels)
3646 rebuild_jump_labels (get_insns ());
3647 if (peep2_do_cleanup_cfg)
3648 cleanup_cfg (CLEANUP_CFG_CHANGED);
3649 }
3650
3651 /* Common predicates for use with define_bypass. */
3652
3653 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3654 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3655 must be either a single_set or a PARALLEL with SETs inside. */
3656
3657 int
3658 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3659 {
3660 rtx out_set, in_set;
3661 rtx out_pat, in_pat;
3662 rtx out_exp, in_exp;
3663 int i, j;
3664
3665 in_set = single_set (in_insn);
3666 if (in_set)
3667 {
3668 if (!MEM_P (SET_DEST (in_set)))
3669 return false;
3670
3671 out_set = single_set (out_insn);
3672 if (out_set)
3673 {
3674 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3675 return false;
3676 }
3677 else
3678 {
3679 out_pat = PATTERN (out_insn);
3680
3681 if (GET_CODE (out_pat) != PARALLEL)
3682 return false;
3683
3684 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3685 {
3686 out_exp = XVECEXP (out_pat, 0, i);
3687
3688 if (GET_CODE (out_exp) == CLOBBER)
3689 continue;
3690
3691 gcc_assert (GET_CODE (out_exp) == SET);
3692
3693 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3694 return false;
3695 }
3696 }
3697 }
3698 else
3699 {
3700 in_pat = PATTERN (in_insn);
3701 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3702
3703 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3704 {
3705 in_exp = XVECEXP (in_pat, 0, i);
3706
3707 if (GET_CODE (in_exp) == CLOBBER)
3708 continue;
3709
3710 gcc_assert (GET_CODE (in_exp) == SET);
3711
3712 if (!MEM_P (SET_DEST (in_exp)))
3713 return false;
3714
3715 out_set = single_set (out_insn);
3716 if (out_set)
3717 {
3718 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3719 return false;
3720 }
3721 else
3722 {
3723 out_pat = PATTERN (out_insn);
3724 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3725
3726 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3727 {
3728 out_exp = XVECEXP (out_pat, 0, j);
3729
3730 if (GET_CODE (out_exp) == CLOBBER)
3731 continue;
3732
3733 gcc_assert (GET_CODE (out_exp) == SET);
3734
3735 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3736 return false;
3737 }
3738 }
3739 }
3740 }
3741
3742 return true;
3743 }
3744
3745 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3746 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3747 or multiple set; IN_INSN should be single_set for truth, but for convenience
3748 of insn categorization may be any JUMP or CALL insn. */
3749
3750 int
3751 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3752 {
3753 rtx out_set, in_set;
3754
3755 in_set = single_set (in_insn);
3756 if (! in_set)
3757 {
3758 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3759 return false;
3760 }
3761
3762 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3763 return false;
3764 in_set = SET_SRC (in_set);
3765
3766 out_set = single_set (out_insn);
3767 if (out_set)
3768 {
3769 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3770 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3771 return false;
3772 }
3773 else
3774 {
3775 rtx out_pat;
3776 int i;
3777
3778 out_pat = PATTERN (out_insn);
3779 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3780
3781 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3782 {
3783 rtx exp = XVECEXP (out_pat, 0, i);
3784
3785 if (GET_CODE (exp) == CLOBBER)
3786 continue;
3787
3788 gcc_assert (GET_CODE (exp) == SET);
3789
3790 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3791 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3792 return false;
3793 }
3794 }
3795
3796 return true;
3797 }
3798 \f
3799 static unsigned int
3800 rest_of_handle_peephole2 (void)
3801 {
3802 if (HAVE_peephole2)
3803 peephole2_optimize ();
3804
3805 return 0;
3806 }
3807
3808 namespace {
3809
3810 const pass_data pass_data_peephole2 =
3811 {
3812 RTL_PASS, /* type */
3813 "peephole2", /* name */
3814 OPTGROUP_NONE, /* optinfo_flags */
