]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reginfo.c
Move operand_less_p to vr-values.c.
[thirdparty/gcc.git] / gcc / reginfo.c
1 /* Compute different info about registers.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains regscan pass of the compiler and passes for
22 dealing with info about modes of pseudo-registers inside
23 subregisters. It also defines some tables of information about the
24 hardware registers, function init_reg_sets to initialize the
25 tables, and other auxiliary functions to deal with info about
26 registers and their classes. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "backend.h"
32 #include "target.h"
33 #include "rtl.h"
34 #include "tree.h"
35 #include "df.h"
36 #include "memmodel.h"
37 #include "tm_p.h"
38 #include "insn-config.h"
39 #include "regs.h"
40 #include "ira.h"
41 #include "recog.h"
42 #include "diagnostic-core.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "tree-pass.h"
46 #include "function-abi.h"
47
48 /* Maximum register number used in this function, plus one. */
49
50 int max_regno;
51
52 /* Used to cache the results of simplifiable_subregs. SHAPE is the input
53 parameter and SIMPLIFIABLE_REGS is the result. */
54 class simplifiable_subreg
55 {
56 public:
57 simplifiable_subreg (const subreg_shape &);
58
59 subreg_shape shape;
60 HARD_REG_SET simplifiable_regs;
61 };
62 \f
63 struct target_hard_regs default_target_hard_regs;
64 struct target_regs default_target_regs;
65 #if SWITCHABLE_TARGET
66 struct target_hard_regs *this_target_hard_regs = &default_target_hard_regs;
67 struct target_regs *this_target_regs = &default_target_regs;
68 #endif
69
70 #define call_used_regs \
71 (this_target_hard_regs->x_call_used_regs)
72 #define regs_invalidated_by_call \
73 (this_target_hard_regs->x_regs_invalidated_by_call)
74
75 /* Data for initializing fixed_regs. */
76 static const char initial_fixed_regs[] = FIXED_REGISTERS;
77
78 /* Data for initializing call_used_regs. */
79 #ifdef CALL_REALLY_USED_REGISTERS
80 #ifdef CALL_USED_REGISTERS
81 #error CALL_USED_REGISTERS and CALL_REALLY_USED_REGISTERS are both defined
82 #endif
83 static const char initial_call_used_regs[] = CALL_REALLY_USED_REGISTERS;
84 #else
85 static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
86 #endif
87
88 /* Indexed by hard register number, contains 1 for registers
89 that are being used for global register decls.
90 These must be exempt from ordinary flow analysis
91 and are also considered fixed. */
92 char global_regs[FIRST_PSEUDO_REGISTER];
93
94 /* Declaration for the global register. */
95 tree global_regs_decl[FIRST_PSEUDO_REGISTER];
96
97 /* Used to initialize reg_alloc_order. */
98 #ifdef REG_ALLOC_ORDER
99 static int initial_reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
100 #endif
101
102 /* The same information, but as an array of unsigned ints. We copy from
103 these unsigned ints to the table above. We do this so the tm.h files
104 do not have to be aware of the wordsize for machines with <= 64 regs.
105 Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
106 #define N_REG_INTS \
107 ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
108
109 static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
110 = REG_CLASS_CONTENTS;
111
112 /* Array containing all of the register names. */
113 static const char *const initial_reg_names[] = REGISTER_NAMES;
114
115 /* Array containing all of the register class names. */
116 const char * reg_class_names[] = REG_CLASS_NAMES;
117
118 /* No more global register variables may be declared; true once
119 reginfo has been initialized. */
120 static int no_global_reg_vars = 0;
121
122 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
123 correspond to the hard registers, if any, set in that map. This
124 could be done far more efficiently by having all sorts of special-cases
125 with moving single words, but probably isn't worth the trouble. */
126 void
127 reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
128 {
129 unsigned i;
130 bitmap_iterator bi;
131
132 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
133 {
134 if (i >= FIRST_PSEUDO_REGISTER)
135 return;
136 SET_HARD_REG_BIT (*to, i);
137 }
138 }
139
140 /* Function called only once per target_globals to initialize the
141 target_hard_regs structure. Once this is done, various switches
142 may override. */
143 void
144 init_reg_sets (void)
145 {
146 int i, j;
147
148 /* First copy the register information from the initial int form into
149 the regsets. */
150
151 for (i = 0; i < N_REG_CLASSES; i++)
152 {
153 CLEAR_HARD_REG_SET (reg_class_contents[i]);
154
155 /* Note that we hard-code 32 here, not HOST_BITS_PER_INT. */
156 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
157 if (int_reg_class_contents[i][j / 32]
158 & ((unsigned) 1 << (j % 32)))
159 SET_HARD_REG_BIT (reg_class_contents[i], j);
160 }
161
162 /* Sanity check: make sure the target macros FIXED_REGISTERS and
163 CALL_USED_REGISTERS had the right number of initializers. */
164 gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
