]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/regrename.c
2014-10-27 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / regrename.c
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "insn-config.h"
27 #include "regs.h"
28 #include "addresses.h"
29 #include "hard-reg-set.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "machmode.h"
35 #include "input.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "cfganal.h"
40 #include "basic-block.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "recog.h"
44 #include "flags.h"
45 #include "obstack.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "target.h"
49 #include "emit-rtl.h"
50 #include "regrename.h"
51
52 /* This file implements the RTL register renaming pass of the compiler. It is
53 a semi-local pass whose goal is to maximize the usage of the register file
54 of the processor by substituting registers for others in the solution given
55 by the register allocator. The algorithm is as follows:
56
57 1. Local def/use chains are built: within each basic block, chains are
58 opened and closed; if a chain isn't closed at the end of the block,
59 it is dropped. We pre-open chains if we have already examined a
60 predecessor block and found chains live at the end which match
61 live registers at the start of the new block.
62
63 2. We try to combine the local chains across basic block boundaries by
64 comparing chains that were open at the start or end of a block to
65 those in successor/predecessor blocks.
66
67 3. For each chain, the set of possible renaming registers is computed.
68 This takes into account the renaming of previously processed chains.
69 Optionally, a preferred class is computed for the renaming register.
70
71 4. The best renaming register is computed for the chain in the above set,
72 using a round-robin allocation. If a preferred class exists, then the
73 round-robin allocation is done within the class first, if possible.
74 The round-robin allocation of renaming registers itself is global.
75
76 5. If a renaming register has been found, it is substituted in the chain.
77
78 Targets can parameterize the pass by specifying a preferred class for the
79 renaming register for a given (super)class of registers to be renamed. */
80
81 #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
82 #error "Use a different bitmap implementation for untracked_operands."
83 #endif
84
85 enum scan_actions
86 {
87 terminate_write,
88 terminate_dead,
89 mark_all_read,
90 mark_read,
91 mark_write,
92 /* mark_access is for marking the destination regs in
93 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
94 note is updated properly. */
95 mark_access
96 };
97
98 static const char * const scan_actions_name[] =
99 {
100 "terminate_write",
101 "terminate_dead",
102 "mark_all_read",
103 "mark_read",
104 "mark_write",
105 "mark_access"
106 };
107
108 /* TICK and THIS_TICK are used to record the last time we saw each
109 register. */
110 static int tick[FIRST_PSEUDO_REGISTER];
111 static int this_tick = 0;
112
113 static struct obstack rename_obstack;
114
115 /* If nonnull, the code calling into the register renamer requested
116 information about insn operands, and we store it here. */
117 vec<insn_rr_info> insn_rr;
118
119 static void scan_rtx (rtx_insn *, rtx *, enum reg_class, enum scan_actions,
120 enum op_type);
121 static bool build_def_use (basic_block);
122
123 /* The id to be given to the next opened chain. */
124 static unsigned current_id;
125
126 /* A mapping of unique id numbers to chains. */
127 static vec<du_head_p> id_to_chain;
128
129 /* List of currently open chains. */
130 static struct du_head *open_chains;
131
132 /* Bitmap of open chains. The bits set always match the list found in
133 open_chains. */
134 static bitmap_head open_chains_set;
135
136 /* Record the registers being tracked in open_chains. */
137 static HARD_REG_SET live_in_chains;
138
139 /* Record the registers that are live but not tracked. The intersection
140 between this and live_in_chains is empty. */
141 static HARD_REG_SET live_hard_regs;
142
143 /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
144 is for a caller that requires operand data. Used in
145 record_operand_use. */
146 static operand_rr_info *cur_operand;
147
148 /* Return the chain corresponding to id number ID. Take into account that
149 chains may have been merged. */
150 du_head_p
151 regrename_chain_from_id (unsigned int id)
152 {
153 du_head_p first_chain = id_to_chain[id];
154 du_head_p chain = first_chain;
155 while (chain->id != id)
156 {
157 id = chain->id;
158 chain = id_to_chain[id];
159 }
160 first_chain->id = id;
161 return chain;
162 }
163
164 /* Dump all def/use chains, starting at id FROM. */
165
166 static void
167 dump_def_use_chain (int from)
168 {
169 du_head_p head;
170 int i;
171 FOR_EACH_VEC_ELT_FROM (id_to_chain, i, head, from)
172 {
173 struct du_chain *this_du = head->first;
174
175 fprintf (dump_file, "Register %s (%d):",
176 reg_names[head->regno], head->nregs);
177 while (this_du)
178 {
179 fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
180 reg_class_names[this_du->cl]);
181 this_du = this_du->next_use;
182 }
183 fprintf (dump_file, "\n");
184 head = head->next_chain;
185 }
186 }
187
188 static void
189 free_chain_data (void)
190 {
191 int i;
192 du_head_p ptr;
193 for (i = 0; id_to_chain.iterate (i, &ptr); i++)
194 bitmap_clear (&ptr->conflicts);
195
196 id_to_chain.release ();
197 }
198
199 /* Walk all chains starting with CHAINS and record that they conflict with
200 another chain whose id is ID. */
201
202 static void
203 mark_conflict (struct du_head *chains, unsigned id)
204 {
205 while (chains)
206 {
207 bitmap_set_bit (&chains->conflicts, id);
208 chains = chains->next_chain;
209 }
210 }
211
212 /* Examine cur_operand, and if it is nonnull, record information about the
213 use THIS_DU which is part of the chain HEAD. */
214
215 static void
216 record_operand_use (struct du_head *head, struct du_chain *this_du)
217 {
218 if (cur_operand == NULL)
219 return;
220 gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS);
221 cur_operand->heads[cur_operand->n_chains] = head;
222 cur_operand->chains[cur_operand->n_chains++] = this_du;
223 }
224
225 /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
226 and record its occurrence in *LOC, which is being written to in INSN.
