]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
Eliminate FOR_EACH_BB macro.
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
48
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
55
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
59
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
63
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
71
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
75
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
82 \f
83 struct target_reload default_target_reload;
84 #if SWITCHABLE_TARGET
85 struct target_reload *this_target_reload = &default_target_reload;
86 #endif
87
88 #define spill_indirect_levels \
89 (this_target_reload->x_spill_indirect_levels)
90
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx *reg_last_reload_reg;
94
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static regset_head reg_has_output_reload;
98
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload;
102
103 /* Widest width in which each pseudo reg is referred to (via subreg). */
104 static unsigned int *reg_max_ref_width;
105
106 /* Vector to remember old contents of reg_renumber before spilling. */
107 static short *reg_old_renumber;
108
109 /* During reload_as_needed, element N contains the last pseudo regno reloaded
110 into hard register N. If that pseudo reg occupied more than one register,
111 reg_reloaded_contents points to that pseudo for each spill register in
112 use; all of these must remain set for an inheritance to occur. */
113 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
114
115 /* During reload_as_needed, element N contains the insn for which
116 hard register N was last used. Its contents are significant only
117 when reg_reloaded_valid is set for this register. */
118 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
119
120 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
121 static HARD_REG_SET reg_reloaded_valid;
122 /* Indicate if the register was dead at the end of the reload.
123 This is only valid if reg_reloaded_contents is set and valid. */
124 static HARD_REG_SET reg_reloaded_dead;
125
126 /* Indicate whether the register's current value is one that is not
127 safe to retain across a call, even for registers that are normally
128 call-saved. This is only meaningful for members of reg_reloaded_valid. */
129 static HARD_REG_SET reg_reloaded_call_part_clobbered;
130
131 /* Number of spill-regs so far; number of valid elements of spill_regs. */
132 static int n_spills;
133
134 /* In parallel with spill_regs, contains REG rtx's for those regs.
135 Holds the last rtx used for any given reg, or 0 if it has never
136 been used for spilling yet. This rtx is reused, provided it has
137 the proper mode. */
138 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
139
140 /* In parallel with spill_regs, contains nonzero for a spill reg
141 that was stored after the last time it was used.
142 The precise value is the insn generated to do the store. */
143 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
144
145 /* This is the register that was stored with spill_reg_store. This is a
146 copy of reload_out / reload_out_reg when the value was stored; if
147 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
148 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
149
150 /* This table is the inverse mapping of spill_regs:
151 indexed by hard reg number,
152 it contains the position of that reg in spill_regs,
153 or -1 for something that is not in spill_regs.
154
155 ?!? This is no longer accurate. */
156 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
157
158 /* This reg set indicates registers that can't be used as spill registers for
159 the currently processed insn. These are the hard registers which are live
160 during the insn, but not allocated to pseudos, as well as fixed
161 registers. */
162 static HARD_REG_SET bad_spill_regs;
163
164 /* These are the hard registers that can't be used as spill register for any
165 insn. This includes registers used for user variables and registers that
166 we can't eliminate. A register that appears in this set also can't be used
167 to retry register allocation. */
168 static HARD_REG_SET bad_spill_regs_global;
169
170 /* Describes order of use of registers for reloading
171 of spilled pseudo-registers. `n_spills' is the number of
172 elements that are actually valid; new ones are added at the end.
173
174 Both spill_regs and spill_reg_order are used on two occasions:
175 once during find_reload_regs, where they keep track of the spill registers
176 for a single insn, but also during reload_as_needed where they show all
177 the registers ever used by reload. For the latter case, the information
178 is calculated during finish_spills. */
179 static short spill_regs[FIRST_PSEUDO_REGISTER];
180
181 /* This vector of reg sets indicates, for each pseudo, which hard registers
182 may not be used for retrying global allocation because the register was
183 formerly spilled from one of them. If we allowed reallocating a pseudo to
184 a register that it was already allocated to, reload might not
185 terminate. */
186 static HARD_REG_SET *pseudo_previous_regs;
187
188 /* This vector of reg sets indicates, for each pseudo, which hard
189 registers may not be used for retrying global allocation because they
190 are used as spill registers during one of the insns in which the
191 pseudo is live. */
192 static HARD_REG_SET *pseudo_forbidden_regs;
193
194 /* All hard regs that have been used as spill registers for any insn are
195 marked in this set. */
196 static HARD_REG_SET used_spill_regs;
197
198 /* Index of last register assigned as a spill register. We allocate in
199 a round-robin fashion. */
200 static int last_spill_reg;
201
202 /* Record the stack slot for each spilled hard register. */
203 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
204
205 /* Width allocated so far for that stack slot. */
206 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
207
208 /* Record which pseudos needed to be spilled. */
209 static regset_head spilled_pseudos;
210
211 /* Record which pseudos changed their allocation in finish_spills. */
212 static regset_head changed_allocation_pseudos;
213
214 /* Used for communication between order_regs_for_reload and count_pseudo.
215 Used to avoid counting one pseudo twice. */
216 static regset_head pseudos_counted;
217
218 /* First uid used by insns created by reload in this function.
219 Used in find_equiv_reg. */
220 int reload_first_uid;
221
222 /* Flag set by local-alloc or global-alloc if anything is live in
223 a call-clobbered reg across calls. */
224 int caller_save_needed;
225
226 /* Set to 1 while reload_as_needed is operating.
227 Required by some machines to handle any generated moves differently. */
228 int reload_in_progress = 0;
229
230 /* This obstack is used for allocation of rtl during register elimination.
231 The allocated storage can be freed once find_reloads has processed the
232 insn. */
233 static struct obstack reload_obstack;
234
235 /* Points to the beginning of the reload_obstack. All insn_chain structures
236 are allocated first. */
237 static char *reload_startobj;
238
239 /* The point after all insn_chain structures. Used to quickly deallocate
240 memory allocated in copy_reloads during calculate_needs_all_insns. */
241 static char *reload_firstobj;
242
243 /* This points before all local rtl generated by register elimination.
244 Used to quickly free all memory after processing one insn. */
245 static char *reload_insn_firstobj;
246
247 /* List of insn_chain instructions, one for every insn that reload needs to
248 examine. */
249 struct insn_chain *reload_insn_chain;
250
251 /* TRUE if we potentially left dead insns in the insn stream and want to
252 run DCE immediately after reload, FALSE otherwise. */
253 static bool need_dce;
254
255 /* List of all insns needing reloads. */
256 static struct insn_chain *insns_need_reload;
257 \f
258 /* This structure is used to record information about register eliminations.
259 Each array entry describes one possible way of eliminating a register
260 in favor of another. If there is more than one way of eliminating a
261 particular register, the most preferred should be specified first. */
262
263 struct elim_table
264 {
265 int from; /* Register number to be eliminated. */
266 int to; /* Register number used as replacement. */
267 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
268 int can_eliminate; /* Nonzero if this elimination can be done. */
269 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
270 target hook in previous scan over insns
271 made by reload. */
272 HOST_WIDE_INT offset; /* Current offset between the two regs. */
273 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
274 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
275 rtx from_rtx; /* REG rtx for the register to be eliminated.
276 We cannot simply compare the number since
277 we might then spuriously replace a hard
278 register corresponding to a pseudo
279 assigned to the reg to be eliminated. */
280 rtx to_rtx; /* REG rtx for the replacement. */
281 };
282
283 static struct elim_table *reg_eliminate = 0;
284
285 /* This is an intermediate structure to initialize the table. It has
286 exactly the members provided by ELIMINABLE_REGS. */
287 static const struct elim_table_1
288 {
289 const int from;
290 const int to;
291 } reg_eliminate_1[] =
292
293 /* If a set of eliminable registers was specified, define the table from it.
294 Otherwise, default to the normal case of the frame pointer being
295 replaced by the stack pointer. */
296
297 #ifdef ELIMINABLE_REGS
298 ELIMINABLE_REGS;
299 #else
300 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
301 #endif
302
303 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
304
305 /* Record the number of pending eliminations that have an offset not equal
306 to their initial offset. If nonzero, we use a new copy of each
307 replacement result in any insns encountered. */
308 int num_not_at_initial_offset;
309
310 /* Count the number of registers that we may be able to eliminate. */
311 static int num_eliminable;
312 /* And the number of registers that are equivalent to a constant that
313 can be eliminated to frame_pointer / arg_pointer + constant. */
314 static int num_eliminable_invariants;
315
316 /* For each label, we record the offset of each elimination. If we reach
317 a label by more than one path and an offset differs, we cannot do the
318 elimination. This information is indexed by the difference of the
319 number of the label and the first label number. We can't offset the
320 pointer itself as this can cause problems on machines with segmented
321 memory. The first table is an array of flags that records whether we
322 have yet encountered a label and the second table is an array of arrays,
323 one entry in the latter array for each elimination. */
324
325 static int first_label_num;
326 static char *offsets_known_at;
327 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
328
329 vec<reg_equivs_t, va_gc> *reg_equivs;
330
331 /* Stack of addresses where an rtx has been changed. We can undo the
332 changes by popping items off the stack and restoring the original
333 value at each location.
334
335 We use this simplistic undo capability rather than copy_rtx as copy_rtx
336 will not make a deep copy of a normally sharable rtx, such as
337 (const (plus (symbol_ref) (const_int))). If such an expression appears
338 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
339 rtx expression would be changed. See PR 42431. */
340
341 typedef rtx *rtx_p;
342 static vec<rtx_p> substitute_stack;
343
344 /* Number of labels in the current function. */
345
346 static int num_labels;
347 \f
348 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
349 static void maybe_fix_stack_asms (void);
350 static void copy_reloads (struct insn_chain *);
351 static void calculate_needs_all_insns (int);
352 static int find_reg (struct insn_chain *, int);
353 static void find_reload_regs (struct insn_chain *);
354 static void select_reload_regs (void);
355 static void delete_caller_save_insns (void);
356
357 static void spill_failure (rtx, enum reg_class);
358 static void count_spilled_pseudo (int, int, int);
359 static void delete_dead_insn (rtx);
360 static void alter_reg (int, int, bool);
361 static void set_label_offsets (rtx, rtx, int);
362 static void check_eliminable_occurrences (rtx);
363 static void elimination_effects (rtx, enum machine_mode);
364 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
365 static int eliminate_regs_in_insn (rtx, int);
366 static void update_eliminable_offsets (void);
367 static void mark_not_eliminable (rtx, const_rtx, void *);
368 static void set_initial_elim_offsets (void);
369 static bool verify_initial_elim_offsets (void);
370 static void set_initial_label_offsets (void);
371 static void set_offsets_for_label (rtx);
372 static void init_eliminable_invariants (rtx, bool);
373 static void init_elim_table (void);
374 static void free_reg_equiv (void);
375 static void update_eliminables (HARD_REG_SET *);
376 static bool update_eliminables_and_spill (void);
377 static void elimination_costs_in_insn (rtx);
378 static void spill_hard_reg (unsigned int, int);
379 static int finish_spills (int);
380 static void scan_paradoxical_subregs (rtx);
381 static void count_pseudo (int);
382 static void order_regs_for_reload (struct insn_chain *);
383 static void reload_as_needed (int);
384 static void forget_old_reloads_1 (rtx, const_rtx, void *);
385 static void forget_marked_reloads (regset);
386 static int reload_reg_class_lower (const void *, const void *);
387 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
388 enum machine_mode);
389 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
390 enum machine_mode);
391 static int reload_reg_free_p (unsigned int, int, enum reload_type);
392 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
393 rtx, rtx, int, int);
394 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
395 rtx, rtx, int, int);
396 static int allocate_reload_reg (struct insn_chain *, int, int);
397 static int conflicts_with_override (rtx);
398 static void failed_reload (rtx, int);
399 static int set_reload_reg (int, int);
400 static void choose_reload_regs_init (struct insn_chain *, rtx *);
401 static void choose_reload_regs (struct insn_chain *);
402 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
403 rtx, int);
404 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
405 int);
406 static void do_input_reload (struct insn_chain *, struct reload *, int);
407 static void do_output_reload (struct insn_chain *, struct reload *, int);
408 static void emit_reload_insns (struct insn_chain *);
409 static void delete_output_reload (rtx, int, int, rtx);
410 static void delete_address_reloads (rtx, rtx);
411 static void delete_address_reloads_1 (rtx, rtx, rtx);
412 static void inc_for_reload (rtx, rtx, rtx, int);
413 #ifdef AUTO_INC_DEC
414 static void add_auto_inc_notes (rtx, rtx);
415 #endif
416 static void substitute (rtx *, const_rtx, rtx);
417 static bool gen_reload_chain_without_interm_reg_p (int, int);
418 static int reloads_conflict (int, int);
419 static rtx gen_reload (rtx, rtx, int, enum reload_type);
420 static rtx emit_insn_if_valid_for_reload (rtx);
421 \f
422 /* Initialize the reload pass. This is called at the beginning of compilation
423 and may be called again if the target is reinitialized. */
424
425 void
426 init_reload (void)
427 {
428 int i;
429
430 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
431 Set spill_indirect_levels to the number of levels such addressing is
432 permitted, zero if it is not permitted at all. */
433
434 rtx tem
435 = gen_rtx_MEM (Pmode,
436 gen_rtx_PLUS (Pmode,
437 gen_rtx_REG (Pmode,
438 LAST_VIRTUAL_REGISTER + 1),
439 gen_int_mode (4, Pmode)));
440 spill_indirect_levels = 0;
441
442 while (memory_address_p (QImode, tem))
443 {
444 spill_indirect_levels++;
445 tem = gen_rtx_MEM (Pmode, tem);
446 }
447
448 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
449
450 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
451 indirect_symref_ok = memory_address_p (QImode, tem);
452
453 /* See if reg+reg is a valid (and offsettable) address. */
454
455 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
456 {
457 tem = gen_rtx_PLUS (Pmode,
458 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
459 gen_rtx_REG (Pmode, i));
460
461 /* This way, we make sure that reg+reg is an offsettable address. */
462 tem = plus_constant (Pmode, tem, 4);
463
464 if (memory_address_p (QImode, tem))
465 {
466 double_reg_address_ok = 1;
467 break;
468 }
469 }
470
471 /* Initialize obstack for our rtl allocation. */
472 if (reload_startobj == NULL)
473 {
474 gcc_obstack_init (&reload_obstack);
475 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
476 }
477
478 INIT_REG_SET (&spilled_pseudos);
479 INIT_REG_SET (&changed_allocation_pseudos);
480 INIT_REG_SET (&pseudos_counted);
481 }
482
483 /* List of insn chains that are currently unused. */
484 static struct insn_chain *unused_insn_chains = 0;
485
486 /* Allocate an empty insn_chain structure. */
487 struct insn_chain *
488 new_insn_chain (void)
489 {
490 struct insn_chain *c;
491
492 if (unused_insn_chains == 0)
493 {
494 c = XOBNEW (&reload_obstack, struct insn_chain);
495 INIT_REG_SET (&c->live_throughout);
496 INIT_REG_SET (&c->dead_or_set);
497 }
498 else
499 {
500 c = unused_insn_chains;
501 unused_insn_chains = c->next;
502 }
503 c->is_caller_save_insn = 0;
504 c->need_operand_change = 0;
505 c->need_reload = 0;
506 c->need_elim = 0;
507 return c;
508 }
509
510 /* Small utility function to set all regs in hard reg set TO which are
511 allocated to pseudos in regset FROM. */
512
513 void
514 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
515 {
516 unsigned int regno;
517 reg_set_iterator rsi;
518
519 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
520 {
521 int r = reg_renumber[regno];
522
523 if (r < 0)
524 {
525 /* reload_combine uses the information from DF_LIVE_IN,
526 which might still contain registers that have not
527 actually been allocated since they have an
528 equivalence. */
529 gcc_assert (ira_conflicts_p || reload_completed);
530 }
531 else
532 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
533 }
534 }
535
536 /* Replace all pseudos found in LOC with their corresponding
537 equivalences. */
538
539 static void
540 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
541 {
542 rtx x = *loc;
543 enum rtx_code code;
544 const char *fmt;
545 int i, j;
546
547 if (! x)
548 return;
549
550 code = GET_CODE (x);
551 if (code == REG)
552 {
553 unsigned int regno = REGNO (x);
554
555 if (regno < FIRST_PSEUDO_REGISTER)
556 return;
557
558 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
559 if (x != *loc)
560 {
561 *loc = x;
562 replace_pseudos_in (loc, mem_mode, usage);
563 return;
564 }
565
566 if (reg_equiv_constant (regno))
567 *loc = reg_equiv_constant (regno);
568 else if (reg_equiv_invariant (regno))
569 *loc = reg_equiv_invariant (regno);
570 else if (reg_equiv_mem (regno))
571 *loc = reg_equiv_mem (regno);
572 else if (reg_equiv_address (regno))
573 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
574 else
575 {
576 gcc_assert (!REG_P (regno_reg_rtx[regno])
577 || REGNO (regno_reg_rtx[regno]) != regno);
578 *loc = regno_reg_rtx[regno];
579 }
580
581 return;
582 }
583 else if (code == MEM)
584 {
585 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
586 return;
587 }
588
589 /* Process each of our operands recursively. */
590 fmt = GET_RTX_FORMAT (code);
591 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
592 if (*fmt == 'e')
593 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
594 else if (*fmt == 'E')
595 for (j = 0; j < XVECLEN (x, i); j++)
596 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
597 }
598
599 /* Determine if the current function has an exception receiver block
600 that reaches the exit block via non-exceptional edges */
601
602 static bool
603 has_nonexceptional_receiver (void)
604 {
605 edge e;
606 edge_iterator ei;
607 basic_block *tos, *worklist, bb;
608
609 /* If we're not optimizing, then just err on the safe side. */
610 if (!optimize)
611 return true;
612
613 /* First determine which blocks can reach exit via normal paths. */
614 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
615
616 FOR_EACH_BB_FN (bb, cfun)
617 bb->flags &= ~BB_REACHABLE;
618
619 /* Place the exit block on our worklist. */
620 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
621 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
622
623 /* Iterate: find everything reachable from what we've already seen. */
624 while (tos != worklist)
625 {
626 bb = *--tos;
627
628 FOR_EACH_EDGE (e, ei, bb->preds)
629 if (!(e->flags & EDGE_ABNORMAL))
630 {
631 basic_block src = e->src;
632
633 if (!(src->flags & BB_REACHABLE))
634 {
635 src->flags |= BB_REACHABLE;
636 *tos++ = src;
637 }
638 }
639 }
640 free (worklist);
641
642 /* Now see if there's a reachable block with an exceptional incoming
643 edge. */
644 FOR_EACH_BB_FN (bb, cfun)
645 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
646 return true;
647
648 /* No exceptional block reached exit unexceptionally. */
649 return false;
650 }
651
652 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
653 zero elements) to MAX_REG_NUM elements.
654
655 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
656 void
657 grow_reg_equivs (void)
658 {
659 int old_size = vec_safe_length (reg_equivs);
660 int max_regno = max_reg_num ();
661 int i;
662 reg_equivs_t ze;
663
664 memset (&ze, 0, sizeof (reg_equivs_t));
665 vec_safe_reserve (reg_equivs, max_regno);
666 for (i = old_size; i < max_regno; i++)
667 reg_equivs->quick_insert (i, ze);
668 }
669
670 \f
671 /* Global variables used by reload and its subroutines. */
672
673 /* The current basic block while in calculate_elim_costs_all_insns. */
674 static basic_block elim_bb;
675
676 /* Set during calculate_needs if an insn needs register elimination. */
677 static int something_needs_elimination;
678 /* Set during calculate_needs if an insn needs an operand changed. */
679 static int something_needs_operands_changed;
680 /* Set by alter_regs if we spilled a register to the stack. */
681 static bool something_was_spilled;
682
683 /* Nonzero means we couldn't get enough spill regs. */
684 static int failure;
685
686 /* Temporary array of pseudo-register number. */
687 static int *temp_pseudo_reg_arr;
688
689 /* Main entry point for the reload pass.
