]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reg-stack.c
remove has_execute
[thirdparty/gcc.git] / gcc / reg-stack.c
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
22
23 * The form of the input:
24
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
34
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
42
43 * The form of the output:
44
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
50
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
53
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
57
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
60
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
64
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
69
70 * Methodology:
71
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
75
76 * asm_operands:
77
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
81
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
85
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
89
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
96
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
99
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
102
103 asm ("foo" : "=t" (a) : "f" (b));
104
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
110
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
113
114 The asm above would be written as
115
116 asm ("foo" : "=&t" (a) : "f" (b));
117
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
122
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
126
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
131
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
134
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
138
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
141
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
143
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
147
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
149
150 */
151 \f
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "tm.h"
156 #include "tree.h"
157 #include "varasm.h"
158 #include "rtl-error.h"
159 #include "tm_p.h"
160 #include "function.h"
161 #include "insn-config.h"
162 #include "regs.h"
163 #include "hard-reg-set.h"
164 #include "flags.h"
165 #include "recog.h"
166 #include "basic-block.h"
167 #include "reload.h"
168 #include "ggc.h"
169 #include "tree-pass.h"
170 #include "target.h"
171 #include "df.h"
172 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
173
174 #ifdef STACK_REGS
175
176 /* We use this array to cache info about insns, because otherwise we
177 spend too much time in stack_regs_mentioned_p.
178
179 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
180 the insn uses stack registers, two indicates the insn does not use
181 stack registers. */
182 static vec<char> stack_regs_mentioned_data;
183
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185
186 int regstack_completed = 0;
187
188 /* This is the basic stack record. TOP is an index into REG[] such
189 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
190
191 If TOP is -2, REG[] is not yet initialized. Stack initialization
192 consists of placing each live reg in array `reg' and setting `top'
193 appropriately.
194
195 REG_SET indicates which registers are live. */
196
197 typedef struct stack_def
198 {
199 int top; /* index to top stack element */
200 HARD_REG_SET reg_set; /* set of live registers */
201 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
202 } *stack_ptr;
203
204 /* This is used to carry information about basic blocks. It is
205 attached to the AUX field of the standard CFG block. */
206
207 typedef struct block_info_def
208 {
209 struct stack_def stack_in; /* Input stack configuration. */
210 struct stack_def stack_out; /* Output stack configuration. */
211 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
212 int done; /* True if block already converted. */
213 int predecessors; /* Number of predecessors that need
214 to be visited. */
215 } *block_info;
216
217 #define BLOCK_INFO(B) ((block_info) (B)->aux)
218
219 /* Passed to change_stack to indicate where to emit insns. */
220 enum emit_where
221 {
222 EMIT_AFTER,
223 EMIT_BEFORE
224 };
225
226 /* The block we're currently working on. */
227 static basic_block current_block;
228
229 /* In the current_block, whether we're processing the first register
230 stack or call instruction, i.e. the regstack is currently the
231 same as BLOCK_INFO(current_block)->stack_in. */
232 static bool starting_stack_p;
233
234 /* This is the register file for all register after conversion. */
235 static rtx
236 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
237
238 #define FP_MODE_REG(regno,mode) \
239 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
240
241 /* Used to initialize uninitialized registers. */
242 static rtx not_a_num;
243
244 /* Forward declarations */
245
246 static int stack_regs_mentioned_p (const_rtx pat);
247 static void pop_stack (stack_ptr, int);
248 static rtx *get_true_reg (rtx *);
249
250 static int check_asm_stack_operands (rtx);
251 static void get_asm_operands_in_out (rtx, int *, int *);
252 static rtx stack_result (tree);
253 static void replace_reg (rtx *, int);
254 static void remove_regno_note (rtx, enum reg_note, unsigned int);
255 static int get_hard_regnum (stack_ptr, rtx);
256 static rtx emit_pop_insn (rtx, stack_ptr, rtx, enum emit_where);
257 static void swap_to_top (rtx, stack_ptr, rtx, rtx);
258 static bool move_for_stack_reg (rtx, stack_ptr, rtx);
259 static bool move_nan_for_stack_reg (rtx, stack_ptr, rtx);
260 static int swap_rtx_condition_1 (rtx);
261 static int swap_rtx_condition (rtx);
262 static void compare_for_stack_reg (rtx, stack_ptr, rtx);
263 static bool subst_stack_regs_pat (rtx, stack_ptr, rtx);
264 static void subst_asm_stack_regs (rtx, stack_ptr);
265 static bool subst_stack_regs (rtx, stack_ptr);
266 static void change_stack (rtx, stack_ptr, stack_ptr, enum emit_where);
267 static void print_stack (FILE *, stack_ptr);
268 static rtx next_flags_user (rtx);
269 \f
270 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
271
272 static int
273 stack_regs_mentioned_p (const_rtx pat)
274 {
275 const char *fmt;
276 int i;
277
278 if (STACK_REG_P (pat))
279 return 1;
280
281 fmt = GET_RTX_FORMAT (GET_CODE (pat));
282 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
283 {
284 if (fmt[i] == 'E')
285 {
286 int j;
287
288 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
289 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
290 return 1;
291 }
292 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
293 return 1;
294 }
295
296 return 0;
297 }
298
299 /* Return nonzero if INSN mentions stacked registers, else return zero. */
300
301 int
302 stack_regs_mentioned (const_rtx insn)
303 {
304 unsigned int uid, max;
305 int test;
306
307 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
308 return 0;
309
310 uid = INSN_UID (insn);
311 max = stack_regs_mentioned_data.length ();
312 if (uid >= max)
313 {
314 /* Allocate some extra size to avoid too many reallocs, but
315 do not grow too quickly. */
316 max = uid + uid / 20 + 1;
317 stack_regs_mentioned_data.safe_grow_cleared (max);
318 }
319
320 test = stack_regs_mentioned_data[uid];
321 if (test == 0)
322 {
323 /* This insn has yet to be examined. Do so now. */
324 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
325 stack_regs_mentioned_data[uid] = test;
326 }
327
328 return test == 1;
329 }
330 \f
331 static rtx ix86_flags_rtx;
332
333 static rtx
334 next_flags_user (rtx insn)
335 {
336 /* Search forward looking for the first use of this value.
337 Stop at block boundaries. */
338
339 while (insn != BB_END (current_block))
340 {
341 insn = NEXT_INSN (insn);
342
343 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
344 return insn;
345
346 if (CALL_P (insn))
347 return NULL_RTX;
348 }
349 return NULL_RTX;
350 }
351 \f
352 /* Reorganize the stack into ascending numbers, before this insn. */
353
354 static void
355 straighten_stack (rtx insn, stack_ptr regstack)
356 {
357 struct stack_def temp_stack;
358 int top;
359
360 /* If there is only a single register on the stack, then the stack is
361 already in increasing order and no reorganization is needed.
362
363 Similarly if the stack is empty. */
364 if (regstack->top <= 0)
365 return;
366
367 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
368
369 for (top = temp_stack.top = regstack->top; top >= 0; top--)
370 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
371
372 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
373 }
374
375 /* Pop a register from the stack. */
376
377 static void
378 pop_stack (stack_ptr regstack, int regno)
379 {
380 int top = regstack->top;
381
382 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
383 regstack->top--;
384 /* If regno was not at the top of stack then adjust stack. */
385 if (regstack->reg [top] != regno)
386 {
387 int i;
388 for (i = regstack->top; i >= 0; i--)
389 if (regstack->reg [i] == regno)
390 {
391 int j;
392 for (j = i; j < top; j++)
393 regstack->reg [j] = regstack->reg [j + 1];
394 break;
395 }
396 }
397 }
398 \f
399 /* Return a pointer to the REG expression within PAT. If PAT is not a
400 REG, possible enclosed by a conversion rtx, return the inner part of
401 PAT that stopped the search. */
402
403 static rtx *
404 get_true_reg (rtx *pat)
405 {
406 for (;;)
407 switch (GET_CODE (*pat))
408 {
409 case SUBREG:
410 /* Eliminate FP subregister accesses in favor of the
411 actual FP register in use. */
412 {
413 rtx subreg;
414 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
415 {
416 int regno_off = subreg_regno_offset (REGNO (subreg),
417 GET_MODE (subreg),
418 SUBREG_BYTE (*pat),
419 GET_MODE (*pat));
420 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
421 GET_MODE (subreg));
422 return pat;
423 }
424 }
425 case FLOAT:
426 case FIX:
427 case FLOAT_EXTEND:
428 pat = & XEXP (*pat, 0);
429 break;
430
431 case UNSPEC:
432 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
433 || XINT (*pat, 1) == UNSPEC_LDA)
434 pat = & XVECEXP (*pat, 0, 0);
435 return pat;
436
437 case FLOAT_TRUNCATE:
438 if (!flag_unsafe_math_optimizations)
439 return pat;
440 pat = & XEXP (*pat, 0);
441 break;
442
443 default:
444 return pat;
445 }
446 }
447 \f
448 /* Set if we find any malformed asms in a block. */
449 static bool any_malformed_asm;
450
451 /* There are many rules that an asm statement for stack-like regs must
452 follow. Those rules are explained at the top of this file: the rule
453 numbers below refer to that explanation. */
454
455 static int
456 check_asm_stack_operands (rtx insn)
457 {
458 int i;
459 int n_clobbers;
460 int malformed_asm = 0;
461 rtx body = PATTERN (insn);
462
463 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
464 char implicitly_dies[FIRST_PSEUDO_REGISTER];
465
466 rtx *clobber_reg = 0;
467 int n_inputs, n_outputs;
468
469 /* Find out what the constraints require. If no constraint
470 alternative matches, this asm is malformed. */
471 extract_insn (insn);
472 constrain_operands (1);
473
474 preprocess_constraints (insn);
475
476 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
477
478 if (which_alternative < 0)
479 {
480 malformed_asm = 1;
481 /* Avoid further trouble with this insn. */
482 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
483 return 0;
484 }
485 const operand_alternative *op_alt = which_op_alt ();
486
487 /* Strip SUBREGs here to make the following code simpler. */
488 for (i = 0; i < recog_data.n_operands; i++)
489 if (GET_CODE (recog_data.operand[i]) == SUBREG
490 && REG_P (SUBREG_REG (recog_data.operand[i])))
491 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
492
493 /* Set up CLOBBER_REG. */
494
495 n_clobbers = 0;
496
497 if (GET_CODE (body) == PARALLEL)
498 {
499 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
500
501 for (i = 0; i < XVECLEN (body, 0); i++)
502 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
503 {
504 rtx clobber = XVECEXP (body, 0, i);
505 rtx reg = XEXP (clobber, 0);
506
507 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
508 reg = SUBREG_REG (reg);
509
510 if (STACK_REG_P (reg))
511 {
512 clobber_reg[n_clobbers] = reg;
513 n_clobbers++;
514 }
515 }
516 }
517
518 /* Enforce rule #4: Output operands must specifically indicate which
519 reg an output appears in after an asm. "=f" is not allowed: the
520 operand constraints must select a class with a single reg.
