]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
NEXT_INSN and PREV_INSN take a const rtx_insn
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "insn-attr.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "basic-block.h"
38 #include "reload.h"
39 #include "target.h"
40 #include "tree-pass.h"
41 #include "df.h"
42 #include "insn-codes.h"
43
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
51
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
59
60 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx_insn *);
63
64 struct target_recog default_target_recog;
65 #if SWITCHABLE_TARGET
66 struct target_recog *this_target_recog = &default_target_recog;
67 #endif
68
69 /* Nonzero means allow operands to be volatile.
70 This should be 0 if you are generating rtl, such as if you are calling
71 the functions in optabs.c and expmed.c (most of the time).
72 This should be 1 if all valid insns need to be recognized,
73 such as in reginfo.c and final.c and reload.c.
74
75 init_recog and init_recog_no_volatile are responsible for setting this. */
76
77 int volatile_ok;
78
79 struct recog_data_d recog_data;
80
81 /* Contains a vector of operand_alternative structures, such that
82 operand OP of alternative A is at index A * n_operands + OP.
83 Set up by preprocess_constraints. */
84 const operand_alternative *recog_op_alt;
85
86 /* Used to provide recog_op_alt for asms. */
87 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
88 * MAX_RECOG_ALTERNATIVES];
89
90 /* On return from `constrain_operands', indicate which alternative
91 was satisfied. */
92
93 int which_alternative;
94
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
98
99 int reload_completed;
100
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed;
103
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
107
108 void
109 init_recog_no_volatile (void)
110 {
111 volatile_ok = 0;
112 }
113
114 void
115 init_recog (void)
116 {
117 volatile_ok = 1;
118 }
119
120 \f
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
122
123 static bool
124 asm_labels_ok (rtx body)
125 {
126 rtx asmop;
127 int i;
128
129 asmop = extract_asm_operands (body);
130 if (asmop == NULL_RTX)
131 return true;
132
133 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
135 return false;
136
137 return true;
138 }
139
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
142
143 int
144 check_asm_operands (rtx x)
145 {
146 int noperands;
147 rtx *operands;
148 const char **constraints;
149 int i;
150
151 if (!asm_labels_ok (x))
152 return 0;
153
154 /* Post-reload, be more strict with things. */
155 if (reload_completed)
156 {
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x));
159 constrain_operands (1);
160 return which_alternative >= 0;
161 }
162
163 noperands = asm_noperands (x);
164 if (noperands < 0)
165 return 0;
166 if (noperands == 0)
167 return 1;
168
169 operands = XALLOCAVEC (rtx, noperands);
170 constraints = XALLOCAVEC (const char *, noperands);
171
172 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
173
174 for (i = 0; i < noperands; i++)
175 {
176 const char *c = constraints[i];
177 if (c[0] == '%')
178 c++;
179 if (! asm_operand_ok (operands[i], c, constraints))
180 return 0;
181 }
182
183 return 1;
184 }
185 \f
186 /* Static data for the next two routines. */
187
188 typedef struct change_t
189 {
190 rtx object;
191 int old_code;
192 rtx *loc;
193 rtx old;
194 bool unshare;
195 } change_t;
196
197 static change_t *changes;
198 static int changes_allocated;
199
200 static int num_changes = 0;
201
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
205
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
209 the change in place.
210
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
214
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
219
220 static bool
221 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
222 {
223 rtx old = *loc;
224
225 if (old == new_rtx || rtx_equal_p (old, new_rtx))
226 return 1;
227
228 gcc_assert (in_group != 0 || num_changes == 0);
229
230 *loc = new_rtx;
231
232 /* Save the information describing this change. */
233 if (num_changes >= changes_allocated)
234 {
235 if (changes_allocated == 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated = MAX_RECOG_OPERANDS * 5;
239 else
240 changes_allocated *= 2;
241
242 changes = XRESIZEVEC (change_t, changes, changes_allocated);
243 }
244
245 changes[num_changes].object = object;
246 changes[num_changes].loc = loc;
247 changes[num_changes].old = old;
248 changes[num_changes].unshare = unshare;
249
250 if (object && !MEM_P (object))
251 {
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
253 case invalid. */
254 changes[num_changes].old_code = INSN_CODE (object);
255 INSN_CODE (object) = -1;
256 }
257
258 num_changes++;
259
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
262
263 if (in_group)
264 return 1;
265 else
266 return apply_change_group ();
267 }
268
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
270 UNSHARE to false. */
271
272 bool
273 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
274 {
275 return validate_change_1 (object, loc, new_rtx, in_group, false);
276 }
277
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
279 UNSHARE to true. */
280
281 bool
282 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
283 {
284 return validate_change_1 (object, loc, new_rtx, in_group, true);
285 }
286
287
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
291
292 Return true if anything was changed. */
293 bool
294 canonicalize_change_group (rtx insn, rtx x)
295 {
296 if (COMMUTATIVE_P (x)
297 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
298 {
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem = XEXP (x, 0);
302 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
303 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
304 return true;
305 }
306 else
307 return false;
308 }
309
310
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized.
313
314 If IN_GROUP is true clobbers which have to be added in order to
315 match the instructions will be added to the current change group.
316 Otherwise the changes will take effect immediately. */
317
318 int
319 insn_invalid_p (rtx insn, bool in_group)
320 {
321 rtx pat = PATTERN (insn);
322 int num_clobbers = 0;
323 /* If we are before reload and the pattern is a SET, see if we can add
324 clobbers. */
325 int icode = recog (pat, insn,
326 (GET_CODE (pat) == SET
327 && ! reload_completed
328 && ! reload_in_progress)
329 ? &num_clobbers : 0);
330 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
331
332
333 /* If this is an asm and the operand aren't legal, then fail. Likewise if
334 this is not an asm and the insn wasn't recognized. */
335 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
336 || (!is_asm && icode < 0))
337 return 1;
338
339 /* If we have to add CLOBBERs, fail if we have to add ones that reference
340 hard registers since our callers can't know if they are live or not.
341 Otherwise, add them. */
342 if (num_clobbers > 0)
343 {
344 rtx newpat;
345
346 if (added_clobbers_hard_reg_p (icode))
347 return 1;
348
349 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
350 XVECEXP (newpat, 0, 0) = pat;
351 add_clobbers (newpat, icode);
352 if (in_group)
353 validate_change (insn, &PATTERN (insn), newpat, 1);
354 else
355 PATTERN (insn) = pat = newpat;
356 }
357
358 /* After reload, verify that all constraints are satisfied. */
359 if (reload_completed)
360 {
361 extract_insn (insn);
362
363 if (! constrain_operands (1))
364 return 1;
365 }
366
367 INSN_CODE (insn) = icode;
368 return 0;
369 }
370
371 /* Return number of changes made and not validated yet. */
372 int
373 num_changes_pending (void)
374 {
375 return num_changes;
376 }
377
378 /* Tentatively apply the changes numbered NUM and up.
379 Return 1 if all changes are valid, zero otherwise. */
380
381 int
382 verify_changes (int num)
383 {
384 int i;
385 rtx last_validated = NULL_RTX;
386
387 /* The changes have been applied and all INSN_CODEs have been reset to force
388 rerecognition.
389
390 The changes are valid if we aren't given an object, or if we are
391 given a MEM and it still is a valid address, or if this is in insn
392 and it is recognized. In the latter case, if reload has completed,
393 we also require that the operands meet the constraints for
394 the insn. */
395
396 for (i = num; i < num_changes; i++)
397 {
398 rtx object = changes[i].object;
399
400 /* If there is no object to test or if it is the same as the one we
401 already tested, ignore it. */
402 if (object == 0 || object == last_validated)
403 continue;
404
405 if (MEM_P (object))
406 {
407 if (! memory_address_addr_space_p (GET_MODE (object),
408 XEXP (object, 0),
409 MEM_ADDR_SPACE (object)))
410 break;
411 }
412 else if (/* changes[i].old might be zero, e.g. when putting a
413 REG_FRAME_RELATED_EXPR into a previously empty list. */
414 changes[i].old
415 && REG_P (changes[i].old)
416 && asm_noperands (PATTERN (object)) > 0
417 && REG_EXPR (changes[i].old) != NULL_TREE
418 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
419 && DECL_REGISTER (REG_EXPR (changes[i].old)))
420 {
421 /* Don't allow changes of hard register operands to inline
422 assemblies if they have been defined as register asm ("x"). */
423 break;
424 }
425 else if (DEBUG_INSN_P (object))
426 continue;
427 else if (insn_invalid_p (object, true))
428 {
429 rtx pat = PATTERN (object);
430
431 /* Perhaps we couldn't recognize the insn because there were
432 extra CLOBBERs at the end. If so, try to re-recognize
433 without the last CLOBBER (later iterations will cause each of
434 them to be eliminated, in turn). But don't do this if we
435 have an ASM_OPERAND. */
436 if (GET_CODE (pat) == PARALLEL
437 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
438 && asm_noperands (PATTERN (object)) < 0)
439 {
440 rtx newpat;
441
442 if (XVECLEN (pat, 0) == 2)
443 newpat = XVECEXP (pat, 0, 0);
444 else
445 {
446 int j;
447
448 newpat
449 = gen_rtx_PARALLEL (VOIDmode,
450 rtvec_alloc (XVECLEN (pat, 0) - 1));
451 for (j = 0; j < XVECLEN (newpat, 0); j++)
452 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
453 }
454
455 /* Add a new change to this group to replace the pattern
456 with this new pattern. Then consider this change
457 as having succeeded. The change we added will
458 cause the entire call to fail if things remain invalid.
459
460 Note that this can lose if a later change than the one
461 we are processing specified &XVECEXP (PATTERN (object), 0, X)
462 but this shouldn't occur. */
463
464 validate_change (object, &PATTERN (object), newpat, 1);
465 continue;
466 }
467 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
468 || GET_CODE (pat) == VAR_LOCATION)
469 /* If this insn is a CLOBBER or USE, it is always valid, but is
470 never recognized. */
471 continue;
472 else
473 break;
474 }
475 last_validated = object;
476 }
477
478 return (i == num_changes);
479 }
480
481 /* A group of changes has previously been issued with validate_change
482 and verified with verify_changes. Call df_insn_rescan for each of
483 the insn changed and clear num_changes. */
484
485 void
486 confirm_change_group (void)
487 {
488 int i;
489 rtx last_object = NULL;
490
491 for (i = 0; i < num_changes; i++)
492 {
493 rtx object = changes[i].object;
494
495 if (changes[i].unshare)
496 *changes[i].loc = copy_rtx (*changes[i].loc);
497
498 /* Avoid unnecessary rescanning when multiple changes to same instruction
499 are made. */
500 if (object)
501 {
502 if (object != last_object && last_object && INSN_P (last_object))
503 df_insn_rescan (as_a <rtx_insn *> (last_object));
504 last_object = object;
505 }
506 }
507
508 if (last_object && INSN_P (last_object))
509 df_insn_rescan (as_a <rtx_insn *> (last_object));
510 num_changes = 0;
511 }
512
513 /* Apply a group of changes previously issued with `validate_change'.
514 If all changes are valid, call confirm_change_group and return 1,
515 otherwise, call cancel_changes and return 0. */
516
517 int
518 apply_change_group (void)
519 {
520 if (verify_changes (0))
521 {
522 confirm_change_group ();
523 return 1;
524 }
525 else
526 {
527 cancel_changes (0);
528 return 0;
529 }
530 }
531
532
533 /* Return the number of changes so far in the current group. */
534
535 int
536 num_validated_changes (void)
537 {
538 return num_changes;
539 }
540
541 /* Retract the changes numbered NUM and up. */
542
543 void
544 cancel_changes (int num)
545 {
546 int i;
547
548 /* Back out all the changes. Do this in the opposite order in which
549 they were made. */
550 for (i = num_changes - 1; i >= num; i--)
551 {
552 *changes[i].loc = changes[i].old;
553 if (changes[i].object && !MEM_P (changes[i].object))
554 INSN_CODE (changes[i].object) = changes[i].old_code;
555 }
556 num_changes = num;
557 }
558
559 /* Reduce conditional compilation elsewhere. */
560 #ifndef HAVE_extv
561 #define HAVE_extv 0
562 #define CODE_FOR_extv CODE_FOR_nothing
563 #endif
564 #ifndef HAVE_extzv
565 #define HAVE_extzv 0
566 #define CODE_FOR_extzv CODE_FOR_nothing
567 #endif
568
569 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
570 rtx. */
571
572 static void
573 simplify_while_replacing (rtx *loc, rtx to, rtx object,
574 enum machine_mode op0_mode)
575 {
576 rtx x = *loc;
577 enum rtx_code code = GET_CODE (x);
578 rtx new_rtx = NULL_RTX;
579
580 if (SWAPPABLE_OPERANDS_P (x)
581 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
582 {
583 validate_unshare_change (object, loc,
584 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
585 : swap_condition (code),
586 GET_MODE (x), XEXP (x, 1),
587 XEXP (x, 0)), 1);
588 x = *loc;
589 code = GET_CODE (x);
590 }
591
592 /* Canonicalize arithmetics with all constant operands. */
593 switch (GET_RTX_CLASS (code))
594 {
595 case RTX_UNARY:
596 if (CONSTANT_P (XEXP (x, 0)))
597 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
598 op0_mode);
599 break;
600 case RTX_COMM_ARITH:
601 case RTX_BIN_ARITH:
602 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
603 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
604 XEXP (x, 1));
605 break;
606 case RTX_COMPARE:
607 case RTX_COMM_COMPARE:
608 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
609 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
610 XEXP (x, 0), XEXP (x, 1));
611 break;
612 default:
613 break;
614 }
615 if (new_rtx)
616 {
617 validate_change (object, loc, new_rtx, 1);
618 return;
619 }
620
621 switch (code)
622 {
623 case PLUS:
624 /* If we have a PLUS whose second operand is now a CONST_INT, use
625 simplify_gen_binary to try to simplify it.