690
691 FIRST is the first insn of the function being compiled.
692
693 GLOBAL nonzero means we were called from global_alloc
694 and should attempt to reallocate any pseudoregs that we
695 displace from hard regs we will use for reloads.
696 If GLOBAL is zero, we do not have enough information to do that,
697 so any pseudo reg that is spilled must go to the stack.
698
699 Return value is TRUE if reload likely left dead insns in the
700 stream and a DCE pass should be run to elimiante them. Else the
701 return value is FALSE. */
702
703 bool
704 reload (rtx first, int global)
705 {
706 int i, n;
707 rtx insn;
708 struct elim_table *ep;
709 basic_block bb;
710 bool inserted;
711
712 /* Make sure even insns with volatile mem refs are recognizable. */
713 init_recog ();
714
715 failure = 0;
716
717 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
718
719 /* Make sure that the last insn in the chain
720 is not something that needs reloading. */
721 emit_note (NOTE_INSN_DELETED);
722
723 /* Enable find_equiv_reg to distinguish insns made by reload. */
724 reload_first_uid = get_max_uid ();
725
726 #ifdef SECONDARY_MEMORY_NEEDED
727 /* Initialize the secondary memory table. */
728 clear_secondary_mem ();
729 #endif
730
731 /* We don't have a stack slot for any spill reg yet. */
732 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
733 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
734
735 /* Initialize the save area information for caller-save, in case some
736 are needed. */
737 init_save_areas ();
738
739 /* Compute which hard registers are now in use
740 as homes for pseudo registers.
741 This is done here rather than (eg) in global_alloc
742 because this point is reached even if not optimizing. */
743 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
744 mark_home_live (i);
745
746 /* A function that has a nonlocal label that can reach the exit
747 block via non-exceptional paths must save all call-saved
748 registers. */
749 if (cfun->has_nonlocal_label
750 && has_nonexceptional_receiver ())
751 crtl->saves_all_registers = 1;
752
753 if (crtl->saves_all_registers)
754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
755 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
756 df_set_regs_ever_live (i, true);
757
758 /* Find all the pseudo registers that didn't get hard regs
759 but do have known equivalent constants or memory slots.
760 These include parameters (known equivalent to parameter slots)
761 and cse'd or loop-moved constant memory addresses.
762
763 Record constant equivalents in reg_equiv_constant
764 so they will be substituted by find_reloads.
765 Record memory equivalents in reg_mem_equiv so they can
766 be substituted eventually by altering the REG-rtx's. */
767
768 grow_reg_equivs ();
769 reg_old_renumber = XCNEWVEC (short, max_regno);
770 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
771 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
772 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
773
774 CLEAR_HARD_REG_SET (bad_spill_regs_global);
775
776 init_eliminable_invariants (first, true);
777 init_elim_table ();
778
779 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
780 stack slots to the pseudos that lack hard regs or equivalents.
781 Do not touch virtual registers. */
782
783 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
784 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
785 temp_pseudo_reg_arr[n++] = i;
786
787 if (ira_conflicts_p)
788 /* Ask IRA to order pseudo-registers for better stack slot
789 sharing. */
790 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
791
792 for (i = 0; i < n; i++)
793 alter_reg (temp_pseudo_reg_arr[i], -1, false);
794
795 /* If we have some registers we think can be eliminated, scan all insns to
796 see if there is an insn that sets one of these registers to something
797 other than itself plus a constant. If so, the register cannot be
798 eliminated. Doing this scan here eliminates an extra pass through the
799 main reload loop in the most common case where register elimination
800 cannot be done. */
801 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
802 if (INSN_P (insn))
803 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
804
805 maybe_fix_stack_asms ();
806
807 insns_need_reload = 0;
808 something_needs_elimination = 0;
809
810 /* Initialize to -1, which means take the first spill register. */
811 last_spill_reg = -1;
812
813 /* Spill any hard regs that we know we can't eliminate. */
814 CLEAR_HARD_REG_SET (used_spill_regs);
815 /* There can be multiple ways to eliminate a register;
816 they should be listed adjacently.
817 Elimination for any register fails only if all possible ways fail. */
818 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
819 {
820 int from = ep->from;
821 int can_eliminate = 0;
822 do
823 {
824 can_eliminate |= ep->can_eliminate;
825 ep++;
826 }
827 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
828 if (! can_eliminate)
829 spill_hard_reg (from, 1);
830 }
831
832 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
833 if (frame_pointer_needed)
834 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
835 #endif
836 finish_spills (global);
837
838 /* From now on, we may need to generate moves differently. We may also
839 allow modifications of insns which cause them to not be recognized.
840 Any such modifications will be cleaned up during reload itself. */
841 reload_in_progress = 1;
842
843 /* This loop scans the entire function each go-round
844 and repeats until one repetition spills no additional hard regs. */
845 for (;;)
846 {
847 int something_changed;
848 int did_spill;
849 HOST_WIDE_INT starting_frame_size;
850
851 starting_frame_size = get_frame_size ();
852 something_was_spilled = false;
853
854 set_initial_elim_offsets ();
855 set_initial_label_offsets ();
856
857 /* For each pseudo register that has an equivalent location defined,
858 try to eliminate any eliminable registers (such as the frame pointer)
859 assuming initial offsets for the replacement register, which
860 is the normal case.
861
862 If the resulting location is directly addressable, substitute
863 the MEM we just got directly for the old REG.
864
865 If it is not addressable but is a constant or the sum of a hard reg
866 and constant, it is probably not addressable because the constant is
867 out of range, in that case record the address; we will generate
868 hairy code to compute the address in a register each time it is
869 needed. Similarly if it is a hard register, but one that is not
870 valid as an address register.
871
872 If the location is not addressable, but does not have one of the
873 above forms, assign a stack slot. We have to do this to avoid the
874 potential of producing lots of reloads if, e.g., a location involves
875 a pseudo that didn't get a hard register and has an equivalent memory
876 location that also involves a pseudo that didn't get a hard register.
877
878 Perhaps at some point we will improve reload_when_needed handling
879 so this problem goes away. But that's very hairy. */
880
881 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
882 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
883 {
884 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
885 NULL_RTX);
886
887 if (strict_memory_address_addr_space_p
888 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
889 MEM_ADDR_SPACE (x)))
890 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
891 else if (CONSTANT_P (XEXP (x, 0))
892 || (REG_P (XEXP (x, 0))
893 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
894 || (GET_CODE (XEXP (x, 0)) == PLUS
895 && REG_P (XEXP (XEXP (x, 0), 0))
896 && (REGNO (XEXP (XEXP (x, 0), 0))
897 < FIRST_PSEUDO_REGISTER)
898 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
899 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
900 else
901 {
902 /* Make a new stack slot. Then indicate that something
903 changed so we go back and recompute offsets for
904 eliminable registers because the allocation of memory
905 below might change some offset. reg_equiv_{mem,address}
906 will be set up for this pseudo on the next pass around
907 the loop. */
908 reg_equiv_memory_loc (i) = 0;
909 reg_equiv_init (i) = 0;
910 alter_reg (i, -1, true);
911 }
912 }
913
914 if (caller_save_needed)
915 setup_save_areas ();
916
917 if (starting_frame_size && crtl->stack_alignment_needed)
918 {
919 /* If we have a stack frame, we must align it now. The
920 stack size may be a part of the offset computation for
921 register elimination. So if this changes the stack size,
922 then repeat the elimination bookkeeping. We don't
923 realign when there is no stack, as that will cause a
924 stack frame when none is needed should
925 STARTING_FRAME_OFFSET not be already aligned to
926 STACK_BOUNDARY. */
927 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
928 }
929 /* If we allocated another stack slot, redo elimination bookkeeping. */
930 if (something_was_spilled || starting_frame_size != get_frame_size ())
931 {
932 update_eliminables_and_spill ();
933 continue;
934 }
935
936 if (caller_save_needed)
937 {
938 save_call_clobbered_regs ();
939 /* That might have allocated new insn_chain structures. */
940 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
941 }
942
943 calculate_needs_all_insns (global);
944
945 if (! ira_conflicts_p)
946 /* Don't do it for IRA. We need this info because we don't
947 change live_throughout and dead_or_set for chains when IRA
948 is used. */
949 CLEAR_REG_SET (&spilled_pseudos);
950
951 did_spill = 0;
952
953 something_changed = 0;
954
955 /* If we allocated any new memory locations, make another pass
956 since it might have changed elimination offsets. */
957 if (something_was_spilled || starting_frame_size != get_frame_size ())
958 something_changed = 1;
959
960 /* Even if the frame size remained the same, we might still have
961 changed elimination offsets, e.g. if find_reloads called
962 force_const_mem requiring the back end to allocate a constant
963 pool base register that needs to be saved on the stack. */
964 else if (!verify_initial_elim_offsets ())
965 something_changed = 1;
966
967 if (update_eliminables_and_spill ())
968 {
969 did_spill = 1;
970 something_changed = 1;
971 }
972
973 select_reload_regs ();
974 if (failure)
975 goto failed;
976
977 if (insns_need_reload != 0 || did_spill)
978 something_changed |= finish_spills (global);
979
980 if (! something_changed)
981 break;
982
983 if (caller_save_needed)
984 delete_caller_save_insns ();
985
986 obstack_free (&reload_obstack, reload_firstobj);
987 }
988
989 /* If global-alloc was run, notify it of any register eliminations we have
990 done. */
991 if (global)
992 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
993 if (ep->can_eliminate)
994 mark_elimination (ep->from, ep->to);
995
996 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
997 If that insn didn't set the register (i.e., it copied the register to
998 memory), just delete that insn instead of the equivalencing insn plus
999 anything now dead. If we call delete_dead_insn on that insn, we may
1000 delete the insn that actually sets the register if the register dies
1001 there and that is incorrect. */
1002
1003 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1004 {
1005 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1006 {
1007 rtx list;
1008 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1009 {
1010 rtx equiv_insn = XEXP (list, 0);
1011
1012 /* If we already deleted the insn or if it may trap, we can't
1013 delete it. The latter case shouldn't happen, but can
1014 if an insn has a variable address, gets a REG_EH_REGION
1015 note added to it, and then gets converted into a load
1016 from a constant address. */
1017 if (NOTE_P (equiv_insn)
1018 || can_throw_internal (equiv_insn))
1019 ;
1020 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1021 delete_dead_insn (equiv_insn);
1022 else
1023 SET_INSN_DELETED (equiv_insn);
1024 }
1025 }
1026 }
1027
1028 /* Use the reload registers where necessary
1029 by generating move instructions to move the must-be-register
1030 values into or out of the reload registers. */
1031
1032 if (insns_need_reload != 0 || something_needs_elimination
1033 || something_needs_operands_changed)
1034 {
1035 HOST_WIDE_INT old_frame_size = get_frame_size ();
1036
1037 reload_as_needed (global);
1038
1039 gcc_assert (old_frame_size == get_frame_size ());
1040
1041 gcc_assert (verify_initial_elim_offsets ());
1042 }
1043
1044 /* If we were able to eliminate the frame pointer, show that it is no
1045 longer live at the start of any basic block. If it ls live by
1046 virtue of being in a pseudo, that pseudo will be marked live
1047 and hence the frame pointer will be known to be live via that
1048 pseudo. */
1049
1050 if (! frame_pointer_needed)
1051 FOR_EACH_BB_FN (bb, cfun)
1052 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1053
1054 /* Come here (with failure set nonzero) if we can't get enough spill
1055 regs. */
1056 failed:
1057
1058 CLEAR_REG_SET (&changed_allocation_pseudos);
1059 CLEAR_REG_SET (&spilled_pseudos);
1060 reload_in_progress = 0;
1061
1062 /* Now eliminate all pseudo regs by modifying them into
1063 their equivalent memory references.
1064 The REG-rtx's for the pseudos are modified in place,
1065 so all insns that used to refer to them now refer to memory.
1066
1067 For a reg that has a reg_equiv_address, all those insns
1068 were changed by reloading so that no insns refer to it any longer;
1069 but the DECL_RTL of a variable decl may refer to it,
1070 and if so this causes the debugging info to mention the variable. */
1071
1072 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1073 {
1074 rtx addr = 0;
1075
1076 if (reg_equiv_mem (i))
1077 addr = XEXP (reg_equiv_mem (i), 0);
1078
1079 if (reg_equiv_address (i))
1080 addr = reg_equiv_address (i);
1081
1082 if (addr)
1083 {
1084 if (reg_renumber[i] < 0)
1085 {
1086 rtx reg = regno_reg_rtx[i];
1087
1088 REG_USERVAR_P (reg) = 0;
1089 PUT_CODE (reg, MEM);
1090 XEXP (reg, 0) = addr;
1091 if (reg_equiv_memory_loc (i))
1092 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1093 else
1094 MEM_ATTRS (reg) = 0;
1095 MEM_NOTRAP_P (reg) = 1;
1096 }
1097 else if (reg_equiv_mem (i))
1098 XEXP (reg_equiv_mem (i), 0) = addr;
1099 }
1100
1101 /* We don't want complex addressing modes in debug insns
1102 if simpler ones will do, so delegitimize equivalences
1103 in debug insns. */
1104 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1105 {
1106 rtx reg = regno_reg_rtx[i];
1107 rtx equiv = 0;
1108 df_ref use, next;
1109
1110 if (reg_equiv_constant (i))
1111 equiv = reg_equiv_constant (i);
1112 else if (reg_equiv_invariant (i))
1113 equiv = reg_equiv_invariant (i);
1114 else if (reg && MEM_P (reg))
1115 equiv = targetm.delegitimize_address (reg);
1116 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1117 equiv = reg;
1118
1119 if (equiv == reg)
1120 continue;
1121
1122 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1123 {
1124 insn = DF_REF_INSN (use);
1125
1126 /* Make sure the next ref is for a different instruction,
1127 so that we're not affected by the rescan. */
1128 next = DF_REF_NEXT_REG (use);
1129 while (next && DF_REF_INSN (next) == insn)
1130 next = DF_REF_NEXT_REG (next);
1131
1132 if (DEBUG_INSN_P (insn))
1133 {
1134 if (!equiv)
1135 {
1136 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1137 df_insn_rescan_debug_internal (insn);
1138 }
1139 else
1140 INSN_VAR_LOCATION_LOC (insn)
1141 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1142 reg, equiv);
1143 }
1144 }
1145 }
1146 }
1147
1148 /* We must set reload_completed now since the cleanup_subreg_operands call
1149 below will re-recognize each insn and reload may have generated insns
1150 which are only valid during and after reload. */
1151 reload_completed = 1;
1152
1153 /* Make a pass over all the insns and delete all USEs which we inserted
1154 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1155 notes. Delete all CLOBBER insns, except those that refer to the return
1156 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1157 from misarranging variable-array code, and simplify (subreg (reg))
1158 operands. Strip and regenerate REG_INC notes that may have been moved
1159 around. */
1160
1161 for (insn = first; insn; insn = NEXT_INSN (insn))
1162 if (INSN_P (insn))
1163 {
1164 rtx *pnote;
1165
1166 if (CALL_P (insn))
1167 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1168 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1169
1170 if ((GET_CODE (PATTERN (insn)) == USE
1171 /* We mark with QImode USEs introduced by reload itself. */
1172 && (GET_MODE (insn) == QImode
1173 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1174 || (GET_CODE (PATTERN (insn)) == CLOBBER
1175 && (!MEM_P (XEXP (PATTERN (insn), 0))
1176 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1177 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1178 && XEXP (XEXP (PATTERN (insn), 0), 0)
1179 != stack_pointer_rtx))
1180 && (!REG_P (XEXP (PATTERN (insn), 0))
1181 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1182 {
1183 delete_insn (insn);
1184 continue;
1185 }
1186
1187 /* Some CLOBBERs may survive until here and still reference unassigned
1188 pseudos with const equivalent, which may in turn cause ICE in later
1189 passes if the reference remains in place. */
1190 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1191 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1192 VOIDmode, PATTERN (insn));
1193
1194 /* Discard obvious no-ops, even without -O. This optimization
1195 is fast and doesn't interfere with debugging. */
1196 if (NONJUMP_INSN_P (insn)
1197 && GET_CODE (PATTERN (insn)) == SET
1198 && REG_P (SET_SRC (PATTERN (insn)))
1199 && REG_P (SET_DEST (PATTERN (insn)))
1200 && (REGNO (SET_SRC (PATTERN (insn)))
1201 == REGNO (SET_DEST (PATTERN (insn)))))
1202 {
1203 delete_insn (insn);
1204 continue;
1205 }
1206
1207 pnote = &REG_NOTES (insn);
1208 while (*pnote != 0)
1209 {
1210 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1211 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1212 || REG_NOTE_KIND (*pnote) == REG_INC)
1213 *pnote = XEXP (*pnote, 1);
1214 else
1215 pnote = &XEXP (*pnote, 1);
1216 }
1217
1218 #ifdef AUTO_INC_DEC
1219 add_auto_inc_notes (insn, PATTERN (insn));
1220 #endif
1221
1222 /* Simplify (subreg (reg)) if it appears as an operand. */
1223 cleanup_subreg_operands (insn);
1224
1225 /* Clean up invalid ASMs so that they don't confuse later passes.
1226 See PR 21299. */
1227 if (asm_noperands (PATTERN (insn)) >= 0)
1228 {
1229 extract_insn (insn);
1230 if (!constrain_operands (1))
1231 {
1232 error_for_asm (insn,
1233 "%<asm%> operand has impossible constraints");
1234 delete_insn (insn);
1235 continue;
1236 }
1237 }
1238 }
1239
1240 /* If we are doing generic stack checking, give a warning if this
1241 function's frame size is larger than we expect. */
1242 if (flag_stack_check == GENERIC_STACK_CHECK)
1243 {
1244 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1245 static int verbose_warned = 0;
1246
1247 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1248 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1249 size += UNITS_PER_WORD;
1250
1251 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1252 {
1253 warning (0, "frame size too large for reliable stack checking");
1254 if (! verbose_warned)
1255 {
1256 warning (0, "try reducing the number of local variables");
1257 verbose_warned = 1;
1258 }
1259 }
1260 }
1261
1262 free (temp_pseudo_reg_arr);
1263
1264 /* Indicate that we no longer have known memory locations or constants. */
1265 free_reg_equiv ();
1266
1267 free (reg_max_ref_width);
1268 free (reg_old_renumber);
1269 free (pseudo_previous_regs);
1270 free (pseudo_forbidden_regs);
1271
1272 CLEAR_HARD_REG_SET (used_spill_regs);
1273 for (i = 0; i < n_spills; i++)
1274 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1275
1276 /* Free all the insn_chain structures at once. */
1277 obstack_free (&reload_obstack, reload_startobj);
1278 unused_insn_chains = 0;
1279
1280 inserted = fixup_abnormal_edges ();
1281
1282 /* We've possibly turned single trapping insn into multiple ones. */
1283 if (cfun->can_throw_non_call_exceptions)
1284 {
1285 sbitmap blocks;
1286 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1287 bitmap_ones (blocks);
1288 find_many_sub_basic_blocks (blocks);
1289 sbitmap_free (blocks);
1290 }
1291
1292 if (inserted)
1293 commit_edge_insertions ();
1294
1295 /* Replacing pseudos with their memory equivalents might have
1296 created shared rtx. Subsequent passes would get confused
1297 by this, so unshare everything here. */
1298 unshare_all_rtl_again (first);
1299
1300 #ifdef STACK_BOUNDARY
1301 /* init_emit has set the alignment of the hard frame pointer
1302 to STACK_BOUNDARY. It is very likely no longer valid if
1303 the hard frame pointer was used for register allocation. */
1304 if (!frame_pointer_needed)
1305 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1306 #endif
1307
1308 substitute_stack.release ();
1309
1310 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1311
1312 reload_completed = !failure;
1313
1314 return need_dce;
1315 }
1316
1317 /* Yet another special case. Unfortunately, reg-stack forces people to
1318 write incorrect clobbers in asm statements. These clobbers must not
1319 cause the register to appear in bad_spill_regs, otherwise we'll call
1320 fatal_insn later. We clear the corresponding regnos in the live
1321 register sets to avoid this.