521
522 Also enforce rule #5: Output operands must start at the top of
523 the reg-stack: output operands may not "skip" a reg. */
524
525 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
526 for (i = 0; i < n_outputs; i++)
527 if (STACK_REG_P (recog_data.operand[i]))
528 {
529 if (reg_class_size[(int) op_alt[i].cl] != 1)
530 {
531 error_for_asm (insn, "output constraint %d must specify a single register", i);
532 malformed_asm = 1;
533 }
534 else
535 {
536 int j;
537
538 for (j = 0; j < n_clobbers; j++)
539 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
540 {
541 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
542 i, reg_names [REGNO (clobber_reg[j])]);
543 malformed_asm = 1;
544 break;
545 }
546 if (j == n_clobbers)
547 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
548 }
549 }
550
551
552 /* Search for first non-popped reg. */
553 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
554 if (! reg_used_as_output[i])
555 break;
556
557 /* If there are any other popped regs, that's an error. */
558 for (; i < LAST_STACK_REG + 1; i++)
559 if (reg_used_as_output[i])
560 break;
561
562 if (i != LAST_STACK_REG + 1)
563 {
564 error_for_asm (insn, "output regs must be grouped at top of stack");
565 malformed_asm = 1;
566 }
567
568 /* Enforce rule #2: All implicitly popped input regs must be closer
569 to the top of the reg-stack than any input that is not implicitly
570 popped. */
571
572 memset (implicitly_dies, 0, sizeof (implicitly_dies));
573 for (i = n_outputs; i < n_outputs + n_inputs; i++)
574 if (STACK_REG_P (recog_data.operand[i]))
575 {
576 /* An input reg is implicitly popped if it is tied to an
577 output, or if there is a CLOBBER for it. */
578 int j;
579
580 for (j = 0; j < n_clobbers; j++)
581 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
582 break;
583
584 if (j < n_clobbers || op_alt[i].matches >= 0)
585 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
586 }
587
588 /* Search for first non-popped reg. */
589 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
590 if (! implicitly_dies[i])
591 break;
592
593 /* If there are any other popped regs, that's an error. */
594 for (; i < LAST_STACK_REG + 1; i++)
595 if (implicitly_dies[i])
596 break;
597
598 if (i != LAST_STACK_REG + 1)
599 {
600 error_for_asm (insn,
601 "implicitly popped regs must be grouped at top of stack");
602 malformed_asm = 1;
603 }
604
605 /* Enforce rule #3: If any input operand uses the "f" constraint, all
606 output constraints must use the "&" earlyclobber.
607
608 ??? Detect this more deterministically by having constrain_asm_operands
609 record any earlyclobber. */
610
611 for (i = n_outputs; i < n_outputs + n_inputs; i++)
612 if (op_alt[i].matches == -1)
613 {
614 int j;
615
616 for (j = 0; j < n_outputs; j++)
617 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
618 {
619 error_for_asm (insn,
620 "output operand %d must use %<&%> constraint", j);
621 malformed_asm = 1;
622 }
623 }
624
625 if (malformed_asm)
626 {
627 /* Avoid further trouble with this insn. */
628 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
629 any_malformed_asm = true;
630 return 0;
631 }
632
633 return 1;
634 }
635 \f
636 /* Calculate the number of inputs and outputs in BODY, an
637 asm_operands. N_OPERANDS is the total number of operands, and
638 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
639 placed. */
640
641 static void
642 get_asm_operands_in_out (rtx body, int *pout, int *pin)
643 {
644 rtx asmop = extract_asm_operands (body);
645
646 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
647 *pout = (recog_data.n_operands
648 - ASM_OPERANDS_INPUT_LENGTH (asmop)
649 - ASM_OPERANDS_LABEL_LENGTH (asmop));
650 }
651
652 /* If current function returns its result in an fp stack register,
653 return the REG. Otherwise, return 0. */
654
655 static rtx
656 stack_result (tree decl)
657 {
658 rtx result;
659
660 /* If the value is supposed to be returned in memory, then clearly
661 it is not returned in a stack register. */
662 if (aggregate_value_p (DECL_RESULT (decl), decl))
663 return 0;
664
665 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
666 if (result != 0)
667 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
668 decl, true);
669
670 return result != 0 && STACK_REG_P (result) ? result : 0;
671 }
672 \f
673
674 /*
675 * This section deals with stack register substitution, and forms the second
676 * pass over the RTL.
677 */
678
679 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
680 the desired hard REGNO. */
681
682 static void
683 replace_reg (rtx *reg, int regno)
684 {
685 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
686 gcc_assert (STACK_REG_P (*reg));
687
688 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
689 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
690
691 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
692 }
693
694 /* Remove a note of type NOTE, which must be found, for register
695 number REGNO from INSN. Remove only one such note. */
696
697 static void
698 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
699 {
700 rtx *note_link, this_rtx;
701
702 note_link = &REG_NOTES (insn);
703 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
704 if (REG_NOTE_KIND (this_rtx) == note
705 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
706 {
707 *note_link = XEXP (this_rtx, 1);
708 return;
709 }
710 else
711 note_link = &XEXP (this_rtx, 1);
712
713 gcc_unreachable ();
714 }
715
716 /* Find the hard register number of virtual register REG in REGSTACK.
717 The hard register number is relative to the top of the stack. -1 is
718 returned if the register is not found. */
719
720 static int
721 get_hard_regnum (stack_ptr regstack, rtx reg)
722 {
723 int i;
724
725 gcc_assert (STACK_REG_P (reg));
726
727 for (i = regstack->top; i >= 0; i--)
728 if (regstack->reg[i] == REGNO (reg))
729 break;
730
731 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
732 }
733 \f
734 /* Emit an insn to pop virtual register REG before or after INSN.
735 REGSTACK is the stack state after INSN and is updated to reflect this
736 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
737 is represented as a SET whose destination is the register to be popped
738 and source is the top of stack. A death note for the top of stack
739 cases the movdf pattern to pop. */
740
741 static rtx
742 emit_pop_insn (rtx insn, stack_ptr regstack, rtx reg, enum emit_where where)
743 {
744 rtx pop_insn, pop_rtx;
745 int hard_regno;
746
747 /* For complex types take care to pop both halves. These may survive in
748 CLOBBER and USE expressions. */
749 if (COMPLEX_MODE_P (GET_MODE (reg)))
750 {
751 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
752 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
753
754 pop_insn = NULL_RTX;
755 if (get_hard_regnum (regstack, reg1) >= 0)
756 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
757 if (get_hard_regnum (regstack, reg2) >= 0)
758 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
759 gcc_assert (pop_insn);
760 return pop_insn;
761 }
762
763 hard_regno = get_hard_regnum (regstack, reg);
764
765 gcc_assert (hard_regno >= FIRST_STACK_REG);
766
767 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
768 FP_MODE_REG (FIRST_STACK_REG, DFmode));
769
770 if (where == EMIT_AFTER)
771 pop_insn = emit_insn_after (pop_rtx, insn);
772 else
773 pop_insn = emit_insn_before (pop_rtx, insn);
774
775 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
776
777 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
778 = regstack->reg[regstack->top];
779 regstack->top -= 1;
780 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
781
782 return pop_insn;
783 }
784 \f
785 /* Emit an insn before or after INSN to swap virtual register REG with
786 the top of stack. REGSTACK is the stack state before the swap, and
787 is updated to reflect the swap. A swap insn is represented as a
788 PARALLEL of two patterns: each pattern moves one reg to the other.
789
790 If REG is already at the top of the stack, no insn is emitted. */
791
792 static void
793 emit_swap_insn (rtx insn, stack_ptr regstack, rtx reg)
794 {
795 int hard_regno;
796 rtx swap_rtx;
797 int tmp, other_reg; /* swap regno temps */
798 rtx i1; /* the stack-reg insn prior to INSN */
799 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
800
801 hard_regno = get_hard_regnum (regstack, reg);
802
803 if (hard_regno == FIRST_STACK_REG)
804 return;
805 if (hard_regno == -1)
806 {
807 /* Something failed if the register wasn't on the stack. If we had
808 malformed asms, we zapped the instruction itself, but that didn't
809 produce the same pattern of register sets as before. To prevent
810 further failure, adjust REGSTACK to include REG at TOP. */
811 gcc_assert (any_malformed_asm);
812 regstack->reg[++regstack->top] = REGNO (reg);
813 return;
814 }
815 gcc_assert (hard_regno >= FIRST_STACK_REG);
816
817 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
818
819 tmp = regstack->reg[other_reg];
820 regstack->reg[other_reg] = regstack->reg[regstack->top];
821 regstack->reg[regstack->top] = tmp;
822
823 /* Find the previous insn involving stack regs, but don't pass a
824 block boundary. */
825 i1 = NULL;
826 if (current_block && insn != BB_HEAD (current_block))
827 {
828 rtx tmp = PREV_INSN (insn);
829 rtx limit = PREV_INSN (BB_HEAD (current_block));
830 while (tmp != limit)
831 {
832 if (LABEL_P (tmp)
833 || CALL_P (tmp)
834 || NOTE_INSN_BASIC_BLOCK_P (tmp)
835 || (NONJUMP_INSN_P (tmp)
836 && stack_regs_mentioned (tmp)))
837 {
838 i1 = tmp;
839 break;
840 }
841 tmp = PREV_INSN (tmp);
842 }
843 }
844
845 if (i1 != NULL_RTX
846 && (i1set = single_set (i1)) != NULL_RTX)
847 {
848 rtx i1src = *get_true_reg (&SET_SRC (i1set));
849 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
850
851 /* If the previous register stack push was from the reg we are to
852 swap with, omit the swap. */
853
854 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
855 && REG_P (i1src)
856 && REGNO (i1src) == (unsigned) hard_regno - 1
857 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
858 return;
859
860 /* If the previous insn wrote to the reg we are to swap with,
861 omit the swap. */
862
863 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
864 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
865 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
866 return;
867 }
868
869 /* Avoid emitting the swap if this is the first register stack insn
870 of the current_block. Instead update the current_block's stack_in
871 and let compensate edges take care of this for us. */
872 if (current_block && starting_stack_p)
873 {
874 BLOCK_INFO (current_block)->stack_in = *regstack;
875 starting_stack_p = false;
876 return;
877 }
878
879 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
880 FP_MODE_REG (FIRST_STACK_REG, XFmode));
881
882 if (i1)
883 emit_insn_after (swap_rtx, i1);
884 else if (current_block)
885 emit_insn_before (swap_rtx, BB_HEAD (current_block));
886 else
887 emit_insn_before (swap_rtx, insn);
888 }
889 \f
890 /* Emit an insns before INSN to swap virtual register SRC1 with
891 the top of stack and virtual register SRC2 with second stack
892 slot. REGSTACK is the stack state before the swaps, and
893 is updated to reflect the swaps. A swap insn is represented as a
894 PARALLEL of two patterns: each pattern moves one reg to the other.
895
896 If SRC1 and/or SRC2 are already at the right place, no swap insn
897 is emitted. */
898
899 static void
900 swap_to_top (rtx insn, stack_ptr regstack, rtx src1, rtx src2)
901 {
902 struct stack_def temp_stack;
903 int regno, j, k, temp;
904
905 temp_stack = *regstack;
906
907 /* Place operand 1 at the top of stack. */
908 regno = get_hard_regnum (&temp_stack, src1);
909 gcc_assert (regno >= 0);
910 if (regno != FIRST_STACK_REG)
911 {
912 k = temp_stack.top - (regno - FIRST_STACK_REG);
913 j = temp_stack.top;
914
915 temp = temp_stack.reg[k];
916 temp_stack.reg[k] = temp_stack.reg[j];
917 temp_stack.reg[j] = temp;
918 }
919
920 /* Place operand 2 next on the stack. */
921 regno = get_hard_regnum (&temp_stack, src2);
922 gcc_assert (regno >= 0);
923 if (regno != FIRST_STACK_REG + 1)
924 {
925 k = temp_stack.top - (regno - FIRST_STACK_REG);
926 j = temp_stack.top - 1;
927
928 temp = temp_stack.reg[k];
929 temp_stack.reg[k] = temp_stack.reg[j];
930 temp_stack.reg[j] = temp;
931 }
932
933 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
934 }
935 \f
936 /* Handle a move to or from a stack register in PAT, which is in INSN.
937 REGSTACK is the current stack. Return whether a control flow insn
938 was deleted in the process. */
939
940 static bool
941 move_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat)
942 {
943 rtx *psrc = get_true_reg (&SET_SRC (pat));
944 rtx *pdest = get_true_reg (&SET_DEST (pat));
945 rtx src, dest;
946 rtx note;
947 bool control_flow_insn_deleted = false;
948
949 src = *psrc; dest = *pdest;
950
951 if (STACK_REG_P (src) && STACK_REG_P (dest))
952 {
953 /* Write from one stack reg to another. If SRC dies here, then
954 just change the register mapping and delete the insn. */
955
956 note = find_regno_note (insn, REG_DEAD, REGNO (src));
957 if (note)
958 {
959 int i;
960
961 /* If this is a no-op move, there must not be a REG_DEAD note. */
962 gcc_assert (REGNO (src) != REGNO (dest));
963
964 for (i = regstack->top; i >= 0; i--)
965 if (regstack->reg[i] == REGNO (src))
966 break;
967
968 /* The destination must be dead, or life analysis is borked. */
969 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
970
971 /* If the source is not live, this is yet another case of
972 uninitialized variables. Load up a NaN instead. */
973 if (i < 0)
974 return move_nan_for_stack_reg (insn, regstack, dest);
975
976 /* It is possible that the dest is unused after this insn.
