]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload.c
gcc/
[thirdparty/gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
26
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
29
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
36
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
43
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
52
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
55
56 NOTE SIDE EFFECTS:
57
58 find_reloads can alter the operands of the instruction it is called on.
59
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
64
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
67
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
71
72 Using a reload register for several reloads in one insn:
73
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
77
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
81
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
85
86 #define REG_OK_STRICT
87
88 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
89 #undef DEBUG_RELOAD
90
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl-error.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "df.h"
102 #include "reload.h"
103 #include "regs.h"
104 #include "addresses.h"
105 #include "hard-reg-set.h"
106 #include "flags.h"
107 #include "function.h"
108 #include "params.h"
109 #include "target.h"
110 #include "ira.h"
111
112 /* True if X is a constant that can be forced into the constant pool.
113 MODE is the mode of the operand, or VOIDmode if not known. */
114 #define CONST_POOL_OK_P(MODE, X) \
115 ((MODE) != VOIDmode \
116 && CONSTANT_P (X) \
117 && GET_CODE (X) != HIGH \
118 && !targetm.cannot_force_const_mem (MODE, X))
119
120 /* True if C is a non-empty register class that has too few registers
121 to be safely used as a reload target class. */
122
123 static inline bool
124 small_register_class_p (reg_class_t rclass)
125 {
126 return (reg_class_size [(int) rclass] == 1
127 || (reg_class_size [(int) rclass] >= 1
128 && targetm.class_likely_spilled_p (rclass)));
129 }
130
131 \f
132 /* All reloads of the current insn are recorded here. See reload.h for
133 comments. */
134 int n_reloads;
135 struct reload rld[MAX_RELOADS];
136
137 /* All the "earlyclobber" operands of the current insn
138 are recorded here. */
139 int n_earlyclobbers;
140 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
141
142 int reload_n_operands;
143
144 /* Replacing reloads.
145
146 If `replace_reloads' is nonzero, then as each reload is recorded
147 an entry is made for it in the table `replacements'.
148 Then later `subst_reloads' can look through that table and
149 perform all the replacements needed. */
150
151 /* Nonzero means record the places to replace. */
152 static int replace_reloads;
153
154 /* Each replacement is recorded with a structure like this. */
155 struct replacement
156 {
157 rtx *where; /* Location to store in */
158 int what; /* which reload this is for */
159 enum machine_mode mode; /* mode it must have */
160 };
161
162 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163
164 /* Number of replacements currently recorded. */
165 static int n_replacements;
166
167 /* Used to track what is modified by an operand. */
168 struct decomposition
169 {
170 int reg_flag; /* Nonzero if referencing a register. */
171 int safe; /* Nonzero if this can't conflict with anything. */
172 rtx base; /* Base address for MEM. */
173 HOST_WIDE_INT start; /* Starting offset or register number. */
174 HOST_WIDE_INT end; /* Ending offset or register number. */
175 };
176
177 #ifdef SECONDARY_MEMORY_NEEDED
178
179 /* Save MEMs needed to copy from one class of registers to another. One MEM
180 is used per mode, but normally only one or two modes are ever used.
181
182 We keep two versions, before and after register elimination. The one
183 after register elimination is record separately for each operand. This
184 is done in case the address is not valid to be sure that we separately
185 reload each. */
186
187 static rtx secondary_memlocs[NUM_MACHINE_MODES];
188 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
189 static int secondary_memlocs_elim_used = 0;
190 #endif
191
192 /* The instruction we are doing reloads for;
193 so we can test whether a register dies in it. */
194 static rtx this_insn;
195
196 /* Nonzero if this instruction is a user-specified asm with operands. */
197 static int this_insn_is_asm;
198
199 /* If hard_regs_live_known is nonzero,
200 we can tell which hard regs are currently live,
201 at least enough to succeed in choosing dummy reloads. */
202 static int hard_regs_live_known;
203
204 /* Indexed by hard reg number,
205 element is nonnegative if hard reg has been spilled.
206 This vector is passed to `find_reloads' as an argument
207 and is not changed here. */
208 static short *static_reload_reg_p;
209
210 /* Set to 1 in subst_reg_equivs if it changes anything. */
211 static int subst_reg_equivs_changed;
212
213 /* On return from push_reload, holds the reload-number for the OUT
214 operand, which can be different for that from the input operand. */
215 static int output_reloadnum;
216
217 /* Compare two RTX's. */
218 #define MATCHES(x, y) \
219 (x == y || (x != 0 && (REG_P (x) \
220 ? REG_P (y) && REGNO (x) == REGNO (y) \
221 : rtx_equal_p (x, y) && ! side_effects_p (x))))
222
223 /* Indicates if two reloads purposes are for similar enough things that we
224 can merge their reloads. */
225 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
226 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
227 || ((when1) == (when2) && (op1) == (op2)) \
228 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
229 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
230 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
231 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
232 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233
234 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
235 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
236 ((when1) != (when2) \
237 || ! ((op1) == (op2) \
238 || (when1) == RELOAD_FOR_INPUT \
239 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
240 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241
242 /* If we are going to reload an address, compute the reload type to
243 use. */
244 #define ADDR_TYPE(type) \
245 ((type) == RELOAD_FOR_INPUT_ADDRESS \
246 ? RELOAD_FOR_INPADDR_ADDRESS \
247 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
248 ? RELOAD_FOR_OUTADDR_ADDRESS \
249 : (type)))
250
251 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
252 enum machine_mode, enum reload_type,
253 enum insn_code *, secondary_reload_info *);
254 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
255 int, unsigned int);
256 static void push_replacement (rtx *, int, enum machine_mode);
257 static void dup_replacements (rtx *, rtx *);
258 static void combine_reloads (void);
259 static int find_reusable_reload (rtx *, rtx, enum reg_class,
260 enum reload_type, int, int);
261 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
262 enum machine_mode, reg_class_t, int, int);
263 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
264 static struct decomposition decompose (rtx);
265 static int immune_p (rtx, rtx, struct decomposition);
266 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
267 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
268 int *);
269 static rtx make_memloc (rtx, int);
270 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
271 addr_space_t, rtx *);
272 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
273 int, enum reload_type, int, rtx);
274 static rtx subst_reg_equivs (rtx, rtx);
275 static rtx subst_indexed_address (rtx);
276 static void update_auto_inc_notes (rtx, int, int);
277 static int find_reloads_address_1 (enum machine_mode, addr_space_t, rtx, int,
278 enum rtx_code, enum rtx_code, rtx *,
279 int, enum reload_type,int, rtx);
280 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
281 enum machine_mode, int,
282 enum reload_type, int);
283 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
284 int, rtx, int *);
285 static void copy_replacements_1 (rtx *, rtx *, int);
286 static int find_inc_amount (rtx, rtx);
287 static int refers_to_mem_for_reload_p (rtx);
288 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
289 rtx, rtx *);
290
291 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
292 list yet. */
293
294 static void
295 push_reg_equiv_alt_mem (int regno, rtx mem)
296 {
297 rtx it;
298
299 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
300 if (rtx_equal_p (XEXP (it, 0), mem))
301 return;
302
303 reg_equiv_alt_mem_list (regno)
304 = alloc_EXPR_LIST (REG_EQUIV, mem,
305 reg_equiv_alt_mem_list (regno));
306 }
307 \f
308 /* Determine if any secondary reloads are needed for loading (if IN_P is
309 nonzero) or storing (if IN_P is zero) X to or from a reload register of
310 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
311 are needed, push them.
312
313 Return the reload number of the secondary reload we made, or -1 if
314 we didn't need one. *PICODE is set to the insn_code to use if we do
315 need a secondary reload. */
316
317 static int
318 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
319 enum reg_class reload_class,
320 enum machine_mode reload_mode, enum reload_type type,
321 enum insn_code *picode, secondary_reload_info *prev_sri)
322 {
323 enum reg_class rclass = NO_REGS;
324 enum reg_class scratch_class;
325 enum machine_mode mode = reload_mode;
326 enum insn_code icode = CODE_FOR_nothing;
327 enum insn_code t_icode = CODE_FOR_nothing;
328 enum reload_type secondary_type;
329 int s_reload, t_reload = -1;
330 const char *scratch_constraint;
331 char letter;
332 secondary_reload_info sri;
333
334 if (type == RELOAD_FOR_INPUT_ADDRESS
335 || type == RELOAD_FOR_OUTPUT_ADDRESS
336 || type == RELOAD_FOR_INPADDR_ADDRESS
337 || type == RELOAD_FOR_OUTADDR_ADDRESS)
338 secondary_type = type;
339 else
340 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
341
342 *picode = CODE_FOR_nothing;
343
344 /* If X is a paradoxical SUBREG, use the inner value to determine both the
345 mode and object being reloaded. */
346 if (paradoxical_subreg_p (x))
347 {
348 x = SUBREG_REG (x);
349 reload_mode = GET_MODE (x);
350 }
351
352 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
353 is still a pseudo-register by now, it *must* have an equivalent MEM
354 but we don't want to assume that), use that equivalent when seeing if
355 a secondary reload is needed since whether or not a reload is needed
356 might be sensitive to the form of the MEM. */
357
358 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
359 && reg_equiv_mem (REGNO (x)))
360 x = reg_equiv_mem (REGNO (x));
361
362 sri.icode = CODE_FOR_nothing;
363 sri.prev_sri = prev_sri;
364 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
365 reload_mode, &sri);
366 icode = (enum insn_code) sri.icode;
367
368 /* If we don't need any secondary registers, done. */
369 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
370 return -1;
371
372 if (rclass != NO_REGS)
373 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
374 reload_mode, type, &t_icode, &sri);
375
376 /* If we will be using an insn, the secondary reload is for a
377 scratch register. */
378
379 if (icode != CODE_FOR_nothing)
380 {
381 /* If IN_P is nonzero, the reload register will be the output in
382 operand 0. If IN_P is zero, the reload register will be the input
383 in operand 1. Outputs should have an initial "=", which we must
384 skip. */
385
386 /* ??? It would be useful to be able to handle only two, or more than
387 three, operands, but for now we can only handle the case of having
388 exactly three: output, input and one temp/scratch. */
389 gcc_assert (insn_data[(int) icode].n_operands == 3);
390
391 /* ??? We currently have no way to represent a reload that needs
392 an icode to reload from an intermediate tertiary reload register.
393 We should probably have a new field in struct reload to tag a
394 chain of scratch operand reloads onto. */
395 gcc_assert (rclass == NO_REGS);
396
397 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
398 gcc_assert (*scratch_constraint == '=');
399 scratch_constraint++;
400 if (*scratch_constraint == '&')
401 scratch_constraint++;
402 letter = *scratch_constraint;
403 scratch_class = (letter == 'r' ? GENERAL_REGS
404 : (reg_class_for_constraint
405 (lookup_constraint (scratch_constraint))));
406
407 rclass = scratch_class;
408 mode = insn_data[(int) icode].operand[2].mode;
409 }
410
411 /* This case isn't valid, so fail. Reload is allowed to use the same
412 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
413 in the case of a secondary register, we actually need two different
414 registers for correct code. We fail here to prevent the possibility of
415 silently generating incorrect code later.
416
417 The convention is that secondary input reloads are valid only if the
418 secondary_class is different from class. If you have such a case, you
419 can not use secondary reloads, you must work around the problem some
420 other way.
421
422 Allow this when a reload_in/out pattern is being used. I.e. assume
423 that the generated code handles this case. */
424
425 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
426 || t_icode != CODE_FOR_nothing);
427
428 /* See if we can reuse an existing secondary reload. */
429 for (s_reload = 0; s_reload < n_reloads; s_reload++)
430 if (rld[s_reload].secondary_p
431 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
432 || reg_class_subset_p (rld[s_reload].rclass, rclass))
433 && ((in_p && rld[s_reload].inmode == mode)
434 || (! in_p && rld[s_reload].outmode == mode))
435 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
436 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
437 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
438 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
439 && (small_register_class_p (rclass)
440 || targetm.small_register_classes_for_mode_p (VOIDmode))
441 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
442 opnum, rld[s_reload].opnum))
443 {
444 if (in_p)
445 rld[s_reload].inmode = mode;
446 if (! in_p)
447 rld[s_reload].outmode = mode;
448
449 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
450 rld[s_reload].rclass = rclass;
451
452 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
453 rld[s_reload].optional &= optional;
454 rld[s_reload].secondary_p = 1;
455 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
456 opnum, rld[s_reload].opnum))
457 rld[s_reload].when_needed = RELOAD_OTHER;
458
459 break;
460 }
461
462 if (s_reload == n_reloads)
463 {
464 #ifdef SECONDARY_MEMORY_NEEDED
465 /* If we need a memory location to copy between the two reload regs,
466 set it up now. Note that we do the input case before making
467 the reload and the output case after. This is due to the
468 way reloads are output. */
469
470 if (in_p && icode == CODE_FOR_nothing
471 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
472 {
473 get_secondary_mem (x, reload_mode, opnum, type);
474
475 /* We may have just added new reloads. Make sure we add
476 the new reload at the end. */
477 s_reload = n_reloads;
478 }
479 #endif
480
481 /* We need to make a new secondary reload for this register class. */
482 rld[s_reload].in = rld[s_reload].out = 0;
483 rld[s_reload].rclass = rclass;
484
485 rld[s_reload].inmode = in_p ? mode : VOIDmode;
486 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
487 rld[s_reload].reg_rtx = 0;
488 rld[s_reload].optional = optional;
489 rld[s_reload].inc = 0;
490 /* Maybe we could combine these, but it seems too tricky. */
491 rld[s_reload].nocombine = 1;
492 rld[s_reload].in_reg = 0;
493 rld[s_reload].out_reg = 0;
494 rld[s_reload].opnum = opnum;
495 rld[s_reload].when_needed = secondary_type;
496 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
497 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
498 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
499 rld[s_reload].secondary_out_icode
500 = ! in_p ? t_icode : CODE_FOR_nothing;
501 rld[s_reload].secondary_p = 1;
502
503 n_reloads++;
504
505 #ifdef SECONDARY_MEMORY_NEEDED
506 if (! in_p && icode == CODE_FOR_nothing
507 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
508 get_secondary_mem (x, mode, opnum, type);
509 #endif
510 }
511
512 *picode = icode;
513 return s_reload;
514 }
515
516 /* If a secondary reload is needed, return its class. If both an intermediate
517 register and a scratch register is needed, we return the class of the
518 intermediate register. */
519 reg_class_t
520 secondary_reload_class (bool in_p, reg_class_t rclass, enum machine_mode mode,
521 rtx x)
522 {
523 enum insn_code icode;
524 secondary_reload_info sri;
525
526 sri.icode = CODE_FOR_nothing;
527 sri.prev_sri = NULL;
528 rclass
529 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
530 icode = (enum insn_code) sri.icode;
531
532 /* If there are no secondary reloads at all, we return NO_REGS.
533 If an intermediate register is needed, we return its class. */
534 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
535 return rclass;
536
537 /* No intermediate register is needed, but we have a special reload
538 pattern, which we assume for now needs a scratch register. */
539 return scratch_reload_class (icode);
540 }
541
542 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
543 three operands, verify that operand 2 is an output operand, and return
544 its register class.
545 ??? We'd like to be able to handle any pattern with at least 2 operands,
546 for zero or more scratch registers, but that needs more infrastructure. */
547 enum reg_class
548 scratch_reload_class (enum insn_code icode)
549 {
550 const char *scratch_constraint;
551 char scratch_letter;
552 enum reg_class rclass;
553
554 gcc_assert (insn_data[(int) icode].n_operands == 3);
555 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
556 gcc_assert (*scratch_constraint == '=');
557 scratch_constraint++;
558 if (*scratch_constraint == '&')
559 scratch_constraint++;
560 scratch_letter = *scratch_constraint;
561 if (scratch_letter == 'r')
562 return GENERAL_REGS;
563 rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
564 gcc_assert (rclass != NO_REGS);
565 return rclass;
566 }
567 \f
568 #ifdef SECONDARY_MEMORY_NEEDED
569
570 /* Return a memory location that will be used to copy X in mode MODE.
571 If we haven't already made a location for this mode in this insn,
572 call find_reloads_address on the location being returned. */
573
574 rtx
575 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
576 int opnum, enum reload_type type)
577 {
578 rtx loc;
579 int mem_valid;
580
581 /* By default, if MODE is narrower than a word, widen it to a word.
582 This is required because most machines that require these memory
583 locations do not support short load and stores from all registers
584 (e.g., FP registers). */
585
586 #ifdef SECONDARY_MEMORY_NEEDED_MODE
587 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
588 #else
589 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
590 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
591 #endif
592
593 /* If we already have made a MEM for this operand in MODE, return it. */
594 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
595 return secondary_memlocs_elim[(int) mode][opnum];
596
597 /* If this is the first time we've tried to get a MEM for this mode,
598 allocate a new one. `something_changed' in reload will get set
599 by noticing that the frame size has changed. */
600
601 if (secondary_memlocs[(int) mode] == 0)
602 {
603 #ifdef SECONDARY_MEMORY_NEEDED_RTX
604 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
605 #else
606 secondary_memlocs[(int) mode]
607 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
608 #endif
609 }
610
611 /* Get a version of the address doing any eliminations needed. If that
612 didn't give us a new MEM, make a new one if it isn't valid. */
613
614 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
615 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
616 MEM_ADDR_SPACE (loc));
617
618 if (! mem_valid && loc == secondary_memlocs[(int) mode])
619 loc = copy_rtx (loc);
620
621 /* The only time the call below will do anything is if the stack
622 offset is too large. In that case IND_LEVELS doesn't matter, so we
623 can just pass a zero. Adjust the type to be the address of the
624 corresponding object. If the address was valid, save the eliminated
625 address. If it wasn't valid, we need to make a reload each time, so
626 don't save it. */
627
628 if (! mem_valid)
629 {
630 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
631 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
632 : RELOAD_OTHER);
633
634 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
635 opnum, type, 0, 0);
636 }
637
638 secondary_memlocs_elim[(int) mode][opnum] = loc;
639 if (secondary_memlocs_elim_used <= (int)mode)
640 secondary_memlocs_elim_used = (int)mode + 1;
641 return loc;
642 }
643
644 /* Clear any secondary memory locations we've made. */
645
646 void
647 clear_secondary_mem (void)
648 {
649 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
650 }
651 #endif /* SECONDARY_MEMORY_NEEDED */
652 \f
653
654 /* Find the largest class which has at least one register valid in
655 mode INNER, and which for every such register, that register number
656 plus N is also valid in OUTER (if in range) and is cheap to move
657 into REGNO. Such a class must exist. */
658
659 static enum reg_class
660 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
661 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
662 unsigned int dest_regno ATTRIBUTE_UNUSED)
663 {
664 int best_cost = -1;
665 int rclass;
666 int regno;
667 enum reg_class best_class = NO_REGS;
668 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
669 unsigned int best_size = 0;
670 int cost;
671
672 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
673 {
674 int bad = 0;
675 int good = 0;
676 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
677 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
678 {
679 if (HARD_REGNO_MODE_OK (regno, inner))
680 {
681 good = 1;
682 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
683 && ! HARD_REGNO_MODE_OK (regno + n, outer))
684 bad = 1;
685 }
686 }
687
688 if (bad || !good)
689 continue;
690 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
691
692 if ((reg_class_size[rclass] > best_size
693 && (best_cost < 0 || best_cost >= cost))
694 || best_cost > cost)
695 {
696 best_class = (enum reg_class) rclass;
697 best_size = reg_class_size[rclass];
698 best_cost = register_move_cost (outer, (enum reg_class) rclass,
699 dest_class);
700 }
701 }
702
703 gcc_assert (best_size != 0);
704
705 return best_class;
706 }
707
708 /* We are trying to reload a subreg of something that is not a register.
709 Find the largest class which contains only registers valid in
710 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
711 which we would eventually like to obtain the object. */
712
713 static enum reg_class
714 find_valid_class_1 (enum machine_mode outer ATTRIBUTE_UNUSED,
715 enum machine_mode mode ATTRIBUTE_UNUSED,
716 enum reg_class dest_class ATTRIBUTE_UNUSED)
717 {
718 int best_cost = -1;
719 int rclass;
720 int regno;
721 enum reg_class best_class = NO_REGS;
722 unsigned int best_size = 0;
723 int cost;
724
725 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
726 {
727 int bad = 0;
728 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
729 {
730 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
731 && !HARD_REGNO_MODE_OK (regno, mode))
732 bad = 1;
733 }
734
735 if (bad)
736 continue;
737
738 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
739
740 if ((reg_class_size[rclass] > best_size
741 && (best_cost < 0 || best_cost >= cost))
742 || best_cost > cost)
743 {
744 best_class = (enum reg_class) rclass;
745 best_size = reg_class_size[rclass];
746 best_cost = register_move_cost (outer, (enum reg_class) rclass,
747 dest_class);
748 }
749 }
750
751 gcc_assert (best_size != 0);
752
753 #ifdef LIMIT_RELOAD_CLASS
754 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
755 #endif
756 return best_class;
757 }
758 \f
759 /* Return the number of a previously made reload that can be combined with
760 a new one, or n_reloads if none of the existing reloads can be used.
761 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
762 push_reload, they determine the kind of the new reload that we try to
763 combine. P_IN points to the corresponding value of IN, which can be
764 modified by this function.
765 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
766
767 static int
768 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
769 enum reload_type type, int opnum, int dont_share)
770 {
771 rtx in = *p_in;
772 int i;
773 /* We can't merge two reloads if the output of either one is
774 earlyclobbered. */
775
776 if (earlyclobber_operand_p (out))
777 return n_reloads;
778
779 /* We can use an existing reload if the class is right
780 and at least one of IN and OUT is a match
781 and the other is at worst neutral.
782 (A zero compared against anything is neutral.)
783
784 For targets with small register classes, don't use existing reloads
785 unless they are for the same thing since that can cause us to need
786 more reload registers than we otherwise would. */
787
788 for (i = 0; i < n_reloads; i++)
789 if ((reg_class_subset_p (rclass, rld[i].rclass)
790 || reg_class_subset_p (rld[i].rclass, rclass))
791 /* If the existing reload has a register, it must fit our class. */
792 && (rld[i].reg_rtx == 0
793 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
794 true_regnum (rld[i].reg_rtx)))
795 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
796 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
797 || (out != 0 && MATCHES (rld[i].out, out)
798 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
799 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
800 && (small_register_class_p (rclass)
801 || targetm.small_register_classes_for_mode_p (VOIDmode))
802 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
803 return i;
804
805 /* Reloading a plain reg for input can match a reload to postincrement
806 that reg, since the postincrement's value is the right value.
807 Likewise, it can match a preincrement reload, since we regard
808 the preincrementation as happening before any ref in this insn
809 to that register. */
810 for (i = 0; i < n_reloads; i++)
811 if ((reg_class_subset_p (rclass, rld[i].rclass)
812 || reg_class_subset_p (rld[i].rclass, rclass))
813 /* If the existing reload has a register, it must fit our
814 class. */
815 && (rld[i].reg_rtx == 0
816 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
817 true_regnum (rld[i].reg_rtx)))
818 && out == 0 && rld[i].out == 0 && rld[i].in != 0
819 && ((REG_P (in)
820 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
821 && MATCHES (XEXP (rld[i].in, 0), in))
822 || (REG_P (rld[i].in)
823 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
824 && MATCHES (XEXP (in, 0), rld[i].in)))
825 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
826 && (small_register_class_p (rclass)
827 || targetm.small_register_classes_for_mode_p (VOIDmode))
828 && MERGABLE_RELOADS (type, rld[i].when_needed,
829 opnum, rld[i].opnum))
830 {
831 /* Make sure reload_in ultimately has the increment,
832 not the plain register. */
833 if (REG_P (in))
834 *p_in = rld[i].in;
835 return i;
836 }
837 return n_reloads;
838 }
839
840 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
841 expression. MODE is the mode that X will be used in. OUTPUT is true if
842 the function is invoked for the output part of an enclosing reload. */
843
844 static bool
845 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, bool output)
846 {
847 rtx inner;
848
849 /* Only SUBREGs are problematical. */
850 if (GET_CODE (x) != SUBREG)
851 return false;
852
853 inner = SUBREG_REG (x);
854
855 /* If INNER is a constant or PLUS, then INNER will need reloading. */
856 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
857 return true;
858
859 /* If INNER is not a hard register, then INNER will not need reloading. */
860 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
861 return false;
862
863 /* If INNER is not ok for MODE, then INNER will need reloading. */
864 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
865 return true;
866
867 /* If this is for an output, and the outer part is a word or smaller,
868 INNER is larger than a word and the number of registers in INNER is
869 not the same as the number of words in INNER, then INNER will need
870 reloading (with an in-out reload). */
871 return (output
872 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
873 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
874 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
875 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
876 }
877
878 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
879 requiring an extra reload register. The caller has already found that
880 IN contains some reference to REGNO, so check that we can produce the
881 new value in a single step. E.g. if we have
882 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
883 instruction that adds one to a register, this should succeed.
884 However, if we have something like
885 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
886 needs to be loaded into a register first, we need a separate reload
887 register.
888 Such PLUS reloads are generated by find_reload_address_part.
889 The out-of-range PLUS expressions are usually introduced in the instruction
890 patterns by register elimination and substituting pseudos without a home
891 by their function-invariant equivalences. */
892 static int
893 can_reload_into (rtx in, int regno, enum machine_mode mode)
894 {
895 rtx dst, test_insn;
896 int r = 0;
897 struct recog_data_d save_recog_data;
898
899 /* For matching constraints, we often get notional input reloads where
900 we want to use the original register as the reload register. I.e.
901 technically this is a non-optional input-output reload, but IN is
902 already a valid register, and has been chosen as the reload register.
903 Speed this up, since it trivially works. */
904 if (REG_P (in))
905 return 1;
906
907 /* To test MEMs properly, we'd have to take into account all the reloads
908 that are already scheduled, which can become quite complicated.
909 And since we've already handled address reloads for this MEM, it
910 should always succeed anyway. */
911 if (MEM_P (in))
912 return 1;
913
914 /* If we can make a simple SET insn that does the job, everything should
915 be fine. */
916 dst = gen_rtx_REG (mode, regno);
917 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
918 save_recog_data = recog_data;
919 if (recog_memoized (test_insn) >= 0)
920 {
921 extract_insn (test_insn);
922 r = constrain_operands (1);
923 }
924 recog_data = save_recog_data;
925 return r;
926 }
927
928 /* Record one reload that needs to be performed.
929 IN is an rtx saying where the data are to be found before this instruction.
930 OUT says where they must be stored after the instruction.
931 (IN is zero for data not read, and OUT is zero for data not written.)
932 INLOC and OUTLOC point to the places in the instructions where
933 IN and OUT were found.
934 If IN and OUT are both nonzero, it means the same register must be used
935 to reload both IN and OUT.
936
937 RCLASS is a register class required for the reloaded data.
938 INMODE is the machine mode that the instruction requires
939 for the reg that replaces IN and OUTMODE is likewise for OUT.
940
941 If IN is zero, then OUT's location and mode should be passed as
942 INLOC and INMODE.
943
944 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
945
946 OPTIONAL nonzero means this reload does not need to be performed:
947 it can be discarded if that is more convenient.
948
949 OPNUM and TYPE say what the purpose of this reload is.
950
951 The return value is the reload-number for this reload.
952
953 If both IN and OUT are nonzero, in some rare cases we might
954 want to make two separate reloads. (Actually we never do this now.)
955 Therefore, the reload-number for OUT is stored in
956 output_reloadnum when we return; the return value applies to IN.
957 Usually (presently always), when IN and OUT are nonzero,
958 the two reload-numbers are equal, but the caller should be careful to
959 distinguish them. */
960
961 int
962 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
963 enum reg_class rclass, enum machine_mode inmode,
964 enum machine_mode outmode, int strict_low, int optional,
965 int opnum, enum reload_type type)
966 {
967 int i;
968 int dont_share = 0;
969 int dont_remove_subreg = 0;
970 #ifdef LIMIT_RELOAD_CLASS
971 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
972 #endif
973 int secondary_in_reload = -1, secondary_out_reload = -1;
974 enum insn_code secondary_in_icode = CODE_FOR_nothing;
975 enum insn_code secondary_out_icode = CODE_FOR_nothing;
976 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
977 subreg_in_class = NO_REGS;
978
979 /* INMODE and/or OUTMODE could be VOIDmode if no mode
980 has been specified for the operand. In that case,
981 use the operand's mode as the mode to reload. */
982 if (inmode == VOIDmode && in != 0)
983 inmode = GET_MODE (in);
984 if (outmode == VOIDmode && out != 0)
985 outmode = GET_MODE (out);
986
987 /* If find_reloads and friends until now missed to replace a pseudo
988 with a constant of reg_equiv_constant something went wrong
989 beforehand.
990 Note that it can't simply be done here if we missed it earlier
991 since the constant might need to be pushed into the literal pool
992 and the resulting memref would probably need further
993 reloading. */
994 if (in != 0 && REG_P (in))
995 {
996 int regno = REGNO (in);
997
998 gcc_assert (regno < FIRST_PSEUDO_REGISTER
999 || reg_renumber[regno] >= 0
1000 || reg_equiv_constant (regno) == NULL_RTX);
1001 }
1002
1003 /* reg_equiv_constant only contains constants which are obviously
1004 not appropriate as destination. So if we would need to replace
1005 the destination pseudo with a constant we are in real
1006 trouble. */
1007 if (out != 0 && REG_P (out))
1008 {
1009 int regno = REGNO (out);
1010
1011 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1012 || reg_renumber[regno] >= 0
1013 || reg_equiv_constant (regno) == NULL_RTX);
1014 }
1015
1016 /* If we have a read-write operand with an address side-effect,
1017 change either IN or OUT so the side-effect happens only once. */
1018 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1019 switch (GET_CODE (XEXP (in, 0)))
1020 {
1021 case POST_INC: case POST_DEC: case POST_MODIFY:
1022 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1023 break;
1024
1025 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1026 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1027 break;
1028
1029 default:
1030 break;
1031 }
1032
1033 /* If we are reloading a (SUBREG constant ...), really reload just the
1034 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1035 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1036 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1037 register is a pseudo, also reload the inside expression.