227 This access requires a register of class CL. */
228
229 static du_head_p
230 create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
231 rtx_insn *insn, enum reg_class cl)
232 {
233 struct du_head *head = XOBNEW (&rename_obstack, struct du_head);
234 struct du_chain *this_du;
235 int nregs;
236
237 head->next_chain = open_chains;
238 head->regno = this_regno;
239 head->nregs = this_nregs;
240 head->need_caller_save_reg = 0;
241 head->cannot_rename = 0;
242
243 id_to_chain.safe_push (head);
244 head->id = current_id++;
245
246 bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
247 bitmap_copy (&head->conflicts, &open_chains_set);
248 mark_conflict (open_chains, head->id);
249
250 /* Since we're tracking this as a chain now, remove it from the
251 list of conflicting live hard registers and track it in
252 live_in_chains instead. */
253 nregs = head->nregs;
254 while (nregs-- > 0)
255 {
256 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
257 CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
258 }
259
260 COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs);
261 bitmap_set_bit (&open_chains_set, head->id);
262
263 open_chains = head;
264
265 if (dump_file)
266 {
267 fprintf (dump_file, "Creating chain %s (%d)",
268 reg_names[head->regno], head->id);
269 if (insn != NULL_RTX)
270 fprintf (dump_file, " at insn %d", INSN_UID (insn));
271 fprintf (dump_file, "\n");
272 }
273
274 if (insn == NULL_RTX)
275 {
276 head->first = head->last = NULL;
277 return head;
278 }
279
280 this_du = XOBNEW (&rename_obstack, struct du_chain);
281 head->first = head->last = this_du;
282
283 this_du->next_use = 0;
284 this_du->loc = loc;
285 this_du->insn = insn;
286 this_du->cl = cl;
287 record_operand_use (head, this_du);
288 return head;
289 }
290
291 /* For a def-use chain HEAD, find which registers overlap its lifetime and
292 set the corresponding bits in *PSET. */
293
294 static void
295 merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head)
296 {
297 bitmap_iterator bi;
298 unsigned i;
299 IOR_HARD_REG_SET (*pset, head->hard_conflicts);
300 EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
301 {
302 du_head_p other = regrename_chain_from_id (i);
303 unsigned j = other->nregs;
304 gcc_assert (other != head);
305 while (j-- > 0)
306 SET_HARD_REG_BIT (*pset, other->regno + j);
307 }
308 }
309
310 /* Check if NEW_REG can be the candidate register to rename for
311 REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
312 registers. */
313
314 static bool
315 check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg,
316 struct du_head *this_head, HARD_REG_SET this_unavailable)
317 {
318 enum machine_mode mode = GET_MODE (*this_head->first->loc);
319 int nregs = hard_regno_nregs[new_reg][mode];
320 int i;
321 struct du_chain *tmp;
322
323 for (i = nregs - 1; i >= 0; --i)
324 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
325 || fixed_regs[new_reg + i]
326 || global_regs[new_reg + i]
327 /* Can't use regs which aren't saved by the prologue. */
328 || (! df_regs_ever_live_p (new_reg + i)
329 && ! call_used_regs[new_reg + i])
330 #ifdef LEAF_REGISTERS
331 /* We can't use a non-leaf register if we're in a
332 leaf function. */
333 || (crtl->is_leaf
334 && !LEAF_REGISTERS[new_reg + i])
335 #endif
336 #ifdef HARD_REGNO_RENAME_OK
337 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i)
338 #endif
339 )
340 return false;
341
342 /* See whether it accepts all modes that occur in
343 definition and uses. */
344 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
345 if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
346 && ! DEBUG_INSN_P (tmp->insn))
347 || (this_head->need_caller_save_reg
348 && ! (HARD_REGNO_CALL_PART_CLOBBERED
349 (reg, GET_MODE (*tmp->loc)))
350 && (HARD_REGNO_CALL_PART_CLOBBERED
351 (new_reg, GET_MODE (*tmp->loc)))))
352 return false;
353
354 return true;
355 }
356
357 /* For the chain THIS_HEAD, compute and return the best register to
358 rename to. SUPER_CLASS is the superunion of register classes in
359 the chain. UNAVAILABLE is a set of registers that cannot be used.
360 OLD_REG is the register currently used for the chain. */
361
362 int
363 find_best_rename_reg (du_head_p this_head, enum reg_class super_class,
364 HARD_REG_SET *unavailable, int old_reg)
365 {
366 bool has_preferred_class;
367 enum reg_class preferred_class;
368 int pass;
369 int best_new_reg = old_reg;
370
371 /* Further narrow the set of registers we can use for renaming.
372 If the chain needs a call-saved register, mark the call-used
373 registers as unavailable. */
374 if (this_head->need_caller_save_reg)
375 IOR_HARD_REG_SET (*unavailable, call_used_reg_set);
376
377 /* Mark registers that overlap this chain's lifetime as unavailable. */
378 merge_overlapping_regs (unavailable, this_head);
379
380 /* Compute preferred rename class of super union of all the classes
381 in the chain. */
382 preferred_class
383 = (enum reg_class) targetm.preferred_rename_class (super_class);
384
385 /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
386 over registers that belong to PREFERRED_CLASS and try to find the
387 best register within the class. If that failed, we iterate in
388 the second pass over registers that don't belong to the class.
389 If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
390 ascending order without any preference. */
391 has_preferred_class = (preferred_class != NO_REGS);
392 for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++)
393 {
394 int new_reg;
395 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
396 {
397 if (has_preferred_class
398 && (pass == 0)
399 != TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
400 new_reg))
401 continue;
402
403 /* In the first pass, we force the renaming of registers that
404 don't belong to PREFERRED_CLASS to registers that do, even
405 though the latters were used not very long ago. */
406 if (check_new_reg_p (old_reg, new_reg, this_head,
407 *unavailable)
408 && ((pass == 0
409 && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
410 best_new_reg))
411 || tick[best_new_reg] > tick[new_reg]))
412 best_new_reg = new_reg;
413 }
414 if (pass == 0 && best_new_reg != old_reg)
415 break;
416 }
417 return best_new_reg;
418 }
419
420 /* Perform register renaming on the current function. */
421 static void
422 rename_chains (void)
423 {
424 HARD_REG_SET unavailable;
425 du_head_p this_head;
426 int i;
427
428 memset (tick, 0, sizeof tick);
429
430 CLEAR_HARD_REG_SET (unavailable);
431 /* Don't clobber traceback for noreturn functions. */
432 if (frame_pointer_needed)
433 {
434 add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
435 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
436 add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
437 #endif
438 }
439
440 FOR_EACH_VEC_ELT (id_to_chain, i, this_head)
441 {
442 int best_new_reg;
443 int n_uses;
444 struct du_chain *tmp;
445 HARD_REG_SET this_unavailable;
446 int reg = this_head->regno;
447 enum reg_class super_class = NO_REGS;
448
449 if (this_head->cannot_rename)
450 continue;
451
452 if (fixed_regs[reg] || global_regs[reg]
453 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
454 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
455 #else
456 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
457 #endif
458 )
459 continue;
460
461 COPY_HARD_REG_SET (this_unavailable, unavailable);
462
463 /* Iterate over elements in the chain in order to:
464 1. Count number of uses, and narrow the set of registers we can
465 use for renaming.
466 2. Compute the superunion of register classes in this chain. */
467 n_uses = 0;
468 super_class = NO_REGS;
469 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
470 {
471 if (DEBUG_INSN_P (tmp->insn))
472 continue;
473 n_uses++;
474 IOR_COMPL_HARD_REG_SET (this_unavailable,
475 reg_class_contents[tmp->cl]);
476 super_class
477 = reg_class_superunion[(int) super_class][(int) tmp->cl];
478 }
479
480 if (n_uses < 2)
481 continue;
482
483 best_new_reg = find_best_rename_reg (this_head, super_class,
484 &this_unavailable, reg);
485
486 if (dump_file)
487 {
488 fprintf (dump_file, "Register %s in insn %d",
489 reg_names[reg], INSN_UID (this_head->first->insn));
490 if (this_head->need_caller_save_reg)
491 fprintf (dump_file, " crosses a call");
492 }
493
494 if (best_new_reg == reg)
495 {
496 tick[reg] = ++this_tick;
497 if (dump_file)
498 fprintf (dump_file, "; no available better choice\n");
499 continue;
500 }
501
502 if (dump_file)
503 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
504
505 regrename_do_replace (this_head, best_new_reg);
506 tick[best_new_reg] = ++this_tick;
507 df_set_regs_ever_live (best_new_reg, true);
508 }
509 }
510
511 /* A structure to record information for each hard register at the start of
512 a basic block. */
513 struct incoming_reg_info {
514 /* Holds the number of registers used in the chain that gave us information
515 about this register. Zero means no information known yet, while a
516 negative value is used for something that is part of, but not the first
517 register in a multi-register value. */
518 int nregs;
519 /* Set to true if we have accesses that conflict in the number of registers
520 used. */
521 bool unusable;
522 };
523
524 /* A structure recording information about each basic block. It is saved
525 and restored around basic block boundaries.