626 ??? We may want later to remove this, once simplification is
627 separated from this function. */
628 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
629 validate_change (object, loc,
630 simplify_gen_binary
631 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
632 break;
633 case MINUS:
634 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
635 validate_change (object, loc,
636 simplify_gen_binary
637 (PLUS, GET_MODE (x), XEXP (x, 0),
638 simplify_gen_unary (NEG,
639 GET_MODE (x), XEXP (x, 1),
640 GET_MODE (x))), 1);
641 break;
642 case ZERO_EXTEND:
643 case SIGN_EXTEND:
644 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
645 {
646 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
647 op0_mode);
648 /* If any of the above failed, substitute in something that
649 we know won't be recognized. */
650 if (!new_rtx)
651 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
652 validate_change (object, loc, new_rtx, 1);
653 }
654 break;
655 case SUBREG:
656 /* All subregs possible to simplify should be simplified. */
657 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
658 SUBREG_BYTE (x));
659
660 /* Subregs of VOIDmode operands are incorrect. */
661 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
662 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
663 if (new_rtx)
664 validate_change (object, loc, new_rtx, 1);
665 break;
666 case ZERO_EXTRACT:
667 case SIGN_EXTRACT:
668 /* If we are replacing a register with memory, try to change the memory
669 to be the mode required for memory in extract operations (this isn't
670 likely to be an insertion operation; if it was, nothing bad will
671 happen, we might just fail in some cases). */
672
673 if (MEM_P (XEXP (x, 0))
674 && CONST_INT_P (XEXP (x, 1))
675 && CONST_INT_P (XEXP (x, 2))
676 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
677 MEM_ADDR_SPACE (XEXP (x, 0)))
678 && !MEM_VOLATILE_P (XEXP (x, 0)))
679 {
680 enum machine_mode wanted_mode = VOIDmode;
681 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
682 int pos = INTVAL (XEXP (x, 2));
683
684 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
685 {
686 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
687 if (wanted_mode == VOIDmode)
688 wanted_mode = word_mode;
689 }
690 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
691 {
692 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
693 if (wanted_mode == VOIDmode)
694 wanted_mode = word_mode;
695 }
696
697 /* If we have a narrower mode, we can do something. */
698 if (wanted_mode != VOIDmode
699 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
700 {
701 int offset = pos / BITS_PER_UNIT;
702 rtx newmem;
703
704 /* If the bytes and bits are counted differently, we
705 must adjust the offset. */
706 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
707 offset =
708 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
709 offset);
710
711 gcc_assert (GET_MODE_PRECISION (wanted_mode)
712 == GET_MODE_BITSIZE (wanted_mode));
713 pos %= GET_MODE_BITSIZE (wanted_mode);
714
715 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
716
717 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
718 validate_change (object, &XEXP (x, 0), newmem, 1);
719 }
720 }
721
722 break;
723
724 default:
725 break;
726 }
727 }
728
729 /* Replace every occurrence of FROM in X with TO. Mark each change with
730 validate_change passing OBJECT. */
731
732 static void
733 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
734 bool simplify)
735 {
736 int i, j;
737 const char *fmt;
738 rtx x = *loc;
739 enum rtx_code code;
740 enum machine_mode op0_mode = VOIDmode;
741 int prev_changes = num_changes;
742
743 if (!x)
744 return;
745
746 code = GET_CODE (x);
747 fmt = GET_RTX_FORMAT (code);
748 if (fmt[0] == 'e')
749 op0_mode = GET_MODE (XEXP (x, 0));
750
751 /* X matches FROM if it is the same rtx or they are both referring to the
752 same register in the same mode. Avoid calling rtx_equal_p unless the
753 operands look similar. */
754
755 if (x == from
756 || (REG_P (x) && REG_P (from)
757 && GET_MODE (x) == GET_MODE (from)
758 && REGNO (x) == REGNO (from))
759 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
760 && rtx_equal_p (x, from)))
761 {
762 validate_unshare_change (object, loc, to, 1);
763 return;
764 }
765
766 /* Call ourself recursively to perform the replacements.
767 We must not replace inside already replaced expression, otherwise we
768 get infinite recursion for replacements like (reg X)->(subreg (reg X))
769 so we must special case shared ASM_OPERANDS. */
770
771 if (GET_CODE (x) == PARALLEL)
772 {
773 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
774 {
775 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
776 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
777 {
778 /* Verify that operands are really shared. */
779 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
780 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
781 (x, 0, j))));
782 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
783 from, to, object, simplify);
784 }
785 else
786 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
787 simplify);
788 }
789 }
790 else
791 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
792 {
793 if (fmt[i] == 'e')
794 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
795 else if (fmt[i] == 'E')
796 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
797 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
798 simplify);
799 }
800
801 /* If we didn't substitute, there is nothing more to do. */
802 if (num_changes == prev_changes)
803 return;
804
805 /* ??? The regmove is no more, so is this aberration still necessary? */
806 /* Allow substituted expression to have different mode. This is used by
807 regmove to change mode of pseudo register. */
808 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
809 op0_mode = GET_MODE (XEXP (x, 0));
810
811 /* Do changes needed to keep rtx consistent. Don't do any other
812 simplifications, as it is not our job. */
813 if (simplify)
814 simplify_while_replacing (loc, to, object, op0_mode);
815 }
816
817 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
818 with TO. After all changes have been made, validate by seeing
819 if INSN is still valid. */
820
821 int
822 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
823 {
824 validate_replace_rtx_1 (loc, from, to, insn, true);
825 return apply_change_group ();
826 }
827
828 /* Try replacing every occurrence of FROM in INSN with TO. After all
829 changes have been made, validate by seeing if INSN is still valid. */
830
831 int
832 validate_replace_rtx (rtx from, rtx to, rtx insn)
833 {
834 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
835 return apply_change_group ();
836 }
837
838 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
839 is a part of INSN. After all changes have been made, validate by seeing if
840 INSN is still valid.
841 validate_replace_rtx (from, to, insn) is equivalent to
842 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
843
844 int
845 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
846 {
847 validate_replace_rtx_1 (where, from, to, insn, true);
848 return apply_change_group ();
849 }
850
851 /* Same as above, but do not simplify rtx afterwards. */
852 int
853 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
854 rtx insn)
855 {
856 validate_replace_rtx_1 (where, from, to, insn, false);
857 return apply_change_group ();
858
859 }
860
861 /* Try replacing every occurrence of FROM in INSN with TO. This also
862 will replace in REG_EQUAL and REG_EQUIV notes. */
863
864 void
865 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
866 {
867 rtx note;
868 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
869 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
870 if (REG_NOTE_KIND (note) == REG_EQUAL
871 || REG_NOTE_KIND (note) == REG_EQUIV)
872 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
873 }
874
875 /* Function called by note_uses to replace used subexpressions. */
876 struct validate_replace_src_data
877 {
878 rtx from; /* Old RTX */
879 rtx to; /* New RTX */
880 rtx insn; /* Insn in which substitution is occurring. */
881 };
882
883 static void
884 validate_replace_src_1 (rtx *x, void *data)
885 {
886 struct validate_replace_src_data *d
887 = (struct validate_replace_src_data *) data;
888
889 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
890 }
891
892 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
893 SET_DESTs. */
894
895 void
896 validate_replace_src_group (rtx from, rtx to, rtx insn)
897 {
898 struct validate_replace_src_data d;
899
900 d.from = from;
901 d.to = to;
902 d.insn = insn;
903 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
904 }
905
906 /* Try simplify INSN.
907 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
908 pattern and return true if something was simplified. */
909
910 bool
911 validate_simplify_insn (rtx insn)
912 {
913 int i;
914 rtx pat = NULL;
915 rtx newpat = NULL;
916
917 pat = PATTERN (insn);
918
919 if (GET_CODE (pat) == SET)
920 {
921 newpat = simplify_rtx (SET_SRC (pat));
922 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
923 validate_change (insn, &SET_SRC (pat), newpat, 1);
924 newpat = simplify_rtx (SET_DEST (pat));
925 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
926 validate_change (insn, &SET_DEST (pat), newpat, 1);
927 }
928 else if (GET_CODE (pat) == PARALLEL)
929 for (i = 0; i < XVECLEN (pat, 0); i++)
930 {
931 rtx s = XVECEXP (pat, 0, i);
932
933 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
934 {
935 newpat = simplify_rtx (SET_SRC (s));
936 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
937 validate_change (insn, &SET_SRC (s), newpat, 1);
938 newpat = simplify_rtx (SET_DEST (s));
939 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
940 validate_change (insn, &SET_DEST (s), newpat, 1);
941 }
942 }
943 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
944 }
945 \f
946 #ifdef HAVE_cc0
947 /* Return 1 if the insn using CC0 set by INSN does not contain
948 any ordered tests applied to the condition codes.
949 EQ and NE tests do not count. */
950
951 int
952 next_insn_tests_no_inequality (rtx insn)
953 {
954 rtx next = next_cc0_user (insn);
955
956 /* If there is no next insn, we have to take the conservative choice. */
957 if (next == 0)
958 return 0;
959
960 return (INSN_P (next)
961 && ! inequality_comparisons_p (PATTERN (next)));
962 }
963 #endif
964 \f
965 /* Return 1 if OP is a valid general operand for machine mode MODE.
966 This is either a register reference, a memory reference,
967 or a constant. In the case of a memory reference, the address
968 is checked for general validity for the target machine.
969
970 Register and memory references must have mode MODE in order to be valid,
971 but some constants have no machine mode and are valid for any mode.
972
973 If MODE is VOIDmode, OP is checked for validity for whatever mode
974 it has.
975
976 The main use of this function is as a predicate in match_operand
977 expressions in the machine description. */
978
979 int
980 general_operand (rtx op, enum machine_mode mode)
981 {
982 enum rtx_code code = GET_CODE (op);
983
984 if (mode == VOIDmode)
985 mode = GET_MODE (op);
986
987 /* Don't accept CONST_INT or anything similar
988 if the caller wants something floating. */
989 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
990 && GET_MODE_CLASS (mode) != MODE_INT
991 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
992 return 0;
993
994 if (CONST_INT_P (op)
995 && mode != VOIDmode
996 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
997 return 0;
998
999 if (CONSTANT_P (op))
1000 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1001 || mode == VOIDmode)
1002 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1003 && targetm.legitimate_constant_p (mode == VOIDmode
1004 ? GET_MODE (op)
1005 : mode, op));
1006
1007 /* Except for certain constants with VOIDmode, already checked for,
1008 OP's mode must match MODE if MODE specifies a mode. */
1009
1010 if (GET_MODE (op) != mode)
1011 return 0;
1012
1013 if (code == SUBREG)
1014 {
1015 rtx sub = SUBREG_REG (op);
1016
1017 #ifdef INSN_SCHEDULING
1018 /* On machines that have insn scheduling, we want all memory
1019 reference to be explicit, so outlaw paradoxical SUBREGs.
1020 However, we must allow them after reload so that they can
1021 get cleaned up by cleanup_subreg_operands. */
1022 if (!reload_completed && MEM_P (sub)
1023 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1024 return 0;
1025 #endif
1026 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1027 may result in incorrect reference. We should simplify all valid
1028 subregs of MEM anyway. But allow this after reload because we
1029 might be called from cleanup_subreg_operands.
1030
1031 ??? This is a kludge. */
1032 if (!reload_completed && SUBREG_BYTE (op) != 0
1033 && MEM_P (sub))
1034 return 0;
1035
1036 #ifdef CANNOT_CHANGE_MODE_CLASS
1037 if (REG_P (sub)
1038 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1039 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1040 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1041 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1042 /* LRA can generate some invalid SUBREGS just for matched
1043 operand reload presentation. LRA needs to treat them as
1044 valid. */
1045 && ! LRA_SUBREG_P (op))
1046 return 0;
1047 #endif
1048
1049 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1050 create such rtl, and we must reject it. */
1051 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1052 /* LRA can use subreg to store a floating point value in an
1053 integer mode. Although the floating point and the
1054 integer modes need the same number of hard registers, the
1055 size of floating point mode can be less than the integer
1056 mode. */
1057 && ! lra_in_progress
1058 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1059 return 0;
1060
1061 op = sub;
1062 code = GET_CODE (op);
1063 }
1064
1065 if (code == REG)
1066 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1067 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1068
1069 if (code == MEM)
1070 {
1071 rtx y = XEXP (op, 0);
1072
1073 if (! volatile_ok && MEM_VOLATILE_P (op))
1074 return 0;
1075
1076 /* Use the mem's mode, since it will be reloaded thus. LRA can
1077 generate move insn with invalid addresses which is made valid
1078 and efficiently calculated by LRA through further numerous
1079 transformations. */
1080 if (lra_in_progress
1081 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1082 return 1;
1083 }
1084
1085 return 0;
1086 }
1087 \f
1088 /* Return 1 if OP is a valid memory address for a memory reference
1089 of mode MODE.
1090
1091 The main use of this function is as a predicate in match_operand
1092 expressions in the machine description. */
1093
1094 int
1095 address_operand (rtx op, enum machine_mode mode)
1096 {
1097 return memory_address_p (mode, op);
1098 }
1099
1100 /* Return 1 if OP is a register reference of mode MODE.
1101 If MODE is VOIDmode, accept a register in any mode.
1102
1103 The main use of this function is as a predicate in match_operand
1104 expressions in the machine description. */
1105
1106 int
1107 register_operand (rtx op, enum machine_mode mode)
1108 {
1109 if (GET_CODE (op) == SUBREG)
1110 {
1111 rtx sub = SUBREG_REG (op);
1112
1113 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1114 because it is guaranteed to be reloaded into one.
1115 Just make sure the MEM is valid in itself.
1116 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1117 but currently it does result from (SUBREG (REG)...) where the
1118 reg went on the stack.) */
1119 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1120 return 0;
1121 }
1122 else if (!REG_P (op))
1123 return 0;
1124 return general_operand (op, mode);
1125 }
1126
1127 /* Return 1 for a register in Pmode; ignore the tested mode. */
1128
1129 int
1130 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1131 {
1132 return register_operand (op, Pmode);
1133 }
1134
1135 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1136 or a hard register. */
1137
1138 int
1139 scratch_operand (rtx op, enum machine_mode mode)
1140 {
1141 if (GET_MODE (op) != mode && mode != VOIDmode)
1142 return 0;
1143
1144 return (GET_CODE (op) == SCRATCH
1145 || (REG_P (op)
1146 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1147 }
1148
1149 /* Return 1 if OP is a valid immediate operand for mode MODE.