1038 For machines that extend byte loads, do this for any SUBREG of a pseudo
1039 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1040 M2 is an integral mode that gets extended when loaded.
1041 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1042 where either M1 is not valid for R or M2 is wider than a word but we
1043 only need one register to store an M2-sized quantity in R.
1044 (However, if OUT is nonzero, we need to reload the reg *and*
1045 the subreg, so do nothing here, and let following statement handle it.)
1046
1047 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1048 we can't handle it here because CONST_INT does not indicate a mode.
1049
1050 Similarly, we must reload the inside expression if we have a
1051 STRICT_LOW_PART (presumably, in == out in this case).
1052
1053 Also reload the inner expression if it does not require a secondary
1054 reload but the SUBREG does.
1055
1056 Finally, reload the inner expression if it is a register that is in
1057 the class whose registers cannot be referenced in a different size
1058 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1059 cannot reload just the inside since we might end up with the wrong
1060 register class. But if it is inside a STRICT_LOW_PART, we have
1061 no choice, so we hope we do get the right register class there. */
1062
1063 if (in != 0 && GET_CODE (in) == SUBREG
1064 && (subreg_lowpart_p (in) || strict_low)
1065 #ifdef CANNOT_CHANGE_MODE_CLASS
1066 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1067 #endif
1068 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1069 && (CONSTANT_P (SUBREG_REG (in))
1070 || GET_CODE (SUBREG_REG (in)) == PLUS
1071 || strict_low
1072 || (((REG_P (SUBREG_REG (in))
1073 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1074 || MEM_P (SUBREG_REG (in)))
1075 && ((GET_MODE_PRECISION (inmode)
1076 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1077 #ifdef LOAD_EXTEND_OP
1078 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1079 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1080 <= UNITS_PER_WORD)
1081 && (GET_MODE_PRECISION (inmode)
1082 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1083 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1084 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1085 #endif
1086 #ifdef WORD_REGISTER_OPERATIONS
1087 || ((GET_MODE_PRECISION (inmode)
1088 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1089 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1090 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1091 / UNITS_PER_WORD)))
1092 #endif
1093 ))
1094 || (REG_P (SUBREG_REG (in))
1095 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1096 /* The case where out is nonzero
1097 is handled differently in the following statement. */
1098 && (out == 0 || subreg_lowpart_p (in))
1099 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1100 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1101 > UNITS_PER_WORD)
1102 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1103 / UNITS_PER_WORD)
1104 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1105 [GET_MODE (SUBREG_REG (in))]))
1106 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1107 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1108 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1109 SUBREG_REG (in))
1110 == NO_REGS))
1111 #ifdef CANNOT_CHANGE_MODE_CLASS
1112 || (REG_P (SUBREG_REG (in))
1113 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1114 && REG_CANNOT_CHANGE_MODE_P
1115 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1116 #endif
1117 ))
1118 {
1119 #ifdef LIMIT_RELOAD_CLASS
1120 in_subreg_loc = inloc;
1121 #endif
1122 inloc = &SUBREG_REG (in);
1123 in = *inloc;
1124 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1125 if (MEM_P (in))
1126 /* This is supposed to happen only for paradoxical subregs made by
1127 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1128 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1129 #endif
1130 inmode = GET_MODE (in);
1131 }
1132
1133 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1134 where M1 is not valid for R if it was not handled by the code above.
1135
1136 Similar issue for (SUBREG constant ...) if it was not handled by the
1137 code above. This can happen if SUBREG_BYTE != 0.
1138
1139 However, we must reload the inner reg *as well as* the subreg in
1140 that case. */
1141
1142 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1143 {
1144 if (REG_P (SUBREG_REG (in)))
1145 subreg_in_class
1146 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1147 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1148 GET_MODE (SUBREG_REG (in)),
1149 SUBREG_BYTE (in),
1150 GET_MODE (in)),
1151 REGNO (SUBREG_REG (in)));
1152 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1153 subreg_in_class = find_valid_class_1 (inmode,
1154 GET_MODE (SUBREG_REG (in)),
1155 rclass);
1156
1157 /* This relies on the fact that emit_reload_insns outputs the
1158 instructions for input reloads of type RELOAD_OTHER in the same
1159 order as the reloads. Thus if the outer reload is also of type
1160 RELOAD_OTHER, we are guaranteed that this inner reload will be
1161 output before the outer reload. */
1162 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1163 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1164 dont_remove_subreg = 1;
1165 }
1166
1167 /* Similarly for paradoxical and problematical SUBREGs on the output.
1168 Note that there is no reason we need worry about the previous value
1169 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1170 entitled to clobber it all (except in the case of a word mode subreg
1171 or of a STRICT_LOW_PART, in that latter case the constraint should
1172 label it input-output.) */
1173 if (out != 0 && GET_CODE (out) == SUBREG
1174 && (subreg_lowpart_p (out) || strict_low)
1175 #ifdef CANNOT_CHANGE_MODE_CLASS
1176 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1177 #endif
1178 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1179 && (CONSTANT_P (SUBREG_REG (out))
1180 || strict_low
1181 || (((REG_P (SUBREG_REG (out))
1182 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1183 || MEM_P (SUBREG_REG (out)))
1184 && ((GET_MODE_PRECISION (outmode)
1185 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1186 #ifdef WORD_REGISTER_OPERATIONS
1187 || ((GET_MODE_PRECISION (outmode)
1188 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1189 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1190 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1191 / UNITS_PER_WORD)))
1192 #endif
1193 ))
1194 || (REG_P (SUBREG_REG (out))
1195 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1196 /* The case of a word mode subreg
1197 is handled differently in the following statement. */
1198 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1199 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1200 > UNITS_PER_WORD))
1201 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1202 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1203 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1204 SUBREG_REG (out))
1205 == NO_REGS))
1206 #ifdef CANNOT_CHANGE_MODE_CLASS
1207 || (REG_P (SUBREG_REG (out))
1208 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1209 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1210 GET_MODE (SUBREG_REG (out)),
1211 outmode))
1212 #endif
1213 ))
1214 {
1215 #ifdef LIMIT_RELOAD_CLASS
1216 out_subreg_loc = outloc;
1217 #endif
1218 outloc = &SUBREG_REG (out);
1219 out = *outloc;
1220 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1221 gcc_assert (!MEM_P (out)
1222 || GET_MODE_SIZE (GET_MODE (out))
1223 <= GET_MODE_SIZE (outmode));
1224 #endif
1225 outmode = GET_MODE (out);
1226 }
1227
1228 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1229 where either M1 is not valid for R or M2 is wider than a word but we
1230 only need one register to store an M2-sized quantity in R.
1231
1232 However, we must reload the inner reg *as well as* the subreg in
1233 that case and the inner reg is an in-out reload. */
1234
1235 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1236 {
1237 enum reg_class in_out_class
1238 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1239 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1240 GET_MODE (SUBREG_REG (out)),
1241 SUBREG_BYTE (out),
1242 GET_MODE (out)),
1243 REGNO (SUBREG_REG (out)));
1244
1245 /* This relies on the fact that emit_reload_insns outputs the
1246 instructions for output reloads of type RELOAD_OTHER in reverse
1247 order of the reloads. Thus if the outer reload is also of type
1248 RELOAD_OTHER, we are guaranteed that this inner reload will be
1249 output after the outer reload. */
1250 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1251 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1252 0, 0, opnum, RELOAD_OTHER);
1253 dont_remove_subreg = 1;
1254 }
1255
1256 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1257 if (in != 0 && out != 0 && MEM_P (out)
1258 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1259 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1260 dont_share = 1;
1261
1262 /* If IN is a SUBREG of a hard register, make a new REG. This
1263 simplifies some of the cases below. */
1264
1265 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1266 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1267 && ! dont_remove_subreg)
1268 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1269
1270 /* Similarly for OUT. */
1271 if (out != 0 && GET_CODE (out) == SUBREG
1272 && REG_P (SUBREG_REG (out))
1273 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1274 && ! dont_remove_subreg)
1275 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1276
1277 /* Narrow down the class of register wanted if that is
1278 desirable on this machine for efficiency. */
1279 {
1280 reg_class_t preferred_class = rclass;
1281
1282 if (in != 0)
1283 preferred_class = targetm.preferred_reload_class (in, rclass);
1284
1285 /* Output reloads may need analogous treatment, different in detail. */
1286 if (out != 0)
1287 preferred_class
1288 = targetm.preferred_output_reload_class (out, preferred_class);
1289
1290 /* Discard what the target said if we cannot do it. */
1291 if (preferred_class != NO_REGS
1292 || (optional && type == RELOAD_FOR_OUTPUT))
1293 rclass = (enum reg_class) preferred_class;
1294 }
1295
1296 /* Make sure we use a class that can handle the actual pseudo
1297 inside any subreg. For example, on the 386, QImode regs
1298 can appear within SImode subregs. Although GENERAL_REGS
1299 can handle SImode, QImode needs a smaller class. */
1300 #ifdef LIMIT_RELOAD_CLASS
1301 if (in_subreg_loc)
1302 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1303 else if (in != 0 && GET_CODE (in) == SUBREG)
1304 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1305
1306 if (out_subreg_loc)
1307 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1308 if (out != 0 && GET_CODE (out) == SUBREG)
1309 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1310 #endif
1311
1312 /* Verify that this class is at least possible for the mode that
1313 is specified. */
1314 if (this_insn_is_asm)
1315 {
1316 enum machine_mode mode;
1317 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1318 mode = inmode;
1319 else
1320 mode = outmode;
1321 if (mode == VOIDmode)
1322 {
1323 error_for_asm (this_insn, "cannot reload integer constant "
1324 "operand in %<asm%>");
1325 mode = word_mode;
1326 if (in != 0)
1327 inmode = word_mode;
1328 if (out != 0)
1329 outmode = word_mode;
1330 }
1331 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1332 if (HARD_REGNO_MODE_OK (i, mode)
1333 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1334 break;
1335 if (i == FIRST_PSEUDO_REGISTER)
1336 {
1337 error_for_asm (this_insn, "impossible register constraint "
1338 "in %<asm%>");
1339 /* Avoid further trouble with this insn. */
1340 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1341 /* We used to continue here setting class to ALL_REGS, but it triggers
1342 sanity check on i386 for:
1343 void foo(long double d)
1344 {
1345 asm("" :: "a" (d));
1346 }
1347 Returning zero here ought to be safe as we take care in
1348 find_reloads to not process the reloads when instruction was
1349 replaced by USE. */
1350
1351 return 0;
1352 }
1353 }
1354
1355 /* Optional output reloads are always OK even if we have no register class,
1356 since the function of these reloads is only to have spill_reg_store etc.
1357 set, so that the storing insn can be deleted later. */
1358 gcc_assert (rclass != NO_REGS
1359 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1360
1361 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1362
1363 if (i == n_reloads)
1364 {
1365 /* See if we need a secondary reload register to move between CLASS
1366 and IN or CLASS and OUT. Get the icode and push any required reloads
1367 needed for each of them if so. */
1368
1369 if (in != 0)
1370 secondary_in_reload
1371 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1372 &secondary_in_icode, NULL);
1373 if (out != 0 && GET_CODE (out) != SCRATCH)
1374 secondary_out_reload
1375 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1376 type, &secondary_out_icode, NULL);
1377
1378 /* We found no existing reload suitable for re-use.
1379 So add an additional reload. */
1380
1381 #ifdef SECONDARY_MEMORY_NEEDED
1382 if (subreg_in_class == NO_REGS
1383 && in != 0
1384 && (REG_P (in)
1385 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1386 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1387 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1388 /* If a memory location is needed for the copy, make one. */
1389 if (subreg_in_class != NO_REGS
1390 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1391 get_secondary_mem (in, inmode, opnum, type);
1392 #endif
1393
1394 i = n_reloads;
1395 rld[i].in = in;
1396 rld[i].out = out;
1397 rld[i].rclass = rclass;
1398 rld[i].inmode = inmode;
1399 rld[i].outmode = outmode;
1400 rld[i].reg_rtx = 0;
1401 rld[i].optional = optional;
1402 rld[i].inc = 0;
1403 rld[i].nocombine = 0;
1404 rld[i].in_reg = inloc ? *inloc : 0;
1405 rld[i].out_reg = outloc ? *outloc : 0;
1406 rld[i].opnum = opnum;
1407 rld[i].when_needed = type;
1408 rld[i].secondary_in_reload = secondary_in_reload;
1409 rld[i].secondary_out_reload = secondary_out_reload;
1410 rld[i].secondary_in_icode = secondary_in_icode;
1411 rld[i].secondary_out_icode = secondary_out_icode;
1412 rld[i].secondary_p = 0;
1413
1414 n_reloads++;
1415
1416 #ifdef SECONDARY_MEMORY_NEEDED
1417 if (out != 0
1418 && (REG_P (out)
1419 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1420 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1421 && SECONDARY_MEMORY_NEEDED (rclass,
1422 REGNO_REG_CLASS (reg_or_subregno (out)),
1423 outmode))
1424 get_secondary_mem (out, outmode, opnum, type);
1425 #endif
1426 }
1427 else
1428 {
1429 /* We are reusing an existing reload,
1430 but we may have additional information for it.
1431 For example, we may now have both IN and OUT
1432 while the old one may have just one of them. */
1433
1434 /* The modes can be different. If they are, we want to reload in
1435 the larger mode, so that the value is valid for both modes. */
1436 if (inmode != VOIDmode
1437 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1438 rld[i].inmode = inmode;
1439 if (outmode != VOIDmode
1440 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1441 rld[i].outmode = outmode;
1442 if (in != 0)
1443 {
1444 rtx in_reg = inloc ? *inloc : 0;
1445 /* If we merge reloads for two distinct rtl expressions that
1446 are identical in content, there might be duplicate address
1447 reloads. Remove the extra set now, so that if we later find
1448 that we can inherit this reload, we can get rid of the
1449 address reloads altogether.
1450
1451 Do not do this if both reloads are optional since the result
1452 would be an optional reload which could potentially leave
1453 unresolved address replacements.
1454
1455 It is not sufficient to call transfer_replacements since
1456 choose_reload_regs will remove the replacements for address
1457 reloads of inherited reloads which results in the same
1458 problem. */
1459 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1460 && ! (rld[i].optional && optional))
1461 {
1462 /* We must keep the address reload with the lower operand
1463 number alive. */
1464 if (opnum > rld[i].opnum)
1465 {
1466 remove_address_replacements (in);
1467 in = rld[i].in;
1468 in_reg = rld[i].in_reg;
1469 }
1470 else
1471 remove_address_replacements (rld[i].in);
1472 }
1473 /* When emitting reloads we don't necessarily look at the in-
1474 and outmode, but also directly at the operands (in and out).
1475 So we can't simply overwrite them with whatever we have found
1476 for this (to-be-merged) reload, we have to "merge" that too.
1477 Reusing another reload already verified that we deal with the
1478 same operands, just possibly in different modes. So we
1479 overwrite the operands only when the new mode is larger.
1480 See also PR33613. */
1481 if (!rld[i].in
1482 || GET_MODE_SIZE (GET_MODE (in))
1483 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1484 rld[i].in = in;
1485 if (!rld[i].in_reg
1486 || (in_reg
1487 && GET_MODE_SIZE (GET_MODE (in_reg))
1488 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1489 rld[i].in_reg = in_reg;
1490 }
1491 if (out != 0)
1492 {
1493 if (!rld[i].out
1494 || (out
1495 && GET_MODE_SIZE (GET_MODE (out))
1496 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1497 rld[i].out = out;
1498 if (outloc
1499 && (!rld[i].out_reg
1500 || GET_MODE_SIZE (GET_MODE (*outloc))
1501 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1502 rld[i].out_reg = *outloc;
1503 }
1504 if (reg_class_subset_p (rclass, rld[i].rclass))
1505 rld[i].rclass = rclass;
1506 rld[i].optional &= optional;
1507 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1508 opnum, rld[i].opnum))
1509 rld[i].when_needed = RELOAD_OTHER;
1510 rld[i].opnum = MIN (rld[i].opnum, opnum);
1511 }
1512
1513 /* If the ostensible rtx being reloaded differs from the rtx found
1514 in the location to substitute, this reload is not safe to combine
1515 because we cannot reliably tell whether it appears in the insn. */
1516
1517 if (in != 0 && in != *inloc)
1518 rld[i].nocombine = 1;
1519
1520 #if 0
1521 /* This was replaced by changes in find_reloads_address_1 and the new
1522 function inc_for_reload, which go with a new meaning of reload_inc. */
1523
1524 /* If this is an IN/OUT reload in an insn that sets the CC,
1525 it must be for an autoincrement. It doesn't work to store
1526 the incremented value after the insn because that would clobber the CC.
1527 So we must do the increment of the value reloaded from,
1528 increment it, store it back, then decrement again. */
1529 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1530 {
1531 out = 0;
1532 rld[i].out = 0;
1533 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1534 /* If we did not find a nonzero amount-to-increment-by,
1535 that contradicts the belief that IN is being incremented
1536 in an address in this insn. */
1537 gcc_assert (rld[i].inc != 0);
1538 }
1539 #endif
1540
1541 /* If we will replace IN and OUT with the reload-reg,
1542 record where they are located so that substitution need
1543 not do a tree walk. */
1544
1545 if (replace_reloads)
1546 {
1547 if (inloc != 0)
1548 {
1549 struct replacement *r = &replacements[n_replacements++];
1550 r->what = i;
1551 r->where = inloc;
1552 r->mode = inmode;
1553 }
1554 if (outloc != 0 && outloc != inloc)
1555 {
1556 struct replacement *r = &replacements[n_replacements++];
1557 r->what = i;
1558 r->where = outloc;
1559 r->mode = outmode;
1560 }
1561 }
1562
1563 /* If this reload is just being introduced and it has both
1564 an incoming quantity and an outgoing quantity that are
1565 supposed to be made to match, see if either one of the two
1566 can serve as the place to reload into.
1567
1568 If one of them is acceptable, set rld[i].reg_rtx
1569 to that one. */
1570
1571 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1572 {
1573 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1574 inmode, outmode,
1575 rld[i].rclass, i,
1576 earlyclobber_operand_p (out));
1577
1578 /* If the outgoing register already contains the same value
1579 as the incoming one, we can dispense with loading it.
1580 The easiest way to tell the caller that is to give a phony
1581 value for the incoming operand (same as outgoing one). */
1582 if (rld[i].reg_rtx == out
1583 && (REG_P (in) || CONSTANT_P (in))
1584 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1585 static_reload_reg_p, i, inmode))
1586 rld[i].in = out;
1587 }
1588
1589 /* If this is an input reload and the operand contains a register that
1590 dies in this insn and is used nowhere else, see if it is the right class
1591 to be used for this reload. Use it if so. (This occurs most commonly
1592 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1593 this if it is also an output reload that mentions the register unless
1594 the output is a SUBREG that clobbers an entire register.
1595
1596 Note that the operand might be one of the spill regs, if it is a
1597 pseudo reg and we are in a block where spilling has not taken place.
1598 But if there is no spilling in this block, that is OK.
1599 An explicitly used hard reg cannot be a spill reg. */
1600
1601 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1602 {
1603 rtx note;
1604 int regno;
1605 enum machine_mode rel_mode = inmode;
1606
1607 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1608 rel_mode = outmode;
1609
1610 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1611 if (REG_NOTE_KIND (note) == REG_DEAD
1612 && REG_P (XEXP (note, 0))
1613 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1614 && reg_mentioned_p (XEXP (note, 0), in)
1615 /* Check that a former pseudo is valid; see find_dummy_reload. */
1616 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1617 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1618 ORIGINAL_REGNO (XEXP (note, 0)))
1619 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1620 && ! refers_to_regno_for_reload_p (regno,
1621 end_hard_regno (rel_mode,
1622 regno),
1623 PATTERN (this_insn), inloc)
1624 /* If this is also an output reload, IN cannot be used as
1625 the reload register if it is set in this insn unless IN
1626 is also OUT. */
1627 && (out == 0 || in == out
1628 || ! hard_reg_set_here_p (regno,
1629 end_hard_regno (rel_mode, regno),
1630 PATTERN (this_insn)))
1631 /* ??? Why is this code so different from the previous?
1632 Is there any simple coherent way to describe the two together?
1633 What's going on here. */
1634 && (in != out
1635 || (GET_CODE (in) == SUBREG
1636 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1637 / UNITS_PER_WORD)
1638 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1639 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1640 /* Make sure the operand fits in the reg that dies. */
1641 && (GET_MODE_SIZE (rel_mode)
1642 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1643 && HARD_REGNO_MODE_OK (regno, inmode)
1644 && HARD_REGNO_MODE_OK (regno, outmode))
1645 {
1646 unsigned int offs;
1647 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1648 hard_regno_nregs[regno][outmode]);
1649
1650 for (offs = 0; offs < nregs; offs++)
1651 if (fixed_regs[regno + offs]
1652 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1653 regno + offs))
1654 break;
1655
1656 if (offs == nregs
1657 && (! (refers_to_regno_for_reload_p
1658 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1659 || can_reload_into (in, regno, inmode)))
1660 {
1661 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1662 break;
1663 }
1664 }
1665 }
1666
1667 if (out)
1668 output_reloadnum = i;
1669
1670 return i;
1671 }
1672
1673 /* Record an additional place we must replace a value
1674 for which we have already recorded a reload.
1675 RELOADNUM is the value returned by push_reload
1676 when the reload was recorded.
1677 This is used in insn patterns that use match_dup. */
1678
1679 static void
1680 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1681 {
1682 if (replace_reloads)
1683 {
1684 struct replacement *r = &replacements[n_replacements++];
1685 r->what = reloadnum;
1686 r->where = loc;
1687 r->mode = mode;
1688 }
1689 }
1690
1691 /* Duplicate any replacement we have recorded to apply at
1692 location ORIG_LOC to also be performed at DUP_LOC.
1693 This is used in insn patterns that use match_dup. */
1694
1695 static void
1696 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1697 {
1698 int i, n = n_replacements;
1699
1700 for (i = 0; i < n; i++)
1701 {
1702 struct replacement *r = &replacements[i];
1703 if (r->where == orig_loc)
1704 push_replacement (dup_loc, r->what, r->mode);
1705 }
1706 }
1707 \f
1708 /* Transfer all replacements that used to be in reload FROM to be in
1709 reload TO. */
1710
1711 void
1712 transfer_replacements (int to, int from)
1713 {
1714 int i;
1715
1716 for (i = 0; i < n_replacements; i++)
1717 if (replacements[i].what == from)
1718 replacements[i].what = to;
1719 }
1720 \f
1721 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1722 or a subpart of it. If we have any replacements registered for IN_RTX,
1723 cancel the reloads that were supposed to load them.
1724 Return nonzero if we canceled any reloads. */
1725 int
1726 remove_address_replacements (rtx in_rtx)
1727 {
1728 int i, j;
1729 char reload_flags[MAX_RELOADS];
1730 int something_changed = 0;
1731
1732 memset (reload_flags, 0, sizeof reload_flags);
1733 for (i = 0, j = 0; i < n_replacements; i++)
1734 {
1735 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1736 reload_flags[replacements[i].what] |= 1;
1737 else
1738 {
1739 replacements[j++] = replacements[i];
1740 reload_flags[replacements[i].what] |= 2;
1741 }
1742 }
1743 /* Note that the following store must be done before the recursive calls. */
1744 n_replacements = j;
1745
1746 for (i = n_reloads - 1; i >= 0; i--)
1747 {
1748 if (reload_flags[i] == 1)
1749 {
1750 deallocate_reload_reg (i);
1751 remove_address_replacements (rld[i].in);
1752 rld[i].in = 0;
1753 something_changed = 1;
1754 }
1755 }
1756 return something_changed;
1757 }
1758 \f
1759 /* If there is only one output reload, and it is not for an earlyclobber
1760 operand, try to combine it with a (logically unrelated) input reload
1761 to reduce the number of reload registers needed.
1762
1763 This is safe if the input reload does not appear in
1764 the value being output-reloaded, because this implies
1765 it is not needed any more once the original insn completes.
1766
1767 If that doesn't work, see we can use any of the registers that
1768 die in this insn as a reload register. We can if it is of the right
1769 class and does not appear in the value being output-reloaded. */
1770
1771 static void
1772 combine_reloads (void)
1773 {
1774 int i, regno;
1775 int output_reload = -1;
1776 int secondary_out = -1;
1777 rtx note;
1778
1779 /* Find the output reload; return unless there is exactly one
1780 and that one is mandatory. */
1781
1782 for (i = 0; i < n_reloads; i++)
1783 if (rld[i].out != 0)
1784 {
1785 if (output_reload >= 0)
1786 return;
1787 output_reload = i;
1788 }
1789
1790 if (output_reload < 0 || rld[output_reload].optional)
1791 return;
1792
1793 /* An input-output reload isn't combinable. */
1794
1795 if (rld[output_reload].in != 0)
1796 return;
1797
1798 /* If this reload is for an earlyclobber operand, we can't do anything. */
1799 if (earlyclobber_operand_p (rld[output_reload].out))
1800 return;
1801
1802 /* If there is a reload for part of the address of this operand, we would
1803 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1804 its life to the point where doing this combine would not lower the
1805 number of spill registers needed. */
1806 for (i = 0; i < n_reloads; i++)
1807 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1808 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1809 && rld[i].opnum == rld[output_reload].opnum)
1810 return;
1811
1812 /* Check each input reload; can we combine it? */
1813
1814 for (i = 0; i < n_reloads; i++)
1815 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1816 /* Life span of this reload must not extend past main insn. */
1817 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1818 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1819 && rld[i].when_needed != RELOAD_OTHER
1820 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1821 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1822 [(int) rld[output_reload].outmode])
1823 && rld[i].inc == 0
1824 && rld[i].reg_rtx == 0
1825 #ifdef SECONDARY_MEMORY_NEEDED
1826 /* Don't combine two reloads with different secondary
1827 memory locations. */
1828 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1829 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1830 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1831 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1832 #endif
1833 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1834 ? (rld[i].rclass == rld[output_reload].rclass)
1835 : (reg_class_subset_p (rld[i].rclass,
1836 rld[output_reload].rclass)
1837 || reg_class_subset_p (rld[output_reload].rclass,
1838 rld[i].rclass)))
1839 && (MATCHES (rld[i].in, rld[output_reload].out)
1840 /* Args reversed because the first arg seems to be
1841 the one that we imagine being modified
1842 while the second is the one that might be affected. */
1843 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1844 rld[i].in)
1845 /* However, if the input is a register that appears inside
1846 the output, then we also can't share.
1847 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1848 If the same reload reg is used for both reg 69 and the
1849 result to be stored in memory, then that result
1850 will clobber the address of the memory ref. */
1851 && ! (REG_P (rld[i].in)
1852 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1853 rld[output_reload].out))))
1854 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1855 rld[i].when_needed != RELOAD_FOR_INPUT)
1856 && (reg_class_size[(int) rld[i].rclass]
1857 || targetm.small_register_classes_for_mode_p (VOIDmode))
1858 /* We will allow making things slightly worse by combining an
1859 input and an output, but no worse than that. */
1860 && (rld[i].when_needed == RELOAD_FOR_INPUT
1861 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1862 {
1863 int j;
1864
1865 /* We have found a reload to combine with! */
1866 rld[i].out = rld[output_reload].out;
1867 rld[i].out_reg = rld[output_reload].out_reg;
1868 rld[i].outmode = rld[output_reload].outmode;
1869 /* Mark the old output reload as inoperative. */
1870 rld[output_reload].out = 0;
1871 /* The combined reload is needed for the entire insn. */
1872 rld[i].when_needed = RELOAD_OTHER;
1873 /* If the output reload had a secondary reload, copy it. */
1874 if (rld[output_reload].secondary_out_reload != -1)
1875 {
1876 rld[i].secondary_out_reload
1877 = rld[output_reload].secondary_out_reload;
1878 rld[i].secondary_out_icode
1879 = rld[output_reload].secondary_out_icode;
1880 }
1881
1882 #ifdef SECONDARY_MEMORY_NEEDED
1883 /* Copy any secondary MEM. */
1884 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1885 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1886 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1887 #endif
1888 /* If required, minimize the register class. */
1889 if (reg_class_subset_p (rld[output_reload].rclass,
1890 rld[i].rclass))
1891 rld[i].rclass = rld[output_reload].rclass;
1892
1893 /* Transfer all replacements from the old reload to the combined. */
1894 for (j = 0; j < n_replacements; j++)
1895 if (replacements[j].what == output_reload)
1896 replacements[j].what = i;
1897
1898 return;
1899 }
1900
1901 /* If this insn has only one operand that is modified or written (assumed
1902 to be the first), it must be the one corresponding to this reload. It
1903 is safe to use anything that dies in this insn for that output provided
1904 that it does not occur in the output (we already know it isn't an
1905 earlyclobber. If this is an asm insn, give up. */
1906
1907 if (INSN_CODE (this_insn) == -1)
1908 return;
1909
1910 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1911 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1912 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1913 return;
1914
1915 /* See if some hard register that dies in this insn and is not used in
1916 the output is the right class. Only works if the register we pick
1917 up can fully hold our output reload. */
1918 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1919 if (REG_NOTE_KIND (note) == REG_DEAD
1920 && REG_P (XEXP (note, 0))
1921 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1922 rld[output_reload].out)
1923 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1924 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1925 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1926 regno)
1927 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1928 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1929 /* Ensure that a secondary or tertiary reload for this output
1930 won't want this register. */
1931 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1932 || (!(TEST_HARD_REG_BIT
1933 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1934 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1935 || !(TEST_HARD_REG_BIT
1936 (reg_class_contents[(int) rld[secondary_out].rclass],
1937 regno)))))
1938 && !fixed_regs[regno]
1939 /* Check that a former pseudo is valid; see find_dummy_reload. */
1940 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1941 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1942 ORIGINAL_REGNO (XEXP (note, 0)))
1943 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1944 {
1945 rld[output_reload].reg_rtx
1946 = gen_rtx_REG (rld[output_reload].outmode, regno);
1947 return;
1948 }
1949 }
1950 \f
1951 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1952 See if one of IN and OUT is a register that may be used;
1953 this is desirable since a spill-register won't be needed.