1322 The whole thing is rather sick, I'm afraid. */
1323
1324 static void
1325 maybe_fix_stack_asms (void)
1326 {
1327 #ifdef STACK_REGS
1328 const char *constraints[MAX_RECOG_OPERANDS];
1329 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1330 struct insn_chain *chain;
1331
1332 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1333 {
1334 int i, noperands;
1335 HARD_REG_SET clobbered, allowed;
1336 rtx pat;
1337
1338 if (! INSN_P (chain->insn)
1339 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1340 continue;
1341 pat = PATTERN (chain->insn);
1342 if (GET_CODE (pat) != PARALLEL)
1343 continue;
1344
1345 CLEAR_HARD_REG_SET (clobbered);
1346 CLEAR_HARD_REG_SET (allowed);
1347
1348 /* First, make a mask of all stack regs that are clobbered. */
1349 for (i = 0; i < XVECLEN (pat, 0); i++)
1350 {
1351 rtx t = XVECEXP (pat, 0, i);
1352 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1353 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1354 }
1355
1356 /* Get the operand values and constraints out of the insn. */
1357 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1358 constraints, operand_mode, NULL);
1359
1360 /* For every operand, see what registers are allowed. */
1361 for (i = 0; i < noperands; i++)
1362 {
1363 const char *p = constraints[i];
1364 /* For every alternative, we compute the class of registers allowed
1365 for reloading in CLS, and merge its contents into the reg set
1366 ALLOWED. */
1367 int cls = (int) NO_REGS;
1368
1369 for (;;)
1370 {
1371 char c = *p;
1372
1373 if (c == '\0' || c == ',' || c == '#')
1374 {
1375 /* End of one alternative - mark the regs in the current
1376 class, and reset the class. */
1377 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1378 cls = NO_REGS;
1379 p++;
1380 if (c == '#')
1381 do {
1382 c = *p++;
1383 } while (c != '\0' && c != ',');
1384 if (c == '\0')
1385 break;
1386 continue;
1387 }
1388
1389 switch (c)
1390 {
1391 case '=': case '+': case '*': case '%': case '?': case '!':
1392 case '0': case '1': case '2': case '3': case '4': case '<':
1393 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1394 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1395 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1396 case TARGET_MEM_CONSTRAINT:
1397 break;
1398
1399 case 'p':
1400 cls = (int) reg_class_subunion[cls]
1401 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1402 ADDRESS, SCRATCH)];
1403 break;
1404
1405 case 'g':
1406 case 'r':
1407 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1408 break;
1409
1410 default:
1411 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1412 cls = (int) reg_class_subunion[cls]
1413 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1414 ADDRESS, SCRATCH)];
1415 else
1416 cls = (int) reg_class_subunion[cls]
1417 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1418 }
1419 p += CONSTRAINT_LEN (c, p);
1420 }
1421 }
1422 /* Those of the registers which are clobbered, but allowed by the
1423 constraints, must be usable as reload registers. So clear them
1424 out of the life information. */
1425 AND_HARD_REG_SET (allowed, clobbered);
1426 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1427 if (TEST_HARD_REG_BIT (allowed, i))
1428 {
1429 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1430 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1431 }
1432 }
1433
1434 #endif
1435 }
1436 \f
1437 /* Copy the global variables n_reloads and rld into the corresponding elts
1438 of CHAIN. */
1439 static void
1440 copy_reloads (struct insn_chain *chain)
1441 {
1442 chain->n_reloads = n_reloads;
1443 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1444 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1445 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1446 }
1447
1448 /* Walk the chain of insns, and determine for each whether it needs reloads
1449 and/or eliminations. Build the corresponding insns_need_reload list, and
1450 set something_needs_elimination as appropriate. */
1451 static void
1452 calculate_needs_all_insns (int global)
1453 {
1454 struct insn_chain **pprev_reload = &insns_need_reload;
1455 struct insn_chain *chain, *next = 0;
1456
1457 something_needs_elimination = 0;
1458
1459 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1460 for (chain = reload_insn_chain; chain != 0; chain = next)
1461 {
1462 rtx insn = chain->insn;
1463
1464 next = chain->next;
1465
1466 /* Clear out the shortcuts. */
1467 chain->n_reloads = 0;
1468 chain->need_elim = 0;
1469 chain->need_reload = 0;
1470 chain->need_operand_change = 0;
1471
1472 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1473 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1474 what effects this has on the known offsets at labels. */
1475
1476 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1477 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1478 set_label_offsets (insn, insn, 0);
1479
1480 if (INSN_P (insn))
1481 {
1482 rtx old_body = PATTERN (insn);
1483 int old_code = INSN_CODE (insn);
1484 rtx old_notes = REG_NOTES (insn);
1485 int did_elimination = 0;
1486 int operands_changed = 0;
1487 rtx set = single_set (insn);
1488
1489 /* Skip insns that only set an equivalence. */
1490 if (set && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_DEST (set))] < 0
1492 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1493 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1494 && reg_equiv_init (REGNO (SET_DEST (set))))
1495 continue;
1496
1497 /* If needed, eliminate any eliminable registers. */
1498 if (num_eliminable || num_eliminable_invariants)
1499 did_elimination = eliminate_regs_in_insn (insn, 0);
1500
1501 /* Analyze the instruction. */
1502 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1503 global, spill_reg_order);
1504
1505 /* If a no-op set needs more than one reload, this is likely
1506 to be something that needs input address reloads. We
1507 can't get rid of this cleanly later, and it is of no use
1508 anyway, so discard it now.
1509 We only do this when expensive_optimizations is enabled,
1510 since this complements reload inheritance / output
1511 reload deletion, and it can make debugging harder. */
1512 if (flag_expensive_optimizations && n_reloads > 1)
1513 {
1514 rtx set = single_set (insn);
1515 if (set
1516 &&
1517 ((SET_SRC (set) == SET_DEST (set)
1518 && REG_P (SET_SRC (set))
1519 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1520 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1521 && reg_renumber[REGNO (SET_SRC (set))] < 0
1522 && reg_renumber[REGNO (SET_DEST (set))] < 0
1523 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1524 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1525 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1526 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1527 {
1528 if (ira_conflicts_p)
1529 /* Inform IRA about the insn deletion. */
1530 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1531 REGNO (SET_SRC (set)));
1532 delete_insn (insn);
1533 /* Delete it from the reload chain. */
1534 if (chain->prev)
1535 chain->prev->next = next;
1536 else
1537 reload_insn_chain = next;
1538 if (next)
1539 next->prev = chain->prev;
1540 chain->next = unused_insn_chains;
1541 unused_insn_chains = chain;
1542 continue;
1543 }
1544 }
1545 if (num_eliminable)
1546 update_eliminable_offsets ();
1547
1548 /* Remember for later shortcuts which insns had any reloads or
1549 register eliminations. */
1550 chain->need_elim = did_elimination;
1551 chain->need_reload = n_reloads > 0;
1552 chain->need_operand_change = operands_changed;
1553
1554 /* Discard any register replacements done. */
1555 if (did_elimination)
1556 {
1557 obstack_free (&reload_obstack, reload_insn_firstobj);
1558 PATTERN (insn) = old_body;
1559 INSN_CODE (insn) = old_code;
1560 REG_NOTES (insn) = old_notes;
1561 something_needs_elimination = 1;
1562 }
1563
1564 something_needs_operands_changed |= operands_changed;
1565
1566 if (n_reloads != 0)
1567 {
1568 copy_reloads (chain);
1569 *pprev_reload = chain;
1570 pprev_reload = &chain->next_need_reload;
1571 }
1572 }
1573 }
1574 *pprev_reload = 0;
1575 }
1576 \f
1577 /* This function is called from the register allocator to set up estimates
1578 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1579 an invariant. The structure is similar to calculate_needs_all_insns. */
1580
1581 void
1582 calculate_elim_costs_all_insns (void)
1583 {
1584 int *reg_equiv_init_cost;
1585 basic_block bb;
1586 int i;
1587
1588 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1589 init_elim_table ();
1590 init_eliminable_invariants (get_insns (), false);
1591
1592 set_initial_elim_offsets ();
1593 set_initial_label_offsets ();
1594
1595 FOR_EACH_BB_FN (bb, cfun)
1596 {
1597 rtx insn;
1598 elim_bb = bb;
1599
1600 FOR_BB_INSNS (bb, insn)
1601 {
1602 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1603 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1604 what effects this has on the known offsets at labels. */
1605
1606 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1607 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1608 set_label_offsets (insn, insn, 0);
1609
1610 if (INSN_P (insn))
1611 {
1612 rtx set = single_set (insn);
1613
1614 /* Skip insns that only set an equivalence. */
1615 if (set && REG_P (SET_DEST (set))
1616 && reg_renumber[REGNO (SET_DEST (set))] < 0
1617 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1618 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1619 {
1620 unsigned regno = REGNO (SET_DEST (set));
1621 rtx init = reg_equiv_init (regno);
1622 if (init)
1623 {
1624 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1625 false, true);
1626 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1627 int freq = REG_FREQ_FROM_BB (bb);
1628
1629 reg_equiv_init_cost[regno] = cost * freq;
1630 continue;
1631 }
1632 }
1633 /* If needed, eliminate any eliminable registers. */
1634 if (num_eliminable || num_eliminable_invariants)
1635 elimination_costs_in_insn (insn);
1636
1637 if (num_eliminable)
1638 update_eliminable_offsets ();
1639 }
1640 }
1641 }
1642 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1643 {
1644 if (reg_equiv_invariant (i))
1645 {
1646 if (reg_equiv_init (i))
1647 {
1648 int cost = reg_equiv_init_cost[i];
1649 if (dump_file)
1650 fprintf (dump_file,
1651 "Reg %d has equivalence, initial gains %d\n", i, cost);
1652 if (cost != 0)
1653 ira_adjust_equiv_reg_cost (i, cost);
1654 }
1655 else
1656 {
1657 if (dump_file)
1658 fprintf (dump_file,
1659 "Reg %d had equivalence, but can't be eliminated\n",
1660 i);
1661 ira_adjust_equiv_reg_cost (i, 0);
1662 }
1663 }
1664 }
1665
1666 free (reg_equiv_init_cost);
1667 free (offsets_known_at);
1668 free (offsets_at);
1669 offsets_at = NULL;
1670 offsets_known_at = NULL;
1671 }
1672 \f
1673 /* Comparison function for qsort to decide which of two reloads
1674 should be handled first. *P1 and *P2 are the reload numbers. */
1675
1676 static int
1677 reload_reg_class_lower (const void *r1p, const void *r2p)
1678 {
1679 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1680 int t;
1681
1682 /* Consider required reloads before optional ones. */
1683 t = rld[r1].optional - rld[r2].optional;
1684 if (t != 0)
1685 return t;
1686
1687 /* Count all solitary classes before non-solitary ones. */
1688 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1689 - (reg_class_size[(int) rld[r1].rclass] == 1));
1690 if (t != 0)
1691 return t;
1692
1693 /* Aside from solitaires, consider all multi-reg groups first. */
1694 t = rld[r2].nregs - rld[r1].nregs;
1695 if (t != 0)
1696 return t;
1697
1698 /* Consider reloads in order of increasing reg-class number. */
1699 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1700 if (t != 0)
1701 return t;
1702
1703 /* If reloads are equally urgent, sort by reload number,
1704 so that the results of qsort leave nothing to chance. */
1705 return r1 - r2;
1706 }
1707 \f
1708 /* The cost of spilling each hard reg. */
1709 static int spill_cost[FIRST_PSEUDO_REGISTER];
1710
1711 /* When spilling multiple hard registers, we use SPILL_COST for the first
1712 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1713 only the first hard reg for a multi-reg pseudo. */
1714 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1715
1716 /* Map of hard regno to pseudo regno currently occupying the hard
1717 reg. */
1718 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1719
1720 /* Update the spill cost arrays, considering that pseudo REG is live. */
1721
1722 static void
1723 count_pseudo (int reg)
1724 {
1725 int freq = REG_FREQ (reg);
1726 int r = reg_renumber[reg];
1727 int nregs;
1728
1729 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1730 if (ira_conflicts_p && r < 0)
1731 return;
1732
1733 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1734 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1735 return;
1736
1737 SET_REGNO_REG_SET (&pseudos_counted, reg);
1738
1739 gcc_assert (r >= 0);
1740
1741 spill_add_cost[r] += freq;
1742 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1743 while (nregs-- > 0)
1744 {
1745 hard_regno_to_pseudo_regno[r + nregs] = reg;
1746 spill_cost[r + nregs] += freq;
1747 }
1748 }
1749
1750 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1751 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1752
1753 static void
1754 order_regs_for_reload (struct insn_chain *chain)
1755 {
1756 unsigned i;
1757 HARD_REG_SET used_by_pseudos;
1758 HARD_REG_SET used_by_pseudos2;
1759 reg_set_iterator rsi;
1760
1761 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1762
1763 memset (spill_cost, 0, sizeof spill_cost);
1764 memset (spill_add_cost, 0, sizeof spill_add_cost);
1765 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1766 hard_regno_to_pseudo_regno[i] = -1;
1767
1768 /* Count number of uses of each hard reg by pseudo regs allocated to it
1769 and then order them by decreasing use. First exclude hard registers
1770 that are live in or across this insn. */
1771
1772 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1773 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1774 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1775 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1776
1777 /* Now find out which pseudos are allocated to it, and update
1778 hard_reg_n_uses. */
1779 CLEAR_REG_SET (&pseudos_counted);
1780
1781 EXECUTE_IF_SET_IN_REG_SET
1782 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1783 {
1784 count_pseudo (i);
1785 }
1786 EXECUTE_IF_SET_IN_REG_SET
1787 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1788 {
1789 count_pseudo (i);
1790 }
1791 CLEAR_REG_SET (&pseudos_counted);
1792 }
1793 \f
1794 /* Vector of reload-numbers showing the order in which the reloads should
1795 be processed. */
1796 static short reload_order[MAX_RELOADS];
1797
1798 /* This is used to keep track of the spill regs used in one insn. */
1799 static HARD_REG_SET used_spill_regs_local;
1800
1801 /* We decided to spill hard register SPILLED, which has a size of
1802 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1803 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1804 update SPILL_COST/SPILL_ADD_COST. */
1805
1806 static void
1807 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1808 {
1809 int freq = REG_FREQ (reg);
1810 int r = reg_renumber[reg];
1811 int nregs;
1812
1813 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1814 if (ira_conflicts_p && r < 0)
1815 return;
1816
1817 gcc_assert (r >= 0);
1818
1819 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1820
1821 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1822 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1823 return;
1824
1825 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1826
1827 spill_add_cost[r] -= freq;
1828 while (nregs-- > 0)
1829 {
1830 hard_regno_to_pseudo_regno[r + nregs] = -1;
1831 spill_cost[r + nregs] -= freq;
1832 }
1833 }
1834
1835 /* Find reload register to use for reload number ORDER. */
1836
1837 static int
1838 find_reg (struct insn_chain *chain, int order)
1839 {
1840 int rnum = reload_order[order];
1841 struct reload *rl = rld + rnum;
1842 int best_cost = INT_MAX;
1843 int best_reg = -1;
1844 unsigned int i, j, n;
1845 int k;
1846 HARD_REG_SET not_usable;
1847 HARD_REG_SET used_by_other_reload;
1848 reg_set_iterator rsi;
1849 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1850 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1851
1852 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1853 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1854 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1855
1856 CLEAR_HARD_REG_SET (used_by_other_reload);
1857 for (k = 0; k < order; k++)
1858 {
1859 int other = reload_order[k];
1860
1861 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1862 for (j = 0; j < rld[other].nregs; j++)
1863 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1864 }
1865
1866 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1867 {
1868 #ifdef REG_ALLOC_ORDER
1869 unsigned int regno = reg_alloc_order[i];
1870 #else
1871 unsigned int regno = i;
1872 #endif
1873
1874 if (! TEST_HARD_REG_BIT (not_usable, regno)
1875 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1876 && HARD_REGNO_MODE_OK (regno, rl->mode))
1877 {
1878 int this_cost = spill_cost[regno];
1879 int ok = 1;
1880 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1881
1882 for (j = 1; j < this_nregs; j++)
1883 {
1884 this_cost += spill_add_cost[regno + j];
1885 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1886 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1887 ok = 0;
1888 }
1889 if (! ok)
1890 continue;
1891
1892 if (ira_conflicts_p)
1893 {
1894 /* Ask IRA to find a better pseudo-register for
1895 spilling. */
1896 for (n = j = 0; j < this_nregs; j++)
1897 {
1898 int r = hard_regno_to_pseudo_regno[regno + j];
1899
1900 if (r < 0)
1901 continue;
1902 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1903 regno_pseudo_regs[n++] = r;
1904 }
1905 regno_pseudo_regs[n++] = -1;
1906 if (best_reg < 0
1907 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1908 best_regno_pseudo_regs,
1909 rl->in, rl->out,
1910 chain->insn))
1911 {
1912 best_reg = regno;
1913 for (j = 0;; j++)
1914 {
1915 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1916 if (regno_pseudo_regs[j] < 0)
1917 break;
1918 }
1919 }
1920 continue;
1921 }
1922
1923 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1924 this_cost--;
1925 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1926 this_cost--;
1927 if (this_cost < best_cost
1928 /* Among registers with equal cost, prefer caller-saved ones, or
1929 use REG_ALLOC_ORDER if it is defined. */
1930 || (this_cost == best_cost
1931 #ifdef REG_ALLOC_ORDER
1932 && (inv_reg_alloc_order[regno]
1933 < inv_reg_alloc_order[best_reg])
1934 #else
1935 && call_used_regs[regno]
1936 && ! call_used_regs[best_reg]
1937 #endif
1938 ))
1939 {
1940 best_reg = regno;
1941 best_cost = this_cost;
1942 }
1943 }
1944 }
1945 if (best_reg == -1)
1946 return 0;
1947
1948 if (dump_file)
1949 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1950
1951 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1952 rl->regno = best_reg;
1953
1954 EXECUTE_IF_SET_IN_REG_SET
1955 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1956 {
1957 count_spilled_pseudo (best_reg, rl->nregs, j);
1958 }
1959
1960 EXECUTE_IF_SET_IN_REG_SET
1961 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1962 {
1963 count_spilled_pseudo (best_reg, rl->nregs, j);
1964 }
1965
1966 for (i = 0; i < rl->nregs; i++)
1967 {
1968 gcc_assert (spill_cost[best_reg + i] == 0);
1969 gcc_assert (spill_add_cost[best_reg + i] == 0);
1970 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1971 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1972 }
1973 return 1;
1974 }
1975
1976 /* Find more reload regs to satisfy the remaining need of an insn, which
1977 is given by CHAIN.
1978 Do it by ascending class number, since otherwise a reg
1979 might be spilled for a big class and might fail to count
1980 for a smaller class even though it belongs to that class. */
1981
1982 static void
1983 find_reload_regs (struct insn_chain *chain)
1984 {
1985 int i;
1986
1987 /* In order to be certain of getting the registers we need,
1988 we must sort the reloads into order of increasing register class.