165 gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
166 #ifdef REG_ALLOC_ORDER
167 gcc_assert (sizeof reg_alloc_order == sizeof initial_reg_alloc_order);
168 #endif
169 gcc_assert (sizeof reg_names == sizeof initial_reg_names);
170
171 memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
172 memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
173 #ifdef REG_ALLOC_ORDER
174 memcpy (reg_alloc_order, initial_reg_alloc_order, sizeof reg_alloc_order);
175 #endif
176 memcpy (reg_names, initial_reg_names, sizeof reg_names);
177
178 SET_HARD_REG_SET (accessible_reg_set);
179 SET_HARD_REG_SET (operand_reg_set);
180 }
181
182 /* We need to save copies of some of the register information which
183 can be munged by command-line switches so we can restore it during
184 subsequent back-end reinitialization. */
185 static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
186 static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
187 static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
188 static HARD_REG_SET saved_accessible_reg_set;
189 static HARD_REG_SET saved_operand_reg_set;
190
191 /* Save the register information. */
192 void
193 save_register_info (void)
194 {
195 /* Sanity check: make sure the target macros FIXED_REGISTERS and
196 CALL_USED_REGISTERS had the right number of initializers. */
197 gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
198 gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
199 memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
200 memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
201
202 /* And similarly for reg_names. */
203 gcc_assert (sizeof reg_names == sizeof saved_reg_names);
204 memcpy (saved_reg_names, reg_names, sizeof reg_names);
205 saved_accessible_reg_set = accessible_reg_set;
206 saved_operand_reg_set = operand_reg_set;
207 }
208
209 /* Restore the register information. */
210 static void
211 restore_register_info (void)
212 {
213 memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
214 memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
215
216 memcpy (reg_names, saved_reg_names, sizeof reg_names);
217 accessible_reg_set = saved_accessible_reg_set;
218 operand_reg_set = saved_operand_reg_set;
219 }
220
221 /* After switches have been processed, which perhaps alter
222 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
223 static void
224 init_reg_sets_1 (void)
225 {
226 unsigned int i, j;
227 unsigned int /* machine_mode */ m;
228
229 restore_register_info ();
230
231 #ifdef REG_ALLOC_ORDER
232 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
233 inv_reg_alloc_order[reg_alloc_order[i]] = i;
234 #endif
235
236 /* Let the target tweak things if necessary. */
237
238 targetm.conditional_register_usage ();
239
240 /* Compute number of hard regs in each class. */
241
242 memset (reg_class_size, 0, sizeof reg_class_size);
243 for (i = 0; i < N_REG_CLASSES; i++)
244 {
245 bool any_nonfixed = false;
246 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
247 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
248 {
249 reg_class_size[i]++;
250 if (!fixed_regs[j])
251 any_nonfixed = true;
252 }
253 class_only_fixed_regs[i] = !any_nonfixed;
254 }
255
256 /* Initialize the table of subunions.
257 reg_class_subunion[I][J] gets the largest-numbered reg-class
258 that is contained in the union of classes I and J. */
259
260 memset (reg_class_subunion, 0, sizeof reg_class_subunion);
261 for (i = 0; i < N_REG_CLASSES; i++)
262 {
263 for (j = 0; j < N_REG_CLASSES; j++)
264 {
265 HARD_REG_SET c;
266 int k;
267
268 c = reg_class_contents[i] | reg_class_contents[j];
269 for (k = 0; k < N_REG_CLASSES; k++)
270 if (hard_reg_set_subset_p (reg_class_contents[k], c)
271 && !hard_reg_set_subset_p (reg_class_contents[k],
272 reg_class_contents
273 [(int) reg_class_subunion[i][j]]))
274 reg_class_subunion[i][j] = (enum reg_class) k;
275 }
276 }
277
278 /* Initialize the table of superunions.
279 reg_class_superunion[I][J] gets the smallest-numbered reg-class
280 containing the union of classes I and J. */
281
282 memset (reg_class_superunion, 0, sizeof reg_class_superunion);
283 for (i = 0; i < N_REG_CLASSES; i++)
284 {
285 for (j = 0; j < N_REG_CLASSES; j++)
286 {
287 HARD_REG_SET c;
288 int k;
289
290 c = reg_class_contents[i] | reg_class_contents[j];
291 for (k = 0; k < N_REG_CLASSES; k++)
292 if (hard_reg_set_subset_p (c, reg_class_contents[k]))
293 break;
294
295 reg_class_superunion[i][j] = (enum reg_class) k;
296 }
297 }
298
299 /* Initialize the tables of subclasses and superclasses of each reg class.
300 First clear the whole table, then add the elements as they are found. */
301
302 for (i = 0; i < N_REG_CLASSES; i++)
303 {
304 for (j = 0; j < N_REG_CLASSES; j++)
305 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
306 }
307
308 for (i = 0; i < N_REG_CLASSES; i++)
309 {
310 if (i == (int) NO_REGS)
311 continue;
312
313 for (j = i + 1; j < N_REG_CLASSES; j++)
314 if (hard_reg_set_subset_p (reg_class_contents[i],
315 reg_class_contents[j]))
316 {
317 /* Reg class I is a subclass of J.