1954 If so, return the register rtx that proves acceptable.
1955
1956 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1957 RCLASS is the register class required for the reload.
1958
1959 If FOR_REAL is >= 0, it is the number of the reload,
1960 and in some cases when it can be discovered that OUT doesn't need
1961 to be computed, clear out rld[FOR_REAL].out.
1962
1963 If FOR_REAL is -1, this should not be done, because this call
1964 is just to see if a register can be found, not to find and install it.
1965
1966 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1967 puts an additional constraint on being able to use IN for OUT since
1968 IN must not appear elsewhere in the insn (it is assumed that IN itself
1969 is safe from the earlyclobber). */
1970
1971 static rtx
1972 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1973 enum machine_mode inmode, enum machine_mode outmode,
1974 reg_class_t rclass, int for_real, int earlyclobber)
1975 {
1976 rtx in = real_in;
1977 rtx out = real_out;
1978 int in_offset = 0;
1979 int out_offset = 0;
1980 rtx value = 0;
1981
1982 /* If operands exceed a word, we can't use either of them
1983 unless they have the same size. */
1984 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1985 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1986 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1987 return 0;
1988
1989 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1990 respectively refers to a hard register. */
1991
1992 /* Find the inside of any subregs. */
1993 while (GET_CODE (out) == SUBREG)
1994 {
1995 if (REG_P (SUBREG_REG (out))
1996 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1997 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1998 GET_MODE (SUBREG_REG (out)),
1999 SUBREG_BYTE (out),
2000 GET_MODE (out));
2001 out = SUBREG_REG (out);
2002 }
2003 while (GET_CODE (in) == SUBREG)
2004 {
2005 if (REG_P (SUBREG_REG (in))
2006 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2007 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2008 GET_MODE (SUBREG_REG (in)),
2009 SUBREG_BYTE (in),
2010 GET_MODE (in));
2011 in = SUBREG_REG (in);
2012 }
2013
2014 /* Narrow down the reg class, the same way push_reload will;
2015 otherwise we might find a dummy now, but push_reload won't. */
2016 {
2017 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2018 if (preferred_class != NO_REGS)
2019 rclass = (enum reg_class) preferred_class;
2020 }
2021
2022 /* See if OUT will do. */
2023 if (REG_P (out)
2024 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2025 {
2026 unsigned int regno = REGNO (out) + out_offset;
2027 unsigned int nwords = hard_regno_nregs[regno][outmode];
2028 rtx saved_rtx;
2029
2030 /* When we consider whether the insn uses OUT,
2031 ignore references within IN. They don't prevent us
2032 from copying IN into OUT, because those refs would
2033 move into the insn that reloads IN.
2034
2035 However, we only ignore IN in its role as this reload.
2036 If the insn uses IN elsewhere and it contains OUT,
2037 that counts. We can't be sure it's the "same" operand
2038 so it might not go through this reload.
2039
2040 We also need to avoid using OUT if it, or part of it, is a
2041 fixed register. Modifying such registers, even transiently,
2042 may have undefined effects on the machine, such as modifying
2043 the stack pointer. */
2044 saved_rtx = *inloc;
2045 *inloc = const0_rtx;
2046
2047 if (regno < FIRST_PSEUDO_REGISTER
2048 && HARD_REGNO_MODE_OK (regno, outmode)
2049 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2050 PATTERN (this_insn), outloc))
2051 {
2052 unsigned int i;
2053
2054 for (i = 0; i < nwords; i++)
2055 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2056 regno + i)
2057 || fixed_regs[regno + i])
2058 break;
2059
2060 if (i == nwords)
2061 {
2062 if (REG_P (real_out))
2063 value = real_out;
2064 else
2065 value = gen_rtx_REG (outmode, regno);
2066 }
2067 }
2068
2069 *inloc = saved_rtx;
2070 }
2071
2072 /* Consider using IN if OUT was not acceptable
2073 or if OUT dies in this insn (like the quotient in a divmod insn).
2074 We can't use IN unless it is dies in this insn,
2075 which means we must know accurately which hard regs are live.
2076 Also, the result can't go in IN if IN is used within OUT,
2077 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2078 if (hard_regs_live_known
2079 && REG_P (in)
2080 && REGNO (in) < FIRST_PSEUDO_REGISTER
2081 && (value == 0
2082 || find_reg_note (this_insn, REG_UNUSED, real_out))
2083 && find_reg_note (this_insn, REG_DEAD, real_in)
2084 && !fixed_regs[REGNO (in)]
2085 && HARD_REGNO_MODE_OK (REGNO (in),
2086 /* The only case where out and real_out might
2087 have different modes is where real_out
2088 is a subreg, and in that case, out
2089 has a real mode. */
2090 (GET_MODE (out) != VOIDmode
2091 ? GET_MODE (out) : outmode))
2092 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2093 /* However only do this if we can be sure that this input
2094 operand doesn't correspond with an uninitialized pseudo.
2095 global can assign some hardreg to it that is the same as
2096 the one assigned to a different, also live pseudo (as it
2097 can ignore the conflict). We must never introduce writes
2098 to such hardregs, as they would clobber the other live
2099 pseudo. See PR 20973. */
2100 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2101 ORIGINAL_REGNO (in))
2102 /* Similarly, only do this if we can be sure that the death
2103 note is still valid. global can assign some hardreg to
2104 the pseudo referenced in the note and simultaneously a
2105 subword of this hardreg to a different, also live pseudo,
2106 because only another subword of the hardreg is actually
2107 used in the insn. This cannot happen if the pseudo has
2108 been assigned exactly one hardreg. See PR 33732. */
2109 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2110 {
2111 unsigned int regno = REGNO (in) + in_offset;
2112 unsigned int nwords = hard_regno_nregs[regno][inmode];
2113
2114 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2115 && ! hard_reg_set_here_p (regno, regno + nwords,
2116 PATTERN (this_insn))
2117 && (! earlyclobber
2118 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2119 PATTERN (this_insn), inloc)))
2120 {
2121 unsigned int i;
2122
2123 for (i = 0; i < nwords; i++)
2124 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2125 regno + i))
2126 break;
2127
2128 if (i == nwords)
2129 {
2130 /* If we were going to use OUT as the reload reg
2131 and changed our mind, it means OUT is a dummy that
2132 dies here. So don't bother copying value to it. */
2133 if (for_real >= 0 && value == real_out)
2134 rld[for_real].out = 0;
2135 if (REG_P (real_in))
2136 value = real_in;
2137 else
2138 value = gen_rtx_REG (inmode, regno);
2139 }
2140 }
2141 }
2142
2143 return value;
2144 }
2145 \f
2146 /* This page contains subroutines used mainly for determining
2147 whether the IN or an OUT of a reload can serve as the
2148 reload register. */
2149
2150 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2151
2152 int
2153 earlyclobber_operand_p (rtx x)
2154 {
2155 int i;
2156
2157 for (i = 0; i < n_earlyclobbers; i++)
2158 if (reload_earlyclobbers[i] == x)
2159 return 1;
2160
2161 return 0;
2162 }
2163
2164 /* Return 1 if expression X alters a hard reg in the range
2165 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2166 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2167 X should be the body of an instruction. */
2168
2169 static int
2170 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2171 {
2172 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2173 {
2174 rtx op0 = SET_DEST (x);
2175
2176 while (GET_CODE (op0) == SUBREG)
2177 op0 = SUBREG_REG (op0);
2178 if (REG_P (op0))
2179 {
2180 unsigned int r = REGNO (op0);
2181
2182 /* See if this reg overlaps range under consideration. */
2183 if (r < end_regno
2184 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2185 return 1;
2186 }
2187 }
2188 else if (GET_CODE (x) == PARALLEL)
2189 {
2190 int i = XVECLEN (x, 0) - 1;
2191
2192 for (; i >= 0; i--)
2193 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2194 return 1;
2195 }
2196
2197 return 0;
2198 }
2199
2200 /* Return 1 if ADDR is a valid memory address for mode MODE
2201 in address space AS, and check that each pseudo reg has the
2202 proper kind of hard reg. */
2203
2204 int
2205 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2206 rtx addr, addr_space_t as)
2207 {
2208 #ifdef GO_IF_LEGITIMATE_ADDRESS
2209 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2210 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2211 return 0;
2212
2213 win:
2214 return 1;
2215 #else
2216 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2217 #endif
2218 }
2219 \f
2220 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2221 if they are the same hard reg, and has special hacks for
2222 autoincrement and autodecrement.
2223 This is specifically intended for find_reloads to use
2224 in determining whether two operands match.
2225 X is the operand whose number is the lower of the two.
2226
2227 The value is 2 if Y contains a pre-increment that matches
2228 a non-incrementing address in X. */
2229
2230 /* ??? To be completely correct, we should arrange to pass
2231 for X the output operand and for Y the input operand.
2232 For now, we assume that the output operand has the lower number
2233 because that is natural in (SET output (... input ...)). */
2234
2235 int
2236 operands_match_p (rtx x, rtx y)
2237 {
2238 int i;
2239 RTX_CODE code = GET_CODE (x);
2240 const char *fmt;
2241 int success_2;
2242
2243 if (x == y)
2244 return 1;
2245 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2246 && (REG_P (y) || (GET_CODE (y) == SUBREG
2247 && REG_P (SUBREG_REG (y)))))
2248 {
2249 int j;
2250
2251 if (code == SUBREG)
2252 {
2253 i = REGNO (SUBREG_REG (x));
2254 if (i >= FIRST_PSEUDO_REGISTER)
2255 goto slow;
2256 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2257 GET_MODE (SUBREG_REG (x)),
2258 SUBREG_BYTE (x),
2259 GET_MODE (x));
2260 }
2261 else
2262 i = REGNO (x);
2263
2264 if (GET_CODE (y) == SUBREG)
2265 {
2266 j = REGNO (SUBREG_REG (y));
2267 if (j >= FIRST_PSEUDO_REGISTER)
2268 goto slow;
2269 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2270 GET_MODE (SUBREG_REG (y)),
2271 SUBREG_BYTE (y),
2272 GET_MODE (y));
2273 }
2274 else
2275 j = REGNO (y);
2276
2277 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2278 multiple hard register group of scalar integer registers, so that
2279 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2280 register. */
2281 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2282 && SCALAR_INT_MODE_P (GET_MODE (x))
2283 && i < FIRST_PSEUDO_REGISTER)
2284 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2285 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2286 && SCALAR_INT_MODE_P (GET_MODE (y))
2287 && j < FIRST_PSEUDO_REGISTER)
2288 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2289
2290 return i == j;
2291 }
2292 /* If two operands must match, because they are really a single
2293 operand of an assembler insn, then two postincrements are invalid
2294 because the assembler insn would increment only once.
2295 On the other hand, a postincrement matches ordinary indexing
2296 if the postincrement is the output operand. */
2297 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2298 return operands_match_p (XEXP (x, 0), y);
2299 /* Two preincrements are invalid
2300 because the assembler insn would increment only once.
2301 On the other hand, a preincrement matches ordinary indexing
2302 if the preincrement is the input operand.
2303 In this case, return 2, since some callers need to do special
2304 things when this happens. */
2305 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2306 || GET_CODE (y) == PRE_MODIFY)
2307 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2308
2309 slow:
2310
2311 /* Now we have disposed of all the cases in which different rtx codes
2312 can match. */
2313 if (code != GET_CODE (y))
2314 return 0;
2315
2316 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2317 if (GET_MODE (x) != GET_MODE (y))
2318 return 0;
2319
2320 /* MEMs referring to different address space are not equivalent. */
2321 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2322 return 0;
2323
2324 switch (code)
2325 {
2326 CASE_CONST_UNIQUE:
2327 return 0;
2328
2329 case LABEL_REF:
2330 return XEXP (x, 0) == XEXP (y, 0);
2331 case SYMBOL_REF:
2332 return XSTR (x, 0) == XSTR (y, 0);
2333
2334 default:
2335 break;
2336 }
2337
2338 /* Compare the elements. If any pair of corresponding elements
2339 fail to match, return 0 for the whole things. */
2340
2341 success_2 = 0;
2342 fmt = GET_RTX_FORMAT (code);
2343 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2344 {
2345 int val, j;
2346 switch (fmt[i])
2347 {
2348 case 'w':
2349 if (XWINT (x, i) != XWINT (y, i))
2350 return 0;
2351 break;
2352
2353 case 'i':
2354 if (XINT (x, i) != XINT (y, i))
2355 return 0;
2356 break;
2357
2358 case 'e':
2359 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2360 if (val == 0)
2361 return 0;
2362 /* If any subexpression returns 2,
2363 we should return 2 if we are successful. */
2364 if (val == 2)
2365 success_2 = 1;
2366 break;
2367
2368 case '0':
2369 break;
2370
2371 case 'E':
2372 if (XVECLEN (x, i) != XVECLEN (y, i))
2373 return 0;
2374 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2375 {
2376 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2377 if (val == 0)
2378 return 0;
2379 if (val == 2)
2380 success_2 = 1;
2381 }
2382 break;
2383
2384 /* It is believed that rtx's at this level will never
2385 contain anything but integers and other rtx's,
2386 except for within LABEL_REFs and SYMBOL_REFs. */
2387 default:
2388 gcc_unreachable ();
2389 }
2390 }
2391 return 1 + success_2;
2392 }
2393 \f
2394 /* Describe the range of registers or memory referenced by X.
2395 If X is a register, set REG_FLAG and put the first register
2396 number into START and the last plus one into END.
2397 If X is a memory reference, put a base address into BASE
2398 and a range of integer offsets into START and END.
2399 If X is pushing on the stack, we can assume it causes no trouble,
2400 so we set the SAFE field. */
2401
2402 static struct decomposition
2403 decompose (rtx x)
2404 {
2405 struct decomposition val;
2406 int all_const = 0;
2407
2408 memset (&val, 0, sizeof (val));
2409
2410 switch (GET_CODE (x))
2411 {
2412 case MEM:
2413 {
2414 rtx base = NULL_RTX, offset = 0;
2415 rtx addr = XEXP (x, 0);
2416
2417 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2418 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2419 {
2420 val.base = XEXP (addr, 0);
2421 val.start = -GET_MODE_SIZE (GET_MODE (x));
2422 val.end = GET_MODE_SIZE (GET_MODE (x));
2423 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2424 return val;
2425 }
2426
2427 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2428 {
2429 if (GET_CODE (XEXP (addr, 1)) == PLUS
2430 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2431 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2432 {
2433 val.base = XEXP (addr, 0);
2434 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2435 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2436 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2437 return val;
2438 }
2439 }
2440
2441 if (GET_CODE (addr) == CONST)
2442 {
2443 addr = XEXP (addr, 0);
2444 all_const = 1;
2445 }
2446 if (GET_CODE (addr) == PLUS)
2447 {
2448 if (CONSTANT_P (XEXP (addr, 0)))
2449 {
2450 base = XEXP (addr, 1);
2451 offset = XEXP (addr, 0);
2452 }
2453 else if (CONSTANT_P (XEXP (addr, 1)))
2454 {
2455 base = XEXP (addr, 0);
2456 offset = XEXP (addr, 1);
2457 }
2458 }
2459
2460 if (offset == 0)
2461 {
2462 base = addr;
2463 offset = const0_rtx;
2464 }
2465 if (GET_CODE (offset) == CONST)
2466 offset = XEXP (offset, 0);
2467 if (GET_CODE (offset) == PLUS)
2468 {
2469 if (CONST_INT_P (XEXP (offset, 0)))
2470 {
2471 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2472 offset = XEXP (offset, 0);
2473 }
2474 else if (CONST_INT_P (XEXP (offset, 1)))
2475 {
2476 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2477 offset = XEXP (offset, 1);
2478 }
2479 else
2480 {
2481 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2482 offset = const0_rtx;
2483 }
2484 }
2485 else if (!CONST_INT_P (offset))
2486 {
2487 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2488 offset = const0_rtx;
2489 }
2490
2491 if (all_const && GET_CODE (base) == PLUS)
2492 base = gen_rtx_CONST (GET_MODE (base), base);
2493
2494 gcc_assert (CONST_INT_P (offset));
2495
2496 val.start = INTVAL (offset);
2497 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2498 val.base = base;
2499 }
2500 break;
2501
2502 case REG:
2503 val.reg_flag = 1;
2504 val.start = true_regnum (x);
2505 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2506 {
2507 /* A pseudo with no hard reg. */
2508 val.start = REGNO (x);
2509 val.end = val.start + 1;
2510 }
2511 else
2512 /* A hard reg. */
2513 val.end = end_hard_regno (GET_MODE (x), val.start);
2514 break;
2515
2516 case SUBREG:
2517 if (!REG_P (SUBREG_REG (x)))
2518 /* This could be more precise, but it's good enough. */
2519 return decompose (SUBREG_REG (x));
2520 val.reg_flag = 1;
2521 val.start = true_regnum (x);
2522 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2523 return decompose (SUBREG_REG (x));
2524 else
2525 /* A hard reg. */
2526 val.end = val.start + subreg_nregs (x);
2527 break;
2528
2529 case SCRATCH:
2530 /* This hasn't been assigned yet, so it can't conflict yet. */
2531 val.safe = 1;
2532 break;
2533
2534 default:
2535 gcc_assert (CONSTANT_P (x));
2536 val.safe = 1;
2537 break;
2538 }
2539 return val;
2540 }
2541
2542 /* Return 1 if altering Y will not modify the value of X.
2543 Y is also described by YDATA, which should be decompose (Y). */
2544
2545 static int
2546 immune_p (rtx x, rtx y, struct decomposition ydata)
2547 {
2548 struct decomposition xdata;
2549
2550 if (ydata.reg_flag)
2551 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2552 if (ydata.safe)
2553 return 1;
2554
2555 gcc_assert (MEM_P (y));
2556 /* If Y is memory and X is not, Y can't affect X. */
2557 if (!MEM_P (x))
2558 return 1;
2559
2560 xdata = decompose (x);
2561
2562 if (! rtx_equal_p (xdata.base, ydata.base))
2563 {
2564 /* If bases are distinct symbolic constants, there is no overlap. */
2565 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2566 return 1;
2567 /* Constants and stack slots never overlap. */
2568 if (CONSTANT_P (xdata.base)
2569 && (ydata.base == frame_pointer_rtx
2570 || ydata.base == hard_frame_pointer_rtx
2571 || ydata.base == stack_pointer_rtx))
2572 return 1;
2573 if (CONSTANT_P (ydata.base)
2574 && (xdata.base == frame_pointer_rtx
2575 || xdata.base == hard_frame_pointer_rtx
2576 || xdata.base == stack_pointer_rtx))
2577 return 1;
2578 /* If either base is variable, we don't know anything. */
2579 return 0;
2580 }
2581
2582 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2583 }
2584
2585 /* Similar, but calls decompose. */
2586
2587 int
2588 safe_from_earlyclobber (rtx op, rtx clobber)
2589 {
2590 struct decomposition early_data;
2591
2592 early_data = decompose (clobber);
2593 return immune_p (op, clobber, early_data);
2594 }
2595 \f
2596 /* Main entry point of this file: search the body of INSN
2597 for values that need reloading and record them with push_reload.
2598 REPLACE nonzero means record also where the values occur
2599 so that subst_reloads can be used.
2600
2601 IND_LEVELS says how many levels of indirection are supported by this
2602 machine; a value of zero means that a memory reference is not a valid
2603 memory address.
2604
2605 LIVE_KNOWN says we have valid information about which hard
2606 regs are live at each point in the program; this is true when
2607 we are called from global_alloc but false when stupid register
2608 allocation has been done.
2609
2610 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2611 which is nonnegative if the reg has been commandeered for reloading into.
2612 It is copied into STATIC_RELOAD_REG_P and referenced from there
2613 by various subroutines.
2614
2615 Return TRUE if some operands need to be changed, because of swapping
2616 commutative operands, reg_equiv_address substitution, or whatever. */
2617
2618 int
2619 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2620 short *reload_reg_p)
2621 {
2622 int insn_code_number;
2623 int i, j;
2624 int noperands;
2625 /* These start out as the constraints for the insn
2626 and they are chewed up as we consider alternatives. */
2627 const char *constraints[MAX_RECOG_OPERANDS];
2628 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2629 a register. */
2630 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2631 char pref_or_nothing[MAX_RECOG_OPERANDS];
2632 /* Nonzero for a MEM operand whose entire address needs a reload.
2633 May be -1 to indicate the entire address may or may not need a reload. */
2634 int address_reloaded[MAX_RECOG_OPERANDS];
2635 /* Nonzero for an address operand that needs to be completely reloaded.
2636 May be -1 to indicate the entire operand may or may not need a reload. */
2637 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2638 /* Value of enum reload_type to use for operand. */
2639 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2640 /* Value of enum reload_type to use within address of operand. */
2641 enum reload_type address_type[MAX_RECOG_OPERANDS];
2642 /* Save the usage of each operand. */
2643 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2644 int no_input_reloads = 0, no_output_reloads = 0;
2645 int n_alternatives;
2646 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2647 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2648 char this_alternative_win[MAX_RECOG_OPERANDS];
2649 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2650 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2651 int this_alternative_matches[MAX_RECOG_OPERANDS];
2652 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2653 int this_alternative_number;
2654 int goal_alternative_number = 0;
2655 int operand_reloadnum[MAX_RECOG_OPERANDS];
2656 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2657 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2658 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2659 char goal_alternative_win[MAX_RECOG_OPERANDS];
2660 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2661 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2662 int goal_alternative_swapped;
2663 int best;
2664 int commutative;
2665 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2666 rtx substed_operand[MAX_RECOG_OPERANDS];
2667 rtx body = PATTERN (insn);
2668 rtx set = single_set (insn);
2669 int goal_earlyclobber = 0, this_earlyclobber;
2670 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2671 int retval = 0;
2672
2673 this_insn = insn;
2674 n_reloads = 0;
2675 n_replacements = 0;
2676 n_earlyclobbers = 0;
2677 replace_reloads = replace;
2678 hard_regs_live_known = live_known;
2679 static_reload_reg_p = reload_reg_p;
2680
2681 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2682 neither are insns that SET cc0. Insns that use CC0 are not allowed
2683 to have any input reloads. */
2684 if (JUMP_P (insn) || CALL_P (insn))
2685 no_output_reloads = 1;
2686
2687 #ifdef HAVE_cc0
2688 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2689 no_input_reloads = 1;
2690 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2691 no_output_reloads = 1;
2692 #endif
2693
2694 #ifdef SECONDARY_MEMORY_NEEDED
2695 /* The eliminated forms of any secondary memory locations are per-insn, so
2696 clear them out here. */
2697
2698 if (secondary_memlocs_elim_used)
2699 {
2700 memset (secondary_memlocs_elim, 0,
2701 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2702 secondary_memlocs_elim_used = 0;
2703 }
2704 #endif
2705
2706 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2707 is cheap to move between them. If it is not, there may not be an insn
2708 to do the copy, so we may need a reload. */
2709 if (GET_CODE (body) == SET
2710 && REG_P (SET_DEST (body))
2711 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2712 && REG_P (SET_SRC (body))
2713 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2714 && register_move_cost (GET_MODE (SET_SRC (body)),
2715 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2716 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2717 return 0;
2718
2719 extract_insn (insn);
2720
2721 noperands = reload_n_operands = recog_data.n_operands;
2722 n_alternatives = recog_data.n_alternatives;
2723
2724 /* Just return "no reloads" if insn has no operands with constraints. */
2725 if (noperands == 0 || n_alternatives == 0)
2726 return 0;
2727
2728 insn_code_number = INSN_CODE (insn);
2729 this_insn_is_asm = insn_code_number < 0;
2730
2731 memcpy (operand_mode, recog_data.operand_mode,
2732 noperands * sizeof (enum machine_mode));
2733 memcpy (constraints, recog_data.constraints,
2734 noperands * sizeof (const char *));
2735
2736 commutative = -1;
2737
2738 /* If we will need to know, later, whether some pair of operands
2739 are the same, we must compare them now and save the result.
2740 Reloading the base and index registers will clobber them
2741 and afterward they will fail to match. */
2742
2743 for (i = 0; i < noperands; i++)
2744 {
2745 const char *p;
2746 int c;
2747 char *end;
2748
2749 substed_operand[i] = recog_data.operand[i];
2750 p = constraints[i];
2751
2752 modified[i] = RELOAD_READ;
2753
2754 /* Scan this operand's constraint to see if it is an output operand,
2755 an in-out operand, is commutative, or should match another. */
2756
2757 while ((c = *p))
2758 {
2759 p += CONSTRAINT_LEN (c, p);
2760 switch (c)
2761 {
2762 case '=':
2763 modified[i] = RELOAD_WRITE;
2764 break;
2765 case '+':
2766 modified[i] = RELOAD_READ_WRITE;
2767 break;
2768 case '%':
2769 {
2770 /* The last operand should not be marked commutative. */
2771 gcc_assert (i != noperands - 1);
2772
2773 /* We currently only support one commutative pair of
2774 operands. Some existing asm code currently uses more
2775 than one pair. Previously, that would usually work,
2776 but sometimes it would crash the compiler. We
2777 continue supporting that case as well as we can by
2778 silently ignoring all but the first pair. In the
2779 future we may handle it correctly. */
2780 if (commutative < 0)
2781 commutative = i;
2782 else
2783 gcc_assert (this_insn_is_asm);
2784 }
2785 break;
2786 /* Use of ISDIGIT is tempting here, but it may get expensive because
2787 of locale support we don't want. */
2788 case '0': case '1': case '2': case '3': case '4':
2789 case '5': case '6': case '7': case '8': case '9':
2790 {
2791 c = strtoul (p - 1, &end, 10);
2792 p = end;
2793
2794 operands_match[c][i]
2795 = operands_match_p (recog_data.operand[c],
2796 recog_data.operand[i]);
2797
2798 /* An operand may not match itself. */
2799 gcc_assert (c != i);
2800
2801 /* If C can be commuted with C+1, and C might need to match I,
2802 then C+1 might also need to match I. */
2803 if (commutative >= 0)
2804 {
2805 if (c == commutative || c == commutative + 1)
2806 {
2807 int other = c + (c == commutative ? 1 : -1);
2808 operands_match[other][i]
2809 = operands_match_p (recog_data.operand[other],
2810 recog_data.operand[i]);
2811 }
2812 if (i == commutative || i == commutative + 1)
2813 {
2814 int other = i + (i == commutative ? 1 : -1);
2815 operands_match[c][other]
2816 = operands_match_p (recog_data.operand[c],
2817 recog_data.operand[other]);
2818 }
2819 /* Note that C is supposed to be less than I.
2820 No need to consider altering both C and I because in
2821 that case we would alter one into the other. */
2822 }
2823 }
2824 }
2825 }
2826 }
2827
2828 /* Examine each operand that is a memory reference or memory address
2829 and reload parts of the addresses into index registers.
2830 Also here any references to pseudo regs that didn't get hard regs
2831 but are equivalent to constants get replaced in the insn itself
2832 with those constants. Nobody will ever see them again.
