]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reg-stack.c
Allow automatics in equivalences
[thirdparty/gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
76 * asm_operands:
77
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
102
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
105
106 asm ("foo" : "=t" (a) : "f" (b));
107
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
113
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
116
117 The asm above would be written as
118
119 asm ("foo" : "=&t" (a) : "f" (b));
120
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
125
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
129
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
134
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
137
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
141
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
144
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152
153 */
154 \f
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "regs.h"
166 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
167 #include "recog.h"
168 #include "varasm.h"
169 #include "rtl-error.h"
170 #include "cfgrtl.h"
171 #include "cfganal.h"
172 #include "cfgbuild.h"
173 #include "cfgcleanup.h"
174 #include "reload.h"
175 #include "tree-pass.h"
176 #include "rtl-iter.h"
177
178 #ifdef STACK_REGS
179
180 /* We use this array to cache info about insns, because otherwise we
181 spend too much time in stack_regs_mentioned_p.
182
183 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
184 the insn uses stack registers, two indicates the insn does not use
185 stack registers. */
186 static vec<char> stack_regs_mentioned_data;
187
188 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
189
190 int regstack_completed = 0;
191
192 /* This is the basic stack record. TOP is an index into REG[] such
193 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
194
195 If TOP is -2, REG[] is not yet initialized. Stack initialization
196 consists of placing each live reg in array `reg' and setting `top'
197 appropriately.
198
199 REG_SET indicates which registers are live. */
200
201 typedef struct stack_def
202 {
203 int top; /* index to top stack element */
204 HARD_REG_SET reg_set; /* set of live registers */
205 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
206 } *stack_ptr;
207
208 /* This is used to carry information about basic blocks. It is
209 attached to the AUX field of the standard CFG block. */
210
211 typedef struct block_info_def
212 {
213 struct stack_def stack_in; /* Input stack configuration. */
214 struct stack_def stack_out; /* Output stack configuration. */
215 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
216 int done; /* True if block already converted. */
217 int predecessors; /* Number of predecessors that need
218 to be visited. */
219 } *block_info;
220
221 #define BLOCK_INFO(B) ((block_info) (B)->aux)
222
223 /* Passed to change_stack to indicate where to emit insns. */
224 enum emit_where
225 {
226 EMIT_AFTER,
227 EMIT_BEFORE
228 };
229
230 /* The block we're currently working on. */
231 static basic_block current_block;
232
233 /* In the current_block, whether we're processing the first register
234 stack or call instruction, i.e. the regstack is currently the
235 same as BLOCK_INFO(current_block)->stack_in. */
236 static bool starting_stack_p;
237
238 /* This is the register file for all register after conversion. */
239 static rtx
240 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
241
242 #define FP_MODE_REG(regno,mode) \
243 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
244
245 /* Used to initialize uninitialized registers. */
246 static rtx not_a_num;
247
248 /* Forward declarations */
249
250 static int stack_regs_mentioned_p (const_rtx pat);
251 static void pop_stack (stack_ptr, int);
252 static rtx *get_true_reg (rtx *);
253
254 static int check_asm_stack_operands (rtx_insn *);
255 static void get_asm_operands_in_out (rtx, int *, int *);
256 static rtx stack_result (tree);
257 static void replace_reg (rtx *, int);
258 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
259 static int get_hard_regnum (stack_ptr, rtx);
260 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
261 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
262 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
263 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
264 static int swap_rtx_condition_1 (rtx);
265 static int swap_rtx_condition (rtx_insn *);
266 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx, bool);
267 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
268 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
269 static bool subst_stack_regs (rtx_insn *, stack_ptr);
270 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
271 static void print_stack (FILE *, stack_ptr);
272 static rtx_insn *next_flags_user (rtx_insn *);
273 \f
274 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
275
276 static int
277 stack_regs_mentioned_p (const_rtx pat)
278 {
279 const char *fmt;
280 int i;
281
282 if (STACK_REG_P (pat))
283 return 1;
284
285 fmt = GET_RTX_FORMAT (GET_CODE (pat));
286 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
287 {
288 if (fmt[i] == 'E')
289 {
290 int j;
291
292 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
293 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
294 return 1;
295 }
296 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
297 return 1;
298 }
299
300 return 0;
301 }
302
303 /* Return nonzero if INSN mentions stacked registers, else return zero. */
304
305 int
306 stack_regs_mentioned (const_rtx insn)
307 {
308 unsigned int uid, max;
309 int test;
310
311 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
312 return 0;
313
314 uid = INSN_UID (insn);
315 max = stack_regs_mentioned_data.length ();
316 if (uid >= max)
317 {
318 /* Allocate some extra size to avoid too many reallocs, but
319 do not grow too quickly. */
320 max = uid + uid / 20 + 1;
321 stack_regs_mentioned_data.safe_grow_cleared (max);
322 }
323
324 test = stack_regs_mentioned_data[uid];
325 if (test == 0)
326 {
327 /* This insn has yet to be examined. Do so now. */
328 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
329 stack_regs_mentioned_data[uid] = test;
330 }
331
332 return test == 1;
333 }
334 \f
335 static rtx ix86_flags_rtx;
336
337 static rtx_insn *
338 next_flags_user (rtx_insn *insn)
339 {
340 /* Search forward looking for the first use of this value.
341 Stop at block boundaries. */
342
343 while (insn != BB_END (current_block))
344 {
345 insn = NEXT_INSN (insn);
346
347 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
348 return insn;
349
350 if (CALL_P (insn))
351 return NULL;
352 }
353 return NULL;
354 }
355 \f
356 /* Reorganize the stack into ascending numbers, before this insn. */
357
358 static void
359 straighten_stack (rtx_insn *insn, stack_ptr regstack)
360 {
361 struct stack_def temp_stack;
362 int top;
363
364 /* If there is only a single register on the stack, then the stack is
365 already in increasing order and no reorganization is needed.
366
367 Similarly if the stack is empty. */
368 if (regstack->top <= 0)
369 return;
370
371 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
372
373 for (top = temp_stack.top = regstack->top; top >= 0; top--)
374 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
375
376 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
377 }
378
379 /* Pop a register from the stack. */
380
381 static void
382 pop_stack (stack_ptr regstack, int regno)
383 {
384 int top = regstack->top;
385
386 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
387 regstack->top--;
388 /* If regno was not at the top of stack then adjust stack. */
389 if (regstack->reg [top] != regno)
390 {
391 int i;
392 for (i = regstack->top; i >= 0; i--)
393 if (regstack->reg [i] == regno)
394 {
395 int j;
396 for (j = i; j < top; j++)
397 regstack->reg [j] = regstack->reg [j + 1];
398 break;
399 }
400 }
401 }
402 \f
403 /* Return a pointer to the REG expression within PAT. If PAT is not a
404 REG, possible enclosed by a conversion rtx, return the inner part of
405 PAT that stopped the search. */
406
407 static rtx *
408 get_true_reg (rtx *pat)
409 {
410 for (;;)
411 switch (GET_CODE (*pat))
412 {
413 case SUBREG:
414 /* Eliminate FP subregister accesses in favor of the
415 actual FP register in use. */
416 {
417 rtx subreg = SUBREG_REG (*pat);
418
419 if (STACK_REG_P (subreg))
420 {
421 int regno_off = subreg_regno_offset (REGNO (subreg),
422 GET_MODE (subreg),
423 SUBREG_BYTE (*pat),
424 GET_MODE (*pat));
425 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
426 GET_MODE (subreg));
427 return pat;
428 }
429 pat = &XEXP (*pat, 0);
430 break;
431 }
432
433 case FLOAT_TRUNCATE:
434 if (!flag_unsafe_math_optimizations)
435 return pat;
436 /* FALLTHRU */
437
438 case FLOAT:
439 case FIX:
440 case FLOAT_EXTEND:
441 pat = &XEXP (*pat, 0);
442 break;
443
444 case UNSPEC:
445 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
446 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
447 pat = &XVECEXP (*pat, 0, 0);
448 return pat;
449
450 default:
451 return pat;
452 }
453 }
454 \f
455 /* Set if we find any malformed asms in a block. */
456 static bool any_malformed_asm;
457
458 /* There are many rules that an asm statement for stack-like regs must
459 follow. Those rules are explained at the top of this file: the rule
460 numbers below refer to that explanation. */
461
462 static int
463 check_asm_stack_operands (rtx_insn *insn)
464 {
465 int i;
466 int n_clobbers;
467 int malformed_asm = 0;
468 rtx body = PATTERN (insn);
469
470 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
471 char implicitly_dies[FIRST_PSEUDO_REGISTER];
472 char explicitly_used[FIRST_PSEUDO_REGISTER];
473
474 rtx *clobber_reg = 0;
475 int n_inputs, n_outputs;
476
477 /* Find out what the constraints require. If no constraint
478 alternative matches, this asm is malformed. */
479 extract_constrain_insn (insn);
480
481 preprocess_constraints (insn);
482
483 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
484
485 if (which_alternative < 0)
486 {
487 /* Avoid further trouble with this insn. */
488 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
489 return 0;
490 }
491 const operand_alternative *op_alt = which_op_alt ();
492
493 /* Strip SUBREGs here to make the following code simpler. */
494 for (i = 0; i < recog_data.n_operands; i++)
495 if (GET_CODE (recog_data.operand[i]) == SUBREG
496 && REG_P (SUBREG_REG (recog_data.operand[i])))
497 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498
499 /* Set up CLOBBER_REG. */
500
501 n_clobbers = 0;
502
503 if (GET_CODE (body) == PARALLEL)
504 {
505 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506
507 for (i = 0; i < XVECLEN (body, 0); i++)
508 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 {
510 rtx clobber = XVECEXP (body, 0, i);
511 rtx reg = XEXP (clobber, 0);
512
513 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 reg = SUBREG_REG (reg);
515
516 if (STACK_REG_P (reg))
517 {
518 clobber_reg[n_clobbers] = reg;
519 n_clobbers++;
520 }
521 }
522 }
523
524 /* Enforce rule #4: Output operands must specifically indicate which
525 reg an output appears in after an asm. "=f" is not allowed: the
526 operand constraints must select a class with a single reg.
527
528 Also enforce rule #5: Output operands must start at the top of
529 the reg-stack: output operands may not "skip" a reg. */
530
531 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532 for (i = 0; i < n_outputs; i++)
533 if (STACK_REG_P (recog_data.operand[i]))
534 {
535 if (reg_class_size[(int) op_alt[i].cl] != 1)
536 {
537 error_for_asm (insn, "output constraint %d must specify a single register", i);
538 malformed_asm = 1;
539 }
540 else
541 {
542 int j;
543
544 for (j = 0; j < n_clobbers; j++)
545 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 {
547 error_for_asm (insn, "output constraint %d cannot be "
548 "specified together with %qs clobber",
549 i, reg_names [REGNO (clobber_reg[j])]);
550 malformed_asm = 1;
551 break;
552 }
553 if (j == n_clobbers)
554 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
555 }
556 }
557
558
559 /* Search for first non-popped reg. */
560 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
561 if (! reg_used_as_output[i])
562 break;
563
564 /* If there are any other popped regs, that's an error. */
565 for (; i < LAST_STACK_REG + 1; i++)
566 if (reg_used_as_output[i])
567 break;
568
569 if (i != LAST_STACK_REG + 1)
570 {
571 error_for_asm (insn, "output registers must be grouped at top of stack");
572 malformed_asm = 1;
573 }
574
575 /* Enforce rule #2: All implicitly popped input regs must be closer
576 to the top of the reg-stack than any input that is not implicitly
577 popped. */
578
579 memset (implicitly_dies, 0, sizeof (implicitly_dies));
580 memset (explicitly_used, 0, sizeof (explicitly_used));
581 for (i = n_outputs; i < n_outputs + n_inputs; i++)
582 if (STACK_REG_P (recog_data.operand[i]))
583 {
584 /* An input reg is implicitly popped if it is tied to an
585 output, or if there is a CLOBBER for it. */
586 int j;
587
588 for (j = 0; j < n_clobbers; j++)
589 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
590 break;
591
592 if (j < n_clobbers || op_alt[i].matches >= 0)
593 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
594 else if (reg_class_size[(int) op_alt[i].cl] == 1)
595 explicitly_used[REGNO (recog_data.operand[i])] = 1;
596 }
597
598 /* Search for first non-popped reg. */
599 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
600 if (! implicitly_dies[i])
601 break;
602
603 /* If there are any other popped regs, that's an error. */
604 for (; i < LAST_STACK_REG + 1; i++)
605 if (implicitly_dies[i])
606 break;
607
608 if (i != LAST_STACK_REG + 1)
609 {
610 error_for_asm (insn,
611 "implicitly popped registers must be grouped "
612 "at top of stack");
613 malformed_asm = 1;
614 }
615
616 /* Search for first not-explicitly used reg. */
617 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
618 if (! implicitly_dies[i] && ! explicitly_used[i])
619 break;
620
621 /* If there are any other explicitly used regs, that's an error. */
622 for (; i < LAST_STACK_REG + 1; i++)
623 if (explicitly_used[i])
624 break;
625
626 if (i != LAST_STACK_REG + 1)
627 {
628 error_for_asm (insn,
629 "explicitly used registers must be grouped "
630 "at top of stack");
631 malformed_asm = 1;
632 }
633
634 /* Enforce rule #3: If any input operand uses the "f" constraint, all
635 output constraints must use the "&" earlyclobber.