1150
1151 The main use of this function is as a predicate in match_operand
1152 expressions in the machine description. */
1153
1154 int
1155 immediate_operand (rtx op, enum machine_mode mode)
1156 {
1157 /* Don't accept CONST_INT or anything similar
1158 if the caller wants something floating. */
1159 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1160 && GET_MODE_CLASS (mode) != MODE_INT
1161 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1162 return 0;
1163
1164 if (CONST_INT_P (op)
1165 && mode != VOIDmode
1166 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1167 return 0;
1168
1169 return (CONSTANT_P (op)
1170 && (GET_MODE (op) == mode || mode == VOIDmode
1171 || GET_MODE (op) == VOIDmode)
1172 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1173 && targetm.legitimate_constant_p (mode == VOIDmode
1174 ? GET_MODE (op)
1175 : mode, op));
1176 }
1177
1178 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1179
1180 int
1181 const_int_operand (rtx op, enum machine_mode mode)
1182 {
1183 if (!CONST_INT_P (op))
1184 return 0;
1185
1186 if (mode != VOIDmode
1187 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1188 return 0;
1189
1190 return 1;
1191 }
1192
1193 #if TARGET_SUPPORTS_WIDE_INT
1194 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1195 of mode MODE. */
1196 int
1197 const_scalar_int_operand (rtx op, enum machine_mode mode)
1198 {
1199 if (!CONST_SCALAR_INT_P (op))
1200 return 0;
1201
1202 if (CONST_INT_P (op))
1203 return const_int_operand (op, mode);
1204
1205 if (mode != VOIDmode)
1206 {
1207 int prec = GET_MODE_PRECISION (mode);
1208 int bitsize = GET_MODE_BITSIZE (mode);
1209
1210 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1211 return 0;
1212
1213 if (prec == bitsize)
1214 return 1;
1215 else
1216 {
1217 /* Multiword partial int. */
1218 HOST_WIDE_INT x
1219 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1220 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1221 }
1222 }
1223 return 1;
1224 }
1225
1226 /* Returns 1 if OP is an operand that is a constant integer or constant
1227 floating-point number of MODE. */
1228
1229 int
1230 const_double_operand (rtx op, enum machine_mode mode)
1231 {
1232 return (GET_CODE (op) == CONST_DOUBLE)
1233 && (GET_MODE (op) == mode || mode == VOIDmode);
1234 }
1235 #else
1236 /* Returns 1 if OP is an operand that is a constant integer or constant
1237 floating-point number of MODE. */
1238
1239 int
1240 const_double_operand (rtx op, enum machine_mode mode)
1241 {
1242 /* Don't accept CONST_INT or anything similar
1243 if the caller wants something floating. */
1244 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1245 && GET_MODE_CLASS (mode) != MODE_INT
1246 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1247 return 0;
1248
1249 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1250 && (mode == VOIDmode || GET_MODE (op) == mode
1251 || GET_MODE (op) == VOIDmode));
1252 }
1253 #endif
1254 /* Return 1 if OP is a general operand that is not an immediate
1255 operand of mode MODE. */
1256
1257 int
1258 nonimmediate_operand (rtx op, enum machine_mode mode)
1259 {
1260 return (general_operand (op, mode) && ! CONSTANT_P (op));
1261 }
1262
1263 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1264
1265 int
1266 nonmemory_operand (rtx op, enum machine_mode mode)
1267 {
1268 if (CONSTANT_P (op))
1269 return immediate_operand (op, mode);
1270 return register_operand (op, mode);
1271 }
1272
1273 /* Return 1 if OP is a valid operand that stands for pushing a
1274 value of mode MODE onto the stack.
1275
1276 The main use of this function is as a predicate in match_operand
1277 expressions in the machine description. */
1278
1279 int
1280 push_operand (rtx op, enum machine_mode mode)
1281 {
1282 unsigned int rounded_size = GET_MODE_SIZE (mode);
1283
1284 #ifdef PUSH_ROUNDING
1285 rounded_size = PUSH_ROUNDING (rounded_size);
1286 #endif
1287
1288 if (!MEM_P (op))
1289 return 0;
1290
1291 if (mode != VOIDmode && GET_MODE (op) != mode)
1292 return 0;
1293
1294 op = XEXP (op, 0);
1295
1296 if (rounded_size == GET_MODE_SIZE (mode))
1297 {
1298 if (GET_CODE (op) != STACK_PUSH_CODE)
1299 return 0;
1300 }
1301 else
1302 {
1303 if (GET_CODE (op) != PRE_MODIFY
1304 || GET_CODE (XEXP (op, 1)) != PLUS
1305 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1306 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1307 #ifdef STACK_GROWS_DOWNWARD
1308 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1309 #else
1310 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1311 #endif
1312 )
1313 return 0;
1314 }
1315
1316 return XEXP (op, 0) == stack_pointer_rtx;
1317 }
1318
1319 /* Return 1 if OP is a valid operand that stands for popping a
1320 value of mode MODE off the stack.
1321
1322 The main use of this function is as a predicate in match_operand
1323 expressions in the machine description. */
1324
1325 int
1326 pop_operand (rtx op, enum machine_mode mode)
1327 {
1328 if (!MEM_P (op))
1329 return 0;
1330
1331 if (mode != VOIDmode && GET_MODE (op) != mode)
1332 return 0;
1333
1334 op = XEXP (op, 0);
1335
1336 if (GET_CODE (op) != STACK_POP_CODE)
1337 return 0;
1338
1339 return XEXP (op, 0) == stack_pointer_rtx;
1340 }
1341
1342 /* Return 1 if ADDR is a valid memory address
1343 for mode MODE in address space AS. */
1344
1345 int
1346 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1347 rtx addr, addr_space_t as)
1348 {
1349 #ifdef GO_IF_LEGITIMATE_ADDRESS
1350 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1351 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1352 return 0;
1353
1354 win:
1355 return 1;
1356 #else
1357 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1358 #endif
1359 }
1360
1361 /* Return 1 if OP is a valid memory reference with mode MODE,
1362 including a valid address.
1363
1364 The main use of this function is as a predicate in match_operand
1365 expressions in the machine description. */
1366
1367 int
1368 memory_operand (rtx op, enum machine_mode mode)
1369 {
1370 rtx inner;
1371
1372 if (! reload_completed)
1373 /* Note that no SUBREG is a memory operand before end of reload pass,
1374 because (SUBREG (MEM...)) forces reloading into a register. */
1375 return MEM_P (op) && general_operand (op, mode);
1376
1377 if (mode != VOIDmode && GET_MODE (op) != mode)
1378 return 0;
1379
1380 inner = op;
1381 if (GET_CODE (inner) == SUBREG)
1382 inner = SUBREG_REG (inner);
1383
1384 return (MEM_P (inner) && general_operand (op, mode));
1385 }
1386
1387 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1388 that is, a memory reference whose address is a general_operand. */
1389
1390 int
1391 indirect_operand (rtx op, enum machine_mode mode)
1392 {
1393 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1394 if (! reload_completed
1395 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1396 {
1397 int offset = SUBREG_BYTE (op);
1398 rtx inner = SUBREG_REG (op);
1399
1400 if (mode != VOIDmode && GET_MODE (op) != mode)
1401 return 0;
1402
1403 /* The only way that we can have a general_operand as the resulting
1404 address is if OFFSET is zero and the address already is an operand
1405 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1406 operand. */
1407
1408 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1409 || (GET_CODE (XEXP (inner, 0)) == PLUS
1410 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1411 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1412 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1413 }
1414
1415 return (MEM_P (op)
1416 && memory_operand (op, mode)
1417 && general_operand (XEXP (op, 0), Pmode));
1418 }
1419
1420 /* Return 1 if this is an ordered comparison operator (not including
1421 ORDERED and UNORDERED). */
1422
1423 int
1424 ordered_comparison_operator (rtx op, enum machine_mode mode)
1425 {
1426 if (mode != VOIDmode && GET_MODE (op) != mode)
1427 return false;
1428 switch (GET_CODE (op))
1429 {
1430 case EQ:
1431 case NE:
1432 case LT:
1433 case LTU:
1434 case LE:
1435 case LEU:
1436 case GT:
1437 case GTU:
1438 case GE:
1439 case GEU:
1440 return true;
1441 default:
1442 return false;
1443 }
1444 }
1445
1446 /* Return 1 if this is a comparison operator. This allows the use of
1447 MATCH_OPERATOR to recognize all the branch insns. */
1448
1449 int
1450 comparison_operator (rtx op, enum machine_mode mode)
1451 {
1452 return ((mode == VOIDmode || GET_MODE (op) == mode)
1453 && COMPARISON_P (op));
1454 }
1455 \f
1456 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1457
1458 rtx
1459 extract_asm_operands (rtx body)
1460 {
1461 rtx tmp;
1462 switch (GET_CODE (body))
1463 {
1464 case ASM_OPERANDS:
1465 return body;
1466
1467 case SET:
1468 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1469 tmp = SET_SRC (body);
1470 if (GET_CODE (tmp) == ASM_OPERANDS)
1471 return tmp;
1472 break;
1473
1474 case PARALLEL:
1475 tmp = XVECEXP (body, 0, 0);
1476 if (GET_CODE (tmp) == ASM_OPERANDS)
1477 return tmp;
1478 if (GET_CODE (tmp) == SET)
1479 {
1480 tmp = SET_SRC (tmp);
1481 if (GET_CODE (tmp) == ASM_OPERANDS)
1482 return tmp;
1483 }
1484 break;
1485
1486 default:
1487 break;
1488 }
1489 return NULL;
1490 }
1491
1492 /* If BODY is an insn body that uses ASM_OPERANDS,
1493 return the number of operands (both input and output) in the insn.
1494 Otherwise return -1. */
1495
1496 int
1497 asm_noperands (const_rtx body)
1498 {
1499 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1500 int n_sets = 0;
1501
1502 if (asm_op == NULL)
1503 return -1;
1504
1505 if (GET_CODE (body) == SET)
1506 n_sets = 1;
1507 else if (GET_CODE (body) == PARALLEL)
1508 {
1509 int i;
1510 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1511 {
1512 /* Multiple output operands, or 1 output plus some clobbers:
1513 body is
1514 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1515 /* Count backwards through CLOBBERs to determine number of SETs. */
1516 for (i = XVECLEN (body, 0); i > 0; i--)
1517 {
1518 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1519 break;
1520 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1521 return -1;
1522 }
1523
1524 /* N_SETS is now number of output operands. */
1525 n_sets = i;
1526
1527 /* Verify that all the SETs we have
1528 came from a single original asm_operands insn
1529 (so that invalid combinations are blocked). */
1530 for (i = 0; i < n_sets; i++)
1531 {
1532 rtx elt = XVECEXP (body, 0, i);
1533 if (GET_CODE (elt) != SET)
1534 return -1;
1535 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1536 return -1;
1537 /* If these ASM_OPERANDS rtx's came from different original insns
1538 then they aren't allowed together. */
1539 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1540 != ASM_OPERANDS_INPUT_VEC (asm_op))
1541 return -1;
1542 }
1543 }
1544 else
1545 {
1546 /* 0 outputs, but some clobbers:
1547 body is [(asm_operands ...) (clobber (reg ...))...]. */
1548 /* Make sure all the other parallel things really are clobbers. */
1549 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1550 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1551 return -1;
1552 }
1553 }
1554
1555 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1556 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1557 }
1558
1559 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1560 copy its operands (both input and output) into the vector OPERANDS,
1561 the locations of the operands within the insn into the vector OPERAND_LOCS,
1562 and the constraints for the operands into CONSTRAINTS.
1563 Write the modes of the operands into MODES.
1564 Return the assembler-template.
1565
1566 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1567 we don't store that info. */
1568
1569 const char *
1570 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1571 const char **constraints, enum machine_mode *modes,
1572 location_t *loc)
1573 {
1574 int nbase = 0, n, i;
1575 rtx asmop;
1576
1577 switch (GET_CODE (body))
1578 {
1579 case ASM_OPERANDS:
1580 /* Zero output asm: BODY is (asm_operands ...). */
1581 asmop = body;
1582 break;
1583
1584 case SET:
1585 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1586 asmop = SET_SRC (body);
1587
1588 /* The output is in the SET.
1589 Its constraint is in the ASM_OPERANDS itself. */
1590 if (operands)
1591 operands[0] = SET_DEST (body);
1592 if (operand_locs)
1593 operand_locs[0] = &SET_DEST (body);
1594 if (constraints)
1595 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1596 if (modes)
1597 modes[0] = GET_MODE (SET_DEST (body));
1598 nbase = 1;
1599 break;
1600
1601 case PARALLEL:
1602 {
1603 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1604
1605 asmop = XVECEXP (body, 0, 0);
1606 if (GET_CODE (asmop) == SET)
1607 {
1608 asmop = SET_SRC (asmop);
1609
1610 /* At least one output, plus some CLOBBERs. The outputs are in
1611 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1612 for (i = 0; i < nparallel; i++)
1613 {
1614 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1615 break; /* Past last SET */
1616 if (operands)
1617 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1618 if (operand_locs)
1619 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1620 if (constraints)
1621 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1622 if (modes)
1623 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1624 }
1625 nbase = i;
1626 }
1627 break;
1628 }
1629
1630 default:
1631 gcc_unreachable ();
1632 }
1633
1634 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1635 for (i = 0; i < n; i++)
1636 {
1637 if (operand_locs)
1638 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1639 if (operands)
1640 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1641 if (constraints)
1642 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1643 if (modes)
1644 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1645 }
1646 nbase += n;
1647
1648 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1649 for (i = 0; i < n; i++)
1650 {
1651 if (operand_locs)
1652 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1653 if (operands)
1654 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1655 if (constraints)
1656 constraints[nbase + i] = "";
1657 if (modes)
1658 modes[nbase + i] = Pmode;
1659 }
1660
1661 if (loc)
1662 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1663
1664 return ASM_OPERANDS_TEMPLATE (asmop);
1665 }
1666
1667 /* Parse inline assembly string STRING and determine which operands are
1668 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1669 to true if operand I is referenced.