1989 Then our grabbing of reload registers will parallel the process
1990 that provided the reload registers. */
1991 for (i = 0; i < chain->n_reloads; i++)
1992 {
1993 /* Show whether this reload already has a hard reg. */
1994 if (chain->rld[i].reg_rtx)
1995 {
1996 int regno = REGNO (chain->rld[i].reg_rtx);
1997 chain->rld[i].regno = regno;
1998 chain->rld[i].nregs
1999 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2000 }
2001 else
2002 chain->rld[i].regno = -1;
2003 reload_order[i] = i;
2004 }
2005
2006 n_reloads = chain->n_reloads;
2007 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2008
2009 CLEAR_HARD_REG_SET (used_spill_regs_local);
2010
2011 if (dump_file)
2012 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2013
2014 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2015
2016 /* Compute the order of preference for hard registers to spill. */
2017
2018 order_regs_for_reload (chain);
2019
2020 for (i = 0; i < n_reloads; i++)
2021 {
2022 int r = reload_order[i];
2023
2024 /* Ignore reloads that got marked inoperative. */
2025 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2026 && ! rld[r].optional
2027 && rld[r].regno == -1)
2028 if (! find_reg (chain, i))
2029 {
2030 if (dump_file)
2031 fprintf (dump_file, "reload failure for reload %d\n", r);
2032 spill_failure (chain->insn, rld[r].rclass);
2033 failure = 1;
2034 return;
2035 }
2036 }
2037
2038 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2039 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2040
2041 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2042 }
2043
2044 static void
2045 select_reload_regs (void)
2046 {
2047 struct insn_chain *chain;
2048
2049 /* Try to satisfy the needs for each insn. */
2050 for (chain = insns_need_reload; chain != 0;
2051 chain = chain->next_need_reload)
2052 find_reload_regs (chain);
2053 }
2054 \f
2055 /* Delete all insns that were inserted by emit_caller_save_insns during
2056 this iteration. */
2057 static void
2058 delete_caller_save_insns (void)
2059 {
2060 struct insn_chain *c = reload_insn_chain;
2061
2062 while (c != 0)
2063 {
2064 while (c != 0 && c->is_caller_save_insn)
2065 {
2066 struct insn_chain *next = c->next;
2067 rtx insn = c->insn;
2068
2069 if (c == reload_insn_chain)
2070 reload_insn_chain = next;
2071 delete_insn (insn);
2072
2073 if (next)
2074 next->prev = c->prev;
2075 if (c->prev)
2076 c->prev->next = next;
2077 c->next = unused_insn_chains;
2078 unused_insn_chains = c;
2079 c = next;
2080 }
2081 if (c != 0)
2082 c = c->next;
2083 }
2084 }
2085 \f
2086 /* Handle the failure to find a register to spill.
2087 INSN should be one of the insns which needed this particular spill reg. */
2088
2089 static void
2090 spill_failure (rtx insn, enum reg_class rclass)
2091 {
2092 if (asm_noperands (PATTERN (insn)) >= 0)
2093 error_for_asm (insn, "can%'t find a register in class %qs while "
2094 "reloading %<asm%>",
2095 reg_class_names[rclass]);
2096 else
2097 {
2098 error ("unable to find a register to spill in class %qs",
2099 reg_class_names[rclass]);
2100
2101 if (dump_file)
2102 {
2103 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2104 debug_reload_to_stream (dump_file);
2105 }
2106 fatal_insn ("this is the insn:", insn);
2107 }
2108 }
2109 \f
2110 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2111 data that is dead in INSN. */
2112
2113 static void
2114 delete_dead_insn (rtx insn)
2115 {
2116 rtx prev = prev_active_insn (insn);
2117 rtx prev_dest;
2118
2119 /* If the previous insn sets a register that dies in our insn make
2120 a note that we want to run DCE immediately after reload.
2121
2122 We used to delete the previous insn & recurse, but that's wrong for
2123 block local equivalences. Instead of trying to figure out the exact
2124 circumstances where we can delete the potentially dead insns, just
2125 let DCE do the job. */
2126 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2127 && GET_CODE (PATTERN (prev)) == SET
2128 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2129 && reg_mentioned_p (prev_dest, PATTERN (insn))
2130 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2131 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2132 need_dce = 1;
2133
2134 SET_INSN_DELETED (insn);
2135 }
2136
2137 /* Modify the home of pseudo-reg I.
2138 The new home is present in reg_renumber[I].
2139
2140 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2141 or it may be -1, meaning there is none or it is not relevant.
2142 This is used so that all pseudos spilled from a given hard reg
2143 can share one stack slot. */
2144
2145 static void
2146 alter_reg (int i, int from_reg, bool dont_share_p)
2147 {
2148 /* When outputting an inline function, this can happen
2149 for a reg that isn't actually used. */
2150 if (regno_reg_rtx[i] == 0)
2151 return;
2152
2153 /* If the reg got changed to a MEM at rtl-generation time,
2154 ignore it. */
2155 if (!REG_P (regno_reg_rtx[i]))
2156 return;
2157
2158 /* Modify the reg-rtx to contain the new hard reg
2159 number or else to contain its pseudo reg number. */
2160 SET_REGNO (regno_reg_rtx[i],
2161 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2162
2163 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2164 allocate a stack slot for it. */
2165
2166 if (reg_renumber[i] < 0
2167 && REG_N_REFS (i) > 0
2168 && reg_equiv_constant (i) == 0
2169 && (reg_equiv_invariant (i) == 0
2170 || reg_equiv_init (i) == 0)
2171 && reg_equiv_memory_loc (i) == 0)
2172 {
2173 rtx x = NULL_RTX;
2174 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2175 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2176 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2177 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2178 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2179 int adjust = 0;
2180
2181 something_was_spilled = true;
2182
2183 if (ira_conflicts_p)
2184 {
2185 /* Mark the spill for IRA. */
2186 SET_REGNO_REG_SET (&spilled_pseudos, i);
2187 if (!dont_share_p)
2188 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2189 }
2190
2191 if (x)
2192 ;
2193
2194 /* Each pseudo reg has an inherent size which comes from its own mode,
2195 and a total size which provides room for paradoxical subregs
2196 which refer to the pseudo reg in wider modes.
2197
2198 We can use a slot already allocated if it provides both
2199 enough inherent space and enough total space.
2200 Otherwise, we allocate a new slot, making sure that it has no less
2201 inherent space, and no less total space, then the previous slot. */
2202 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2203 {
2204 rtx stack_slot;
2205
2206 /* No known place to spill from => no slot to reuse. */
2207 x = assign_stack_local (mode, total_size,
2208 min_align > inherent_align
2209 || total_size > inherent_size ? -1 : 0);
2210
2211 stack_slot = x;
2212
2213 /* Cancel the big-endian correction done in assign_stack_local.
2214 Get the address of the beginning of the slot. This is so we
2215 can do a big-endian correction unconditionally below. */
2216 if (BYTES_BIG_ENDIAN)
2217 {
2218 adjust = inherent_size - total_size;
2219 if (adjust)
2220 stack_slot
2221 = adjust_address_nv (x, mode_for_size (total_size
2222 * BITS_PER_UNIT,
2223 MODE_INT, 1),
2224 adjust);
2225 }
2226
2227 if (! dont_share_p && ira_conflicts_p)
2228 /* Inform IRA about allocation a new stack slot. */
2229 ira_mark_new_stack_slot (stack_slot, i, total_size);
2230 }
2231
2232 /* Reuse a stack slot if possible. */
2233 else if (spill_stack_slot[from_reg] != 0
2234 && spill_stack_slot_width[from_reg] >= total_size
2235 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2236 >= inherent_size)
2237 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2238 x = spill_stack_slot[from_reg];
2239
2240 /* Allocate a bigger slot. */
2241 else
2242 {
2243 /* Compute maximum size needed, both for inherent size
2244 and for total size. */
2245 rtx stack_slot;
2246
2247 if (spill_stack_slot[from_reg])
2248 {
2249 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2250 > inherent_size)
2251 mode = GET_MODE (spill_stack_slot[from_reg]);
2252 if (spill_stack_slot_width[from_reg] > total_size)
2253 total_size = spill_stack_slot_width[from_reg];
2254 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2255 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2256 }
2257
2258 /* Make a slot with that size. */
2259 x = assign_stack_local (mode, total_size,
2260 min_align > inherent_align
2261 || total_size > inherent_size ? -1 : 0);
2262 stack_slot = x;
2263
2264 /* Cancel the big-endian correction done in assign_stack_local.
2265 Get the address of the beginning of the slot. This is so we
2266 can do a big-endian correction unconditionally below. */
2267 if (BYTES_BIG_ENDIAN)
2268 {
2269 adjust = GET_MODE_SIZE (mode) - total_size;
2270 if (adjust)
2271 stack_slot
2272 = adjust_address_nv (x, mode_for_size (total_size
2273 * BITS_PER_UNIT,
2274 MODE_INT, 1),
2275 adjust);
2276 }
2277
2278 spill_stack_slot[from_reg] = stack_slot;
2279 spill_stack_slot_width[from_reg] = total_size;
2280 }
2281
2282 /* On a big endian machine, the "address" of the slot
2283 is the address of the low part that fits its inherent mode. */
2284 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2285 adjust += (total_size - inherent_size);
2286
2287 /* If we have any adjustment to make, or if the stack slot is the
2288 wrong mode, make a new stack slot. */
2289 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2290
2291 /* Set all of the memory attributes as appropriate for a spill. */
2292 set_mem_attrs_for_spill (x);
2293
2294 /* Save the stack slot for later. */
2295 reg_equiv_memory_loc (i) = x;
2296 }
2297 }
2298
2299 /* Mark the slots in regs_ever_live for the hard regs used by
2300 pseudo-reg number REGNO, accessed in MODE. */
2301
2302 static void
2303 mark_home_live_1 (int regno, enum machine_mode mode)
2304 {
2305 int i, lim;
2306
2307 i = reg_renumber[regno];
2308 if (i < 0)
2309 return;
2310 lim = end_hard_regno (mode, i);
2311 while (i < lim)
2312 df_set_regs_ever_live (i++, true);
2313 }
2314
2315 /* Mark the slots in regs_ever_live for the hard regs
2316 used by pseudo-reg number REGNO. */
2317
2318 void
2319 mark_home_live (int regno)
2320 {
2321 if (reg_renumber[regno] >= 0)
2322 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2323 }
2324 \f
2325 /* This function handles the tracking of elimination offsets around branches.
2326
2327 X is a piece of RTL being scanned.
2328
2329 INSN is the insn that it came from, if any.
2330
2331 INITIAL_P is nonzero if we are to set the offset to be the initial
2332 offset and zero if we are setting the offset of the label to be the
2333 current offset. */
2334
2335 static void
2336 set_label_offsets (rtx x, rtx insn, int initial_p)
2337 {
2338 enum rtx_code code = GET_CODE (x);
2339 rtx tem;
2340 unsigned int i;
2341 struct elim_table *p;
2342
2343 switch (code)
2344 {
2345 case LABEL_REF:
2346 if (LABEL_REF_NONLOCAL_P (x))
2347 return;
2348
2349 x = XEXP (x, 0);
2350
2351 /* ... fall through ... */
2352
2353 case CODE_LABEL:
2354 /* If we know nothing about this label, set the desired offsets. Note
2355 that this sets the offset at a label to be the offset before a label
2356 if we don't know anything about the label. This is not correct for
2357 the label after a BARRIER, but is the best guess we can make. If
2358 we guessed wrong, we will suppress an elimination that might have
2359 been possible had we been able to guess correctly. */
2360
2361 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2362 {
2363 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2364 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2365 = (initial_p ? reg_eliminate[i].initial_offset
2366 : reg_eliminate[i].offset);
2367 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2368 }
2369
2370 /* Otherwise, if this is the definition of a label and it is
2371 preceded by a BARRIER, set our offsets to the known offset of
2372 that label. */
2373
2374 else if (x == insn
2375 && (tem = prev_nonnote_insn (insn)) != 0
2376 && BARRIER_P (tem))
2377 set_offsets_for_label (insn);
2378 else
2379 /* If neither of the above cases is true, compare each offset
2380 with those previously recorded and suppress any eliminations
2381 where the offsets disagree. */
2382
2383 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2384 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2385 != (initial_p ? reg_eliminate[i].initial_offset
2386 : reg_eliminate[i].offset))
2387 reg_eliminate[i].can_eliminate = 0;
2388
2389 return;
2390
2391 case JUMP_TABLE_DATA:
2392 set_label_offsets (PATTERN (insn), insn, initial_p);
2393 return;
2394
2395 case JUMP_INSN:
2396 set_label_offsets (PATTERN (insn), insn, initial_p);
2397
2398 /* ... fall through ... */
2399
2400 case INSN:
2401 case CALL_INSN:
2402 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2403 to indirectly and hence must have all eliminations at their
2404 initial offsets. */
2405 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2406 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2407 set_label_offsets (XEXP (tem, 0), insn, 1);
2408 return;
2409
2410 case PARALLEL:
2411 case ADDR_VEC:
2412 case ADDR_DIFF_VEC:
2413 /* Each of the labels in the parallel or address vector must be
2414 at their initial offsets. We want the first field for PARALLEL
2415 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2416
2417 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2418 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2419 insn, initial_p);
2420 return;
2421
2422 case SET:
2423 /* We only care about setting PC. If the source is not RETURN,
2424 IF_THEN_ELSE, or a label, disable any eliminations not at
2425 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2426 isn't one of those possibilities. For branches to a label,
2427 call ourselves recursively.
2428
2429 Note that this can disable elimination unnecessarily when we have
2430 a non-local goto since it will look like a non-constant jump to
2431 someplace in the current function. This isn't a significant
2432 problem since such jumps will normally be when all elimination
2433 pairs are back to their initial offsets. */
2434
2435 if (SET_DEST (x) != pc_rtx)
2436 return;
2437
2438 switch (GET_CODE (SET_SRC (x)))
2439 {
2440 case PC:
2441 case RETURN:
2442 return;
2443
2444 case LABEL_REF:
2445 set_label_offsets (SET_SRC (x), insn, initial_p);
2446 return;
2447
2448 case IF_THEN_ELSE:
2449 tem = XEXP (SET_SRC (x), 1);
2450 if (GET_CODE (tem) == LABEL_REF)
2451 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2452 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2453 break;
2454
2455 tem = XEXP (SET_SRC (x), 2);
2456 if (GET_CODE (tem) == LABEL_REF)
2457 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2458 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2459 break;
2460 return;
2461
2462 default:
2463 break;
2464 }
2465
2466 /* If we reach here, all eliminations must be at their initial
2467 offset because we are doing a jump to a variable address. */
2468 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2469 if (p->offset != p->initial_offset)
2470 p->can_eliminate = 0;
2471 break;
2472
2473 default:
2474 break;
2475 }
2476 }
2477 \f
2478 /* Called through for_each_rtx, this function examines every reg that occurs
2479 in PX and adjusts the costs for its elimination which are gathered by IRA.
2480 DATA is the insn in which PX occurs. We do not recurse into MEM
2481 expressions. */
2482
2483 static int
2484 note_reg_elim_costly (rtx *px, void *data)
2485 {
2486 rtx insn = (rtx)data;
2487 rtx x = *px;
2488
2489 if (MEM_P (x))
2490 return -1;
2491
2492 if (REG_P (x)
2493 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2494 && reg_equiv_init (REGNO (x))
2495 && reg_equiv_invariant (REGNO (x)))
2496 {
2497 rtx t = reg_equiv_invariant (REGNO (x));
2498 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2499 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2500 int freq = REG_FREQ_FROM_BB (elim_bb);
2501
2502 if (cost != 0)
2503 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2504 }
2505 return 0;
2506 }
2507
2508 /* Scan X and replace any eliminable registers (such as fp) with a
2509 replacement (such as sp), plus an offset.
2510
2511 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2512 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2513 MEM, we are allowed to replace a sum of a register and the constant zero
2514 with the register, which we cannot do outside a MEM. In addition, we need
2515 to record the fact that a register is referenced outside a MEM.
2516
2517 If INSN is an insn, it is the insn containing X. If we replace a REG
2518 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2519 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2520 the REG is being modified.
2521
2522 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2523 That's used when we eliminate in expressions stored in notes.
2524 This means, do not set ref_outside_mem even if the reference
2525 is outside of MEMs.
2526
2527 If FOR_COSTS is true, we are being called before reload in order to
2528 estimate the costs of keeping registers with an equivalence unallocated.
2529
2530 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2531 replacements done assuming all offsets are at their initial values. If
2532 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2533 encounter, return the actual location so that find_reloads will do
2534 the proper thing. */
2535
2536 static rtx
2537 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2538 bool may_use_invariant, bool for_costs)
2539 {
2540 enum rtx_code code = GET_CODE (x);
2541 struct elim_table *ep;
2542 int regno;
2543 rtx new_rtx;
2544 int i, j;
2545 const char *fmt;
2546 int copied = 0;
2547
2548 if (! current_function_decl)
2549 return x;
2550
2551 switch (code)
2552 {
2553 CASE_CONST_ANY:
2554 case CONST:
2555 case SYMBOL_REF:
2556 case CODE_LABEL:
2557 case PC:
2558 case CC0:
2559 case ASM_INPUT:
2560 case ADDR_VEC:
2561 case ADDR_DIFF_VEC:
2562 case RETURN:
2563 return x;
2564
2565 case REG:
2566 regno = REGNO (x);
2567
2568 /* First handle the case where we encounter a bare register that
2569 is eliminable. Replace it with a PLUS. */
2570 if (regno < FIRST_PSEUDO_REGISTER)
2571 {
2572 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2573 ep++)
2574 if (ep->from_rtx == x && ep->can_eliminate)
2575 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2576
2577 }
2578 else if (reg_renumber && reg_renumber[regno] < 0
2579 && reg_equivs
2580 && reg_equiv_invariant (regno))
2581 {
2582 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2583 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2584 mem_mode, insn, true, for_costs);
2585 /* There exists at least one use of REGNO that cannot be
2586 eliminated. Prevent the defining insn from being deleted. */
2587 reg_equiv_init (regno) = NULL_RTX;
2588 if (!for_costs)
2589 alter_reg (regno, -1, true);
2590 }
2591 return x;
2592
2593 /* You might think handling MINUS in a manner similar to PLUS is a
2594 good idea. It is not. It has been tried multiple times and every
2595 time the change has had to have been reverted.
2596
2597 Other parts of reload know a PLUS is special (gen_reload for example)
2598 and require special code to handle code a reloaded PLUS operand.
2599
2600 Also consider backends where the flags register is clobbered by a
2601 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2602 lea instruction comes to mind). If we try to reload a MINUS, we
2603 may kill the flags register that was holding a useful value.
2604
2605 So, please before trying to handle MINUS, consider reload as a
2606 whole instead of this little section as well as the backend issues. */
2607 case PLUS:
2608 /* If this is the sum of an eliminable register and a constant, rework
2609 the sum. */
2610 if (REG_P (XEXP (x, 0))
2611 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2612 && CONSTANT_P (XEXP (x, 1)))
2613 {
2614 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2615 ep++)
2616 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2617 {
2618 /* The only time we want to replace a PLUS with a REG (this
2619 occurs when the constant operand of the PLUS is the negative
2620 of the offset) is when we are inside a MEM. We won't want
2621 to do so at other times because that would change the
2622 structure of the insn in a way that reload can't handle.