636
637 ??? Detect this more deterministically by having constrain_asm_operands
638 record any earlyclobber. */
639
640 for (i = n_outputs; i < n_outputs + n_inputs; i++)
641 if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
642 {
643 int j;
644
645 for (j = 0; j < n_outputs; j++)
646 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
647 {
648 error_for_asm (insn,
649 "output operand %d must use %<&%> constraint", j);
650 malformed_asm = 1;
651 }
652 }
653
654 if (malformed_asm)
655 {
656 /* Avoid further trouble with this insn. */
657 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
658 any_malformed_asm = true;
659 return 0;
660 }
661
662 return 1;
663 }
664 \f
665 /* Calculate the number of inputs and outputs in BODY, an
666 asm_operands. N_OPERANDS is the total number of operands, and
667 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
668 placed. */
669
670 static void
671 get_asm_operands_in_out (rtx body, int *pout, int *pin)
672 {
673 rtx asmop = extract_asm_operands (body);
674
675 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
676 *pout = (recog_data.n_operands
677 - ASM_OPERANDS_INPUT_LENGTH (asmop)
678 - ASM_OPERANDS_LABEL_LENGTH (asmop));
679 }
680
681 /* If current function returns its result in an fp stack register,
682 return the REG. Otherwise, return 0. */
683
684 static rtx
685 stack_result (tree decl)
686 {
687 rtx result;
688
689 /* If the value is supposed to be returned in memory, then clearly
690 it is not returned in a stack register. */
691 if (aggregate_value_p (DECL_RESULT (decl), decl))
692 return 0;
693
694 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
695 if (result != 0)
696 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
697 decl, true);
698
699 return result != 0 && STACK_REG_P (result) ? result : 0;
700 }
701 \f
702
703 /*
704 * This section deals with stack register substitution, and forms the second
705 * pass over the RTL.
706 */
707
708 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
709 the desired hard REGNO. */
710
711 static void
712 replace_reg (rtx *reg, int regno)
713 {
714 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
715 gcc_assert (STACK_REG_P (*reg));
716
717 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
718 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
719
720 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
721 }
722
723 /* Remove a note of type NOTE, which must be found, for register
724 number REGNO from INSN. Remove only one such note. */
725
726 static void
727 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
728 {
729 rtx *note_link, this_rtx;
730
731 note_link = &REG_NOTES (insn);
732 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
733 if (REG_NOTE_KIND (this_rtx) == note
734 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
735 {
736 *note_link = XEXP (this_rtx, 1);
737 return;
738 }
739 else
740 note_link = &XEXP (this_rtx, 1);
741
742 gcc_unreachable ();
743 }
744
745 /* Find the hard register number of virtual register REG in REGSTACK.
746 The hard register number is relative to the top of the stack. -1 is
747 returned if the register is not found. */
748
749 static int
750 get_hard_regnum (stack_ptr regstack, rtx reg)
751 {
752 int i;
753
754 gcc_assert (STACK_REG_P (reg));
755
756 for (i = regstack->top; i >= 0; i--)
757 if (regstack->reg[i] == REGNO (reg))
758 break;
759
760 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
761 }
762 \f
763 /* Emit an insn to pop virtual register REG before or after INSN.
764 REGSTACK is the stack state after INSN and is updated to reflect this
765 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
766 is represented as a SET whose destination is the register to be popped
767 and source is the top of stack. A death note for the top of stack
768 cases the movdf pattern to pop. */
769
770 static rtx_insn *
771 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg,
772 enum emit_where where)
773 {
774 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
775 rtx_insn *pop_insn;
776 rtx pop_rtx;
777 int hard_regno;
778
779 /* For complex types take care to pop both halves. These may survive in
780 CLOBBER and USE expressions. */
781 if (COMPLEX_MODE_P (GET_MODE (reg)))
782 {
783 rtx reg1 = FP_MODE_REG (REGNO (reg), raw_mode);
784 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, raw_mode);
785
786 pop_insn = NULL;
787 if (get_hard_regnum (regstack, reg1) >= 0)
788 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
789 if (get_hard_regnum (regstack, reg2) >= 0)
790 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
791 gcc_assert (pop_insn);
792 return pop_insn;
793 }
794
795 hard_regno = get_hard_regnum (regstack, reg);
796
797 gcc_assert (hard_regno >= FIRST_STACK_REG);
798
799 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, raw_mode),
800 FP_MODE_REG (FIRST_STACK_REG, raw_mode));
801
802 if (where == EMIT_AFTER)
803 pop_insn = emit_insn_after (pop_rtx, insn);
804 else
805 pop_insn = emit_insn_before (pop_rtx, insn);
806
807 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, raw_mode));
808
809 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
810 = regstack->reg[regstack->top];
811 regstack->top -= 1;
812 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
813
814 return pop_insn;
815 }
816 \f
817 /* Emit an insn before or after INSN to swap virtual register REG with
818 the top of stack. REGSTACK is the stack state before the swap, and
819 is updated to reflect the swap. A swap insn is represented as a
820 PARALLEL of two patterns: each pattern moves one reg to the other.
821
822 If REG is already at the top of the stack, no insn is emitted. */
823
824 static void
825 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
826 {
827 int hard_regno;
828 int other_reg; /* swap regno temps */
829 rtx_insn *i1; /* the stack-reg insn prior to INSN */
830 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
831
832 hard_regno = get_hard_regnum (regstack, reg);
833
834 if (hard_regno == FIRST_STACK_REG)
835 return;
836 if (hard_regno == -1)
837 {
838 /* Something failed if the register wasn't on the stack. If we had
839 malformed asms, we zapped the instruction itself, but that didn't
840 produce the same pattern of register sets as before. To prevent
841 further failure, adjust REGSTACK to include REG at TOP. */
842 gcc_assert (any_malformed_asm);
843 regstack->reg[++regstack->top] = REGNO (reg);
844 return;
845 }
846 gcc_assert (hard_regno >= FIRST_STACK_REG);
847
848 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
849 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
850
851 /* Find the previous insn involving stack regs, but don't pass a
852 block boundary. */
853 i1 = NULL;
854 if (current_block && insn != BB_HEAD (current_block))
855 {
856 rtx_insn *tmp = PREV_INSN (insn);
857 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
858 while (tmp != limit)
859 {
860 if (LABEL_P (tmp)
861 || CALL_P (tmp)
862 || NOTE_INSN_BASIC_BLOCK_P (tmp)
863 || (NONJUMP_INSN_P (tmp)
864 && stack_regs_mentioned (tmp)))
865 {
866 i1 = tmp;
867 break;
868 }
869 tmp = PREV_INSN (tmp);
870 }
871 }
872
873 if (i1 != NULL_RTX
874 && (i1set = single_set (i1)) != NULL_RTX)
875 {
876 rtx i1src = *get_true_reg (&SET_SRC (i1set));
877 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
878
879 /* If the previous register stack push was from the reg we are to
880 swap with, omit the swap. */
881
882 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
883 && REG_P (i1src)
884 && REGNO (i1src) == (unsigned) hard_regno - 1
885 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
886 return;
887
888 /* If the previous insn wrote to the reg we are to swap with,
889 omit the swap. */
890
891 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
892 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
893 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
894 return;
895
896 /* Instead of
897 fld a
898 fld b
899 fxch %st(1)
900 just use
901 fld b
902 fld a
903 if possible. Similarly for fld1, fldz, fldpi etc. instead of any
904 of the loads or for float extension from memory. */
905
906 i1src = SET_SRC (i1set);
907 if (GET_CODE (i1src) == FLOAT_EXTEND)
908 i1src = XEXP (i1src, 0);
909 if (REG_P (i1dest)
910 && REGNO (i1dest) == FIRST_STACK_REG
911 && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
912 && !side_effects_p (i1src)
913 && hard_regno == FIRST_STACK_REG + 1
914 && i1 != BB_HEAD (current_block))
915 {
916 /* i1 is the last insn that involves stack regs before insn, and
917 is known to be a load without other side-effects, i.e. fld b
918 in the above comment. */
919 rtx_insn *i2 = NULL;
920 rtx i2set;
921 rtx_insn *tmp = PREV_INSN (i1);
922 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
923 /* Find the previous insn involving stack regs, but don't pass a
924 block boundary. */
925 while (tmp != limit)
926 {
927 if (LABEL_P (tmp)
928 || CALL_P (tmp)
929 || NOTE_INSN_BASIC_BLOCK_P (tmp)
930 || (NONJUMP_INSN_P (tmp)
931 && stack_regs_mentioned (tmp)))
932 {
933 i2 = tmp;
934 break;
935 }
936 tmp = PREV_INSN (tmp);
937 }
938 if (i2 != NULL_RTX
939 && (i2set = single_set (i2)) != NULL_RTX)
940 {
941 rtx i2dest = *get_true_reg (&SET_DEST (i2set));
942 rtx i2src = SET_SRC (i2set);
943 if (GET_CODE (i2src) == FLOAT_EXTEND)
944 i2src = XEXP (i2src, 0);
945 /* If the last two insns before insn that involve
946 stack regs are loads, where the latter (i1)
947 pushes onto the register stack and thus
948 moves the value from the first load (i2) from
949 %st to %st(1), consider swapping them. */
950 if (REG_P (i2dest)
951 && REGNO (i2dest) == FIRST_STACK_REG
952 && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
953 /* Ensure i2 doesn't have other side-effects. */
954 && !side_effects_p (i2src)
955 /* And that the two instructions can actually be
956 swapped, i.e. there shouldn't be any stores
957 in between i2 and i1 that might alias with
958 the i1 memory, and the memory address can't
959 use registers set in between i2 and i1. */
960 && !modified_between_p (SET_SRC (i1set), i2, i1))
961 {
962 /* Move i1 (fld b above) right before i2 (fld a
963 above. */
964 remove_insn (i1);
965 SET_PREV_INSN (i1) = NULL_RTX;
966 SET_NEXT_INSN (i1) = NULL_RTX;
967 set_block_for_insn (i1, NULL);
968 emit_insn_before (i1, i2);
969 return;
970 }
971 }
972 }
973 }
974
975 /* Avoid emitting the swap if this is the first register stack insn
976 of the current_block. Instead update the current_block's stack_in
977 and let compensate edges take care of this for us. */
978 if (current_block && starting_stack_p)
979 {
980 BLOCK_INFO (current_block)->stack_in = *regstack;
981 starting_stack_p = false;
982 return;
983 }
984
985 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
986 rtx op1 = FP_MODE_REG (hard_regno, raw_mode);
987 rtx op2 = FP_MODE_REG (FIRST_STACK_REG, raw_mode);
988 rtx swap_rtx
989 = gen_rtx_PARALLEL (VOIDmode,
990 gen_rtvec (2, gen_rtx_SET (op1, op2),
991 gen_rtx_SET (op2, op1)));
992 if (i1)
993 emit_insn_after (swap_rtx, i1);
994 else if (current_block)
995 emit_insn_before (swap_rtx, BB_HEAD (current_block));
996 else
997 emit_insn_before (swap_rtx, insn);
998 }
999 \f
1000 /* Emit an insns before INSN to swap virtual register SRC1 with
1001 the top of stack and virtual register SRC2 with second stack
1002 slot. REGSTACK is the stack state before the swaps, and
1003 is updated to reflect the swaps. A swap insn is represented as a
1004 PARALLEL of two patterns: each pattern moves one reg to the other.
1005
1006 If SRC1 and/or SRC2 are already at the right place, no swap insn
1007 is emitted. */
1008
1009 static void
1010 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1011 {
1012 struct stack_def temp_stack;
1013 int regno, j, k;
1014
1015 temp_stack = *regstack;
1016
1017 /* Place operand 1 at the top of stack. */
1018 regno = get_hard_regnum (&temp_stack, src1);
1019 gcc_assert (regno >= 0);
1020 if (regno != FIRST_STACK_REG)
1021 {
1022 k = temp_stack.top - (regno - FIRST_STACK_REG);
1023 j = temp_stack.top;
1024
1025 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1026 }
1027
1028 /* Place operand 2 next on the stack. */
1029 regno = get_hard_regnum (&temp_stack, src2);
1030 gcc_assert (regno >= 0);
1031 if (regno != FIRST_STACK_REG + 1)
1032 {
1033 k = temp_stack.top - (regno - FIRST_STACK_REG);
1034 j = temp_stack.top - 1;
1035
1036 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1037 }
1038
1039 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1040 }
1041 \f
1042 /* Handle a move to or from a stack register in PAT, which is in INSN.