1670
1671 This is intended to distinguish barrier-like asms such as:
1672
1673 asm ("" : "=m" (...));
1674
1675 from real references such as:
1676
1677 asm ("sw\t$0, %0" : "=m" (...)); */
1678
1679 void
1680 get_referenced_operands (const char *string, bool *used,
1681 unsigned int noperands)
1682 {
1683 memset (used, 0, sizeof (bool) * noperands);
1684 const char *p = string;
1685 while (*p)
1686 switch (*p)
1687 {
1688 case '%':
1689 p += 1;
1690 /* A letter followed by a digit indicates an operand number. */
1691 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1692 p += 1;
1693 if (ISDIGIT (*p))
1694 {
1695 char *endptr;
1696 unsigned long opnum = strtoul (p, &endptr, 10);
1697 if (endptr != p && opnum < noperands)
1698 used[opnum] = true;
1699 p = endptr;
1700 }
1701 else
1702 p += 1;
1703 break;
1704
1705 default:
1706 p++;
1707 break;
1708 }
1709 }
1710
1711 /* Check if an asm_operand matches its constraints.
1712 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1713
1714 int
1715 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1716 {
1717 int result = 0;
1718 #ifdef AUTO_INC_DEC
1719 bool incdec_ok = false;
1720 #endif
1721
1722 /* Use constrain_operands after reload. */
1723 gcc_assert (!reload_completed);
1724
1725 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1726 many alternatives as required to match the other operands. */
1727 if (*constraint == '\0')
1728 result = 1;
1729
1730 while (*constraint)
1731 {
1732 enum constraint_num cn;
1733 char c = *constraint;
1734 int len;
1735 switch (c)
1736 {
1737 case ',':
1738 constraint++;
1739 continue;
1740
1741 case '0': case '1': case '2': case '3': case '4':
1742 case '5': case '6': case '7': case '8': case '9':
1743 /* If caller provided constraints pointer, look up
1744 the matching constraint. Otherwise, our caller should have
1745 given us the proper matching constraint, but we can't
1746 actually fail the check if they didn't. Indicate that
1747 results are inconclusive. */
1748 if (constraints)
1749 {
1750 char *end;
1751 unsigned long match;
1752
1753 match = strtoul (constraint, &end, 10);
1754 if (!result)
1755 result = asm_operand_ok (op, constraints[match], NULL);
1756 constraint = (const char *) end;
1757 }
1758 else
1759 {
1760 do
1761 constraint++;
1762 while (ISDIGIT (*constraint));
1763 if (! result)
1764 result = -1;
1765 }
1766 continue;
1767
1768 /* The rest of the compiler assumes that reloading the address
1769 of a MEM into a register will make it fit an 'o' constraint.
1770 That is, if it sees a MEM operand for an 'o' constraint,
1771 it assumes that (mem (base-reg)) will fit.
1772
1773 That assumption fails on targets that don't have offsettable
1774 addresses at all. We therefore need to treat 'o' asm
1775 constraints as a special case and only accept operands that
1776 are already offsettable, thus proving that at least one
1777 offsettable address exists. */
1778 case 'o': /* offsettable */
1779 if (offsettable_nonstrict_memref_p (op))
1780 result = 1;
1781 break;
1782
1783 case 'g':
1784 if (general_operand (op, VOIDmode))
1785 result = 1;
1786 break;
1787
1788 #ifdef AUTO_INC_DEC
1789 case '<':
1790 case '>':
1791 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1792 to exist, excepting those that expand_call created. Further,
1793 on some machines which do not have generalized auto inc/dec,
1794 an inc/dec is not a memory_operand.
1795
1796 Match any memory and hope things are resolved after reload. */
1797 incdec_ok = true;
1798 #endif
1799 default:
1800 cn = lookup_constraint (constraint);
1801 switch (get_constraint_type (cn))
1802 {
1803 case CT_REGISTER:
1804 if (!result
1805 && reg_class_for_constraint (cn) != NO_REGS
1806 && GET_MODE (op) != BLKmode
1807 && register_operand (op, VOIDmode))
1808 result = 1;
1809 break;
1810
1811 case CT_CONST_INT:
1812 if (!result
1813 && CONST_INT_P (op)
1814 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1815 result = 1;
1816 break;
1817
1818 case CT_MEMORY:
1819 /* Every memory operand can be reloaded to fit. */
1820 result = result || memory_operand (op, VOIDmode);
1821 break;
1822
1823 case CT_ADDRESS:
1824 /* Every address operand can be reloaded to fit. */
1825 result = result || address_operand (op, VOIDmode);
1826 break;
1827
1828 case CT_FIXED_FORM:
1829 result = result || constraint_satisfied_p (op, cn);
1830 break;
1831 }
1832 break;
1833 }
1834 len = CONSTRAINT_LEN (c, constraint);
1835 do
1836 constraint++;
1837 while (--len && *constraint);
1838 if (len)
1839 return 0;
1840 }
1841
1842 #ifdef AUTO_INC_DEC
1843 /* For operands without < or > constraints reject side-effects. */
1844 if (!incdec_ok && result && MEM_P (op))
1845 switch (GET_CODE (XEXP (op, 0)))
1846 {
1847 case PRE_INC:
1848 case POST_INC:
1849 case PRE_DEC:
1850 case POST_DEC:
1851 case PRE_MODIFY:
1852 case POST_MODIFY:
1853 return 0;
1854 default:
1855 break;
1856 }
1857 #endif
1858
1859 return result;
1860 }
1861 \f
1862 /* Given an rtx *P, if it is a sum containing an integer constant term,
1863 return the location (type rtx *) of the pointer to that constant term.
1864 Otherwise, return a null pointer. */
1865
1866 rtx *
1867 find_constant_term_loc (rtx *p)
1868 {
1869 rtx *tem;
1870 enum rtx_code code = GET_CODE (*p);
1871
1872 /* If *P IS such a constant term, P is its location. */
1873
1874 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1875 || code == CONST)
1876 return p;
1877
1878 /* Otherwise, if not a sum, it has no constant term. */
1879
1880 if (GET_CODE (*p) != PLUS)
1881 return 0;
1882
1883 /* If one of the summands is constant, return its location. */
1884
1885 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1886 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1887 return p;
1888
1889 /* Otherwise, check each summand for containing a constant term. */
1890
1891 if (XEXP (*p, 0) != 0)
1892 {
1893 tem = find_constant_term_loc (&XEXP (*p, 0));
1894 if (tem != 0)
1895 return tem;
1896 }
1897
1898 if (XEXP (*p, 1) != 0)
1899 {
1900 tem = find_constant_term_loc (&XEXP (*p, 1));
1901 if (tem != 0)
1902 return tem;
1903 }
1904
1905 return 0;
1906 }
1907 \f
1908 /* Return 1 if OP is a memory reference
1909 whose address contains no side effects
1910 and remains valid after the addition
1911 of a positive integer less than the
1912 size of the object being referenced.
1913
1914 We assume that the original address is valid and do not check it.
1915
1916 This uses strict_memory_address_p as a subroutine, so
1917 don't use it before reload. */
1918
1919 int
1920 offsettable_memref_p (rtx op)
1921 {
1922 return ((MEM_P (op))
1923 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1924 MEM_ADDR_SPACE (op)));
1925 }
1926
1927 /* Similar, but don't require a strictly valid mem ref:
1928 consider pseudo-regs valid as index or base regs. */
1929
1930 int
1931 offsettable_nonstrict_memref_p (rtx op)
1932 {
1933 return ((MEM_P (op))
1934 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1935 MEM_ADDR_SPACE (op)));
1936 }
1937
1938 /* Return 1 if Y is a memory address which contains no side effects
1939 and would remain valid for address space AS after the addition of
1940 a positive integer less than the size of that mode.
1941
1942 We assume that the original address is valid and do not check it.
1943 We do check that it is valid for narrower modes.
1944
1945 If STRICTP is nonzero, we require a strictly valid address,
1946 for the sake of use in reload.c. */
1947
1948 int
1949 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1950 addr_space_t as)
1951 {
1952 enum rtx_code ycode = GET_CODE (y);
1953 rtx z;
1954 rtx y1 = y;
1955 rtx *y2;
1956 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1957 (strictp ? strict_memory_address_addr_space_p
1958 : memory_address_addr_space_p);
1959 unsigned int mode_sz = GET_MODE_SIZE (mode);
1960
1961 if (CONSTANT_ADDRESS_P (y))
1962 return 1;
1963
1964 /* Adjusting an offsettable address involves changing to a narrower mode.
1965 Make sure that's OK. */
1966
1967 if (mode_dependent_address_p (y, as))
1968 return 0;
1969
1970 enum machine_mode address_mode = GET_MODE (y);
1971 if (address_mode == VOIDmode)
1972 address_mode = targetm.addr_space.address_mode (as);
1973 #ifdef POINTERS_EXTEND_UNSIGNED
1974 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1975 #endif
1976
1977 /* ??? How much offset does an offsettable BLKmode reference need?
1978 Clearly that depends on the situation in which it's being used.
1979 However, the current situation in which we test 0xffffffff is
1980 less than ideal. Caveat user. */
1981 if (mode_sz == 0)
1982 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1983
1984 /* If the expression contains a constant term,
1985 see if it remains valid when max possible offset is added. */
1986
1987 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1988 {
1989 int good;
1990
1991 y1 = *y2;
1992 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1993 /* Use QImode because an odd displacement may be automatically invalid
1994 for any wider mode. But it should be valid for a single byte. */
1995 good = (*addressp) (QImode, y, as);
1996
1997 /* In any case, restore old contents of memory. */
1998 *y2 = y1;
1999 return good;
2000 }
2001
2002 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2003 return 0;
2004
2005 /* The offset added here is chosen as the maximum offset that
2006 any instruction could need to add when operating on something
2007 of the specified mode. We assume that if Y and Y+c are
2008 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2009 go inside a LO_SUM here, so we do so as well. */
2010 if (GET_CODE (y) == LO_SUM
2011 && mode != BLKmode
2012 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2013 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2014 plus_constant (address_mode, XEXP (y, 1),
2015 mode_sz - 1));
2016 #ifdef POINTERS_EXTEND_UNSIGNED
2017 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2018 else if (POINTERS_EXTEND_UNSIGNED > 0
2019 && GET_CODE (y) == ZERO_EXTEND
2020 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2021 z = gen_rtx_ZERO_EXTEND (address_mode,
2022 plus_constant (pointer_mode, XEXP (y, 0),
2023 mode_sz - 1));
2024 #endif
2025 else
2026 z = plus_constant (address_mode, y, mode_sz - 1);
2027
2028 /* Use QImode because an odd displacement may be automatically invalid
2029 for any wider mode. But it should be valid for a single byte. */
2030 return (*addressp) (QImode, z, as);
2031 }
2032
2033 /* Return 1 if ADDR is an address-expression whose effect depends
2034 on the mode of the memory reference it is used in.
2035
2036 ADDRSPACE is the address space associated with the address.
2037
2038 Autoincrement addressing is a typical example of mode-dependence
2039 because the amount of the increment depends on the mode. */
2040
2041 bool
2042 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2043 {
2044 /* Auto-increment addressing with anything other than post_modify
2045 or pre_modify always introduces a mode dependency. Catch such
2046 cases now instead of deferring to the target. */
2047 if (GET_CODE (addr) == PRE_INC
2048 || GET_CODE (addr) == POST_INC
2049 || GET_CODE (addr) == PRE_DEC
2050 || GET_CODE (addr) == POST_DEC)
2051 return true;
2052
2053 return targetm.mode_dependent_address_p (addr, addrspace);
2054 }
2055 \f
2056 /* Return the mask of operand alternatives that are allowed for INSN.
2057 This mask depends only on INSN and on the current target; it does not
2058 depend on things like the values of operands. */
2059
2060 alternative_mask
2061 get_enabled_alternatives (rtx insn)
2062 {
2063 /* Quick exit for asms and for targets that don't use the "enabled"
2064 attribute. */
2065 int code = INSN_CODE (insn);
2066 if (code < 0 || !HAVE_ATTR_enabled)
2067 return ALL_ALTERNATIVES;
2068
2069 /* Calling get_attr_enabled can be expensive, so cache the mask
2070 for speed. */
2071 if (this_target_recog->x_enabled_alternatives[code])
2072 return this_target_recog->x_enabled_alternatives[code];
2073
2074 /* Temporarily install enough information for get_attr_enabled to assume
2075 that the insn operands are already cached. As above, the attribute
2076 mustn't depend on the values of operands, so we don't provide their
2077 real values here. */
2078 rtx old_insn = recog_data.insn;
2079 int old_alternative = which_alternative;
2080
2081 recog_data.insn = insn;
2082 alternative_mask enabled = ALL_ALTERNATIVES;
2083 int n_alternatives = insn_data[code].n_alternatives;
2084 for (int i = 0; i < n_alternatives; i++)
2085 {
2086 which_alternative = i;
2087 if (!get_attr_enabled (insn))
2088 enabled &= ~ALTERNATIVE_BIT (i);
2089 }
2090
2091 recog_data.insn = old_insn;
2092 which_alternative = old_alternative;
2093
2094 this_target_recog->x_enabled_alternatives[code] = enabled;
2095 return enabled;
2096 }
2097
2098 /* Like extract_insn, but save insn extracted and don't extract again, when
2099 called again for the same insn expecting that recog_data still contain the
2100 valid information. This is used primary by gen_attr infrastructure that
2101 often does extract insn again and again. */
2102 void
2103 extract_insn_cached (rtx insn)
2104 {
2105 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2106 return;
2107 extract_insn (insn);
2108 recog_data.insn = insn;
2109 }
2110
2111 /* Do cached extract_insn, constrain_operands and complain about failures.