526 A pointer to such a structure is stored in each basic block's aux field
527 during regrename_analyze, except for blocks we know can't be optimized
528 (such as entry and exit blocks). */
529 struct bb_rename_info
530 {
531 /* The basic block corresponding to this structure. */
532 basic_block bb;
533 /* Copies of the global information. */
534 bitmap_head open_chains_set;
535 bitmap_head incoming_open_chains_set;
536 struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER];
537 };
538
539 /* Initialize a rename_info structure P for basic block BB, which starts a new
540 scan. */
541 static void
542 init_rename_info (struct bb_rename_info *p, basic_block bb)
543 {
544 int i;
545 df_ref def;
546 HARD_REG_SET start_chains_set;
547
548 p->bb = bb;
549 bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack);
550 bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack);
551
552 open_chains = NULL;
553 bitmap_clear (&open_chains_set);
554
555 CLEAR_HARD_REG_SET (live_in_chains);
556 REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
557 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
558 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
559 SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
560
561 /* Open chains based on information from (at least one) predecessor
562 block. This gives us a chance later on to combine chains across
563 basic block boundaries. Inconsistencies (in access sizes) will
564 be caught normally and dealt with conservatively by disabling the
565 chain for renaming, and there is no risk of losing optimization
566 opportunities by opening chains either: if we did not open the
567 chains, we'd have to track the live register as a hard reg, and
568 we'd be unable to rename it in any case. */
569 CLEAR_HARD_REG_SET (start_chains_set);
570 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
571 {
572 struct incoming_reg_info *iri = p->incoming + i;
573 if (iri->nregs > 0 && !iri->unusable
574 && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs))
575 {
576 SET_HARD_REG_BIT (start_chains_set, i);
577 remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs);
578 }
579 }
580 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
581 {
582 struct incoming_reg_info *iri = p->incoming + i;
583 if (TEST_HARD_REG_BIT (start_chains_set, i))
584 {
585 du_head_p chain;
586 if (dump_file)
587 fprintf (dump_file, "opening incoming chain\n");
588 chain = create_new_chain (i, iri->nregs, NULL, NULL, NO_REGS);
589 bitmap_set_bit (&p->incoming_open_chains_set, chain->id);
590 }
591 }
592 }
593
594 /* Record in RI that the block corresponding to it has an incoming
595 live value, described by CHAIN. */
596 static void
597 set_incoming_from_chain (struct bb_rename_info *ri, du_head_p chain)
598 {
599 int i;
600 int incoming_nregs = ri->incoming[chain->regno].nregs;
601 int nregs;
602
603 /* If we've recorded the same information before, everything is fine. */
604 if (incoming_nregs == chain->nregs)
605 {
606 if (dump_file)
607 fprintf (dump_file, "reg %d/%d already recorded\n",
608 chain->regno, chain->nregs);
609 return;
610 }
611
612 /* If we have no information for any of the involved registers, update
613 the incoming array. */
614 nregs = chain->nregs;
615 while (nregs-- > 0)
616 if (ri->incoming[chain->regno + nregs].nregs != 0
617 || ri->incoming[chain->regno + nregs].unusable)
618 break;
619 if (nregs < 0)
620 {
621 nregs = chain->nregs;
622 ri->incoming[chain->regno].nregs = nregs;
623 while (nregs-- > 1)
624 ri->incoming[chain->regno + nregs].nregs = -nregs;
625 if (dump_file)
626 fprintf (dump_file, "recorded reg %d/%d\n",
627 chain->regno, chain->nregs);
628 return;
629 }
630
631 /* There must be some kind of conflict. Prevent both the old and
632 new ranges from being used. */
633 if (incoming_nregs < 0)
634 ri->incoming[chain->regno + incoming_nregs].unusable = true;
635 for (i = 0; i < chain->nregs; i++)
636 ri->incoming[chain->regno + i].unusable = true;
637 }
638
639 /* Merge the two chains C1 and C2 so that all conflict information is
640 recorded and C1, and the id of C2 is changed to that of C1. */
641 static void
642 merge_chains (du_head_p c1, du_head_p c2)
643 {
644 if (c1 == c2)
645 return;
646
647 if (c2->first != NULL)
648 {
649 if (c1->first == NULL)
650 c1->first = c2->first;
651 else
652 c1->last->next_use = c2->first;
653 c1->last = c2->last;
654 }
655
656 c2->first = c2->last = NULL;
657 c2->id = c1->id;
658
659 IOR_HARD_REG_SET (c1->hard_conflicts, c2->hard_conflicts);
660 bitmap_ior_into (&c1->conflicts, &c2->conflicts);
661
662 c1->need_caller_save_reg |= c2->need_caller_save_reg;
663 c1->cannot_rename |= c2->cannot_rename;
664 }
665
666 /* Analyze the current function and build chains for renaming. */
667
668 void
669 regrename_analyze (bitmap bb_mask)
670 {
671 struct bb_rename_info *rename_info;
672 int i;
673 basic_block bb;
674 int n_bbs;
675 int *inverse_postorder;
676
677 inverse_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
678 n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false);
679
680 /* Gather some information about the blocks in this function. */
681 rename_info = XCNEWVEC (struct bb_rename_info, n_basic_blocks_for_fn (cfun));
682 i = 0;
683 FOR_EACH_BB_FN (bb, cfun)
684 {
685 struct bb_rename_info *ri = rename_info + i;
686 ri->bb = bb;
687 if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index))
688 bb->aux = NULL;
689 else
690 bb->aux = ri;
691 i++;
692 }
693
694 current_id = 0;
695 id_to_chain.create (0);
696 bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
697
698 /* The order in which we visit blocks ensures that whenever
699 possible, we only process a block after at least one of its
700 predecessors, which provides a "seeding" effect to make the logic
701 in set_incoming_from_chain and init_rename_info useful. */
702
703 for (i = 0; i < n_bbs; i++)
704 {
705 basic_block bb1 = BASIC_BLOCK_FOR_FN (cfun, inverse_postorder[i]);
706 struct bb_rename_info *this_info;
707 bool success;
708 edge e;
709 edge_iterator ei;
710 int old_length = id_to_chain.length ();
711
712 this_info = (struct bb_rename_info *) bb1->aux;
713 if (this_info == NULL)
714 continue;
715
716 if (dump_file)
717 fprintf (dump_file, "\nprocessing block %d:\n", bb1->index);
718
719 init_rename_info (this_info, bb1);
720
721 success = build_def_use (bb1);
722 if (!success)
723 {
724 if (dump_file)
725 fprintf (dump_file, "failed\n");
726 bb1->aux = NULL;
727 id_to_chain.truncate (old_length);
728 current_id = old_length;
729 bitmap_clear (&this_info->incoming_open_chains_set);
730 open_chains = NULL;
731 if (insn_rr.exists ())
732 {
733 rtx_insn *insn;
734 FOR_BB_INSNS (bb1, insn)
735 {
736 insn_rr_info *p = &insn_rr[INSN_UID (insn)];
737 p->op_info = NULL;
738 }
739 }
740 continue;
741 }
742
743 if (dump_file)
744 dump_def_use_chain (old_length);
745 bitmap_copy (&this_info->open_chains_set, &open_chains_set);
746
747 /* Add successor blocks to the worklist if necessary, and record
748 data about our own open chains at the end of this block, which
749 will be used to pre-open chains when processing the successors. */
750 FOR_EACH_EDGE (e, ei, bb1->succs)
751 {
752 struct bb_rename_info *dest_ri;
753 struct du_head *chain;
754
755 if (dump_file)
756 fprintf (dump_file, "successor block %d\n", e->dest->index);
757
758 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
759 continue;
760 dest_ri = (struct bb_rename_info *)e->dest->aux;
761 if (dest_ri == NULL)
762 continue;
763 for (chain = open_chains; chain; chain = chain->next_chain)
764 set_incoming_from_chain (dest_ri, chain);
765 }
766 }
767
768 free (inverse_postorder);
769
770 /* Now, combine the chains data we have gathered across basic block
771 boundaries.