318 Add J to the table of superclasses of I. */
319 enum reg_class *p;
320
321 /* Add I to the table of superclasses of J. */
322 p = &reg_class_subclasses[j][0];
323 while (*p != LIM_REG_CLASSES) p++;
324 *p = (enum reg_class) i;
325 }
326 }
327
328 /* Initialize "constant" tables. */
329
330 CLEAR_HARD_REG_SET (fixed_reg_set);
331 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
332
333 operand_reg_set &= accessible_reg_set;
334 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
335 {
336 /* As a special exception, registers whose class is NO_REGS are
337 not accepted by `register_operand'. The reason for this change
338 is to allow the representation of special architecture artifacts
339 (such as a condition code register) without extending the rtl
340 definitions. Since registers of class NO_REGS cannot be used
341 as registers in any case where register classes are examined,
342 it is better to apply this exception in a target-independent way. */
343 if (REGNO_REG_CLASS (i) == NO_REGS)
344 CLEAR_HARD_REG_BIT (operand_reg_set, i);
345
346 /* If a register is too limited to be treated as a register operand,
347 then it should never be allocated to a pseudo. */
348 if (!TEST_HARD_REG_BIT (operand_reg_set, i))
349 fixed_regs[i] = 1;
350
351 if (fixed_regs[i])
352 SET_HARD_REG_BIT (fixed_reg_set, i);
353
354 /* There are a couple of fixed registers that we know are safe to
355 exclude from being clobbered by calls:
356
357 The frame pointer is always preserved across calls. The arg
358 pointer is if it is fixed. The stack pointer usually is,
359 unless TARGET_RETURN_POPS_ARGS, in which case an explicit
360 CLOBBER will be present. If we are generating PIC code, the
361 PIC offset table register is preserved across calls, though the
362 target can override that. */
363
364 if (i == STACK_POINTER_REGNUM)
365 ;
366 else if (global_regs[i])
367 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
368 else if (i == FRAME_POINTER_REGNUM)
369 ;
370 else if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
371 && i == HARD_FRAME_POINTER_REGNUM)
372 ;
373 else if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
374 && i == ARG_POINTER_REGNUM && fixed_regs[i])
375 ;
376 else if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
377 && i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
378 ;
379 else if (call_used_regs[i])
380 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
381 }
382
383 SET_HARD_REG_SET (savable_regs);
384 fixed_nonglobal_reg_set = fixed_reg_set;
385
386 /* Preserve global registers if called more than once. */
387 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
388 {
389 if (global_regs[i])
390 {
391 fixed_regs[i] = call_used_regs[i] = 1;
392 SET_HARD_REG_BIT (fixed_reg_set, i);
393 }
394 }
395
396 memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
397 memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
398 for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
399 {
400 HARD_REG_SET ok_regs, ok_regs2;
401 CLEAR_HARD_REG_SET (ok_regs);
402 CLEAR_HARD_REG_SET (ok_regs2);
403 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
404 if (!TEST_HARD_REG_BIT (fixed_nonglobal_reg_set, j)
405 && targetm.hard_regno_mode_ok (j, (machine_mode) m))
406 {
407 SET_HARD_REG_BIT (ok_regs, j);
408 if (!fixed_regs[j])
409 SET_HARD_REG_BIT (ok_regs2, j);
410 }
411
412 for (i = 0; i < N_REG_CLASSES; i++)
413 if ((targetm.class_max_nregs ((reg_class_t) i, (machine_mode) m)
414 <= reg_class_size[i])
415 && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
416 {
417 contains_reg_of_mode[i][m] = 1;
418 if (hard_reg_set_intersect_p (ok_regs2, reg_class_contents[i]))
419 {
420 have_regs_of_mode[m] = 1;
421 contains_allocatable_reg_of_mode[i][m] = 1;
422 }
423 }
424 }
425
426 default_function_abi.initialize (0, regs_invalidated_by_call);
427 }
428
429 /* Compute the table of register modes.
430 These values are used to record death information for individual registers
431 (as opposed to a multi-register mode).
432 This function might be invoked more than once, if the target has support
433 for changing register usage conventions on a per-function basis.
434 */
435 void
436 init_reg_modes_target (void)
437 {
438 int i, j;
439
440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
441 for (j = 0; j < MAX_MACHINE_MODE; j++)
442 this_target_regs->x_hard_regno_nregs[i][j]
443 = targetm.hard_regno_nregs (i, (machine_mode) j);
444
445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
446 {
447 reg_raw_mode[i] = choose_hard_reg_mode (i, 1, NULL);
448
449 /* If we couldn't find a valid mode, just use the previous mode
450 if it is suitable, otherwise fall back on word_mode. */
451 if (reg_raw_mode[i] == VOIDmode)
452 {
453 if (i > 0 && hard_regno_nregs (i, reg_raw_mode[i - 1]) == 1)
454 reg_raw_mode[i] = reg_raw_mode[i - 1];
455 else
456 reg_raw_mode[i] = word_mode;
457 }
458 }
459 }
460
461 /* Finish initializing the register sets and initialize the register modes.
462 This function might be invoked more than once, if the target has support
463 for changing register usage conventions on a per-function basis.
464 */
465 void
466 init_regs (void)
467 {
468 /* This finishes what was started by init_reg_sets, but couldn't be done
469 until after register usage was specified. */
470 init_reg_sets_1 ();
471 }
472
473 /* The same as previous function plus initializing IRA. */
474 void
475 reinit_regs (void)
476 {
477 init_regs ();
478 /* caller_save needs to be re-initialized. */
479 caller_save_initialized_p = false;
480 if (this_target_rtl->target_specific_initialized)
481 {
482 ira_init ();
483 recog_init ();
484 }
485 }
486
487 /* Initialize some fake stack-frame MEM references for use in
488 memory_move_secondary_cost. */
489 void
490 init_fake_stack_mems (void)
491 {
492 int i;
493
494 for (i = 0; i < MAX_MACHINE_MODE; i++)
495 top_of_stack[i] = gen_rtx_MEM ((machine_mode) i, stack_pointer_rtx);
496 }
497
498
499 /* Compute cost of moving data from a register of class FROM to one of
500 TO, using MODE. */
501
502 int
503 register_move_cost (machine_mode mode, reg_class_t from, reg_class_t to)
504 {
505 return targetm.register_move_cost (mode, from, to);
506 }
507
508 /* Compute cost of moving registers to/from memory. */
509
510 int
511 memory_move_cost (machine_mode mode, reg_class_t rclass, bool in)
512 {
513 return targetm.memory_move_cost (mode, rclass, in);
514 }
515
516 /* Compute extra cost of moving registers to/from memory due to reloads.