2833
2834 Finally, set up the preferred classes of each operand. */
2835
2836 for (i = 0; i < noperands; i++)
2837 {
2838 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2839
2840 address_reloaded[i] = 0;
2841 address_operand_reloaded[i] = 0;
2842 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2843 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2844 : RELOAD_OTHER);
2845 address_type[i]
2846 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2847 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2848 : RELOAD_OTHER);
2849
2850 if (*constraints[i] == 0)
2851 /* Ignore things like match_operator operands. */
2852 ;
2853 else if (constraints[i][0] == 'p'
2854 || (insn_extra_address_constraint
2855 (lookup_constraint (constraints[i]))))
2856 {
2857 address_operand_reloaded[i]
2858 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2859 recog_data.operand[i],
2860 recog_data.operand_loc[i],
2861 i, operand_type[i], ind_levels, insn);
2862
2863 /* If we now have a simple operand where we used to have a
2864 PLUS or MULT, re-recognize and try again. */
2865 if ((OBJECT_P (*recog_data.operand_loc[i])
2866 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2867 && (GET_CODE (recog_data.operand[i]) == MULT
2868 || GET_CODE (recog_data.operand[i]) == PLUS))
2869 {
2870 INSN_CODE (insn) = -1;
2871 retval = find_reloads (insn, replace, ind_levels, live_known,
2872 reload_reg_p);
2873 return retval;
2874 }
2875
2876 recog_data.operand[i] = *recog_data.operand_loc[i];
2877 substed_operand[i] = recog_data.operand[i];
2878
2879 /* Address operands are reloaded in their existing mode,
2880 no matter what is specified in the machine description. */
2881 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2882
2883 /* If the address is a single CONST_INT pick address mode
2884 instead otherwise we will later not know in which mode
2885 the reload should be performed. */
2886 if (operand_mode[i] == VOIDmode)
2887 operand_mode[i] = Pmode;
2888
2889 }
2890 else if (code == MEM)
2891 {
2892 address_reloaded[i]
2893 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2894 recog_data.operand_loc[i],
2895 XEXP (recog_data.operand[i], 0),
2896 &XEXP (recog_data.operand[i], 0),
2897 i, address_type[i], ind_levels, insn);
2898 recog_data.operand[i] = *recog_data.operand_loc[i];
2899 substed_operand[i] = recog_data.operand[i];
2900 }
2901 else if (code == SUBREG)
2902 {
2903 rtx reg = SUBREG_REG (recog_data.operand[i]);
2904 rtx op
2905 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2906 ind_levels,
2907 set != 0
2908 && &SET_DEST (set) == recog_data.operand_loc[i],
2909 insn,
2910 &address_reloaded[i]);
2911
2912 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2913 that didn't get a hard register, emit a USE with a REG_EQUAL
2914 note in front so that we might inherit a previous, possibly
2915 wider reload. */
2916
2917 if (replace
2918 && MEM_P (op)
2919 && REG_P (reg)
2920 && (GET_MODE_SIZE (GET_MODE (reg))
2921 >= GET_MODE_SIZE (GET_MODE (op)))
2922 && reg_equiv_constant (REGNO (reg)) == 0)
2923 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2924 insn),
2925 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2926
2927 substed_operand[i] = recog_data.operand[i] = op;
2928 }
2929 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2930 /* We can get a PLUS as an "operand" as a result of register
2931 elimination. See eliminate_regs and gen_reload. We handle
2932 a unary operator by reloading the operand. */
2933 substed_operand[i] = recog_data.operand[i]
2934 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2935 ind_levels, 0, insn,
2936 &address_reloaded[i]);
2937 else if (code == REG)
2938 {
2939 /* This is equivalent to calling find_reloads_toplev.
2940 The code is duplicated for speed.
2941 When we find a pseudo always equivalent to a constant,
2942 we replace it by the constant. We must be sure, however,
2943 that we don't try to replace it in the insn in which it
2944 is being set. */
2945 int regno = REGNO (recog_data.operand[i]);
2946 if (reg_equiv_constant (regno) != 0
2947 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2948 {
2949 /* Record the existing mode so that the check if constants are
2950 allowed will work when operand_mode isn't specified. */
2951
2952 if (operand_mode[i] == VOIDmode)
2953 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2954
2955 substed_operand[i] = recog_data.operand[i]
2956 = reg_equiv_constant (regno);
2957 }
2958 if (reg_equiv_memory_loc (regno) != 0
2959 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2960 /* We need not give a valid is_set_dest argument since the case
2961 of a constant equivalence was checked above. */
2962 substed_operand[i] = recog_data.operand[i]
2963 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2964 ind_levels, 0, insn,
2965 &address_reloaded[i]);
2966 }
2967 /* If the operand is still a register (we didn't replace it with an
2968 equivalent), get the preferred class to reload it into. */
2969 code = GET_CODE (recog_data.operand[i]);
2970 preferred_class[i]
2971 = ((code == REG && REGNO (recog_data.operand[i])
2972 >= FIRST_PSEUDO_REGISTER)
2973 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2974 : NO_REGS);
2975 pref_or_nothing[i]
2976 = (code == REG
2977 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2978 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2979 }
2980
2981 /* If this is simply a copy from operand 1 to operand 0, merge the
2982 preferred classes for the operands. */
2983 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2984 && recog_data.operand[1] == SET_SRC (set))
2985 {
2986 preferred_class[0] = preferred_class[1]
2987 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2988 pref_or_nothing[0] |= pref_or_nothing[1];
2989 pref_or_nothing[1] |= pref_or_nothing[0];
2990 }
2991
2992 /* Now see what we need for pseudo-regs that didn't get hard regs
2993 or got the wrong kind of hard reg. For this, we must consider
2994 all the operands together against the register constraints. */
2995
2996 best = MAX_RECOG_OPERANDS * 2 + 600;
2997
2998 goal_alternative_swapped = 0;
2999
3000 /* The constraints are made of several alternatives.
3001 Each operand's constraint looks like foo,bar,... with commas
3002 separating the alternatives. The first alternatives for all
3003 operands go together, the second alternatives go together, etc.
3004
3005 First loop over alternatives. */
3006
3007 for (this_alternative_number = 0;
3008 this_alternative_number < n_alternatives;
3009 this_alternative_number++)
3010 {
3011 int swapped;
3012
3013 if (!TEST_BIT (recog_data.enabled_alternatives, this_alternative_number))
3014 {
3015 int i;
3016
3017 for (i = 0; i < recog_data.n_operands; i++)
3018 constraints[i] = skip_alternative (constraints[i]);
3019
3020 continue;
3021 }
3022
3023 /* If insn is commutative (it's safe to exchange a certain pair
3024 of operands) then we need to try each alternative twice, the
3025 second time matching those two operands as if we had
3026 exchanged them. To do this, really exchange them in
3027 operands. */
3028 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3029 {
3030 /* Loop over operands for one constraint alternative. */
3031 /* LOSERS counts those that don't fit this alternative
3032 and would require loading. */
3033 int losers = 0;
3034 /* BAD is set to 1 if it some operand can't fit this alternative
3035 even after reloading. */
3036 int bad = 0;
3037 /* REJECT is a count of how undesirable this alternative says it is
3038 if any reloading is required. If the alternative matches exactly
3039 then REJECT is ignored, but otherwise it gets this much
3040 counted against it in addition to the reloading needed. Each
3041 ? counts three times here since we want the disparaging caused by
3042 a bad register class to only count 1/3 as much. */
3043 int reject = 0;
3044
3045 if (swapped)
3046 {
3047 enum reg_class tclass;
3048 int t;
3049
3050 recog_data.operand[commutative] = substed_operand[commutative + 1];
3051 recog_data.operand[commutative + 1] = substed_operand[commutative];
3052 /* Swap the duplicates too. */
3053 for (i = 0; i < recog_data.n_dups; i++)
3054 if (recog_data.dup_num[i] == commutative
3055 || recog_data.dup_num[i] == commutative + 1)
3056 *recog_data.dup_loc[i]
3057 = recog_data.operand[(int) recog_data.dup_num[i]];
3058
3059 tclass = preferred_class[commutative];
3060 preferred_class[commutative] = preferred_class[commutative + 1];
3061 preferred_class[commutative + 1] = tclass;
3062
3063 t = pref_or_nothing[commutative];
3064 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3065 pref_or_nothing[commutative + 1] = t;
3066
3067 t = address_reloaded[commutative];
3068 address_reloaded[commutative] = address_reloaded[commutative + 1];
3069 address_reloaded[commutative + 1] = t;
3070 }
3071
3072 this_earlyclobber = 0;
3073
3074 for (i = 0; i < noperands; i++)
3075 {
3076 const char *p = constraints[i];
3077 char *end;
3078 int len;
3079 int win = 0;
3080 int did_match = 0;
3081 /* 0 => this operand can be reloaded somehow for this alternative. */
3082 int badop = 1;
3083 /* 0 => this operand can be reloaded if the alternative allows regs. */
3084 int winreg = 0;
3085 int c;
3086 int m;
3087 rtx operand = recog_data.operand[i];
3088 int offset = 0;
3089 /* Nonzero means this is a MEM that must be reloaded into a reg
3090 regardless of what the constraint says. */
3091 int force_reload = 0;
3092 int offmemok = 0;
3093 /* Nonzero if a constant forced into memory would be OK for this
3094 operand. */
3095 int constmemok = 0;
3096 int earlyclobber = 0;
3097 enum constraint_num cn;
3098 enum reg_class cl;
3099
3100 /* If the predicate accepts a unary operator, it means that
3101 we need to reload the operand, but do not do this for
3102 match_operator and friends. */
3103 if (UNARY_P (operand) && *p != 0)
3104 operand = XEXP (operand, 0);
3105
3106 /* If the operand is a SUBREG, extract
3107 the REG or MEM (or maybe even a constant) within.
3108 (Constants can occur as a result of reg_equiv_constant.) */
3109
3110 while (GET_CODE (operand) == SUBREG)
3111 {
3112 /* Offset only matters when operand is a REG and
3113 it is a hard reg. This is because it is passed
3114 to reg_fits_class_p if it is a REG and all pseudos
3115 return 0 from that function. */
3116 if (REG_P (SUBREG_REG (operand))
3117 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3118 {
3119 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3120 GET_MODE (SUBREG_REG (operand)),
3121 SUBREG_BYTE (operand),
3122 GET_MODE (operand)) < 0)
3123 force_reload = 1;
3124 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3125 GET_MODE (SUBREG_REG (operand)),
3126 SUBREG_BYTE (operand),
3127 GET_MODE (operand));
3128 }
3129 operand = SUBREG_REG (operand);
3130 /* Force reload if this is a constant or PLUS or if there may
3131 be a problem accessing OPERAND in the outer mode. */
3132 if (CONSTANT_P (operand)
3133 || GET_CODE (operand) == PLUS
3134 /* We must force a reload of paradoxical SUBREGs
3135 of a MEM because the alignment of the inner value
3136 may not be enough to do the outer reference. On
3137 big-endian machines, it may also reference outside
3138 the object.
3139
3140 On machines that extend byte operations and we have a
3141 SUBREG where both the inner and outer modes are no wider
3142 than a word and the inner mode is narrower, is integral,
3143 and gets extended when loaded from memory, combine.c has
3144 made assumptions about the behavior of the machine in such
3145 register access. If the data is, in fact, in memory we
3146 must always load using the size assumed to be in the
3147 register and let the insn do the different-sized
3148 accesses.
3149
3150 This is doubly true if WORD_REGISTER_OPERATIONS. In
3151 this case eliminate_regs has left non-paradoxical
3152 subregs for push_reload to see. Make sure it does
3153 by forcing the reload.
3154
3155 ??? When is it right at this stage to have a subreg
3156 of a mem that is _not_ to be handled specially? IMO
3157 those should have been reduced to just a mem. */
3158 || ((MEM_P (operand)
3159 || (REG_P (operand)
3160 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3161 #ifndef WORD_REGISTER_OPERATIONS
3162 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3163 < BIGGEST_ALIGNMENT)
3164 && (GET_MODE_SIZE (operand_mode[i])
3165 > GET_MODE_SIZE (GET_MODE (operand))))
3166 || BYTES_BIG_ENDIAN
3167 #ifdef LOAD_EXTEND_OP
3168 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3169 && (GET_MODE_SIZE (GET_MODE (operand))
3170 <= UNITS_PER_WORD)
3171 && (GET_MODE_SIZE (operand_mode[i])
3172 > GET_MODE_SIZE (GET_MODE (operand)))
3173 && INTEGRAL_MODE_P (GET_MODE (operand))
3174 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3175 #endif
3176 )
3177 #endif
3178 )
3179 )
3180 force_reload = 1;
3181 }
3182
3183 this_alternative[i] = NO_REGS;
3184 this_alternative_win[i] = 0;
3185 this_alternative_match_win[i] = 0;
3186 this_alternative_offmemok[i] = 0;
3187 this_alternative_earlyclobber[i] = 0;
3188 this_alternative_matches[i] = -1;
3189
3190 /* An empty constraint or empty alternative
3191 allows anything which matched the pattern. */
3192 if (*p == 0 || *p == ',')
3193 win = 1, badop = 0;
3194
3195 /* Scan this alternative's specs for this operand;
3196 set WIN if the operand fits any letter in this alternative.
3197 Otherwise, clear BADOP if this operand could
3198 fit some letter after reloads,
3199 or set WINREG if this operand could fit after reloads
3200 provided the constraint allows some registers. */
3201
3202 do
3203 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3204 {
3205 case '\0':
3206 len = 0;
3207 break;
3208 case ',':
3209 c = '\0';
3210 break;
3211
3212 case '=': case '+': case '*':
3213 break;
3214
3215 case '%':
3216 /* We only support one commutative marker, the first
3217 one. We already set commutative above. */
3218 break;
3219
3220 case '?':
3221 reject += 6;
3222 break;
3223
3224 case '!':
3225 reject = 600;
3226 break;
3227
3228 case '#':
3229 /* Ignore rest of this alternative as far as
3230 reloading is concerned. */
3231 do
3232 p++;
3233 while (*p && *p != ',');
3234 len = 0;
3235 break;
3236
3237 case '0': case '1': case '2': case '3': case '4':
3238 case '5': case '6': case '7': case '8': case '9':
3239 m = strtoul (p, &end, 10);
3240 p = end;
3241 len = 0;
3242
3243 this_alternative_matches[i] = m;
3244 /* We are supposed to match a previous operand.
3245 If we do, we win if that one did.
3246 If we do not, count both of the operands as losers.
3247 (This is too conservative, since most of the time
3248 only a single reload insn will be needed to make
3249 the two operands win. As a result, this alternative
3250 may be rejected when it is actually desirable.) */
3251 if ((swapped && (m != commutative || i != commutative + 1))
3252 /* If we are matching as if two operands were swapped,
3253 also pretend that operands_match had been computed
3254 with swapped.
3255 But if I is the second of those and C is the first,
3256 don't exchange them, because operands_match is valid
3257 only on one side of its diagonal. */
3258 ? (operands_match
3259 [(m == commutative || m == commutative + 1)
3260 ? 2 * commutative + 1 - m : m]
3261 [(i == commutative || i == commutative + 1)
3262 ? 2 * commutative + 1 - i : i])
3263 : operands_match[m][i])
3264 {
3265 /* If we are matching a non-offsettable address where an
3266 offsettable address was expected, then we must reject
3267 this combination, because we can't reload it. */
3268 if (this_alternative_offmemok[m]
3269 && MEM_P (recog_data.operand[m])
3270 && this_alternative[m] == NO_REGS
3271 && ! this_alternative_win[m])
3272 bad = 1;
3273
3274 did_match = this_alternative_win[m];
3275 }
3276 else
3277 {
3278 /* Operands don't match. */
3279 rtx value;
3280 int loc1, loc2;
3281 /* Retroactively mark the operand we had to match
3282 as a loser, if it wasn't already. */
3283 if (this_alternative_win[m])
3284 losers++;
3285 this_alternative_win[m] = 0;
3286 if (this_alternative[m] == NO_REGS)
3287 bad = 1;
3288 /* But count the pair only once in the total badness of
3289 this alternative, if the pair can be a dummy reload.
3290 The pointers in operand_loc are not swapped; swap
3291 them by hand if necessary. */
3292 if (swapped && i == commutative)
3293 loc1 = commutative + 1;
3294 else if (swapped && i == commutative + 1)
3295 loc1 = commutative;
3296 else
3297 loc1 = i;
3298 if (swapped && m == commutative)
3299 loc2 = commutative + 1;
3300 else if (swapped && m == commutative + 1)
3301 loc2 = commutative;
3302 else
3303 loc2 = m;
3304 value
3305 = find_dummy_reload (recog_data.operand[i],
3306 recog_data.operand[m],
3307 recog_data.operand_loc[loc1],
3308 recog_data.operand_loc[loc2],
3309 operand_mode[i], operand_mode[m],
3310 this_alternative[m], -1,
3311 this_alternative_earlyclobber[m]);
3312
3313 if (value != 0)
3314 losers--;
3315 }
3316 /* This can be fixed with reloads if the operand
3317 we are supposed to match can be fixed with reloads. */
3318 badop = 0;
3319 this_alternative[i] = this_alternative[m];
3320
3321 /* If we have to reload this operand and some previous
3322 operand also had to match the same thing as this
3323 operand, we don't know how to do that. So reject this
3324 alternative. */
3325 if (! did_match || force_reload)
3326 for (j = 0; j < i; j++)
3327 if (this_alternative_matches[j]
3328 == this_alternative_matches[i])
3329 {
3330 badop = 1;
3331 break;
3332 }
3333 break;
3334
3335 case 'p':
3336 /* All necessary reloads for an address_operand
3337 were handled in find_reloads_address. */
3338 this_alternative[i]
3339 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3340 ADDRESS, SCRATCH);
3341 win = 1;
3342 badop = 0;
3343 break;
3344
3345 case TARGET_MEM_CONSTRAINT:
3346 if (force_reload)
3347 break;
3348 if (MEM_P (operand)
3349 || (REG_P (operand)
3350 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3351 && reg_renumber[REGNO (operand)] < 0))
3352 win = 1;
3353 if (CONST_POOL_OK_P (operand_mode[i], operand))
3354 badop = 0;
3355 constmemok = 1;
3356 break;
3357
3358 case '<':
3359 if (MEM_P (operand)
3360 && ! address_reloaded[i]
3361 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3362 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3363 win = 1;
3364 break;
3365
3366 case '>':
3367 if (MEM_P (operand)
3368 && ! address_reloaded[i]
3369 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3370 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3371 win = 1;
3372 break;
3373
3374 /* Memory operand whose address is not offsettable. */
3375 case 'V':
3376 if (force_reload)
3377 break;
3378 if (MEM_P (operand)
3379 && ! (ind_levels ? offsettable_memref_p (operand)
3380 : offsettable_nonstrict_memref_p (operand))
3381 /* Certain mem addresses will become offsettable
3382 after they themselves are reloaded. This is important;
3383 we don't want our own handling of unoffsettables
3384 to override the handling of reg_equiv_address. */
3385 && !(REG_P (XEXP (operand, 0))
3386 && (ind_levels == 0
3387 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3388 win = 1;
3389 break;
3390
3391 /* Memory operand whose address is offsettable. */
3392 case 'o':
3393 if (force_reload)
3394 break;
3395 if ((MEM_P (operand)
3396 /* If IND_LEVELS, find_reloads_address won't reload a
3397 pseudo that didn't get a hard reg, so we have to
3398 reject that case. */
3399 && ((ind_levels ? offsettable_memref_p (operand)
3400 : offsettable_nonstrict_memref_p (operand))
3401 /* A reloaded address is offsettable because it is now
3402 just a simple register indirect. */
3403 || address_reloaded[i] == 1))
3404 || (REG_P (operand)
3405 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3406 && reg_renumber[REGNO (operand)] < 0
3407 /* If reg_equiv_address is nonzero, we will be
3408 loading it into a register; hence it will be
3409 offsettable, but we cannot say that reg_equiv_mem
3410 is offsettable without checking. */
3411 && ((reg_equiv_mem (REGNO (operand)) != 0
3412 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3413 || (reg_equiv_address (REGNO (operand)) != 0))))
3414 win = 1;
3415 if (CONST_POOL_OK_P (operand_mode[i], operand)
3416 || MEM_P (operand))
3417 badop = 0;
3418 constmemok = 1;
3419 offmemok = 1;
3420 break;
3421
3422 case '&':
3423 /* Output operand that is stored before the need for the
3424 input operands (and their index registers) is over. */
3425 earlyclobber = 1, this_earlyclobber = 1;
3426 break;
3427
3428 case 'E':
3429 case 'F':
3430 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3431 || (GET_CODE (operand) == CONST_VECTOR
3432 && (GET_MODE_CLASS (GET_MODE (operand))
3433 == MODE_VECTOR_FLOAT)))
3434 win = 1;
3435 break;
3436
3437 case 'G':
3438 case 'H':
3439 if (CONST_DOUBLE_AS_FLOAT_P (operand)
3440 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3441 win = 1;
3442 break;
3443
3444 case 's':
3445 if (CONST_SCALAR_INT_P (operand))
3446 break;
3447 case 'i':
3448 if (CONSTANT_P (operand)
3449 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3450 win = 1;
3451 break;
3452
3453 case 'n':
3454 if (CONST_SCALAR_INT_P (operand))
3455 win = 1;
3456 break;
3457
3458 case 'I':
3459 case 'J':
3460 case 'K':
3461 case 'L':
3462 case 'M':
3463 case 'N':
3464 case 'O':
3465 case 'P':
3466 if (CONST_INT_P (operand)
3467 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3468 win = 1;
3469 break;
3470
3471 case 'X':
3472 force_reload = 0;
3473 win = 1;
3474 break;
3475
3476 case 'g':
3477 if (! force_reload
3478 /* A PLUS is never a valid operand, but reload can make
3479 it from a register when eliminating registers. */
3480 && GET_CODE (operand) != PLUS
3481 /* A SCRATCH is not a valid operand. */
3482 && GET_CODE (operand) != SCRATCH
3483 && (! CONSTANT_P (operand)
3484 || ! flag_pic
3485 || LEGITIMATE_PIC_OPERAND_P (operand))
3486 && (GENERAL_REGS == ALL_REGS
3487 || !REG_P (operand)
3488 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3489 && reg_renumber[REGNO (operand)] < 0)))
3490 win = 1;
3491 /* Drop through into 'r' case. */
3492
3493 case 'r':
3494 cl = GENERAL_REGS;
3495 goto reg;
3496
3497 default:
3498 cn = lookup_constraint (p);
3499 switch (get_constraint_type (cn))
3500 {
3501 case CT_REGISTER:
3502 cl = reg_class_for_constraint (cn);
3503 if (cl != NO_REGS)
3504 goto reg;
3505 break;
3506
3507 case CT_MEMORY:
3508 if (force_reload)
3509 break;
3510 if (constraint_satisfied_p (operand, cn))
3511 win = 1;
3512 /* If the address was already reloaded,
3513 we win as well. */
3514 else if (MEM_P (operand) && address_reloaded[i] == 1)
3515 win = 1;
3516 /* Likewise if the address will be reloaded because
3517 reg_equiv_address is nonzero. For reg_equiv_mem
3518 we have to check. */
3519 else if (REG_P (operand)
3520 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3521 && reg_renumber[REGNO (operand)] < 0
3522 && ((reg_equiv_mem (REGNO (operand)) != 0
3523 && (constraint_satisfied_p
3524 (reg_equiv_mem (REGNO (operand)),
3525 cn)))
3526 || (reg_equiv_address (REGNO (operand))
3527 != 0)))
3528 win = 1;
3529
3530 /* If we didn't already win, we can reload
3531 constants via force_const_mem, and other
3532 MEMs by reloading the address like for 'o'. */
3533 if (CONST_POOL_OK_P (operand_mode[i], operand)
3534 || MEM_P (operand))
3535 badop = 0;
3536 constmemok = 1;
3537 offmemok = 1;
3538 break;
3539
3540 case CT_ADDRESS:
3541 if (constraint_satisfied_p (operand, cn))
3542 win = 1;
3543
3544 /* If we didn't already win, we can reload
3545 the address into a base register. */
3546 this_alternative[i]
3547 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3548 ADDRESS, SCRATCH);
3549 badop = 0;
3550 break;
3551
3552 case CT_FIXED_FORM:
3553 if (constraint_satisfied_p (operand, cn))
3554 win = 1;
3555 break;
3556 }
3557 break;
3558
3559 reg:
3560 this_alternative[i]
3561 = reg_class_subunion[this_alternative[i]][cl];
3562 if (GET_MODE (operand) == BLKmode)
3563 break;
3564 winreg = 1;
3565 if (REG_P (operand)
3566 && reg_fits_class_p (operand, this_alternative[i],
3567 offset, GET_MODE (recog_data.operand[i])))
3568 win = 1;
3569 break;
3570 }
3571 while ((p += len), c);
3572
3573 if (swapped == (commutative >= 0 ? 1 : 0))
3574 constraints[i] = p;
3575
3576 /* If this operand could be handled with a reg,
3577 and some reg is allowed, then this operand can be handled. */
3578 if (winreg && this_alternative[i] != NO_REGS
3579 && (win || !class_only_fixed_regs[this_alternative[i]]))
3580 badop = 0;
3581
3582 /* Record which operands fit this alternative. */
3583 this_alternative_earlyclobber[i] = earlyclobber;
3584 if (win && ! force_reload)
3585 this_alternative_win[i] = 1;
3586 else if (did_match && ! force_reload)
3587 this_alternative_match_win[i] = 1;
3588 else
3589 {
3590 int const_to_mem = 0;
3591
3592 this_alternative_offmemok[i] = offmemok;
3593 losers++;
3594 if (badop)
3595 bad = 1;
3596 /* Alternative loses if it has no regs for a reg operand. */
3597 if (REG_P (operand)
3598 && this_alternative[i] == NO_REGS
3599 && this_alternative_matches[i] < 0)
3600 bad = 1;
3601
3602 /* If this is a constant that is reloaded into the desired
3603 class by copying it to memory first, count that as another
3604 reload. This is consistent with other code and is
3605 required to avoid choosing another alternative when
3606 the constant is moved into memory by this function on
3607 an early reload pass. Note that the test here is
3608 precisely the same as in the code below that calls
3609 force_const_mem. */
3610 if (CONST_POOL_OK_P (operand_mode[i], operand)
3611 && ((targetm.preferred_reload_class (operand,
3612 this_alternative[i])
3613 == NO_REGS)
3614 || no_input_reloads))
3615 {
3616 const_to_mem = 1;
3617 if (this_alternative[i] != NO_REGS)
3618 losers++;
3619 }
3620
3621 /* Alternative loses if it requires a type of reload not
3622 permitted for this insn. We can always reload SCRATCH
3623 and objects with a REG_UNUSED note. */
3624 if (GET_CODE (operand) != SCRATCH
3625 && modified[i] != RELOAD_READ && no_output_reloads
3626 && ! find_reg_note (insn, REG_UNUSED, operand))
3627 bad = 1;
3628 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3629 && ! const_to_mem)
3630 bad = 1;
3631
3632 /* If we can't reload this value at all, reject this
3633 alternative. Note that we could also lose due to
3634 LIMIT_RELOAD_CLASS, but we don't check that
3635 here. */
3636
3637 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3638 {
3639 if (targetm.preferred_reload_class (operand,
3640 this_alternative[i])
3641 == NO_REGS)
3642 reject = 600;
3643
3644 if (operand_type[i] == RELOAD_FOR_OUTPUT
3645 && (targetm.preferred_output_reload_class (operand,
3646 this_alternative[i])
3647 == NO_REGS))
3648 reject = 600;
3649 }
3650
3651 /* We prefer to reload pseudos over reloading other things,
3652 since such reloads may be able to be eliminated later.
3653 If we are reloading a SCRATCH, we won't be generating any
3654 insns, just using a register, so it is also preferred.
3655 So bump REJECT in other cases. Don't do this in the
3656 case where we are forcing a constant into memory and
3657 it will then win since we don't want to have a different
3658 alternative match then. */
3659 if (! (REG_P (operand)
3660 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3661 && GET_CODE (operand) != SCRATCH
3662 && ! (const_to_mem && constmemok))
3663 reject += 2;
3664
3665 /* Input reloads can be inherited more often than output
3666 reloads can be removed, so penalize output reloads. */
3667 if (operand_type[i] != RELOAD_FOR_INPUT
3668 && GET_CODE (operand) != SCRATCH)
3669 reject++;
3670 }
3671
3672 /* If this operand is a pseudo register that didn't get
3673 a hard reg and this alternative accepts some
3674 register, see if the class that we want is a subset
3675 of the preferred class for this register. If not,
3676 but it intersects that class, use the preferred class
3677 instead. If it does not intersect the preferred
3678 class, show that usage of this alternative should be
3679 discouraged; it will be discouraged more still if the
3680 register is `preferred or nothing'. We do this
3681 because it increases the chance of reusing our spill
3682 register in a later insn and avoiding a pair of
3683 memory stores and loads.
3684
3685 Don't bother with this if this alternative will
3686 accept this operand.
3687
3688 Don't do this for a multiword operand, since it is
3689 only a small win and has the risk of requiring more
3690 spill registers, which could cause a large loss.