977 If so, just pop the src. */
978
979 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
980 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
981 else
982 {
983 regstack->reg[i] = REGNO (dest);
984 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
985 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
986 }
987
988 control_flow_insn_deleted |= control_flow_insn_p (insn);
989 delete_insn (insn);
990 return control_flow_insn_deleted;
991 }
992
993 /* The source reg does not die. */
994
995 /* If this appears to be a no-op move, delete it, or else it
996 will confuse the machine description output patterns. But if
997 it is REG_UNUSED, we must pop the reg now, as per-insn processing
998 for REG_UNUSED will not work for deleted insns. */
999
1000 if (REGNO (src) == REGNO (dest))
1001 {
1002 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1003 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1004
1005 control_flow_insn_deleted |= control_flow_insn_p (insn);
1006 delete_insn (insn);
1007 return control_flow_insn_deleted;
1008 }
1009
1010 /* The destination ought to be dead. */
1011 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1012
1013 replace_reg (psrc, get_hard_regnum (regstack, src));
1014
1015 regstack->reg[++regstack->top] = REGNO (dest);
1016 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1017 replace_reg (pdest, FIRST_STACK_REG);
1018 }
1019 else if (STACK_REG_P (src))
1020 {
1021 /* Save from a stack reg to MEM, or possibly integer reg. Since
1022 only top of stack may be saved, emit an exchange first if
1023 needs be. */
1024
1025 emit_swap_insn (insn, regstack, src);
1026
1027 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1028 if (note)
1029 {
1030 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1031 regstack->top--;
1032 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1033 }
1034 else if ((GET_MODE (src) == XFmode)
1035 && regstack->top < REG_STACK_SIZE - 1)
1036 {
1037 /* A 387 cannot write an XFmode value to a MEM without
1038 clobbering the source reg. The output code can handle
1039 this by reading back the value from the MEM.
1040 But it is more efficient to use a temp register if one is
1041 available. Push the source value here if the register
1042 stack is not full, and then write the value to memory via
1043 a pop. */
1044 rtx push_rtx;
1045 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1046
1047 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1048 emit_insn_before (push_rtx, insn);
1049 add_reg_note (insn, REG_DEAD, top_stack_reg);
1050 }
1051
1052 replace_reg (psrc, FIRST_STACK_REG);
1053 }
1054 else
1055 {
1056 rtx pat = PATTERN (insn);
1057
1058 gcc_assert (STACK_REG_P (dest));
1059
1060 /* Load from MEM, or possibly integer REG or constant, into the
1061 stack regs. The actual target is always the top of the
1062 stack. The stack mapping is changed to reflect that DEST is
1063 now at top of stack. */
1064
1065 /* The destination ought to be dead. However, there is a
1066 special case with i387 UNSPEC_TAN, where destination is live
1067 (an argument to fptan) but inherent load of 1.0 is modelled
1068 as a load from a constant. */
1069 if (GET_CODE (pat) == PARALLEL
1070 && XVECLEN (pat, 0) == 2
1071 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1072 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1073 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1074 emit_swap_insn (insn, regstack, dest);
1075 else
1076 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1077
1078 gcc_assert (regstack->top < REG_STACK_SIZE);
1079
1080 regstack->reg[++regstack->top] = REGNO (dest);
1081 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1082 replace_reg (pdest, FIRST_STACK_REG);
1083 }
1084
1085 return control_flow_insn_deleted;
1086 }
1087
1088 /* A helper function which replaces INSN with a pattern that loads up
1089 a NaN into DEST, then invokes move_for_stack_reg. */
1090
1091 static bool
1092 move_nan_for_stack_reg (rtx insn, stack_ptr regstack, rtx dest)
1093 {
1094 rtx pat;
1095
1096 dest = FP_MODE_REG (REGNO (dest), SFmode);
1097 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1098 PATTERN (insn) = pat;
1099 INSN_CODE (insn) = -1;
1100
1101 return move_for_stack_reg (insn, regstack, pat);
1102 }
1103 \f
1104 /* Swap the condition on a branch, if there is one. Return true if we
1105 found a condition to swap. False if the condition was not used as
1106 such. */
1107
1108 static int
1109 swap_rtx_condition_1 (rtx pat)
1110 {
1111 const char *fmt;
1112 int i, r = 0;
1113
1114 if (COMPARISON_P (pat))
1115 {
1116 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1117 r = 1;
1118 }
1119 else
1120 {
1121 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1122 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1123 {
1124 if (fmt[i] == 'E')
1125 {
1126 int j;
1127
1128 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1129 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1130 }
1131 else if (fmt[i] == 'e')
1132 r |= swap_rtx_condition_1 (XEXP (pat, i));
1133 }
1134 }
1135
1136 return r;
1137 }
1138
1139 static int
1140 swap_rtx_condition (rtx insn)
1141 {
1142 rtx pat = PATTERN (insn);
1143
1144 /* We're looking for a single set to cc0 or an HImode temporary. */
1145
1146 if (GET_CODE (pat) == SET
1147 && REG_P (SET_DEST (pat))
1148 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1149 {
1150 insn = next_flags_user (insn);
1151 if (insn == NULL_RTX)
1152 return 0;
1153 pat = PATTERN (insn);
1154 }
1155
1156 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1157 with the cc value right now. We may be able to search for one
1158 though. */
1159
1160 if (GET_CODE (pat) == SET
1161 && GET_CODE (SET_SRC (pat)) == UNSPEC
1162 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1163 {
1164 rtx dest = SET_DEST (pat);
1165
1166 /* Search forward looking for the first use of this value.
1167 Stop at block boundaries. */
1168 while (insn != BB_END (current_block))
1169 {
1170 insn = NEXT_INSN (insn);
1171 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1172 break;
1173 if (CALL_P (insn))
1174 return 0;
1175 }
1176
1177 /* We haven't found it. */
1178 if (insn == BB_END (current_block))
1179 return 0;
1180
1181 /* So we've found the insn using this value. If it is anything
1182 other than sahf or the value does not die (meaning we'd have
1183 to search further), then we must give up. */
1184 pat = PATTERN (insn);
1185 if (GET_CODE (pat) != SET
1186 || GET_CODE (SET_SRC (pat)) != UNSPEC
1187 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1188 || ! dead_or_set_p (insn, dest))
1189 return 0;
1190
1191 /* Now we are prepared to handle this as a normal cc0 setter. */
1192 insn = next_flags_user (insn);
1193 if (insn == NULL_RTX)
1194 return 0;
1195 pat = PATTERN (insn);
1196 }
1197
1198 if (swap_rtx_condition_1 (pat))
1199 {
1200 int fail = 0;
1201 INSN_CODE (insn) = -1;
1202 if (recog_memoized (insn) == -1)
1203 fail = 1;
1204 /* In case the flags don't die here, recurse to try fix
1205 following user too. */
1206 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1207 {
1208 insn = next_flags_user (insn);
1209 if (!insn || !swap_rtx_condition (insn))
1210 fail = 1;
1211 }
1212 if (fail)
1213 {
1214 swap_rtx_condition_1 (pat);
1215 return 0;
1216 }
1217 return 1;
1218 }
1219 return 0;
1220 }
1221
1222 /* Handle a comparison. Special care needs to be taken to avoid
1223 causing comparisons that a 387 cannot do correctly, such as EQ.
1224
1225 Also, a pop insn may need to be emitted. The 387 does have an
1226 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1227 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1228 set up. */
1229
1230 static void
1231 compare_for_stack_reg (rtx insn, stack_ptr regstack, rtx pat_src)
1232 {
1233 rtx *src1, *src2;
1234 rtx src1_note, src2_note;
1235
1236 src1 = get_true_reg (&XEXP (pat_src, 0));
1237 src2 = get_true_reg (&XEXP (pat_src, 1));
1238
1239 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1240 registers that die in this insn - move those to stack top first. */
1241 if ((! STACK_REG_P (*src1)
1242 || (STACK_REG_P (*src2)
1243 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1244 && swap_rtx_condition (insn))
1245 {
1246 rtx temp;
1247 temp = XEXP (pat_src, 0);
1248 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1249 XEXP (pat_src, 1) = temp;
1250
1251 src1 = get_true_reg (&XEXP (pat_src, 0));
1252 src2 = get_true_reg (&XEXP (pat_src, 1));
1253
1254 INSN_CODE (insn) = -1;
1255 }
1256
1257 /* We will fix any death note later. */
1258
1259 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1260
1261 if (STACK_REG_P (*src2))
1262 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1263 else
1264 src2_note = NULL_RTX;
1265
1266 emit_swap_insn (insn, regstack, *src1);
1267
1268 replace_reg (src1, FIRST_STACK_REG);
1269
1270 if (STACK_REG_P (*src2))
1271 replace_reg (src2, get_hard_regnum (regstack, *src2));
1272
1273 if (src1_note)
1274 {
1275 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1276 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1277 }
1278
1279 /* If the second operand dies, handle that. But if the operands are
1280 the same stack register, don't bother, because only one death is
1281 needed, and it was just handled. */
1282
1283 if (src2_note
1284 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1285 && REGNO (*src1) == REGNO (*src2)))
1286 {
1287 /* As a special case, two regs may die in this insn if src2 is
1288 next to top of stack and the top of stack also dies. Since
1289 we have already popped src1, "next to top of stack" is really
1290 at top (FIRST_STACK_REG) now. */
1291
1292 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1293 && src1_note)
1294 {
1295 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1296 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1297 }
1298 else
1299 {
1300 /* The 386 can only represent death of the first operand in
1301 the case handled above. In all other cases, emit a separate
1302 pop and remove the death note from here. */
1303 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1304 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1305 EMIT_AFTER);
1306 }
1307 }
1308 }
1309 \f
1310 /* Substitute new registers in LOC, which is part of a debug insn.
1311 REGSTACK is the current register layout. */
1312
1313 static int
1314 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1315 {
1316 stack_ptr regstack = (stack_ptr)data;
1317 int hard_regno;
1318
1319 if (!STACK_REG_P (*loc))
1320 return 0;
1321
1322 hard_regno = get_hard_regnum (regstack, *loc);
1323
1324 /* If we can't find an active register, reset this debug insn. */
1325 if (hard_regno == -1)
1326 return 1;
1327
1328 gcc_assert (hard_regno >= FIRST_STACK_REG);
1329
1330 replace_reg (loc, hard_regno);
1331
1332 return -1;
1333 }
1334
1335 /* Substitute hardware stack regs in debug insn INSN, using stack
1336 layout REGSTACK. If we can't find a hardware stack reg for any of
1337 the REGs in it, reset the debug insn. */
1338
1339 static void
1340 subst_all_stack_regs_in_debug_insn (rtx insn, struct stack_def *regstack)
1341 {
1342 int ret = for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
1343 subst_stack_regs_in_debug_insn,
1344 regstack);
1345
1346 if (ret == 1)
1347 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1348 else
1349 gcc_checking_assert (ret == 0);
1350 }
1351
1352 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1353 is the current register layout. Return whether a control flow insn
1354 was deleted in the process. */
1355
1356 static bool
1357 subst_stack_regs_pat (rtx insn, stack_ptr regstack, rtx pat)
1358 {
1359 rtx *dest, *src;
1360 bool control_flow_insn_deleted = false;
1361
1362 switch (GET_CODE (pat))
1363 {
1364 case USE:
1365 /* Deaths in USE insns can happen in non optimizing compilation.