517 Only needed if secondary reloads are required for memory moves. */
518 int
519 memory_move_secondary_cost (machine_mode mode, reg_class_t rclass,
520 bool in)
521 {
522 reg_class_t altclass;
523 int partial_cost = 0;
524 /* We need a memory reference to feed to SECONDARY... macros. */
525 /* mem may be unused even if the SECONDARY_ macros are defined. */
526 rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
527
528 altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
529
530 if (altclass == NO_REGS)
531 return 0;
532
533 if (in)
534 partial_cost = register_move_cost (mode, altclass, rclass);
535 else
536 partial_cost = register_move_cost (mode, rclass, altclass);
537
538 if (rclass == altclass)
539 /* This isn't simply a copy-to-temporary situation. Can't guess
540 what it is, so TARGET_MEMORY_MOVE_COST really ought not to be
541 calling here in that case.
542
543 I'm tempted to put in an assert here, but returning this will
544 probably only give poor estimates, which is what we would've
545 had before this code anyways. */
546 return partial_cost;
547
548 /* Check if the secondary reload register will also need a
549 secondary reload. */
550 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
551 }
552
553 /* Return a machine mode that is legitimate for hard reg REGNO and large
554 enough to save nregs. If we can't find one, return VOIDmode.
555 If ABI is nonnull, only consider modes that are preserved across
556 calls that use ABI. */
557 machine_mode
558 choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
559 unsigned int nregs, const predefined_function_abi *abi)
560 {
561 unsigned int /* machine_mode */ m;
562 machine_mode found_mode = VOIDmode, mode;
563
564 /* We first look for the largest integer mode that can be validly
565 held in REGNO. If none, we look for the largest floating-point mode.
566 If we still didn't find a valid mode, try CCmode.
567
568 The tests use maybe_gt rather than known_gt because we want (for example)
569 N V4SFs to win over plain V4SF even though N might be 1. */
570 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
571 if (hard_regno_nregs (regno, mode) == nregs
572 && targetm.hard_regno_mode_ok (regno, mode)
573 && (!abi || !abi->clobbers_reg_p (mode, regno))
574 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
575 found_mode = mode;
576
577 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
578 if (hard_regno_nregs (regno, mode) == nregs
579 && targetm.hard_regno_mode_ok (regno, mode)
580 && (!abi || !abi->clobbers_reg_p (mode, regno))
581 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
582 found_mode = mode;
583
584 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
585 if (hard_regno_nregs (regno, mode) == nregs
586 && targetm.hard_regno_mode_ok (regno, mode)
587 && (!abi || !abi->clobbers_reg_p (mode, regno))
588 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
589 found_mode = mode;
590
591 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
592 if (hard_regno_nregs (regno, mode) == nregs
593 && targetm.hard_regno_mode_ok (regno, mode)
594 && (!abi || !abi->clobbers_reg_p (mode, regno))
595 && maybe_gt (GET_MODE_SIZE (mode), GET_MODE_SIZE (found_mode)))
596 found_mode = mode;
597
598 if (found_mode != VOIDmode)
599 return found_mode;
600
601 /* Iterate over all of the CCmodes. */
602 for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
603 {
604 mode = (machine_mode) m;
605 if (hard_regno_nregs (regno, mode) == nregs
606 && targetm.hard_regno_mode_ok (regno, mode)
607 && (!abi || !abi->clobbers_reg_p (mode, regno)))
608 return mode;
609 }
610
611 /* We can't find a mode valid for this register. */
612 return VOIDmode;
613 }
614
615 /* Specify the usage characteristics of the register named NAME.