3815 TV_PEEPHOLE2, /* tv_id */
3816 0, /* properties_required */
3817 0, /* properties_provided */
3818 0, /* properties_destroyed */
3819 0, /* todo_flags_start */
3820 TODO_df_finish, /* todo_flags_finish */
3821 };
3822
3823 class pass_peephole2 : public rtl_opt_pass
3824 {
3825 public:
3826 pass_peephole2 (gcc::context *ctxt)
3827 : rtl_opt_pass (pass_data_peephole2, ctxt)
3828 {}
3829
3830 /* opt_pass methods: */
3831 /* The epiphany backend creates a second instance of this pass, so we need
3832 a clone method. */
3833 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3834 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3835 virtual unsigned int execute (function *)
3836 {
3837 return rest_of_handle_peephole2 ();
3838 }
3839
3840 }; // class pass_peephole2
3841
3842 } // anon namespace
3843
3844 rtl_opt_pass *
3845 make_pass_peephole2 (gcc::context *ctxt)
3846 {
3847 return new pass_peephole2 (ctxt);
3848 }
3849
3850 namespace {
3851
3852 const pass_data pass_data_split_all_insns =
3853 {
3854 RTL_PASS, /* type */
3855 "split1", /* name */
3856 OPTGROUP_NONE, /* optinfo_flags */
3857 TV_NONE, /* tv_id */
3858 0, /* properties_required */
3859 0, /* properties_provided */
3860 0, /* properties_destroyed */
3861 0, /* todo_flags_start */
3862 0, /* todo_flags_finish */
3863 };
3864
3865 class pass_split_all_insns : public rtl_opt_pass
3866 {
3867 public:
3868 pass_split_all_insns (gcc::context *ctxt)
3869 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3870 {}
3871
3872 /* opt_pass methods: */
3873 /* The epiphany backend creates a second instance of this pass, so
3874 we need a clone method. */
3875 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3876 virtual unsigned int execute (function *)
3877 {
3878 split_all_insns ();
3879 return 0;
3880 }
3881
3882 }; // class pass_split_all_insns
3883
3884 } // anon namespace
3885
3886 rtl_opt_pass *
3887 make_pass_split_all_insns (gcc::context *ctxt)
3888 {
3889 return new pass_split_all_insns (ctxt);
3890 }
3891
3892 static unsigned int
3893 rest_of_handle_split_after_reload (void)
3894 {
3895 /* If optimizing, then go ahead and split insns now. */
3896 #ifndef STACK_REGS
3897 if (optimize > 0)
3898 #endif
3899 split_all_insns ();
3900 return 0;
3901 }
3902
3903 namespace {
3904
3905 const pass_data pass_data_split_after_reload =
3906 {
3907 RTL_PASS, /* type */
3908 "split2", /* name */
3909 OPTGROUP_NONE, /* optinfo_flags */
3910 TV_NONE, /* tv_id */
3911 0, /* properties_required */
3912 0, /* properties_provided */
3913 0, /* properties_destroyed */
3914 0, /* todo_flags_start */
3915 0, /* todo_flags_finish */
3916 };
3917
3918 class pass_split_after_reload : public rtl_opt_pass
3919 {
3920 public:
3921 pass_split_after_reload (gcc::context *ctxt)
3922 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3923 {}
3924
3925 /* opt_pass methods: */
3926 virtual unsigned int execute (function *)
3927 {
3928 return rest_of_handle_split_after_reload ();
3929 }
3930
3931 }; // class pass_split_after_reload
3932
3933 } // anon namespace
3934
3935 rtl_opt_pass *
3936 make_pass_split_after_reload (gcc::context *ctxt)
3937 {
3938 return new pass_split_after_reload (ctxt);
3939 }
3940
3941 namespace {
3942
3943 const pass_data pass_data_split_before_regstack =
3944 {
3945 RTL_PASS, /* type */
3946 "split3", /* name */
3947 OPTGROUP_NONE, /* optinfo_flags */
3948 TV_NONE, /* tv_id */
3949 0, /* properties_required */
3950 0, /* properties_provided */
3951 0, /* properties_destroyed */
3952 0, /* todo_flags_start */
3953 0, /* todo_flags_finish */
3954 };
3955
3956 class pass_split_before_regstack : public rtl_opt_pass
3957 {
3958 public:
3959 pass_split_before_regstack (gcc::context *ctxt)
3960 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3961 {}
3962
3963 /* opt_pass methods: */
3964 virtual bool gate (function *);
3965 virtual unsigned int execute (function *)
3966 {
3967 split_all_insns ();
3968 return 0;
3969 }
3970