3691
3692 Don't do this if the preferred class has only one
3693 register because we might otherwise exhaust the
3694 class. */
3695
3696 if (! win && ! did_match
3697 && this_alternative[i] != NO_REGS
3698 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3699 && reg_class_size [(int) preferred_class[i]] > 0
3700 && ! small_register_class_p (preferred_class[i]))
3701 {
3702 if (! reg_class_subset_p (this_alternative[i],
3703 preferred_class[i]))
3704 {
3705 /* Since we don't have a way of forming the intersection,
3706 we just do something special if the preferred class
3707 is a subset of the class we have; that's the most
3708 common case anyway. */
3709 if (reg_class_subset_p (preferred_class[i],
3710 this_alternative[i]))
3711 this_alternative[i] = preferred_class[i];
3712 else
3713 reject += (2 + 2 * pref_or_nothing[i]);
3714 }
3715 }
3716 }
3717
3718 /* Now see if any output operands that are marked "earlyclobber"
3719 in this alternative conflict with any input operands
3720 or any memory addresses. */
3721
3722 for (i = 0; i < noperands; i++)
3723 if (this_alternative_earlyclobber[i]
3724 && (this_alternative_win[i] || this_alternative_match_win[i]))
3725 {
3726 struct decomposition early_data;
3727
3728 early_data = decompose (recog_data.operand[i]);
3729
3730 gcc_assert (modified[i] != RELOAD_READ);
3731
3732 if (this_alternative[i] == NO_REGS)
3733 {
3734 this_alternative_earlyclobber[i] = 0;
3735 gcc_assert (this_insn_is_asm);
3736 error_for_asm (this_insn,
3737 "%<&%> constraint used with no register class");
3738 }
3739
3740 for (j = 0; j < noperands; j++)
3741 /* Is this an input operand or a memory ref? */
3742 if ((MEM_P (recog_data.operand[j])
3743 || modified[j] != RELOAD_WRITE)
3744 && j != i
3745 /* Ignore things like match_operator operands. */
3746 && !recog_data.is_operator[j]
3747 /* Don't count an input operand that is constrained to match
3748 the early clobber operand. */
3749 && ! (this_alternative_matches[j] == i
3750 && rtx_equal_p (recog_data.operand[i],
3751 recog_data.operand[j]))
3752 /* Is it altered by storing the earlyclobber operand? */
3753 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3754 early_data))
3755 {
3756 /* If the output is in a non-empty few-regs class,
3757 it's costly to reload it, so reload the input instead. */
3758 if (small_register_class_p (this_alternative[i])
3759 && (REG_P (recog_data.operand[j])
3760 || GET_CODE (recog_data.operand[j]) == SUBREG))
3761 {
3762 losers++;
3763 this_alternative_win[j] = 0;
3764 this_alternative_match_win[j] = 0;
3765 }
3766 else
3767 break;
3768 }
3769 /* If an earlyclobber operand conflicts with something,
3770 it must be reloaded, so request this and count the cost. */
3771 if (j != noperands)
3772 {
3773 losers++;
3774 this_alternative_win[i] = 0;
3775 this_alternative_match_win[j] = 0;
3776 for (j = 0; j < noperands; j++)
3777 if (this_alternative_matches[j] == i
3778 && this_alternative_match_win[j])
3779 {
3780 this_alternative_win[j] = 0;
3781 this_alternative_match_win[j] = 0;
3782 losers++;
3783 }
3784 }
3785 }
3786
3787 /* If one alternative accepts all the operands, no reload required,
3788 choose that alternative; don't consider the remaining ones. */
3789 if (losers == 0)
3790 {
3791 /* Unswap these so that they are never swapped at `finish'. */
3792 if (swapped)
3793 {
3794 recog_data.operand[commutative] = substed_operand[commutative];
3795 recog_data.operand[commutative + 1]
3796 = substed_operand[commutative + 1];
3797 }
3798 for (i = 0; i < noperands; i++)
3799 {
3800 goal_alternative_win[i] = this_alternative_win[i];
3801 goal_alternative_match_win[i] = this_alternative_match_win[i];
3802 goal_alternative[i] = this_alternative[i];
3803 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3804 goal_alternative_matches[i] = this_alternative_matches[i];
3805 goal_alternative_earlyclobber[i]
3806 = this_alternative_earlyclobber[i];
3807 }
3808 goal_alternative_number = this_alternative_number;
3809 goal_alternative_swapped = swapped;
3810 goal_earlyclobber = this_earlyclobber;
3811 goto finish;
3812 }
3813
3814 /* REJECT, set by the ! and ? constraint characters and when a register
3815 would be reloaded into a non-preferred class, discourages the use of
3816 this alternative for a reload goal. REJECT is incremented by six
3817 for each ? and two for each non-preferred class. */
3818 losers = losers * 6 + reject;
3819
3820 /* If this alternative can be made to work by reloading,
3821 and it needs less reloading than the others checked so far,
3822 record it as the chosen goal for reloading. */
3823 if (! bad)
3824 {
3825 if (best > losers)
3826 {
3827 for (i = 0; i < noperands; i++)
3828 {
3829 goal_alternative[i] = this_alternative[i];
3830 goal_alternative_win[i] = this_alternative_win[i];
3831 goal_alternative_match_win[i]
3832 = this_alternative_match_win[i];
3833 goal_alternative_offmemok[i]
3834 = this_alternative_offmemok[i];
3835 goal_alternative_matches[i] = this_alternative_matches[i];
3836 goal_alternative_earlyclobber[i]
3837 = this_alternative_earlyclobber[i];
3838 }
3839 goal_alternative_swapped = swapped;
3840 best = losers;
3841 goal_alternative_number = this_alternative_number;
3842 goal_earlyclobber = this_earlyclobber;
3843 }
3844 }
3845
3846 if (swapped)
3847 {
3848 enum reg_class tclass;
3849 int t;
3850
3851 /* If the commutative operands have been swapped, swap
3852 them back in order to check the next alternative. */
3853 recog_data.operand[commutative] = substed_operand[commutative];
3854 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3855 /* Unswap the duplicates too. */
3856 for (i = 0; i < recog_data.n_dups; i++)
3857 if (recog_data.dup_num[i] == commutative
3858 || recog_data.dup_num[i] == commutative + 1)
3859 *recog_data.dup_loc[i]
3860 = recog_data.operand[(int) recog_data.dup_num[i]];
3861
3862 /* Unswap the operand related information as well. */
3863 tclass = preferred_class[commutative];
3864 preferred_class[commutative] = preferred_class[commutative + 1];
3865 preferred_class[commutative + 1] = tclass;
3866
3867 t = pref_or_nothing[commutative];
3868 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3869 pref_or_nothing[commutative + 1] = t;
3870
3871 t = address_reloaded[commutative];
3872 address_reloaded[commutative] = address_reloaded[commutative + 1];
3873 address_reloaded[commutative + 1] = t;
3874 }
3875 }
3876 }
3877
3878 /* The operands don't meet the constraints.
3879 goal_alternative describes the alternative
3880 that we could reach by reloading the fewest operands.
3881 Reload so as to fit it. */
3882
3883 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3884 {
3885 /* No alternative works with reloads?? */
3886 if (insn_code_number >= 0)
3887 fatal_insn ("unable to generate reloads for:", insn);
3888 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3889 /* Avoid further trouble with this insn. */
3890 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3891 n_reloads = 0;
3892 return 0;
3893 }
3894
3895 /* Jump to `finish' from above if all operands are valid already.
3896 In that case, goal_alternative_win is all 1. */
3897 finish:
3898
3899 /* Right now, for any pair of operands I and J that are required to match,
3900 with I < J,
3901 goal_alternative_matches[J] is I.
3902 Set up goal_alternative_matched as the inverse function:
3903 goal_alternative_matched[I] = J. */
3904
3905 for (i = 0; i < noperands; i++)
3906 goal_alternative_matched[i] = -1;
3907
3908 for (i = 0; i < noperands; i++)
3909 if (! goal_alternative_win[i]
3910 && goal_alternative_matches[i] >= 0)
3911 goal_alternative_matched[goal_alternative_matches[i]] = i;
3912
3913 for (i = 0; i < noperands; i++)
3914 goal_alternative_win[i] |= goal_alternative_match_win[i];
3915
3916 /* If the best alternative is with operands 1 and 2 swapped,
3917 consider them swapped before reporting the reloads. Update the
3918 operand numbers of any reloads already pushed. */
3919
3920 if (goal_alternative_swapped)
3921 {
3922 rtx tem;
3923
3924 tem = substed_operand[commutative];
3925 substed_operand[commutative] = substed_operand[commutative + 1];
3926 substed_operand[commutative + 1] = tem;
3927 tem = recog_data.operand[commutative];
3928 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3929 recog_data.operand[commutative + 1] = tem;
3930 tem = *recog_data.operand_loc[commutative];
3931 *recog_data.operand_loc[commutative]
3932 = *recog_data.operand_loc[commutative + 1];
3933 *recog_data.operand_loc[commutative + 1] = tem;
3934
3935 for (i = 0; i < n_reloads; i++)
3936 {
3937 if (rld[i].opnum == commutative)
3938 rld[i].opnum = commutative + 1;
3939 else if (rld[i].opnum == commutative + 1)
3940 rld[i].opnum = commutative;
3941 }
3942 }
3943
3944 for (i = 0; i < noperands; i++)
3945 {
3946 operand_reloadnum[i] = -1;
3947
3948 /* If this is an earlyclobber operand, we need to widen the scope.
3949 The reload must remain valid from the start of the insn being
3950 reloaded until after the operand is stored into its destination.
3951 We approximate this with RELOAD_OTHER even though we know that we
3952 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3953
3954 One special case that is worth checking is when we have an
3955 output that is earlyclobber but isn't used past the insn (typically
3956 a SCRATCH). In this case, we only need have the reload live
3957 through the insn itself, but not for any of our input or output
3958 reloads.
3959 But we must not accidentally narrow the scope of an existing
3960 RELOAD_OTHER reload - leave these alone.
3961
3962 In any case, anything needed to address this operand can remain
3963 however they were previously categorized. */
3964
3965 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3966 operand_type[i]
3967 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3968 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3969 }
3970
3971 /* Any constants that aren't allowed and can't be reloaded
3972 into registers are here changed into memory references. */
3973 for (i = 0; i < noperands; i++)
3974 if (! goal_alternative_win[i])
3975 {
3976 rtx op = recog_data.operand[i];
3977 rtx subreg = NULL_RTX;
3978 rtx plus = NULL_RTX;
3979 enum machine_mode mode = operand_mode[i];
3980
3981 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3982 push_reload so we have to let them pass here. */
3983 if (GET_CODE (op) == SUBREG)
3984 {
3985 subreg = op;
3986 op = SUBREG_REG (op);
3987 mode = GET_MODE (op);
3988 }
3989
3990 if (GET_CODE (op) == PLUS)
3991 {
3992 plus = op;
3993 op = XEXP (op, 1);
3994 }
3995
3996 if (CONST_POOL_OK_P (mode, op)
3997 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3998 == NO_REGS)
3999 || no_input_reloads))
4000 {
4001 int this_address_reloaded;
4002 rtx tem = force_const_mem (mode, op);
4003
4004 /* If we stripped a SUBREG or a PLUS above add it back. */
4005 if (plus != NULL_RTX)
4006 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
4007
4008 if (subreg != NULL_RTX)
4009 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
4010
4011 this_address_reloaded = 0;
4012 substed_operand[i] = recog_data.operand[i]
4013 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
4014 0, insn, &this_address_reloaded);
4015
4016 /* If the alternative accepts constant pool refs directly
4017 there will be no reload needed at all. */
4018 if (plus == NULL_RTX
4019 && subreg == NULL_RTX
4020 && alternative_allows_const_pool_ref (this_address_reloaded == 0
4021 ? substed_operand[i]
4022 : NULL,
4023 recog_data.constraints[i],
4024 goal_alternative_number))
4025 goal_alternative_win[i] = 1;
4026 }
4027 }
4028
4029 /* Record the values of the earlyclobber operands for the caller. */
4030 if (goal_earlyclobber)
4031 for (i = 0; i < noperands; i++)
4032 if (goal_alternative_earlyclobber[i])
4033 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
4034
4035 /* Now record reloads for all the operands that need them. */
4036 for (i = 0; i < noperands; i++)
4037 if (! goal_alternative_win[i])
4038 {
4039 /* Operands that match previous ones have already been handled. */
4040 if (goal_alternative_matches[i] >= 0)
4041 ;
4042 /* Handle an operand with a nonoffsettable address
4043 appearing where an offsettable address will do
4044 by reloading the address into a base register.
4045
4046 ??? We can also do this when the operand is a register and
4047 reg_equiv_mem is not offsettable, but this is a bit tricky,
4048 so we don't bother with it. It may not be worth doing. */
4049 else if (goal_alternative_matched[i] == -1
4050 && goal_alternative_offmemok[i]
4051 && MEM_P (recog_data.operand[i]))
4052 {
4053 /* If the address to be reloaded is a VOIDmode constant,
4054 use the default address mode as mode of the reload register,
4055 as would have been done by find_reloads_address. */
4056 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4057 enum machine_mode address_mode;
4058
4059 address_mode = get_address_mode (recog_data.operand[i]);
4060 operand_reloadnum[i]
4061 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4062 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4063 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4064 address_mode,
4065 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4066 rld[operand_reloadnum[i]].inc
4067 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4068
4069 /* If this operand is an output, we will have made any
4070 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4071 now we are treating part of the operand as an input, so
4072 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4073
4074 if (modified[i] == RELOAD_WRITE)
4075 {
4076 for (j = 0; j < n_reloads; j++)
4077 {
4078 if (rld[j].opnum == i)
4079 {
4080 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4081 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4082 else if (rld[j].when_needed
4083 == RELOAD_FOR_OUTADDR_ADDRESS)
4084 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4085 }
4086 }
4087 }
4088 }
4089 else if (goal_alternative_matched[i] == -1)
4090 {
4091 operand_reloadnum[i]
4092 = push_reload ((modified[i] != RELOAD_WRITE
4093 ? recog_data.operand[i] : 0),
4094 (modified[i] != RELOAD_READ
4095 ? recog_data.operand[i] : 0),
4096 (modified[i] != RELOAD_WRITE
4097 ? recog_data.operand_loc[i] : 0),
4098 (modified[i] != RELOAD_READ
4099 ? recog_data.operand_loc[i] : 0),
4100 (enum reg_class) goal_alternative[i],
4101 (modified[i] == RELOAD_WRITE
4102 ? VOIDmode : operand_mode[i]),
4103 (modified[i] == RELOAD_READ
4104 ? VOIDmode : operand_mode[i]),
4105 (insn_code_number < 0 ? 0
4106 : insn_data[insn_code_number].operand[i].strict_low),
4107 0, i, operand_type[i]);
4108 }
4109 /* In a matching pair of operands, one must be input only
4110 and the other must be output only.
4111 Pass the input operand as IN and the other as OUT. */
4112 else if (modified[i] == RELOAD_READ
4113 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4114 {
4115 operand_reloadnum[i]
4116 = push_reload (recog_data.operand[i],
4117 recog_data.operand[goal_alternative_matched[i]],
4118 recog_data.operand_loc[i],
4119 recog_data.operand_loc[goal_alternative_matched[i]],
4120 (enum reg_class) goal_alternative[i],
4121 operand_mode[i],
4122 operand_mode[goal_alternative_matched[i]],
4123 0, 0, i, RELOAD_OTHER);
4124 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4125 }
4126 else if (modified[i] == RELOAD_WRITE
4127 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4128 {
4129 operand_reloadnum[goal_alternative_matched[i]]
4130 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4131 recog_data.operand[i],
4132 recog_data.operand_loc[goal_alternative_matched[i]],
4133 recog_data.operand_loc[i],
4134 (enum reg_class) goal_alternative[i],
4135 operand_mode[goal_alternative_matched[i]],
4136 operand_mode[i],
4137 0, 0, i, RELOAD_OTHER);
4138 operand_reloadnum[i] = output_reloadnum;
4139 }
4140 else
4141 {
4142 gcc_assert (insn_code_number < 0);
4143 error_for_asm (insn, "inconsistent operand constraints "
4144 "in an %<asm%>");
4145 /* Avoid further trouble with this insn. */
4146 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4147 n_reloads = 0;
4148 return 0;
4149 }
4150 }
4151 else if (goal_alternative_matched[i] < 0
4152 && goal_alternative_matches[i] < 0
4153 && address_operand_reloaded[i] != 1
4154 && optimize)
4155 {
4156 /* For each non-matching operand that's a MEM or a pseudo-register
4157 that didn't get a hard register, make an optional reload.
4158 This may get done even if the insn needs no reloads otherwise. */
4159
4160 rtx operand = recog_data.operand[i];
4161
4162 while (GET_CODE (operand) == SUBREG)
4163 operand = SUBREG_REG (operand);
4164 if ((MEM_P (operand)
4165 || (REG_P (operand)
4166 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4167 /* If this is only for an output, the optional reload would not
4168 actually cause us to use a register now, just note that
4169 something is stored here. */
4170 && (goal_alternative[i] != NO_REGS
4171 || modified[i] == RELOAD_WRITE)
4172 && ! no_input_reloads
4173 /* An optional output reload might allow to delete INSN later.
4174 We mustn't make in-out reloads on insns that are not permitted
4175 output reloads.
4176 If this is an asm, we can't delete it; we must not even call
4177 push_reload for an optional output reload in this case,
4178 because we can't be sure that the constraint allows a register,
4179 and push_reload verifies the constraints for asms. */
4180 && (modified[i] == RELOAD_READ
4181 || (! no_output_reloads && ! this_insn_is_asm)))
4182 operand_reloadnum[i]
4183 = push_reload ((modified[i] != RELOAD_WRITE
4184 ? recog_data.operand[i] : 0),
4185 (modified[i] != RELOAD_READ
4186 ? recog_data.operand[i] : 0),
4187 (modified[i] != RELOAD_WRITE
4188 ? recog_data.operand_loc[i] : 0),
4189 (modified[i] != RELOAD_READ
4190 ? recog_data.operand_loc[i] : 0),
4191 (enum reg_class) goal_alternative[i],
4192 (modified[i] == RELOAD_WRITE
4193 ? VOIDmode : operand_mode[i]),
4194 (modified[i] == RELOAD_READ
4195 ? VOIDmode : operand_mode[i]),
4196 (insn_code_number < 0 ? 0
4197 : insn_data[insn_code_number].operand[i].strict_low),
4198 1, i, operand_type[i]);
4199 /* If a memory reference remains (either as a MEM or a pseudo that
4200 did not get a hard register), yet we can't make an optional
4201 reload, check if this is actually a pseudo register reference;
4202 we then need to emit a USE and/or a CLOBBER so that reload
4203 inheritance will do the right thing. */
4204 else if (replace
4205 && (MEM_P (operand)
4206 || (REG_P (operand)
4207 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4208 && reg_renumber [REGNO (operand)] < 0)))
4209 {
4210 operand = *recog_data.operand_loc[i];
4211
4212 while (GET_CODE (operand) == SUBREG)
4213 operand = SUBREG_REG (operand);
4214 if (REG_P (operand))
4215 {
4216 if (modified[i] != RELOAD_WRITE)
4217 /* We mark the USE with QImode so that we recognize
4218 it as one that can be safely deleted at the end
4219 of reload. */
4220 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4221 insn), QImode);
4222 if (modified[i] != RELOAD_READ)
4223 emit_insn_after (gen_clobber (operand), insn);
4224 }
4225 }
4226 }
4227 else if (goal_alternative_matches[i] >= 0
4228 && goal_alternative_win[goal_alternative_matches[i]]
4229 && modified[i] == RELOAD_READ
4230 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4231 && ! no_input_reloads && ! no_output_reloads
4232 && optimize)
4233 {
4234 /* Similarly, make an optional reload for a pair of matching
4235 objects that are in MEM or a pseudo that didn't get a hard reg. */
4236
4237 rtx operand = recog_data.operand[i];
4238
4239 while (GET_CODE (operand) == SUBREG)
4240 operand = SUBREG_REG (operand);
4241 if ((MEM_P (operand)
4242 || (REG_P (operand)
4243 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4244 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4245 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4246 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4247 recog_data.operand[i],
4248 recog_data.operand_loc[goal_alternative_matches[i]],
4249 recog_data.operand_loc[i],
4250 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4251 operand_mode[goal_alternative_matches[i]],
4252 operand_mode[i],
4253 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4254 }
4255
4256 /* Perform whatever substitutions on the operands we are supposed
4257 to make due to commutativity or replacement of registers
4258 with equivalent constants or memory slots. */
4259
4260 for (i = 0; i < noperands; i++)
4261 {
4262 /* We only do this on the last pass through reload, because it is
4263 possible for some data (like reg_equiv_address) to be changed during
4264 later passes. Moreover, we lose the opportunity to get a useful
4265 reload_{in,out}_reg when we do these replacements. */
4266
4267 if (replace)
4268 {
4269 rtx substitution = substed_operand[i];
4270
4271 *recog_data.operand_loc[i] = substitution;
4272
4273 /* If we're replacing an operand with a LABEL_REF, we need to
4274 make sure that there's a REG_LABEL_OPERAND note attached to
4275 this instruction. */
4276 if (GET_CODE (substitution) == LABEL_REF
4277 && !find_reg_note (insn, REG_LABEL_OPERAND,
4278 XEXP (substitution, 0))
4279 /* For a JUMP_P, if it was a branch target it must have
4280 already been recorded as such. */
4281 && (!JUMP_P (insn)
4282 || !label_is_jump_target_p (XEXP (substitution, 0),
4283 insn)))
4284 {
4285 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4286 if (LABEL_P (XEXP (substitution, 0)))
4287 ++LABEL_NUSES (XEXP (substitution, 0));
4288 }
4289
4290 }
4291 else
4292 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4293 }
4294
4295 /* If this insn pattern contains any MATCH_DUP's, make sure that
4296 they will be substituted if the operands they match are substituted.
4297 Also do now any substitutions we already did on the operands.
4298
4299 Don't do this if we aren't making replacements because we might be
4300 propagating things allocated by frame pointer elimination into places
4301 it doesn't expect. */
4302
4303 if (insn_code_number >= 0 && replace)
4304 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4305 {
4306 int opno = recog_data.dup_num[i];
4307 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4308 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4309 }
4310
4311 #if 0
4312 /* This loses because reloading of prior insns can invalidate the equivalence
4313 (or at least find_equiv_reg isn't smart enough to find it any more),
4314 causing this insn to need more reload regs than it needed before.
4315 It may be too late to make the reload regs available.
4316 Now this optimization is done safely in choose_reload_regs. */
4317
4318 /* For each reload of a reg into some other class of reg,
4319 search for an existing equivalent reg (same value now) in the right class.
4320 We can use it as long as we don't need to change its contents. */
4321 for (i = 0; i < n_reloads; i++)
4322 if (rld[i].reg_rtx == 0
4323 && rld[i].in != 0
4324 && REG_P (rld[i].in)
4325 && rld[i].out == 0)
4326 {
4327 rld[i].reg_rtx
4328 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4329 static_reload_reg_p, 0, rld[i].inmode);
4330 /* Prevent generation of insn to load the value
4331 because the one we found already has the value. */
4332 if (rld[i].reg_rtx)
4333 rld[i].in = rld[i].reg_rtx;
4334 }
4335 #endif
4336
4337 /* If we detected error and replaced asm instruction by USE, forget about the
4338 reloads. */
4339 if (GET_CODE (PATTERN (insn)) == USE
4340 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4341 n_reloads = 0;
4342
4343 /* Perhaps an output reload can be combined with another
4344 to reduce needs by one. */
4345 if (!goal_earlyclobber)
4346 combine_reloads ();
4347
4348 /* If we have a pair of reloads for parts of an address, they are reloading
4349 the same object, the operands themselves were not reloaded, and they
4350 are for two operands that are supposed to match, merge the reloads and
4351 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4352
4353 for (i = 0; i < n_reloads; i++)
4354 {
4355 int k;
4356
4357 for (j = i + 1; j < n_reloads; j++)
4358 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4359 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4360 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4361 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4362 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4363 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4364 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4365 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4366 && rtx_equal_p (rld[i].in, rld[j].in)
4367 && (operand_reloadnum[rld[i].opnum] < 0
4368 || rld[operand_reloadnum[rld[i].opnum]].optional)
4369 && (operand_reloadnum[rld[j].opnum] < 0
4370 || rld[operand_reloadnum[rld[j].opnum]].optional)
4371 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4372 || (goal_alternative_matches[rld[j].opnum]
4373 == rld[i].opnum)))
4374 {
4375 for (k = 0; k < n_replacements; k++)
4376 if (replacements[k].what == j)
4377 replacements[k].what = i;
4378
4379 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4380 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4381 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4382 else
4383 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4384 rld[j].in = 0;
4385 }
4386 }
4387
4388 /* Scan all the reloads and update their type.
4389 If a reload is for the address of an operand and we didn't reload
4390 that operand, change the type. Similarly, change the operand number
4391 of a reload when two operands match. If a reload is optional, treat it
4392 as though the operand isn't reloaded.
4393
4394 ??? This latter case is somewhat odd because if we do the optional
4395 reload, it means the object is hanging around. Thus we need only
4396 do the address reload if the optional reload was NOT done.
4397
4398 Change secondary reloads to be the address type of their operand, not
4399 the normal type.
4400
4401 If an operand's reload is now RELOAD_OTHER, change any
4402 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4403 RELOAD_FOR_OTHER_ADDRESS. */
4404
4405 for (i = 0; i < n_reloads; i++)
4406 {
4407 if (rld[i].secondary_p
4408 && rld[i].when_needed == operand_type[rld[i].opnum])
4409 rld[i].when_needed = address_type[rld[i].opnum];
4410
4411 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4412 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4413 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4414 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4415 && (operand_reloadnum[rld[i].opnum] < 0
4416 || rld[operand_reloadnum[rld[i].opnum]].optional))
4417 {
4418 /* If we have a secondary reload to go along with this reload,
4419 change its type to RELOAD_FOR_OPADDR_ADDR. */
4420
4421 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4422 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4423 && rld[i].secondary_in_reload != -1)
4424 {
4425 int secondary_in_reload = rld[i].secondary_in_reload;
4426
4427 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4428
4429 /* If there's a tertiary reload we have to change it also. */
4430 if (secondary_in_reload > 0
4431 && rld[secondary_in_reload].secondary_in_reload != -1)
4432 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4433 = RELOAD_FOR_OPADDR_ADDR;
4434 }
4435
4436 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4437 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4438 && rld[i].secondary_out_reload != -1)
4439 {
4440 int secondary_out_reload = rld[i].secondary_out_reload;
4441
4442 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4443
4444 /* If there's a tertiary reload we have to change it also. */
4445 if (secondary_out_reload
4446 && rld[secondary_out_reload].secondary_out_reload != -1)
4447 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4448 = RELOAD_FOR_OPADDR_ADDR;
4449 }
4450
4451 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4452 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4453 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4454 else
4455 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4456 }
4457
4458 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4459 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4460 && operand_reloadnum[rld[i].opnum] >= 0
4461 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4462 == RELOAD_OTHER))
4463 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4464
4465 if (goal_alternative_matches[rld[i].opnum] >= 0)
4466 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4467 }
4468
4469 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4470 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4471 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4472
4473 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4474 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4475 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4476 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4477 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4478 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4479 This is complicated by the fact that a single operand can have more
4480 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4481 choose_reload_regs without affecting code quality, and cases that
4482 actually fail are extremely rare, so it turns out to be better to fix
4483 the problem here by not generating cases that choose_reload_regs will
4484 fail for. */
4485 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4486 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4487 a single operand.
4488 We can reduce the register pressure by exploiting that a
4489 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4490 does not conflict with any of them, if it is only used for the first of
4491 the RELOAD_FOR_X_ADDRESS reloads. */
4492 {
4493 int first_op_addr_num = -2;
4494 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4495 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4496 int need_change = 0;
4497 /* We use last_op_addr_reload and the contents of the above arrays
4498 first as flags - -2 means no instance encountered, -1 means exactly
4499 one instance encountered.
4500 If more than one instance has been encountered, we store the reload
4501 number of the first reload of the kind in question; reload numbers
4502 are known to be non-negative. */
4503 for (i = 0; i < noperands; i++)
4504 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4505 for (i = n_reloads - 1; i >= 0; i--)
4506 {
4507 switch (rld[i].when_needed)
4508 {
4509 case RELOAD_FOR_OPERAND_ADDRESS:
4510 if (++first_op_addr_num >= 0)
4511 {
4512 first_op_addr_num = i;
4513 need_change = 1;
4514 }
4515 break;
4516 case RELOAD_FOR_INPUT_ADDRESS:
4517 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4518 {
4519 first_inpaddr_num[rld[i].opnum] = i;
4520 need_change = 1;
4521 }
4522 break;
4523 case RELOAD_FOR_OUTPUT_ADDRESS:
4524 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4525 {
4526 first_outpaddr_num[rld[i].opnum] = i;
4527 need_change = 1;
4528 }
4529 break;
4530 default:
4531 break;
4532 }
4533 }
4534
4535 if (need_change)
4536 {
4537 for (i = 0; i < n_reloads; i++)
4538 {
4539 int first_num;
4540 enum reload_type type;
4541
4542 switch (rld[i].when_needed)
4543 {
4544 case RELOAD_FOR_OPADDR_ADDR:
4545 first_num = first_op_addr_num;
4546 type = RELOAD_FOR_OPERAND_ADDRESS;
4547 break;
4548 case RELOAD_FOR_INPADDR_ADDRESS:
4549 first_num = first_inpaddr_num[rld[i].opnum];
4550 type = RELOAD_FOR_INPUT_ADDRESS;
4551 break;
4552 case RELOAD_FOR_OUTADDR_ADDRESS:
4553 first_num = first_outpaddr_num[rld[i].opnum];
4554 type = RELOAD_FOR_OUTPUT_ADDRESS;
4555 break;
4556 default:
4557 continue;
4558 }
4559 if (first_num < 0)
4560 continue;
4561 else if (i > first_num)
4562 rld[i].when_needed = type;
4563 else
4564 {
4565 /* Check if the only TYPE reload that uses reload I is
4566 reload FIRST_NUM. */
4567 for (j = n_reloads - 1; j > first_num; j--)
4568 {
4569 if (rld[j].when_needed == type
4570 && (rld[i].secondary_p
4571 ? rld[j].secondary_in_reload == i
4572 : reg_mentioned_p (rld[i].in, rld[j].in)))
4573 {
4574 rld[i].when_needed = type;
4575 break;
4576 }
4577 }
4578 }
4579 }
4580 }
4581 }
4582
4583 /* See if we have any reloads that are now allowed to be merged
4584 because we've changed when the reload is needed to
4585 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4586 check for the most common cases. */
4587
4588 for (i = 0; i < n_reloads; i++)
4589 if (rld[i].in != 0 && rld[i].out == 0
4590 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4591 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4592 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4593 for (j = 0; j < n_reloads; j++)
4594 if (i != j && rld[j].in != 0 && rld[j].out == 0
4595 && rld[j].when_needed == rld[i].when_needed
4596 && MATCHES (rld[i].in, rld[j].in)
4597 && rld[i].rclass == rld[j].rclass
4598 && !rld[i].nocombine && !rld[j].nocombine
4599 && rld[i].reg_rtx == rld[j].reg_rtx)
4600 {
4601 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4602 transfer_replacements (i, j);
4603 rld[j].in = 0;
4604 }
4605
4606 #ifdef HAVE_cc0
4607 /* If we made any reloads for addresses, see if they violate a
4608 "no input reloads" requirement for this insn. But loads that we
4609 do after the insn (such as for output addresses) are fine. */
4610 if (no_input_reloads)
4611 for (i = 0; i < n_reloads; i++)
4612 gcc_assert (rld[i].in == 0
4613 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4614 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4615 #endif
4616
4617 /* Compute reload_mode and reload_nregs. */
4618 for (i = 0; i < n_reloads; i++)
4619 {
4620 rld[i].mode
4621 = (rld[i].inmode == VOIDmode
4622 || (GET_MODE_SIZE (rld[i].outmode)
4623 > GET_MODE_SIZE (rld[i].inmode)))
4624 ? rld[i].outmode : rld[i].inmode;
4625
4626 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4627 }
4628
4629 /* Special case a simple move with an input reload and a
4630 destination of a hard reg, if the hard reg is ok, use it. */
4631 for (i = 0; i < n_reloads; i++)
4632 if (rld[i].when_needed == RELOAD_FOR_INPUT
4633 && GET_CODE (PATTERN (insn)) == SET
4634 && REG_P (SET_DEST (PATTERN (insn)))
4635 && (SET_SRC (PATTERN (insn)) == rld[i].in
4636 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4637 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4638 {
4639 rtx dest = SET_DEST (PATTERN (insn));
4640 unsigned int regno = REGNO (dest);
4641
4642 if (regno < FIRST_PSEUDO_REGISTER
4643 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4644 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4645 {
4646 int nr = hard_regno_nregs[regno][rld[i].mode];
4647 int ok = 1, nri;
4648
4649 for (nri = 1; nri < nr; nri ++)
4650 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4651 {
4652 ok = 0;
4653 break;
4654 }
4655
4656 if (ok)
4657 rld[i].reg_rtx = dest;
4658 }
4659 }
4660
4661 return retval;
4662 }
4663
4664 /* Return true if alternative number ALTNUM in constraint-string
4665 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4666 MEM gives the reference if it didn't need any reloads, otherwise it
4667 is null. */
4668
4669 static bool
4670 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4671 const char *constraint, int altnum)
4672 {
4673 int c;
4674
4675 /* Skip alternatives before the one requested. */
4676 while (altnum > 0)
4677 {
4678 while (*constraint++ != ',')
4679 ;
4680 altnum--;
4681 }
4682 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4683 If one of them is present, this alternative accepts the result of
4684 passing a constant-pool reference through find_reloads_toplev.