1366 Handle them by popping the dying register. */
1367 src = get_true_reg (&XEXP (pat, 0));
1368 if (STACK_REG_P (*src)
1369 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1370 {
1371 /* USEs are ignored for liveness information so USEs of dead
1372 register might happen. */
1373 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1374 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1375 return control_flow_insn_deleted;
1376 }
1377 /* Uninitialized USE might happen for functions returning uninitialized
1378 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1379 so it is safe to ignore the use here. This is consistent with behavior
1380 of dataflow analyzer that ignores USE too. (This also imply that
1381 forcibly initializing the register to NaN here would lead to ICE later,
1382 since the REG_DEAD notes are not issued.) */
1383 break;
1384
1385 case VAR_LOCATION:
1386 gcc_unreachable ();
1387
1388 case CLOBBER:
1389 {
1390 rtx note;
1391
1392 dest = get_true_reg (&XEXP (pat, 0));
1393 if (STACK_REG_P (*dest))
1394 {
1395 note = find_reg_note (insn, REG_DEAD, *dest);
1396
1397 if (pat != PATTERN (insn))
1398 {
1399 /* The fix_truncdi_1 pattern wants to be able to
1400 allocate its own scratch register. It does this by
1401 clobbering an fp reg so that it is assured of an
1402 empty reg-stack register. If the register is live,
1403 kill it now. Remove the DEAD/UNUSED note so we
1404 don't try to kill it later too.
1405
1406 In reality the UNUSED note can be absent in some
1407 complicated cases when the register is reused for
1408 partially set variable. */
1409
1410 if (note)
1411 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1412 else
1413 note = find_reg_note (insn, REG_UNUSED, *dest);
1414 if (note)
1415 remove_note (insn, note);
1416 replace_reg (dest, FIRST_STACK_REG + 1);
1417 }
1418 else
1419 {
1420 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1421 indicates an uninitialized value. Because reload removed
1422 all other clobbers, this must be due to a function
1423 returning without a value. Load up a NaN. */
1424
1425 if (!note)
1426 {
1427 rtx t = *dest;
1428 if (COMPLEX_MODE_P (GET_MODE (t)))
1429 {
1430 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1431 if (get_hard_regnum (regstack, u) == -1)
1432 {
1433 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1434 rtx insn2 = emit_insn_before (pat2, insn);
1435 control_flow_insn_deleted
1436 |= move_nan_for_stack_reg (insn2, regstack, u);
1437 }
1438 }
1439 if (get_hard_regnum (regstack, t) == -1)
1440 control_flow_insn_deleted
1441 |= move_nan_for_stack_reg (insn, regstack, t);
1442 }
1443 }
1444 }
1445 break;
1446 }
1447
1448 case SET:
1449 {
1450 rtx *src1 = (rtx *) 0, *src2;
1451 rtx src1_note, src2_note;
1452 rtx pat_src;
1453
1454 dest = get_true_reg (&SET_DEST (pat));
1455 src = get_true_reg (&SET_SRC (pat));
1456 pat_src = SET_SRC (pat);
1457
1458 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1459 if (STACK_REG_P (*src)
1460 || (STACK_REG_P (*dest)
1461 && (REG_P (*src) || MEM_P (*src)
1462 || CONST_DOUBLE_P (*src))))
1463 {
1464 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1465 break;
1466 }
1467
1468 switch (GET_CODE (pat_src))
1469 {
1470 case COMPARE:
1471 compare_for_stack_reg (insn, regstack, pat_src);
1472 break;
1473
1474 case CALL:
1475 {
1476 int count;
1477 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1478 --count >= 0;)
1479 {
1480 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1481 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1482 }
1483 }
1484 replace_reg (dest, FIRST_STACK_REG);
1485 break;
1486
1487 case REG:
1488 /* This is a `tstM2' case. */
1489 gcc_assert (*dest == cc0_rtx);
1490 src1 = src;
1491
1492 /* Fall through. */
1493
1494 case FLOAT_TRUNCATE:
1495 case SQRT:
1496 case ABS:
1497 case NEG:
1498 /* These insns only operate on the top of the stack. DEST might
1499 be cc0_rtx if we're processing a tstM pattern. Also, it's
1500 possible that the tstM case results in a REG_DEAD note on the
1501 source. */
1502
1503 if (src1 == 0)
1504 src1 = get_true_reg (&XEXP (pat_src, 0));
1505
1506 emit_swap_insn (insn, regstack, *src1);
1507
1508 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1509
1510 if (STACK_REG_P (*dest))
1511 replace_reg (dest, FIRST_STACK_REG);
1512
1513 if (src1_note)
1514 {
1515 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1516 regstack->top--;
1517 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1518 }
1519
1520 replace_reg (src1, FIRST_STACK_REG);
1521 break;
1522
1523 case MINUS:
1524 case DIV:
1525 /* On i386, reversed forms of subM3 and divM3 exist for
1526 MODE_FLOAT, so the same code that works for addM3 and mulM3
1527 can be used. */
1528 case MULT:
1529 case PLUS:
1530 /* These insns can accept the top of stack as a destination
1531 from a stack reg or mem, or can use the top of stack as a
1532 source and some other stack register (possibly top of stack)
1533 as a destination. */
1534
1535 src1 = get_true_reg (&XEXP (pat_src, 0));
1536 src2 = get_true_reg (&XEXP (pat_src, 1));
1537
1538 /* We will fix any death note later. */
1539
1540 if (STACK_REG_P (*src1))
1541 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1542 else
1543 src1_note = NULL_RTX;
1544 if (STACK_REG_P (*src2))
1545 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1546 else
1547 src2_note = NULL_RTX;
1548
1549 /* If either operand is not a stack register, then the dest
1550 must be top of stack. */
1551
1552 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1553 emit_swap_insn (insn, regstack, *dest);
1554 else
1555 {
1556 /* Both operands are REG. If neither operand is already
1557 at the top of stack, choose to make the one that is the
1558 dest the new top of stack. */
1559
1560 int src1_hard_regnum, src2_hard_regnum;
1561
1562 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1563 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1564
1565 /* If the source is not live, this is yet another case of
1566 uninitialized variables. Load up a NaN instead. */
1567 if (src1_hard_regnum == -1)
1568 {
1569 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1570 rtx insn2 = emit_insn_before (pat2, insn);
1571 control_flow_insn_deleted
1572 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1573 }
1574 if (src2_hard_regnum == -1)
1575 {
1576 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1577 rtx insn2 = emit_insn_before (pat2, insn);
1578 control_flow_insn_deleted
1579 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1580 }
1581
1582 if (src1_hard_regnum != FIRST_STACK_REG
1583 && src2_hard_regnum != FIRST_STACK_REG)
1584 emit_swap_insn (insn, regstack, *dest);
1585 }
1586
1587 if (STACK_REG_P (*src1))
1588 replace_reg (src1, get_hard_regnum (regstack, *src1));
1589 if (STACK_REG_P (*src2))
1590 replace_reg (src2, get_hard_regnum (regstack, *src2));
1591
1592 if (src1_note)
1593 {
1594 rtx src1_reg = XEXP (src1_note, 0);
1595
1596 /* If the register that dies is at the top of stack, then
1597 the destination is somewhere else - merely substitute it.
1598 But if the reg that dies is not at top of stack, then
1599 move the top of stack to the dead reg, as though we had
1600 done the insn and then a store-with-pop. */
1601
1602 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1603 {
1604 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1605 replace_reg (dest, get_hard_regnum (regstack, *dest));
1606 }
1607 else
1608 {
1609 int regno = get_hard_regnum (regstack, src1_reg);
1610
1611 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1612 replace_reg (dest, regno);
1613
1614 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1615 = regstack->reg[regstack->top];
1616 }
1617
1618 CLEAR_HARD_REG_BIT (regstack->reg_set,
1619 REGNO (XEXP (src1_note, 0)));
1620 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1621 regstack->top--;
1622 }
1623 else if (src2_note)
1624 {
1625 rtx src2_reg = XEXP (src2_note, 0);
1626 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1627 {
1628 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1629 replace_reg (dest, get_hard_regnum (regstack, *dest));
1630 }
1631 else
1632 {
1633 int regno = get_hard_regnum (regstack, src2_reg);
1634
1635 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1636 replace_reg (dest, regno);
1637
1638 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1639 = regstack->reg[regstack->top];
1640 }
1641
1642 CLEAR_HARD_REG_BIT (regstack->reg_set,
1643 REGNO (XEXP (src2_note, 0)));
1644 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1645 regstack->top--;
1646 }
1647 else
1648 {
1649 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1650 replace_reg (dest, get_hard_regnum (regstack, *dest));
1651 }
1652
1653 /* Keep operand 1 matching with destination. */
1654 if (COMMUTATIVE_ARITH_P (pat_src)
1655 && REG_P (*src1) && REG_P (*src2)
1656 && REGNO (*src1) != REGNO (*dest))
1657 {
1658 int tmp = REGNO (*src1);
1659 replace_reg (src1, REGNO (*src2));
1660 replace_reg (src2, tmp);
1661 }
1662 break;
1663
1664 case UNSPEC:
1665 switch (XINT (pat_src, 1))
1666 {
1667 case UNSPEC_STA:
1668 case UNSPEC_FIST:
1669
1670 case UNSPEC_FIST_FLOOR:
1671 case UNSPEC_FIST_CEIL:
1672
1673 /* These insns only operate on the top of the stack. */
1674
1675 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1676 emit_swap_insn (insn, regstack, *src1);
1677
1678 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1679
1680 if (STACK_REG_P (*dest))
1681 replace_reg (dest, FIRST_STACK_REG);
1682
1683 if (src1_note)
1684 {
1685 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1686 regstack->top--;
1687 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1688 }
1689
1690 replace_reg (src1, FIRST_STACK_REG);
1691 break;
1692
1693 case UNSPEC_FXAM:
1694
1695 /* This insn only operate on the top of the stack. */
1696
1697 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1698 emit_swap_insn (insn, regstack, *src1);
1699
1700 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1701
1702 replace_reg (src1, FIRST_STACK_REG);
1703
1704 if (src1_note)
1705 {
1706 remove_regno_note (insn, REG_DEAD,
1707 REGNO (XEXP (src1_note, 0)));
1708 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1709 EMIT_AFTER);
1710 }
1711
1712 break;
1713
1714 case UNSPEC_SIN:
1715 case UNSPEC_COS:
1716 case UNSPEC_FRNDINT:
1717 case UNSPEC_F2XM1:
1718
1719 case UNSPEC_FRNDINT_FLOOR:
1720 case UNSPEC_FRNDINT_CEIL:
1721 case UNSPEC_FRNDINT_TRUNC:
1722 case UNSPEC_FRNDINT_MASK_PM:
1723
1724 /* Above insns operate on the top of the stack. */
1725
1726 case UNSPEC_SINCOS_COS:
1727 case UNSPEC_XTRACT_FRACT:
1728
1729 /* Above insns operate on the top two stack slots,
1730 first part of one input, double output insn. */
1731
1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1733
1734 emit_swap_insn (insn, regstack, *src1);
1735
1736 /* Input should never die, it is replaced with output. */
1737 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 gcc_assert (!src1_note);
1739
1740 if (STACK_REG_P (*dest))
1741 replace_reg (dest, FIRST_STACK_REG);
1742
1743 replace_reg (src1, FIRST_STACK_REG);
1744 break;
1745
1746 case UNSPEC_SINCOS_SIN:
1747 case UNSPEC_XTRACT_EXP:
1748
1749 /* These insns operate on the top two stack slots,
1750 second part of one input, double output insn. */
1751
1752 regstack->top++;
1753 /* FALLTHRU */
1754
1755 case UNSPEC_TAN:
1756
1757 /* For UNSPEC_TAN, regstack->top is already increased
1758 by inherent load of constant 1.0. */
1759
1760 /* Output value is generated in the second stack slot.