2623 We special-case the commonest situation in
2624 eliminate_regs_in_insn, so just replace a PLUS with a
2625 PLUS here, unless inside a MEM. */
2626 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2627 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2628 return ep->to_rtx;
2629 else
2630 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2631 plus_constant (Pmode, XEXP (x, 1),
2632 ep->previous_offset));
2633 }
2634
2635 /* If the register is not eliminable, we are done since the other
2636 operand is a constant. */
2637 return x;
2638 }
2639
2640 /* If this is part of an address, we want to bring any constant to the
2641 outermost PLUS. We will do this by doing register replacement in
2642 our operands and seeing if a constant shows up in one of them.
2643
2644 Note that there is no risk of modifying the structure of the insn,
2645 since we only get called for its operands, thus we are either
2646 modifying the address inside a MEM, or something like an address
2647 operand of a load-address insn. */
2648
2649 {
2650 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2651 for_costs);
2652 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2653 for_costs);
2654
2655 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2656 {
2657 /* If one side is a PLUS and the other side is a pseudo that
2658 didn't get a hard register but has a reg_equiv_constant,
2659 we must replace the constant here since it may no longer
2660 be in the position of any operand. */
2661 if (GET_CODE (new0) == PLUS && REG_P (new1)
2662 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2663 && reg_renumber[REGNO (new1)] < 0
2664 && reg_equivs
2665 && reg_equiv_constant (REGNO (new1)) != 0)
2666 new1 = reg_equiv_constant (REGNO (new1));
2667 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2668 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2669 && reg_renumber[REGNO (new0)] < 0
2670 && reg_equiv_constant (REGNO (new0)) != 0)
2671 new0 = reg_equiv_constant (REGNO (new0));
2672
2673 new_rtx = form_sum (GET_MODE (x), new0, new1);
2674
2675 /* As above, if we are not inside a MEM we do not want to
2676 turn a PLUS into something else. We might try to do so here
2677 for an addition of 0 if we aren't optimizing. */
2678 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2679 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2680 else
2681 return new_rtx;
2682 }
2683 }
2684 return x;
2685
2686 case MULT:
2687 /* If this is the product of an eliminable register and a
2688 constant, apply the distribute law and move the constant out
2689 so that we have (plus (mult ..) ..). This is needed in order
2690 to keep load-address insns valid. This case is pathological.
2691 We ignore the possibility of overflow here. */
2692 if (REG_P (XEXP (x, 0))
2693 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2694 && CONST_INT_P (XEXP (x, 1)))
2695 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2696 ep++)
2697 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2698 {
2699 if (! mem_mode
2700 /* Refs inside notes or in DEBUG_INSNs don't count for
2701 this purpose. */
2702 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2703 || GET_CODE (insn) == INSN_LIST
2704 || DEBUG_INSN_P (insn))))
2705 ep->ref_outside_mem = 1;
2706
2707 return
2708 plus_constant (Pmode,
2709 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2710 ep->previous_offset * INTVAL (XEXP (x, 1)));
2711 }
2712
2713 /* ... fall through ... */
2714
2715 case CALL:
2716 case COMPARE:
2717 /* See comments before PLUS about handling MINUS. */
2718 case MINUS:
2719 case DIV: case UDIV:
2720 case MOD: case UMOD:
2721 case AND: case IOR: case XOR:
2722 case ROTATERT: case ROTATE:
2723 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2724 case NE: case EQ:
2725 case GE: case GT: case GEU: case GTU:
2726 case LE: case LT: case LEU: case LTU:
2727 {
2728 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2729 for_costs);
2730 rtx new1 = XEXP (x, 1)
2731 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2732 for_costs) : 0;
2733
2734 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2735 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2736 }
2737 return x;
2738
2739 case EXPR_LIST:
2740 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2741 if (XEXP (x, 0))
2742 {
2743 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2744 for_costs);
2745 if (new_rtx != XEXP (x, 0))
2746 {
2747 /* If this is a REG_DEAD note, it is not valid anymore.
2748 Using the eliminated version could result in creating a
2749 REG_DEAD note for the stack or frame pointer. */
2750 if (REG_NOTE_KIND (x) == REG_DEAD)
2751 return (XEXP (x, 1)
2752 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2753 for_costs)
2754 : NULL_RTX);
2755
2756 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2757 }
2758 }
2759
2760 /* ... fall through ... */
2761
2762 case INSN_LIST:
2763 case INT_LIST:
2764 /* Now do eliminations in the rest of the chain. If this was
2765 an EXPR_LIST, this might result in allocating more memory than is
2766 strictly needed, but it simplifies the code. */
2767 if (XEXP (x, 1))
2768 {
2769 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2770 for_costs);
2771 if (new_rtx != XEXP (x, 1))
2772 return
2773 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2774 }
2775 return x;
2776
2777 case PRE_INC:
2778 case POST_INC:
2779 case PRE_DEC:
2780 case POST_DEC:
2781 /* We do not support elimination of a register that is modified.
2782 elimination_effects has already make sure that this does not
2783 happen. */
2784 return x;
2785
2786 case PRE_MODIFY:
2787 case POST_MODIFY:
2788 /* We do not support elimination of a register that is modified.
2789 elimination_effects has already make sure that this does not
2790 happen. The only remaining case we need to consider here is
2791 that the increment value may be an eliminable register. */
2792 if (GET_CODE (XEXP (x, 1)) == PLUS
2793 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2794 {
2795 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2796 insn, true, for_costs);
2797
2798 if (new_rtx != XEXP (XEXP (x, 1), 1))
2799 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2800 gen_rtx_PLUS (GET_MODE (x),
2801 XEXP (x, 0), new_rtx));
2802 }
2803 return x;
2804
2805 case STRICT_LOW_PART:
2806 case NEG: case NOT:
2807 case SIGN_EXTEND: case ZERO_EXTEND:
2808 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2809 case FLOAT: case FIX:
2810 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2811 case ABS:
2812 case SQRT:
2813 case FFS:
2814 case CLZ:
2815 case CTZ:
2816 case POPCOUNT:
2817 case PARITY:
2818 case BSWAP:
2819 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2820 for_costs);
2821 if (new_rtx != XEXP (x, 0))
2822 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2823 return x;
2824
2825 case SUBREG:
2826 /* Similar to above processing, but preserve SUBREG_BYTE.
2827 Convert (subreg (mem)) to (mem) if not paradoxical.
2828 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2829 pseudo didn't get a hard reg, we must replace this with the
2830 eliminated version of the memory location because push_reload
2831 may do the replacement in certain circumstances. */
2832 if (REG_P (SUBREG_REG (x))
2833 && !paradoxical_subreg_p (x)
2834 && reg_equivs
2835 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2836 {
2837 new_rtx = SUBREG_REG (x);
2838 }
2839 else
2840 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2841
2842 if (new_rtx != SUBREG_REG (x))
2843 {
2844 int x_size = GET_MODE_SIZE (GET_MODE (x));
2845 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2846
2847 if (MEM_P (new_rtx)
2848 && ((x_size < new_size
2849 #ifdef WORD_REGISTER_OPERATIONS
2850 /* On these machines, combine can create rtl of the form
2851 (set (subreg:m1 (reg:m2 R) 0) ...)
2852 where m1 < m2, and expects something interesting to
2853 happen to the entire word. Moreover, it will use the
2854 (reg:m2 R) later, expecting all bits to be preserved.
2855 So if the number of words is the same, preserve the
2856 subreg so that push_reload can see it. */
2857 && ! ((x_size - 1) / UNITS_PER_WORD
2858 == (new_size -1 ) / UNITS_PER_WORD)
2859 #endif
2860 )
2861 || x_size == new_size)
2862 )
2863 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2864 else
2865 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2866 }
2867
2868 return x;
2869
2870 case MEM:
2871 /* Our only special processing is to pass the mode of the MEM to our
2872 recursive call and copy the flags. While we are here, handle this
2873 case more efficiently. */
2874
2875 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2876 for_costs);
2877 if (for_costs
2878 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2879 && !memory_address_p (GET_MODE (x), new_rtx))
2880 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2881
2882 return replace_equiv_address_nv (x, new_rtx);
2883
2884 case USE:
2885 /* Handle insn_list USE that a call to a pure function may generate. */
2886 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2887 for_costs);
2888 if (new_rtx != XEXP (x, 0))
2889 return gen_rtx_USE (GET_MODE (x), new_rtx);
2890 return x;
2891
2892 case CLOBBER:
2893 case ASM_OPERANDS:
2894 gcc_assert (insn && DEBUG_INSN_P (insn));
2895 break;
2896
2897 case SET:
2898 gcc_unreachable ();
2899
2900 default:
2901 break;
2902 }
2903
2904 /* Process each of our operands recursively. If any have changed, make a
2905 copy of the rtx. */
2906 fmt = GET_RTX_FORMAT (code);
2907 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2908 {
2909 if (*fmt == 'e')
2910 {
2911 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2912 for_costs);
2913 if (new_rtx != XEXP (x, i) && ! copied)
2914 {
2915 x = shallow_copy_rtx (x);
2916 copied = 1;
2917 }
2918 XEXP (x, i) = new_rtx;
2919 }
2920 else if (*fmt == 'E')
2921 {
2922 int copied_vec = 0;
2923 for (j = 0; j < XVECLEN (x, i); j++)
2924 {
2925 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2926 for_costs);
2927 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2928 {
2929 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2930 XVEC (x, i)->elem);
2931 if (! copied)
2932 {
2933 x = shallow_copy_rtx (x);
2934 copied = 1;
2935 }
2936 XVEC (x, i) = new_v;
2937 copied_vec = 1;
2938 }
2939 XVECEXP (x, i, j) = new_rtx;
2940 }
2941 }
2942 }
2943
2944 return x;
2945 }
2946
2947 rtx
2948 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2949 {
2950 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2951 }
2952
2953 /* Scan rtx X for modifications of elimination target registers. Update
2954 the table of eliminables to reflect the changed state. MEM_MODE is
2955 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2956
2957 static void
2958 elimination_effects (rtx x, enum machine_mode mem_mode)
2959 {
2960 enum rtx_code code = GET_CODE (x);
2961 struct elim_table *ep;
2962 int regno;
2963 int i, j;
2964 const char *fmt;
2965
2966 switch (code)
2967 {
2968 CASE_CONST_ANY:
2969 case CONST:
2970 case SYMBOL_REF:
2971 case CODE_LABEL:
2972 case PC:
2973 case CC0:
2974 case ASM_INPUT:
2975 case ADDR_VEC:
2976 case ADDR_DIFF_VEC:
2977 case RETURN:
2978 return;
2979
2980 case REG:
2981 regno = REGNO (x);
2982
2983 /* First handle the case where we encounter a bare register that
2984 is eliminable. Replace it with a PLUS. */
2985 if (regno < FIRST_PSEUDO_REGISTER)
2986 {
2987 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2988 ep++)
2989 if (ep->from_rtx == x && ep->can_eliminate)
2990 {
2991 if (! mem_mode)
2992 ep->ref_outside_mem = 1;
2993 return;
2994 }
2995
2996 }
2997 else if (reg_renumber[regno] < 0
2998 && reg_equivs
2999 && reg_equiv_constant (regno)
3000 && ! function_invariant_p (reg_equiv_constant (regno)))
3001 elimination_effects (reg_equiv_constant (regno), mem_mode);
3002 return;
3003
3004 case PRE_INC:
3005 case POST_INC:
3006 case PRE_DEC:
3007 case POST_DEC:
3008 case POST_MODIFY:
3009 case PRE_MODIFY:
3010 /* If we modify the source of an elimination rule, disable it. */
3011 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3012 if (ep->from_rtx == XEXP (x, 0))
3013 ep->can_eliminate = 0;
3014
3015 /* If we modify the target of an elimination rule by adding a constant,
3016 update its offset. If we modify the target in any other way, we'll
3017 have to disable the rule as well. */
3018 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3019 if (ep->to_rtx == XEXP (x, 0))
3020 {
3021 int size = GET_MODE_SIZE (mem_mode);
3022
3023 /* If more bytes than MEM_MODE are pushed, account for them. */
3024 #ifdef PUSH_ROUNDING
3025 if (ep->to_rtx == stack_pointer_rtx)
3026 size = PUSH_ROUNDING (size);
3027 #endif
3028 if (code == PRE_DEC || code == POST_DEC)
3029 ep->offset += size;
3030 else if (code == PRE_INC || code == POST_INC)
3031 ep->offset -= size;
3032 else if (code == PRE_MODIFY || code == POST_MODIFY)
3033 {
3034 if (GET_CODE (XEXP (x, 1)) == PLUS
3035 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3036 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3037 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3038 else
3039 ep->can_eliminate = 0;
3040 }
3041 }
3042
3043 /* These two aren't unary operators. */
3044 if (code == POST_MODIFY || code == PRE_MODIFY)
3045 break;
3046
3047 /* Fall through to generic unary operation case. */
3048 case STRICT_LOW_PART:
3049 case NEG: case NOT:
3050 case SIGN_EXTEND: case ZERO_EXTEND:
3051 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3052 case FLOAT: case FIX:
3053 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3054 case ABS:
3055 case SQRT:
3056 case FFS:
3057 case CLZ:
3058 case CTZ:
3059 case POPCOUNT:
3060 case PARITY:
3061 case BSWAP:
3062 elimination_effects (XEXP (x, 0), mem_mode);
3063 return;
3064
3065 case SUBREG:
3066 if (REG_P (SUBREG_REG (x))
3067 && (GET_MODE_SIZE (GET_MODE (x))
3068 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3069 && reg_equivs
3070 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3071 return;
3072
3073 elimination_effects (SUBREG_REG (x), mem_mode);
3074 return;
3075
3076 case USE:
3077 /* If using a register that is the source of an eliminate we still
3078 think can be performed, note it cannot be performed since we don't
3079 know how this register is used. */
3080 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3081 if (ep->from_rtx == XEXP (x, 0))
3082 ep->can_eliminate = 0;
3083
3084 elimination_effects (XEXP (x, 0), mem_mode);
3085 return;
3086
3087 case CLOBBER:
3088 /* If clobbering a register that is the replacement register for an
3089 elimination we still think can be performed, note that it cannot
3090 be performed. Otherwise, we need not be concerned about it. */
3091 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3092 if (ep->to_rtx == XEXP (x, 0))
3093 ep->can_eliminate = 0;
3094
3095 elimination_effects (XEXP (x, 0), mem_mode);
3096 return;
3097
3098 case SET:
3099 /* Check for setting a register that we know about. */
3100 if (REG_P (SET_DEST (x)))
3101 {
3102 /* See if this is setting the replacement register for an
3103 elimination.
3104
3105 If DEST is the hard frame pointer, we do nothing because we
3106 assume that all assignments to the frame pointer are for
3107 non-local gotos and are being done at a time when they are valid
3108 and do not disturb anything else. Some machines want to
3109 eliminate a fake argument pointer (or even a fake frame pointer)
3110 with either the real frame or the stack pointer. Assignments to
3111 the hard frame pointer must not prevent this elimination. */
3112
3113 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3114 ep++)
3115 if (ep->to_rtx == SET_DEST (x)
3116 && SET_DEST (x) != hard_frame_pointer_rtx)
3117 {
3118 /* If it is being incremented, adjust the offset. Otherwise,
3119 this elimination can't be done. */
3120 rtx src = SET_SRC (x);
3121
3122 if (GET_CODE (src) == PLUS
3123 && XEXP (src, 0) == SET_DEST (x)
3124 && CONST_INT_P (XEXP (src, 1)))
3125 ep->offset -= INTVAL (XEXP (src, 1));
3126 else
3127 ep->can_eliminate = 0;
3128 }
3129 }
3130
3131 elimination_effects (SET_DEST (x), VOIDmode);
3132 elimination_effects (SET_SRC (x), VOIDmode);
3133 return;
3134
3135 case MEM:
3136 /* Our only special processing is to pass the mode of the MEM to our
3137 recursive call. */
3138 elimination_effects (XEXP (x, 0), GET_MODE (x));
3139 return;
3140
3141 default:
3142 break;
3143 }
3144
3145 fmt = GET_RTX_FORMAT (code);
3146 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3147 {
3148 if (*fmt == 'e')
3149 elimination_effects (XEXP (x, i), mem_mode);
3150 else if (*fmt == 'E')
3151 for (j = 0; j < XVECLEN (x, i); j++)
3152 elimination_effects (XVECEXP (x, i, j), mem_mode);
3153 }
3154 }
3155
3156 /* Descend through rtx X and verify that no references to eliminable registers
3157 remain. If any do remain, mark the involved register as not
3158 eliminable. */
3159
3160 static void
3161 check_eliminable_occurrences (rtx x)
3162 {
3163 const char *fmt;
3164 int i;
3165 enum rtx_code code;
3166
3167 if (x == 0)
3168 return;
3169
3170 code = GET_CODE (x);
3171
3172 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3173 {
3174 struct elim_table *ep;
3175
3176 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3177 if (ep->from_rtx == x)
3178 ep->can_eliminate = 0;
3179 return;
3180 }
3181
3182 fmt = GET_RTX_FORMAT (code);
3183 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3184 {
3185 if (*fmt == 'e')
3186 check_eliminable_occurrences (XEXP (x, i));
3187 else if (*fmt == 'E')
3188 {
3189 int j;
3190 for (j = 0; j < XVECLEN (x, i); j++)
3191 check_eliminable_occurrences (XVECEXP (x, i, j));
3192 }
3193 }
3194 }
3195 \f
3196 /* Scan INSN and eliminate all eliminable registers in it.
3197
3198 If REPLACE is nonzero, do the replacement destructively. Also
3199 delete the insn as dead it if it is setting an eliminable register.
3200
3201 If REPLACE is zero, do all our allocations in reload_obstack.
3202
3203 If no eliminations were done and this insn doesn't require any elimination
3204 processing (these are not identical conditions: it might be updating sp,
3205 but not referencing fp; this needs to be seen during reload_as_needed so
3206 that the offset between fp and sp can be taken into consideration), zero
3207 is returned. Otherwise, 1 is returned. */
3208
3209 static int
3210 eliminate_regs_in_insn (rtx insn, int replace)
3211 {
3212 int icode = recog_memoized (insn);
3213 rtx old_body = PATTERN (insn);
3214 int insn_is_asm = asm_noperands (old_body) >= 0;
3215 rtx old_set = single_set (insn);
3216 rtx new_body;
3217 int val = 0;
3218 int i;
3219 rtx substed_operand[MAX_RECOG_OPERANDS];
3220 rtx orig_operand[MAX_RECOG_OPERANDS];
3221 struct elim_table *ep;
3222 rtx plus_src, plus_cst_src;
3223
3224 if (! insn_is_asm && icode < 0)
3225 {
3226 gcc_assert (DEBUG_INSN_P (insn)
3227 || GET_CODE (PATTERN (insn)) == USE
3228 || GET_CODE (PATTERN (insn)) == CLOBBER
3229 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3230 if (DEBUG_INSN_P (insn))
3231 INSN_VAR_LOCATION_LOC (insn)
3232 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3233 return 0;
3234 }
3235
3236 if (old_set != 0 && REG_P (SET_DEST (old_set))
3237 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3238 {
3239 /* Check for setting an eliminable register. */
3240 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3241 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3242 {
3243 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3244 /* If this is setting the frame pointer register to the
3245 hardware frame pointer register and this is an elimination
3246 that will be done (tested above), this insn is really
3247 adjusting the frame pointer downward to compensate for
3248 the adjustment done before a nonlocal goto. */
3249 if (ep->from == FRAME_POINTER_REGNUM
3250 && ep->to == HARD_FRAME_POINTER_REGNUM)
3251 {
3252 rtx base = SET_SRC (old_set);
3253 rtx base_insn = insn;
3254 HOST_WIDE_INT offset = 0;
3255
3256 while (base != ep->to_rtx)
3257 {
3258 rtx prev_insn, prev_set;
3259
3260 if (GET_CODE (base) == PLUS
3261 && CONST_INT_P (XEXP (base, 1)))
3262 {
3263 offset += INTVAL (XEXP (base, 1));
3264 base = XEXP (base, 0);
3265 }
3266 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3267 && (prev_set = single_set (prev_insn)) != 0
3268 && rtx_equal_p (SET_DEST (prev_set), base))
3269 {
3270 base = SET_SRC (prev_set);
3271 base_insn = prev_insn;
3272 }
3273 else
3274 break;
3275 }
3276
3277 if (base == ep->to_rtx)
3278 {
3279 rtx src = plus_constant (Pmode, ep->to_rtx,
3280 offset - ep->offset);
3281
3282 new_body = old_body;
3283 if (! replace)
3284 {
3285 new_body = copy_insn (old_body);
3286 if (REG_NOTES (insn))
3287 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3288 }
3289 PATTERN (insn) = new_body;
3290 old_set = single_set (insn);
3291
3292 /* First see if this insn remains valid when we
3293 make the change. If not, keep the INSN_CODE
3294 the same and let reload fit it up. */
3295 validate_change (insn, &SET_SRC (old_set), src, 1);
3296 validate_change (insn, &SET_DEST (old_set),
3297 ep->to_rtx, 1);
3298 if (! apply_change_group ())
3299 {
3300 SET_SRC (old_set) = src;
3301 SET_DEST (old_set) = ep->to_rtx;
3302 }
3303
3304 val = 1;
3305 goto done;
3306 }
3307 }
3308 #endif
3309
3310 /* In this case this insn isn't serving a useful purpose. We
3311 will delete it in reload_as_needed once we know that this
3312 elimination is, in fact, being done.