4685
4686 The same is true of extra memory constraints if the address
4687 was reloaded into a register. However, the target may elect
4688 to disallow the original constant address, forcing it to be
4689 reloaded into a register instead. */
4690 for (; (c = *constraint) && c != ',' && c != '#';
4691 constraint += CONSTRAINT_LEN (c, constraint))
4692 {
4693 if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4694 return true;
4695 enum constraint_num cn = lookup_constraint (constraint);
4696 if (insn_extra_memory_constraint (cn)
4697 && (mem == NULL || constraint_satisfied_p (mem, cn)))
4698 return true;
4699 }
4700 return false;
4701 }
4702 \f
4703 /* Scan X for memory references and scan the addresses for reloading.
4704 Also checks for references to "constant" regs that we want to eliminate
4705 and replaces them with the values they stand for.
4706 We may alter X destructively if it contains a reference to such.
4707 If X is just a constant reg, we return the equivalent value
4708 instead of X.
4709
4710 IND_LEVELS says how many levels of indirect addressing this machine
4711 supports.
4712
4713 OPNUM and TYPE identify the purpose of the reload.
4714
4715 IS_SET_DEST is true if X is the destination of a SET, which is not
4716 appropriate to be replaced by a constant.
4717
4718 INSN, if nonzero, is the insn in which we do the reload. It is used
4719 to determine if we may generate output reloads, and where to put USEs
4720 for pseudos that we have to replace with stack slots.
4721
4722 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4723 result of find_reloads_address. */
4724
4725 static rtx
4726 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4727 int ind_levels, int is_set_dest, rtx insn,
4728 int *address_reloaded)
4729 {
4730 RTX_CODE code = GET_CODE (x);
4731
4732 const char *fmt = GET_RTX_FORMAT (code);
4733 int i;
4734 int copied;
4735
4736 if (code == REG)
4737 {
4738 /* This code is duplicated for speed in find_reloads. */
4739 int regno = REGNO (x);
4740 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4741 x = reg_equiv_constant (regno);
4742 #if 0
4743 /* This creates (subreg (mem...)) which would cause an unnecessary
4744 reload of the mem. */
4745 else if (reg_equiv_mem (regno) != 0)
4746 x = reg_equiv_mem (regno);
4747 #endif
4748 else if (reg_equiv_memory_loc (regno)
4749 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4750 {
4751 rtx mem = make_memloc (x, regno);
4752 if (reg_equiv_address (regno)
4753 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4754 {
4755 /* If this is not a toplevel operand, find_reloads doesn't see
4756 this substitution. We have to emit a USE of the pseudo so
4757 that delete_output_reload can see it. */
4758 if (replace_reloads && recog_data.operand[opnum] != x)
4759 /* We mark the USE with QImode so that we recognize it
4760 as one that can be safely deleted at the end of
4761 reload. */
4762 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4763 QImode);
4764 x = mem;
4765 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4766 opnum, type, ind_levels, insn);
4767 if (!rtx_equal_p (x, mem))
4768 push_reg_equiv_alt_mem (regno, x);
4769 if (address_reloaded)
4770 *address_reloaded = i;
4771 }
4772 }
4773 return x;
4774 }
4775 if (code == MEM)
4776 {
4777 rtx tem = x;
4778
4779 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4780 opnum, type, ind_levels, insn);
4781 if (address_reloaded)
4782 *address_reloaded = i;
4783
4784 return tem;
4785 }
4786
4787 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4788 {
4789 /* Check for SUBREG containing a REG that's equivalent to a
4790 constant. If the constant has a known value, truncate it
4791 right now. Similarly if we are extracting a single-word of a
4792 multi-word constant. If the constant is symbolic, allow it
4793 to be substituted normally. push_reload will strip the
4794 subreg later. The constant must not be VOIDmode, because we
4795 will lose the mode of the register (this should never happen
4796 because one of the cases above should handle it). */
4797
4798 int regno = REGNO (SUBREG_REG (x));
4799 rtx tem;
4800
4801 if (regno >= FIRST_PSEUDO_REGISTER
4802 && reg_renumber[regno] < 0
4803 && reg_equiv_constant (regno) != 0)
4804 {
4805 tem =
4806 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4807 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4808 gcc_assert (tem);
4809 if (CONSTANT_P (tem)
4810 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4811 {
4812 tem = force_const_mem (GET_MODE (x), tem);
4813 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4814 &XEXP (tem, 0), opnum, type,
4815 ind_levels, insn);
4816 if (address_reloaded)
4817 *address_reloaded = i;
4818 }
4819 return tem;
4820 }
4821
4822 /* If the subreg contains a reg that will be converted to a mem,
4823 attempt to convert the whole subreg to a (narrower or wider)
4824 memory reference instead. If this succeeds, we're done --
4825 otherwise fall through to check whether the inner reg still
4826 needs address reloads anyway. */
4827
4828 if (regno >= FIRST_PSEUDO_REGISTER
4829 && reg_equiv_memory_loc (regno) != 0)
4830 {
4831 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4832 insn, address_reloaded);
4833 if (tem)
4834 return tem;
4835 }
4836 }
4837
4838 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4839 {
4840 if (fmt[i] == 'e')
4841 {
4842 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4843 ind_levels, is_set_dest, insn,
4844 address_reloaded);
4845 /* If we have replaced a reg with it's equivalent memory loc -
4846 that can still be handled here e.g. if it's in a paradoxical
4847 subreg - we must make the change in a copy, rather than using
4848 a destructive change. This way, find_reloads can still elect
4849 not to do the change. */
4850 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4851 {
4852 x = shallow_copy_rtx (x);
4853 copied = 1;
4854 }
4855 XEXP (x, i) = new_part;
4856 }
4857 }
4858 return x;
4859 }
4860
4861 /* Return a mem ref for the memory equivalent of reg REGNO.
4862 This mem ref is not shared with anything. */
4863
4864 static rtx
4865 make_memloc (rtx ad, int regno)
4866 {
4867 /* We must rerun eliminate_regs, in case the elimination
4868 offsets have changed. */
4869 rtx tem
4870 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4871 0);
4872
4873 /* If TEM might contain a pseudo, we must copy it to avoid
4874 modifying it when we do the substitution for the reload. */
4875 if (rtx_varies_p (tem, 0))
4876 tem = copy_rtx (tem);
4877
4878 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4879 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4880
4881 /* Copy the result if it's still the same as the equivalence, to avoid
4882 modifying it when we do the substitution for the reload. */
4883 if (tem == reg_equiv_memory_loc (regno))
4884 tem = copy_rtx (tem);
4885 return tem;
4886 }
4887
4888 /* Returns true if AD could be turned into a valid memory reference
4889 to mode MODE in address space AS by reloading the part pointed to
4890 by PART into a register. */
4891
4892 static int
4893 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4894 addr_space_t as, rtx *part)
4895 {
4896 int retv;
4897 rtx tem = *part;
4898 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4899
4900 *part = reg;
4901 retv = memory_address_addr_space_p (mode, ad, as);
4902 *part = tem;
4903
4904 return retv;
4905 }
4906
4907 /* Record all reloads needed for handling memory address AD
4908 which appears in *LOC in a memory reference to mode MODE
4909 which itself is found in location *MEMREFLOC.
4910 Note that we take shortcuts assuming that no multi-reg machine mode
4911 occurs as part of an address.
4912
4913 OPNUM and TYPE specify the purpose of this reload.
4914
4915 IND_LEVELS says how many levels of indirect addressing this machine
4916 supports.
4917
4918 INSN, if nonzero, is the insn in which we do the reload. It is used
4919 to determine if we may generate output reloads, and where to put USEs
4920 for pseudos that we have to replace with stack slots.
4921
4922 Value is one if this address is reloaded or replaced as a whole; it is
4923 zero if the top level of this address was not reloaded or replaced, and
4924 it is -1 if it may or may not have been reloaded or replaced.
4925
4926 Note that there is no verification that the address will be valid after
4927 this routine does its work. Instead, we rely on the fact that the address
4928 was valid when reload started. So we need only undo things that reload
4929 could have broken. These are wrong register types, pseudos not allocated
4930 to a hard register, and frame pointer elimination. */
4931
4932 static int
4933 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4934 rtx *loc, int opnum, enum reload_type type,
4935 int ind_levels, rtx insn)
4936 {
4937 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4938 : ADDR_SPACE_GENERIC;
4939 int regno;
4940 int removed_and = 0;
4941 int op_index;
4942 rtx tem;
4943
4944 /* If the address is a register, see if it is a legitimate address and
4945 reload if not. We first handle the cases where we need not reload
4946 or where we must reload in a non-standard way. */
4947
4948 if (REG_P (ad))
4949 {
4950 regno = REGNO (ad);
4951
4952 if (reg_equiv_constant (regno) != 0)
4953 {
4954 find_reloads_address_part (reg_equiv_constant (regno), loc,
4955 base_reg_class (mode, as, MEM, SCRATCH),
4956 GET_MODE (ad), opnum, type, ind_levels);
4957 return 1;
4958 }
4959
4960 tem = reg_equiv_memory_loc (regno);
4961 if (tem != 0)
4962 {
4963 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4964 {
4965 tem = make_memloc (ad, regno);
4966 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4967 XEXP (tem, 0),
4968 MEM_ADDR_SPACE (tem)))
4969 {
4970 rtx orig = tem;
4971
4972 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4973 &XEXP (tem, 0), opnum,
4974 ADDR_TYPE (type), ind_levels, insn);
4975 if (!rtx_equal_p (tem, orig))
4976 push_reg_equiv_alt_mem (regno, tem);
4977 }
4978 /* We can avoid a reload if the register's equivalent memory
4979 expression is valid as an indirect memory address.
4980 But not all addresses are valid in a mem used as an indirect
4981 address: only reg or reg+constant. */
4982
4983 if (ind_levels > 0
4984 && strict_memory_address_addr_space_p (mode, tem, as)
4985 && (REG_P (XEXP (tem, 0))
4986 || (GET_CODE (XEXP (tem, 0)) == PLUS
4987 && REG_P (XEXP (XEXP (tem, 0), 0))
4988 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4989 {
4990 /* TEM is not the same as what we'll be replacing the
4991 pseudo with after reload, put a USE in front of INSN
4992 in the final reload pass. */
4993 if (replace_reloads
4994 && num_not_at_initial_offset
4995 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4996 {
4997 *loc = tem;
4998 /* We mark the USE with QImode so that we
4999 recognize it as one that can be safely
5000 deleted at the end of reload. */
5001 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
5002 insn), QImode);
5003
5004 /* This doesn't really count as replacing the address
5005 as a whole, since it is still a memory access. */
5006 }
5007 return 0;
5008 }
5009 ad = tem;
5010 }
5011 }
5012
5013 /* The only remaining case where we can avoid a reload is if this is a
5014 hard register that is valid as a base register and which is not the
5015 subject of a CLOBBER in this insn. */
5016
5017 else if (regno < FIRST_PSEUDO_REGISTER
5018 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
5019 && ! regno_clobbered_p (regno, this_insn, mode, 0))
5020 return 0;
5021
5022 /* If we do not have one of the cases above, we must do the reload. */
5023 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
5024 base_reg_class (mode, as, MEM, SCRATCH),
5025 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
5026 return 1;
5027 }
5028
5029 if (strict_memory_address_addr_space_p (mode, ad, as))
5030 {
5031 /* The address appears valid, so reloads are not needed.
5032 But the address may contain an eliminable register.
5033 This can happen because a machine with indirect addressing
5034 may consider a pseudo register by itself a valid address even when
5035 it has failed to get a hard reg.
5036 So do a tree-walk to find and eliminate all such regs. */
5037
5038 /* But first quickly dispose of a common case. */
5039 if (GET_CODE (ad) == PLUS
5040 && CONST_INT_P (XEXP (ad, 1))
5041 && REG_P (XEXP (ad, 0))
5042 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
5043 return 0;
5044
5045 subst_reg_equivs_changed = 0;
5046 *loc = subst_reg_equivs (ad, insn);
5047
5048 if (! subst_reg_equivs_changed)
5049 return 0;
5050
5051 /* Check result for validity after substitution. */
5052 if (strict_memory_address_addr_space_p (mode, ad, as))
5053 return 0;
5054 }
5055
5056 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5057 do
5058 {
5059 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5060 {
5061 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5062 ind_levels, win);
5063 }
5064 break;
5065 win:
5066 *memrefloc = copy_rtx (*memrefloc);
5067 XEXP (*memrefloc, 0) = ad;
5068 move_replacements (&ad, &XEXP (*memrefloc, 0));
5069 return -1;
5070 }
5071 while (0);
5072 #endif
5073
5074 /* The address is not valid. We have to figure out why. First see if
5075 we have an outer AND and remove it if so. Then analyze what's inside. */
5076
5077 if (GET_CODE (ad) == AND)
5078 {
5079 removed_and = 1;
5080 loc = &XEXP (ad, 0);
5081 ad = *loc;
5082 }
5083
5084 /* One possibility for why the address is invalid is that it is itself
5085 a MEM. This can happen when the frame pointer is being eliminated, a
5086 pseudo is not allocated to a hard register, and the offset between the
5087 frame and stack pointers is not its initial value. In that case the
5088 pseudo will have been replaced by a MEM referring to the
5089 stack pointer. */
5090 if (MEM_P (ad))
5091 {
5092 /* First ensure that the address in this MEM is valid. Then, unless
5093 indirect addresses are valid, reload the MEM into a register. */
5094 tem = ad;
5095 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5096 opnum, ADDR_TYPE (type),
5097 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5098
5099 /* If tem was changed, then we must create a new memory reference to
5100 hold it and store it back into memrefloc. */
5101 if (tem != ad && memrefloc)
5102 {
5103 *memrefloc = copy_rtx (*memrefloc);
5104 copy_replacements (tem, XEXP (*memrefloc, 0));
5105 loc = &XEXP (*memrefloc, 0);
5106 if (removed_and)
5107 loc = &XEXP (*loc, 0);
5108 }
5109
5110 /* Check similar cases as for indirect addresses as above except
5111 that we can allow pseudos and a MEM since they should have been
5112 taken care of above. */
5113
5114 if (ind_levels == 0
5115 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5116 || MEM_P (XEXP (tem, 0))
5117 || ! (REG_P (XEXP (tem, 0))
5118 || (GET_CODE (XEXP (tem, 0)) == PLUS
5119 && REG_P (XEXP (XEXP (tem, 0), 0))
5120 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5121 {
5122 /* Must use TEM here, not AD, since it is the one that will
5123 have any subexpressions reloaded, if needed. */
5124 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5125 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5126 VOIDmode, 0,
5127 0, opnum, type);
5128 return ! removed_and;
5129 }
5130 else
5131 return 0;
5132 }
5133
5134 /* If we have address of a stack slot but it's not valid because the
5135 displacement is too large, compute the sum in a register.
5136 Handle all base registers here, not just fp/ap/sp, because on some
5137 targets (namely SH) we can also get too large displacements from
5138 big-endian corrections. */
5139 else if (GET_CODE (ad) == PLUS
5140 && REG_P (XEXP (ad, 0))
5141 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5142 && CONST_INT_P (XEXP (ad, 1))
5143 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5144 CONST_INT)
5145 /* Similarly, if we were to reload the base register and the
5146 mem+offset address is still invalid, then we want to reload
5147 the whole address, not just the base register. */
5148 || ! maybe_memory_address_addr_space_p
5149 (mode, ad, as, &(XEXP (ad, 0)))))
5150
5151 {
5152 /* Unshare the MEM rtx so we can safely alter it. */
5153 if (memrefloc)
5154 {
5155 *memrefloc = copy_rtx (*memrefloc);
5156 loc = &XEXP (*memrefloc, 0);
5157 if (removed_and)
5158 loc = &XEXP (*loc, 0);
5159 }
5160
5161 if (double_reg_address_ok
5162 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5163 PLUS, CONST_INT))
5164 {
5165 /* Unshare the sum as well. */
5166 *loc = ad = copy_rtx (ad);
5167
5168 /* Reload the displacement into an index reg.
5169 We assume the frame pointer or arg pointer is a base reg. */
5170 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5171 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5172 type, ind_levels);
5173 return 0;
5174 }
5175 else
5176 {
5177 /* If the sum of two regs is not necessarily valid,
5178 reload the sum into a base reg.
5179 That will at least work. */
5180 find_reloads_address_part (ad, loc,
5181 base_reg_class (mode, as, MEM, SCRATCH),
5182 GET_MODE (ad), opnum, type, ind_levels);
5183 }
5184 return ! removed_and;
5185 }
5186
5187 /* If we have an indexed stack slot, there are three possible reasons why
5188 it might be invalid: The index might need to be reloaded, the address
5189 might have been made by frame pointer elimination and hence have a
5190 constant out of range, or both reasons might apply.
5191
5192 We can easily check for an index needing reload, but even if that is the
5193 case, we might also have an invalid constant. To avoid making the
5194 conservative assumption and requiring two reloads, we see if this address
5195 is valid when not interpreted strictly. If it is, the only problem is
5196 that the index needs a reload and find_reloads_address_1 will take care
5197 of it.
5198
5199 Handle all base registers here, not just fp/ap/sp, because on some
5200 targets (namely SPARC) we can also get invalid addresses from preventive
5201 subreg big-endian corrections made by find_reloads_toplev. We
5202 can also get expressions involving LO_SUM (rather than PLUS) from
5203 find_reloads_subreg_address.
5204
5205 If we decide to do something, it must be that `double_reg_address_ok'
5206 is true. We generate a reload of the base register + constant and
5207 rework the sum so that the reload register will be added to the index.
5208 This is safe because we know the address isn't shared.
5209
5210 We check for the base register as both the first and second operand of
5211 the innermost PLUS and/or LO_SUM. */
5212
5213 for (op_index = 0; op_index < 2; ++op_index)
5214 {
5215 rtx operand, addend;
5216 enum rtx_code inner_code;
5217
5218 if (GET_CODE (ad) != PLUS)
5219 continue;
5220
5221 inner_code = GET_CODE (XEXP (ad, 0));
5222 if (!(GET_CODE (ad) == PLUS
5223 && CONST_INT_P (XEXP (ad, 1))
5224 && (inner_code == PLUS || inner_code == LO_SUM)))
5225 continue;
5226
5227 operand = XEXP (XEXP (ad, 0), op_index);
5228 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5229 continue;
5230
5231 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5232
5233 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5234 GET_CODE (addend))
5235 || operand == frame_pointer_rtx
5236 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5237 || operand == hard_frame_pointer_rtx
5238 #endif
5239 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5240 || operand == arg_pointer_rtx
5241 #endif
5242 || operand == stack_pointer_rtx)
5243 && ! maybe_memory_address_addr_space_p
5244 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5245 {
5246 rtx offset_reg;
5247 enum reg_class cls;
5248
5249 offset_reg = plus_constant (GET_MODE (ad), operand,
5250 INTVAL (XEXP (ad, 1)));
5251
5252 /* Form the adjusted address. */
5253 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5254 ad = gen_rtx_PLUS (GET_MODE (ad),
5255 op_index == 0 ? offset_reg : addend,
5256 op_index == 0 ? addend : offset_reg);
5257 else
5258 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5259 op_index == 0 ? offset_reg : addend,
5260 op_index == 0 ? addend : offset_reg);
5261 *loc = ad;
5262
5263 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5264 find_reloads_address_part (XEXP (ad, op_index),
5265 &XEXP (ad, op_index), cls,
5266 GET_MODE (ad), opnum, type, ind_levels);
5267 find_reloads_address_1 (mode, as,
5268 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5269 GET_CODE (XEXP (ad, op_index)),
5270 &XEXP (ad, 1 - op_index), opnum,
5271 type, 0, insn);
5272
5273 return 0;
5274 }
5275 }
5276
5277 /* See if address becomes valid when an eliminable register
5278 in a sum is replaced. */
5279
5280 tem = ad;
5281 if (GET_CODE (ad) == PLUS)
5282 tem = subst_indexed_address (ad);
5283 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5284 {
5285 /* Ok, we win that way. Replace any additional eliminable
5286 registers. */
5287
5288 subst_reg_equivs_changed = 0;
5289 tem = subst_reg_equivs (tem, insn);
5290
5291 /* Make sure that didn't make the address invalid again. */
5292
5293 if (! subst_reg_equivs_changed
5294 || strict_memory_address_addr_space_p (mode, tem, as))
5295 {
5296 *loc = tem;
5297 return 0;
5298 }
5299 }
5300
5301 /* If constants aren't valid addresses, reload the constant address
5302 into a register. */
5303 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5304 {
5305 enum machine_mode address_mode = GET_MODE (ad);
5306 if (address_mode == VOIDmode)
5307 address_mode = targetm.addr_space.address_mode (as);
5308
5309 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5310 Unshare it so we can safely alter it. */
5311 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5312 && CONSTANT_POOL_ADDRESS_P (ad))
5313 {
5314 *memrefloc = copy_rtx (*memrefloc);
5315 loc = &XEXP (*memrefloc, 0);
5316 if (removed_and)
5317 loc = &XEXP (*loc, 0);
5318 }
5319
5320 find_reloads_address_part (ad, loc,
5321 base_reg_class (mode, as, MEM, SCRATCH),
5322 address_mode, opnum, type, ind_levels);
5323 return ! removed_and;
5324 }
5325
5326 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5327 opnum, type, ind_levels, insn);
5328 }
5329 \f
5330 /* Find all pseudo regs appearing in AD
5331 that are eliminable in favor of equivalent values
5332 and do not have hard regs; replace them by their equivalents.
5333 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5334 front of it for pseudos that we have to replace with stack slots. */
5335
5336 static rtx
5337 subst_reg_equivs (rtx ad, rtx insn)
5338 {
5339 RTX_CODE code = GET_CODE (ad);
5340 int i;
5341 const char *fmt;
5342
5343 switch (code)
5344 {
5345 case HIGH:
5346 case CONST:
5347 CASE_CONST_ANY:
5348 case SYMBOL_REF:
5349 case LABEL_REF:
5350 case PC:
5351 case CC0:
5352 return ad;
5353
5354 case REG:
5355 {
5356 int regno = REGNO (ad);
5357
5358 if (reg_equiv_constant (regno) != 0)
5359 {
5360 subst_reg_equivs_changed = 1;
5361 return reg_equiv_constant (regno);
5362 }
5363 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5364 {
5365 rtx mem = make_memloc (ad, regno);
5366 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5367 {
5368 subst_reg_equivs_changed = 1;
5369 /* We mark the USE with QImode so that we recognize it
5370 as one that can be safely deleted at the end of
5371 reload. */
5372 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5373 QImode);
5374 return mem;
5375 }
5376 }
5377 }
5378 return ad;
5379
5380 case PLUS:
5381 /* Quickly dispose of a common case. */
5382 if (XEXP (ad, 0) == frame_pointer_rtx
5383 && CONST_INT_P (XEXP (ad, 1)))
5384 return ad;
5385 break;
5386
5387 default:
5388 break;
5389 }
5390
5391 fmt = GET_RTX_FORMAT (code);
5392 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5393 if (fmt[i] == 'e')
5394 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5395 return ad;
5396 }
5397 \f
5398 /* Compute the sum of X and Y, making canonicalizations assumed in an
5399 address, namely: sum constant integers, surround the sum of two
5400 constants with a CONST, put the constant as the second operand, and
5401 group the constant on the outermost sum.
5402
5403 This routine assumes both inputs are already in canonical form. */
5404
5405 rtx
5406 form_sum (enum machine_mode mode, rtx x, rtx y)
5407 {
5408 rtx tem;
5409
5410 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5411 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5412
5413 if (CONST_INT_P (x))
5414 return plus_constant (mode, y, INTVAL (x));
5415 else if (CONST_INT_P (y))
5416 return plus_constant (mode, x, INTVAL (y));
5417 else if (CONSTANT_P (x))
5418 tem = x, x = y, y = tem;
5419
5420 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5421 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5422
5423 /* Note that if the operands of Y are specified in the opposite
5424 order in the recursive calls below, infinite recursion will occur. */
5425 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5426 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5427
5428 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5429 constant will have been placed second. */
5430 if (CONSTANT_P (x) && CONSTANT_P (y))
5431 {
5432 if (GET_CODE (x) == CONST)
5433 x = XEXP (x, 0);
5434 if (GET_CODE (y) == CONST)
5435 y = XEXP (y, 0);
5436
5437 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5438 }
5439
5440 return gen_rtx_PLUS (mode, x, y);
5441 }
5442 \f
5443 /* If ADDR is a sum containing a pseudo register that should be
5444 replaced with a constant (from reg_equiv_constant),
5445 return the result of doing so, and also apply the associative
5446 law so that the result is more likely to be a valid address.
5447 (But it is not guaranteed to be one.)
5448
5449 Note that at most one register is replaced, even if more are
5450 replaceable. Also, we try to put the result into a canonical form
5451 so it is more likely to be a valid address.
5452
5453 In all other cases, return ADDR. */
5454
5455 static rtx
5456 subst_indexed_address (rtx addr)
5457 {
5458 rtx op0 = 0, op1 = 0, op2 = 0;
5459 rtx tem;
5460 int regno;
5461
5462 if (GET_CODE (addr) == PLUS)
5463 {
5464 /* Try to find a register to replace. */
5465 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5466 if (REG_P (op0)
5467 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5468 && reg_renumber[regno] < 0
5469 && reg_equiv_constant (regno) != 0)
5470 op0 = reg_equiv_constant (regno);
5471 else if (REG_P (op1)
5472 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5473 && reg_renumber[regno] < 0
5474 && reg_equiv_constant (regno) != 0)
5475 op1 = reg_equiv_constant (regno);
5476 else if (GET_CODE (op0) == PLUS
5477 && (tem = subst_indexed_address (op0)) != op0)
5478 op0 = tem;
5479 else if (GET_CODE (op1) == PLUS
5480 && (tem = subst_indexed_address (op1)) != op1)
5481 op1 = tem;
5482 else
5483 return addr;
5484
5485 /* Pick out up to three things to add. */
5486 if (GET_CODE (op1) == PLUS)
5487 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5488 else if (GET_CODE (op0) == PLUS)
5489 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5490
5491 /* Compute the sum. */
5492 if (op2 != 0)
5493 op1 = form_sum (GET_MODE (addr), op1, op2);
5494 if (op1 != 0)
5495 op0 = form_sum (GET_MODE (addr), op0, op1);
5496
5497 return op0;
5498 }
5499 return addr;
5500 }
5501 \f
5502 /* Update the REG_INC notes for an insn. It updates all REG_INC
5503 notes for the instruction which refer to REGNO the to refer
5504 to the reload number.
5505
5506 INSN is the insn for which any REG_INC notes need updating.
5507
5508 REGNO is the register number which has been reloaded.
5509
5510 RELOADNUM is the reload number. */
5511
5512 static void
5513 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5514 int reloadnum ATTRIBUTE_UNUSED)
5515 {
5516 #ifdef AUTO_INC_DEC
5517 rtx link;
5518
5519 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5520 if (REG_NOTE_KIND (link) == REG_INC
5521 && (int) REGNO (XEXP (link, 0)) == regno)
5522 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5523 #endif
5524 }
5525 \f
5526 /* Record the pseudo registers we must reload into hard registers in a
5527 subexpression of a would-be memory address, X referring to a value
5528 in mode MODE. (This function is not called if the address we find
5529 is strictly valid.)