1761 Move current value from second slot to the top. */
1762 regstack->reg[regstack->top]
1763 = regstack->reg[regstack->top - 1];
1764
1765 gcc_assert (STACK_REG_P (*dest));
1766
1767 regstack->reg[regstack->top - 1] = REGNO (*dest);
1768 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1769 replace_reg (dest, FIRST_STACK_REG + 1);
1770
1771 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1772
1773 replace_reg (src1, FIRST_STACK_REG);
1774 break;
1775
1776 case UNSPEC_FPATAN:
1777 case UNSPEC_FYL2X:
1778 case UNSPEC_FYL2XP1:
1779 /* These insns operate on the top two stack slots. */
1780
1781 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1782 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1783
1784 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1785 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1786
1787 swap_to_top (insn, regstack, *src1, *src2);
1788
1789 replace_reg (src1, FIRST_STACK_REG);
1790 replace_reg (src2, FIRST_STACK_REG + 1);
1791
1792 if (src1_note)
1793 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1794 if (src2_note)
1795 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1796
1797 /* Pop both input operands from the stack. */
1798 CLEAR_HARD_REG_BIT (regstack->reg_set,
1799 regstack->reg[regstack->top]);
1800 CLEAR_HARD_REG_BIT (regstack->reg_set,
1801 regstack->reg[regstack->top - 1]);
1802 regstack->top -= 2;
1803
1804 /* Push the result back onto the stack. */
1805 regstack->reg[++regstack->top] = REGNO (*dest);
1806 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1807 replace_reg (dest, FIRST_STACK_REG);
1808 break;
1809
1810 case UNSPEC_FSCALE_FRACT:
1811 case UNSPEC_FPREM_F:
1812 case UNSPEC_FPREM1_F:
1813 /* These insns operate on the top two stack slots,
1814 first part of double input, double output insn. */
1815
1816 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1817 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1818
1819 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1820 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1821
1822 /* Inputs should never die, they are
1823 replaced with outputs. */
1824 gcc_assert (!src1_note);
1825 gcc_assert (!src2_note);
1826
1827 swap_to_top (insn, regstack, *src1, *src2);
1828
1829 /* Push the result back onto stack. Empty stack slot
1830 will be filled in second part of insn. */
1831 if (STACK_REG_P (*dest))
1832 {
1833 regstack->reg[regstack->top] = REGNO (*dest);
1834 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1835 replace_reg (dest, FIRST_STACK_REG);
1836 }
1837
1838 replace_reg (src1, FIRST_STACK_REG);
1839 replace_reg (src2, FIRST_STACK_REG + 1);
1840 break;
1841
1842 case UNSPEC_FSCALE_EXP:
1843 case UNSPEC_FPREM_U:
1844 case UNSPEC_FPREM1_U:
1845 /* These insns operate on the top two stack slots,
1846 second part of double input, double output insn. */
1847
1848 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1849 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1850
1851 /* Push the result back onto stack. Fill empty slot from
1852 first part of insn and fix top of stack pointer. */
1853 if (STACK_REG_P (*dest))
1854 {
1855 regstack->reg[regstack->top - 1] = REGNO (*dest);
1856 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1857 replace_reg (dest, FIRST_STACK_REG + 1);
1858 }
1859
1860 replace_reg (src1, FIRST_STACK_REG);
1861 replace_reg (src2, FIRST_STACK_REG + 1);
1862 break;
1863
1864 case UNSPEC_C2_FLAG:
1865 /* This insn operates on the top two stack slots,
1866 third part of C2 setting double input insn. */
1867
1868 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1869 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1870
1871 replace_reg (src1, FIRST_STACK_REG);
1872 replace_reg (src2, FIRST_STACK_REG + 1);
1873 break;
1874
1875 case UNSPEC_SAHF:
1876 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1877 The combination matches the PPRO fcomi instruction. */
1878
1879 pat_src = XVECEXP (pat_src, 0, 0);
1880 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1881 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1882 /* Fall through. */
1883
1884 case UNSPEC_FNSTSW:
1885 /* Combined fcomp+fnstsw generated for doing well with
1886 CSE. When optimizing this would have been broken
1887 up before now. */
1888
1889 pat_src = XVECEXP (pat_src, 0, 0);
1890 gcc_assert (GET_CODE (pat_src) == COMPARE);
1891
1892 compare_for_stack_reg (insn, regstack, pat_src);
1893 break;
1894
1895 default:
1896 gcc_unreachable ();
1897 }
1898 break;
1899
1900 case IF_THEN_ELSE:
1901 /* This insn requires the top of stack to be the destination. */
1902
1903 src1 = get_true_reg (&XEXP (pat_src, 1));
1904 src2 = get_true_reg (&XEXP (pat_src, 2));
1905
1906 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1907 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1908
1909 /* If the comparison operator is an FP comparison operator,
1910 it is handled correctly by compare_for_stack_reg () who
1911 will move the destination to the top of stack. But if the
1912 comparison operator is not an FP comparison operator, we
1913 have to handle it here. */
1914 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1915 && REGNO (*dest) != regstack->reg[regstack->top])
1916 {
1917 /* In case one of operands is the top of stack and the operands
1918 dies, it is safe to make it the destination operand by
1919 reversing the direction of cmove and avoid fxch. */
1920 if ((REGNO (*src1) == regstack->reg[regstack->top]
1921 && src1_note)
1922 || (REGNO (*src2) == regstack->reg[regstack->top]
1923 && src2_note))
1924 {
1925 int idx1 = (get_hard_regnum (regstack, *src1)
1926 - FIRST_STACK_REG);
1927 int idx2 = (get_hard_regnum (regstack, *src2)
1928 - FIRST_STACK_REG);
1929
1930 /* Make reg-stack believe that the operands are already
1931 swapped on the stack */
1932 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1933 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1934
1935 /* Reverse condition to compensate the operand swap.
1936 i386 do have comparison always reversible. */
1937 PUT_CODE (XEXP (pat_src, 0),
1938 reversed_comparison_code (XEXP (pat_src, 0), insn));
1939 }
1940 else
1941 emit_swap_insn (insn, regstack, *dest);
1942 }
1943
1944 {
1945 rtx src_note [3];
1946 int i;
1947
1948 src_note[0] = 0;
1949 src_note[1] = src1_note;
1950 src_note[2] = src2_note;
1951
1952 if (STACK_REG_P (*src1))
1953 replace_reg (src1, get_hard_regnum (regstack, *src1));
1954 if (STACK_REG_P (*src2))
1955 replace_reg (src2, get_hard_regnum (regstack, *src2));
1956
1957 for (i = 1; i <= 2; i++)
1958 if (src_note [i])
1959 {
1960 int regno = REGNO (XEXP (src_note[i], 0));
1961
1962 /* If the register that dies is not at the top of
1963 stack, then move the top of stack to the dead reg.
1964 Top of stack should never die, as it is the
1965 destination. */
1966 gcc_assert (regno != regstack->reg[regstack->top]);
1967 remove_regno_note (insn, REG_DEAD, regno);
1968 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1969 EMIT_AFTER);
1970 }
1971 }
1972
1973 /* Make dest the top of stack. Add dest to regstack if
1974 not present. */
1975 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1976 regstack->reg[++regstack->top] = REGNO (*dest);
1977 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1978 replace_reg (dest, FIRST_STACK_REG);
1979 break;
1980
1981 default:
1982 gcc_unreachable ();
1983 }
1984 break;
1985 }
1986
1987 default:
1988 break;
1989 }
1990
1991 return control_flow_insn_deleted;
1992 }
1993 \f
1994 /* Substitute hard regnums for any stack regs in INSN, which has
1995 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1996 before the insn, and is updated with changes made here.
1997
1998 There are several requirements and assumptions about the use of
1999 stack-like regs in asm statements. These rules are enforced by
2000 record_asm_stack_regs; see comments there for details. Any
2001 asm_operands left in the RTL at this point may be assume to meet the
2002 requirements, since record_asm_stack_regs removes any problem asm. */
2003
2004 static void
2005 subst_asm_stack_regs (rtx insn, stack_ptr regstack)
2006 {
2007 rtx body = PATTERN (insn);
2008
2009 rtx *note_reg; /* Array of note contents */
2010 rtx **note_loc; /* Address of REG field of each note */
2011 enum reg_note *note_kind; /* The type of each note */
2012
2013 rtx *clobber_reg = 0;
2014 rtx **clobber_loc = 0;
2015
2016 struct stack_def temp_stack;
2017 int n_notes;
2018 int n_clobbers;
2019 rtx note;
2020 int i;
2021 int n_inputs, n_outputs;
2022
2023 if (! check_asm_stack_operands (insn))
2024 return;
2025
2026 /* Find out what the constraints required. If no constraint
2027 alternative matches, that is a compiler bug: we should have caught
2028 such an insn in check_asm_stack_operands. */
2029 extract_insn (insn);
2030 constrain_operands (1);
2031
2032 preprocess_constraints (insn);
2033 const operand_alternative *op_alt = which_op_alt ();
2034
2035 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2036
2037 /* Strip SUBREGs here to make the following code simpler. */
2038 for (i = 0; i < recog_data.n_operands; i++)
2039 if (GET_CODE (recog_data.operand[i]) == SUBREG
2040 && REG_P (SUBREG_REG (recog_data.operand[i])))
2041 {
2042 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2043 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2044 }
2045
2046 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2047
2048 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2049 i++;
2050
2051 note_reg = XALLOCAVEC (rtx, i);
2052 note_loc = XALLOCAVEC (rtx *, i);
2053 note_kind = XALLOCAVEC (enum reg_note, i);
2054
2055 n_notes = 0;
2056 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2057 {
2058 if (GET_CODE (note) != EXPR_LIST)
2059 continue;
2060 rtx reg = XEXP (note, 0);
2061 rtx *loc = & XEXP (note, 0);
2062
2063 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2064 {
2065 loc = & SUBREG_REG (reg);
2066 reg = SUBREG_REG (reg);
2067 }
2068
2069 if (STACK_REG_P (reg)
2070 && (REG_NOTE_KIND (note) == REG_DEAD
2071 || REG_NOTE_KIND (note) == REG_UNUSED))
2072 {
2073 note_reg[n_notes] = reg;
2074 note_loc[n_notes] = loc;
2075 note_kind[n_notes] = REG_NOTE_KIND (note);
2076 n_notes++;
2077 }
2078 }
2079
2080 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2081
2082 n_clobbers = 0;
2083
2084 if (GET_CODE (body) == PARALLEL)
2085 {
2086 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2087 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2088
2089 for (i = 0; i < XVECLEN (body, 0); i++)
2090 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2091 {
2092 rtx clobber = XVECEXP (body, 0, i);
2093 rtx reg = XEXP (clobber, 0);
2094 rtx *loc = & XEXP (clobber, 0);
2095
2096 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2097 {
2098 loc = & SUBREG_REG (reg);
2099 reg = SUBREG_REG (reg);
2100 }
2101
2102 if (STACK_REG_P (reg))
2103 {
2104 clobber_reg[n_clobbers] = reg;
2105 clobber_loc[n_clobbers] = loc;
2106 n_clobbers++;
2107 }
2108 }
2109 }
2110
2111 temp_stack = *regstack;
2112
2113 /* Put the input regs into the desired place in TEMP_STACK. */
2114
2115 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2116 if (STACK_REG_P (recog_data.operand[i])
2117 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2118 && op_alt[i].cl != FLOAT_REGS)
2119 {
2120 /* If an operand needs to be in a particular reg in
2121 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2122 these constraints are for single register classes, and
2123 reload guaranteed that operand[i] is already in that class,
2124 we can just use REGNO (recog_data.operand[i]) to know which
2125 actual reg this operand needs to be in. */
2126
2127 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2128
2129 gcc_assert (regno >= 0);
2130
2131 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2132 {
2133 /* recog_data.operand[i] is not in the right place. Find
2134 it and swap it with whatever is already in I's place.