1043 REGSTACK is the current stack. Return whether a control flow insn
1044 was deleted in the process. */
1045
1046 static bool
1047 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1048 {
1049 rtx *psrc = get_true_reg (&SET_SRC (pat));
1050 rtx *pdest = get_true_reg (&SET_DEST (pat));
1051 rtx src, dest;
1052 rtx note;
1053 bool control_flow_insn_deleted = false;
1054
1055 src = *psrc; dest = *pdest;
1056
1057 if (STACK_REG_P (src) && STACK_REG_P (dest))
1058 {
1059 /* Write from one stack reg to another. If SRC dies here, then
1060 just change the register mapping and delete the insn. */
1061
1062 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1063 if (note)
1064 {
1065 int i;
1066
1067 /* If this is a no-op move, there must not be a REG_DEAD note. */
1068 gcc_assert (REGNO (src) != REGNO (dest));
1069
1070 for (i = regstack->top; i >= 0; i--)
1071 if (regstack->reg[i] == REGNO (src))
1072 break;
1073
1074 /* The destination must be dead, or life analysis is borked. */
1075 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1076
1077 /* If the source is not live, this is yet another case of
1078 uninitialized variables. Load up a NaN instead. */
1079 if (i < 0)
1080 return move_nan_for_stack_reg (insn, regstack, dest);
1081
1082 /* It is possible that the dest is unused after this insn.
1083 If so, just pop the src. */
1084
1085 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1086 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1087 else
1088 {
1089 regstack->reg[i] = REGNO (dest);
1090 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1091 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1092 }
1093
1094 control_flow_insn_deleted |= control_flow_insn_p (insn);
1095 delete_insn (insn);
1096 return control_flow_insn_deleted;
1097 }
1098
1099 /* The source reg does not die. */
1100
1101 /* If this appears to be a no-op move, delete it, or else it
1102 will confuse the machine description output patterns. But if
1103 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1104 for REG_UNUSED will not work for deleted insns. */
1105
1106 if (REGNO (src) == REGNO (dest))
1107 {
1108 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1109 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1110
1111 control_flow_insn_deleted |= control_flow_insn_p (insn);
1112 delete_insn (insn);
1113 return control_flow_insn_deleted;
1114 }
1115
1116 /* The destination ought to be dead. */
1117 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1118 gcc_assert (any_malformed_asm);
1119 else
1120 {
1121 replace_reg (psrc, get_hard_regnum (regstack, src));
1122
1123 regstack->reg[++regstack->top] = REGNO (dest);
1124 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1125 replace_reg (pdest, FIRST_STACK_REG);
1126 }
1127 }
1128 else if (STACK_REG_P (src))
1129 {
1130 /* Save from a stack reg to MEM, or possibly integer reg. Since
1131 only top of stack may be saved, emit an exchange first if
1132 needs be. */
1133
1134 emit_swap_insn (insn, regstack, src);
1135
1136 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1137 if (note)
1138 {
1139 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1140 regstack->top--;
1141 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1142 }
1143 else if ((GET_MODE (src) == XFmode)
1144 && regstack->top < REG_STACK_SIZE - 1)
1145 {
1146 /* A 387 cannot write an XFmode value to a MEM without
1147 clobbering the source reg. The output code can handle
1148 this by reading back the value from the MEM.
1149 But it is more efficient to use a temp register if one is
1150 available. Push the source value here if the register
1151 stack is not full, and then write the value to memory via
1152 a pop. */
1153 rtx push_rtx;
1154 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1155
1156 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1157 emit_insn_before (push_rtx, insn);
1158 add_reg_note (insn, REG_DEAD, top_stack_reg);
1159 }
1160
1161 replace_reg (psrc, FIRST_STACK_REG);
1162 }
1163 else
1164 {
1165 rtx pat = PATTERN (insn);
1166
1167 gcc_assert (STACK_REG_P (dest));
1168
1169 /* Load from MEM, or possibly integer REG or constant, into the
1170 stack regs. The actual target is always the top of the
1171 stack. The stack mapping is changed to reflect that DEST is
1172 now at top of stack. */
1173
1174 /* The destination ought to be dead. However, there is a
1175 special case with i387 UNSPEC_TAN, where destination is live
1176 (an argument to fptan) but inherent load of 1.0 is modelled
1177 as a load from a constant. */
1178 if (GET_CODE (pat) == PARALLEL
1179 && XVECLEN (pat, 0) == 2
1180 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1181 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1182 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1183 emit_swap_insn (insn, regstack, dest);
1184 else
1185 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG
1186 || any_malformed_asm);
1187
1188 gcc_assert (regstack->top < REG_STACK_SIZE);
1189
1190 regstack->reg[++regstack->top] = REGNO (dest);
1191 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1192 replace_reg (pdest, FIRST_STACK_REG);
1193 }
1194
1195 return control_flow_insn_deleted;
1196 }
1197
1198 /* A helper function which replaces INSN with a pattern that loads up
1199 a NaN into DEST, then invokes move_for_stack_reg. */
1200
1201 static bool
1202 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1203 {
1204 rtx pat;
1205
1206 dest = FP_MODE_REG (REGNO (dest), SFmode);
1207 pat = gen_rtx_SET (dest, not_a_num);
1208 PATTERN (insn) = pat;
1209 INSN_CODE (insn) = -1;
1210
1211 return move_for_stack_reg (insn, regstack, pat);
1212 }
1213 \f
1214 /* Swap the condition on a branch, if there is one. Return true if we
1215 found a condition to swap. False if the condition was not used as
1216 such. */
1217
1218 static int
1219 swap_rtx_condition_1 (rtx pat)
1220 {
1221 const char *fmt;
1222 int i, r = 0;
1223
1224 if (COMPARISON_P (pat))
1225 {
1226 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1227 r = 1;
1228 }
1229 else
1230 {
1231 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1232 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1233 {
1234 if (fmt[i] == 'E')
1235 {
1236 int j;
1237
1238 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1239 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1240 }
1241 else if (fmt[i] == 'e')
1242 r |= swap_rtx_condition_1 (XEXP (pat, i));
1243 }
1244 }
1245
1246 return r;
1247 }
1248
1249 static int
1250 swap_rtx_condition (rtx_insn *insn)
1251 {
1252 rtx pat = PATTERN (insn);
1253
1254 /* We're looking for a single set to cc0 or an HImode temporary. */
1255
1256 if (GET_CODE (pat) == SET
1257 && REG_P (SET_DEST (pat))
1258 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1259 {
1260 insn = next_flags_user (insn);
1261 if (insn == NULL_RTX)
1262 return 0;
1263 pat = PATTERN (insn);
1264 }
1265
1266 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1267 with the cc value right now. We may be able to search for one
1268 though. */
1269
1270 if (GET_CODE (pat) == SET
1271 && GET_CODE (SET_SRC (pat)) == UNSPEC
1272 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1273 {
1274 rtx dest = SET_DEST (pat);
1275
1276 /* Search forward looking for the first use of this value.
1277 Stop at block boundaries. */
1278 while (insn != BB_END (current_block))
1279 {
1280 insn = NEXT_INSN (insn);
1281 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1282 break;
1283 if (CALL_P (insn))
1284 return 0;
1285 }
1286
1287 /* We haven't found it. */
1288 if (insn == BB_END (current_block))
1289 return 0;
1290
1291 /* So we've found the insn using this value. If it is anything
1292 other than sahf or the value does not die (meaning we'd have
1293 to search further), then we must give up. */
1294 pat = PATTERN (insn);
1295 if (GET_CODE (pat) != SET
1296 || GET_CODE (SET_SRC (pat)) != UNSPEC
1297 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1298 || ! dead_or_set_p (insn, dest))
1299 return 0;
1300
1301 /* Now we are prepared to handle this as a normal cc0 setter. */
1302 insn = next_flags_user (insn);
1303 if (insn == NULL_RTX)
1304 return 0;
1305 pat = PATTERN (insn);
1306 }
1307
1308 if (swap_rtx_condition_1 (pat))
1309 {
1310 int fail = 0;
1311 INSN_CODE (insn) = -1;
1312 if (recog_memoized (insn) == -1)
1313 fail = 1;
1314 /* In case the flags don't die here, recurse to try fix
1315 following user too. */
1316 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1317 {
1318 insn = next_flags_user (insn);
1319 if (!insn || !swap_rtx_condition (insn))
1320 fail = 1;
1321 }
1322 if (fail)
1323 {
1324 swap_rtx_condition_1 (pat);
1325 return 0;
1326 }
1327 return 1;
1328 }
1329 return 0;
1330 }
1331
1332 /* Handle a comparison. Special care needs to be taken to avoid
1333 causing comparisons that a 387 cannot do correctly, such as EQ.
1334
1335 Also, a pop insn may need to be emitted. The 387 does have an
1336 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1337 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1338 set up. */
1339
1340 static void
1341 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack,
1342 rtx pat_src, bool can_pop_second_op)
1343 {
1344 rtx *src1, *src2;
1345 rtx src1_note, src2_note;
1346
1347 src1 = get_true_reg (&XEXP (pat_src, 0));
1348 src2 = get_true_reg (&XEXP (pat_src, 1));
1349
1350 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1351 registers that die in this insn - move those to stack top first. */
1352 if ((! STACK_REG_P (*src1)
1353 || (STACK_REG_P (*src2)
1354 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1355 && swap_rtx_condition (insn))
1356 {
1357 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1358
1359 src1 = get_true_reg (&XEXP (pat_src, 0));
1360 src2 = get_true_reg (&XEXP (pat_src, 1));
1361
1362 INSN_CODE (insn) = -1;
1363 }
1364
1365 /* We will fix any death note later. */
1366
1367 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1368
1369 if (STACK_REG_P (*src2))
1370 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1371 else
1372 src2_note = NULL_RTX;
1373
1374 emit_swap_insn (insn, regstack, *src1);
1375
1376 replace_reg (src1, FIRST_STACK_REG);
1377
1378 if (STACK_REG_P (*src2))
1379 replace_reg (src2, get_hard_regnum (regstack, *src2));
1380
1381 if (src1_note)
1382 {
1383 if (*src2 == CONST0_RTX (GET_MODE (*src2)))
1384 {
1385 /* This is `ftst' insn that can't pop register. */
1386 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src1_note, 0)));
1387 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1388 EMIT_AFTER);
1389 }
1390 else
1391 {
1392 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1393 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1394 }
1395 }
1396
1397 /* If the second operand dies, handle that. But if the operands are
1398 the same stack register, don't bother, because only one death is
1399 needed, and it was just handled. */
1400
1401 if (src2_note
1402 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1403 && REGNO (*src1) == REGNO (*src2)))
1404 {
1405 /* As a special case, two regs may die in this insn if src2 is
1406 next to top of stack and the top of stack also dies. Since
1407 we have already popped src1, "next to top of stack" is really
1408 at top (FIRST_STACK_REG) now. */
1409
1410 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1411 && src1_note && can_pop_second_op)
1412 {
1413 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1414 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1415 }
1416 else
1417 {
1418 /* The 386 can only represent death of the first operand in
1419 the case handled above. In all other cases, emit a separate
1420 pop and remove the death note from here. */
1421 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1422 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1423 EMIT_AFTER);
1424 }
1425 }
1426 }
1427 \f
1428 /* Substitute hardware stack regs in debug insn INSN, using stack
1429 layout REGSTACK. If we can't find a hardware stack reg for any of
1430 the REGs in it, reset the debug insn. */
1431
1432 static void
1433 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1434 {
1435 subrtx_ptr_iterator::array_type array;
1436 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1437 {
1438 rtx *loc = *iter;
1439 rtx x = *loc;
1440 if (STACK_REG_P (x))
1441 {
1442 int hard_regno = get_hard_regnum (regstack, x);
1443
1444 /* If we can't find an active register, reset this debug insn. */
1445 if (hard_regno == -1)
1446 {
1447 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1448 return;
1449 }
1450
1451 gcc_assert (hard_regno >= FIRST_STACK_REG);
1452 replace_reg (loc, hard_regno);
1453 iter.skip_subrtxes ();
1454 }
1455 }
1456 }
1457
1458 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1459 is the current register layout. Return whether a control flow insn
1460 was deleted in the process. */
1461
1462 static bool
1463 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1464 {
1465 rtx *dest, *src;
1466 bool control_flow_insn_deleted = false;
1467
1468 switch (GET_CODE (pat))
1469 {
1470 case USE:
1471 /* Deaths in USE insns can happen in non optimizing compilation.