5530
5531 CONTEXT = 1 means we are considering regs as index regs,
5532 = 0 means we are considering them as base regs.
5533 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5534 or an autoinc code.
5535 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5536 is the code of the index part of the address. Otherwise, pass SCRATCH
5537 for this argument.
5538 OPNUM and TYPE specify the purpose of any reloads made.
5539
5540 IND_LEVELS says how many levels of indirect addressing are
5541 supported at this point in the address.
5542
5543 INSN, if nonzero, is the insn in which we do the reload. It is used
5544 to determine if we may generate output reloads.
5545
5546 We return nonzero if X, as a whole, is reloaded or replaced. */
5547
5548 /* Note that we take shortcuts assuming that no multi-reg machine mode
5549 occurs as part of an address.
5550 Also, this is not fully machine-customizable; it works for machines
5551 such as VAXen and 68000's and 32000's, but other possible machines
5552 could have addressing modes that this does not handle right.
5553 If you add push_reload calls here, you need to make sure gen_reload
5554 handles those cases gracefully. */
5555
5556 static int
5557 find_reloads_address_1 (enum machine_mode mode, addr_space_t as,
5558 rtx x, int context,
5559 enum rtx_code outer_code, enum rtx_code index_code,
5560 rtx *loc, int opnum, enum reload_type type,
5561 int ind_levels, rtx insn)
5562 {
5563 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5564 ((CONTEXT) == 0 \
5565 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5566 : REGNO_OK_FOR_INDEX_P (REGNO))
5567
5568 enum reg_class context_reg_class;
5569 RTX_CODE code = GET_CODE (x);
5570 bool reloaded_inner_of_autoinc = false;
5571
5572 if (context == 1)
5573 context_reg_class = INDEX_REG_CLASS;
5574 else
5575 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5576
5577 switch (code)
5578 {
5579 case PLUS:
5580 {
5581 rtx orig_op0 = XEXP (x, 0);
5582 rtx orig_op1 = XEXP (x, 1);
5583 RTX_CODE code0 = GET_CODE (orig_op0);
5584 RTX_CODE code1 = GET_CODE (orig_op1);
5585 rtx op0 = orig_op0;
5586 rtx op1 = orig_op1;
5587
5588 if (GET_CODE (op0) == SUBREG)
5589 {
5590 op0 = SUBREG_REG (op0);
5591 code0 = GET_CODE (op0);
5592 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5593 op0 = gen_rtx_REG (word_mode,
5594 (REGNO (op0) +
5595 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5596 GET_MODE (SUBREG_REG (orig_op0)),
5597 SUBREG_BYTE (orig_op0),
5598 GET_MODE (orig_op0))));
5599 }
5600
5601 if (GET_CODE (op1) == SUBREG)
5602 {
5603 op1 = SUBREG_REG (op1);
5604 code1 = GET_CODE (op1);
5605 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5606 /* ??? Why is this given op1's mode and above for
5607 ??? op0 SUBREGs we use word_mode? */
5608 op1 = gen_rtx_REG (GET_MODE (op1),
5609 (REGNO (op1) +
5610 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5611 GET_MODE (SUBREG_REG (orig_op1)),
5612 SUBREG_BYTE (orig_op1),
5613 GET_MODE (orig_op1))));
5614 }
5615 /* Plus in the index register may be created only as a result of
5616 register rematerialization for expression like &localvar*4. Reload it.
5617 It may be possible to combine the displacement on the outer level,
5618 but it is probably not worthwhile to do so. */
5619 if (context == 1)
5620 {
5621 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5622 opnum, ADDR_TYPE (type), ind_levels, insn);
5623 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5624 context_reg_class,
5625 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5626 return 1;
5627 }
5628
5629 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5630 || code0 == ZERO_EXTEND || code1 == MEM)
5631 {
5632 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5633 &XEXP (x, 0), opnum, type, ind_levels,
5634 insn);
5635 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5636 &XEXP (x, 1), opnum, type, ind_levels,
5637 insn);
5638 }
5639
5640 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5641 || code1 == ZERO_EXTEND || code0 == MEM)
5642 {
5643 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5644 &XEXP (x, 0), opnum, type, ind_levels,
5645 insn);
5646 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5647 &XEXP (x, 1), opnum, type, ind_levels,
5648 insn);
5649 }
5650
5651 else if (code0 == CONST_INT || code0 == CONST
5652 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5653 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5654 &XEXP (x, 1), opnum, type, ind_levels,
5655 insn);
5656
5657 else if (code1 == CONST_INT || code1 == CONST
5658 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5659 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5660 &XEXP (x, 0), opnum, type, ind_levels,
5661 insn);
5662
5663 else if (code0 == REG && code1 == REG)
5664 {
5665 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5666 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5667 return 0;
5668 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5669 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5670 return 0;
5671 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5672 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5673 &XEXP (x, 1), opnum, type, ind_levels,
5674 insn);
5675 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5676 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5677 &XEXP (x, 0), opnum, type, ind_levels,
5678 insn);
5679 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5680 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5681 &XEXP (x, 0), opnum, type, ind_levels,
5682 insn);
5683 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5684 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5685 &XEXP (x, 1), opnum, type, ind_levels,
5686 insn);
5687 else
5688 {
5689 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5690 &XEXP (x, 0), opnum, type, ind_levels,
5691 insn);
5692 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5693 &XEXP (x, 1), opnum, type, ind_levels,
5694 insn);
5695 }
5696 }
5697
5698 else if (code0 == REG)
5699 {
5700 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5701 &XEXP (x, 0), opnum, type, ind_levels,
5702 insn);
5703 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5704 &XEXP (x, 1), opnum, type, ind_levels,
5705 insn);
5706 }
5707
5708 else if (code1 == REG)
5709 {
5710 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5711 &XEXP (x, 1), opnum, type, ind_levels,
5712 insn);
5713 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5714 &XEXP (x, 0), opnum, type, ind_levels,
5715 insn);
5716 }
5717 }
5718
5719 return 0;
5720
5721 case POST_MODIFY:
5722 case PRE_MODIFY:
5723 {
5724 rtx op0 = XEXP (x, 0);
5725 rtx op1 = XEXP (x, 1);
5726 enum rtx_code index_code;
5727 int regno;
5728 int reloadnum;
5729
5730 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5731 return 0;
5732
5733 /* Currently, we only support {PRE,POST}_MODIFY constructs
5734 where a base register is {inc,dec}remented by the contents
5735 of another register or by a constant value. Thus, these
5736 operands must match. */
5737 gcc_assert (op0 == XEXP (op1, 0));
5738
5739 /* Require index register (or constant). Let's just handle the
5740 register case in the meantime... If the target allows
5741 auto-modify by a constant then we could try replacing a pseudo
5742 register with its equivalent constant where applicable.
5743
5744 We also handle the case where the register was eliminated
5745 resulting in a PLUS subexpression.
5746
5747 If we later decide to reload the whole PRE_MODIFY or
5748 POST_MODIFY, inc_for_reload might clobber the reload register
5749 before reading the index. The index register might therefore
5750 need to live longer than a TYPE reload normally would, so be
5751 conservative and class it as RELOAD_OTHER. */
5752 if ((REG_P (XEXP (op1, 1))
5753 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5754 || GET_CODE (XEXP (op1, 1)) == PLUS)
5755 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5756 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5757 ind_levels, insn);
5758
5759 gcc_assert (REG_P (XEXP (op1, 0)));
5760
5761 regno = REGNO (XEXP (op1, 0));
5762 index_code = GET_CODE (XEXP (op1, 1));
5763
5764 /* A register that is incremented cannot be constant! */
5765 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5766 || reg_equiv_constant (regno) == 0);
5767
5768 /* Handle a register that is equivalent to a memory location
5769 which cannot be addressed directly. */
5770 if (reg_equiv_memory_loc (regno) != 0
5771 && (reg_equiv_address (regno) != 0
5772 || num_not_at_initial_offset))
5773 {
5774 rtx tem = make_memloc (XEXP (x, 0), regno);
5775
5776 if (reg_equiv_address (regno)
5777 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5778 {
5779 rtx orig = tem;
5780
5781 /* First reload the memory location's address.
5782 We can't use ADDR_TYPE (type) here, because we need to
5783 write back the value after reading it, hence we actually
5784 need two registers. */
5785 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5786 &XEXP (tem, 0), opnum,
5787 RELOAD_OTHER,
5788 ind_levels, insn);
5789
5790 if (!rtx_equal_p (tem, orig))
5791 push_reg_equiv_alt_mem (regno, tem);
5792
5793 /* Then reload the memory location into a base
5794 register. */
5795 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5796 &XEXP (op1, 0),
5797 base_reg_class (mode, as,
5798 code, index_code),
5799 GET_MODE (x), GET_MODE (x), 0,
5800 0, opnum, RELOAD_OTHER);
5801
5802 update_auto_inc_notes (this_insn, regno, reloadnum);
5803 return 0;
5804 }
5805 }
5806
5807 if (reg_renumber[regno] >= 0)
5808 regno = reg_renumber[regno];
5809
5810 /* We require a base register here... */
5811 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5812 {
5813 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5814 &XEXP (op1, 0), &XEXP (x, 0),
5815 base_reg_class (mode, as,
5816 code, index_code),
5817 GET_MODE (x), GET_MODE (x), 0, 0,
5818 opnum, RELOAD_OTHER);
5819
5820 update_auto_inc_notes (this_insn, regno, reloadnum);
5821 return 0;
5822 }
5823 }
5824 return 0;
5825
5826 case POST_INC:
5827 case POST_DEC:
5828 case PRE_INC:
5829 case PRE_DEC:
5830 if (REG_P (XEXP (x, 0)))
5831 {
5832 int regno = REGNO (XEXP (x, 0));
5833 int value = 0;
5834 rtx x_orig = x;
5835
5836 /* A register that is incremented cannot be constant! */
5837 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5838 || reg_equiv_constant (regno) == 0);
5839
5840 /* Handle a register that is equivalent to a memory location
5841 which cannot be addressed directly. */
5842 if (reg_equiv_memory_loc (regno) != 0
5843 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5844 {
5845 rtx tem = make_memloc (XEXP (x, 0), regno);
5846 if (reg_equiv_address (regno)
5847 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5848 {
5849 rtx orig = tem;
5850
5851 /* First reload the memory location's address.
5852 We can't use ADDR_TYPE (type) here, because we need to
5853 write back the value after reading it, hence we actually
5854 need two registers. */
5855 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5856 &XEXP (tem, 0), opnum, type,
5857 ind_levels, insn);
5858 reloaded_inner_of_autoinc = true;
5859 if (!rtx_equal_p (tem, orig))
5860 push_reg_equiv_alt_mem (regno, tem);
5861 /* Put this inside a new increment-expression. */
5862 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5863 /* Proceed to reload that, as if it contained a register. */
5864 }
5865 }
5866
5867 /* If we have a hard register that is ok in this incdec context,
5868 don't make a reload. If the register isn't nice enough for
5869 autoincdec, we can reload it. But, if an autoincrement of a
5870 register that we here verified as playing nice, still outside
5871 isn't "valid", it must be that no autoincrement is "valid".
5872 If that is true and something made an autoincrement anyway,
5873 this must be a special context where one is allowed.
5874 (For example, a "push" instruction.)
5875 We can't improve this address, so leave it alone. */
5876
5877 /* Otherwise, reload the autoincrement into a suitable hard reg
5878 and record how much to increment by. */
5879
5880 if (reg_renumber[regno] >= 0)
5881 regno = reg_renumber[regno];
5882 if (regno >= FIRST_PSEUDO_REGISTER
5883 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5884 index_code))
5885 {
5886 int reloadnum;
5887
5888 /* If we can output the register afterwards, do so, this
5889 saves the extra update.
5890 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5891 CALL_INSN - and it does not set CC0.
5892 But don't do this if we cannot directly address the
5893 memory location, since this will make it harder to
5894 reuse address reloads, and increases register pressure.
5895 Also don't do this if we can probably update x directly. */
5896 rtx equiv = (MEM_P (XEXP (x, 0))
5897 ? XEXP (x, 0)
5898 : reg_equiv_mem (regno));
5899 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5900 if (insn && NONJUMP_INSN_P (insn) && equiv
5901 && memory_operand (equiv, GET_MODE (equiv))
5902 #ifdef HAVE_cc0
5903 && ! sets_cc0_p (PATTERN (insn))
5904 #endif
5905 && ! (icode != CODE_FOR_nothing
5906 && insn_operand_matches (icode, 0, equiv)
5907 && insn_operand_matches (icode, 1, equiv))
5908 /* Using RELOAD_OTHER means we emit this and the reload we
5909 made earlier in the wrong order. */
5910 && !reloaded_inner_of_autoinc)
5911 {
5912 /* We use the original pseudo for loc, so that
5913 emit_reload_insns() knows which pseudo this
5914 reload refers to and updates the pseudo rtx, not
5915 its equivalent memory location, as well as the
5916 corresponding entry in reg_last_reload_reg. */
5917 loc = &XEXP (x_orig, 0);
5918 x = XEXP (x, 0);
5919 reloadnum
5920 = push_reload (x, x, loc, loc,
5921 context_reg_class,
5922 GET_MODE (x), GET_MODE (x), 0, 0,
5923 opnum, RELOAD_OTHER);
5924 }
5925 else
5926 {
5927 reloadnum
5928 = push_reload (x, x, loc, (rtx*) 0,
5929 context_reg_class,
5930 GET_MODE (x), GET_MODE (x), 0, 0,
5931 opnum, type);
5932 rld[reloadnum].inc
5933 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5934
5935 value = 1;
5936 }
5937
5938 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5939 reloadnum);
5940 }
5941 return value;
5942 }
5943 return 0;
5944
5945 case TRUNCATE:
5946 case SIGN_EXTEND:
5947 case ZERO_EXTEND:
5948 /* Look for parts to reload in the inner expression and reload them
5949 too, in addition to this operation. Reloading all inner parts in
5950 addition to this one shouldn't be necessary, but at this point,
5951 we don't know if we can possibly omit any part that *can* be
5952 reloaded. Targets that are better off reloading just either part
5953 (or perhaps even a different part of an outer expression), should
5954 define LEGITIMIZE_RELOAD_ADDRESS. */
5955 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5956 context, code, SCRATCH, &XEXP (x, 0), opnum,
5957 type, ind_levels, insn);
5958 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5959 context_reg_class,
5960 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5961 return 1;
5962
5963 case MEM:
5964 /* This is probably the result of a substitution, by eliminate_regs, of
5965 an equivalent address for a pseudo that was not allocated to a hard
5966 register. Verify that the specified address is valid and reload it
5967 into a register.
5968
5969 Since we know we are going to reload this item, don't decrement for
5970 the indirection level.
5971
5972 Note that this is actually conservative: it would be slightly more
5973 efficient to use the value of SPILL_INDIRECT_LEVELS from
5974 reload1.c here. */
5975
5976 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5977 opnum, ADDR_TYPE (type), ind_levels, insn);
5978 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5979 context_reg_class,
5980 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5981 return 1;
5982
5983 case REG:
5984 {
5985 int regno = REGNO (x);
5986
5987 if (reg_equiv_constant (regno) != 0)
5988 {
5989 find_reloads_address_part (reg_equiv_constant (regno), loc,
5990 context_reg_class,
5991 GET_MODE (x), opnum, type, ind_levels);
5992 return 1;
5993 }
5994
5995 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5996 that feeds this insn. */
5997 if (reg_equiv_mem (regno) != 0)
5998 {
5999 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
6000 context_reg_class,
6001 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6002 return 1;
6003 }
6004 #endif
6005
6006 if (reg_equiv_memory_loc (regno)
6007 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
6008 {
6009 rtx tem = make_memloc (x, regno);
6010 if (reg_equiv_address (regno) != 0
6011 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
6012 {
6013 x = tem;
6014 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
6015 &XEXP (x, 0), opnum, ADDR_TYPE (type),
6016 ind_levels, insn);
6017 if (!rtx_equal_p (x, tem))
6018 push_reg_equiv_alt_mem (regno, x);
6019 }
6020 }
6021
6022 if (reg_renumber[regno] >= 0)
6023 regno = reg_renumber[regno];
6024
6025 if (regno >= FIRST_PSEUDO_REGISTER
6026 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6027 index_code))
6028 {
6029 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6030 context_reg_class,
6031 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6032 return 1;
6033 }
6034
6035 /* If a register appearing in an address is the subject of a CLOBBER
6036 in this insn, reload it into some other register to be safe.
6037 The CLOBBER is supposed to make the register unavailable
6038 from before this insn to after it. */
6039 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
6040 {
6041 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6042 context_reg_class,
6043 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6044 return 1;
6045 }
6046 }
6047 return 0;
6048
6049 case SUBREG:
6050 if (REG_P (SUBREG_REG (x)))
6051 {
6052 /* If this is a SUBREG of a hard register and the resulting register
6053 is of the wrong class, reload the whole SUBREG. This avoids
6054 needless copies if SUBREG_REG is multi-word. */
6055 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6056 {
6057 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6058
6059 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6060 index_code))
6061 {
6062 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6063 context_reg_class,
6064 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6065 return 1;
6066 }
6067 }
6068 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6069 is larger than the class size, then reload the whole SUBREG. */
6070 else
6071 {
6072 enum reg_class rclass = context_reg_class;
6073 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6074 > reg_class_size[(int) rclass])
6075 {
6076 /* If the inner register will be replaced by a memory
6077 reference, we can do this only if we can replace the
6078 whole subreg by a (narrower) memory reference. If
6079 this is not possible, fall through and reload just
6080 the inner register (including address reloads). */
6081 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6082 {
6083 rtx tem = find_reloads_subreg_address (x, opnum,
6084 ADDR_TYPE (type),
6085 ind_levels, insn,
6086 NULL);
6087 if (tem)
6088 {
6089 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6090 GET_MODE (tem), VOIDmode, 0, 0,
6091 opnum, type);
6092 return 1;
6093 }
6094 }
6095 else
6096 {
6097 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6098 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6099 return 1;
6100 }
6101 }
6102 }
6103 }
6104 break;
6105
6106 default:
6107 break;
6108 }
6109
6110 {
6111 const char *fmt = GET_RTX_FORMAT (code);
6112 int i;
6113
6114 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6115 {
6116 if (fmt[i] == 'e')
6117 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6118 we get here. */
6119 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6120 code, SCRATCH, &XEXP (x, i),
6121 opnum, type, ind_levels, insn);
6122 }
6123 }
6124
6125 #undef REG_OK_FOR_CONTEXT
6126 return 0;
6127 }
6128 \f
6129 /* X, which is found at *LOC, is a part of an address that needs to be
6130 reloaded into a register of class RCLASS. If X is a constant, or if
6131 X is a PLUS that contains a constant, check that the constant is a
6132 legitimate operand and that we are supposed to be able to load
6133 it into the register.
6134
6135 If not, force the constant into memory and reload the MEM instead.
6136
6137 MODE is the mode to use, in case X is an integer constant.
6138
6139 OPNUM and TYPE describe the purpose of any reloads made.
6140
6141 IND_LEVELS says how many levels of indirect addressing this machine
6142 supports. */
6143
6144 static void
6145 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6146 enum machine_mode mode, int opnum,
6147 enum reload_type type, int ind_levels)
6148 {
6149 if (CONSTANT_P (x)
6150 && (!targetm.legitimate_constant_p (mode, x)
6151 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6152 {
6153 x = force_const_mem (mode, x);
6154 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6155 opnum, type, ind_levels, 0);
6156 }
6157
6158 else if (GET_CODE (x) == PLUS
6159 && CONSTANT_P (XEXP (x, 1))
6160 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6161 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6162 == NO_REGS))
6163 {
6164 rtx tem;
6165
6166 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6167 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6168 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6169 opnum, type, ind_levels, 0);
6170 }
6171
6172 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6173 mode, VOIDmode, 0, 0, opnum, type);
6174 }
6175 \f
6176 /* X, a subreg of a pseudo, is a part of an address that needs to be
6177 reloaded, and the pseusdo is equivalent to a memory location.
6178
6179 Attempt to replace the whole subreg by a (possibly narrower or wider)
6180 memory reference. If this is possible, return this new memory
6181 reference, and push all required address reloads. Otherwise,
6182 return NULL.
6183
6184 OPNUM and TYPE identify the purpose of the reload.
6185
6186 IND_LEVELS says how many levels of indirect addressing are
6187 supported at this point in the address.
6188
6189 INSN, if nonzero, is the insn in which we do the reload. It is used
6190 to determine where to put USEs for pseudos that we have to replace with
6191 stack slots. */
6192
6193 static rtx
6194 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6195 int ind_levels, rtx insn, int *address_reloaded)
6196 {
6197 enum machine_mode outer_mode = GET_MODE (x);
6198 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6199 int regno = REGNO (SUBREG_REG (x));
6200 int reloaded = 0;
6201 rtx tem, orig;
6202 int offset;
6203
6204 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6205
6206 /* We cannot replace the subreg with a modified memory reference if:
6207
6208 - we have a paradoxical subreg that implicitly acts as a zero or
6209 sign extension operation due to LOAD_EXTEND_OP;
6210
6211 - we have a subreg that is implicitly supposed to act on the full
6212 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6213
6214 - the address of the equivalent memory location is mode-dependent; or
6215
6216 - we have a paradoxical subreg and the resulting memory is not
6217 sufficiently aligned to allow access in the wider mode.
6218
6219 In addition, we choose not to perform the replacement for *any*
6220 paradoxical subreg, even if it were possible in principle. This
6221 is to avoid generating wider memory references than necessary.
6222
6223 This corresponds to how previous versions of reload used to handle
6224 paradoxical subregs where no address reload was required. */
6225
6226 if (paradoxical_subreg_p (x))
6227 return NULL;
6228
6229 #ifdef WORD_REGISTER_OPERATIONS
6230 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)
6231 && ((GET_MODE_SIZE (outer_mode) - 1) / UNITS_PER_WORD
6232 == (GET_MODE_SIZE (inner_mode) - 1) / UNITS_PER_WORD))
6233 return NULL;
6234 #endif
6235
6236 /* Since we don't attempt to handle paradoxical subregs, we can just
6237 call into simplify_subreg, which will handle all remaining checks
6238 for us. */
6239 orig = make_memloc (SUBREG_REG (x), regno);
6240 offset = SUBREG_BYTE (x);
6241 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6242 if (!tem || !MEM_P (tem))
6243 return NULL;
6244
6245 /* Now push all required address reloads, if any. */
6246 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6247 XEXP (tem, 0), &XEXP (tem, 0),
6248 opnum, type, ind_levels, insn);
6249 /* ??? Do we need to handle nonzero offsets somehow? */
6250 if (!offset && !rtx_equal_p (tem, orig))
6251 push_reg_equiv_alt_mem (regno, tem);
6252
6253 /* For some processors an address may be valid in the original mode but
6254 not in a smaller mode. For example, ARM accepts a scaled index register
6255 in SImode but not in HImode. Note that this is only a problem if the
6256 address in reg_equiv_mem is already invalid in the new mode; other
6257 cases would be fixed by find_reloads_address as usual.
6258
6259 ??? We attempt to handle such cases here by doing an additional reload
6260 of the full address after the usual processing by find_reloads_address.
6261 Note that this may not work in the general case, but it seems to cover
6262 the cases where this situation currently occurs. A more general fix
6263 might be to reload the *value* instead of the address, but this would
6264 not be expected by the callers of this routine as-is.
6265
6266 If find_reloads_address already completed replaced the address, there
6267 is nothing further to do. */
6268 if (reloaded == 0
6269 && reg_equiv_mem (regno) != 0
6270 && !strict_memory_address_addr_space_p
6271 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6272 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6273 {
6274 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6275 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6276 MEM, SCRATCH),
6277 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6278 reloaded = 1;
6279 }
6280
6281 /* If this is not a toplevel operand, find_reloads doesn't see this
6282 substitution. We have to emit a USE of the pseudo so that
6283 delete_output_reload can see it. */
6284 if (replace_reloads && recog_data.operand[opnum] != x)
6285 /* We mark the USE with QImode so that we recognize it as one that
6286 can be safely deleted at the end of reload. */
6287 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6288 QImode);
6289
6290 if (address_reloaded)
6291 *address_reloaded = reloaded;
6292
6293 return tem;
6294 }
6295 \f
6296 /* Substitute into the current INSN the registers into which we have reloaded
6297 the things that need reloading. The array `replacements'
6298 contains the locations of all pointers that must be changed
6299 and says what to replace them with.
6300
6301 Return the rtx that X translates into; usually X, but modified. */
6302
6303 void
6304 subst_reloads (rtx insn)
6305 {
6306 int i;
6307
6308 for (i = 0; i < n_replacements; i++)
6309 {
6310 struct replacement *r = &replacements[i];
6311 rtx reloadreg = rld[r->what].reg_rtx;
6312 if (reloadreg)
6313 {
6314 #ifdef DEBUG_RELOAD
6315 /* This checking takes a very long time on some platforms
6316 causing the gcc.c-torture/compile/limits-fnargs.c test
6317 to time out during testing. See PR 31850.
6318
6319 Internal consistency test. Check that we don't modify
6320 anything in the equivalence arrays. Whenever something from
6321 those arrays needs to be reloaded, it must be unshared before
6322 being substituted into; the equivalence must not be modified.
6323 Otherwise, if the equivalence is used after that, it will
6324 have been modified, and the thing substituted (probably a
6325 register) is likely overwritten and not a usable equivalence. */
6326 int check_regno;
6327
6328 for (check_regno = 0; check_regno < max_regno; check_regno++)
6329 {
6330 #define CHECK_MODF(ARRAY) \
6331 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6332 || !loc_mentioned_in_p (r->where, \
6333 (*reg_equivs)[check_regno].ARRAY))
6334
6335 CHECK_MODF (constant);
6336 CHECK_MODF (memory_loc);
6337 CHECK_MODF (address);
6338 CHECK_MODF (mem);
6339 #undef CHECK_MODF
6340 }
6341 #endif /* DEBUG_RELOAD */
6342
6343 /* If we're replacing a LABEL_REF with a register, there must
6344 already be an indication (to e.g. flow) which label this
6345 register refers to. */
6346 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6347 || !JUMP_P (insn)
6348 || find_reg_note (insn,
6349 REG_LABEL_OPERAND,
6350 XEXP (*r->where, 0))
6351 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6352
6353 /* Encapsulate RELOADREG so its machine mode matches what
6354 used to be there. Note that gen_lowpart_common will
6355 do the wrong thing if RELOADREG is multi-word. RELOADREG
6356 will always be a REG here. */
6357 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6358 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6359
6360 *r->where = reloadreg;
6361 }
6362 /* If reload got no reg and isn't optional, something's wrong. */
6363 else
6364 gcc_assert (rld[r->what].optional);
6365 }
6366 }
6367 \f
6368 /* Make a copy of any replacements being done into X and move those
6369 copies to locations in Y, a copy of X. */
6370
6371 void
6372 copy_replacements (rtx x, rtx y)
6373 {
6374 copy_replacements_1 (&x, &y, n_replacements);
6375 }
6376
6377 static void
6378 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6379 {
6380 int i, j;
6381 rtx x, y;
6382 struct replacement *r;
6383 enum rtx_code code;
6384 const char *fmt;
6385
6386 for (j = 0; j < orig_replacements; j++)
6387 if (replacements[j].where == px)
6388 {
6389 r = &replacements[n_replacements++];
6390 r->where = py;
6391 r->what = replacements[j].what;
6392 r->mode = replacements[j].mode;
6393 }
6394
6395 x = *px;
6396 y = *py;
6397 code = GET_CODE (x);
6398 fmt = GET_RTX_FORMAT (code);
6399
6400 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6401 {
6402 if (fmt[i] == 'e')
6403 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6404 else if (fmt[i] == 'E')
6405 for (j = XVECLEN (x, i); --j >= 0; )
6406 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6407 orig_replacements);
6408 }
6409 }
6410
6411 /* Change any replacements being done to *X to be done to *Y. */
6412
6413 void
6414 move_replacements (rtx *x, rtx *y)
6415 {
6416 int i;
6417
6418 for (i = 0; i < n_replacements; i++)
6419 if (replacements[i].where == x)
6420 replacements[i].where = y;
6421 }
6422 \f
6423 /* If LOC was scheduled to be replaced by something, return the replacement.
6424 Otherwise, return *LOC. */
6425
6426 rtx
6427 find_replacement (rtx *loc)
6428 {
6429 struct replacement *r;
6430
6431 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6432 {
6433 rtx reloadreg = rld[r->what].reg_rtx;
6434
6435 if (reloadreg && r->where == loc)
6436 {
6437 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6438 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6439
6440 return reloadreg;
6441 }
6442 else if (reloadreg && GET_CODE (*loc) == SUBREG
6443 && r->where == &SUBREG_REG (*loc))
6444 {
6445 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6446 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6447
6448 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6449 GET_MODE (SUBREG_REG (*loc)),
6450 SUBREG_BYTE (*loc));
6451 }
6452 }
6453
6454 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6455 what's inside and make a new rtl if so. */
6456 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6457 || GET_CODE (*loc) == MULT)
6458 {
6459 rtx x = find_replacement (&XEXP (*loc, 0));
6460 rtx y = find_replacement (&XEXP (*loc, 1));
6461
6462 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6463 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6464 }
6465
6466 return *loc;
6467 }
6468 \f
6469 /* Return nonzero if register in range [REGNO, ENDREGNO)
6470 appears either explicitly or implicitly in X
6471 other than being stored into (except for earlyclobber operands).