2135 K is where recog_data.operand[i] is now. J is where it
2136 should be. */
2137 int j, k, temp;
2138
2139 k = temp_stack.top - (regno - FIRST_STACK_REG);
2140 j = (temp_stack.top
2141 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2142
2143 temp = temp_stack.reg[k];
2144 temp_stack.reg[k] = temp_stack.reg[j];
2145 temp_stack.reg[j] = temp;
2146 }
2147 }
2148
2149 /* Emit insns before INSN to make sure the reg-stack is in the right
2150 order. */
2151
2152 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2153
2154 /* Make the needed input register substitutions. Do death notes and
2155 clobbers too, because these are for inputs, not outputs. */
2156
2157 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2158 if (STACK_REG_P (recog_data.operand[i]))
2159 {
2160 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2161
2162 gcc_assert (regnum >= 0);
2163
2164 replace_reg (recog_data.operand_loc[i], regnum);
2165 }
2166
2167 for (i = 0; i < n_notes; i++)
2168 if (note_kind[i] == REG_DEAD)
2169 {
2170 int regnum = get_hard_regnum (regstack, note_reg[i]);
2171
2172 gcc_assert (regnum >= 0);
2173
2174 replace_reg (note_loc[i], regnum);
2175 }
2176
2177 for (i = 0; i < n_clobbers; i++)
2178 {
2179 /* It's OK for a CLOBBER to reference a reg that is not live.
2180 Don't try to replace it in that case. */
2181 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2182
2183 if (regnum >= 0)
2184 {
2185 /* Sigh - clobbers always have QImode. But replace_reg knows
2186 that these regs can't be MODE_INT and will assert. Just put
2187 the right reg there without calling replace_reg. */
2188
2189 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2190 }
2191 }
2192
2193 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2194
2195 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2196 if (STACK_REG_P (recog_data.operand[i]))
2197 {
2198 /* An input reg is implicitly popped if it is tied to an
2199 output, or if there is a CLOBBER for it. */
2200 int j;
2201
2202 for (j = 0; j < n_clobbers; j++)
2203 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2204 break;
2205
2206 if (j < n_clobbers || op_alt[i].matches >= 0)
2207 {
2208 /* recog_data.operand[i] might not be at the top of stack.
2209 But that's OK, because all we need to do is pop the
2210 right number of regs off of the top of the reg-stack.
2211 record_asm_stack_regs guaranteed that all implicitly
2212 popped regs were grouped at the top of the reg-stack. */
2213
2214 CLEAR_HARD_REG_BIT (regstack->reg_set,
2215 regstack->reg[regstack->top]);
2216 regstack->top--;
2217 }
2218 }
2219
2220 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2221 Note that there isn't any need to substitute register numbers.
2222 ??? Explain why this is true. */
2223
2224 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2225 {
2226 /* See if there is an output for this hard reg. */
2227 int j;
2228
2229 for (j = 0; j < n_outputs; j++)
2230 if (STACK_REG_P (recog_data.operand[j])
2231 && REGNO (recog_data.operand[j]) == (unsigned) i)
2232 {
2233 regstack->reg[++regstack->top] = i;
2234 SET_HARD_REG_BIT (regstack->reg_set, i);
2235 break;
2236 }
2237 }
2238
2239 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2240 input that the asm didn't implicitly pop. If the asm didn't
2241 implicitly pop an input reg, that reg will still be live.
2242
2243 Note that we can't use find_regno_note here: the register numbers
2244 in the death notes have already been substituted. */
2245
2246 for (i = 0; i < n_outputs; i++)
2247 if (STACK_REG_P (recog_data.operand[i]))
2248 {
2249 int j;
2250
2251 for (j = 0; j < n_notes; j++)
2252 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2253 && note_kind[j] == REG_UNUSED)
2254 {
2255 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2256 EMIT_AFTER);
2257 break;
2258 }
2259 }
2260
2261 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2262 if (STACK_REG_P (recog_data.operand[i]))
2263 {
2264 int j;
2265
2266 for (j = 0; j < n_notes; j++)
2267 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2268 && note_kind[j] == REG_DEAD
2269 && TEST_HARD_REG_BIT (regstack->reg_set,
2270 REGNO (recog_data.operand[i])))
2271 {
2272 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2273 EMIT_AFTER);
2274 break;
2275 }
2276 }
2277 }
2278 \f
2279 /* Substitute stack hard reg numbers for stack virtual registers in
2280 INSN. Non-stack register numbers are not changed. REGSTACK is the
2281 current stack content. Insns may be emitted as needed to arrange the
2282 stack for the 387 based on the contents of the insn. Return whether
2283 a control flow insn was deleted in the process. */
2284
2285 static bool
2286 subst_stack_regs (rtx insn, stack_ptr regstack)
2287 {
2288 rtx *note_link, note;
2289 bool control_flow_insn_deleted = false;
2290 int i;
2291
2292 if (CALL_P (insn))
2293 {
2294 int top = regstack->top;
2295
2296 /* If there are any floating point parameters to be passed in
2297 registers for this call, make sure they are in the right
2298 order. */
2299
2300 if (top >= 0)
2301 {
2302 straighten_stack (insn, regstack);
2303
2304 /* Now mark the arguments as dead after the call. */
2305
2306 while (regstack->top >= 0)
2307 {
2308 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2309 regstack->top--;
2310 }
2311 }
2312 }
2313
2314 /* Do the actual substitution if any stack regs are mentioned.
2315 Since we only record whether entire insn mentions stack regs, and
2316 subst_stack_regs_pat only works for patterns that contain stack regs,
2317 we must check each pattern in a parallel here. A call_value_pop could
2318 fail otherwise. */
2319
2320 if (stack_regs_mentioned (insn))
2321 {
2322 int n_operands = asm_noperands (PATTERN (insn));
2323 if (n_operands >= 0)
2324 {
2325 /* This insn is an `asm' with operands. Decode the operands,
2326 decide how many are inputs, and do register substitution.
2327 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2328
2329 subst_asm_stack_regs (insn, regstack);
2330 return control_flow_insn_deleted;
2331 }
2332
2333 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2334 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2335 {
2336 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2337 {
2338 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2339 XVECEXP (PATTERN (insn), 0, i)
2340 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2341 control_flow_insn_deleted
2342 |= subst_stack_regs_pat (insn, regstack,
2343 XVECEXP (PATTERN (insn), 0, i));
2344 }
2345 }
2346 else
2347 control_flow_insn_deleted
2348 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2349 }
2350
2351 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2352 REG_UNUSED will already have been dealt with, so just return. */
2353
2354 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2355 return control_flow_insn_deleted;
2356
2357 /* If this a noreturn call, we can't insert pop insns after it.
2358 Instead, reset the stack state to empty. */
2359 if (CALL_P (insn)
2360 && find_reg_note (insn, REG_NORETURN, NULL))
2361 {
2362 regstack->top = -1;
2363 CLEAR_HARD_REG_SET (regstack->reg_set);
2364 return control_flow_insn_deleted;
2365 }
2366
2367 /* If there is a REG_UNUSED note on a stack register on this insn,
2368 the indicated reg must be popped. The REG_UNUSED note is removed,
2369 since the form of the newly emitted pop insn references the reg,
2370 making it no longer `unset'. */
2371
2372 note_link = &REG_NOTES (insn);
2373 for (note = *note_link; note; note = XEXP (note, 1))
2374 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2375 {
2376 *note_link = XEXP (note, 1);
2377 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2378 }
2379 else
2380 note_link = &XEXP (note, 1);
2381
2382 return control_flow_insn_deleted;
2383 }
2384 \f
2385 /* Change the organization of the stack so that it fits a new basic
2386 block. Some registers might have to be popped, but there can never be
2387 a register live in the new block that is not now live.
2388
2389 Insert any needed insns before or after INSN, as indicated by
2390 WHERE. OLD is the original stack layout, and NEW is the desired
2391 form. OLD is updated to reflect the code emitted, i.e., it will be
2392 the same as NEW upon return.
2393
2394 This function will not preserve block_end[]. But that information
2395 is no longer needed once this has executed. */
2396
2397 static void
2398 change_stack (rtx insn, stack_ptr old, stack_ptr new_stack, enum emit_where where)
2399 {
2400 int reg;
2401 int update_end = 0;
2402 int i;
2403
2404 /* Stack adjustments for the first insn in a block update the
2405 current_block's stack_in instead of inserting insns directly.
2406 compensate_edges will add the necessary code later. */
2407 if (current_block
2408 && starting_stack_p
2409 && where == EMIT_BEFORE)
2410 {
2411 BLOCK_INFO (current_block)->stack_in = *new_stack;
2412 starting_stack_p = false;
2413 *old = *new_stack;
2414 return;
2415 }
2416
2417 /* We will be inserting new insns "backwards". If we are to insert
2418 after INSN, find the next insn, and insert before it. */
2419
2420 if (where == EMIT_AFTER)
2421 {
2422 if (current_block && BB_END (current_block) == insn)
2423 update_end = 1;
2424 insn = NEXT_INSN (insn);
2425 }
2426
2427 /* Initialize partially dead variables. */
2428 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2429 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2430 && !TEST_HARD_REG_BIT (old->reg_set, i))
2431 {
2432 old->reg[++old->top] = i;
2433 SET_HARD_REG_BIT (old->reg_set, i);
2434 emit_insn_before (gen_rtx_SET (VOIDmode,
2435 FP_MODE_REG (i, SFmode), not_a_num), insn);
2436 }
2437
2438 /* Pop any registers that are not needed in the new block. */
2439
2440 /* If the destination block's stack already has a specified layout
2441 and contains two or more registers, use a more intelligent algorithm
2442 to pop registers that minimizes the number number of fxchs below. */
2443 if (new_stack->top > 0)
2444 {
2445 bool slots[REG_STACK_SIZE];
2446 int pops[REG_STACK_SIZE];
2447 int next, dest, topsrc;
2448
2449 /* First pass to determine the free slots. */
2450 for (reg = 0; reg <= new_stack->top; reg++)
2451 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2452
2453 /* Second pass to allocate preferred slots. */
2454 topsrc = -1;
2455 for (reg = old->top; reg > new_stack->top; reg--)
2456 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2457 {
2458 dest = -1;
2459 for (next = 0; next <= new_stack->top; next++)
2460 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2461 {
2462 /* If this is a preference for the new top of stack, record
2463 the fact by remembering it's old->reg in topsrc. */
2464 if (next == new_stack->top)
2465 topsrc = reg;
2466 slots[next] = true;
2467 dest = next;
2468 break;
2469 }
2470 pops[reg] = dest;
2471 }
2472 else
2473 pops[reg] = reg;
2474
2475 /* Intentionally, avoid placing the top of stack in it's correct
2476 location, if we still need to permute the stack below and we
2477 can usefully place it somewhere else. This is the case if any
2478 slot is still unallocated, in which case we should place the
2479 top of stack there. */
2480 if (topsrc != -1)
2481 for (reg = 0; reg < new_stack->top; reg++)
2482 if (!slots[reg])
2483 {
2484 pops[topsrc] = reg;
2485 slots[new_stack->top] = false;
2486 slots[reg] = true;
2487 break;
2488 }
2489
2490 /* Third pass allocates remaining slots and emits pop insns. */
2491 next = new_stack->top;
2492 for (reg = old->top; reg > new_stack->top; reg--)
2493 {
2494 dest = pops[reg];
2495 if (dest == -1)
2496 {
2497 /* Find next free slot. */
2498 while (slots[next])
2499 next--;
2500 dest = next--;
2501 }
2502 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2503 EMIT_BEFORE);
2504 }
2505 }
2506 else
2507 {
2508 /* The following loop attempts to maximize the number of times we
2509 pop the top of the stack, as this permits the use of the faster
2510 ffreep instruction on platforms that support it. */
2511 int live, next;
2512
2513 live = 0;
2514 for (reg = 0; reg <= old->top; reg++)
2515 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2516 live++;
2517
2518 next = live;
2519 while (old->top >= live)
2520 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2521 {
2522 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2523 next--;
2524 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2525 EMIT_BEFORE);
2526 }
2527 else
2528 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2529 EMIT_BEFORE);
2530 }
2531
2532 if (new_stack->top == -2)
2533 {
2534 /* If the new block has never been processed, then it can inherit
2535 the old stack order. */
2536
2537 new_stack->top = old->top;
2538 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2539 }
2540 else
2541 {
2542 /* This block has been entered before, and we must match the
2543 previously selected stack order. */
2544
2545 /* By now, the only difference should be the order of the stack,
2546 not their depth or liveliness. */
2547
2548 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2549 gcc_assert (old->top == new_stack->top);
2550
2551 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2552 swaps until the stack is correct.