772
773 For every basic block, there may be chains open at the start, or at the
774 end. Rather than exclude them from renaming, we look for open chains
775 with matching registers at the other side of the CFG edge.
776
777 For a given chain using register R, open at the start of block B, we
778 must find an open chain using R on the other side of every edge leading
779 to B, if the register is live across this edge. In the code below,
780 N_PREDS_USED counts the number of edges where the register is live, and
781 N_PREDS_JOINED counts those where we found an appropriate chain for
782 joining.
783
784 We perform the analysis for both incoming and outgoing edges, but we
785 only need to merge once (in the second part, after verifying outgoing
786 edges). */
787 FOR_EACH_BB_FN (bb, cfun)
788 {
789 struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
790 unsigned j;
791 bitmap_iterator bi;
792
793 if (bb_ri == NULL)
794 continue;
795
796 if (dump_file)
797 fprintf (dump_file, "processing bb %d in edges\n", bb->index);
798
799 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi)
800 {
801 edge e;
802 edge_iterator ei;
803 struct du_head *chain = regrename_chain_from_id (j);
804 int n_preds_used = 0, n_preds_joined = 0;
805
806 FOR_EACH_EDGE (e, ei, bb->preds)
807 {
808 struct bb_rename_info *src_ri;
809 unsigned k;
810 bitmap_iterator bi2;
811 HARD_REG_SET live;
812 bool success = false;
813
814 REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src));
815 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
816 chain->nregs))
817 continue;
818 n_preds_used++;
819
820 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
821 continue;
822
823 src_ri = (struct bb_rename_info *)e->src->aux;
824 if (src_ri == NULL)
825 continue;
826
827 EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set,
828 0, k, bi2)
829 {
830 struct du_head *outgoing_chain = regrename_chain_from_id (k);
831
832 if (outgoing_chain->regno == chain->regno
833 && outgoing_chain->nregs == chain->nregs)
834 {
835 n_preds_joined++;
836 success = true;
837 break;
838 }
839 }
840 if (!success && dump_file)
841 fprintf (dump_file, "failure to match with pred block %d\n",
842 e->src->index);
843 }
844 if (n_preds_joined < n_preds_used)
845 {
846 if (dump_file)
847 fprintf (dump_file, "cannot rename chain %d\n", j);
848 chain->cannot_rename = 1;
849 }
850 }
851 }
852 FOR_EACH_BB_FN (bb, cfun)
853 {
854 struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
855 unsigned j;
856 bitmap_iterator bi;
857
858 if (bb_ri == NULL)
859 continue;
860
861 if (dump_file)
862 fprintf (dump_file, "processing bb %d out edges\n", bb->index);
863
864 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi)
865 {
866 edge e;
867 edge_iterator ei;
868 struct du_head *chain = regrename_chain_from_id (j);
869 int n_succs_used = 0, n_succs_joined = 0;
870
871 FOR_EACH_EDGE (e, ei, bb->succs)
872 {
873 bool printed = false;
874 struct bb_rename_info *dest_ri;
875 unsigned k;
876 bitmap_iterator bi2;
877 HARD_REG_SET live;
878
879 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest));
880 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
881 chain->nregs))
882 continue;
883
884 n_succs_used++;
885
886 dest_ri = (struct bb_rename_info *)e->dest->aux;
887 if (dest_ri == NULL)
888 continue;
889
890 EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set,
891 0, k, bi2)
892 {
893 struct du_head *incoming_chain = regrename_chain_from_id (k);
894
895 if (incoming_chain->regno == chain->regno
896 && incoming_chain->nregs == chain->nregs)
897 {
898 if (dump_file)
899 {
900 if (!printed)
901 fprintf (dump_file,
902 "merging blocks for edge %d -> %d\n",
903 e->src->index, e->dest->index);
904 printed = true;
905 fprintf (dump_file,
906 " merging chains %d (->%d) and %d (->%d) [%s]\n",
907 k, incoming_chain->id, j, chain->id,
908 reg_names[incoming_chain->regno]);
909 }
910
911 merge_chains (chain, incoming_chain);
912 n_succs_joined++;
913 break;
914 }
915 }
916 }
917 if (n_succs_joined < n_succs_used)
918 {
919 if (dump_file)
920 fprintf (dump_file, "cannot rename chain %d\n",
921 j);
922 chain->cannot_rename = 1;
923 }
924 }
925 }
926
927 free (rename_info);
928
929 FOR_EACH_BB_FN (bb, cfun)
930 bb->aux = NULL;
931 }
932
933 void
934 regrename_do_replace (struct du_head *head, int reg)
935 {
936 struct du_chain *chain;
937 unsigned int base_regno = head->regno;
938 enum machine_mode mode;
939
940 for (chain = head->first; chain; chain = chain->next_use)
941 {
942 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
943 struct reg_attrs *attr = REG_ATTRS (*chain->loc);
944 int reg_ptr = REG_POINTER (*chain->loc);
945
946 if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
947 INSN_VAR_LOCATION_LOC (chain->insn) = gen_rtx_UNKNOWN_VAR_LOC ();
948 else
949 {
950 *chain->loc = gen_raw_REG (GET_MODE (*chain->loc), reg);
951 if (regno >= FIRST_PSEUDO_REGISTER)
952 ORIGINAL_REGNO (*chain->loc) = regno;
953 REG_ATTRS (*chain->loc) = attr;
954 REG_POINTER (*chain->loc) = reg_ptr;
955 }
956
957 df_insn_rescan (chain->insn);
958 }
959
960 mode = GET_MODE (*head->first->loc);
961 head->regno = reg;
962 head->nregs = hard_regno_nregs[reg][mode];
963 }
964
965
966 /* True if we found a register with a size mismatch, which means that we
967 can't track its lifetime accurately. If so, we abort the current block
968 without renaming. */
969 static bool fail_current_block;
970
971 /* Return true if OP is a reg for which all bits are set in PSET, false
972 if all bits are clear.
973 In other cases, set fail_current_block and return false. */
974
975 static bool
976 verify_reg_in_set (rtx op, HARD_REG_SET *pset)
977 {
978 unsigned regno, nregs;
979 bool all_live, all_dead;
980 if (!REG_P (op))
981 return false;
982
983 regno = REGNO (op);
984 nregs = hard_regno_nregs[regno][GET_MODE (op)];
985 all_live = all_dead = true;
986 while (nregs-- > 0)
987 if (TEST_HARD_REG_BIT (*pset, regno + nregs))
988 all_dead = false;
989 else
990 all_live = false;
991 if (!all_dead && !all_live)
992 {
993 fail_current_block = true;
994 return false;
995 }
996 return all_live;
997 }
998
999 /* Return true if OP is a reg that is being tracked already in some form.