616 It should be a fixed register if FIXED and a
617 call-used register if CALL_USED. */
618 void
619 fix_register (const char *name, int fixed, int call_used)
620 {
621 int i;
622 int reg, nregs;
623
624 /* Decode the name and update the primary form of
625 the register info. */
626
627 if ((reg = decode_reg_name_and_count (name, &nregs)) >= 0)
628 {
629 gcc_assert (nregs >= 1);
630 for (i = reg; i < reg + nregs; i++)
631 {
632 if ((i == STACK_POINTER_REGNUM
633 #ifdef HARD_FRAME_POINTER_REGNUM
634 || i == HARD_FRAME_POINTER_REGNUM
635 #else
636 || i == FRAME_POINTER_REGNUM
637 #endif
638 )
639 && (fixed == 0 || call_used == 0))
640 {
641 switch (fixed)
642 {
643 case 0:
644 switch (call_used)
645 {
646 case 0:
647 error ("cannot use %qs as a call-saved register", name);
648 break;
649
650 case 1:
651 error ("cannot use %qs as a call-used register", name);
652 break;
653
654 default:
655 gcc_unreachable ();
656 }
657 break;
658
659 case 1:
660 switch (call_used)
661 {
662 case 1:
663 error ("cannot use %qs as a fixed register", name);
664 break;
665
666 case 0:
667 default:
668 gcc_unreachable ();
669 }
670 break;
671
672 default:
673 gcc_unreachable ();
674 }
675 }
676 else
677 {
678 fixed_regs[i] = fixed;
679 #ifdef CALL_REALLY_USED_REGISTERS
680 if (fixed == 0)
681 call_used_regs[i] = call_used;
682 #else
683 call_used_regs[i] = call_used;
684 #endif
685 }
686 }
687 }
688 else
689 {
690 warning (0, "unknown register name: %s", name);
691 }
692 }
693
694 /* Mark register number I as global. */
695 void
696 globalize_reg (tree decl, int i)
697 {
698 location_t loc = DECL_SOURCE_LOCATION (decl);
699
700 #ifdef STACK_REGS
701 if (IN_RANGE (i, FIRST_STACK_REG, LAST_STACK_REG))
702 {
703 error ("stack register used for global register variable");
704 return;
705 }
706 #endif
707
708 if (fixed_regs[i] == 0 && no_global_reg_vars)
709 error_at (loc, "global register variable follows a function definition");
710
711 if (global_regs[i])
712 {
713 auto_diagnostic_group d;
714 warning_at (loc, 0,
715 "register of %qD used for multiple global register variables",
716 decl);
717 inform (DECL_SOURCE_LOCATION (global_regs_decl[i]),
718 "conflicts with %qD", global_regs_decl[i]);
719 return;
720 }
721
722 if (call_used_regs[i] && ! fixed_regs[i])
723 warning_at (loc, 0, "call-clobbered register used for global register variable");
724
725 global_regs[i] = 1;
726 global_regs_decl[i] = decl;
727
728 /* If we're globalizing the frame pointer, we need to set the
729 appropriate regs_invalidated_by_call bit, even if it's already
730 set in fixed_regs. */
731 if (i != STACK_POINTER_REGNUM)
732 {
733 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
734 for (unsigned int j = 0; j < NUM_ABI_IDS; ++j)
735 function_abis[j].add_full_reg_clobber (i);
736 }
737
738 /* If already fixed, nothing else to do. */
739 if (fixed_regs[i])
740 return;
741
742 fixed_regs[i] = call_used_regs[i] = 1;
743
744 SET_HARD_REG_BIT (fixed_reg_set, i);
745
746 reinit_regs ();
747 }
748 \f
749
750 /* Structure used to record preferences of given pseudo. */
751 struct reg_pref
752 {
753 /* (enum reg_class) prefclass is the preferred class. May be
754 NO_REGS if no class is better than memory. */
755 char prefclass;
756
757 /* altclass is a register class that we should use for allocating
758 pseudo if no register in the preferred class is available.
759 If no register in this class is available, memory is preferred.
760
761 It might appear to be more general to have a bitmask of classes here,
762 but since it is recommended that there be a class corresponding to the
763 union of most major pair of classes, that generality is not required. */
764 char altclass;
765
766 /* allocnoclass is a register class that IRA uses for allocating
767 the pseudo. */
768 char allocnoclass;
769 };
770
771 /* Record preferences of each pseudo. This is available after RA is
772 run. */
773 static struct reg_pref *reg_pref;
774
775 /* Current size of reg_info. */
776 static int reg_info_size;
777 /* Max_reg_num still last resize_reg_info call. */
778 static int max_regno_since_last_resize;
779
780 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
781 This function is sometimes called before the info has been computed.
782 When that happens, just return GENERAL_REGS, which is innocuous. */
783 enum reg_class
784 reg_preferred_class (int regno)
785 {
786 if (reg_pref == 0)
787 return GENERAL_REGS;
788
789 gcc_assert (regno < reg_info_size);
790 return (enum reg_class) reg_pref[regno].prefclass;
791 }
792
793 enum reg_class
794 reg_alternate_class (int regno)
795 {
796 if (reg_pref == 0)
797 return ALL_REGS;
798
799 gcc_assert (regno < reg_info_size);
800 return (enum reg_class) reg_pref[regno].altclass;
801 }
802
803 /* Return the reg_class which is used by IRA for its allocation. */
804 enum reg_class
805 reg_allocno_class (int regno)
806 {
807 if (reg_pref == 0)
808 return NO_REGS;
809
810 gcc_assert (regno < reg_info_size);
811 return (enum reg_class) reg_pref[regno].allocnoclass;
812 }
813
814 \f
815
816 /* Allocate space for reg info and initilize it. */
817 static void
818 allocate_reg_info (void)
819 {
820 int i;
821
822 max_regno_since_last_resize = max_reg_num ();
823 reg_info_size = max_regno_since_last_resize * 3 / 2 + 1;
824 gcc_assert (! reg_pref && ! reg_renumber);
825 reg_renumber = XNEWVEC (short, reg_info_size);
826 reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