2112 Used by insn_attrtab. */
2113 void
2114 extract_constrain_insn_cached (rtx insn)
2115 {
2116 extract_insn_cached (insn);
2117 if (which_alternative == -1
2118 && !constrain_operands (reload_completed))
2119 fatal_insn_not_found (insn);
2120 }
2121
2122 /* Do cached constrain_operands and complain about failures. */
2123 int
2124 constrain_operands_cached (int strict)
2125 {
2126 if (which_alternative == -1)
2127 return constrain_operands (strict);
2128 else
2129 return 1;
2130 }
2131 \f
2132 /* Analyze INSN and fill in recog_data. */
2133
2134 void
2135 extract_insn (rtx insn)
2136 {
2137 int i;
2138 int icode;
2139 int noperands;
2140 rtx body = PATTERN (insn);
2141
2142 recog_data.n_operands = 0;
2143 recog_data.n_alternatives = 0;
2144 recog_data.n_dups = 0;
2145 recog_data.is_asm = false;
2146
2147 switch (GET_CODE (body))
2148 {
2149 case USE:
2150 case CLOBBER:
2151 case ASM_INPUT:
2152 case ADDR_VEC:
2153 case ADDR_DIFF_VEC:
2154 case VAR_LOCATION:
2155 return;
2156
2157 case SET:
2158 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2159 goto asm_insn;
2160 else
2161 goto normal_insn;
2162 case PARALLEL:
2163 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2164 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2165 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2166 goto asm_insn;
2167 else
2168 goto normal_insn;
2169 case ASM_OPERANDS:
2170 asm_insn:
2171 recog_data.n_operands = noperands = asm_noperands (body);
2172 if (noperands >= 0)
2173 {
2174 /* This insn is an `asm' with operands. */
2175
2176 /* expand_asm_operands makes sure there aren't too many operands. */
2177 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2178
2179 /* Now get the operand values and constraints out of the insn. */
2180 decode_asm_operands (body, recog_data.operand,
2181 recog_data.operand_loc,
2182 recog_data.constraints,
2183 recog_data.operand_mode, NULL);
2184 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2185 if (noperands > 0)
2186 {
2187 const char *p = recog_data.constraints[0];
2188 recog_data.n_alternatives = 1;
2189 while (*p)
2190 recog_data.n_alternatives += (*p++ == ',');
2191 }
2192 recog_data.is_asm = true;
2193 break;
2194 }
2195 fatal_insn_not_found (insn);
2196
2197 default:
2198 normal_insn:
2199 /* Ordinary insn: recognize it, get the operands via insn_extract
2200 and get the constraints. */
2201
2202 icode = recog_memoized (insn);
2203 if (icode < 0)
2204 fatal_insn_not_found (insn);
2205
2206 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2207 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2208 recog_data.n_dups = insn_data[icode].n_dups;
2209
2210 insn_extract (insn);
2211
2212 for (i = 0; i < noperands; i++)
2213 {
2214 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2215 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2216 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2217 /* VOIDmode match_operands gets mode from their real operand. */
2218 if (recog_data.operand_mode[i] == VOIDmode)
2219 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2220 }
2221 }
2222 for (i = 0; i < noperands; i++)
2223 recog_data.operand_type[i]
2224 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2225 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2226 : OP_IN);
2227
2228 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2229
2230 recog_data.enabled_alternatives = get_enabled_alternatives (insn);
2231
2232 recog_data.insn = NULL;
2233 which_alternative = -1;
2234 }
2235
2236 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2237 N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2238 OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2239 has N_OPERANDS entries. */
2240
2241 void
2242 preprocess_constraints (int n_operands, int n_alternatives,
2243 const char **constraints,
2244 operand_alternative *op_alt_base)
2245 {
2246 for (int i = 0; i < n_operands; i++)
2247 {
2248 int j;
2249 struct operand_alternative *op_alt;
2250 const char *p = constraints[i];
2251
2252 op_alt = op_alt_base;
2253
2254 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2255 {
2256 op_alt[i].cl = NO_REGS;
2257 op_alt[i].constraint = p;
2258 op_alt[i].matches = -1;
2259 op_alt[i].matched = -1;
2260
2261 if (*p == '\0' || *p == ',')
2262 {
2263 op_alt[i].anything_ok = 1;
2264 continue;
2265 }
2266
2267 for (;;)
2268 {
2269 char c = *p;
2270 if (c == '#')
2271 do
2272 c = *++p;
2273 while (c != ',' && c != '\0');
2274 if (c == ',' || c == '\0')
2275 {
2276 p++;
2277 break;
2278 }
2279
2280 switch (c)
2281 {
2282 case '?':
2283 op_alt[i].reject += 6;
2284 break;
2285 case '!':
2286 op_alt[i].reject += 600;
2287 break;
2288 case '&':
2289 op_alt[i].earlyclobber = 1;
2290 break;
2291
2292 case '0': case '1': case '2': case '3': case '4':
2293 case '5': case '6': case '7': case '8': case '9':
2294 {
2295 char *end;
2296 op_alt[i].matches = strtoul (p, &end, 10);
2297 op_alt[op_alt[i].matches].matched = i;
2298 p = end;
2299 }
2300 continue;
2301
2302 case 'X':
2303 op_alt[i].anything_ok = 1;
2304 break;
2305
2306 case 'g':
2307 op_alt[i].cl =
2308 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2309 break;
2310
2311 default:
2312 enum constraint_num cn = lookup_constraint (p);
2313 enum reg_class cl;
2314 switch (get_constraint_type (cn))
2315 {
2316 case CT_REGISTER:
2317 cl = reg_class_for_constraint (cn);
2318 if (cl != NO_REGS)
2319 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2320 break;
2321
2322 case CT_CONST_INT:
2323 break;
2324
2325 case CT_MEMORY:
2326 op_alt[i].memory_ok = 1;
2327 break;
2328
2329 case CT_ADDRESS:
2330 op_alt[i].is_address = 1;
2331 op_alt[i].cl
2332 = (reg_class_subunion
2333 [(int) op_alt[i].cl]
2334 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2335 ADDRESS, SCRATCH)]);
2336 break;
2337
2338 case CT_FIXED_FORM:
2339 break;
2340 }
2341 break;
2342 }
2343 p += CONSTRAINT_LEN (c, p);
2344 }
2345 }
2346 }
2347 }
2348
2349 /* Return an array of operand_alternative instructions for
2350 instruction ICODE. */
2351
2352 const operand_alternative *
2353 preprocess_insn_constraints (int icode)
2354 {
2355 gcc_checking_assert (IN_RANGE (icode, 0, LAST_INSN_CODE));
2356 if (this_target_recog->x_op_alt[icode])
2357 return this_target_recog->x_op_alt[icode];
2358
2359 int n_operands = insn_data[icode].n_operands;
2360 if (n_operands == 0)
2361 return 0;
2362 /* Always provide at least one alternative so that which_op_alt ()
2363 works correctly. If the instruction has 0 alternatives (i.e. all
2364 constraint strings are empty) then each operand in this alternative
2365 will have anything_ok set. */
2366 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2367 int n_entries = n_operands * n_alternatives;
2368
2369 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2370 const char **constraints = XALLOCAVEC (const char *, n_operands);
2371
2372 for (int i = 0; i < n_operands; ++i)
2373 constraints[i] = insn_data[icode].operand[i].constraint;
2374 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2375
2376 this_target_recog->x_op_alt[icode] = op_alt;
2377 return op_alt;
2378 }
2379
2380 /* After calling extract_insn, you can use this function to extract some
2381 information from the constraint strings into a more usable form.
2382 The collected data is stored in recog_op_alt. */
2383
2384 void
2385 preprocess_constraints (rtx insn)
2386 {
2387 int icode = INSN_CODE (insn);
2388 if (icode >= 0)
2389 recog_op_alt = preprocess_insn_constraints (icode);
2390 else
2391 {
2392 int n_operands = recog_data.n_operands;
2393 int n_alternatives = recog_data.n_alternatives;
2394 int n_entries = n_operands * n_alternatives;
2395 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2396 preprocess_constraints (n_operands, n_alternatives,
2397 recog_data.constraints, asm_op_alt);
2398 recog_op_alt = asm_op_alt;
2399 }
2400 }
2401
2402 /* Check the operands of an insn against the insn's operand constraints
2403 and return 1 if they are valid.
2404 The information about the insn's operands, constraints, operand modes
2405 etc. is obtained from the global variables set up by extract_insn.
2406
2407 WHICH_ALTERNATIVE is set to a number which indicates which
2408 alternative of constraints was matched: 0 for the first alternative,
2409 1 for the next, etc.
2410
2411 In addition, when two operands are required to match
2412 and it happens that the output operand is (reg) while the
2413 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2414 make the output operand look like the input.
2415 This is because the output operand is the one the template will print.
2416
2417 This is used in final, just before printing the assembler code and by
2418 the routines that determine an insn's attribute.
2419
2420 If STRICT is a positive nonzero value, it means that we have been
2421 called after reload has been completed. In that case, we must
2422 do all checks strictly. If it is zero, it means that we have been called
2423 before reload has completed. In that case, we first try to see if we can
2424 find an alternative that matches strictly. If not, we try again, this
2425 time assuming that reload will fix up the insn. This provides a "best
2426 guess" for the alternative and is used to compute attributes of insns prior
2427 to reload. A negative value of STRICT is used for this internal call. */
2428
2429 struct funny_match
2430 {
2431 int this_op, other;
2432 };
2433
2434 int
2435 constrain_operands (int strict)
2436 {
2437 const char *constraints[MAX_RECOG_OPERANDS];
2438 int matching_operands[MAX_RECOG_OPERANDS];
2439 int earlyclobber[MAX_RECOG_OPERANDS];
2440 int c;
2441
2442 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2443 int funny_match_index;
2444
2445 which_alternative = 0;
2446 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2447 return 1;
2448
2449 for (c = 0; c < recog_data.n_operands; c++)
2450 {
2451 constraints[c] = recog_data.constraints[c];
2452 matching_operands[c] = -1;
2453 }
2454
2455 do
2456 {
2457 int seen_earlyclobber_at = -1;
2458 int opno;
2459 int lose = 0;
2460 funny_match_index = 0;
2461
2462 if (!TEST_BIT (recog_data.enabled_alternatives, which_alternative))
2463 {
2464 int i;
2465
2466 for (i = 0; i < recog_data.n_operands; i++)
2467 constraints[i] = skip_alternative (constraints[i]);
2468
2469 which_alternative++;
2470 continue;
2471 }
2472
2473 for (opno = 0; opno < recog_data.n_operands; opno++)
2474 {
2475 rtx op = recog_data.operand[opno];
2476 enum machine_mode mode = GET_MODE (op);
2477 const char *p = constraints[opno];
2478 int offset = 0;
2479 int win = 0;
2480 int val;
2481 int len;
2482
2483 earlyclobber[opno] = 0;
2484
2485 /* A unary operator may be accepted by the predicate, but it
2486 is irrelevant for matching constraints. */
2487 if (UNARY_P (op))
2488 op = XEXP (op, 0);
2489
2490 if (GET_CODE (op) == SUBREG)
2491 {
2492 if (REG_P (SUBREG_REG (op))
2493 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2494 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2495 GET_MODE (SUBREG_REG (op)),
2496 SUBREG_BYTE (op),
2497 GET_MODE (op));
2498 op = SUBREG_REG (op);
2499 }
2500
2501 /* An empty constraint or empty alternative
2502 allows anything which matched the pattern. */
2503 if (*p == 0 || *p == ',')
2504 win = 1;
2505
2506 do
2507 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2508 {
2509 case '\0':
2510 len = 0;
2511 break;
2512 case ',':
2513 c = '\0';
2514 break;
2515
2516 case '#':
2517 /* Ignore rest of this alternative as far as
2518 constraint checking is concerned. */
2519 do
2520 p++;
2521 while (*p && *p != ',');
2522 len = 0;
2523 break;
2524
2525 case '&':
2526 earlyclobber[opno] = 1;
2527 if (seen_earlyclobber_at < 0)
2528 seen_earlyclobber_at = opno;
2529 break;
2530
2531 case '0': case '1': case '2': case '3': case '4':
2532 case '5': case '6': case '7': case '8': case '9':
2533 {
2534 /* This operand must be the same as a previous one.
2535 This kind of constraint is used for instructions such
2536 as add when they take only two operands.