1000 May set fail_current_block if it sees an unhandled case of overlap. */
1001
1002 static bool
1003 verify_reg_tracked (rtx op)
1004 {
1005 return (verify_reg_in_set (op, &live_hard_regs)
1006 || verify_reg_in_set (op, &live_in_chains));
1007 }
1008
1009 /* Called through note_stores. DATA points to a rtx_code, either SET or
1010 CLOBBER, which tells us which kind of rtx to look at. If we have a
1011 match, record the set register in live_hard_regs and in the hard_conflicts
1012 bitmap of open chains. */
1013
1014 static void
1015 note_sets_clobbers (rtx x, const_rtx set, void *data)
1016 {
1017 enum rtx_code code = *(enum rtx_code *)data;
1018 struct du_head *chain;
1019
1020 if (GET_CODE (x) == SUBREG)
1021 x = SUBREG_REG (x);
1022 if (!REG_P (x) || GET_CODE (set) != code)
1023 return;
1024 /* There must not be pseudos at this point. */
1025 gcc_assert (HARD_REGISTER_P (x));
1026 add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
1027 for (chain = open_chains; chain; chain = chain->next_chain)
1028 add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
1029 }
1030
1031 static void
1032 scan_rtx_reg (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1033 enum op_type type)
1034 {
1035 struct du_head **p;
1036 rtx x = *loc;
1037 enum machine_mode mode = GET_MODE (x);
1038 unsigned this_regno = REGNO (x);
1039 int this_nregs = hard_regno_nregs[this_regno][mode];
1040
1041 if (action == mark_write)
1042 {
1043 if (type == OP_OUT)
1044 create_new_chain (this_regno, this_nregs, loc, insn, cl);
1045 return;
1046 }
1047
1048 if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
1049 return;
1050
1051 for (p = &open_chains; *p;)
1052 {
1053 struct du_head *head = *p;
1054 struct du_head *next = head->next_chain;
1055 int exact_match = (head->regno == this_regno
1056 && head->nregs == this_nregs);
1057 int superset = (this_regno <= head->regno
1058 && this_regno + this_nregs >= head->regno + head->nregs);
1059 int subset = (this_regno >= head->regno
1060 && this_regno + this_nregs <= head->regno + head->nregs);
1061
1062 if (!bitmap_bit_p (&open_chains_set, head->id)
1063 || head->regno + head->nregs <= this_regno
1064 || this_regno + this_nregs <= head->regno)
1065 {
1066 p = &head->next_chain;
1067 continue;
1068 }
1069
1070 if (action == mark_read || action == mark_access)
1071 {
1072 /* ??? Class NO_REGS can happen if the md file makes use of
1073 EXTRA_CONSTRAINTS to match registers. Which is arguably
1074 wrong, but there we are. */
1075
1076 if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
1077 {
1078 if (dump_file)
1079 fprintf (dump_file,
1080 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1081 reg_names[head->regno], head->id, INSN_UID (insn),
1082 scan_actions_name[(int) action]);
1083 head->cannot_rename = 1;
1084 if (superset)
1085 {
1086 unsigned nregs = this_nregs;
1087 head->regno = this_regno;
1088 head->nregs = this_nregs;
1089 while (nregs-- > 0)
1090 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1091 if (dump_file)
1092 fprintf (dump_file,
1093 "Widening register in chain %s (%d) at insn %d\n",
1094 reg_names[head->regno], head->id, INSN_UID (insn));
1095 }
1096 else if (!subset)
1097 {
1098 fail_current_block = true;
1099 if (dump_file)
1100 fprintf (dump_file,
1101 "Failing basic block due to unhandled overlap\n");
1102 }
1103 }
1104 else
1105 {
1106 struct du_chain *this_du;
1107 this_du = XOBNEW (&rename_obstack, struct du_chain);
1108 this_du->next_use = 0;
1109 this_du->loc = loc;
1110 this_du->insn = insn;
1111 this_du->cl = cl;
1112 if (head->first == NULL)
1113 head->first = this_du;
1114 else
1115 head->last->next_use = this_du;
1116 record_operand_use (head, this_du);
1117 head->last = this_du;
1118 }
1119 /* Avoid adding the same location in a DEBUG_INSN multiple times,
1120 which could happen with non-exact overlap. */
1121 if (DEBUG_INSN_P (insn))
1122 return;
1123 /* Otherwise, find any other chains that do not match exactly;
1124 ensure they all get marked unrenamable. */
1125 p = &head->next_chain;
1126 continue;
1127 }
1128
1129 /* Whether the terminated chain can be used for renaming
1130 depends on the action and this being an exact match.
1131 In either case, we remove this element from open_chains. */
1132
1133 if ((action == terminate_dead || action == terminate_write)
1134 && (superset || subset))
1135 {
1136 unsigned nregs;
1137
1138 if (subset && !superset)
1139 head->cannot_rename = 1;
1140 bitmap_clear_bit (&open_chains_set, head->id);
1141
1142 nregs = head->nregs;
1143 while (nregs-- > 0)
1144 {
1145 CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1146 if (subset && !superset
1147 && (head->regno + nregs < this_regno
1148 || head->regno + nregs >= this_regno + this_nregs))
1149 SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
1150 }
1151
1152 *p = next;
1153 if (dump_file)
1154 fprintf (dump_file,
1155 "Closing chain %s (%d) at insn %d (%s%s)\n",
1156 reg_names[head->regno], head->id, INSN_UID (insn),
1157 scan_actions_name[(int) action],
1158 superset ? ", superset" : subset ? ", subset" : "");
1159 }
1160 else if (action == terminate_dead || action == terminate_write)
1161 {
1162 /* In this case, tracking liveness gets too hard. Fail the
1163 entire basic block. */
1164 if (dump_file)
1165 fprintf (dump_file,
1166 "Failing basic block due to unhandled overlap\n");
1167 fail_current_block = true;
1168 return;
1169 }
1170 else
1171 {
1172 head->cannot_rename = 1;
1173 if (dump_file)
1174 fprintf (dump_file,
1175 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1176 reg_names[head->regno], head->id, INSN_UID (insn),
1177 scan_actions_name[(int) action]);
1178 p = &head->next_chain;
1179 }
1180 }
1181 }
1182
1183 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1184 BASE_REG_CLASS depending on how the register is being considered. */
1185
1186 static void
1187 scan_rtx_address (rtx_insn *insn, rtx *loc, enum reg_class cl,
1188 enum scan_actions action, enum machine_mode mode,
1189 addr_space_t as)
1190 {
1191 rtx x = *loc;
1192 RTX_CODE code = GET_CODE (x);
1193 const char *fmt;
1194 int i, j;
1195