1472 Handle them by popping the dying register. */
1473 src = get_true_reg (&XEXP (pat, 0));
1474 if (STACK_REG_P (*src)
1475 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1476 {
1477 /* USEs are ignored for liveness information so USEs of dead
1478 register might happen. */
1479 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1480 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1481 return control_flow_insn_deleted;
1482 }
1483 /* Uninitialized USE might happen for functions returning uninitialized
1484 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1485 so it is safe to ignore the use here. This is consistent with behavior
1486 of dataflow analyzer that ignores USE too. (This also imply that
1487 forcibly initializing the register to NaN here would lead to ICE later,
1488 since the REG_DEAD notes are not issued.) */
1489 break;
1490
1491 case VAR_LOCATION:
1492 gcc_unreachable ();
1493
1494 case CLOBBER:
1495 {
1496 rtx note;
1497
1498 dest = get_true_reg (&XEXP (pat, 0));
1499 if (STACK_REG_P (*dest))
1500 {
1501 note = find_reg_note (insn, REG_DEAD, *dest);
1502
1503 if (pat != PATTERN (insn))
1504 {
1505 /* The fix_truncdi_1 pattern wants to be able to
1506 allocate its own scratch register. It does this by
1507 clobbering an fp reg so that it is assured of an
1508 empty reg-stack register. If the register is live,
1509 kill it now. Remove the DEAD/UNUSED note so we
1510 don't try to kill it later too.
1511
1512 In reality the UNUSED note can be absent in some
1513 complicated cases when the register is reused for
1514 partially set variable. */
1515
1516 if (note)
1517 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1518 else
1519 note = find_reg_note (insn, REG_UNUSED, *dest);
1520 if (note)
1521 remove_note (insn, note);
1522 replace_reg (dest, FIRST_STACK_REG + 1);
1523 }
1524 else
1525 {
1526 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1527 indicates an uninitialized value. Because reload removed
1528 all other clobbers, this must be due to a function
1529 returning without a value. Load up a NaN. */
1530
1531 if (!note)
1532 {
1533 rtx t = *dest;
1534 if (COMPLEX_MODE_P (GET_MODE (t)))
1535 {
1536 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1537 if (get_hard_regnum (regstack, u) == -1)
1538 {
1539 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1540 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1541 control_flow_insn_deleted
1542 |= move_nan_for_stack_reg (insn2, regstack, u);
1543 }
1544 }
1545 if (get_hard_regnum (regstack, t) == -1)
1546 control_flow_insn_deleted
1547 |= move_nan_for_stack_reg (insn, regstack, t);
1548 }
1549 }
1550 }
1551 break;
1552 }
1553
1554 case SET:
1555 {
1556 rtx *src1 = (rtx *) 0, *src2;
1557 rtx src1_note, src2_note;
1558 rtx pat_src;
1559
1560 dest = get_true_reg (&SET_DEST (pat));
1561 src = get_true_reg (&SET_SRC (pat));
1562 pat_src = SET_SRC (pat);
1563
1564 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1565 if (STACK_REG_P (*src)
1566 || (STACK_REG_P (*dest)
1567 && (REG_P (*src) || MEM_P (*src)
1568 || CONST_DOUBLE_P (*src))))
1569 {
1570 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1571 break;
1572 }
1573
1574 switch (GET_CODE (pat_src))
1575 {
1576 case CALL:
1577 {
1578 int count;
1579 for (count = REG_NREGS (*dest); --count >= 0;)
1580 {
1581 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1582 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1583 }
1584 }
1585 replace_reg (dest, FIRST_STACK_REG);
1586 break;
1587
1588 case REG:
1589 /* This is a `tstM2' case. */
1590 gcc_assert (*dest == cc0_rtx);
1591 src1 = src;
1592
1593 /* Fall through. */
1594
1595 case FLOAT_TRUNCATE:
1596 case SQRT:
1597 case ABS:
1598 case NEG:
1599 /* These insns only operate on the top of the stack. DEST might
1600 be cc0_rtx if we're processing a tstM pattern. Also, it's
1601 possible that the tstM case results in a REG_DEAD note on the
1602 source. */
1603
1604 if (src1 == 0)
1605 src1 = get_true_reg (&XEXP (pat_src, 0));
1606
1607 emit_swap_insn (insn, regstack, *src1);
1608
1609 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1610
1611 if (STACK_REG_P (*dest))
1612 replace_reg (dest, FIRST_STACK_REG);
1613
1614 if (src1_note)
1615 {
1616 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1617 regstack->top--;
1618 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1619 }
1620
1621 replace_reg (src1, FIRST_STACK_REG);
1622 break;
1623
1624 case MINUS:
1625 case DIV:
1626 /* On i386, reversed forms of subM3 and divM3 exist for
1627 MODE_FLOAT, so the same code that works for addM3 and mulM3
1628 can be used. */
1629 case MULT:
1630 case PLUS:
1631 /* These insns can accept the top of stack as a destination
1632 from a stack reg or mem, or can use the top of stack as a
1633 source and some other stack register (possibly top of stack)
1634 as a destination. */
1635
1636 src1 = get_true_reg (&XEXP (pat_src, 0));
1637 src2 = get_true_reg (&XEXP (pat_src, 1));
1638
1639 /* We will fix any death note later. */
1640
1641 if (STACK_REG_P (*src1))
1642 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1643 else
1644 src1_note = NULL_RTX;
1645 if (STACK_REG_P (*src2))
1646 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1647 else
1648 src2_note = NULL_RTX;
1649
1650 /* If either operand is not a stack register, then the dest
1651 must be top of stack. */
1652
1653 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1654 emit_swap_insn (insn, regstack, *dest);
1655 else
1656 {
1657 /* Both operands are REG. If neither operand is already
1658 at the top of stack, choose to make the one that is the
1659 dest the new top of stack. */
1660
1661 int src1_hard_regnum, src2_hard_regnum;
1662
1663 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1664 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1665
1666 /* If the source is not live, this is yet another case of
1667 uninitialized variables. Load up a NaN instead. */
1668 if (src1_hard_regnum == -1)
1669 {
1670 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1671 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1672 control_flow_insn_deleted
1673 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1674 }
1675 if (src2_hard_regnum == -1)
1676 {
1677 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1678 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1679 control_flow_insn_deleted
1680 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1681 }
1682
1683 if (src1_hard_regnum != FIRST_STACK_REG
1684 && src2_hard_regnum != FIRST_STACK_REG)
1685 emit_swap_insn (insn, regstack, *dest);
1686 }
1687
1688 if (STACK_REG_P (*src1))
1689 replace_reg (src1, get_hard_regnum (regstack, *src1));
1690 if (STACK_REG_P (*src2))
1691 replace_reg (src2, get_hard_regnum (regstack, *src2));
1692
1693 if (src1_note)
1694 {
1695 rtx src1_reg = XEXP (src1_note, 0);
1696
1697 /* If the register that dies is at the top of stack, then
1698 the destination is somewhere else - merely substitute it.
1699 But if the reg that dies is not at top of stack, then
1700 move the top of stack to the dead reg, as though we had
1701 done the insn and then a store-with-pop. */
1702
1703 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1704 {
1705 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1706 replace_reg (dest, get_hard_regnum (regstack, *dest));
1707 }
1708 else
1709 {
1710 int regno = get_hard_regnum (regstack, src1_reg);
1711
1712 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1713 replace_reg (dest, regno);
1714
1715 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1716 = regstack->reg[regstack->top];
1717 }
1718
1719 CLEAR_HARD_REG_BIT (regstack->reg_set,
1720 REGNO (XEXP (src1_note, 0)));
1721 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1722 regstack->top--;
1723 }
1724 else if (src2_note)
1725 {
1726 rtx src2_reg = XEXP (src2_note, 0);
1727 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1728 {
1729 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1730 replace_reg (dest, get_hard_regnum (regstack, *dest));
1731 }
1732 else
1733 {
1734 int regno = get_hard_regnum (regstack, src2_reg);
1735
1736 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1737 replace_reg (dest, regno);
1738
1739 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1740 = regstack->reg[regstack->top];
1741 }
1742
1743 CLEAR_HARD_REG_BIT (regstack->reg_set,
1744 REGNO (XEXP (src2_note, 0)));
1745 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1746 regstack->top--;
1747 }
1748 else
1749 {
1750 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1751 replace_reg (dest, get_hard_regnum (regstack, *dest));
1752 }
1753
1754 /* Keep operand 1 matching with destination. */
1755 if (COMMUTATIVE_ARITH_P (pat_src)
1756 && REG_P (*src1) && REG_P (*src2)
1757 && REGNO (*src1) != REGNO (*dest))
1758 {
1759 int tmp = REGNO (*src1);
1760 replace_reg (src1, REGNO (*src2));
1761 replace_reg (src2, tmp);
1762 }
1763 break;
1764
1765 case UNSPEC:
1766 switch (XINT (pat_src, 1))
1767 {
1768 case UNSPEC_FIST:
1769 case UNSPEC_FIST_ATOMIC:
1770
1771 case UNSPEC_FIST_FLOOR:
1772 case UNSPEC_FIST_CEIL:
1773
1774 /* These insns only operate on the top of the stack. */
1775
1776 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1777 emit_swap_insn (insn, regstack, *src1);
1778
1779 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1780
1781 if (STACK_REG_P (*dest))
1782 replace_reg (dest, FIRST_STACK_REG);
1783
1784 if (src1_note)
1785 {
1786 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1787 regstack->top--;
1788 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1789 }
1790
1791 replace_reg (src1, FIRST_STACK_REG);
1792 break;
1793
1794 case UNSPEC_FXAM:
1795
1796 /* This insn only operate on the top of the stack. */
1797
1798 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1799 emit_swap_insn (insn, regstack, *src1);
1800
1801 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1802
1803 replace_reg (src1, FIRST_STACK_REG);
1804
1805 if (src1_note)
1806 {
1807 remove_regno_note (insn, REG_DEAD,
1808 REGNO (XEXP (src1_note, 0)));
1809 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1810 EMIT_AFTER);
1811 }
1812
1813 break;
1814
1815 case UNSPEC_SIN:
1816 case UNSPEC_COS:
1817 case UNSPEC_FRNDINT:
1818 case UNSPEC_F2XM1:
1819
1820 case UNSPEC_FRNDINT_FLOOR:
1821 case UNSPEC_FRNDINT_CEIL:
1822 case UNSPEC_FRNDINT_TRUNC:
1823
1824 /* Above insns operate on the top of the stack. */
1825
1826 case UNSPEC_SINCOS_COS:
1827 case UNSPEC_XTRACT_FRACT:
1828
1829 /* Above insns operate on the top two stack slots,
1830 first part of one input, double output insn. */
1831
1832 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1833
1834 emit_swap_insn (insn, regstack, *src1);
1835
1836 /* Input should never die, it is replaced with output. */
1837 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1838 gcc_assert (!src1_note);
1839
1840 if (STACK_REG_P (*dest))
1841 replace_reg (dest, FIRST_STACK_REG);
1842
1843 replace_reg (src1, FIRST_STACK_REG);
1844 break;
1845
1846 case UNSPEC_SINCOS_SIN:
1847 case UNSPEC_XTRACT_EXP:
1848
1849 /* These insns operate on the top two stack slots,
1850 second part of one input, double output insn. */
1851
1852 regstack->top++;
1853 /* FALLTHRU */
1854
1855 case UNSPEC_TAN:
1856
1857 /* For UNSPEC_TAN, regstack->top is already increased
1858 by inherent load of constant 1.0. */
1859
1860 /* Output value is generated in the second stack slot.