2537
2538 Note that the lower-numbered operand is passed first.
2539
2540 If we are not testing strictly, assume that this
2541 constraint will be satisfied. */
2542
2543 char *end;
2544 int match;
2545
2546 match = strtoul (p, &end, 10);
2547 p = end;
2548
2549 if (strict < 0)
2550 val = 1;
2551 else
2552 {
2553 rtx op1 = recog_data.operand[match];
2554 rtx op2 = recog_data.operand[opno];
2555
2556 /* A unary operator may be accepted by the predicate,
2557 but it is irrelevant for matching constraints. */
2558 if (UNARY_P (op1))
2559 op1 = XEXP (op1, 0);
2560 if (UNARY_P (op2))
2561 op2 = XEXP (op2, 0);
2562
2563 val = operands_match_p (op1, op2);
2564 }
2565
2566 matching_operands[opno] = match;
2567 matching_operands[match] = opno;
2568
2569 if (val != 0)
2570 win = 1;
2571
2572 /* If output is *x and input is *--x, arrange later
2573 to change the output to *--x as well, since the
2574 output op is the one that will be printed. */
2575 if (val == 2 && strict > 0)
2576 {
2577 funny_match[funny_match_index].this_op = opno;
2578 funny_match[funny_match_index++].other = match;
2579 }
2580 }
2581 len = 0;
2582 break;
2583
2584 case 'p':
2585 /* p is used for address_operands. When we are called by
2586 gen_reload, no one will have checked that the address is
2587 strictly valid, i.e., that all pseudos requiring hard regs
2588 have gotten them. */
2589 if (strict <= 0
2590 || (strict_memory_address_p (recog_data.operand_mode[opno],
2591 op)))
2592 win = 1;
2593 break;
2594
2595 /* No need to check general_operand again;
2596 it was done in insn-recog.c. Well, except that reload
2597 doesn't check the validity of its replacements, but
2598 that should only matter when there's a bug. */
2599 case 'g':
2600 /* Anything goes unless it is a REG and really has a hard reg
2601 but the hard reg is not in the class GENERAL_REGS. */
2602 if (REG_P (op))
2603 {
2604 if (strict < 0
2605 || GENERAL_REGS == ALL_REGS
2606 || (reload_in_progress
2607 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2608 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2609 win = 1;
2610 }
2611 else if (strict < 0 || general_operand (op, mode))
2612 win = 1;
2613 break;
2614
2615 default:
2616 {
2617 enum constraint_num cn = lookup_constraint (p);
2618 enum reg_class cl = reg_class_for_constraint (cn);
2619 if (cl != NO_REGS)
2620 {
2621 if (strict < 0
2622 || (strict == 0
2623 && REG_P (op)
2624 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2625 || (strict == 0 && GET_CODE (op) == SCRATCH)
2626 || (REG_P (op)
2627 && reg_fits_class_p (op, cl, offset, mode)))
2628 win = 1;
2629 }
2630
2631 else if (constraint_satisfied_p (op, cn))
2632 win = 1;
2633
2634 else if (insn_extra_memory_constraint (cn)
2635 /* Every memory operand can be reloaded to fit. */
2636 && ((strict < 0 && MEM_P (op))
2637 /* Before reload, accept what reload can turn
2638 into mem. */
2639 || (strict < 0 && CONSTANT_P (op))
2640 /* During reload, accept a pseudo */
2641 || (reload_in_progress && REG_P (op)
2642 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2643 win = 1;
2644 else if (insn_extra_address_constraint (cn)
2645 /* Every address operand can be reloaded to fit. */
2646 && strict < 0)
2647 win = 1;
2648 /* Cater to architectures like IA-64 that define extra memory
2649 constraints without using define_memory_constraint. */
2650 else if (reload_in_progress
2651 && REG_P (op)
2652 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2653 && reg_renumber[REGNO (op)] < 0
2654 && reg_equiv_mem (REGNO (op)) != 0
2655 && constraint_satisfied_p
2656 (reg_equiv_mem (REGNO (op)), cn))
2657 win = 1;
2658 break;
2659 }
2660 }
2661 while (p += len, c);
2662
2663 constraints[opno] = p;
2664 /* If this operand did not win somehow,
2665 this alternative loses. */
2666 if (! win)
2667 lose = 1;
2668 }
2669 /* This alternative won; the operands are ok.
2670 Change whichever operands this alternative says to change. */
2671 if (! lose)
2672 {
2673 int opno, eopno;
2674
2675 /* See if any earlyclobber operand conflicts with some other
2676 operand. */
2677
2678 if (strict > 0 && seen_earlyclobber_at >= 0)
2679 for (eopno = seen_earlyclobber_at;
2680 eopno < recog_data.n_operands;
2681 eopno++)
2682 /* Ignore earlyclobber operands now in memory,
2683 because we would often report failure when we have
2684 two memory operands, one of which was formerly a REG. */
2685 if (earlyclobber[eopno]
2686 && REG_P (recog_data.operand[eopno]))
2687 for (opno = 0; opno < recog_data.n_operands; opno++)
2688 if ((MEM_P (recog_data.operand[opno])
2689 || recog_data.operand_type[opno] != OP_OUT)
2690 && opno != eopno
2691 /* Ignore things like match_operator operands. */
2692 && *recog_data.constraints[opno] != 0
2693 && ! (matching_operands[opno] == eopno
2694 && operands_match_p (recog_data.operand[opno],
2695 recog_data.operand[eopno]))
2696 && ! safe_from_earlyclobber (recog_data.operand[opno],
2697 recog_data.operand[eopno]))
2698 lose = 1;
2699
2700 if (! lose)
2701 {
2702 while (--funny_match_index >= 0)
2703 {
2704 recog_data.operand[funny_match[funny_match_index].other]
2705 = recog_data.operand[funny_match[funny_match_index].this_op];
2706 }
2707
2708 #ifdef AUTO_INC_DEC
2709 /* For operands without < or > constraints reject side-effects. */
2710 if (recog_data.is_asm)
2711 {
2712 for (opno = 0; opno < recog_data.n_operands; opno++)
2713 if (MEM_P (recog_data.operand[opno]))
2714 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2715 {
2716 case PRE_INC:
2717 case POST_INC:
2718 case PRE_DEC:
2719 case POST_DEC:
2720 case PRE_MODIFY:
2721 case POST_MODIFY:
2722 if (strchr (recog_data.constraints[opno], '<') == NULL
2723 && strchr (recog_data.constraints[opno], '>')
2724 == NULL)
2725 return 0;
2726 break;
2727 default:
2728 break;
2729 }
2730 }
2731 #endif
2732 return 1;
2733 }
2734 }
2735
2736 which_alternative++;
2737 }
2738 while (which_alternative < recog_data.n_alternatives);
2739
2740 which_alternative = -1;
2741 /* If we are about to reject this, but we are not to test strictly,
2742 try a very loose test. Only return failure if it fails also. */
2743 if (strict == 0)
2744 return constrain_operands (-1);
2745 else
2746 return 0;
2747 }
2748
2749 /* Return true iff OPERAND (assumed to be a REG rtx)
2750 is a hard reg in class CLASS when its regno is offset by OFFSET
2751 and changed to mode MODE.
2752 If REG occupies multiple hard regs, all of them must be in CLASS. */
2753
2754 bool
2755 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2756 enum machine_mode mode)
2757 {
2758 unsigned int regno = REGNO (operand);
2759
2760 if (cl == NO_REGS)
2761 return false;
2762
2763 /* Regno must not be a pseudo register. Offset may be negative. */
2764 return (HARD_REGISTER_NUM_P (regno)
2765 && HARD_REGISTER_NUM_P (regno + offset)
2766 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2767 regno + offset));
2768 }
2769 \f
2770 /* Split single instruction. Helper function for split_all_insns and
2771 split_all_insns_noflow. Return last insn in the sequence if successful,
2772 or NULL if unsuccessful. */
2773
2774 static rtx
2775 split_insn (rtx_insn *insn)
2776 {
2777 /* Split insns here to get max fine-grain parallelism. */
2778 rtx_insn *first = PREV_INSN (insn);
2779 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2780 rtx insn_set, last_set, note;
2781
2782 if (last == insn)
2783 return NULL_RTX;
2784
2785 /* If the original instruction was a single set that was known to be
2786 equivalent to a constant, see if we can say the same about the last
2787 instruction in the split sequence. The two instructions must set
2788 the same destination. */
2789 insn_set = single_set (insn);
2790 if (insn_set)
2791 {
2792 last_set = single_set (last);
2793 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2794 {
2795 note = find_reg_equal_equiv_note (insn);
2796 if (note && CONSTANT_P (XEXP (note, 0)))
2797 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2798 else if (CONSTANT_P (SET_SRC (insn_set)))
2799 set_unique_reg_note (last, REG_EQUAL,
2800 copy_rtx (SET_SRC (insn_set)));
2801 }
2802 }
2803
2804 /* try_split returns the NOTE that INSN became. */
2805 SET_INSN_DELETED (insn);
2806
2807 /* ??? Coddle to md files that generate subregs in post-reload
2808 splitters instead of computing the proper hard register. */
2809 if (reload_completed && first != last)
2810 {
2811 first = NEXT_INSN (first);
2812 for (;;)
2813 {
2814 if (INSN_P (first))
2815 cleanup_subreg_operands (first);
2816 if (first == last)
2817 break;
2818 first = NEXT_INSN (first);
2819 }
2820 }
2821
2822 return last;
2823 }
2824
2825 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2826
2827 void
2828 split_all_insns (void)
2829 {
2830 sbitmap blocks;
2831 bool changed;
2832 basic_block bb;
2833
2834 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
2835 bitmap_clear (blocks);
2836 changed = false;
2837
2838 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2839 {
2840 rtx_insn *insn, *next;
2841 bool finish = false;
2842
2843 rtl_profile_for_bb (bb);
2844 for (insn = BB_HEAD (bb); !finish ; insn = next)
2845 {
2846 /* Can't use `next_real_insn' because that might go across
2847 CODE_LABELS and short-out basic blocks. */
2848 next = NEXT_INSN (insn);
2849 finish = (insn == BB_END (bb));
2850 if (INSN_P (insn))
2851 {
2852 rtx set = single_set (insn);
2853
2854 /* Don't split no-op move insns. These should silently
2855 disappear later in final. Splitting such insns would
2856 break the code that handles LIBCALL blocks. */
2857 if (set && set_noop_p (set))
2858 {
2859 /* Nops get in the way while scheduling, so delete them
2860 now if register allocation has already been done. It
2861 is too risky to try to do this before register
2862 allocation, and there are unlikely to be very many
2863 nops then anyways. */
2864 if (reload_completed)
2865 delete_insn_and_edges (insn);
2866 }
2867 else
2868 {
2869 if (split_insn (insn))
2870 {
2871 bitmap_set_bit (blocks, bb->index);
2872 changed = true;
2873 }
2874 }
2875 }
2876 }
2877 }
2878
2879 default_rtl_profile ();
2880 if (changed)
2881 find_many_sub_basic_blocks (blocks);
2882
2883 #ifdef ENABLE_CHECKING
2884 verify_flow_info ();
2885 #endif
2886
2887 sbitmap_free (blocks);
2888 }
2889
2890 /* Same as split_all_insns, but do not expect CFG to be available.
2891 Used by machine dependent reorg passes. */
2892
2893 unsigned int
2894 split_all_insns_noflow (void)
2895 {
2896 rtx_insn *next, *insn;
2897
2898 for (insn = get_insns (); insn; insn = next)
2899 {
2900 next = NEXT_INSN (insn);
2901 if (INSN_P (insn))
2902 {
2903 /* Don't split no-op move insns. These should silently
2904 disappear later in final. Splitting such insns would
2905 break the code that handles LIBCALL blocks. */
2906 rtx set = single_set (insn);
2907 if (set && set_noop_p (set))
2908 {
2909 /* Nops get in the way while scheduling, so delete them
2910 now if register allocation has already been done. It
2911 is too risky to try to do this before register
2912 allocation, and there are unlikely to be very many
2913 nops then anyways.
2914
2915 ??? Should we use delete_insn when the CFG isn't valid? */
2916 if (reload_completed)
2917 delete_insn_and_edges (insn);
2918 }
2919 else
2920 split_insn (insn);
2921 }
2922 }
2923 return 0;
2924 }
2925 \f
2926 #ifdef HAVE_peephole2
2927 struct peep2_insn_data
2928 {
2929 rtx insn;
2930 regset live_before;
2931 };
2932
2933 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2934 static int peep2_current;
2935
2936 static bool peep2_do_rebuild_jump_labels;
2937 static bool peep2_do_cleanup_cfg;
2938
2939 /* The number of instructions available to match a peep2. */
2940 int peep2_current_count;
2941
2942 /* A non-insn marker indicating the last insn of the block.
2943 The live_before regset for this element is correct, indicating
2944 DF_LIVE_OUT for the block. */
2945 #define PEEP2_EOB pc_rtx
2946
2947 /* Wrap N to fit into the peep2_insn_data buffer. */
2948
2949 static int
2950 peep2_buf_position (int n)
2951 {
2952 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2953 n -= MAX_INSNS_PER_PEEP2 + 1;
2954 return n;
2955 }
2956
2957 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2958 does not exist. Used by the recognizer to find the next insn to match
2959 in a multi-insn pattern. */
2960
2961 rtx
2962 peep2_next_insn (int n)
2963 {
2964 gcc_assert (n <= peep2_current_count);
2965
2966 n = peep2_buf_position (peep2_current + n);
2967
2968 return peep2_insn_data[n].insn;
2969 }
2970
2971 /* Return true if REGNO is dead before the Nth non-note insn
2972 after `current'. */
2973
2974 int
2975 peep2_regno_dead_p (int ofs, int regno)
2976 {
2977 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2978
2979 ofs = peep2_buf_position (peep2_current + ofs);
2980
2981 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2982
2983 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2984 }
2985
2986 /* Similarly for a REG. */
2987
2988 int
2989 peep2_reg_dead_p (int ofs, rtx reg)
2990 {
2991 int regno, n;
2992
2993 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
2994
2995 ofs = peep2_buf_position (peep2_current + ofs);
2996
2997 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
2998
2999 regno = REGNO (reg);
3000 n = hard_regno_nregs[regno][GET_MODE (reg)];
3001 while (--n >= 0)
3002 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3003 return 0;
3004 return 1;
3005 }
3006
3007 /* Regno offset to be used in the register search. */
3008 static int search_ofs;
3009
3010 /* Try to find a hard register of mode MODE, matching the register class in
3011 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3012 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3013 in which case the only condition is that the register must be available
3014 before CURRENT_INSN.