1196 if (action == mark_write || action == mark_access)
1197 return;
1198
1199 switch (code)
1200 {
1201 case PLUS:
1202 {
1203 rtx orig_op0 = XEXP (x, 0);
1204 rtx orig_op1 = XEXP (x, 1);
1205 RTX_CODE code0 = GET_CODE (orig_op0);
1206 RTX_CODE code1 = GET_CODE (orig_op1);
1207 rtx op0 = orig_op0;
1208 rtx op1 = orig_op1;
1209 rtx *locI = NULL;
1210 rtx *locB = NULL;
1211 enum rtx_code index_code = SCRATCH;
1212
1213 if (GET_CODE (op0) == SUBREG)
1214 {
1215 op0 = SUBREG_REG (op0);
1216 code0 = GET_CODE (op0);
1217 }
1218
1219 if (GET_CODE (op1) == SUBREG)
1220 {
1221 op1 = SUBREG_REG (op1);
1222 code1 = GET_CODE (op1);
1223 }
1224
1225 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1226 || code0 == ZERO_EXTEND || code1 == MEM)
1227 {
1228 locI = &XEXP (x, 0);
1229 locB = &XEXP (x, 1);
1230 index_code = GET_CODE (*locI);
1231 }
1232 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1233 || code1 == ZERO_EXTEND || code0 == MEM)
1234 {
1235 locI = &XEXP (x, 1);
1236 locB = &XEXP (x, 0);
1237 index_code = GET_CODE (*locI);
1238 }
1239 else if (code0 == CONST_INT || code0 == CONST
1240 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1241 {
1242 locB = &XEXP (x, 1);
1243 index_code = GET_CODE (XEXP (x, 0));
1244 }
1245 else if (code1 == CONST_INT || code1 == CONST
1246 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1247 {
1248 locB = &XEXP (x, 0);
1249 index_code = GET_CODE (XEXP (x, 1));
1250 }
1251 else if (code0 == REG && code1 == REG)
1252 {
1253 int index_op;
1254 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
1255
1256 if (REGNO_OK_FOR_INDEX_P (regno1)
1257 && regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
1258 index_op = 1;
1259 else if (REGNO_OK_FOR_INDEX_P (regno0)
1260 && regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1261 index_op = 0;
1262 else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
1263 || REGNO_OK_FOR_INDEX_P (regno1))
1264 index_op = 1;
1265 else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1266 index_op = 0;
1267 else
1268 index_op = 1;
1269
1270 locI = &XEXP (x, index_op);
1271 locB = &XEXP (x, !index_op);
1272 index_code = GET_CODE (*locI);
1273 }
1274 else if (code0 == REG)
1275 {
1276 locI = &XEXP (x, 0);
1277 locB = &XEXP (x, 1);
1278 index_code = GET_CODE (*locI);
1279 }
1280 else if (code1 == REG)
1281 {
1282 locI = &XEXP (x, 1);
1283 locB = &XEXP (x, 0);
1284 index_code = GET_CODE (*locI);
1285 }
1286
1287 if (locI)
1288 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode, as);
1289 if (locB)
1290 scan_rtx_address (insn, locB,
1291 base_reg_class (mode, as, PLUS, index_code),
1292 action, mode, as);
1293
1294 return;
1295 }
1296
1297 case POST_INC:
1298 case POST_DEC:
1299 case POST_MODIFY:
1300 case PRE_INC:
1301 case PRE_DEC:
1302 case PRE_MODIFY:
1303 #ifndef AUTO_INC_DEC
1304 /* If the target doesn't claim to handle autoinc, this must be
1305 something special, like a stack push. Kill this chain. */
1306 action = mark_all_read;
1307 #endif
1308 break;
1309
1310 case MEM:
1311 scan_rtx_address (insn, &XEXP (x, 0),
1312 base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
1313 MEM, SCRATCH),
1314 action, GET_MODE (x), MEM_ADDR_SPACE (x));
1315 return;
1316
1317 case REG:
1318 scan_rtx_reg (insn, loc, cl, action, OP_IN);
1319 return;
1320
1321 default:
1322 break;
1323 }
1324
1325 fmt = GET_RTX_FORMAT (code);
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1327 {
1328 if (fmt[i] == 'e')
1329 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as);
1330 else if (fmt[i] == 'E')
1331 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1332 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as);
1333 }
1334 }
1335
1336 static void
1337 scan_rtx (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1338 enum op_type type)
1339 {
1340 const char *fmt;
1341 rtx x = *loc;
1342 enum rtx_code code = GET_CODE (x);
1343 int i, j;
1344
1345 code = GET_CODE (x);
1346 switch (code)
1347 {
1348 case CONST:
1349 CASE_CONST_ANY:
1350 case SYMBOL_REF:
1351 case LABEL_REF:
1352 case CC0:
1353 case PC:
1354 return;
1355
1356 case REG:
1357 scan_rtx_reg (insn, loc, cl, action, type);
1358 return;
1359
1360 case MEM:
1361 scan_rtx_address (insn, &XEXP (x, 0),
1362 base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
1363 MEM, SCRATCH),
1364 action, GET_MODE (x), MEM_ADDR_SPACE (x));
1365 return;
1366
1367 case SET:
1368 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
1369 scan_rtx (insn, &SET_DEST (x), cl, action,
1370 (GET_CODE (PATTERN (insn)) == COND_EXEC
1371 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1372 return;
1373
1374 case STRICT_LOW_PART:
1375 scan_rtx (insn, &XEXP (x, 0), cl, action,
1376 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
1377 return;
1378
1379 case ZERO_EXTRACT:
1380 case SIGN_EXTRACT:
1381 scan_rtx (insn, &XEXP (x, 0), cl, action,
1382 (type == OP_IN ? OP_IN :
1383 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
1384 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
1385 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
1386 return;
1387
1388 case POST_INC:
1389 case PRE_INC:
1390 case POST_DEC:
1391 case PRE_DEC:
1392 case POST_MODIFY:
1393 case PRE_MODIFY:
1394 /* Should only happen inside MEM. */
1395 gcc_unreachable ();
1396
1397 case CLOBBER:
1398 scan_rtx (insn, &SET_DEST (x), cl, action,
1399 (GET_CODE (PATTERN (insn)) == COND_EXEC
1400 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1401 return;
1402
1403 case EXPR_LIST:
1404 scan_rtx (insn, &XEXP (x, 0), cl, action, type);
1405 if (XEXP (x, 1))
1406 scan_rtx (insn, &XEXP (x, 1), cl, action, type);
1407 return;
1408
1409 default:
1410 break;
1411 }
1412
1413 fmt = GET_RTX_FORMAT (code);
1414 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1415 {
1416 if (fmt[i] == 'e')
1417 scan_rtx (insn, &XEXP (x, i), cl, action, type);
1418 else if (fmt[i] == 'E')
1419 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1420 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
1421 }
1422 }
1423
1424 /* Hide operands of the current insn (of which there are N_OPS) by
1425 substituting cc0 for them.