827 memset (reg_renumber, -1, reg_info_size * sizeof (short));
828 for (i = 0; i < reg_info_size; i++)
829 {
830 reg_pref[i].prefclass = GENERAL_REGS;
831 reg_pref[i].altclass = ALL_REGS;
832 reg_pref[i].allocnoclass = GENERAL_REGS;
833 }
834 }
835
836
837 /* Resize reg info. The new elements will be initialized. Return TRUE
838 if new pseudos were added since the last call. */
839 bool
840 resize_reg_info (void)
841 {
842 int old, i;
843 bool change_p;
844
845 if (reg_pref == NULL)
846 {
847 allocate_reg_info ();
848 return true;
849 }
850 change_p = max_regno_since_last_resize != max_reg_num ();
851 max_regno_since_last_resize = max_reg_num ();
852 if (reg_info_size >= max_reg_num ())
853 return change_p;
854 old = reg_info_size;
855 reg_info_size = max_reg_num () * 3 / 2 + 1;
856 gcc_assert (reg_pref && reg_renumber);
857 reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
858 reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
859 memset (reg_pref + old, -1,
860 (reg_info_size - old) * sizeof (struct reg_pref));
861 memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
862 for (i = old; i < reg_info_size; i++)
863 {
864 reg_pref[i].prefclass = GENERAL_REGS;
865 reg_pref[i].altclass = ALL_REGS;
866 reg_pref[i].allocnoclass = GENERAL_REGS;
867 }
868 return true;
869 }
870
871
872 /* Free up the space allocated by allocate_reg_info. */
873 void
874 free_reg_info (void)
875 {
876 if (reg_pref)
877 {
878 free (reg_pref);
879 reg_pref = NULL;
880 }
881
882 if (reg_renumber)
883 {
884 free (reg_renumber);
885 reg_renumber = NULL;
886 }
887 }
888
889 /* Initialize some global data for this pass. */
890 static unsigned int
891 reginfo_init (void)
892 {
893 if (df)
894 df_compute_regs_ever_live (true);
895
896 /* This prevents dump_reg_info from losing if called
897 before reginfo is run. */
898 reg_pref = NULL;
899 reg_info_size = max_regno_since_last_resize = 0;
900 /* No more global register variables may be declared. */
901 no_global_reg_vars = 1;
902 return 1;
903 }
904
905 namespace {
906
907 const pass_data pass_data_reginfo_init =
908 {
909 RTL_PASS, /* type */
910 "reginfo", /* name */
911 OPTGROUP_NONE, /* optinfo_flags */
912 TV_NONE, /* tv_id */
913 0, /* properties_required */
914 0, /* properties_provided */
915 0, /* properties_destroyed */
916 0, /* todo_flags_start */
917 0, /* todo_flags_finish */
918 };
919
920 class pass_reginfo_init : public rtl_opt_pass
921 {
922 public:
923 pass_reginfo_init (gcc::context *ctxt)
924 : rtl_opt_pass (pass_data_reginfo_init, ctxt)
925 {}
926
927 /* opt_pass methods: */
928 virtual unsigned int execute (function *) { return reginfo_init (); }
929
930 }; // class pass_reginfo_init
931
932 } // anon namespace
933
934 rtl_opt_pass *
935 make_pass_reginfo_init (gcc::context *ctxt)
936 {
937 return new pass_reginfo_init (ctxt);
938 }
939
940 \f
941
942 /* Set up preferred, alternate, and allocno classes for REGNO as
943 PREFCLASS, ALTCLASS, and ALLOCNOCLASS. */
944 void
945 setup_reg_classes (int regno,
946 enum reg_class prefclass, enum reg_class altclass,
947 enum reg_class allocnoclass)
948 {
949 if (reg_pref == NULL)
950 return;
951 gcc_assert (reg_info_size >= max_reg_num ());
952 reg_pref[regno].prefclass = prefclass;
953 reg_pref[regno].altclass = altclass;
954 reg_pref[regno].allocnoclass = allocnoclass;
955 }
956
957 \f
958 /* This is the `regscan' pass of the compiler, run just before cse and
959 again just before loop. It finds the first and last use of each
960 pseudo-register. */
961
962 static void reg_scan_mark_refs (rtx, rtx_insn *);
963
964 void
965 reg_scan (rtx_insn *f, unsigned int nregs ATTRIBUTE_UNUSED)
966 {
967 rtx_insn *insn;
968
969 timevar_push (TV_REG_SCAN);
970
971 for (insn = f; insn; insn = NEXT_INSN (insn))
972 if (INSN_P (insn))
973 {
974 reg_scan_mark_refs (PATTERN (insn), insn);
975 if (REG_NOTES (insn))
976 reg_scan_mark_refs (REG_NOTES (insn), insn);
977 }
978
979 timevar_pop (TV_REG_SCAN);
980 }
981
982
983 /* X is the expression to scan. INSN is the insn it appears in.
984 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
985 We should only record information for REGs with numbers
986 greater than or equal to MIN_REGNO. */
987 static void
988 reg_scan_mark_refs (rtx x, rtx_insn *insn)
989 {
990 enum rtx_code code;
991 rtx dest;
992 rtx note;
993
994 if (!x)
995 return;
996 code = GET_CODE (x);
997 switch (code)
998 {
999 case CONST:
1000 CASE_CONST_ANY:
1001 case CC0:
1002 case PC:
1003 case SYMBOL_REF:
1004 case LABEL_REF:
1005 case ADDR_VEC:
1006 case ADDR_DIFF_VEC:
1007 case REG:
1008 return;
1009
1010 case EXPR_LIST:
1011 if (XEXP (x, 0))
1012 reg_scan_mark_refs (XEXP (x, 0), insn);
1013 if (XEXP (x, 1))
1014 reg_scan_mark_refs (XEXP (x, 1), insn);
1015 break;
1016
1017 case INSN_LIST:
1018 case INT_LIST:
1019 if (XEXP (x, 1))
1020 reg_scan_mark_refs (XEXP (x, 1), insn);
1021 break;
1022
1023 case CLOBBER:
1024 if (MEM_P (XEXP (x, 0)))
1025 reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
1026 break;
1027
1028 case SET:
1029 /* Count a set of the destination if it is a register. */
1030 for (dest = SET_DEST (x);
1031 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
1032 || GET_CODE (dest) == ZERO_EXTRACT;
1033 dest = XEXP (dest, 0))
1034 ;
1035
1036 /* If this is setting a pseudo from another pseudo or the sum of a
1037 pseudo and a constant integer and the other pseudo is known to be
1038 a pointer, set the destination to be a pointer as well.