1861 Move current value from second slot to the top. */
1862 regstack->reg[regstack->top]
1863 = regstack->reg[regstack->top - 1];
1864
1865 gcc_assert (STACK_REG_P (*dest));
1866
1867 regstack->reg[regstack->top - 1] = REGNO (*dest);
1868 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1869 replace_reg (dest, FIRST_STACK_REG + 1);
1870
1871 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1872
1873 replace_reg (src1, FIRST_STACK_REG);
1874 break;
1875
1876 case UNSPEC_FPATAN:
1877 case UNSPEC_FYL2X:
1878 case UNSPEC_FYL2XP1:
1879 /* These insns operate on the top two stack slots. */
1880
1881 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1882 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1883
1884 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1885 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1886
1887 swap_to_top (insn, regstack, *src1, *src2);
1888
1889 replace_reg (src1, FIRST_STACK_REG);
1890 replace_reg (src2, FIRST_STACK_REG + 1);
1891
1892 if (src1_note)
1893 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1894 if (src2_note)
1895 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1896
1897 /* Pop both input operands from the stack. */
1898 CLEAR_HARD_REG_BIT (regstack->reg_set,
1899 regstack->reg[regstack->top]);
1900 CLEAR_HARD_REG_BIT (regstack->reg_set,
1901 regstack->reg[regstack->top - 1]);
1902 regstack->top -= 2;
1903
1904 /* Push the result back onto the stack. */
1905 regstack->reg[++regstack->top] = REGNO (*dest);
1906 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1907 replace_reg (dest, FIRST_STACK_REG);
1908 break;
1909
1910 case UNSPEC_FSCALE_FRACT:
1911 case UNSPEC_FPREM_F:
1912 case UNSPEC_FPREM1_F:
1913 /* These insns operate on the top two stack slots,
1914 first part of double input, double output insn. */
1915
1916 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1917 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1918
1919 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1920 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1921
1922 /* Inputs should never die, they are
1923 replaced with outputs. */
1924 gcc_assert (!src1_note);
1925 gcc_assert (!src2_note);
1926
1927 swap_to_top (insn, regstack, *src1, *src2);
1928
1929 /* Push the result back onto stack. Empty stack slot
1930 will be filled in second part of insn. */
1931 if (STACK_REG_P (*dest))
1932 {
1933 regstack->reg[regstack->top] = REGNO (*dest);
1934 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1935 replace_reg (dest, FIRST_STACK_REG);
1936 }
1937
1938 replace_reg (src1, FIRST_STACK_REG);
1939 replace_reg (src2, FIRST_STACK_REG + 1);
1940 break;
1941
1942 case UNSPEC_FSCALE_EXP:
1943 case UNSPEC_FPREM_U:
1944 case UNSPEC_FPREM1_U:
1945 /* These insns operate on the top two stack slots,
1946 second part of double input, double output insn. */
1947
1948 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1949 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1950
1951 /* Push the result back onto stack. Fill empty slot from
1952 first part of insn and fix top of stack pointer. */
1953 if (STACK_REG_P (*dest))
1954 {
1955 regstack->reg[regstack->top - 1] = REGNO (*dest);
1956 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1957 replace_reg (dest, FIRST_STACK_REG + 1);
1958 }
1959
1960 replace_reg (src1, FIRST_STACK_REG);
1961 replace_reg (src2, FIRST_STACK_REG + 1);
1962 break;
1963
1964 case UNSPEC_C2_FLAG:
1965 /* This insn operates on the top two stack slots,
1966 third part of C2 setting double input insn. */
1967
1968 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1969 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1970
1971 replace_reg (src1, FIRST_STACK_REG);
1972 replace_reg (src2, FIRST_STACK_REG + 1);
1973 break;
1974
1975 case UNSPEC_FNSTSW:
1976 /* Combined fcomp+fnstsw generated for doing well with
1977 CSE. When optimizing this would have been broken
1978 up before now. */
1979
1980 pat_src = XVECEXP (pat_src, 0, 0);
1981 if (GET_CODE (pat_src) == COMPARE)
1982 goto do_compare;
1983
1984 /* Fall through. */
1985
1986 case UNSPEC_NOTRAP:
1987
1988 pat_src = XVECEXP (pat_src, 0, 0);
1989 gcc_assert (GET_CODE (pat_src) == COMPARE);
1990 goto do_compare;
1991
1992 default:
1993 gcc_unreachable ();
1994 }
1995 break;
1996
1997 case COMPARE:
1998 do_compare:
1999 /* `fcomi' insn can't pop two regs. */
2000 compare_for_stack_reg (insn, regstack, pat_src,
2001 REGNO (*dest) != FLAGS_REG);
2002 break;
2003
2004 case IF_THEN_ELSE:
2005 /* This insn requires the top of stack to be the destination. */
2006
2007 src1 = get_true_reg (&XEXP (pat_src, 1));
2008 src2 = get_true_reg (&XEXP (pat_src, 2));
2009
2010 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2011 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2012
2013 /* If the comparison operator is an FP comparison operator,
2014 it is handled correctly by compare_for_stack_reg () who
2015 will move the destination to the top of stack. But if the
2016 comparison operator is not an FP comparison operator, we
2017 have to handle it here. */
2018 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
2019 && REGNO (*dest) != regstack->reg[regstack->top])
2020 {
2021 /* In case one of operands is the top of stack and the operands
2022 dies, it is safe to make it the destination operand by
2023 reversing the direction of cmove and avoid fxch. */
2024 if ((REGNO (*src1) == regstack->reg[regstack->top]
2025 && src1_note)
2026 || (REGNO (*src2) == regstack->reg[regstack->top]
2027 && src2_note))
2028 {
2029 int idx1 = (get_hard_regnum (regstack, *src1)
2030 - FIRST_STACK_REG);
2031 int idx2 = (get_hard_regnum (regstack, *src2)
2032 - FIRST_STACK_REG);
2033
2034 /* Make reg-stack believe that the operands are already
2035 swapped on the stack */
2036 regstack->reg[regstack->top - idx1] = REGNO (*src2);
2037 regstack->reg[regstack->top - idx2] = REGNO (*src1);
2038
2039 /* Reverse condition to compensate the operand swap.
2040 i386 do have comparison always reversible. */
2041 PUT_CODE (XEXP (pat_src, 0),
2042 reversed_comparison_code (XEXP (pat_src, 0), insn));
2043 }
2044 else
2045 emit_swap_insn (insn, regstack, *dest);
2046 }
2047
2048 {
2049 rtx src_note [3];
2050 int i;
2051
2052 src_note[0] = 0;
2053 src_note[1] = src1_note;
2054 src_note[2] = src2_note;
2055
2056 if (STACK_REG_P (*src1))
2057 replace_reg (src1, get_hard_regnum (regstack, *src1));
2058 if (STACK_REG_P (*src2))
2059 replace_reg (src2, get_hard_regnum (regstack, *src2));
2060
2061 for (i = 1; i <= 2; i++)
2062 if (src_note [i])
2063 {
2064 int regno = REGNO (XEXP (src_note[i], 0));
2065
2066 /* If the register that dies is not at the top of
2067 stack, then move the top of stack to the dead reg.
2068 Top of stack should never die, as it is the
2069 destination. */
2070 gcc_assert (regno != regstack->reg[regstack->top]);
2071 remove_regno_note (insn, REG_DEAD, regno);
2072 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2073 EMIT_AFTER);
2074 }
2075 }
2076
2077 /* Make dest the top of stack. Add dest to regstack if
2078 not present. */
2079 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2080 regstack->reg[++regstack->top] = REGNO (*dest);
2081 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2082 replace_reg (dest, FIRST_STACK_REG);
2083 break;
2084
2085 default:
2086 gcc_unreachable ();
2087 }
2088 break;
2089 }
2090
2091 default:
2092 break;
2093 }
2094
2095 return control_flow_insn_deleted;
2096 }
2097 \f
2098 /* Substitute hard regnums for any stack regs in INSN, which has
2099 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2100 before the insn, and is updated with changes made here.
2101
2102 There are several requirements and assumptions about the use of
2103 stack-like regs in asm statements. These rules are enforced by
2104 record_asm_stack_regs; see comments there for details. Any
2105 asm_operands left in the RTL at this point may be assume to meet the
2106 requirements, since record_asm_stack_regs removes any problem asm. */
2107
2108 static void
2109 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2110 {
2111 rtx body = PATTERN (insn);
2112
2113 rtx *note_reg; /* Array of note contents */
2114 rtx **note_loc; /* Address of REG field of each note */
2115 enum reg_note *note_kind; /* The type of each note */
2116
2117 rtx *clobber_reg = 0;
2118 rtx **clobber_loc = 0;
2119
2120 struct stack_def temp_stack;
2121 int n_notes;
2122 int n_clobbers;
2123 rtx note;
2124 int i;
2125 int n_inputs, n_outputs;
2126
2127 if (! check_asm_stack_operands (insn))
2128 return;
2129
2130 /* Find out what the constraints required. If no constraint
2131 alternative matches, that is a compiler bug: we should have caught
2132 such an insn in check_asm_stack_operands. */
2133 extract_constrain_insn (insn);
2134
2135 preprocess_constraints (insn);
2136 const operand_alternative *op_alt = which_op_alt ();
2137
2138 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2139
2140 /* Strip SUBREGs here to make the following code simpler. */
2141 for (i = 0; i < recog_data.n_operands; i++)
2142 if (GET_CODE (recog_data.operand[i]) == SUBREG
2143 && REG_P (SUBREG_REG (recog_data.operand[i])))
2144 {
2145 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2146 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2147 }
2148
2149 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2150
2151 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2152 i++;
2153
2154 note_reg = XALLOCAVEC (rtx, i);
2155 note_loc = XALLOCAVEC (rtx *, i);
2156 note_kind = XALLOCAVEC (enum reg_note, i);
2157
2158 n_notes = 0;
2159 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2160 {
2161 if (GET_CODE (note) != EXPR_LIST)
2162 continue;
2163 rtx reg = XEXP (note, 0);
2164 rtx *loc = & XEXP (note, 0);
2165
2166 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2167 {
2168 loc = & SUBREG_REG (reg);
2169 reg = SUBREG_REG (reg);
2170 }
2171
2172 if (STACK_REG_P (reg)
2173 && (REG_NOTE_KIND (note) == REG_DEAD
2174 || REG_NOTE_KIND (note) == REG_UNUSED))
2175 {
2176 note_reg[n_notes] = reg;
2177 note_loc[n_notes] = loc;
2178 note_kind[n_notes] = REG_NOTE_KIND (note);
2179 n_notes++;
2180 }
2181 }
2182
2183 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2184
2185 n_clobbers = 0;
2186
2187 if (GET_CODE (body) == PARALLEL)
2188 {
2189 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2190 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2191
2192 for (i = 0; i < XVECLEN (body, 0); i++)
2193 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2194 {
2195 rtx clobber = XVECEXP (body, 0, i);
2196 rtx reg = XEXP (clobber, 0);
2197 rtx *loc = & XEXP (clobber, 0);
2198
2199 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2200 {
2201 loc = & SUBREG_REG (reg);
2202 reg = SUBREG_REG (reg);
2203 }
2204
2205 if (STACK_REG_P (reg))
2206 {
2207 clobber_reg[n_clobbers] = reg;
2208 clobber_loc[n_clobbers] = loc;
2209 n_clobbers++;
2210 }
2211 }
2212 }
2213
2214 temp_stack = *regstack;
2215
2216 /* Put the input regs into the desired place in TEMP_STACK. */
2217
2218 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2219 if (STACK_REG_P (recog_data.operand[i])
2220 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2221 && op_alt[i].cl != FLOAT_REGS)
2222 {
2223 /* If an operand needs to be in a particular reg in
2224 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2225 these constraints are for single register classes, and
2226 reload guaranteed that operand[i] is already in that class,
2227 we can just use REGNO (recog_data.operand[i]) to know which
2228 actual reg this operand needs to be in. */
2229
2230 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2231
2232 gcc_assert (regno >= 0);
2233
2234 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2235 {
2236 /* recog_data.operand[i] is not in the right place. Find
2237 it and swap it with whatever is already in I's place.