3971 }; // class pass_split_before_regstack
3972
3973 bool
3974 pass_split_before_regstack::gate (function *)
3975 {
3976 #if HAVE_ATTR_length && defined (STACK_REGS)
3977 /* If flow2 creates new instructions which need splitting
3978 and scheduling after reload is not done, they might not be
3979 split until final which doesn't allow splitting
3980 if HAVE_ATTR_length. */
3981 # ifdef INSN_SCHEDULING
3982 return (optimize && !flag_schedule_insns_after_reload);
3983 # else
3984 return (optimize);
3985 # endif
3986 #else
3987 return 0;
3988 #endif
3989 }
3990
3991 } // anon namespace
3992
3993 rtl_opt_pass *
3994 make_pass_split_before_regstack (gcc::context *ctxt)
3995 {
3996 return new pass_split_before_regstack (ctxt);
3997 }
3998
3999 static unsigned int
4000 rest_of_handle_split_before_sched2 (void)
4001 {
4002 #ifdef INSN_SCHEDULING
4003 split_all_insns ();
4004 #endif
4005 return 0;
4006 }
4007
4008 namespace {
4009
4010 const pass_data pass_data_split_before_sched2 =
4011 {
4012 RTL_PASS, /* type */
4013 "split4", /* name */
4014 OPTGROUP_NONE, /* optinfo_flags */
4015 TV_NONE, /* tv_id */
4016 0, /* properties_required */
4017 0, /* properties_provided */
4018 0, /* properties_destroyed */
4019 0, /* todo_flags_start */
4020 0, /* todo_flags_finish */
4021 };
4022
4023 class pass_split_before_sched2 : public rtl_opt_pass
4024 {
4025 public:
4026 pass_split_before_sched2 (gcc::context *ctxt)
4027 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4028 {}
4029
4030 /* opt_pass methods: */
4031 virtual bool gate (function *)
4032 {
4033 #ifdef INSN_SCHEDULING
4034 return optimize > 0 && flag_schedule_insns_after_reload;
4035 #else
4036 return false;
4037 #endif
4038 }
4039
4040 virtual unsigned int execute (function *)
4041 {
4042 return rest_of_handle_split_before_sched2 ();
4043 }
4044
4045 }; // class pass_split_before_sched2
4046
4047 } // anon namespace
4048
4049 rtl_opt_pass *
4050 make_pass_split_before_sched2 (gcc::context *ctxt)
4051 {
4052 return new pass_split_before_sched2 (ctxt);
4053 }
4054
4055 namespace {
4056
4057 const pass_data pass_data_split_for_shorten_branches =
4058 {
4059 RTL_PASS, /* type */
4060 "split5", /* name */
4061 OPTGROUP_NONE, /* optinfo_flags */
4062 TV_NONE, /* tv_id */
4063 0, /* properties_required */
4064 0, /* properties_provided */
4065 0, /* properties_destroyed */
4066 0, /* todo_flags_start */
4067 0, /* todo_flags_finish */
4068 };
4069
4070 class pass_split_for_shorten_branches : public rtl_opt_pass
4071 {
4072 public:
4073 pass_split_for_shorten_branches (gcc::context *ctxt)
4074 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4075 {}
4076
4077 /* opt_pass methods: */
4078 virtual bool gate (function *)
4079 {
4080 /* The placement of the splitting that we do for shorten_branches
4081 depends on whether regstack is used by the target or not. */
4082 #if HAVE_ATTR_length && !defined (STACK_REGS)
4083 return true;
4084 #else
4085 return false;
4086 #endif
4087 }
4088
4089 virtual unsigned int execute (function *)
4090 {
4091 return split_all_insns_noflow ();
4092 }
4093
4094 }; // class pass_split_for_shorten_branches
4095
4096 } // anon namespace
4097
4098 rtl_opt_pass *
4099 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4100 {
4101 return new pass_split_for_shorten_branches (ctxt);
4102 }
4103
4104 /* (Re)initialize the target information after a change in target. */
4105
4106 void
4107 recog_init ()
4108 {
4109 /* The information is zero-initialized, so we don't need to do anything
4110 first time round. */
4111 if (!this_target_recog->x_initialized)
4112 {
4113 this_target_recog->x_initialized = true;
4114 return;
4115 }
4116 memset (this_target_recog->x_bool_attr_masks, 0,
4117 sizeof (this_target_recog->x_bool_attr_masks));
4118 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4119 if (this_target_recog->x_op_alt[i])
4120 {
4121 free (this_target_recog->x_op_alt[i]);
4122 this_target_recog->x_op_alt[i] = 0;
4123 }
4124 }