3015 Registers that already have bits set in REG_SET will not be considered.
3016
3017 If an appropriate register is available, it will be returned and the
3018 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3019 returned. */
3020
3021 rtx
3022 peep2_find_free_register (int from, int to, const char *class_str,
3023 enum machine_mode mode, HARD_REG_SET *reg_set)
3024 {
3025 enum reg_class cl;
3026 HARD_REG_SET live;
3027 df_ref def;
3028 int i;
3029
3030 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3031 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3032
3033 from = peep2_buf_position (peep2_current + from);
3034 to = peep2_buf_position (peep2_current + to);
3035
3036 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3037 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3038
3039 while (from != to)
3040 {
3041 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3042
3043 /* Don't use registers set or clobbered by the insn. */
3044 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3045 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3046
3047 from = peep2_buf_position (from + 1);
3048 }
3049
3050 cl = reg_class_for_constraint (lookup_constraint (class_str));
3051
3052 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3053 {
3054 int raw_regno, regno, success, j;
3055
3056 /* Distribute the free registers as much as possible. */
3057 raw_regno = search_ofs + i;
3058 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3059 raw_regno -= FIRST_PSEUDO_REGISTER;
3060 #ifdef REG_ALLOC_ORDER
3061 regno = reg_alloc_order[raw_regno];
3062 #else
3063 regno = raw_regno;
3064 #endif
3065
3066 /* Can it support the mode we need? */
3067 if (! HARD_REGNO_MODE_OK (regno, mode))
3068 continue;
3069
3070 success = 1;
3071 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3072 {
3073 /* Don't allocate fixed registers. */
3074 if (fixed_regs[regno + j])
3075 {
3076 success = 0;
3077 break;
3078 }
3079 /* Don't allocate global registers. */
3080 if (global_regs[regno + j])
3081 {
3082 success = 0;
3083 break;
3084 }
3085 /* Make sure the register is of the right class. */
3086 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3087 {
3088 success = 0;
3089 break;
3090 }
3091 /* And that we don't create an extra save/restore. */
3092 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3093 {
3094 success = 0;
3095 break;
3096 }
3097
3098 if (! targetm.hard_regno_scratch_ok (regno + j))
3099 {
3100 success = 0;
3101 break;
3102 }
3103
3104 /* And we don't clobber traceback for noreturn functions. */
3105 if ((regno + j == FRAME_POINTER_REGNUM
3106 || regno + j == HARD_FRAME_POINTER_REGNUM)
3107 && (! reload_completed || frame_pointer_needed))
3108 {
3109 success = 0;
3110 break;
3111 }
3112
3113 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3114 || TEST_HARD_REG_BIT (live, regno + j))
3115 {
3116 success = 0;
3117 break;
3118 }
3119 }
3120
3121 if (success)
3122 {
3123 add_to_hard_reg_set (reg_set, mode, regno);
3124
3125 /* Start the next search with the next register. */
3126 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3127 raw_regno = 0;
3128 search_ofs = raw_regno;
3129
3130 return gen_rtx_REG (mode, regno);
3131 }
3132 }
3133
3134 search_ofs = 0;
3135 return NULL_RTX;
3136 }
3137
3138 /* Forget all currently tracked instructions, only remember current
3139 LIVE regset. */
3140
3141 static void
3142 peep2_reinit_state (regset live)
3143 {
3144 int i;
3145
3146 /* Indicate that all slots except the last holds invalid data. */
3147 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3148 peep2_insn_data[i].insn = NULL_RTX;
3149 peep2_current_count = 0;
3150
3151 /* Indicate that the last slot contains live_after data. */
3152 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3153 peep2_current = MAX_INSNS_PER_PEEP2;
3154
3155 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3156 }
3157
3158 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3159 starting at INSN. Perform the replacement, removing the old insns and
3160 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3161 if the replacement is rejected. */
3162
3163 static rtx
3164 peep2_attempt (basic_block bb, rtx uncast_insn, int match_len, rtx_insn *attempt)
3165 {
3166 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3167 int i;
3168 rtx_insn *last, *before_try, *x;
3169 rtx eh_note, as_note;
3170 rtx old_insn;
3171 rtx_insn *new_insn;
3172 bool was_call = false;
3173
3174 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3175 match more than one insn, or to be split into more than one insn. */
3176 old_insn = peep2_insn_data[peep2_current].insn;
3177 if (RTX_FRAME_RELATED_P (old_insn))
3178 {
3179 bool any_note = false;
3180 rtx note;
3181
3182 if (match_len != 0)
3183 return NULL;
3184
3185 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3186 may be in the stream for the purpose of register allocation. */
3187 if (active_insn_p (attempt))
3188 new_insn = attempt;
3189 else
3190 new_insn = next_active_insn (attempt);
3191 if (next_active_insn (new_insn))
3192 return NULL;
3193
3194 /* We have a 1-1 replacement. Copy over any frame-related info. */
3195 RTX_FRAME_RELATED_P (new_insn) = 1;
3196
3197 /* Allow the backend to fill in a note during the split. */
3198 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3199 switch (REG_NOTE_KIND (note))
3200 {
3201 case REG_FRAME_RELATED_EXPR:
3202 case REG_CFA_DEF_CFA:
3203 case REG_CFA_ADJUST_CFA:
3204 case REG_CFA_OFFSET:
3205 case REG_CFA_REGISTER:
3206 case REG_CFA_EXPRESSION:
3207 case REG_CFA_RESTORE:
3208 case REG_CFA_SET_VDRAP:
3209 any_note = true;
3210 break;
3211 default:
3212 break;
3213 }
3214
3215 /* If the backend didn't supply a note, copy one over. */
3216 if (!any_note)
3217 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3218 switch (REG_NOTE_KIND (note))
3219 {
3220 case REG_FRAME_RELATED_EXPR:
3221 case REG_CFA_DEF_CFA:
3222 case REG_CFA_ADJUST_CFA:
3223 case REG_CFA_OFFSET:
3224 case REG_CFA_REGISTER:
3225 case REG_CFA_EXPRESSION:
3226 case REG_CFA_RESTORE:
3227 case REG_CFA_SET_VDRAP:
3228 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3229 any_note = true;
3230 break;
3231 default:
3232 break;
3233 }
3234
3235 /* If there still isn't a note, make sure the unwind info sees the
3236 same expression as before the split. */
3237 if (!any_note)
3238 {
3239 rtx old_set, new_set;
3240
3241 /* The old insn had better have been simple, or annotated. */
3242 old_set = single_set (old_insn);
3243 gcc_assert (old_set != NULL);
3244
3245 new_set = single_set (new_insn);
3246 if (!new_set || !rtx_equal_p (new_set, old_set))
3247 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3248 }
3249
3250 /* Copy prologue/epilogue status. This is required in order to keep
3251 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3252 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3253 }
3254
3255 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3256 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3257 cfg-related call notes. */
3258 for (i = 0; i <= match_len; ++i)
3259 {
3260 int j;
3261 rtx note;
3262
3263 j = peep2_buf_position (peep2_current + i);
3264 old_insn = peep2_insn_data[j].insn;
3265 if (!CALL_P (old_insn))
3266 continue;
3267 was_call = true;
3268
3269 new_insn = attempt;
3270 while (new_insn != NULL_RTX)
3271 {
3272 if (CALL_P (new_insn))
3273 break;
3274 new_insn = NEXT_INSN (new_insn);
3275 }
3276
3277 gcc_assert (new_insn != NULL_RTX);
3278
3279 CALL_INSN_FUNCTION_USAGE (new_insn)
3280 = CALL_INSN_FUNCTION_USAGE (old_insn);
3281 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3282
3283 for (note = REG_NOTES (old_insn);
3284 note;
3285 note = XEXP (note, 1))
3286 switch (REG_NOTE_KIND (note))
3287 {
3288 case REG_NORETURN:
3289 case REG_SETJMP:
3290 case REG_TM:
3291 add_reg_note (new_insn, REG_NOTE_KIND (note),
3292 XEXP (note, 0));
3293 break;
3294 default:
3295 /* Discard all other reg notes. */
3296 break;
3297 }
3298
3299 /* Croak if there is another call in the sequence. */
3300 while (++i <= match_len)
3301 {
3302 j = peep2_buf_position (peep2_current + i);
3303 old_insn = peep2_insn_data[j].insn;
3304 gcc_assert (!CALL_P (old_insn));
3305 }
3306 break;
3307 }
3308
3309 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3310 move those notes over to the new sequence. */
3311 as_note = NULL;
3312 for (i = match_len; i >= 0; --i)
3313 {
3314 int j = peep2_buf_position (peep2_current + i);
3315 old_insn = peep2_insn_data[j].insn;
3316
3317 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3318 if (as_note)
3319 break;
3320 }
3321
3322 i = peep2_buf_position (peep2_current + match_len);
3323 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3324
3325 /* Replace the old sequence with the new. */
3326 last = emit_insn_after_setloc (attempt,
3327 peep2_insn_data[i].insn,
3328 INSN_LOCATION (peep2_insn_data[i].insn));
3329 before_try = PREV_INSN (insn);
3330 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3331
3332 /* Re-insert the EH_REGION notes. */
3333 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3334 {
3335 edge eh_edge;
3336 edge_iterator ei;
3337
3338 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3339 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3340 break;
3341
3342 if (eh_note)
3343 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3344
3345 if (eh_edge)
3346 for (x = last; x != before_try; x = PREV_INSN (x))
3347 if (x != BB_END (bb)
3348 && (can_throw_internal (x)
3349 || can_nonlocal_goto (x)))
3350 {
3351 edge nfte, nehe;
3352 int flags;
3353
3354 nfte = split_block (bb, x);
3355 flags = (eh_edge->flags
3356 & (EDGE_EH | EDGE_ABNORMAL));
3357 if (CALL_P (x))
3358 flags |= EDGE_ABNORMAL_CALL;
3359 nehe = make_edge (nfte->src, eh_edge->dest,
3360 flags);
3361
3362 nehe->probability = eh_edge->probability;
3363 nfte->probability
3364 = REG_BR_PROB_BASE - nehe->probability;
3365
3366 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3367 bb = nfte->src;
3368 eh_edge = nehe;
3369 }
3370
3371 /* Converting possibly trapping insn to non-trapping is
3372 possible. Zap dummy outgoing edges. */
3373 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3374 }
3375
3376 /* Re-insert the ARGS_SIZE notes. */
3377 if (as_note)
3378 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3379
3380 /* If we generated a jump instruction, it won't have
3381 JUMP_LABEL set. Recompute after we're done. */
3382 for (x = last; x != before_try; x = PREV_INSN (x))
3383 if (JUMP_P (x))
3384 {
3385 peep2_do_rebuild_jump_labels = true;
3386 break;
3387 }
3388
3389 return last;
3390 }
3391
3392 /* After performing a replacement in basic block BB, fix up the life
3393 information in our buffer. LAST is the last of the insns that we
3394 emitted as a replacement. PREV is the insn before the start of
3395 the replacement. MATCH_LEN is the number of instructions that were
3396 matched, and which now need to be replaced in the buffer. */
3397
3398 static void
3399 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3400 {
3401 int i = peep2_buf_position (peep2_current + match_len + 1);
3402 rtx_insn *x;
3403 regset_head live;
3404
3405 INIT_REG_SET (&live);
3406 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3407
3408 gcc_assert (peep2_current_count >= match_len + 1);
3409 peep2_current_count -= match_len + 1;
3410
3411 x = as_a <rtx_insn *> (last);
3412 do
3413 {
3414 if (INSN_P (x))
3415 {
3416 df_insn_rescan (x);
3417 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3418 {
3419 peep2_current_count++;
3420 if (--i < 0)
3421 i = MAX_INSNS_PER_PEEP2;
3422 peep2_insn_data[i].insn = x;
3423 df_simulate_one_insn_backwards (bb, x, &live);
3424 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3425 }
3426 }
3427 x = PREV_INSN (x);
3428 }
3429 while (x != prev);
3430 CLEAR_REG_SET (&live);
3431
3432 peep2_current = i;
3433 }
3434
3435 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3436 Return true if we added it, false otherwise. The caller will try to match
3437 peepholes against the buffer if we return false; otherwise it will try to
3438 add more instructions to the buffer. */
3439
3440 static bool
3441 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3442 {
3443 int pos;
3444
3445 /* Once we have filled the maximum number of insns the buffer can hold,
3446 allow the caller to match the insns against peepholes. We wait until
3447 the buffer is full in case the target has similar peepholes of different
3448 length; we always want to match the longest if possible. */
3449 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3450 return false;
3451
3452 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3453 any other pattern, lest it change the semantics of the frame info. */
3454 if (RTX_FRAME_RELATED_P (insn))
3455 {
3456 /* Let the buffer drain first. */
3457 if (peep2_current_count > 0)
3458 return false;
3459 /* Now the insn will be the only thing in the buffer. */
3460 }
3461
3462 pos = peep2_buf_position (peep2_current + peep2_current_count);
3463 peep2_insn_data[pos].insn = insn;
3464 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3465 peep2_current_count++;
3466
3467 df_simulate_one_insn_forwards (bb, as_a <rtx_insn *> (insn), live);
3468 return true;
3469 }
3470
3471 /* Perform the peephole2 optimization pass. */
3472
3473 static void
3474 peephole2_optimize (void)
3475 {
3476 rtx_insn *insn;
3477 bitmap live;
3478 int i;
3479 basic_block bb;
3480
3481 peep2_do_cleanup_cfg = false;
3482 peep2_do_rebuild_jump_labels = false;
3483
3484 df_set_flags (DF_LR_RUN_DCE);
3485 df_note_add_problem ();
3486 df_analyze ();
3487
3488 /* Initialize the regsets we're going to use. */
3489 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3490 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3491 search_ofs = 0;