3313
3314 If REPLACE isn't set, we can't delete this insn, but needn't
3315 process it since it won't be used unless something changes. */
3316 if (replace)
3317 {
3318 delete_dead_insn (insn);
3319 return 1;
3320 }
3321 val = 1;
3322 goto done;
3323 }
3324 }
3325
3326 /* We allow one special case which happens to work on all machines we
3327 currently support: a single set with the source or a REG_EQUAL
3328 note being a PLUS of an eliminable register and a constant. */
3329 plus_src = plus_cst_src = 0;
3330 if (old_set && REG_P (SET_DEST (old_set)))
3331 {
3332 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3333 plus_src = SET_SRC (old_set);
3334 /* First see if the source is of the form (plus (...) CST). */
3335 if (plus_src
3336 && CONST_INT_P (XEXP (plus_src, 1)))
3337 plus_cst_src = plus_src;
3338 else if (REG_P (SET_SRC (old_set))
3339 || plus_src)
3340 {
3341 /* Otherwise, see if we have a REG_EQUAL note of the form
3342 (plus (...) CST). */
3343 rtx links;
3344 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3345 {
3346 if ((REG_NOTE_KIND (links) == REG_EQUAL
3347 || REG_NOTE_KIND (links) == REG_EQUIV)
3348 && GET_CODE (XEXP (links, 0)) == PLUS
3349 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3350 {
3351 plus_cst_src = XEXP (links, 0);
3352 break;
3353 }
3354 }
3355 }
3356
3357 /* Check that the first operand of the PLUS is a hard reg or
3358 the lowpart subreg of one. */
3359 if (plus_cst_src)
3360 {
3361 rtx reg = XEXP (plus_cst_src, 0);
3362 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3363 reg = SUBREG_REG (reg);
3364
3365 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3366 plus_cst_src = 0;
3367 }
3368 }
3369 if (plus_cst_src)
3370 {
3371 rtx reg = XEXP (plus_cst_src, 0);
3372 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3373
3374 if (GET_CODE (reg) == SUBREG)
3375 reg = SUBREG_REG (reg);
3376
3377 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3378 if (ep->from_rtx == reg && ep->can_eliminate)
3379 {
3380 rtx to_rtx = ep->to_rtx;
3381 offset += ep->offset;
3382 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3383
3384 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3385 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3386 to_rtx);
3387 /* If we have a nonzero offset, and the source is already
3388 a simple REG, the following transformation would
3389 increase the cost of the insn by replacing a simple REG
3390 with (plus (reg sp) CST). So try only when we already
3391 had a PLUS before. */
3392 if (offset == 0 || plus_src)
3393 {
3394 rtx new_src = plus_constant (GET_MODE (to_rtx),
3395 to_rtx, offset);
3396
3397 new_body = old_body;
3398 if (! replace)
3399 {
3400 new_body = copy_insn (old_body);
3401 if (REG_NOTES (insn))
3402 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3403 }
3404 PATTERN (insn) = new_body;
3405 old_set = single_set (insn);
3406
3407 /* First see if this insn remains valid when we make the
3408 change. If not, try to replace the whole pattern with
3409 a simple set (this may help if the original insn was a
3410 PARALLEL that was only recognized as single_set due to
3411 REG_UNUSED notes). If this isn't valid either, keep
3412 the INSN_CODE the same and let reload fix it up. */
3413 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3414 {
3415 rtx new_pat = gen_rtx_SET (VOIDmode,
3416 SET_DEST (old_set), new_src);
3417
3418 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3419 SET_SRC (old_set) = new_src;
3420 }
3421 }
3422 else
3423 break;
3424
3425 val = 1;
3426 /* This can't have an effect on elimination offsets, so skip right
3427 to the end. */
3428 goto done;
3429 }
3430 }
3431
3432 /* Determine the effects of this insn on elimination offsets. */
3433 elimination_effects (old_body, VOIDmode);
3434
3435 /* Eliminate all eliminable registers occurring in operands that
3436 can be handled by reload. */
3437 extract_insn (insn);
3438 for (i = 0; i < recog_data.n_operands; i++)
3439 {
3440 orig_operand[i] = recog_data.operand[i];
3441 substed_operand[i] = recog_data.operand[i];
3442
3443 /* For an asm statement, every operand is eliminable. */
3444 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3445 {
3446 bool is_set_src, in_plus;
3447
3448 /* Check for setting a register that we know about. */
3449 if (recog_data.operand_type[i] != OP_IN
3450 && REG_P (orig_operand[i]))
3451 {
3452 /* If we are assigning to a register that can be eliminated, it
3453 must be as part of a PARALLEL, since the code above handles
3454 single SETs. We must indicate that we can no longer
3455 eliminate this reg. */
3456 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3457 ep++)
3458 if (ep->from_rtx == orig_operand[i])
3459 ep->can_eliminate = 0;
3460 }
3461
3462 /* Companion to the above plus substitution, we can allow
3463 invariants as the source of a plain move. */
3464 is_set_src = false;
3465 if (old_set
3466 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3467 is_set_src = true;
3468 in_plus = false;
3469 if (plus_src
3470 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3471 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3472 in_plus = true;
3473
3474 substed_operand[i]
3475 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3476 replace ? insn : NULL_RTX,
3477 is_set_src || in_plus, false);
3478 if (substed_operand[i] != orig_operand[i])
3479 val = 1;
3480 /* Terminate the search in check_eliminable_occurrences at
3481 this point. */
3482 *recog_data.operand_loc[i] = 0;
3483
3484 /* If an output operand changed from a REG to a MEM and INSN is an
3485 insn, write a CLOBBER insn. */
3486 if (recog_data.operand_type[i] != OP_IN
3487 && REG_P (orig_operand[i])
3488 && MEM_P (substed_operand[i])
3489 && replace)
3490 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3491 }
3492 }
3493
3494 for (i = 0; i < recog_data.n_dups; i++)
3495 *recog_data.dup_loc[i]
3496 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3497
3498 /* If any eliminable remain, they aren't eliminable anymore. */
3499 check_eliminable_occurrences (old_body);
3500
3501 /* Substitute the operands; the new values are in the substed_operand
3502 array. */
3503 for (i = 0; i < recog_data.n_operands; i++)
3504 *recog_data.operand_loc[i] = substed_operand[i];
3505 for (i = 0; i < recog_data.n_dups; i++)
3506 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3507
3508 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3509 re-recognize the insn. We do this in case we had a simple addition
3510 but now can do this as a load-address. This saves an insn in this
3511 common case.
3512 If re-recognition fails, the old insn code number will still be used,
3513 and some register operands may have changed into PLUS expressions.
3514 These will be handled by find_reloads by loading them into a register
3515 again. */
3516
3517 if (val)
3518 {
3519 /* If we aren't replacing things permanently and we changed something,
3520 make another copy to ensure that all the RTL is new. Otherwise
3521 things can go wrong if find_reload swaps commutative operands
3522 and one is inside RTL that has been copied while the other is not. */
3523 new_body = old_body;
3524 if (! replace)
3525 {
3526 new_body = copy_insn (old_body);
3527 if (REG_NOTES (insn))
3528 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3529 }
3530 PATTERN (insn) = new_body;
3531
3532 /* If we had a move insn but now we don't, rerecognize it. This will
3533 cause spurious re-recognition if the old move had a PARALLEL since
3534 the new one still will, but we can't call single_set without
3535 having put NEW_BODY into the insn and the re-recognition won't
3536 hurt in this rare case. */
3537 /* ??? Why this huge if statement - why don't we just rerecognize the
3538 thing always? */
3539 if (! insn_is_asm
3540 && old_set != 0
3541 && ((REG_P (SET_SRC (old_set))
3542 && (GET_CODE (new_body) != SET
3543 || !REG_P (SET_SRC (new_body))))
3544 /* If this was a load from or store to memory, compare
3545 the MEM in recog_data.operand to the one in the insn.
3546 If they are not equal, then rerecognize the insn. */
3547 || (old_set != 0
3548 && ((MEM_P (SET_SRC (old_set))
3549 && SET_SRC (old_set) != recog_data.operand[1])
3550 || (MEM_P (SET_DEST (old_set))
3551 && SET_DEST (old_set) != recog_data.operand[0])))
3552 /* If this was an add insn before, rerecognize. */
3553 || GET_CODE (SET_SRC (old_set)) == PLUS))
3554 {
3555 int new_icode = recog (PATTERN (insn), insn, 0);
3556 if (new_icode >= 0)
3557 INSN_CODE (insn) = new_icode;
3558 }
3559 }
3560
3561 /* Restore the old body. If there were any changes to it, we made a copy
3562 of it while the changes were still in place, so we'll correctly return
3563 a modified insn below. */
3564 if (! replace)
3565 {
3566 /* Restore the old body. */
3567 for (i = 0; i < recog_data.n_operands; i++)
3568 /* Restoring a top-level match_parallel would clobber the new_body
3569 we installed in the insn. */
3570 if (recog_data.operand_loc[i] != &PATTERN (insn))
3571 *recog_data.operand_loc[i] = orig_operand[i];
3572 for (i = 0; i < recog_data.n_dups; i++)
3573 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3574 }
3575
3576 /* Update all elimination pairs to reflect the status after the current
3577 insn. The changes we make were determined by the earlier call to
3578 elimination_effects.
3579
3580 We also detect cases where register elimination cannot be done,
3581 namely, if a register would be both changed and referenced outside a MEM
3582 in the resulting insn since such an insn is often undefined and, even if
3583 not, we cannot know what meaning will be given to it. Note that it is
3584 valid to have a register used in an address in an insn that changes it
3585 (presumably with a pre- or post-increment or decrement).
3586
3587 If anything changes, return nonzero. */
3588
3589 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3590 {
3591 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3592 ep->can_eliminate = 0;
3593
3594 ep->ref_outside_mem = 0;
3595
3596 if (ep->previous_offset != ep->offset)
3597 val = 1;
3598 }
3599
3600 done:
3601 /* If we changed something, perform elimination in REG_NOTES. This is
3602 needed even when REPLACE is zero because a REG_DEAD note might refer
3603 to a register that we eliminate and could cause a different number
3604 of spill registers to be needed in the final reload pass than in
3605 the pre-passes. */
3606 if (val && REG_NOTES (insn) != 0)
3607 REG_NOTES (insn)
3608 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3609 false);
3610
3611 return val;
3612 }
3613
3614 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3615 register allocator. INSN is the instruction we need to examine, we perform
3616 eliminations in its operands and record cases where eliminating a reg with
3617 an invariant equivalence would add extra cost. */
3618
3619 static void
3620 elimination_costs_in_insn (rtx insn)
3621 {
3622 int icode = recog_memoized (insn);
3623 rtx old_body = PATTERN (insn);
3624 int insn_is_asm = asm_noperands (old_body) >= 0;
3625 rtx old_set = single_set (insn);
3626 int i;
3627 rtx orig_operand[MAX_RECOG_OPERANDS];
3628 rtx orig_dup[MAX_RECOG_OPERANDS];
3629 struct elim_table *ep;
3630 rtx plus_src, plus_cst_src;
3631 bool sets_reg_p;
3632
3633 if (! insn_is_asm && icode < 0)
3634 {
3635 gcc_assert (DEBUG_INSN_P (insn)
3636 || GET_CODE (PATTERN (insn)) == USE
3637 || GET_CODE (PATTERN (insn)) == CLOBBER
3638 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3639 return;
3640 }
3641
3642 if (old_set != 0 && REG_P (SET_DEST (old_set))
3643 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3644 {
3645 /* Check for setting an eliminable register. */
3646 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3647 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3648 return;
3649 }
3650
3651 /* We allow one special case which happens to work on all machines we
3652 currently support: a single set with the source or a REG_EQUAL
3653 note being a PLUS of an eliminable register and a constant. */
3654 plus_src = plus_cst_src = 0;
3655 sets_reg_p = false;
3656 if (old_set && REG_P (SET_DEST (old_set)))
3657 {
3658 sets_reg_p = true;
3659 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3660 plus_src = SET_SRC (old_set);
3661 /* First see if the source is of the form (plus (...) CST). */
3662 if (plus_src
3663 && CONST_INT_P (XEXP (plus_src, 1)))
3664 plus_cst_src = plus_src;
3665 else if (REG_P (SET_SRC (old_set))
3666 || plus_src)
3667 {
3668 /* Otherwise, see if we have a REG_EQUAL note of the form
3669 (plus (...) CST). */
3670 rtx links;
3671 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3672 {
3673 if ((REG_NOTE_KIND (links) == REG_EQUAL
3674 || REG_NOTE_KIND (links) == REG_EQUIV)
3675 && GET_CODE (XEXP (links, 0)) == PLUS
3676 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3677 {
3678 plus_cst_src = XEXP (links, 0);
3679 break;
3680 }
3681 }
3682 }
3683 }
3684
3685 /* Determine the effects of this insn on elimination offsets. */
3686 elimination_effects (old_body, VOIDmode);
3687
3688 /* Eliminate all eliminable registers occurring in operands that
3689 can be handled by reload. */
3690 extract_insn (insn);
3691 for (i = 0; i < recog_data.n_dups; i++)
3692 orig_dup[i] = *recog_data.dup_loc[i];
3693
3694 for (i = 0; i < recog_data.n_operands; i++)
3695 {
3696 orig_operand[i] = recog_data.operand[i];
3697
3698 /* For an asm statement, every operand is eliminable. */
3699 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3700 {
3701 bool is_set_src, in_plus;
3702
3703 /* Check for setting a register that we know about. */
3704 if (recog_data.operand_type[i] != OP_IN
3705 && REG_P (orig_operand[i]))
3706 {
3707 /* If we are assigning to a register that can be eliminated, it
3708 must be as part of a PARALLEL, since the code above handles
3709 single SETs. We must indicate that we can no longer
3710 eliminate this reg. */
3711 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3712 ep++)
3713 if (ep->from_rtx == orig_operand[i])
3714 ep->can_eliminate = 0;
3715 }
3716
3717 /* Companion to the above plus substitution, we can allow
3718 invariants as the source of a plain move. */
3719 is_set_src = false;
3720 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3721 is_set_src = true;
3722 if (is_set_src && !sets_reg_p)
3723 note_reg_elim_costly (&SET_SRC (old_set), insn);
3724 in_plus = false;
3725 if (plus_src && sets_reg_p
3726 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3727 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3728 in_plus = true;
3729
3730 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3731 NULL_RTX,
3732 is_set_src || in_plus, true);
3733 /* Terminate the search in check_eliminable_occurrences at
3734 this point. */
3735 *recog_data.operand_loc[i] = 0;
3736 }
3737 }
3738
3739 for (i = 0; i < recog_data.n_dups; i++)
3740 *recog_data.dup_loc[i]
3741 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3742
3743 /* If any eliminable remain, they aren't eliminable anymore. */
3744 check_eliminable_occurrences (old_body);
3745
3746 /* Restore the old body. */
3747 for (i = 0; i < recog_data.n_operands; i++)
3748 *recog_data.operand_loc[i] = orig_operand[i];
3749 for (i = 0; i < recog_data.n_dups; i++)
3750 *recog_data.dup_loc[i] = orig_dup[i];
3751
3752 /* Update all elimination pairs to reflect the status after the current
3753 insn. The changes we make were determined by the earlier call to
3754 elimination_effects. */
3755
3756 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3757 {
3758 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3759 ep->can_eliminate = 0;
3760
3761 ep->ref_outside_mem = 0;
3762 }
3763
3764 return;
3765 }
3766
3767 /* Loop through all elimination pairs.
3768 Recalculate the number not at initial offset.
3769
3770 Compute the maximum offset (minimum offset if the stack does not
3771 grow downward) for each elimination pair. */
3772
3773 static void
3774 update_eliminable_offsets (void)
3775 {
3776 struct elim_table *ep;
3777
3778 num_not_at_initial_offset = 0;
3779 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3780 {
3781 ep->previous_offset = ep->offset;
3782 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3783 num_not_at_initial_offset++;
3784 }
3785 }
3786
3787 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3788 replacement we currently believe is valid, mark it as not eliminable if X
3789 modifies DEST in any way other than by adding a constant integer to it.
3790
3791 If DEST is the frame pointer, we do nothing because we assume that
3792 all assignments to the hard frame pointer are nonlocal gotos and are being
3793 done at a time when they are valid and do not disturb anything else.
3794 Some machines want to eliminate a fake argument pointer with either the
3795 frame or stack pointer. Assignments to the hard frame pointer must not
3796 prevent this elimination.
3797
3798 Called via note_stores from reload before starting its passes to scan
3799 the insns of the function. */
3800
3801 static void
3802 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3803 {
3804 unsigned int i;
3805
3806 /* A SUBREG of a hard register here is just changing its mode. We should
3807 not see a SUBREG of an eliminable hard register, but check just in
3808 case. */
3809 if (GET_CODE (dest) == SUBREG)
3810 dest = SUBREG_REG (dest);
3811
3812 if (dest == hard_frame_pointer_rtx)
3813 return;
3814
3815 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3816 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3817 && (GET_CODE (x) != SET
3818 || GET_CODE (SET_SRC (x)) != PLUS
3819 || XEXP (SET_SRC (x), 0) != dest
3820 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3821 {
3822 reg_eliminate[i].can_eliminate_previous
3823 = reg_eliminate[i].can_eliminate = 0;
3824 num_eliminable--;
3825 }
3826 }
3827
3828 /* Verify that the initial elimination offsets did not change since the
3829 last call to set_initial_elim_offsets. This is used to catch cases
3830 where something illegal happened during reload_as_needed that could
3831 cause incorrect code to be generated if we did not check for it. */
3832
3833 static bool
3834 verify_initial_elim_offsets (void)
3835 {
3836 HOST_WIDE_INT t;
3837
3838 if (!num_eliminable)
3839 return true;
3840
3841 #ifdef ELIMINABLE_REGS
3842 {
3843 struct elim_table *ep;
3844
3845 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3846 {
3847 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3848 if (t != ep->initial_offset)
3849 return false;
3850 }
3851 }
3852 #else
3853 INITIAL_FRAME_POINTER_OFFSET (t);
3854 if (t != reg_eliminate[0].initial_offset)
3855 return false;
3856 #endif
3857
3858 return true;
3859 }
3860
3861 /* Reset all offsets on eliminable registers to their initial values. */
3862
3863 static void
3864 set_initial_elim_offsets (void)
3865 {
3866 struct elim_table *ep = reg_eliminate;
3867
3868 #ifdef ELIMINABLE_REGS
3869 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3870 {
3871 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3872 ep->previous_offset = ep->offset = ep->initial_offset;
3873 }
3874 #else
3875 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3876 ep->previous_offset = ep->offset = ep->initial_offset;
3877 #endif
3878
3879 num_not_at_initial_offset = 0;
3880 }
3881
3882 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3883
3884 static void
3885 set_initial_eh_label_offset (rtx label)
3886 {
3887 set_label_offsets (label, NULL_RTX, 1);
3888 }
3889
3890 /* Initialize the known label offsets.