1426 Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
1427 For every bit set in DO_NOT_HIDE, we leave the operand alone.
1428 If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
1429 and earlyclobbers. */
1430
1431 static void
1432 hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
1433 unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
1434 {
1435 int i;
1436 const operand_alternative *op_alt = which_op_alt ();
1437 for (i = 0; i < n_ops; i++)
1438 {
1439 old_operands[i] = recog_data.operand[i];
1440 /* Don't squash match_operator or match_parallel here, since
1441 we don't know that all of the contained registers are
1442 reachable by proper operands. */
1443 if (recog_data.constraints[i][0] == '\0')
1444 continue;
1445 if (do_not_hide & (1 << i))
1446 continue;
1447 if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
1448 || op_alt[i].earlyclobber)
1449 *recog_data.operand_loc[i] = cc0_rtx;
1450 }
1451 for (i = 0; i < recog_data.n_dups; i++)
1452 {
1453 int opn = recog_data.dup_num[i];
1454 old_dups[i] = *recog_data.dup_loc[i];
1455 if (do_not_hide & (1 << opn))
1456 continue;
1457 if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
1458 || op_alt[opn].earlyclobber)
1459 *recog_data.dup_loc[i] = cc0_rtx;
1460 }
1461 }
1462
1463 /* Undo the substitution performed by hide_operands. INSN is the insn we
1464 are processing; the arguments are the same as in hide_operands. */
1465
1466 static void
1467 restore_operands (rtx_insn *insn, int n_ops, rtx *old_operands, rtx *old_dups)
1468 {
1469 int i;
1470 for (i = 0; i < recog_data.n_dups; i++)
1471 *recog_data.dup_loc[i] = old_dups[i];
1472 for (i = 0; i < n_ops; i++)
1473 *recog_data.operand_loc[i] = old_operands[i];
1474 if (recog_data.n_dups)
1475 df_insn_rescan (insn);
1476 }
1477
1478 /* For each output operand of INSN, call scan_rtx to create a new
1479 open chain. Do this only for normal or earlyclobber outputs,
1480 depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
1481 record information about the operands in the insn. */
1482
1483 static void
1484 record_out_operands (rtx_insn *insn, bool earlyclobber, insn_rr_info *insn_info)
1485 {
1486 int n_ops = recog_data.n_operands;
1487 const operand_alternative *op_alt = which_op_alt ();
1488
1489 int i;
1490
1491 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1492 {
1493 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1494 rtx *loc = (i < n_ops
1495 ? recog_data.operand_loc[opn]
1496 : recog_data.dup_loc[i - n_ops]);
1497 rtx op = *loc;
1498 enum reg_class cl = alternative_class (op_alt, opn);
1499
1500 struct du_head *prev_open;
1501
1502 if (recog_data.operand_type[opn] != OP_OUT
1503 || op_alt[opn].earlyclobber != earlyclobber)
1504 continue;
1505
1506 if (insn_info)
1507 cur_operand = insn_info->op_info + i;
1508
1509 prev_open = open_chains;
1510 scan_rtx (insn, loc, cl, mark_write, OP_OUT);
1511
1512 /* ??? Many targets have output constraints on the SET_DEST
1513 of a call insn, which is stupid, since these are certainly
1514 ABI defined hard registers. For these, and for asm operands
1515 that originally referenced hard registers, we must record that
1516 the chain cannot be renamed. */
1517 if (CALL_P (insn)
1518 || (asm_noperands (PATTERN (insn)) > 0
1519 && REG_P (op)
1520 && REGNO (op) == ORIGINAL_REGNO (op)))
1521 {
1522 if (prev_open != open_chains)
1523 open_chains->cannot_rename = 1;
1524 }
1525 }
1526 cur_operand = NULL;
1527 }
1528
1529 /* Build def/use chain. */
1530
1531 static bool
1532 build_def_use (basic_block bb)
1533 {
1534 rtx_insn *insn;
1535 unsigned HOST_WIDE_INT untracked_operands;
1536
1537 fail_current_block = false;
1538
1539 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1540 {
1541 if (NONDEBUG_INSN_P (insn))
1542 {
1543 int n_ops;
1544 rtx note;
1545 rtx old_operands[MAX_RECOG_OPERANDS];
1546 rtx old_dups[MAX_DUP_OPERANDS];
1547 int i;
1548 int predicated;
1549 enum rtx_code set_code = SET;
1550 enum rtx_code clobber_code = CLOBBER;
1551 insn_rr_info *insn_info = NULL;
1552
1553 /* Process the insn, determining its effect on the def-use
1554 chains and live hard registers. We perform the following
1555 steps with the register references in the insn, simulating
1556 its effect:
1557 (1) Deal with earlyclobber operands and CLOBBERs of non-operands
1558 by creating chains and marking hard regs live.
1559 (2) Any read outside an operand causes any chain it overlaps
1560 with to be marked unrenamable.
1561 (3) Any read inside an operand is added if there's already
1562 an open chain for it.
1563 (4) For any REG_DEAD note we find, close open chains that
1564 overlap it.
1565 (5) For any non-earlyclobber write we find, close open chains
1566 that overlap it.
1567 (6) For any non-earlyclobber write we find in an operand, make
1568 a new chain or mark the hard register as live.
1569 (7) For any REG_UNUSED, close any chains we just opened.
1570
1571 We cannot deal with situations where we track a reg in one mode
1572 and see a reference in another mode; these will cause the chain
1573 to be marked unrenamable or even cause us to abort the entire
1574 basic block. */
1575
1576 extract_constrain_insn (insn);
1577 preprocess_constraints (insn);
1578 const operand_alternative *op_alt = which_op_alt ();
1579 n_ops = recog_data.n_operands;
1580 untracked_operands = 0;
1581
1582 if (insn_rr.exists ())
1583 {
1584 insn_info = &insn_rr[INSN_UID (insn)];
1585 insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info,
1586 recog_data.n_operands);
1587 memset (insn_info->op_info, 0,
1588 sizeof (operand_rr_info) * recog_data.n_operands);
1589 }
1590
1591 /* Simplify the code below by promoting OP_OUT to OP_INOUT in
1592 predicated instructions, but only for register operands
1593 that are already tracked, so that we can create a chain
1594 when the first SET makes a register live. */
1595
1596 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1597 for (i = 0; i < n_ops; ++i)
1598 {
1599 rtx op = recog_data.operand[i];
1600 int matches = op_alt[i].matches;
1601 if (matches >= 0 || op_alt[i].matched >= 0
1602 || (predicated && recog_data.operand_type[i] == OP_OUT))
1603 {
1604 recog_data.operand_type[i] = OP_INOUT;
1605 /* A special case to deal with instruction patterns that
1606 have matching operands with different modes. If we're
1607 not already tracking such a reg, we won't start here,
1608 and we must instead make sure to make the operand visible
1609 to the machinery that tracks hard registers. */
1610 if (matches >= 0
1611 && (GET_MODE_SIZE (recog_data.operand_mode[i])
1612 != GET_MODE_SIZE (recog_data.operand_mode[matches]))
1613 && !verify_reg_in_set (op, &live_in_chains))
1614 {
1615 untracked_operands |= 1 << i;
1616 untracked_operands |= 1 << matches;
1617 }
1618 }
1619 /* If there's an in-out operand with a register that is not
1620 being tracked at all yet, open a chain. */
1621 if (recog_data.operand_type[i] == OP_INOUT
1622 && !(untracked_operands & (1 << i))
1623 && REG_P (op)
1624 && !verify_reg_tracked (op))
1625 {
1626 enum machine_mode mode = GET_MODE (op);
1627 unsigned this_regno = REGNO (op);
1628 unsigned this_nregs = hard_regno_nregs[this_regno][mode];
1629 create_new_chain (this_regno, this_nregs, NULL, NULL,
1630 NO_REGS);
1631 }
1632 }
1633
1634 if (fail_current_block)
1635 break;
1636
1637 /* Step 1a: Mark hard registers that are clobbered in this insn,
1638 outside an operand, as live. */
1639 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1640 false);
1641 note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code);
1642 restore_operands (insn, n_ops, old_operands, old_dups);
1643
1644 /* Step 1b: Begin new chains for earlyclobbered writes inside
1645 operands. */
1646 record_out_operands (insn, true, insn_info);
1647
1648 /* Step 2: Mark chains for which we have reads outside operands
1649 as unrenamable.