3492 live = BITMAP_ALLOC (&reg_obstack);
3493
3494 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3495 {
3496 bool past_end = false;
3497 int pos;
3498
3499 rtl_profile_for_bb (bb);
3500
3501 /* Start up propagation. */
3502 bitmap_copy (live, DF_LR_IN (bb));
3503 df_simulate_initialize_forwards (bb, live);
3504 peep2_reinit_state (live);
3505
3506 insn = BB_HEAD (bb);
3507 for (;;)
3508 {
3509 rtx_insn *attempt;
3510 rtx head;
3511 int match_len;
3512
3513 if (!past_end && !NONDEBUG_INSN_P (insn))
3514 {
3515 next_insn:
3516 insn = NEXT_INSN (insn);
3517 if (insn == NEXT_INSN (BB_END (bb)))
3518 past_end = true;
3519 continue;
3520 }
3521 if (!past_end && peep2_fill_buffer (bb, insn, live))
3522 goto next_insn;
3523
3524 /* If we did not fill an empty buffer, it signals the end of the
3525 block. */
3526 if (peep2_current_count == 0)
3527 break;
3528
3529 /* The buffer filled to the current maximum, so try to match. */
3530
3531 pos = peep2_buf_position (peep2_current + peep2_current_count);
3532 peep2_insn_data[pos].insn = PEEP2_EOB;
3533 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3534
3535 /* Match the peephole. */
3536 head = peep2_insn_data[peep2_current].insn;
3537 attempt = safe_as_a <rtx_insn *> (
3538 peephole2_insns (PATTERN (head), head, &match_len));
3539 if (attempt != NULL)
3540 {
3541 rtx last = peep2_attempt (bb, head, match_len, attempt);
3542 if (last)
3543 {
3544 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3545 continue;
3546 }
3547 }
3548
3549 /* No match: advance the buffer by one insn. */
3550 peep2_current = peep2_buf_position (peep2_current + 1);
3551 peep2_current_count--;
3552 }
3553 }
3554
3555 default_rtl_profile ();
3556 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3557 BITMAP_FREE (peep2_insn_data[i].live_before);
3558 BITMAP_FREE (live);
3559 if (peep2_do_rebuild_jump_labels)
3560 rebuild_jump_labels (get_insns ());
3561 if (peep2_do_cleanup_cfg)
3562 cleanup_cfg (CLEANUP_CFG_CHANGED);
3563 }
3564 #endif /* HAVE_peephole2 */
3565
3566 /* Common predicates for use with define_bypass. */
3567
3568 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3569 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3570 must be either a single_set or a PARALLEL with SETs inside. */
3571
3572 int
3573 store_data_bypass_p (rtx out_insn, rtx in_insn)
3574 {
3575 rtx out_set, in_set;
3576 rtx out_pat, in_pat;
3577 rtx out_exp, in_exp;
3578 int i, j;
3579
3580 in_set = single_set (in_insn);
3581 if (in_set)
3582 {
3583 if (!MEM_P (SET_DEST (in_set)))
3584 return false;
3585
3586 out_set = single_set (out_insn);
3587 if (out_set)
3588 {
3589 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3590 return false;
3591 }
3592 else
3593 {
3594 out_pat = PATTERN (out_insn);
3595
3596 if (GET_CODE (out_pat) != PARALLEL)
3597 return false;
3598
3599 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3600 {
3601 out_exp = XVECEXP (out_pat, 0, i);
3602
3603 if (GET_CODE (out_exp) == CLOBBER)
3604 continue;
3605
3606 gcc_assert (GET_CODE (out_exp) == SET);
3607
3608 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3609 return false;
3610 }
3611 }
3612 }
3613 else
3614 {
3615 in_pat = PATTERN (in_insn);
3616 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3617
3618 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3619 {
3620 in_exp = XVECEXP (in_pat, 0, i);
3621
3622 if (GET_CODE (in_exp) == CLOBBER)
3623 continue;
3624
3625 gcc_assert (GET_CODE (in_exp) == SET);
3626
3627 if (!MEM_P (SET_DEST (in_exp)))
3628 return false;
3629
3630 out_set = single_set (out_insn);
3631 if (out_set)
3632 {
3633 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3634 return false;
3635 }
3636 else
3637 {
3638 out_pat = PATTERN (out_insn);
3639 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3640
3641 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3642 {
3643 out_exp = XVECEXP (out_pat, 0, j);
3644
3645 if (GET_CODE (out_exp) == CLOBBER)
3646 continue;
3647
3648 gcc_assert (GET_CODE (out_exp) == SET);
3649
3650 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3651 return false;
3652 }
3653 }
3654 }
3655 }
3656
3657 return true;
3658 }
3659
3660 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3661 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3662 or multiple set; IN_INSN should be single_set for truth, but for convenience
3663 of insn categorization may be any JUMP or CALL insn. */
3664
3665 int
3666 if_test_bypass_p (rtx out_insn, rtx in_insn)
3667 {
3668 rtx out_set, in_set;
3669
3670 in_set = single_set (in_insn);
3671 if (! in_set)
3672 {
3673 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3674 return false;
3675 }
3676
3677 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3678 return false;
3679 in_set = SET_SRC (in_set);
3680
3681 out_set = single_set (out_insn);
3682 if (out_set)
3683 {
3684 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3685 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3686 return false;
3687 }
3688 else
3689 {
3690 rtx out_pat;
3691 int i;
3692
3693 out_pat = PATTERN (out_insn);
3694 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3695
3696 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3697 {
3698 rtx exp = XVECEXP (out_pat, 0, i);
3699
3700 if (GET_CODE (exp) == CLOBBER)
3701 continue;
3702
3703 gcc_assert (GET_CODE (exp) == SET);
3704
3705 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3706 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3707 return false;
3708 }
3709 }
3710
3711 return true;
3712 }
3713 \f
3714 static unsigned int
3715 rest_of_handle_peephole2 (void)
3716 {
3717 #ifdef HAVE_peephole2
3718 peephole2_optimize ();
3719 #endif
3720 return 0;
3721 }
3722
3723 namespace {
3724
3725 const pass_data pass_data_peephole2 =
3726 {
3727 RTL_PASS, /* type */
3728 "peephole2", /* name */
3729 OPTGROUP_NONE, /* optinfo_flags */
3730 TV_PEEPHOLE2, /* tv_id */
3731 0, /* properties_required */
3732 0, /* properties_provided */
3733 0, /* properties_destroyed */
3734 0, /* todo_flags_start */
3735 TODO_df_finish, /* todo_flags_finish */
3736 };
3737
3738 class pass_peephole2 : public rtl_opt_pass
3739 {
3740 public:
3741 pass_peephole2 (gcc::context *ctxt)
3742 : rtl_opt_pass (pass_data_peephole2, ctxt)
3743 {}
3744
3745 /* opt_pass methods: */
3746 /* The epiphany backend creates a second instance of this pass, so we need
3747 a clone method. */
3748 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3749 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3750 virtual unsigned int execute (function *)
3751 {
3752 return rest_of_handle_peephole2 ();
3753 }
3754
3755 }; // class pass_peephole2
3756
3757 } // anon namespace
3758
3759 rtl_opt_pass *
3760 make_pass_peephole2 (gcc::context *ctxt)
3761 {
3762 return new pass_peephole2 (ctxt);
3763 }
3764
3765 namespace {
3766
3767 const pass_data pass_data_split_all_insns =
3768 {
3769 RTL_PASS, /* type */
3770 "split1", /* name */
3771 OPTGROUP_NONE, /* optinfo_flags */
3772 TV_NONE, /* tv_id */
3773 0, /* properties_required */
3774 0, /* properties_provided */
3775 0, /* properties_destroyed */
3776 0, /* todo_flags_start */
3777 0, /* todo_flags_finish */
3778 };
3779
3780 class pass_split_all_insns : public rtl_opt_pass
3781 {
3782 public:
3783 pass_split_all_insns (gcc::context *ctxt)
3784 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3785 {}
3786
3787 /* opt_pass methods: */
3788 /* The epiphany backend creates a second instance of this pass, so
3789 we need a clone method. */
3790 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3791 virtual unsigned int execute (function *)
3792 {
3793 split_all_insns ();
3794 return 0;
3795 }
3796
3797 }; // class pass_split_all_insns
3798
3799 } // anon namespace
3800
3801 rtl_opt_pass *
3802 make_pass_split_all_insns (gcc::context *ctxt)
3803 {
3804 return new pass_split_all_insns (ctxt);
3805 }
3806
3807 static unsigned int
3808 rest_of_handle_split_after_reload (void)
3809 {
3810 /* If optimizing, then go ahead and split insns now. */
3811 #ifndef STACK_REGS
3812 if (optimize > 0)
3813 #endif
3814 split_all_insns ();
3815 return 0;
3816 }
3817
3818 namespace {
3819
3820 const pass_data pass_data_split_after_reload =
3821 {
3822 RTL_PASS, /* type */
3823 "split2", /* name */
3824 OPTGROUP_NONE, /* optinfo_flags */
3825 TV_NONE, /* tv_id */
3826 0, /* properties_required */
3827 0, /* properties_provided */
3828 0, /* properties_destroyed */
3829 0, /* todo_flags_start */
3830 0, /* todo_flags_finish */
3831 };
3832
3833 class pass_split_after_reload : public rtl_opt_pass
3834 {
3835 public:
3836 pass_split_after_reload (gcc::context *ctxt)
3837 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3838 {}
3839
3840 /* opt_pass methods: */
3841 virtual unsigned int execute (function *)
3842 {
3843 return rest_of_handle_split_after_reload ();
3844 }
3845
3846 }; // class pass_split_after_reload
3847
3848 } // anon namespace
3849
3850 rtl_opt_pass *
3851 make_pass_split_after_reload (gcc::context *ctxt)
3852 {
3853 return new pass_split_after_reload (ctxt);
3854 }
3855
3856 namespace {
3857
3858 const pass_data pass_data_split_before_regstack =
3859 {
3860 RTL_PASS, /* type */
3861 "split3", /* name */
3862 OPTGROUP_NONE, /* optinfo_flags */
3863 TV_NONE, /* tv_id */
3864 0, /* properties_required */
3865 0, /* properties_provided */
3866 0, /* properties_destroyed */
3867 0, /* todo_flags_start */
3868 0, /* todo_flags_finish */
3869 };
3870
3871 class pass_split_before_regstack : public rtl_opt_pass
3872 {
3873 public:
3874 pass_split_before_regstack (gcc::context *ctxt)
3875 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3876 {}
3877
3878 /* opt_pass methods: */
3879 virtual bool gate (function *);
3880 virtual unsigned int execute (function *)
3881 {
3882 split_all_insns ();
3883 return 0;
3884 }
3885
3886 }; // class pass_split_before_regstack
3887
3888 bool
3889 pass_split_before_regstack::gate (function *)
3890 {
3891 #if HAVE_ATTR_length && defined (STACK_REGS)
3892 /* If flow2 creates new instructions which need splitting
3893 and scheduling after reload is not done, they might not be
3894 split until final which doesn't allow splitting
3895 if HAVE_ATTR_length. */
3896 # ifdef INSN_SCHEDULING
3897 return (optimize && !flag_schedule_insns_after_reload);
3898 # else
3899 return (optimize);
3900 # endif
3901 #else
3902 return 0;
3903 #endif
3904 }
3905
3906 } // anon namespace
3907
3908 rtl_opt_pass *
3909 make_pass_split_before_regstack (gcc::context *ctxt)
3910 {
3911 return new pass_split_before_regstack (ctxt);
3912 }
3913
3914 static unsigned int
3915 rest_of_handle_split_before_sched2 (void)
3916 {
3917 #ifdef INSN_SCHEDULING
3918 split_all_insns ();
3919 #endif
3920 return 0;
3921 }
3922
3923 namespace {
3924
3925 const pass_data pass_data_split_before_sched2 =
3926 {
3927 RTL_PASS, /* type */
3928 "split4", /* name */
3929 OPTGROUP_NONE, /* optinfo_flags */
3930 TV_NONE, /* tv_id */
3931 0, /* properties_required */
3932 0, /* properties_provided */
3933 0, /* properties_destroyed */
3934 0, /* todo_flags_start */
3935 0, /* todo_flags_finish */
3936 };
3937
3938 class pass_split_before_sched2 : public rtl_opt_pass
3939 {
3940 public:
3941 pass_split_before_sched2 (gcc::context *ctxt)
3942 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
3943 {}
3944
3945 /* opt_pass methods: */
3946 virtual bool gate (function *)
3947 {
3948 #ifdef INSN_SCHEDULING
3949 return optimize > 0 && flag_schedule_insns_after_reload;
3950 #else
3951 return false;
3952 #endif
3953 }
3954
3955 virtual unsigned int execute (function *)
3956 {
3957 return rest_of_handle_split_before_sched2 ();
3958 }
3959
3960 }; // class pass_split_before_sched2
3961
3962 } // anon namespace
3963
3964 rtl_opt_pass *
3965 make_pass_split_before_sched2 (gcc::context *ctxt)
3966 {
3967 return new pass_split_before_sched2 (ctxt);
3968 }
3969
3970 namespace {
3971
3972 const pass_data pass_data_split_for_shorten_branches =
3973 {
3974 RTL_PASS, /* type */
3975 "split5", /* name */
3976 OPTGROUP_NONE, /* optinfo_flags */
3977 TV_NONE, /* tv_id */
3978 0, /* properties_required */
3979 0, /* properties_provided */
3980 0, /* properties_destroyed */
3981 0, /* todo_flags_start */
3982 0, /* todo_flags_finish */
3983 };
3984
3985 class pass_split_for_shorten_branches : public rtl_opt_pass
3986 {
3987 public:
3988 pass_split_for_shorten_branches (gcc::context *ctxt)
3989 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
3990 {}
3991
3992 /* opt_pass methods: */
3993 virtual bool gate (function *)
3994 {
3995 /* The placement of the splitting that we do for shorten_branches
3996 depends on whether regstack is used by the target or not. */
3997 #if HAVE_ATTR_length && !defined (STACK_REGS)
3998 return true;
3999 #else
4000 return false;
4001 #endif
4002 }
4003
4004 virtual unsigned int execute (function *)
4005 {
4006 return split_all_insns_noflow ();
4007 }
4008
4009 }; // class pass_split_for_shorten_branches
4010
4011 } // anon namespace
4012
4013 rtl_opt_pass *
4014 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4015 {
4016 return new pass_split_for_shorten_branches (ctxt);
4017 }
4018
4019 /* (Re)initialize the target information after a change in target. */
4020
4021 void
4022 recog_init ()
4023 {
4024 /* The information is zero-initialized, so we don't need to do anything
4025 first time round. */
4026 if (!this_target_recog->x_initialized)
4027 {
4028 this_target_recog->x_initialized = true;
4029 return;
4030 }
4031 memset (this_target_recog->x_enabled_alternatives, 0,
4032 sizeof (this_target_recog->x_enabled_alternatives));
4033 for (int i = 0; i < LAST_INSN_CODE; ++i)
4034 if (this_target_recog->x_op_alt[i])
4035 {
4036 free (this_target_recog->x_op_alt[i]);
4037 this_target_recog->x_op_alt[i] = 0;
4038 }
4039 }