2553
2554 The worst case number of swaps emitted is N + 2, where N is the
2555 depth of the stack. In some cases, the reg at the top of
2556 stack may be correct, but swapped anyway in order to fix
2557 other regs. But since we never swap any other reg away from
2558 its correct slot, this algorithm will converge. */
2559
2560 if (new_stack->top != -1)
2561 do
2562 {
2563 /* Swap the reg at top of stack into the position it is
2564 supposed to be in, until the correct top of stack appears. */
2565
2566 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2567 {
2568 for (reg = new_stack->top; reg >= 0; reg--)
2569 if (new_stack->reg[reg] == old->reg[old->top])
2570 break;
2571
2572 gcc_assert (reg != -1);
2573
2574 emit_swap_insn (insn, old,
2575 FP_MODE_REG (old->reg[reg], DFmode));
2576 }
2577
2578 /* See if any regs remain incorrect. If so, bring an
2579 incorrect reg to the top of stack, and let the while loop
2580 above fix it. */
2581
2582 for (reg = new_stack->top; reg >= 0; reg--)
2583 if (new_stack->reg[reg] != old->reg[reg])
2584 {
2585 emit_swap_insn (insn, old,
2586 FP_MODE_REG (old->reg[reg], DFmode));
2587 break;
2588 }
2589 } while (reg >= 0);
2590
2591 /* At this point there must be no differences. */
2592
2593 for (reg = old->top; reg >= 0; reg--)
2594 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2595 }
2596
2597 if (update_end)
2598 BB_END (current_block) = PREV_INSN (insn);
2599 }
2600 \f
2601 /* Print stack configuration. */
2602
2603 static void
2604 print_stack (FILE *file, stack_ptr s)
2605 {
2606 if (! file)
2607 return;
2608
2609 if (s->top == -2)
2610 fprintf (file, "uninitialized\n");
2611 else if (s->top == -1)
2612 fprintf (file, "empty\n");
2613 else
2614 {
2615 int i;
2616 fputs ("[ ", file);
2617 for (i = 0; i <= s->top; ++i)
2618 fprintf (file, "%d ", s->reg[i]);
2619 fputs ("]\n", file);
2620 }
2621 }
2622 \f
2623 /* This function was doing life analysis. We now let the regular live
2624 code do it's job, so we only need to check some extra invariants
2625 that reg-stack expects. Primary among these being that all registers
2626 are initialized before use.
2627
2628 The function returns true when code was emitted to CFG edges and
2629 commit_edge_insertions needs to be called. */
2630
2631 static int
2632 convert_regs_entry (void)
2633 {
2634 int inserted = 0;
2635 edge e;
2636 edge_iterator ei;
2637
2638 /* Load something into each stack register live at function entry.
2639 Such live registers can be caused by uninitialized variables or
2640 functions not returning values on all paths. In order to keep
2641 the push/pop code happy, and to not scrog the register stack, we
2642 must put something in these registers. Use a QNaN.
2643
2644 Note that we are inserting converted code here. This code is
2645 never seen by the convert_regs pass. */
2646
2647 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2648 {
2649 basic_block block = e->dest;
2650 block_info bi = BLOCK_INFO (block);
2651 int reg, top = -1;
2652
2653 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2654 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2655 {
2656 rtx init;
2657
2658 bi->stack_in.reg[++top] = reg;
2659
2660 init = gen_rtx_SET (VOIDmode,
2661 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2662 not_a_num);
2663 insert_insn_on_edge (init, e);
2664 inserted = 1;
2665 }
2666
2667 bi->stack_in.top = top;
2668 }
2669
2670 return inserted;
2671 }
2672
2673 /* Construct the desired stack for function exit. This will either
2674 be `empty', or the function return value at top-of-stack. */
2675
2676 static void
2677 convert_regs_exit (void)
2678 {
2679 int value_reg_low, value_reg_high;
2680 stack_ptr output_stack;
2681 rtx retvalue;
2682
2683 retvalue = stack_result (current_function_decl);
2684 value_reg_low = value_reg_high = -1;
2685 if (retvalue)
2686 {
2687 value_reg_low = REGNO (retvalue);
2688 value_reg_high = END_HARD_REGNO (retvalue) - 1;
2689 }
2690
2691 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2692 if (value_reg_low == -1)
2693 output_stack->top = -1;
2694 else
2695 {
2696 int reg;
2697
2698 output_stack->top = value_reg_high - value_reg_low;
2699 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2700 {
2701 output_stack->reg[value_reg_high - reg] = reg;
2702 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2703 }
2704 }
2705 }
2706
2707 /* Copy the stack info from the end of edge E's source block to the
2708 start of E's destination block. */
2709
2710 static void
2711 propagate_stack (edge e)
2712 {
2713 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2714 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2715 int reg;
2716
2717 /* Preserve the order of the original stack, but check whether
2718 any pops are needed. */
2719 dest_stack->top = -1;
2720 for (reg = 0; reg <= src_stack->top; ++reg)
2721 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2722 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2723
2724 /* Push in any partially dead values. */
2725 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2726 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2727 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2728 dest_stack->reg[++dest_stack->top] = reg;
2729 }
2730
2731
2732 /* Adjust the stack of edge E's source block on exit to match the stack
2733 of it's target block upon input. The stack layouts of both blocks
2734 should have been defined by now. */
2735
2736 static bool
2737 compensate_edge (edge e)
2738 {
2739 basic_block source = e->src, target = e->dest;
2740 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2741 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2742 struct stack_def regstack;
2743 int reg;
2744
2745 if (dump_file)
2746 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2747
2748 gcc_assert (target_stack->top != -2);
2749
2750 /* Check whether stacks are identical. */
2751 if (target_stack->top == source_stack->top)
2752 {
2753 for (reg = target_stack->top; reg >= 0; --reg)
2754 if (target_stack->reg[reg] != source_stack->reg[reg])
2755 break;
2756
2757 if (reg == -1)
2758 {
2759 if (dump_file)
2760 fprintf (dump_file, "no changes needed\n");
2761 return false;
2762 }
2763 }
2764
2765 if (dump_file)
2766 {
2767 fprintf (dump_file, "correcting stack to ");
2768 print_stack (dump_file, target_stack);
2769 }
2770
2771 /* Abnormal calls may appear to have values live in st(0), but the
2772 abnormal return path will not have actually loaded the values. */
2773 if (e->flags & EDGE_ABNORMAL_CALL)
2774 {
2775 /* Assert that the lifetimes are as we expect -- one value
2776 live at st(0) on the end of the source block, and no
2777 values live at the beginning of the destination block.
2778 For complex return values, we may have st(1) live as well. */
2779 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2780 gcc_assert (target_stack->top == -1);
2781 return false;
2782 }
2783
2784 /* Handle non-call EH edges specially. The normal return path have
2785 values in registers. These will be popped en masse by the unwind
2786 library. */
2787 if (e->flags & EDGE_EH)
2788 {
2789 gcc_assert (target_stack->top == -1);
2790 return false;
2791 }
2792
2793 /* We don't support abnormal edges. Global takes care to
2794 avoid any live register across them, so we should never
2795 have to insert instructions on such edges. */
2796 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2797
2798 /* Make a copy of source_stack as change_stack is destructive. */
2799 regstack = *source_stack;
2800
2801 /* It is better to output directly to the end of the block
2802 instead of to the edge, because emit_swap can do minimal
2803 insn scheduling. We can do this when there is only one
2804 edge out, and it is not abnormal. */
2805 if (EDGE_COUNT (source->succs) == 1)
2806 {
2807 current_block = source;
2808 change_stack (BB_END (source), &regstack, target_stack,
2809 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2810 }
2811 else
2812 {
2813 rtx seq, after;
2814
2815 current_block = NULL;
2816 start_sequence ();
2817
2818 /* ??? change_stack needs some point to emit insns after. */
2819 after = emit_note (NOTE_INSN_DELETED);
2820
2821 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2822
2823 seq = get_insns ();
2824 end_sequence ();
2825
2826 insert_insn_on_edge (seq, e);
2827 return true;
2828 }
2829 return false;
2830 }
2831
2832 /* Traverse all non-entry edges in the CFG, and emit the necessary
2833 edge compensation code to change the stack from stack_out of the
2834 source block to the stack_in of the destination block. */
2835
2836 static bool
2837 compensate_edges (void)
2838 {
2839 bool inserted = false;
2840 basic_block bb;
2841
2842 starting_stack_p = false;
2843
2844 FOR_EACH_BB_FN (bb, cfun)
2845 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2846 {
2847 edge e;
2848 edge_iterator ei;
2849
2850 FOR_EACH_EDGE (e, ei, bb->succs)
2851 inserted |= compensate_edge (e);
2852 }
2853 return inserted;
2854 }
2855
2856 /* Select the better of two edges E1 and E2 to use to determine the
2857 stack layout for their shared destination basic block. This is
2858 typically the more frequently executed. The edge E1 may be NULL
2859 (in which case E2 is returned), but E2 is always non-NULL. */
2860
2861 static edge
2862 better_edge (edge e1, edge e2)
2863 {
2864 if (!e1)
2865 return e2;
2866
2867 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2868 return e1;
2869 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2870 return e2;
2871
2872 if (e1->count > e2->count)
2873 return e1;
2874 if (e1->count < e2->count)
2875 return e2;
2876
2877 /* Prefer critical edges to minimize inserting compensation code on
2878 critical edges. */
2879
2880 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2881 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2882
2883 /* Avoid non-deterministic behavior. */
2884 return (e1->src->index < e2->src->index) ? e1 : e2;
2885 }
2886
2887 /* Convert stack register references in one block. Return true if the CFG
2888 has been modified in the process. */
2889
2890 static bool
2891 convert_regs_1 (basic_block block)
2892 {
2893 struct stack_def regstack;
2894 block_info bi = BLOCK_INFO (block);
2895 int reg;
2896 rtx insn, next;
2897 bool control_flow_insn_deleted = false;
2898 bool cfg_altered = false;
2899 int debug_insns_with_starting_stack = 0;
2900
2901 any_malformed_asm = false;
2902
2903 /* Choose an initial stack layout, if one hasn't already been chosen. */
2904 if (bi->stack_in.top == -2)
2905 {
2906 edge e, beste = NULL;
2907 edge_iterator ei;
2908
2909 /* Select the best incoming edge (typically the most frequent) to
2910 use as a template for this basic block. */
2911 FOR_EACH_EDGE (e, ei, block->preds)
2912 if (BLOCK_INFO (e->src)->done)
2913 beste = better_edge (beste, e);
2914
2915 if (beste)
2916 propagate_stack (beste);
2917 else
2918 {
2919 /* No predecessors. Create an arbitrary input stack. */
2920 bi->stack_in.top = -1;
2921 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2922 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2923 bi->stack_in.reg[++bi->stack_in.top] = reg;
2924 }
2925 }
2926
2927 if (dump_file)
2928 {
2929 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2930 print_stack (dump_file, &bi->stack_in);
2931 }
2932
2933 /* Process all insns in this block. Keep track of NEXT so that we
2934 don't process insns emitted while substituting in INSN. */
2935 current_block = block;
2936 next = BB_HEAD (block);
2937 regstack = bi->stack_in;
2938 starting_stack_p = true;
2939
2940 do
2941 {
2942 insn = next;
2943 next = NEXT_INSN (insn);
2944
2945 /* Ensure we have not missed a block boundary. */
2946 gcc_assert (next);
2947 if (insn == BB_END (block))
2948 next = NULL;
2949
2950 /* Don't bother processing unless there is a stack reg
2951 mentioned or if it's a CALL_INSN. */
2952 if (DEBUG_INSN_P (insn))
2953 {
2954 if (starting_stack_p)
2955 debug_insns_with_starting_stack++;
2956 else
2957 {
2958 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2959
2960 /* Nothing must ever die at a debug insn. If something
2961 is referenced in it that becomes dead, it should have
2962 died before and the reference in the debug insn
2963 should have been removed so as to avoid changing code
2964 generation. */
2965 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2966 }
2967 }
2968 else if (stack_regs_mentioned (insn)
2969 || CALL_P (insn))
2970 {
2971 if (dump_file)
2972 {
2973 fprintf (dump_file, " insn %d input stack: ",
2974 INSN_UID (insn));
2975 print_stack (dump_file, &regstack);
2976 }
2977 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2978 starting_stack_p = false;
2979 }
2980 }
2981 while (next);
2982
2983 if (debug_insns_with_starting_stack)
2984 {
2985 /* Since it's the first non-debug instruction that determines
2986 the stack requirements of the current basic block, we refrain
2987 from updating debug insns before it in the loop above, and
2988 fix them up here. */
2989 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2990 insn = NEXT_INSN (insn))
2991 {
2992 if (!DEBUG_INSN_P (insn))
2993 continue;
2994
2995 debug_insns_with_starting_stack--;
2996 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
2997 }
2998 }
2999
3000 if (dump_file)
3001 {
3002 fprintf (dump_file, "Expected live registers [");
3003 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3004 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3005 fprintf (dump_file, " %d", reg);
3006 fprintf (dump_file, " ]\nOutput stack: ");
3007 print_stack (dump_file, &regstack);
3008 }
3009
3010 insn = BB_END (block);
3011 if (JUMP_P (insn))
3012 insn = PREV_INSN (insn);
3013
3014 /* If the function is declared to return a value, but it returns one
3015 in only some cases, some registers might come live here. Emit
3016 necessary moves for them. */
3017
3018 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3019 {
3020 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3021 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3022 {
3023 rtx set;
3024
3025 if (dump_file)
3026 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3027
3028 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3029 insn = emit_insn_after (set, insn);
3030 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3031 }
3032 }
3033
3034 /* Amongst the insns possibly deleted during the substitution process above,
3035 might have been the only trapping insn in the block. We purge the now
3036 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3037 called at the end of convert_regs. The order in which we process the
3038 blocks ensures that we never delete an already processed edge.