3891 Set a known offset for each forced label to be at the initial offset
3892 of each elimination. We do this because we assume that all
3893 computed jumps occur from a location where each elimination is
3894 at its initial offset.
3895 For all other labels, show that we don't know the offsets. */
3896
3897 static void
3898 set_initial_label_offsets (void)
3899 {
3900 rtx x;
3901 memset (offsets_known_at, 0, num_labels);
3902
3903 for (x = forced_labels; x; x = XEXP (x, 1))
3904 if (XEXP (x, 0))
3905 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3906
3907 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3908 if (XEXP (x, 0))
3909 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3910
3911 for_each_eh_label (set_initial_eh_label_offset);
3912 }
3913
3914 /* Set all elimination offsets to the known values for the code label given
3915 by INSN. */
3916
3917 static void
3918 set_offsets_for_label (rtx insn)
3919 {
3920 unsigned int i;
3921 int label_nr = CODE_LABEL_NUMBER (insn);
3922 struct elim_table *ep;
3923
3924 num_not_at_initial_offset = 0;
3925 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3926 {
3927 ep->offset = ep->previous_offset
3928 = offsets_at[label_nr - first_label_num][i];
3929 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3930 num_not_at_initial_offset++;
3931 }
3932 }
3933
3934 /* See if anything that happened changes which eliminations are valid.
3935 For example, on the SPARC, whether or not the frame pointer can
3936 be eliminated can depend on what registers have been used. We need
3937 not check some conditions again (such as flag_omit_frame_pointer)
3938 since they can't have changed. */
3939
3940 static void
3941 update_eliminables (HARD_REG_SET *pset)
3942 {
3943 int previous_frame_pointer_needed = frame_pointer_needed;
3944 struct elim_table *ep;
3945
3946 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3947 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3948 && targetm.frame_pointer_required ())
3949 #ifdef ELIMINABLE_REGS
3950 || ! targetm.can_eliminate (ep->from, ep->to)
3951 #endif
3952 )
3953 ep->can_eliminate = 0;
3954
3955 /* Look for the case where we have discovered that we can't replace
3956 register A with register B and that means that we will now be
3957 trying to replace register A with register C. This means we can
3958 no longer replace register C with register B and we need to disable
3959 such an elimination, if it exists. This occurs often with A == ap,
3960 B == sp, and C == fp. */
3961
3962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3963 {
3964 struct elim_table *op;
3965 int new_to = -1;
3966
3967 if (! ep->can_eliminate && ep->can_eliminate_previous)
3968 {
3969 /* Find the current elimination for ep->from, if there is a
3970 new one. */
3971 for (op = reg_eliminate;
3972 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3973 if (op->from == ep->from && op->can_eliminate)
3974 {
3975 new_to = op->to;
3976 break;
3977 }
3978
3979 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3980 disable it. */
3981 for (op = reg_eliminate;
3982 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3983 if (op->from == new_to && op->to == ep->to)
3984 op->can_eliminate = 0;
3985 }
3986 }
3987
3988 /* See if any registers that we thought we could eliminate the previous
3989 time are no longer eliminable. If so, something has changed and we
3990 must spill the register. Also, recompute the number of eliminable
3991 registers and see if the frame pointer is needed; it is if there is
3992 no elimination of the frame pointer that we can perform. */
3993
3994 frame_pointer_needed = 1;
3995 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3996 {
3997 if (ep->can_eliminate
3998 && ep->from == FRAME_POINTER_REGNUM
3999 && ep->to != HARD_FRAME_POINTER_REGNUM
4000 && (! SUPPORTS_STACK_ALIGNMENT
4001 || ! crtl->stack_realign_needed))
4002 frame_pointer_needed = 0;
4003
4004 if (! ep->can_eliminate && ep->can_eliminate_previous)
4005 {
4006 ep->can_eliminate_previous = 0;
4007 SET_HARD_REG_BIT (*pset, ep->from);
4008 num_eliminable--;
4009 }
4010 }
4011
4012 /* If we didn't need a frame pointer last time, but we do now, spill
4013 the hard frame pointer. */
4014 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4015 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4016 }
4017
4018 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4019 Return true iff a register was spilled. */
4020
4021 static bool
4022 update_eliminables_and_spill (void)
4023 {
4024 int i;
4025 bool did_spill = false;
4026 HARD_REG_SET to_spill;
4027 CLEAR_HARD_REG_SET (to_spill);
4028 update_eliminables (&to_spill);
4029 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4030
4031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4032 if (TEST_HARD_REG_BIT (to_spill, i))
4033 {
4034 spill_hard_reg (i, 1);
4035 did_spill = true;
4036
4037 /* Regardless of the state of spills, if we previously had
4038 a register that we thought we could eliminate, but now can
4039 not eliminate, we must run another pass.
4040
4041 Consider pseudos which have an entry in reg_equiv_* which
4042 reference an eliminable register. We must make another pass
4043 to update reg_equiv_* so that we do not substitute in the
4044 old value from when we thought the elimination could be
4045 performed. */
4046 }
4047 return did_spill;
4048 }
4049
4050 /* Return true if X is used as the target register of an elimination. */
4051
4052 bool
4053 elimination_target_reg_p (rtx x)
4054 {
4055 struct elim_table *ep;
4056
4057 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4058 if (ep->to_rtx == x && ep->can_eliminate)
4059 return true;
4060
4061 return false;
4062 }
4063
4064 /* Initialize the table of registers to eliminate.
4065 Pre-condition: global flag frame_pointer_needed has been set before
4066 calling this function. */
4067
4068 static void
4069 init_elim_table (void)
4070 {
4071 struct elim_table *ep;
4072 #ifdef ELIMINABLE_REGS
4073 const struct elim_table_1 *ep1;
4074 #endif
4075
4076 if (!reg_eliminate)
4077 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4078
4079 num_eliminable = 0;
4080
4081 #ifdef ELIMINABLE_REGS
4082 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4083 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4084 {
4085 ep->from = ep1->from;
4086 ep->to = ep1->to;
4087 ep->can_eliminate = ep->can_eliminate_previous
4088 = (targetm.can_eliminate (ep->from, ep->to)
4089 && ! (ep->to == STACK_POINTER_REGNUM
4090 && frame_pointer_needed
4091 && (! SUPPORTS_STACK_ALIGNMENT
4092 || ! stack_realign_fp)));
4093 }
4094 #else
4095 reg_eliminate[0].from = reg_eliminate_1[0].from;
4096 reg_eliminate[0].to = reg_eliminate_1[0].to;
4097 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4098 = ! frame_pointer_needed;
4099 #endif
4100
4101 /* Count the number of eliminable registers and build the FROM and TO
4102 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4103 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4104 We depend on this. */
4105 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4106 {
4107 num_eliminable += ep->can_eliminate;
4108 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4109 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4110 }
4111 }
4112
4113 /* Find all the pseudo registers that didn't get hard regs
4114 but do have known equivalent constants or memory slots.
4115 These include parameters (known equivalent to parameter slots)
4116 and cse'd or loop-moved constant memory addresses.
4117
4118 Record constant equivalents in reg_equiv_constant
4119 so they will be substituted by find_reloads.
4120 Record memory equivalents in reg_mem_equiv so they can
4121 be substituted eventually by altering the REG-rtx's. */
4122
4123 static void
4124 init_eliminable_invariants (rtx first, bool do_subregs)
4125 {
4126 int i;
4127 rtx insn;
4128
4129 grow_reg_equivs ();
4130 if (do_subregs)
4131 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4132 else
4133 reg_max_ref_width = NULL;
4134
4135 num_eliminable_invariants = 0;
4136
4137 first_label_num = get_first_label_num ();
4138 num_labels = max_label_num () - first_label_num;
4139
4140 /* Allocate the tables used to store offset information at labels. */
4141 offsets_known_at = XNEWVEC (char, num_labels);
4142 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4143
4144 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4145 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4146 find largest such for each pseudo. FIRST is the head of the insn
4147 list. */
4148
4149 for (insn = first; insn; insn = NEXT_INSN (insn))
4150 {
4151 rtx set = single_set (insn);
4152
4153 /* We may introduce USEs that we want to remove at the end, so
4154 we'll mark them with QImode. Make sure there are no
4155 previously-marked insns left by say regmove. */
4156 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4157 && GET_MODE (insn) != VOIDmode)
4158 PUT_MODE (insn, VOIDmode);
4159
4160 if (do_subregs && NONDEBUG_INSN_P (insn))
4161 scan_paradoxical_subregs (PATTERN (insn));
4162
4163 if (set != 0 && REG_P (SET_DEST (set)))
4164 {
4165 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4166 rtx x;
4167
4168 if (! note)
4169 continue;
4170
4171 i = REGNO (SET_DEST (set));
4172 x = XEXP (note, 0);
4173
4174 if (i <= LAST_VIRTUAL_REGISTER)
4175 continue;
4176
4177 /* If flag_pic and we have constant, verify it's legitimate. */
4178 if (!CONSTANT_P (x)
4179 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4180 {
4181 /* It can happen that a REG_EQUIV note contains a MEM
4182 that is not a legitimate memory operand. As later
4183 stages of reload assume that all addresses found
4184 in the reg_equiv_* arrays were originally legitimate,
4185 we ignore such REG_EQUIV notes. */
4186 if (memory_operand (x, VOIDmode))
4187 {
4188 /* Always unshare the equivalence, so we can
4189 substitute into this insn without touching the
4190 equivalence. */
4191 reg_equiv_memory_loc (i) = copy_rtx (x);
4192 }
4193 else if (function_invariant_p (x))
4194 {
4195 enum machine_mode mode;
4196
4197 mode = GET_MODE (SET_DEST (set));
4198 if (GET_CODE (x) == PLUS)
4199 {
4200 /* This is PLUS of frame pointer and a constant,
4201 and might be shared. Unshare it. */
4202 reg_equiv_invariant (i) = copy_rtx (x);
4203 num_eliminable_invariants++;
4204 }
4205 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4206 {
4207 reg_equiv_invariant (i) = x;
4208 num_eliminable_invariants++;
4209 }
4210 else if (targetm.legitimate_constant_p (mode, x))
4211 reg_equiv_constant (i) = x;
4212 else
4213 {
4214 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4215 if (! reg_equiv_memory_loc (i))
4216 reg_equiv_init (i) = NULL_RTX;
4217 }
4218 }
4219 else
4220 {
4221 reg_equiv_init (i) = NULL_RTX;
4222 continue;
4223 }
4224 }
4225 else
4226 reg_equiv_init (i) = NULL_RTX;
4227 }
4228 }
4229
4230 if (dump_file)
4231 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4232 if (reg_equiv_init (i))
4233 {
4234 fprintf (dump_file, "init_insns for %u: ", i);
4235 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4236 fprintf (dump_file, "\n");
4237 }
4238 }
4239
4240 /* Indicate that we no longer have known memory locations or constants.
4241 Free all data involved in tracking these. */
4242
4243 static void
4244 free_reg_equiv (void)
4245 {
4246 int i;
4247
4248 free (offsets_known_at);
4249 free (offsets_at);
4250 offsets_at = 0;
4251 offsets_known_at = 0;
4252
4253 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4254 if (reg_equiv_alt_mem_list (i))
4255 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4256 vec_free (reg_equivs);
4257 }
4258 \f
4259 /* Kick all pseudos out of hard register REGNO.
4260
4261 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4262 because we found we can't eliminate some register. In the case, no pseudos
4263 are allowed to be in the register, even if they are only in a block that
4264 doesn't require spill registers, unlike the case when we are spilling this
4265 hard reg to produce another spill register.
4266
4267 Return nonzero if any pseudos needed to be kicked out. */
4268
4269 static void
4270 spill_hard_reg (unsigned int regno, int cant_eliminate)
4271 {
4272 int i;
4273
4274 if (cant_eliminate)
4275 {
4276 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4277 df_set_regs_ever_live (regno, true);
4278 }
4279
4280 /* Spill every pseudo reg that was allocated to this reg
4281 or to something that overlaps this reg. */
4282
4283 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4284 if (reg_renumber[i] >= 0
4285 && (unsigned int) reg_renumber[i] <= regno
4286 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4287 SET_REGNO_REG_SET (&spilled_pseudos, i);
4288 }
4289
4290 /* After find_reload_regs has been run for all insn that need reloads,
4291 and/or spill_hard_regs was called, this function is used to actually
4292 spill pseudo registers and try to reallocate them. It also sets up the
4293 spill_regs array for use by choose_reload_regs. */
4294
4295 static int
4296 finish_spills (int global)
4297 {
4298 struct insn_chain *chain;
4299 int something_changed = 0;
4300 unsigned i;
4301 reg_set_iterator rsi;
4302
4303 /* Build the spill_regs array for the function. */
4304 /* If there are some registers still to eliminate and one of the spill regs
4305 wasn't ever used before, additional stack space may have to be
4306 allocated to store this register. Thus, we may have changed the offset
4307 between the stack and frame pointers, so mark that something has changed.
4308
4309 One might think that we need only set VAL to 1 if this is a call-used
4310 register. However, the set of registers that must be saved by the
4311 prologue is not identical to the call-used set. For example, the
4312 register used by the call insn for the return PC is a call-used register,
4313 but must be saved by the prologue. */
4314
4315 n_spills = 0;
4316 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4317 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4318 {
4319 spill_reg_order[i] = n_spills;
4320 spill_regs[n_spills++] = i;
4321 if (num_eliminable && ! df_regs_ever_live_p (i))
4322 something_changed = 1;
4323 df_set_regs_ever_live (i, true);
4324 }
4325 else
4326 spill_reg_order[i] = -1;
4327
4328 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4329 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4330 {
4331 /* Record the current hard register the pseudo is allocated to
4332 in pseudo_previous_regs so we avoid reallocating it to the
4333 same hard reg in a later pass. */
4334 gcc_assert (reg_renumber[i] >= 0);
4335
4336 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4337 /* Mark it as no longer having a hard register home. */
4338 reg_renumber[i] = -1;
4339 if (ira_conflicts_p)
4340 /* Inform IRA about the change. */
4341 ira_mark_allocation_change (i);
4342 /* We will need to scan everything again. */
4343 something_changed = 1;
4344 }
4345
4346 /* Retry global register allocation if possible. */
4347 if (global && ira_conflicts_p)
4348 {
4349 unsigned int n;
4350
4351 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4352 /* For every insn that needs reloads, set the registers used as spill
4353 regs in pseudo_forbidden_regs for every pseudo live across the
4354 insn. */
4355 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4356 {
4357 EXECUTE_IF_SET_IN_REG_SET
4358 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4359 {
4360 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4361 chain->used_spill_regs);
4362 }
4363 EXECUTE_IF_SET_IN_REG_SET
4364 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4365 {
4366 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4367 chain->used_spill_regs);
4368 }
4369 }
4370
4371 /* Retry allocating the pseudos spilled in IRA and the
4372 reload. For each reg, merge the various reg sets that
4373 indicate which hard regs can't be used, and call
4374 ira_reassign_pseudos. */
4375 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4376 if (reg_old_renumber[i] != reg_renumber[i])
4377 {
4378 if (reg_renumber[i] < 0)
4379 temp_pseudo_reg_arr[n++] = i;
4380 else
4381 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4382 }
4383 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4384 bad_spill_regs_global,
4385 pseudo_forbidden_regs, pseudo_previous_regs,
4386 &spilled_pseudos))
4387 something_changed = 1;
4388 }
4389 /* Fix up the register information in the insn chain.
4390 This involves deleting those of the spilled pseudos which did not get
4391 a new hard register home from the live_{before,after} sets. */
4392 for (chain = reload_insn_chain; chain; chain = chain->next)
4393 {
4394 HARD_REG_SET used_by_pseudos;
4395 HARD_REG_SET used_by_pseudos2;
4396
4397 if (! ira_conflicts_p)
4398 {
4399 /* Don't do it for IRA because IRA and the reload still can
4400 assign hard registers to the spilled pseudos on next
4401 reload iterations. */
4402 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4403 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4404 }
4405 /* Mark any unallocated hard regs as available for spills. That
4406 makes inheritance work somewhat better. */
4407 if (chain->need_reload)
4408 {
4409 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4410 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4411 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4412
4413 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4414 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4415 /* Value of chain->used_spill_regs from previous iteration
4416 may be not included in the value calculated here because
4417 of possible removing caller-saves insns (see function
4418 delete_caller_save_insns. */
4419 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4420 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4421 }
4422 }
4423
4424 CLEAR_REG_SET (&changed_allocation_pseudos);
4425 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4426 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4427 {
4428 int regno = reg_renumber[i];
4429 if (reg_old_renumber[i] == regno)
4430 continue;
4431
4432 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4433
4434 alter_reg (i, reg_old_renumber[i], false);
4435 reg_old_renumber[i] = regno;
4436 if (dump_file)
4437 {
4438 if (regno == -1)
4439 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4440 else
4441 fprintf (dump_file, " Register %d now in %d.\n\n",
4442 i, reg_renumber[i]);
4443 }
4444 }
4445
4446 return something_changed;
4447 }
4448 \f
4449 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4450
4451 static void
4452 scan_paradoxical_subregs (rtx x)
4453 {
4454 int i;
4455 const char *fmt;
4456 enum rtx_code code = GET_CODE (x);
4457
4458 switch (code)
4459 {
4460 case REG:
4461 case CONST:
4462 case SYMBOL_REF:
4463 case LABEL_REF:
4464 CASE_CONST_ANY:
4465 case CC0:
4466 case PC:
4467 case USE:
4468 case CLOBBER:
4469 return;
4470
4471 case SUBREG:
4472 if (REG_P (SUBREG_REG (x))
4473 && (GET_MODE_SIZE (GET_MODE (x))
4474 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4475 {
4476 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4477 = GET_MODE_SIZE (GET_MODE (x));
4478 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4479 }
4480 return;
4481
4482 default:
4483 break;
4484 }
4485
4486 fmt = GET_RTX_FORMAT (code);
4487 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4488 {
4489 if (fmt[i] == 'e')
4490 scan_paradoxical_subregs (XEXP (x, i));
4491 else if (fmt[i] == 'E')
4492 {
4493 int j;
4494 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4495 scan_paradoxical_subregs (XVECEXP (x, i, j));
4496 }
4497 }
4498 }
4499
4500 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4501 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4502 and apply the corresponding narrowing subreg to *OTHER_PTR.