6472
6473 References contained within the substructure at LOC do not count.
6474 LOC may be zero, meaning don't ignore anything.
6475
6476 This is similar to refers_to_regno_p in rtlanal.c except that we
6477 look at equivalences for pseudos that didn't get hard registers. */
6478
6479 static int
6480 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6481 rtx x, rtx *loc)
6482 {
6483 int i;
6484 unsigned int r;
6485 RTX_CODE code;
6486 const char *fmt;
6487
6488 if (x == 0)
6489 return 0;
6490
6491 repeat:
6492 code = GET_CODE (x);
6493
6494 switch (code)
6495 {
6496 case REG:
6497 r = REGNO (x);
6498
6499 /* If this is a pseudo, a hard register must not have been allocated.
6500 X must therefore either be a constant or be in memory. */
6501 if (r >= FIRST_PSEUDO_REGISTER)
6502 {
6503 if (reg_equiv_memory_loc (r))
6504 return refers_to_regno_for_reload_p (regno, endregno,
6505 reg_equiv_memory_loc (r),
6506 (rtx*) 0);
6507
6508 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6509 return 0;
6510 }
6511
6512 return (endregno > r
6513 && regno < r + (r < FIRST_PSEUDO_REGISTER
6514 ? hard_regno_nregs[r][GET_MODE (x)]
6515 : 1));
6516
6517 case SUBREG:
6518 /* If this is a SUBREG of a hard reg, we can see exactly which
6519 registers are being modified. Otherwise, handle normally. */
6520 if (REG_P (SUBREG_REG (x))
6521 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6522 {
6523 unsigned int inner_regno = subreg_regno (x);
6524 unsigned int inner_endregno
6525 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6526 ? subreg_nregs (x) : 1);
6527
6528 return endregno > inner_regno && regno < inner_endregno;
6529 }
6530 break;
6531
6532 case CLOBBER:
6533 case SET:
6534 if (&SET_DEST (x) != loc
6535 /* Note setting a SUBREG counts as referring to the REG it is in for
6536 a pseudo but not for hard registers since we can
6537 treat each word individually. */
6538 && ((GET_CODE (SET_DEST (x)) == SUBREG
6539 && loc != &SUBREG_REG (SET_DEST (x))
6540 && REG_P (SUBREG_REG (SET_DEST (x)))
6541 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6542 && refers_to_regno_for_reload_p (regno, endregno,
6543 SUBREG_REG (SET_DEST (x)),
6544 loc))
6545 /* If the output is an earlyclobber operand, this is
6546 a conflict. */
6547 || ((!REG_P (SET_DEST (x))
6548 || earlyclobber_operand_p (SET_DEST (x)))
6549 && refers_to_regno_for_reload_p (regno, endregno,
6550 SET_DEST (x), loc))))
6551 return 1;
6552
6553 if (code == CLOBBER || loc == &SET_SRC (x))
6554 return 0;
6555 x = SET_SRC (x);
6556 goto repeat;
6557
6558 default:
6559 break;
6560 }
6561
6562 /* X does not match, so try its subexpressions. */
6563
6564 fmt = GET_RTX_FORMAT (code);
6565 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6566 {
6567 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6568 {
6569 if (i == 0)
6570 {
6571 x = XEXP (x, 0);
6572 goto repeat;
6573 }
6574 else
6575 if (refers_to_regno_for_reload_p (regno, endregno,
6576 XEXP (x, i), loc))
6577 return 1;
6578 }
6579 else if (fmt[i] == 'E')
6580 {
6581 int j;
6582 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6583 if (loc != &XVECEXP (x, i, j)
6584 && refers_to_regno_for_reload_p (regno, endregno,
6585 XVECEXP (x, i, j), loc))
6586 return 1;
6587 }
6588 }
6589 return 0;
6590 }
6591
6592 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6593 we check if any register number in X conflicts with the relevant register
6594 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6595 contains a MEM (we don't bother checking for memory addresses that can't
6596 conflict because we expect this to be a rare case.
6597
6598 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6599 that we look at equivalences for pseudos that didn't get hard registers. */
6600
6601 int
6602 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6603 {
6604 int regno, endregno;
6605
6606 /* Overly conservative. */
6607 if (GET_CODE (x) == STRICT_LOW_PART
6608 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6609 x = XEXP (x, 0);
6610
6611 /* If either argument is a constant, then modifying X can not affect IN. */
6612 if (CONSTANT_P (x) || CONSTANT_P (in))
6613 return 0;
6614 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6615 return refers_to_mem_for_reload_p (in);
6616 else if (GET_CODE (x) == SUBREG)
6617 {
6618 regno = REGNO (SUBREG_REG (x));
6619 if (regno < FIRST_PSEUDO_REGISTER)
6620 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6621 GET_MODE (SUBREG_REG (x)),
6622 SUBREG_BYTE (x),
6623 GET_MODE (x));
6624 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6625 ? subreg_nregs (x) : 1);
6626
6627 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6628 }
6629 else if (REG_P (x))
6630 {
6631 regno = REGNO (x);
6632
6633 /* If this is a pseudo, it must not have been assigned a hard register.
6634 Therefore, it must either be in memory or be a constant. */
6635
6636 if (regno >= FIRST_PSEUDO_REGISTER)
6637 {
6638 if (reg_equiv_memory_loc (regno))
6639 return refers_to_mem_for_reload_p (in);
6640 gcc_assert (reg_equiv_constant (regno));
6641 return 0;
6642 }
6643
6644 endregno = END_HARD_REGNO (x);
6645
6646 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6647 }
6648 else if (MEM_P (x))
6649 return refers_to_mem_for_reload_p (in);
6650 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6651 || GET_CODE (x) == CC0)
6652 return reg_mentioned_p (x, in);
6653 else
6654 {
6655 gcc_assert (GET_CODE (x) == PLUS);
6656
6657 /* We actually want to know if X is mentioned somewhere inside IN.
6658 We must not say that (plus (sp) (const_int 124)) is in
6659 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6660 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6661 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6662 while (MEM_P (in))
6663 in = XEXP (in, 0);
6664 if (REG_P (in))
6665 return 0;
6666 else if (GET_CODE (in) == PLUS)
6667 return (rtx_equal_p (x, in)
6668 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6669 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6670 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6671 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6672 }
6673
6674 gcc_unreachable ();
6675 }
6676
6677 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6678 registers. */
6679
6680 static int
6681 refers_to_mem_for_reload_p (rtx x)
6682 {
6683 const char *fmt;
6684 int i;
6685
6686 if (MEM_P (x))
6687 return 1;
6688
6689 if (REG_P (x))
6690 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6691 && reg_equiv_memory_loc (REGNO (x)));
6692
6693 fmt = GET_RTX_FORMAT (GET_CODE (x));
6694 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6695 if (fmt[i] == 'e'
6696 && (MEM_P (XEXP (x, i))
6697 || refers_to_mem_for_reload_p (XEXP (x, i))))
6698 return 1;
6699
6700 return 0;
6701 }
6702 \f
6703 /* Check the insns before INSN to see if there is a suitable register
6704 containing the same value as GOAL.
6705 If OTHER is -1, look for a register in class RCLASS.
6706 Otherwise, just see if register number OTHER shares GOAL's value.
6707
6708 Return an rtx for the register found, or zero if none is found.
6709
6710 If RELOAD_REG_P is (short *)1,
6711 we reject any hard reg that appears in reload_reg_rtx
6712 because such a hard reg is also needed coming into this insn.
6713
6714 If RELOAD_REG_P is any other nonzero value,
6715 it is a vector indexed by hard reg number
6716 and we reject any hard reg whose element in the vector is nonnegative
6717 as well as any that appears in reload_reg_rtx.
6718
6719 If GOAL is zero, then GOALREG is a register number; we look
6720 for an equivalent for that register.
6721
6722 MODE is the machine mode of the value we want an equivalence for.
6723 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6724
6725 This function is used by jump.c as well as in the reload pass.
6726
6727 If GOAL is the sum of the stack pointer and a constant, we treat it
6728 as if it were a constant except that sp is required to be unchanging. */
6729
6730 rtx
6731 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6732 short *reload_reg_p, int goalreg, enum machine_mode mode)
6733 {
6734 rtx p = insn;
6735 rtx goaltry, valtry, value, where;
6736 rtx pat;
6737 int regno = -1;
6738 int valueno;
6739 int goal_mem = 0;
6740 int goal_const = 0;
6741 int goal_mem_addr_varies = 0;
6742 int need_stable_sp = 0;
6743 int nregs;
6744 int valuenregs;
6745 int num = 0;
6746
6747 if (goal == 0)
6748 regno = goalreg;
6749 else if (REG_P (goal))
6750 regno = REGNO (goal);
6751 else if (MEM_P (goal))
6752 {
6753 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6754 if (MEM_VOLATILE_P (goal))
6755 return 0;
6756 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6757 return 0;
6758 /* An address with side effects must be reexecuted. */
6759 switch (code)
6760 {
6761 case POST_INC:
6762 case PRE_INC:
6763 case POST_DEC:
6764 case PRE_DEC:
6765 case POST_MODIFY:
6766 case PRE_MODIFY:
6767 return 0;
6768 default:
6769 break;
6770 }
6771 goal_mem = 1;
6772 }
6773 else if (CONSTANT_P (goal))
6774 goal_const = 1;
6775 else if (GET_CODE (goal) == PLUS
6776 && XEXP (goal, 0) == stack_pointer_rtx
6777 && CONSTANT_P (XEXP (goal, 1)))
6778 goal_const = need_stable_sp = 1;
6779 else if (GET_CODE (goal) == PLUS
6780 && XEXP (goal, 0) == frame_pointer_rtx
6781 && CONSTANT_P (XEXP (goal, 1)))
6782 goal_const = 1;
6783 else
6784 return 0;
6785
6786 num = 0;
6787 /* Scan insns back from INSN, looking for one that copies
6788 a value into or out of GOAL.
6789 Stop and give up if we reach a label. */
6790
6791 while (1)
6792 {
6793 p = PREV_INSN (p);
6794 if (p && DEBUG_INSN_P (p))
6795 continue;
6796 num++;
6797 if (p == 0 || LABEL_P (p)
6798 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6799 return 0;
6800
6801 /* Don't reuse register contents from before a setjmp-type
6802 function call; on the second return (from the longjmp) it
6803 might have been clobbered by a later reuse. It doesn't
6804 seem worthwhile to actually go and see if it is actually
6805 reused even if that information would be readily available;
6806 just don't reuse it across the setjmp call. */
6807 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6808 return 0;
6809
6810 if (NONJUMP_INSN_P (p)
6811 /* If we don't want spill regs ... */
6812 && (! (reload_reg_p != 0
6813 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6814 /* ... then ignore insns introduced by reload; they aren't
6815 useful and can cause results in reload_as_needed to be
6816 different from what they were when calculating the need for
6817 spills. If we notice an input-reload insn here, we will
6818 reject it below, but it might hide a usable equivalent.
6819 That makes bad code. It may even fail: perhaps no reg was
6820 spilled for this insn because it was assumed we would find
6821 that equivalent. */
6822 || INSN_UID (p) < reload_first_uid))
6823 {
6824 rtx tem;
6825 pat = single_set (p);
6826
6827 /* First check for something that sets some reg equal to GOAL. */
6828 if (pat != 0
6829 && ((regno >= 0
6830 && true_regnum (SET_SRC (pat)) == regno
6831 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6832 ||
6833 (regno >= 0
6834 && true_regnum (SET_DEST (pat)) == regno
6835 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6836 ||
6837 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6838 /* When looking for stack pointer + const,
6839 make sure we don't use a stack adjust. */
6840 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6841 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6842 || (goal_mem
6843 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6844 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6845 || (goal_mem
6846 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6847 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6848 /* If we are looking for a constant,
6849 and something equivalent to that constant was copied
6850 into a reg, we can use that reg. */
6851 || (goal_const && REG_NOTES (p) != 0
6852 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6853 && ((rtx_equal_p (XEXP (tem, 0), goal)
6854 && (valueno
6855 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6856 || (REG_P (SET_DEST (pat))
6857 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6858 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6859 && CONST_INT_P (goal)
6860 && 0 != (goaltry
6861 = operand_subword (XEXP (tem, 0), 0, 0,
6862 VOIDmode))
6863 && rtx_equal_p (goal, goaltry)
6864 && (valtry
6865 = operand_subword (SET_DEST (pat), 0, 0,
6866 VOIDmode))
6867 && (valueno = true_regnum (valtry)) >= 0)))
6868 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6869 NULL_RTX))
6870 && REG_P (SET_DEST (pat))
6871 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6872 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6873 && CONST_INT_P (goal)
6874 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6875 VOIDmode))
6876 && rtx_equal_p (goal, goaltry)
6877 && (valtry
6878 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6879 && (valueno = true_regnum (valtry)) >= 0)))
6880 {
6881 if (other >= 0)
6882 {
6883 if (valueno != other)
6884 continue;
6885 }
6886 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6887 continue;
6888 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6889 mode, valueno))
6890 continue;
6891 value = valtry;
6892 where = p;
6893 break;
6894 }
6895 }
6896 }
6897
6898 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6899 (or copying VALUE into GOAL, if GOAL is also a register).
6900 Now verify that VALUE is really valid. */
6901
6902 /* VALUENO is the register number of VALUE; a hard register. */
6903
6904 /* Don't try to re-use something that is killed in this insn. We want
6905 to be able to trust REG_UNUSED notes. */
6906 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6907 return 0;
6908
6909 /* If we propose to get the value from the stack pointer or if GOAL is
6910 a MEM based on the stack pointer, we need a stable SP. */
6911 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6912 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6913 goal)))
6914 need_stable_sp = 1;
6915
6916 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6917 if (GET_MODE (value) != mode)
6918 return 0;
6919
6920 /* Reject VALUE if it was loaded from GOAL
6921 and is also a register that appears in the address of GOAL. */
6922
6923 if (goal_mem && value == SET_DEST (single_set (where))
6924 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6925 goal, (rtx*) 0))
6926 return 0;
6927
6928 /* Reject registers that overlap GOAL. */
6929
6930 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6931 nregs = hard_regno_nregs[regno][mode];
6932 else
6933 nregs = 1;
6934 valuenregs = hard_regno_nregs[valueno][mode];
6935
6936 if (!goal_mem && !goal_const
6937 && regno + nregs > valueno && regno < valueno + valuenregs)
6938 return 0;
6939
6940 /* Reject VALUE if it is one of the regs reserved for reloads.
6941 Reload1 knows how to reuse them anyway, and it would get
6942 confused if we allocated one without its knowledge.
6943 (Now that insns introduced by reload are ignored above,
6944 this case shouldn't happen, but I'm not positive.) */
6945
6946 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6947 {
6948 int i;
6949 for (i = 0; i < valuenregs; ++i)
6950 if (reload_reg_p[valueno + i] >= 0)
6951 return 0;
6952 }
6953
6954 /* Reject VALUE if it is a register being used for an input reload
6955 even if it is not one of those reserved. */
6956
6957 if (reload_reg_p != 0)
6958 {
6959 int i;
6960 for (i = 0; i < n_reloads; i++)
6961 if (rld[i].reg_rtx != 0 && rld[i].in)
6962 {
6963 int regno1 = REGNO (rld[i].reg_rtx);
6964 int nregs1 = hard_regno_nregs[regno1]
6965 [GET_MODE (rld[i].reg_rtx)];
6966 if (regno1 < valueno + valuenregs
6967 && regno1 + nregs1 > valueno)
6968 return 0;
6969 }
6970 }
6971
6972 if (goal_mem)
6973 /* We must treat frame pointer as varying here,
6974 since it can vary--in a nonlocal goto as generated by expand_goto. */
6975 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6976
6977 /* Now verify that the values of GOAL and VALUE remain unaltered
6978 until INSN is reached. */
6979
6980 p = insn;
6981 while (1)
6982 {
6983 p = PREV_INSN (p);
6984 if (p == where)
6985 return value;
6986
6987 /* Don't trust the conversion past a function call
6988 if either of the two is in a call-clobbered register, or memory. */
6989 if (CALL_P (p))
6990 {
6991 int i;
6992
6993 if (goal_mem || need_stable_sp)
6994 return 0;
6995
6996 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6997 for (i = 0; i < nregs; ++i)
6998 if (call_used_regs[regno + i]
6999 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
7000 return 0;
7001
7002 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
7003 for (i = 0; i < valuenregs; ++i)
7004 if (call_used_regs[valueno + i]
7005 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
7006 return 0;
7007 }
7008
7009 if (INSN_P (p))
7010 {
7011 pat = PATTERN (p);
7012
7013 /* Watch out for unspec_volatile, and volatile asms. */
7014 if (volatile_insn_p (pat))
7015 return 0;
7016
7017 /* If this insn P stores in either GOAL or VALUE, return 0.
7018 If GOAL is a memory ref and this insn writes memory, return 0.
7019 If GOAL is a memory ref and its address is not constant,
7020 and this insn P changes a register used in GOAL, return 0. */
7021
7022 if (GET_CODE (pat) == COND_EXEC)
7023 pat = COND_EXEC_CODE (pat);
7024 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7025 {
7026 rtx dest = SET_DEST (pat);
7027 while (GET_CODE (dest) == SUBREG
7028 || GET_CODE (dest) == ZERO_EXTRACT
7029 || GET_CODE (dest) == STRICT_LOW_PART)
7030 dest = XEXP (dest, 0);
7031 if (REG_P (dest))
7032 {
7033 int xregno = REGNO (dest);
7034 int xnregs;
7035 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7036 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7037 else
7038 xnregs = 1;
7039 if (xregno < regno + nregs && xregno + xnregs > regno)
7040 return 0;
7041 if (xregno < valueno + valuenregs
7042 && xregno + xnregs > valueno)
7043 return 0;
7044 if (goal_mem_addr_varies
7045 && reg_overlap_mentioned_for_reload_p (dest, goal))
7046 return 0;
7047 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7048 return 0;
7049 }
7050 else if (goal_mem && MEM_P (dest)
7051 && ! push_operand (dest, GET_MODE (dest)))
7052 return 0;
7053 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7054 && reg_equiv_memory_loc (regno) != 0)
7055 return 0;
7056 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7057 return 0;
7058 }
7059 else if (GET_CODE (pat) == PARALLEL)
7060 {
7061 int i;
7062 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7063 {
7064 rtx v1 = XVECEXP (pat, 0, i);
7065 if (GET_CODE (v1) == COND_EXEC)
7066 v1 = COND_EXEC_CODE (v1);
7067 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7068 {
7069 rtx dest = SET_DEST (v1);
7070 while (GET_CODE (dest) == SUBREG
7071 || GET_CODE (dest) == ZERO_EXTRACT
7072 || GET_CODE (dest) == STRICT_LOW_PART)
7073 dest = XEXP (dest, 0);
7074 if (REG_P (dest))
7075 {
7076 int xregno = REGNO (dest);
7077 int xnregs;
7078 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7079 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7080 else
7081 xnregs = 1;
7082 if (xregno < regno + nregs
7083 && xregno + xnregs > regno)
7084 return 0;
7085 if (xregno < valueno + valuenregs
7086 && xregno + xnregs > valueno)
7087 return 0;
7088 if (goal_mem_addr_varies
7089 && reg_overlap_mentioned_for_reload_p (dest,
7090 goal))
7091 return 0;
7092 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7093 return 0;
7094 }
7095 else if (goal_mem && MEM_P (dest)
7096 && ! push_operand (dest, GET_MODE (dest)))
7097 return 0;
7098 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7099 && reg_equiv_memory_loc (regno) != 0)
7100 return 0;
7101 else if (need_stable_sp
7102 && push_operand (dest, GET_MODE (dest)))
7103 return 0;
7104 }
7105 }
7106 }
7107
7108 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7109 {
7110 rtx link;
7111
7112 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7113 link = XEXP (link, 1))
7114 {
7115 pat = XEXP (link, 0);
7116 if (GET_CODE (pat) == CLOBBER)
7117 {
7118 rtx dest = SET_DEST (pat);
7119
7120 if (REG_P (dest))
7121 {
7122 int xregno = REGNO (dest);
7123 int xnregs
7124 = hard_regno_nregs[xregno][GET_MODE (dest)];
7125
7126 if (xregno < regno + nregs
7127 && xregno + xnregs > regno)
7128 return 0;
7129 else if (xregno < valueno + valuenregs
7130 && xregno + xnregs > valueno)
7131 return 0;
7132 else if (goal_mem_addr_varies
7133 && reg_overlap_mentioned_for_reload_p (dest,
7134 goal))
7135 return 0;
7136 }
7137
7138 else if (goal_mem && MEM_P (dest)
7139 && ! push_operand (dest, GET_MODE (dest)))
7140 return 0;
7141 else if (need_stable_sp
7142 && push_operand (dest, GET_MODE (dest)))
7143 return 0;
7144 }
7145 }
7146 }
7147
7148 #ifdef AUTO_INC_DEC
7149 /* If this insn auto-increments or auto-decrements
7150 either regno or valueno, return 0 now.
7151 If GOAL is a memory ref and its address is not constant,
7152 and this insn P increments a register used in GOAL, return 0. */
7153 {
7154 rtx link;
7155
7156 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7157 if (REG_NOTE_KIND (link) == REG_INC
7158 && REG_P (XEXP (link, 0)))
7159 {
7160 int incno = REGNO (XEXP (link, 0));
7161 if (incno < regno + nregs && incno >= regno)
7162 return 0;
7163 if (incno < valueno + valuenregs && incno >= valueno)
7164 return 0;
7165 if (goal_mem_addr_varies
7166 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7167 goal))
7168 return 0;
7169 }
7170 }
7171 #endif
7172 }
7173 }
7174 }
7175 \f
7176 /* Find a place where INCED appears in an increment or decrement operator
7177 within X, and return the amount INCED is incremented or decremented by.
7178 The value is always positive. */
7179
7180 static int
7181 find_inc_amount (rtx x, rtx inced)
7182 {
7183 enum rtx_code code = GET_CODE (x);
7184 const char *fmt;
7185 int i;
7186
7187 if (code == MEM)
7188 {
7189 rtx addr = XEXP (x, 0);
7190 if ((GET_CODE (addr) == PRE_DEC
7191 || GET_CODE (addr) == POST_DEC
7192 || GET_CODE (addr) == PRE_INC
7193 || GET_CODE (addr) == POST_INC)
7194 && XEXP (addr, 0) == inced)
7195 return GET_MODE_SIZE (GET_MODE (x));
7196 else if ((GET_CODE (addr) == PRE_MODIFY
7197 || GET_CODE (addr) == POST_MODIFY)
7198 && GET_CODE (XEXP (addr, 1)) == PLUS
7199 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7200 && XEXP (addr, 0) == inced
7201 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7202 {
7203 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7204 return i < 0 ? -i : i;
7205 }
7206 }
7207
7208 fmt = GET_RTX_FORMAT (code);
7209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7210 {
7211 if (fmt[i] == 'e')
7212 {
7213 int tem = find_inc_amount (XEXP (x, i), inced);
7214 if (tem != 0)
7215 return tem;
7216 }
7217 if (fmt[i] == 'E')
7218 {
7219 int j;
7220 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7221 {
7222 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7223 if (tem != 0)
7224 return tem;
7225 }
7226 }
7227 }
7228
7229 return 0;
7230 }
7231 \f
7232 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7233 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7234
7235 #ifdef AUTO_INC_DEC
7236 static int
7237 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7238 rtx insn)
7239 {
7240 rtx link;
7241
7242 gcc_assert (insn);
7243
7244 if (! INSN_P (insn))
7245 return 0;
7246
7247 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7248 if (REG_NOTE_KIND (link) == REG_INC)
7249 {
7250 unsigned int test = (int) REGNO (XEXP (link, 0));
7251 if (test >= regno && test < endregno)
7252 return 1;
7253 }
7254 return 0;
7255 }
7256 #else
7257
7258 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7259
7260 #endif
7261
7262 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7263 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7264 REG_INC. REGNO must refer to a hard register. */
7265
7266 int
7267 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7268 int sets)
7269 {
7270 unsigned int nregs, endregno;
7271
7272 /* regno must be a hard register. */
7273 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7274
7275 nregs = hard_regno_nregs[regno][mode];
7276 endregno = regno + nregs;
7277
7278 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7279 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7280 && REG_P (XEXP (PATTERN (insn), 0)))
7281 {
7282 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7283
7284 return test >= regno && test < endregno;
7285 }
7286
7287 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7288 return 1;
7289
7290 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7291 {
7292 int i = XVECLEN (PATTERN (insn), 0) - 1;
7293
7294 for (; i >= 0; i--)
7295 {
7296 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7297 if ((GET_CODE (elt) == CLOBBER
7298 || (sets == 1 && GET_CODE (elt) == SET))
7299 && REG_P (XEXP (elt, 0)))
7300 {
7301 unsigned int test = REGNO (XEXP (elt, 0));
7302
7303 if (test >= regno && test < endregno)
7304 return 1;
7305 }
7306 if (sets == 2
7307 && reg_inc_found_and_valid_p (regno, endregno, elt))
7308 return 1;
7309 }
7310 }
7311
7312 return 0;
7313 }
7314
7315 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7316 rtx
7317 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7318 {
7319 int regno;
7320
7321 if (GET_MODE (reloadreg) == mode)
7322 return reloadreg;
7323
7324 regno = REGNO (reloadreg);
7325
7326 if (REG_WORDS_BIG_ENDIAN)
7327 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7328 - (int) hard_regno_nregs[regno][mode];
7329
7330 return gen_rtx_REG (mode, regno);
7331 }
7332
7333 static const char *const reload_when_needed_name[] =
7334 {
7335 "RELOAD_FOR_INPUT",
7336 "RELOAD_FOR_OUTPUT",
7337 "RELOAD_FOR_INSN",
7338 "RELOAD_FOR_INPUT_ADDRESS",
7339 "RELOAD_FOR_INPADDR_ADDRESS",
7340 "RELOAD_FOR_OUTPUT_ADDRESS",
7341 "RELOAD_FOR_OUTADDR_ADDRESS",
7342 "RELOAD_FOR_OPERAND_ADDRESS",
7343 "RELOAD_FOR_OPADDR_ADDR",
7344 "RELOAD_OTHER",
7345 "RELOAD_FOR_OTHER_ADDRESS"
7346 };
7347
7348 /* These functions are used to print the variables set by 'find_reloads' */
7349
7350 DEBUG_FUNCTION void
7351 debug_reload_to_stream (FILE *f)
7352 {
7353 int r;
7354 const char *prefix;
7355
7356 if (! f)
7357 f = stderr;
7358 for (r = 0; r < n_reloads; r++)
7359 {
7360 fprintf (f, "Reload %d: ", r);
7361
7362 if (rld[r].in != 0)
7363 {
7364 fprintf (f, "reload_in (%s) = ",
7365 GET_MODE_NAME (rld[r].inmode));
7366 print_inline_rtx (f, rld[r].in, 24);
7367 fprintf (f, "\n\t");
7368 }
7369
7370 if (rld[r].out != 0)
7371 {
7372 fprintf (f, "reload_out (%s) = ",
7373 GET_MODE_NAME (rld[r].outmode));
7374 print_inline_rtx (f, rld[r].out, 24);
7375 fprintf (f, "\n\t");
7376 }
7377
7378 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7379
7380 fprintf (f, "%s (opnum = %d)",
7381 reload_when_needed_name[(int) rld[r].when_needed],
7382 rld[r].opnum);
7383
7384 if (rld[r].optional)
7385 fprintf (f, ", optional");
7386
7387 if (rld[r].nongroup)
7388 fprintf (f, ", nongroup");
7389
7390 if (rld[r].inc != 0)
7391 fprintf (f, ", inc by %d", rld[r].inc);
7392
7393 if (rld[r].nocombine)
7394 fprintf (f, ", can't combine");
7395
7396 if (rld[r].secondary_p)
7397 fprintf (f, ", secondary_reload_p");
7398
7399 if (rld[r].in_reg != 0)
7400 {
7401 fprintf (f, "\n\treload_in_reg: ");
7402 print_inline_rtx (f, rld[r].in_reg, 24);
7403 }
7404
7405 if (rld[r].out_reg != 0)
7406 {
7407 fprintf (f, "\n\treload_out_reg: ");
7408 print_inline_rtx (f, rld[r].out_reg, 24);
7409 }
7410
7411 if (rld[r].reg_rtx != 0)
7412 {
7413 fprintf (f, "\n\treload_reg_rtx: ");
7414 print_inline_rtx (f, rld[r].reg_rtx, 24);
7415 }
7416
7417 prefix = "\n\t";
7418 if (rld[r].secondary_in_reload != -1)
7419 {
7420 fprintf (f, "%ssecondary_in_reload = %d",
7421 prefix, rld[r].secondary_in_reload);
7422 prefix = ", ";
7423 }
7424
7425 if (rld[r].secondary_out_reload != -1)
7426 fprintf (f, "%ssecondary_out_reload = %d\n",
7427 prefix, rld[r].secondary_out_reload);
7428
7429 prefix = "\n\t";
7430 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7431 {
7432 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7433 insn_data[rld[r].secondary_in_icode].name);
7434 prefix = ", ";
7435 }
7436
7437 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7438 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7439 insn_data[rld[r].secondary_out_icode].name);
7440
7441 fprintf (f, "\n");
7442 }
7443 }
7444
7445 DEBUG_FUNCTION void
7446 debug_reload (void)
7447 {
7448 debug_reload_to_stream (stderr);
7449 }