3039
3040 Note that, at this point, the CFG may have been damaged by the emission
3041 of instructions after an abnormal call, which moves the basic block end
3042 (and is the reason why we call fixup_abnormal_edges later). So we must
3043 be sure that the trapping insn has been deleted before trying to purge
3044 dead edges, otherwise we risk purging valid edges.
3045
3046 ??? We are normally supposed not to delete trapping insns, so we pretend
3047 that the insns deleted above don't actually trap. It would have been
3048 better to detect this earlier and avoid creating the EH edge in the first
3049 place, still, but we don't have enough information at that time. */
3050
3051 if (control_flow_insn_deleted)
3052 cfg_altered |= purge_dead_edges (block);
3053
3054 /* Something failed if the stack lives don't match. If we had malformed
3055 asms, we zapped the instruction itself, but that didn't produce the
3056 same pattern of register kills as before. */
3057
3058 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3059 || any_malformed_asm);
3060 bi->stack_out = regstack;
3061 bi->done = true;
3062
3063 return cfg_altered;
3064 }
3065
3066 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3067 CFG has been modified in the process. */
3068
3069 static bool
3070 convert_regs_2 (basic_block block)
3071 {
3072 basic_block *stack, *sp;
3073 bool cfg_altered = false;
3074
3075 /* We process the blocks in a top-down manner, in a way such that one block
3076 is only processed after all its predecessors. The number of predecessors
3077 of every block has already been computed. */
3078
3079 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3080 sp = stack;
3081
3082 *sp++ = block;
3083
3084 do
3085 {
3086 edge e;
3087 edge_iterator ei;
3088
3089 block = *--sp;
3090
3091 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3092 some dead EH outgoing edge after the deletion of the trapping
3093 insn inside the block. Since the number of predecessors of
3094 BLOCK's successors was computed based on the initial edge set,
3095 we check the necessity to process some of these successors
3096 before such an edge deletion may happen. However, there is
3097 a pitfall: if BLOCK is the only predecessor of a successor and
3098 the edge between them happens to be deleted, the successor
3099 becomes unreachable and should not be processed. The problem
3100 is that there is no way to preventively detect this case so we
3101 stack the successor in all cases and hand over the task of
3102 fixing up the discrepancy to convert_regs_1. */
3103
3104 FOR_EACH_EDGE (e, ei, block->succs)
3105 if (! (e->flags & EDGE_DFS_BACK))
3106 {
3107 BLOCK_INFO (e->dest)->predecessors--;
3108 if (!BLOCK_INFO (e->dest)->predecessors)
3109 *sp++ = e->dest;
3110 }
3111
3112 cfg_altered |= convert_regs_1 (block);
3113 }
3114 while (sp != stack);
3115
3116 free (stack);
3117
3118 return cfg_altered;
3119 }
3120
3121 /* Traverse all basic blocks in a function, converting the register
3122 references in each insn from the "flat" register file that gcc uses,
3123 to the stack-like registers the 387 uses. */
3124
3125 static void
3126 convert_regs (void)
3127 {
3128 bool cfg_altered = false;
3129 int inserted;
3130 basic_block b;
3131 edge e;
3132 edge_iterator ei;
3133
3134 /* Initialize uninitialized registers on function entry. */
3135 inserted = convert_regs_entry ();
3136
3137 /* Construct the desired stack for function exit. */
3138 convert_regs_exit ();
3139 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3140
3141 /* ??? Future: process inner loops first, and give them arbitrary
3142 initial stacks which emit_swap_insn can modify. This ought to
3143 prevent double fxch that often appears at the head of a loop. */
3144
3145 /* Process all blocks reachable from all entry points. */
3146 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3147 cfg_altered |= convert_regs_2 (e->dest);
3148
3149 /* ??? Process all unreachable blocks. Though there's no excuse
3150 for keeping these even when not optimizing. */
3151 FOR_EACH_BB_FN (b, cfun)
3152 {
3153 block_info bi = BLOCK_INFO (b);
3154
3155 if (! bi->done)
3156 cfg_altered |= convert_regs_2 (b);
3157 }
3158
3159 /* We must fix up abnormal edges before inserting compensation code
3160 because both mechanisms insert insns on edges. */
3161 inserted |= fixup_abnormal_edges ();
3162
3163 inserted |= compensate_edges ();
3164
3165 clear_aux_for_blocks ();
3166
3167 if (inserted)
3168 commit_edge_insertions ();
3169
3170 if (cfg_altered)
3171 cleanup_cfg (0);
3172
3173 if (dump_file)
3174 fputc ('\n', dump_file);
3175 }
3176 \f
3177 /* Convert register usage from "flat" register file usage to a "stack
3178 register file. FILE is the dump file, if used.
3179
3180 Construct a CFG and run life analysis. Then convert each insn one
3181 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3182 code duplication created when the converter inserts pop insns on
3183 the edges. */
3184
3185 static bool
3186 reg_to_stack (void)
3187 {
3188 basic_block bb;
3189 int i;
3190 int max_uid;
3191
3192 /* Clean up previous run. */
3193 stack_regs_mentioned_data.release ();
3194
3195 /* See if there is something to do. Flow analysis is quite
3196 expensive so we might save some compilation time. */
3197 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3198 if (df_regs_ever_live_p (i))
3199 break;
3200 if (i > LAST_STACK_REG)
3201 return false;
3202
3203 df_note_add_problem ();
3204 df_analyze ();
3205
3206 mark_dfs_back_edges ();
3207
3208 /* Set up block info for each basic block. */
3209 alloc_aux_for_blocks (sizeof (struct block_info_def));
3210 FOR_EACH_BB_FN (bb, cfun)
3211 {
3212 block_info bi = BLOCK_INFO (bb);
3213 edge_iterator ei;
3214 edge e;
3215 int reg;
3216
3217 FOR_EACH_EDGE (e, ei, bb->preds)
3218 if (!(e->flags & EDGE_DFS_BACK)
3219 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3220 bi->predecessors++;
3221
3222 /* Set current register status at last instruction `uninitialized'. */
3223 bi->stack_in.top = -2;
3224
3225 /* Copy live_at_end and live_at_start into temporaries. */
3226 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3227 {
3228 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3229 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3230 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3231 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3232 }
3233 }
3234
3235 /* Create the replacement registers up front. */
3236 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3237 {
3238 enum machine_mode mode;
3239 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3240 mode != VOIDmode;
3241 mode = GET_MODE_WIDER_MODE (mode))
3242 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3243 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3244 mode != VOIDmode;
3245 mode = GET_MODE_WIDER_MODE (mode))
3246 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3247 }
3248
3249 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3250
3251 /* A QNaN for initializing uninitialized variables.
3252
3253 ??? We can't load from constant memory in PIC mode, because
3254 we're inserting these instructions before the prologue and
3255 the PIC register hasn't been set up. In that case, fall back
3256 on zero, which we can get from `fldz'. */
3257
3258 if ((flag_pic && !TARGET_64BIT)
3259 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3260 not_a_num = CONST0_RTX (SFmode);
3261 else
3262 {
3263 REAL_VALUE_TYPE r;
3264
3265 real_nan (&r, "", 1, SFmode);
3266 not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3267 not_a_num = force_const_mem (SFmode, not_a_num);
3268 }
3269
3270 /* Allocate a cache for stack_regs_mentioned. */
3271 max_uid = get_max_uid ();
3272 stack_regs_mentioned_data.create (max_uid + 1);
3273 memset (stack_regs_mentioned_data.address (),
3274 0, sizeof (char) * (max_uid + 1));
3275
3276 convert_regs ();
3277
3278 free_aux_for_blocks ();
3279 return true;
3280 }
3281 #endif /* STACK_REGS */
3282 \f
3283 namespace {
3284
3285 const pass_data pass_data_stack_regs =
3286 {
3287 RTL_PASS, /* type */
3288 "*stack_regs", /* name */
3289 OPTGROUP_NONE, /* optinfo_flags */
3290 TV_REG_STACK, /* tv_id */
3291 0, /* properties_required */
3292 0, /* properties_provided */
3293 0, /* properties_destroyed */
3294 0, /* todo_flags_start */
3295 0, /* todo_flags_finish */
3296 };
3297
3298 class pass_stack_regs : public rtl_opt_pass
3299 {
3300 public:
3301 pass_stack_regs (gcc::context *ctxt)
3302 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3303 {}
3304
3305 /* opt_pass methods: */
3306 virtual bool gate (function *)
3307 {
3308 #ifdef STACK_REGS
3309 return true;
3310 #else
3311 return false;
3312 #endif
3313 }
3314
3315 }; // class pass_stack_regs
3316
3317 } // anon namespace
3318
3319 rtl_opt_pass *
3320 make_pass_stack_regs (gcc::context *ctxt)
3321 {
3322 return new pass_stack_regs (ctxt);
3323 }
3324
3325 /* Convert register usage from flat register file usage to a stack
3326 register file. */
3327 static unsigned int
3328 rest_of_handle_stack_regs (void)
3329 {
3330 #ifdef STACK_REGS
3331 reg_to_stack ();
3332 regstack_completed = 1;
3333 #endif
3334 return 0;
3335 }
3336
3337 namespace {
3338
3339 const pass_data pass_data_stack_regs_run =
3340 {
3341 RTL_PASS, /* type */
3342 "stack", /* name */
3343 OPTGROUP_NONE, /* optinfo_flags */
3344 TV_REG_STACK, /* tv_id */
3345 0, /* properties_required */
3346 0, /* properties_provided */
3347 0, /* properties_destroyed */
3348 0, /* todo_flags_start */
3349 TODO_df_finish, /* todo_flags_finish */
3350 };
3351
3352 class pass_stack_regs_run : public rtl_opt_pass
3353 {
3354 public:
3355 pass_stack_regs_run (gcc::context *ctxt)
3356 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3357 {}
3358
3359 /* opt_pass methods: */
3360 virtual unsigned int execute (function *)
3361 {
3362 return rest_of_handle_stack_regs ();
3363 }
3364
3365 }; // class pass_stack_regs_run
3366
3367 } // anon namespace
3368
3369 rtl_opt_pass *
3370 make_pass_stack_regs_run (gcc::context *ctxt)
3371 {
3372 return new pass_stack_regs_run (ctxt);
3373 }