2238 K is where recog_data.operand[i] is now. J is where it
2239 should be. */
2240 int j, k;
2241
2242 k = temp_stack.top - (regno - FIRST_STACK_REG);
2243 j = (temp_stack.top
2244 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2245
2246 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2247 }
2248 }
2249
2250 /* Emit insns before INSN to make sure the reg-stack is in the right
2251 order. */
2252
2253 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2254
2255 /* Make the needed input register substitutions. Do death notes and
2256 clobbers too, because these are for inputs, not outputs. */
2257
2258 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2259 if (STACK_REG_P (recog_data.operand[i]))
2260 {
2261 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2262
2263 gcc_assert (regnum >= 0);
2264
2265 replace_reg (recog_data.operand_loc[i], regnum);
2266 }
2267
2268 for (i = 0; i < n_notes; i++)
2269 if (note_kind[i] == REG_DEAD)
2270 {
2271 int regnum = get_hard_regnum (regstack, note_reg[i]);
2272
2273 gcc_assert (regnum >= 0);
2274
2275 replace_reg (note_loc[i], regnum);
2276 }
2277
2278 for (i = 0; i < n_clobbers; i++)
2279 {
2280 /* It's OK for a CLOBBER to reference a reg that is not live.
2281 Don't try to replace it in that case. */
2282 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2283
2284 if (regnum >= 0)
2285 replace_reg (clobber_loc[i], regnum);
2286 }
2287
2288 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2289
2290 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2291 if (STACK_REG_P (recog_data.operand[i]))
2292 {
2293 /* An input reg is implicitly popped if it is tied to an
2294 output, or if there is a CLOBBER for it. */
2295 int j;
2296
2297 for (j = 0; j < n_clobbers; j++)
2298 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2299 break;
2300
2301 if (j < n_clobbers || op_alt[i].matches >= 0)
2302 {
2303 /* recog_data.operand[i] might not be at the top of stack.
2304 But that's OK, because all we need to do is pop the
2305 right number of regs off of the top of the reg-stack.
2306 record_asm_stack_regs guaranteed that all implicitly
2307 popped regs were grouped at the top of the reg-stack. */
2308
2309 CLEAR_HARD_REG_BIT (regstack->reg_set,
2310 regstack->reg[regstack->top]);
2311 regstack->top--;
2312 }
2313 }
2314
2315 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2316 Note that there isn't any need to substitute register numbers.
2317 ??? Explain why this is true. */
2318
2319 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2320 {
2321 /* See if there is an output for this hard reg. */
2322 int j;
2323
2324 for (j = 0; j < n_outputs; j++)
2325 if (STACK_REG_P (recog_data.operand[j])
2326 && REGNO (recog_data.operand[j]) == (unsigned) i)
2327 {
2328 regstack->reg[++regstack->top] = i;
2329 SET_HARD_REG_BIT (regstack->reg_set, i);
2330 break;
2331 }
2332 }
2333
2334 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2335 input that the asm didn't implicitly pop. If the asm didn't
2336 implicitly pop an input reg, that reg will still be live.
2337
2338 Note that we can't use find_regno_note here: the register numbers
2339 in the death notes have already been substituted. */
2340
2341 for (i = 0; i < n_outputs; i++)
2342 if (STACK_REG_P (recog_data.operand[i]))
2343 {
2344 int j;
2345
2346 for (j = 0; j < n_notes; j++)
2347 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2348 && note_kind[j] == REG_UNUSED)
2349 {
2350 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2351 EMIT_AFTER);
2352 break;
2353 }
2354 }
2355
2356 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2357 if (STACK_REG_P (recog_data.operand[i]))
2358 {
2359 int j;
2360
2361 for (j = 0; j < n_notes; j++)
2362 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2363 && note_kind[j] == REG_DEAD
2364 && TEST_HARD_REG_BIT (regstack->reg_set,
2365 REGNO (recog_data.operand[i])))
2366 {
2367 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2368 EMIT_AFTER);
2369 break;
2370 }
2371 }
2372 }
2373 \f
2374 /* Substitute stack hard reg numbers for stack virtual registers in
2375 INSN. Non-stack register numbers are not changed. REGSTACK is the
2376 current stack content. Insns may be emitted as needed to arrange the
2377 stack for the 387 based on the contents of the insn. Return whether
2378 a control flow insn was deleted in the process. */
2379
2380 static bool
2381 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2382 {
2383 rtx *note_link, note;
2384 bool control_flow_insn_deleted = false;
2385 int i;
2386
2387 if (CALL_P (insn))
2388 {
2389 int top = regstack->top;
2390
2391 /* If there are any floating point parameters to be passed in
2392 registers for this call, make sure they are in the right
2393 order. */
2394
2395 if (top >= 0)
2396 {
2397 straighten_stack (insn, regstack);
2398
2399 /* Now mark the arguments as dead after the call. */
2400
2401 while (regstack->top >= 0)
2402 {
2403 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2404 regstack->top--;
2405 }
2406 }
2407 }
2408
2409 /* Do the actual substitution if any stack regs are mentioned.
2410 Since we only record whether entire insn mentions stack regs, and
2411 subst_stack_regs_pat only works for patterns that contain stack regs,
2412 we must check each pattern in a parallel here. A call_value_pop could
2413 fail otherwise. */
2414
2415 if (stack_regs_mentioned (insn))
2416 {
2417 int n_operands = asm_noperands (PATTERN (insn));
2418 if (n_operands >= 0)
2419 {
2420 /* This insn is an `asm' with operands. Decode the operands,
2421 decide how many are inputs, and do register substitution.
2422 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2423
2424 subst_asm_stack_regs (insn, regstack);
2425 return control_flow_insn_deleted;
2426 }
2427
2428 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2429 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2430 {
2431 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2432 {
2433 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2434 XVECEXP (PATTERN (insn), 0, i)
2435 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2436 control_flow_insn_deleted
2437 |= subst_stack_regs_pat (insn, regstack,
2438 XVECEXP (PATTERN (insn), 0, i));
2439 }
2440 }
2441 else
2442 control_flow_insn_deleted
2443 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2444 }
2445
2446 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2447 REG_UNUSED will already have been dealt with, so just return. */
2448
2449 if (NOTE_P (insn) || insn->deleted ())
2450 return control_flow_insn_deleted;
2451
2452 /* If this a noreturn call, we can't insert pop insns after it.
2453 Instead, reset the stack state to empty. */
2454 if (CALL_P (insn)
2455 && find_reg_note (insn, REG_NORETURN, NULL))
2456 {
2457 regstack->top = -1;
2458 CLEAR_HARD_REG_SET (regstack->reg_set);
2459 return control_flow_insn_deleted;
2460 }
2461
2462 /* If there is a REG_UNUSED note on a stack register on this insn,
2463 the indicated reg must be popped. The REG_UNUSED note is removed,
2464 since the form of the newly emitted pop insn references the reg,
2465 making it no longer `unset'. */
2466
2467 note_link = &REG_NOTES (insn);
2468 for (note = *note_link; note; note = XEXP (note, 1))
2469 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2470 {
2471 *note_link = XEXP (note, 1);
2472 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2473 }
2474 else
2475 note_link = &XEXP (note, 1);
2476
2477 return control_flow_insn_deleted;
2478 }
2479 \f
2480 /* Change the organization of the stack so that it fits a new basic
2481 block. Some registers might have to be popped, but there can never be
2482 a register live in the new block that is not now live.
2483
2484 Insert any needed insns before or after INSN, as indicated by
2485 WHERE. OLD is the original stack layout, and NEW is the desired
2486 form. OLD is updated to reflect the code emitted, i.e., it will be
2487 the same as NEW upon return.
2488
2489 This function will not preserve block_end[]. But that information
2490 is no longer needed once this has executed. */
2491
2492 static void
2493 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2494 enum emit_where where)
2495 {
2496 int reg;
2497 machine_mode raw_mode = reg_raw_mode[FIRST_STACK_REG];
2498 rtx_insn *update_end = NULL;
2499 int i;
2500
2501 /* Stack adjustments for the first insn in a block update the
2502 current_block's stack_in instead of inserting insns directly.
2503 compensate_edges will add the necessary code later. */
2504 if (current_block
2505 && starting_stack_p
2506 && where == EMIT_BEFORE)
2507 {
2508 BLOCK_INFO (current_block)->stack_in = *new_stack;
2509 starting_stack_p = false;
2510 *old = *new_stack;
2511 return;
2512 }
2513
2514 /* We will be inserting new insns "backwards". If we are to insert
2515 after INSN, find the next insn, and insert before it. */
2516
2517 if (where == EMIT_AFTER)
2518 {
2519 if (current_block && BB_END (current_block) == insn)
2520 update_end = insn;
2521 insn = NEXT_INSN (insn);
2522 }
2523
2524 /* Initialize partially dead variables. */
2525 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2526 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2527 && !TEST_HARD_REG_BIT (old->reg_set, i))
2528 {
2529 old->reg[++old->top] = i;
2530 SET_HARD_REG_BIT (old->reg_set, i);
2531 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2532 insn);
2533 }
2534
2535 /* Pop any registers that are not needed in the new block. */
2536
2537 /* If the destination block's stack already has a specified layout
2538 and contains two or more registers, use a more intelligent algorithm
2539 to pop registers that minimizes the number of fxchs below. */
2540 if (new_stack->top > 0)
2541 {
2542 bool slots[REG_STACK_SIZE];
2543 int pops[REG_STACK_SIZE];
2544 int next, dest, topsrc;
2545
2546 /* First pass to determine the free slots. */
2547 for (reg = 0; reg <= new_stack->top; reg++)
2548 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2549
2550 /* Second pass to allocate preferred slots. */
2551 topsrc = -1;
2552 for (reg = old->top; reg > new_stack->top; reg--)
2553 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2554 {
2555 dest = -1;
2556 for (next = 0; next <= new_stack->top; next++)
2557 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2558 {
2559 /* If this is a preference for the new top of stack, record
2560 the fact by remembering it's old->reg in topsrc. */
2561 if (next == new_stack->top)
2562 topsrc = reg;
2563 slots[next] = true;
2564 dest = next;
2565 break;
2566 }
2567 pops[reg] = dest;
2568 }
2569 else
2570 pops[reg] = reg;
2571
2572 /* Intentionally, avoid placing the top of stack in it's correct
2573 location, if we still need to permute the stack below and we
2574 can usefully place it somewhere else. This is the case if any
2575 slot is still unallocated, in which case we should place the
2576 top of stack there. */
2577 if (topsrc != -1)
2578 for (reg = 0; reg < new_stack->top; reg++)
2579 if (!slots[reg])
2580 {
2581 pops[topsrc] = reg;
2582 slots[new_stack->top] = false;
2583 slots[reg] = true;
2584 break;
2585 }
2586
2587 /* Third pass allocates remaining slots and emits pop insns. */
2588 next = new_stack->top;
2589 for (reg = old->top; reg > new_stack->top; reg--)
2590 {
2591 dest = pops[reg];
2592 if (dest == -1)
2593 {
2594 /* Find next free slot. */
2595 while (slots[next])
2596 next--;
2597 dest = next--;
2598 }
2599 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], raw_mode),
2600 EMIT_BEFORE);
2601 }
2602 }
2603 else
2604 {
2605 /* The following loop attempts to maximize the number of times we
2606 pop the top of the stack, as this permits the use of the faster
2607 ffreep instruction on platforms that support it. */
2608 int live, next;
2609
2610 live = 0;
2611 for (reg = 0; reg <= old->top; reg++)
2612 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2613 live++;
2614
2615 next = live;
2616 while (old->top >= live)
2617 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2618 {
2619 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2620 next--;
2621 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], raw_mode),
2622 EMIT_BEFORE);
2623 }
2624 else
2625 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], raw_mode),
2626 EMIT_BEFORE);
2627 }
2628
2629 if (new_stack->top == -2)
2630 {
2631 /* If the new block has never been processed, then it can inherit
2632 the old stack order. */
2633
2634 new_stack->top = old->top;
2635 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2636 }
2637 else
2638 {
2639 /* This block has been entered before, and we must match the
2640 previously selected stack order. */
2641
2642 /* By now, the only difference should be the order of the stack,
2643 not their depth or liveliness. */
2644
2645 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2646 gcc_assert (old->top == new_stack->top);
2647
2648 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2649 swaps until the stack is correct.