1039
1040 Likewise if it is setting the destination from an address or from a
1041 value equivalent to an address or to the sum of an address and
1042 something else.
1043
1044 But don't do any of this if the pseudo corresponds to a user
1045 variable since it should have already been set as a pointer based
1046 on the type. */
1047
1048 if (REG_P (SET_DEST (x))
1049 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
1050 /* If the destination pseudo is set more than once, then other
1051 sets might not be to a pointer value (consider access to a
1052 union in two threads of control in the presence of global
1053 optimizations). So only set REG_POINTER on the destination
1054 pseudo if this is the only set of that pseudo. */
1055 && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
1056 && ! REG_USERVAR_P (SET_DEST (x))
1057 && ! REG_POINTER (SET_DEST (x))
1058 && ((REG_P (SET_SRC (x))
1059 && REG_POINTER (SET_SRC (x)))
1060 || ((GET_CODE (SET_SRC (x)) == PLUS
1061 || GET_CODE (SET_SRC (x)) == LO_SUM)
1062 && CONST_INT_P (XEXP (SET_SRC (x), 1))
1063 && REG_P (XEXP (SET_SRC (x), 0))
1064 && REG_POINTER (XEXP (SET_SRC (x), 0)))
1065 || GET_CODE (SET_SRC (x)) == CONST
1066 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
1067 || GET_CODE (SET_SRC (x)) == LABEL_REF
1068 || (GET_CODE (SET_SRC (x)) == HIGH
1069 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
1070 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
1071 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
1072 || ((GET_CODE (SET_SRC (x)) == PLUS
1073 || GET_CODE (SET_SRC (x)) == LO_SUM)
1074 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
1075 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
1076 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
1077 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
1078 && (GET_CODE (XEXP (note, 0)) == CONST
1079 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
1080 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
1081 REG_POINTER (SET_DEST (x)) = 1;
1082
1083 /* If this is setting a register from a register or from a simple
1084 conversion of a register, propagate REG_EXPR. */
1085 if (REG_P (dest) && !REG_ATTRS (dest))
1086 set_reg_attrs_from_value (dest, SET_SRC (x));
1087
1088 /* fall through */
1089
1090 default:
1091 {
1092 const char *fmt = GET_RTX_FORMAT (code);
1093 int i;
1094 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1095 {
1096 if (fmt[i] == 'e')
1097 reg_scan_mark_refs (XEXP (x, i), insn);
1098 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
1099 {
1100 int j;
1101 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1102 reg_scan_mark_refs (XVECEXP (x, i, j), insn);
1103 }
1104 }
1105 }
1106 }
1107 }
1108 \f
1109
1110 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
1111 is also in C2. */
1112 int
1113 reg_class_subset_p (reg_class_t c1, reg_class_t c2)
1114 {
1115 return (c1 == c2
1116 || c2 == ALL_REGS
1117 || hard_reg_set_subset_p (reg_class_contents[(int) c1],
1118 reg_class_contents[(int) c2]));
1119 }
1120
1121 /* Return nonzero if there is a register that is in both C1 and C2. */
1122 int
1123 reg_classes_intersect_p (reg_class_t c1, reg_class_t c2)
1124 {
1125 return (c1 == c2
1126 || c1 == ALL_REGS
1127 || c2 == ALL_REGS
1128 || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
1129 reg_class_contents[(int) c2]));
1130 }
1131
1132 \f
1133 inline hashval_t
1134 simplifiable_subregs_hasher::hash (const simplifiable_subreg *value)
1135 {
1136 inchash::hash h;
1137 h.add_hwi (value->shape.unique_id ());
1138 return h.end ();
1139 }
1140
1141 inline bool
1142 simplifiable_subregs_hasher::equal (const simplifiable_subreg *value,
1143 const subreg_shape *compare)
1144 {
1145 return value->shape == *compare;
1146 }
1147
1148 inline simplifiable_subreg::simplifiable_subreg (const subreg_shape &shape_in)
1149 : shape (shape_in)
1150 {
1151 CLEAR_HARD_REG_SET (simplifiable_regs);
1152 }
1153
1154 /* Return the set of hard registers that are able to form the subreg
1155 described by SHAPE. */
1156
1157 const HARD_REG_SET &
1158 simplifiable_subregs (const subreg_shape &shape)
1159 {
1160 if (!this_target_hard_regs->x_simplifiable_subregs)
1161 this_target_hard_regs->x_simplifiable_subregs
1162 = new hash_table <simplifiable_subregs_hasher> (30);
1163 inchash::hash h;
1164 h.add_hwi (shape.unique_id ());
1165 simplifiable_subreg **slot
1166 = (this_target_hard_regs->x_simplifiable_subregs
1167 ->find_slot_with_hash (&shape, h.end (), INSERT));
1168
1169 if (!*slot)
1170 {
1171 simplifiable_subreg *info = new simplifiable_subreg (shape);
1172 for (unsigned int i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1173 if (targetm.hard_regno_mode_ok (i, shape.inner_mode)
1174 && simplify_subreg_regno (i, shape.inner_mode, shape.offset,
1175 shape.outer_mode) >= 0)
1176 SET_HARD_REG_BIT (info->simplifiable_regs, i);
1177 *slot = info;
1178 }
1179 return (*slot)->simplifiable_regs;
1180 }
1181
1182 /* Passes for keeping and updating info about modes of registers
1183 inside subregisters. */
1184
1185 static HARD_REG_SET **valid_mode_changes;
1186 static obstack valid_mode_changes_obstack;
1187
1188 /* Restrict the choice of register for SUBREG_REG (SUBREG) based
1189 on information about SUBREG.