1650 We do this by munging all operands into CC0, and closing
1651 everything remaining. */
1652
1653 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1654 false);
1655 scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
1656 restore_operands (insn, n_ops, old_operands, old_dups);
1657
1658 /* Step 2B: Can't rename function call argument registers. */
1659 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
1660 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
1661 NO_REGS, mark_all_read, OP_IN);
1662
1663 /* Step 2C: Can't rename asm operands that were originally
1664 hard registers. */
1665 if (asm_noperands (PATTERN (insn)) > 0)
1666 for (i = 0; i < n_ops; i++)
1667 {
1668 rtx *loc = recog_data.operand_loc[i];
1669 rtx op = *loc;
1670
1671 if (REG_P (op)
1672 && REGNO (op) == ORIGINAL_REGNO (op)
1673 && (recog_data.operand_type[i] == OP_IN
1674 || recog_data.operand_type[i] == OP_INOUT))
1675 scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
1676 }
1677
1678 /* Step 3: Append to chains for reads inside operands. */
1679 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1680 {
1681 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1682 rtx *loc = (i < n_ops
1683 ? recog_data.operand_loc[opn]
1684 : recog_data.dup_loc[i - n_ops]);
1685 enum reg_class cl = alternative_class (op_alt, opn);
1686 enum op_type type = recog_data.operand_type[opn];
1687
1688 /* Don't scan match_operand here, since we've no reg class
1689 information to pass down. Any operands that we could
1690 substitute in will be represented elsewhere. */
1691 if (recog_data.constraints[opn][0] == '\0'
1692 || untracked_operands & (1 << opn))
1693 continue;
1694
1695 if (insn_info)
1696 cur_operand = i == opn ? insn_info->op_info + i : NULL;
1697 if (op_alt[opn].is_address)
1698 scan_rtx_address (insn, loc, cl, mark_read,
1699 VOIDmode, ADDR_SPACE_GENERIC);
1700 else
1701 scan_rtx (insn, loc, cl, mark_read, type);
1702 }
1703 cur_operand = NULL;
1704
1705 /* Step 3B: Record updates for regs in REG_INC notes, and
1706 source regs in REG_FRAME_RELATED_EXPR notes. */
1707 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1708 if (REG_NOTE_KIND (note) == REG_INC
1709 || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1710 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
1711 OP_INOUT);
1712
1713 /* Step 4: Close chains for registers that die here, unless
1714 the register is mentioned in a REG_UNUSED note. In that
1715 case we keep the chain open until step #7 below to ensure
1716 it conflicts with other output operands of this insn.
1717 See PR 52573. Arguably the insn should not have both
1718 notes; it has proven difficult to fix that without
1719 other undesirable side effects. */
1720 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1721 if (REG_NOTE_KIND (note) == REG_DEAD
1722 && !find_regno_note (insn, REG_UNUSED, REGNO (XEXP (note, 0))))
1723 {
1724 remove_from_hard_reg_set (&live_hard_regs,
1725 GET_MODE (XEXP (note, 0)),
1726 REGNO (XEXP (note, 0)));
1727 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1728 OP_IN);
1729 }
1730
1731 /* Step 4B: If this is a call, any chain live at this point
1732 requires a caller-saved reg. */
1733 if (CALL_P (insn))
1734 {
1735 struct du_head *p;
1736 for (p = open_chains; p; p = p->next_chain)
1737 p->need_caller_save_reg = 1;
1738 }
1739
1740 /* Step 5: Close open chains that overlap writes. Similar to
1741 step 2, we hide in-out operands, since we do not want to
1742 close these chains. We also hide earlyclobber operands,
1743 since we've opened chains for them in step 1, and earlier
1744 chains they would overlap with must have been closed at
1745 the previous insn at the latest, as such operands cannot
1746 possibly overlap with any input operands. */
1747
1748 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1749 true);
1750 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
1751 restore_operands (insn, n_ops, old_operands, old_dups);
1752
1753 /* Step 6a: Mark hard registers that are set in this insn,
1754 outside an operand, as live. */
1755 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1756 false);
1757 note_stores (PATTERN (insn), note_sets_clobbers, &set_code);
1758 restore_operands (insn, n_ops, old_operands, old_dups);
1759
1760 /* Step 6b: Begin new chains for writes inside operands. */
1761 record_out_operands (insn, false, insn_info);
1762
1763 /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
1764 notes for update. */
1765 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1766 if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1767 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
1768 OP_INOUT);
1769
1770 /* Step 7: Close chains for registers that were never
1771 really used here. */
1772 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1773 if (REG_NOTE_KIND (note) == REG_UNUSED)
1774 {
1775 remove_from_hard_reg_set (&live_hard_regs,
1776 GET_MODE (XEXP (note, 0)),
1777 REGNO (XEXP (note, 0)));
1778 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1779 OP_IN);
1780 }
1781 }
1782 else if (DEBUG_INSN_P (insn)
1783 && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
1784 {
1785 scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
1786 ALL_REGS, mark_read, OP_IN);
1787 }
1788 if (insn == BB_END (bb))
1789 break;
1790 }
1791
1792 if (fail_current_block)
1793 return false;
1794
1795 return true;
1796 }
1797 \f
1798 /* Initialize the register renamer. If INSN_INFO is true, ensure that
1799 insn_rr is nonnull. */
1800 void
1801 regrename_init (bool insn_info)
1802 {
1803 gcc_obstack_init (&rename_obstack);
1804 insn_rr.create (0);
1805 if (insn_info)
1806 insn_rr.safe_grow_cleared (get_max_uid ());
1807 }
1808
1809 /* Free all global data used by the register renamer. */
1810 void
1811 regrename_finish (void)
1812 {
1813 insn_rr.release ();
1814 free_chain_data ();
1815 obstack_free (&rename_obstack, NULL);
1816 }
1817
1818 /* Perform register renaming on the current function. */
1819
1820 static unsigned int
1821 regrename_optimize (void)
1822 {
1823 df_set_flags (DF_LR_RUN_DCE);
1824 df_note_add_problem ();
1825 df_analyze ();
1826 df_set_flags (DF_DEFER_INSN_RESCAN);
1827
1828 regrename_init (false);
1829
1830 regrename_analyze (NULL);
1831
1832 rename_chains ();
1833
1834 regrename_finish ();
1835
1836 return 0;
1837 }
1838 \f
1839 namespace {
1840
1841 const pass_data pass_data_regrename =
1842 {
1843 RTL_PASS, /* type */
1844 "rnreg", /* name */
1845 OPTGROUP_NONE, /* optinfo_flags */
1846 TV_RENAME_REGISTERS, /* tv_id */
1847 0, /* properties_required */
1848 0, /* properties_provided */
1849 0, /* properties_destroyed */
1850 0, /* todo_flags_start */
1851 TODO_df_finish, /* todo_flags_finish */
1852 };
1853
1854 class pass_regrename : public rtl_opt_pass
1855 {
1856 public:
1857 pass_regrename (gcc::context *ctxt)
1858 : rtl_opt_pass (pass_data_regrename, ctxt)
1859 {}
1860
1861 /* opt_pass methods: */
1862 virtual bool gate (function *)
1863 {
1864 return (optimize > 0 && (flag_rename_registers));
1865 }
1866
1867 virtual unsigned int execute (function *) { return regrename_optimize (); }
1868
1869 }; // class pass_regrename
1870
1871 } // anon namespace
1872
1873 rtl_opt_pass *
1874 make_pass_regrename (gcc::context *ctxt)
1875 {
1876 return new pass_regrename (ctxt);
1877 }