2650
2651 The worst case number of swaps emitted is N + 2, where N is the
2652 depth of the stack. In some cases, the reg at the top of
2653 stack may be correct, but swapped anyway in order to fix
2654 other regs. But since we never swap any other reg away from
2655 its correct slot, this algorithm will converge. */
2656
2657 if (new_stack->top != -1)
2658 do
2659 {
2660 /* Swap the reg at top of stack into the position it is
2661 supposed to be in, until the correct top of stack appears. */
2662
2663 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2664 {
2665 for (reg = new_stack->top; reg >= 0; reg--)
2666 if (new_stack->reg[reg] == old->reg[old->top])
2667 break;
2668
2669 gcc_assert (reg != -1);
2670
2671 emit_swap_insn (insn, old,
2672 FP_MODE_REG (old->reg[reg], raw_mode));
2673 }
2674
2675 /* See if any regs remain incorrect. If so, bring an
2676 incorrect reg to the top of stack, and let the while loop
2677 above fix it. */
2678
2679 for (reg = new_stack->top; reg >= 0; reg--)
2680 if (new_stack->reg[reg] != old->reg[reg])
2681 {
2682 emit_swap_insn (insn, old,
2683 FP_MODE_REG (old->reg[reg], raw_mode));
2684 break;
2685 }
2686 } while (reg >= 0);
2687
2688 /* At this point there must be no differences. */
2689
2690 for (reg = old->top; reg >= 0; reg--)
2691 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2692 }
2693
2694 if (update_end)
2695 {
2696 for (update_end = NEXT_INSN (update_end); update_end != insn;
2697 update_end = NEXT_INSN (update_end))
2698 {
2699 set_block_for_insn (update_end, current_block);
2700 if (INSN_P (update_end))
2701 df_insn_rescan (update_end);
2702 }
2703 BB_END (current_block) = PREV_INSN (insn);
2704 }
2705 }
2706 \f
2707 /* Print stack configuration. */
2708
2709 static void
2710 print_stack (FILE *file, stack_ptr s)
2711 {
2712 if (! file)
2713 return;
2714
2715 if (s->top == -2)
2716 fprintf (file, "uninitialized\n");
2717 else if (s->top == -1)
2718 fprintf (file, "empty\n");
2719 else
2720 {
2721 int i;
2722 fputs ("[ ", file);
2723 for (i = 0; i <= s->top; ++i)
2724 fprintf (file, "%d ", s->reg[i]);
2725 fputs ("]\n", file);
2726 }
2727 }
2728 \f
2729 /* This function was doing life analysis. We now let the regular live
2730 code do it's job, so we only need to check some extra invariants
2731 that reg-stack expects. Primary among these being that all registers
2732 are initialized before use.
2733
2734 The function returns true when code was emitted to CFG edges and
2735 commit_edge_insertions needs to be called. */
2736
2737 static int
2738 convert_regs_entry (void)
2739 {
2740 int inserted = 0;
2741 edge e;
2742 edge_iterator ei;
2743
2744 /* Load something into each stack register live at function entry.
2745 Such live registers can be caused by uninitialized variables or
2746 functions not returning values on all paths. In order to keep
2747 the push/pop code happy, and to not scrog the register stack, we
2748 must put something in these registers. Use a QNaN.
2749
2750 Note that we are inserting converted code here. This code is
2751 never seen by the convert_regs pass. */
2752
2753 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2754 {
2755 basic_block block = e->dest;
2756 block_info bi = BLOCK_INFO (block);
2757 int reg, top = -1;
2758
2759 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2760 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2761 {
2762 rtx init;
2763
2764 bi->stack_in.reg[++top] = reg;
2765
2766 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2767 not_a_num);
2768 insert_insn_on_edge (init, e);
2769 inserted = 1;
2770 }
2771
2772 bi->stack_in.top = top;
2773 }
2774
2775 return inserted;
2776 }
2777
2778 /* Construct the desired stack for function exit. This will either
2779 be `empty', or the function return value at top-of-stack. */
2780
2781 static void
2782 convert_regs_exit (void)
2783 {
2784 int value_reg_low, value_reg_high;
2785 stack_ptr output_stack;
2786 rtx retvalue;
2787
2788 retvalue = stack_result (current_function_decl);
2789 value_reg_low = value_reg_high = -1;
2790 if (retvalue)
2791 {
2792 value_reg_low = REGNO (retvalue);
2793 value_reg_high = END_REGNO (retvalue) - 1;
2794 }
2795
2796 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2797 if (value_reg_low == -1)
2798 output_stack->top = -1;
2799 else
2800 {
2801 int reg;
2802
2803 output_stack->top = value_reg_high - value_reg_low;
2804 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2805 {
2806 output_stack->reg[value_reg_high - reg] = reg;
2807 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2808 }
2809 }
2810 }
2811
2812 /* Copy the stack info from the end of edge E's source block to the
2813 start of E's destination block. */
2814
2815 static void
2816 propagate_stack (edge e)
2817 {
2818 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2819 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2820 int reg;
2821
2822 /* Preserve the order of the original stack, but check whether
2823 any pops are needed. */
2824 dest_stack->top = -1;
2825 for (reg = 0; reg <= src_stack->top; ++reg)
2826 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2827 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2828
2829 /* Push in any partially dead values. */
2830 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2831 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2832 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2833 dest_stack->reg[++dest_stack->top] = reg;
2834 }
2835
2836
2837 /* Adjust the stack of edge E's source block on exit to match the stack
2838 of it's target block upon input. The stack layouts of both blocks
2839 should have been defined by now. */
2840
2841 static bool
2842 compensate_edge (edge e)
2843 {
2844 basic_block source = e->src, target = e->dest;
2845 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2846 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2847 struct stack_def regstack;
2848 int reg;
2849
2850 if (dump_file)
2851 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2852
2853 gcc_assert (target_stack->top != -2);
2854
2855 /* Check whether stacks are identical. */
2856 if (target_stack->top == source_stack->top)
2857 {
2858 for (reg = target_stack->top; reg >= 0; --reg)
2859 if (target_stack->reg[reg] != source_stack->reg[reg])
2860 break;
2861
2862 if (reg == -1)
2863 {
2864 if (dump_file)
2865 fprintf (dump_file, "no changes needed\n");
2866 return false;
2867 }
2868 }
2869
2870 if (dump_file)
2871 {
2872 fprintf (dump_file, "correcting stack to ");
2873 print_stack (dump_file, target_stack);
2874 }
2875
2876 /* Abnormal calls may appear to have values live in st(0), but the
2877 abnormal return path will not have actually loaded the values. */
2878 if (e->flags & EDGE_ABNORMAL_CALL)
2879 {
2880 /* Assert that the lifetimes are as we expect -- one value
2881 live at st(0) on the end of the source block, and no
2882 values live at the beginning of the destination block.
2883 For complex return values, we may have st(1) live as well. */
2884 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2885 gcc_assert (target_stack->top == -1);
2886 return false;
2887 }
2888
2889 /* Handle non-call EH edges specially. The normal return path have
2890 values in registers. These will be popped en masse by the unwind
2891 library. */
2892 if (e->flags & EDGE_EH)
2893 {
2894 gcc_assert (target_stack->top == -1);
2895 return false;
2896 }
2897
2898 /* We don't support abnormal edges. Global takes care to
2899 avoid any live register across them, so we should never
2900 have to insert instructions on such edges. */
2901 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2902
2903 /* Make a copy of source_stack as change_stack is destructive. */
2904 regstack = *source_stack;
2905
2906 /* It is better to output directly to the end of the block
2907 instead of to the edge, because emit_swap can do minimal
2908 insn scheduling. We can do this when there is only one
2909 edge out, and it is not abnormal. */
2910 if (EDGE_COUNT (source->succs) == 1)
2911 {
2912 current_block = source;
2913 change_stack (BB_END (source), &regstack, target_stack,
2914 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2915 }
2916 else
2917 {
2918 rtx_insn *seq;
2919 rtx_note *after;
2920
2921 current_block = NULL;
2922 start_sequence ();
2923
2924 /* ??? change_stack needs some point to emit insns after. */
2925 after = emit_note (NOTE_INSN_DELETED);
2926
2927 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2928
2929 seq = get_insns ();
2930 end_sequence ();
2931
2932 set_insn_locations (seq, e->goto_locus);
2933 insert_insn_on_edge (seq, e);
2934 return true;
2935 }
2936 return false;
2937 }
2938
2939 /* Traverse all non-entry edges in the CFG, and emit the necessary
2940 edge compensation code to change the stack from stack_out of the
2941 source block to the stack_in of the destination block. */
2942
2943 static bool
2944 compensate_edges (void)
2945 {
2946 bool inserted = false;
2947 basic_block bb;
2948
2949 starting_stack_p = false;
2950
2951 FOR_EACH_BB_FN (bb, cfun)
2952 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2953 {
2954 edge e;
2955 edge_iterator ei;
2956
2957 FOR_EACH_EDGE (e, ei, bb->succs)
2958 inserted |= compensate_edge (e);
2959 }
2960 return inserted;
2961 }
2962
2963 /* Select the better of two edges E1 and E2 to use to determine the
2964 stack layout for their shared destination basic block. This is
2965 typically the more frequently executed. The edge E1 may be NULL
2966 (in which case E2 is returned), but E2 is always non-NULL. */
2967
2968 static edge
2969 better_edge (edge e1, edge e2)
2970 {
2971 if (!e1)
2972 return e2;
2973
2974 if (e1->count () > e2->count ())
2975 return e1;
2976 if (e1->count () < e2->count ())
2977 return e2;
2978
2979 /* Prefer critical edges to minimize inserting compensation code on
2980 critical edges. */
2981
2982 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2983 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2984
2985 /* Avoid non-deterministic behavior. */
2986 return (e1->src->index < e2->src->index) ? e1 : e2;
2987 }
2988
2989 /* Convert stack register references in one block. Return true if the CFG
2990 has been modified in the process. */
2991
2992 static bool
2993 convert_regs_1 (basic_block block)
2994 {
2995 struct stack_def regstack;
2996 block_info bi = BLOCK_INFO (block);
2997 int reg;
2998 rtx_insn *insn, *next;
2999 bool control_flow_insn_deleted = false;
3000 bool cfg_altered = false;
3001 int debug_insns_with_starting_stack = 0;
3002
3003 any_malformed_asm = false;
3004
3005 /* Choose an initial stack layout, if one hasn't already been chosen. */
3006 if (bi->stack_in.top == -2)
3007 {
3008 edge e, beste = NULL;
3009 edge_iterator ei;
3010
3011 /* Select the best incoming edge (typically the most frequent) to
3012 use as a template for this basic block. */
3013 FOR_EACH_EDGE (e, ei, block->preds)
3014 if (BLOCK_INFO (e->src)->done)
3015 beste = better_edge (beste, e);
3016
3017 if (beste)
3018 propagate_stack (beste);
3019 else
3020 {
3021 /* No predecessors. Create an arbitrary input stack. */
3022 bi->stack_in.top = -1;
3023 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3024 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
3025 bi->stack_in.reg[++bi->stack_in.top] = reg;
3026 }
3027 }
3028
3029 if (dump_file)
3030 {
3031 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3032 print_stack (dump_file, &bi->stack_in);
3033 }
3034
3035 /* Process all insns in this block. Keep track of NEXT so that we
3036 don't process insns emitted while substituting in INSN. */
3037 current_block = block;
3038 next = BB_HEAD (block);
3039 regstack = bi->stack_in;
3040 starting_stack_p = true;
3041
3042 do
3043 {
3044 insn = next;
3045 next = NEXT_INSN (insn);
3046
3047 /* Ensure we have not missed a block boundary. */
3048 gcc_assert (next);
3049 if (insn == BB_END (block))
3050 next = NULL;
3051
3052 /* Don't bother processing unless there is a stack reg
3053 mentioned or if it's a CALL_INSN. */
3054 if (DEBUG_BIND_INSN_P (insn))
3055 {
3056 if (starting_stack_p)
3057 debug_insns_with_starting_stack++;
3058 else
3059 {
3060 subst_all_stack_regs_in_debug_insn (insn, &regstack);
3061
3062 /* Nothing must ever die at a debug insn. If something
3063 is referenced in it that becomes dead, it should have
3064 died before and the reference in the debug insn
3065 should have been removed so as to avoid changing code
3066 generation. */
3067 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3068 }
3069 }
3070 else if (stack_regs_mentioned (insn)
3071 || CALL_P (insn))
3072 {
3073 if (dump_file)
3074 {
3075 fprintf (dump_file, " insn %d input stack: ",
3076 INSN_UID (insn));
3077 print_stack (dump_file, &regstack);
3078 }
3079 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3080 starting_stack_p = false;
3081 }
3082 }
3083 while (next);
3084
3085 if (debug_insns_with_starting_stack)
3086 {
3087 /* Since it's the first non-debug instruction that determines
3088 the stack requirements of the current basic block, we refrain
3089 from updating debug insns before it in the loop above, and
3090 fix them up here. */
3091 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3092 insn = NEXT_INSN (insn))
3093 {
3094 if (!DEBUG_BIND_INSN_P (insn))
3095 continue;
3096
3097 debug_insns_with_starting_stack--;
3098 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3099 }
3100 }
3101
3102 if (dump_file)
3103 {
3104 fprintf (dump_file, "Expected live registers [");
3105 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3106 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3107 fprintf (dump_file, " %d", reg);
3108 fprintf (dump_file, " ]\nOutput stack: ");
3109 print_stack (dump_file, &regstack);
3110 }
3111
3112 insn = BB_END (block);
3113 if (JUMP_P (insn))
3114 insn = PREV_INSN (insn);
3115
3116 /* If the function is declared to return a value, but it returns one
3117 in only some cases, some registers might come live here. Emit
3118 necessary moves for them. */
3119
3120 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3121 {
3122 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3123 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3124 {
3125 rtx set;
3126
3127 if (dump_file)
3128 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3129
3130 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3131 insn = emit_insn_after (set, insn);
3132 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3133 }
3134 }
3135
3136 /* Amongst the insns possibly deleted during the substitution process above,
3137 might have been the only trapping insn in the block. We purge the now
3138 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3139 called at the end of convert_regs. The order in which we process the
3140 blocks ensures that we never delete an already processed edge.