1190
1191 If PARTIAL_DEF, SUBREG is a partial definition of a multipart inner
1192 register and we want to ensure that the other parts of the inner
1193 register are correctly preserved. If !PARTIAL_DEF we need to
1194 ensure that SUBREG itself can be formed. */
1195
1196 static void
1197 record_subregs_of_mode (rtx subreg, bool partial_def)
1198 {
1199 unsigned int regno;
1200
1201 if (!REG_P (SUBREG_REG (subreg)))
1202 return;
1203
1204 regno = REGNO (SUBREG_REG (subreg));
1205 if (regno < FIRST_PSEUDO_REGISTER)
1206 return;
1207
1208 subreg_shape shape (shape_of_subreg (subreg));
1209 if (partial_def)
1210 {
1211 /* The number of independently-accessible SHAPE.outer_mode values
1212 in SHAPE.inner_mode is GET_MODE_SIZE (SHAPE.inner_mode) / SIZE.
1213 We need to check that the assignment will preserve all the other
1214 SIZE-byte chunks in the inner register besides the one that
1215 includes SUBREG.
1216
1217 In practice it is enough to check whether an equivalent
1218 SHAPE.inner_mode value in an adjacent SIZE-byte chunk can be formed.
1219 If the underlying registers are small enough, both subregs will
1220 be valid. If the underlying registers are too large, one of the
1221 subregs will be invalid.
1222
1223 This relies on the fact that we've already been passed
1224 SUBREG with PARTIAL_DEF set to false.
1225
1226 The size of the outer mode must ordered wrt the size of the
1227 inner mode's registers, since otherwise we wouldn't know at
1228 compile time how many registers the outer mode occupies. */
1229 poly_uint64 size = ordered_max (REGMODE_NATURAL_SIZE (shape.inner_mode),
1230 GET_MODE_SIZE (shape.outer_mode));
1231 gcc_checking_assert (known_lt (size, GET_MODE_SIZE (shape.inner_mode)));
1232 if (known_ge (shape.offset, size))
1233 shape.offset -= size;
1234 else
1235 shape.offset += size;
1236 }
1237
1238 if (valid_mode_changes[regno])
1239 *valid_mode_changes[regno] &= simplifiable_subregs (shape);
1240 else
1241 {
1242 valid_mode_changes[regno]
1243 = XOBNEW (&valid_mode_changes_obstack, HARD_REG_SET);
1244 *valid_mode_changes[regno] = simplifiable_subregs (shape);
1245 }
1246 }
1247
1248 /* Call record_subregs_of_mode for all the subregs in X. */
1249 static void
1250 find_subregs_of_mode (rtx x)
1251 {
1252 enum rtx_code code = GET_CODE (x);
1253 const char * const fmt = GET_RTX_FORMAT (code);
1254 int i;
1255
1256 if (code == SUBREG)
1257 record_subregs_of_mode (x, false);
1258
1259 /* Time for some deep diving. */
1260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1261 {
1262 if (fmt[i] == 'e')
1263 find_subregs_of_mode (XEXP (x, i));
1264 else if (fmt[i] == 'E')
1265 {
1266 int j;
1267 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1268 find_subregs_of_mode (XVECEXP (x, i, j));
1269 }
1270 }
1271 }
1272
1273 void
1274 init_subregs_of_mode (void)
1275 {
1276 basic_block bb;
1277 rtx_insn *insn;
1278
1279 gcc_obstack_init (&valid_mode_changes_obstack);
1280 valid_mode_changes = XCNEWVEC (HARD_REG_SET *, max_reg_num ());
1281
1282 FOR_EACH_BB_FN (bb, cfun)
1283 FOR_BB_INSNS (bb, insn)
1284 if (NONDEBUG_INSN_P (insn))
1285 {
1286 find_subregs_of_mode (PATTERN (insn));
1287 df_ref def;
1288 FOR_EACH_INSN_DEF (def, insn)
1289 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
1290 && read_modify_subreg_p (DF_REF_REG (def)))
1291 record_subregs_of_mode (DF_REF_REG (def), true);
1292 }
1293 }
1294
1295 const HARD_REG_SET *
1296 valid_mode_changes_for_regno (unsigned int regno)
1297 {
1298 return valid_mode_changes[regno];
1299 }
1300
1301 void
1302 finish_subregs_of_mode (void)
1303 {
1304 XDELETEVEC (valid_mode_changes);
1305 obstack_free (&valid_mode_changes_obstack, NULL);
1306 }
1307
1308 /* Free all data attached to the structure. This isn't a destructor because
1309 we don't want to run on exit. */
1310
1311 void
1312 target_hard_regs::finalize ()
1313 {
1314 delete x_simplifiable_subregs;
1315 }