3141
3142 Note that, at this point, the CFG may have been damaged by the emission
3143 of instructions after an abnormal call, which moves the basic block end
3144 (and is the reason why we call fixup_abnormal_edges later). So we must
3145 be sure that the trapping insn has been deleted before trying to purge
3146 dead edges, otherwise we risk purging valid edges.
3147
3148 ??? We are normally supposed not to delete trapping insns, so we pretend
3149 that the insns deleted above don't actually trap. It would have been
3150 better to detect this earlier and avoid creating the EH edge in the first
3151 place, still, but we don't have enough information at that time. */
3152
3153 if (control_flow_insn_deleted)
3154 cfg_altered |= purge_dead_edges (block);
3155
3156 /* Something failed if the stack lives don't match. If we had malformed
3157 asms, we zapped the instruction itself, but that didn't produce the
3158 same pattern of register kills as before. */
3159
3160 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3161 || any_malformed_asm);
3162 bi->stack_out = regstack;
3163 bi->done = true;
3164
3165 return cfg_altered;
3166 }
3167
3168 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3169 CFG has been modified in the process. */
3170
3171 static bool
3172 convert_regs_2 (basic_block block)
3173 {
3174 basic_block *stack, *sp;
3175 bool cfg_altered = false;
3176
3177 /* We process the blocks in a top-down manner, in a way such that one block
3178 is only processed after all its predecessors. The number of predecessors
3179 of every block has already been computed. */
3180
3181 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3182 sp = stack;
3183
3184 *sp++ = block;
3185
3186 do
3187 {
3188 edge e;
3189 edge_iterator ei;
3190
3191 block = *--sp;
3192
3193 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3194 some dead EH outgoing edge after the deletion of the trapping
3195 insn inside the block. Since the number of predecessors of
3196 BLOCK's successors was computed based on the initial edge set,
3197 we check the necessity to process some of these successors
3198 before such an edge deletion may happen. However, there is
3199 a pitfall: if BLOCK is the only predecessor of a successor and
3200 the edge between them happens to be deleted, the successor
3201 becomes unreachable and should not be processed. The problem
3202 is that there is no way to preventively detect this case so we
3203 stack the successor in all cases and hand over the task of
3204 fixing up the discrepancy to convert_regs_1. */
3205
3206 FOR_EACH_EDGE (e, ei, block->succs)
3207 if (! (e->flags & EDGE_DFS_BACK))
3208 {
3209 BLOCK_INFO (e->dest)->predecessors--;
3210 if (!BLOCK_INFO (e->dest)->predecessors)
3211 *sp++ = e->dest;
3212 }
3213
3214 cfg_altered |= convert_regs_1 (block);
3215 }
3216 while (sp != stack);
3217
3218 free (stack);
3219
3220 return cfg_altered;
3221 }
3222
3223 /* Traverse all basic blocks in a function, converting the register
3224 references in each insn from the "flat" register file that gcc uses,
3225 to the stack-like registers the 387 uses. */
3226
3227 static void
3228 convert_regs (void)
3229 {
3230 bool cfg_altered = false;
3231 int inserted;
3232 basic_block b;
3233 edge e;
3234 edge_iterator ei;
3235
3236 /* Initialize uninitialized registers on function entry. */
3237 inserted = convert_regs_entry ();
3238
3239 /* Construct the desired stack for function exit. */
3240 convert_regs_exit ();
3241 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3242
3243 /* ??? Future: process inner loops first, and give them arbitrary
3244 initial stacks which emit_swap_insn can modify. This ought to
3245 prevent double fxch that often appears at the head of a loop. */
3246
3247 /* Process all blocks reachable from all entry points. */
3248 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3249 cfg_altered |= convert_regs_2 (e->dest);
3250
3251 /* ??? Process all unreachable blocks. Though there's no excuse
3252 for keeping these even when not optimizing. */
3253 FOR_EACH_BB_FN (b, cfun)
3254 {
3255 block_info bi = BLOCK_INFO (b);
3256
3257 if (! bi->done)
3258 cfg_altered |= convert_regs_2 (b);
3259 }
3260
3261 /* We must fix up abnormal edges before inserting compensation code
3262 because both mechanisms insert insns on edges. */
3263 inserted |= fixup_abnormal_edges ();
3264
3265 inserted |= compensate_edges ();
3266
3267 clear_aux_for_blocks ();
3268
3269 if (inserted)
3270 commit_edge_insertions ();
3271
3272 if (cfg_altered)
3273 cleanup_cfg (0);
3274
3275 if (dump_file)
3276 fputc ('\n', dump_file);
3277 }
3278 \f
3279 /* Convert register usage from "flat" register file usage to a "stack
3280 register file. FILE is the dump file, if used.
3281
3282 Construct a CFG and run life analysis. Then convert each insn one
3283 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3284 code duplication created when the converter inserts pop insns on
3285 the edges. */
3286
3287 static bool
3288 reg_to_stack (void)
3289 {
3290 basic_block bb;
3291 int i;
3292 int max_uid;
3293
3294 /* Clean up previous run. */
3295 stack_regs_mentioned_data.release ();
3296
3297 /* See if there is something to do. Flow analysis is quite
3298 expensive so we might save some compilation time. */
3299 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3300 if (df_regs_ever_live_p (i))
3301 break;
3302 if (i > LAST_STACK_REG)
3303 return false;
3304
3305 df_note_add_problem ();
3306 df_analyze ();
3307
3308 mark_dfs_back_edges ();
3309
3310 /* Set up block info for each basic block. */
3311 alloc_aux_for_blocks (sizeof (struct block_info_def));
3312 FOR_EACH_BB_FN (bb, cfun)
3313 {
3314 block_info bi = BLOCK_INFO (bb);
3315 edge_iterator ei;
3316 edge e;
3317 int reg;
3318
3319 FOR_EACH_EDGE (e, ei, bb->preds)
3320 if (!(e->flags & EDGE_DFS_BACK)
3321 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3322 bi->predecessors++;
3323
3324 /* Set current register status at last instruction `uninitialized'. */
3325 bi->stack_in.top = -2;
3326
3327 /* Copy live_at_end and live_at_start into temporaries. */
3328 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3329 {
3330 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3331 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3332 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3333 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3334 }
3335 }
3336
3337 /* Create the replacement registers up front. */
3338 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3339 {
3340 machine_mode mode;
3341 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
3342 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3343 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
3344 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3345 }
3346
3347 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3348
3349 /* A QNaN for initializing uninitialized variables.
3350
3351 ??? We can't load from constant memory in PIC mode, because
3352 we're inserting these instructions before the prologue and
3353 the PIC register hasn't been set up. In that case, fall back
3354 on zero, which we can get from `fldz'. */
3355
3356 if ((flag_pic && !TARGET_64BIT)
3357 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3358 not_a_num = CONST0_RTX (SFmode);
3359 else
3360 {
3361 REAL_VALUE_TYPE r;
3362
3363 real_nan (&r, "", 1, SFmode);
3364 not_a_num = const_double_from_real_value (r, SFmode);
3365 not_a_num = force_const_mem (SFmode, not_a_num);
3366 }
3367
3368 /* Allocate a cache for stack_regs_mentioned. */
3369 max_uid = get_max_uid ();
3370 stack_regs_mentioned_data.create (max_uid + 1);
3371 memset (stack_regs_mentioned_data.address (),
3372 0, sizeof (char) * (max_uid + 1));
3373
3374 convert_regs ();
3375
3376 free_aux_for_blocks ();
3377 return true;
3378 }
3379 #endif /* STACK_REGS */
3380 \f
3381 namespace {
3382
3383 const pass_data pass_data_stack_regs =
3384 {
3385 RTL_PASS, /* type */
3386 "*stack_regs", /* name */
3387 OPTGROUP_NONE, /* optinfo_flags */
3388 TV_REG_STACK, /* tv_id */
3389 0, /* properties_required */
3390 0, /* properties_provided */
3391 0, /* properties_destroyed */
3392 0, /* todo_flags_start */
3393 0, /* todo_flags_finish */
3394 };
3395
3396 class pass_stack_regs : public rtl_opt_pass
3397 {
3398 public:
3399 pass_stack_regs (gcc::context *ctxt)
3400 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3401 {}
3402
3403 /* opt_pass methods: */
3404 virtual bool gate (function *)
3405 {
3406 #ifdef STACK_REGS
3407 return true;
3408 #else
3409 return false;
3410 #endif
3411 }
3412
3413 }; // class pass_stack_regs
3414
3415 } // anon namespace
3416
3417 rtl_opt_pass *
3418 make_pass_stack_regs (gcc::context *ctxt)
3419 {
3420 return new pass_stack_regs (ctxt);
3421 }
3422
3423 /* Convert register usage from flat register file usage to a stack
3424 register file. */
3425 static unsigned int
3426 rest_of_handle_stack_regs (void)
3427 {
3428 #ifdef STACK_REGS
3429 reg_to_stack ();
3430 regstack_completed = 1;
3431 #endif
3432 return 0;
3433 }
3434
3435 namespace {
3436
3437 const pass_data pass_data_stack_regs_run =
3438 {
3439 RTL_PASS, /* type */
3440 "stack", /* name */
3441 OPTGROUP_NONE, /* optinfo_flags */
3442 TV_REG_STACK, /* tv_id */
3443 0, /* properties_required */
3444 0, /* properties_provided */
3445 0, /* properties_destroyed */
3446 0, /* todo_flags_start */
3447 TODO_df_finish, /* todo_flags_finish */
3448 };
3449
3450 class pass_stack_regs_run : public rtl_opt_pass
3451 {
3452 public:
3453 pass_stack_regs_run (gcc::context *ctxt)
3454 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3455 {}
3456
3457 /* opt_pass methods: */
3458 virtual unsigned int execute (function *)
3459 {
3460 return rest_of_handle_stack_regs ();
3461 }
3462
3463 }; // class pass_stack_regs_run
3464
3465 } // anon namespace
3466
3467 rtl_opt_pass *
3468 make_pass_stack_regs_run (gcc::context *ctxt)
3469 {
3470 return new pass_stack_regs_run (ctxt);
3471 }