4503 Return true if the operands were changed, false otherwise. */
4504
4505 static bool
4506 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4507 {
4508 rtx op, inner, other, tem;
4509
4510 op = *op_ptr;
4511 if (!paradoxical_subreg_p (op))
4512 return false;
4513 inner = SUBREG_REG (op);
4514
4515 other = *other_ptr;
4516 tem = gen_lowpart_common (GET_MODE (inner), other);
4517 if (!tem)
4518 return false;
4519
4520 /* If the lowpart operation turned a hard register into a subreg,
4521 rather than simplifying it to another hard register, then the
4522 mode change cannot be properly represented. For example, OTHER
4523 might be valid in its current mode, but not in the new one. */
4524 if (GET_CODE (tem) == SUBREG
4525 && REG_P (other)
4526 && HARD_REGISTER_P (other))
4527 return false;
4528
4529 *op_ptr = inner;
4530 *other_ptr = tem;
4531 return true;
4532 }
4533 \f
4534 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4535 examine all of the reload insns between PREV and NEXT exclusive, and
4536 annotate all that may trap. */
4537
4538 static void
4539 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4540 {
4541 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4542 if (note == NULL)
4543 return;
4544 if (!insn_could_throw_p (insn))
4545 remove_note (insn, note);
4546 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4547 }
4548
4549 /* Reload pseudo-registers into hard regs around each insn as needed.
4550 Additional register load insns are output before the insn that needs it
4551 and perhaps store insns after insns that modify the reloaded pseudo reg.
4552
4553 reg_last_reload_reg and reg_reloaded_contents keep track of
4554 which registers are already available in reload registers.
4555 We update these for the reloads that we perform,
4556 as the insns are scanned. */
4557
4558 static void
4559 reload_as_needed (int live_known)
4560 {
4561 struct insn_chain *chain;
4562 #if defined (AUTO_INC_DEC)
4563 int i;
4564 #endif
4565 rtx x, marker;
4566
4567 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4568 memset (spill_reg_store, 0, sizeof spill_reg_store);
4569 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4570 INIT_REG_SET (&reg_has_output_reload);
4571 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4572 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4573
4574 set_initial_elim_offsets ();
4575
4576 /* Generate a marker insn that we will move around. */
4577 marker = emit_note (NOTE_INSN_DELETED);
4578 unlink_insn_chain (marker, marker);
4579
4580 for (chain = reload_insn_chain; chain; chain = chain->next)
4581 {
4582 rtx prev = 0;
4583 rtx insn = chain->insn;
4584 rtx old_next = NEXT_INSN (insn);
4585 #ifdef AUTO_INC_DEC
4586 rtx old_prev = PREV_INSN (insn);
4587 #endif
4588
4589 /* If we pass a label, copy the offsets from the label information
4590 into the current offsets of each elimination. */
4591 if (LABEL_P (insn))
4592 set_offsets_for_label (insn);
4593
4594 else if (INSN_P (insn))
4595 {
4596 regset_head regs_to_forget;
4597 INIT_REG_SET (&regs_to_forget);
4598 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4599
4600 /* If this is a USE and CLOBBER of a MEM, ensure that any
4601 references to eliminable registers have been removed. */
4602
4603 if ((GET_CODE (PATTERN (insn)) == USE
4604 || GET_CODE (PATTERN (insn)) == CLOBBER)
4605 && MEM_P (XEXP (PATTERN (insn), 0)))
4606 XEXP (XEXP (PATTERN (insn), 0), 0)
4607 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4608 GET_MODE (XEXP (PATTERN (insn), 0)),
4609 NULL_RTX);
4610
4611 /* If we need to do register elimination processing, do so.
4612 This might delete the insn, in which case we are done. */
4613 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4614 {
4615 eliminate_regs_in_insn (insn, 1);
4616 if (NOTE_P (insn))
4617 {
4618 update_eliminable_offsets ();
4619 CLEAR_REG_SET (&regs_to_forget);
4620 continue;
4621 }
4622 }
4623
4624 /* If need_elim is nonzero but need_reload is zero, one might think
4625 that we could simply set n_reloads to 0. However, find_reloads
4626 could have done some manipulation of the insn (such as swapping
4627 commutative operands), and these manipulations are lost during
4628 the first pass for every insn that needs register elimination.
4629 So the actions of find_reloads must be redone here. */
4630
4631 if (! chain->need_elim && ! chain->need_reload
4632 && ! chain->need_operand_change)
4633 n_reloads = 0;
4634 /* First find the pseudo regs that must be reloaded for this insn.
4635 This info is returned in the tables reload_... (see reload.h).
4636 Also modify the body of INSN by substituting RELOAD
4637 rtx's for those pseudo regs. */
4638 else
4639 {
4640 CLEAR_REG_SET (&reg_has_output_reload);
4641 CLEAR_HARD_REG_SET (reg_is_output_reload);
4642
4643 find_reloads (insn, 1, spill_indirect_levels, live_known,
4644 spill_reg_order);
4645 }
4646
4647 if (n_reloads > 0)
4648 {
4649 rtx next = NEXT_INSN (insn);
4650 rtx p;
4651
4652 /* ??? PREV can get deleted by reload inheritance.
4653 Work around this by emitting a marker note. */
4654 prev = PREV_INSN (insn);
4655 reorder_insns_nobb (marker, marker, prev);
4656
4657 /* Now compute which reload regs to reload them into. Perhaps
4658 reusing reload regs from previous insns, or else output
4659 load insns to reload them. Maybe output store insns too.
4660 Record the choices of reload reg in reload_reg_rtx. */
4661 choose_reload_regs (chain);
4662
4663 /* Generate the insns to reload operands into or out of
4664 their reload regs. */
4665 emit_reload_insns (chain);
4666
4667 /* Substitute the chosen reload regs from reload_reg_rtx
4668 into the insn's body (or perhaps into the bodies of other
4669 load and store insn that we just made for reloading
4670 and that we moved the structure into). */
4671 subst_reloads (insn);
4672
4673 prev = PREV_INSN (marker);
4674 unlink_insn_chain (marker, marker);
4675
4676 /* Adjust the exception region notes for loads and stores. */
4677 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4678 fixup_eh_region_note (insn, prev, next);
4679
4680 /* Adjust the location of REG_ARGS_SIZE. */
4681 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4682 if (p)
4683 {
4684 remove_note (insn, p);
4685 fixup_args_size_notes (prev, PREV_INSN (next),
4686 INTVAL (XEXP (p, 0)));
4687 }
4688
4689 /* If this was an ASM, make sure that all the reload insns
4690 we have generated are valid. If not, give an error
4691 and delete them. */
4692 if (asm_noperands (PATTERN (insn)) >= 0)
4693 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4694 if (p != insn && INSN_P (p)
4695 && GET_CODE (PATTERN (p)) != USE
4696 && (recog_memoized (p) < 0
4697 || (extract_insn (p), ! constrain_operands (1))))
4698 {
4699 error_for_asm (insn,
4700 "%<asm%> operand requires "
4701 "impossible reload");
4702 delete_insn (p);
4703 }
4704 }
4705
4706 if (num_eliminable && chain->need_elim)
4707 update_eliminable_offsets ();
4708
4709 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4710 is no longer validly lying around to save a future reload.
4711 Note that this does not detect pseudos that were reloaded
4712 for this insn in order to be stored in
4713 (obeying register constraints). That is correct; such reload
4714 registers ARE still valid. */
4715 forget_marked_reloads (&regs_to_forget);
4716 CLEAR_REG_SET (&regs_to_forget);
4717
4718 /* There may have been CLOBBER insns placed after INSN. So scan
4719 between INSN and NEXT and use them to forget old reloads. */
4720 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4721 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4722 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4723
4724 #ifdef AUTO_INC_DEC
4725 /* Likewise for regs altered by auto-increment in this insn.
4726 REG_INC notes have been changed by reloading:
4727 find_reloads_address_1 records substitutions for them,
4728 which have been performed by subst_reloads above. */
4729 for (i = n_reloads - 1; i >= 0; i--)
4730 {
4731 rtx in_reg = rld[i].in_reg;
4732 if (in_reg)
4733 {
4734 enum rtx_code code = GET_CODE (in_reg);
4735 /* PRE_INC / PRE_DEC will have the reload register ending up
4736 with the same value as the stack slot, but that doesn't
4737 hold true for POST_INC / POST_DEC. Either we have to
4738 convert the memory access to a true POST_INC / POST_DEC,
4739 or we can't use the reload register for inheritance. */
4740 if ((code == POST_INC || code == POST_DEC)
4741 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4742 REGNO (rld[i].reg_rtx))
4743 /* Make sure it is the inc/dec pseudo, and not
4744 some other (e.g. output operand) pseudo. */
4745 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4746 == REGNO (XEXP (in_reg, 0))))
4747
4748 {
4749 rtx reload_reg = rld[i].reg_rtx;
4750 enum machine_mode mode = GET_MODE (reload_reg);
4751 int n = 0;
4752 rtx p;
4753
4754 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4755 {
4756 /* We really want to ignore REG_INC notes here, so
4757 use PATTERN (p) as argument to reg_set_p . */
4758 if (reg_set_p (reload_reg, PATTERN (p)))
4759 break;
4760 n = count_occurrences (PATTERN (p), reload_reg, 0);
4761 if (! n)
4762 continue;
4763 if (n == 1)
4764 {
4765 rtx replace_reg
4766 = gen_rtx_fmt_e (code, mode, reload_reg);
4767
4768 validate_replace_rtx_group (reload_reg,
4769 replace_reg, p);
4770 n = verify_changes (0);
4771
4772 /* We must also verify that the constraints
4773 are met after the replacement. Make sure
4774 extract_insn is only called for an insn
4775 where the replacements were found to be
4776 valid so far. */
4777 if (n)
4778 {
4779 extract_insn (p);
4780 n = constrain_operands (1);
4781 }
4782
4783 /* If the constraints were not met, then
4784 undo the replacement, else confirm it. */
4785 if (!n)
4786 cancel_changes (0);
4787 else
4788 confirm_change_group ();
4789 }
4790 break;
4791 }
4792 if (n == 1)
4793 {
4794 add_reg_note (p, REG_INC, reload_reg);
4795 /* Mark this as having an output reload so that the
4796 REG_INC processing code below won't invalidate
4797 the reload for inheritance. */
4798 SET_HARD_REG_BIT (reg_is_output_reload,
4799 REGNO (reload_reg));
4800 SET_REGNO_REG_SET (&reg_has_output_reload,
4801 REGNO (XEXP (in_reg, 0)));
4802 }
4803 else
4804 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4805 NULL);
4806 }
4807 else if ((code == PRE_INC || code == PRE_DEC)
4808 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4809 REGNO (rld[i].reg_rtx))
4810 /* Make sure it is the inc/dec pseudo, and not
4811 some other (e.g. output operand) pseudo. */
4812 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4813 == REGNO (XEXP (in_reg, 0))))
4814 {
4815 SET_HARD_REG_BIT (reg_is_output_reload,
4816 REGNO (rld[i].reg_rtx));
4817 SET_REGNO_REG_SET (&reg_has_output_reload,
4818 REGNO (XEXP (in_reg, 0)));
4819 }
4820 else if (code == PRE_INC || code == PRE_DEC
4821 || code == POST_INC || code == POST_DEC)
4822 {
4823 int in_regno = REGNO (XEXP (in_reg, 0));
4824
4825 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4826 {
4827 int in_hard_regno;
4828 bool forget_p = true;
4829
4830 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4831 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4832 in_hard_regno))
4833 {
4834 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4835 x != old_next;
4836 x = NEXT_INSN (x))
4837 if (x == reg_reloaded_insn[in_hard_regno])
4838 {
4839 forget_p = false;
4840 break;
4841 }
4842 }
4843 /* If for some reasons, we didn't set up
4844 reg_last_reload_reg in this insn,
4845 invalidate inheritance from previous
4846 insns for the incremented/decremented
4847 register. Such registers will be not in
4848 reg_has_output_reload. Invalidate it
4849 also if the corresponding element in
4850 reg_reloaded_insn is also
4851 invalidated. */
4852 if (forget_p)
4853 forget_old_reloads_1 (XEXP (in_reg, 0),
4854 NULL_RTX, NULL);
4855 }
4856 }
4857 }
4858 }
4859 /* If a pseudo that got a hard register is auto-incremented,
4860 we must purge records of copying it into pseudos without
4861 hard registers. */
4862 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4863 if (REG_NOTE_KIND (x) == REG_INC)
4864 {
4865 /* See if this pseudo reg was reloaded in this insn.
4866 If so, its last-reload info is still valid
4867 because it is based on this insn's reload. */
4868 for (i = 0; i < n_reloads; i++)
4869 if (rld[i].out == XEXP (x, 0))
4870 break;
4871
4872 if (i == n_reloads)
4873 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4874 }
4875 #endif
4876 }
4877 /* A reload reg's contents are unknown after a label. */
4878 if (LABEL_P (insn))
4879 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4880
4881 /* Don't assume a reload reg is still good after a call insn
4882 if it is a call-used reg, or if it contains a value that will
4883 be partially clobbered by the call. */
4884 else if (CALL_P (insn))
4885 {
4886 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4887 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4888
4889 /* If this is a call to a setjmp-type function, we must not
4890 reuse any reload reg contents across the call; that will
4891 just be clobbered by other uses of the register in later
4892 code, before the longjmp. */
4893 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4894 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4895 }
4896 }
4897
4898 /* Clean up. */
4899 free (reg_last_reload_reg);
4900 CLEAR_REG_SET (&reg_has_output_reload);
4901 }
4902
4903 /* Discard all record of any value reloaded from X,
4904 or reloaded in X from someplace else;
4905 unless X is an output reload reg of the current insn.
4906
4907 X may be a hard reg (the reload reg)
4908 or it may be a pseudo reg that was reloaded from.
4909
4910 When DATA is non-NULL just mark the registers in regset
4911 to be forgotten later. */
4912
4913 static void
4914 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4915 void *data)
4916 {
4917 unsigned int regno;
4918 unsigned int nr;
4919 regset regs = (regset) data;
4920
4921 /* note_stores does give us subregs of hard regs,
4922 subreg_regno_offset requires a hard reg. */
4923 while (GET_CODE (x) == SUBREG)
4924 {
4925 /* We ignore the subreg offset when calculating the regno,
4926 because we are using the entire underlying hard register
4927 below. */
4928 x = SUBREG_REG (x);
4929 }
4930
4931 if (!REG_P (x))
4932 return;
4933
4934 regno = REGNO (x);
4935
4936 if (regno >= FIRST_PSEUDO_REGISTER)
4937 nr = 1;
4938 else
4939 {
4940 unsigned int i;
4941
4942 nr = hard_regno_nregs[regno][GET_MODE (x)];
4943 /* Storing into a spilled-reg invalidates its contents.
4944 This can happen if a block-local pseudo is allocated to that reg
4945 and it wasn't spilled because this block's total need is 0.
4946 Then some insn might have an optional reload and use this reg. */
4947 if (!regs)
4948 for (i = 0; i < nr; i++)
4949 /* But don't do this if the reg actually serves as an output
4950 reload reg in the current instruction. */
4951 if (n_reloads == 0
4952 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4953 {
4954 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4955 spill_reg_store[regno + i] = 0;
4956 }
4957 }
4958
4959 if (regs)
4960 while (nr-- > 0)
4961 SET_REGNO_REG_SET (regs, regno + nr);
4962 else
4963 {
4964 /* Since value of X has changed,
4965 forget any value previously copied from it. */
4966
4967 while (nr-- > 0)
4968 /* But don't forget a copy if this is the output reload
4969 that establishes the copy's validity. */
4970 if (n_reloads == 0
4971 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4972 reg_last_reload_reg[regno + nr] = 0;
4973 }
4974 }
4975
4976 /* Forget the reloads marked in regset by previous function. */
4977 static void
4978 forget_marked_reloads (regset regs)
4979 {
4980 unsigned int reg;
4981 reg_set_iterator rsi;
4982 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4983 {
4984 if (reg < FIRST_PSEUDO_REGISTER
4985 /* But don't do this if the reg actually serves as an output
4986 reload reg in the current instruction. */
4987 && (n_reloads == 0
4988 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4989 {
4990 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4991 spill_reg_store[reg] = 0;
4992 }
4993 if (n_reloads == 0
4994 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4995 reg_last_reload_reg[reg] = 0;
4996 }
4997 }
4998 \f
4999 /* The following HARD_REG_SETs indicate when each hard register is
5000 used for a reload of various parts of the current insn. */
5001
5002 /* If reg is unavailable for all reloads. */
5003 static HARD_REG_SET reload_reg_unavailable;
5004 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5005 static HARD_REG_SET reload_reg_used;
5006 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5007 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5008 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5009 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5010 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5011 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5012 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5013 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5014 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5015 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5016 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5017 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5018 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5019 static HARD_REG_SET reload_reg_used_in_op_addr;
5020 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5021 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5022 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5023 static HARD_REG_SET reload_reg_used_in_insn;
5024 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5025 static HARD_REG_SET reload_reg_used_in_other_addr;
5026
5027 /* If reg is in use as a reload reg for any sort of reload. */
5028 static HARD_REG_SET reload_reg_used_at_all;
5029
5030 /* If reg is use as an inherited reload. We just mark the first register
5031 in the group. */
5032 static HARD_REG_SET reload_reg_used_for_inherit;
5033
5034 /* Records which hard regs are used in any way, either as explicit use or
5035 by being allocated to a pseudo during any point of the current insn. */
5036 static HARD_REG_SET reg_used_in_insn;
5037
5038 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5039 TYPE. MODE is used to indicate how many consecutive regs are
5040 actually used. */
5041
5042 static void
5043 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5044 enum machine_mode mode)
5045 {
5046 switch (type)
5047 {
5048 case RELOAD_OTHER:
5049 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5050 break;
5051
5052 case RELOAD_FOR_INPUT_ADDRESS:
5053 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5054 break;
5055
5056 case RELOAD_FOR_INPADDR_ADDRESS:
5057 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5058 break;
5059
5060 case RELOAD_FOR_OUTPUT_ADDRESS:
5061 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5062 break;
5063
5064 case RELOAD_FOR_OUTADDR_ADDRESS:
5065 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5066 break;
5067
5068 case RELOAD_FOR_OPERAND_ADDRESS:
5069 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5070 break;
5071
5072 case RELOAD_FOR_OPADDR_ADDR:
5073 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5074 break;
5075
5076 case RELOAD_FOR_OTHER_ADDRESS:
5077 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5078 break;
5079
5080 case RELOAD_FOR_INPUT:
5081 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5082 break;
5083
5084 case RELOAD_FOR_OUTPUT:
5085 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5086 break;
5087
5088 case RELOAD_FOR_INSN:
5089 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5090 break;
5091 }
5092
5093 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5094 }
5095
5096 /* Similarly, but show REGNO is no longer in use for a reload. */
5097
5098 static void
5099 clear_reload_reg_in_use (unsigned int regno, int opnum,
5100 enum reload_type type, enum machine_mode mode)
5101 {
5102 unsigned int nregs = hard_regno_nregs[regno][mode];
5103 unsigned int start_regno, end_regno, r;
5104 int i;
5105 /* A complication is that for some reload types, inheritance might
5106 allow multiple reloads of the same types to share a reload register.
5107 We set check_opnum if we have to check only reloads with the same
5108 operand number, and check_any if we have to check all reloads. */
5109 int check_opnum = 0;
5110 int check_any = 0;
5111 HARD_REG_SET *used_in_set;
5112
5113 switch (type)
5114 {
5115 case RELOAD_OTHER:
5116 used_in_set = &reload_reg_used;
5117 break;
5118
5119 case RELOAD_FOR_INPUT_ADDRESS:
5120 used_in_set = &reload_reg_used_in_input_addr[opnum];
5121 break;
5122
5123 case RELOAD_FOR_INPADDR_ADDRESS:
5124 check_opnum = 1;
5125 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5126 break;
5127
5128 case RELOAD_FOR_OUTPUT_ADDRESS:
5129 used_in_set = &reload_reg_used_in_output_addr[opnum];
5130 break;
5131
5132 case RELOAD_FOR_OUTADDR_ADDRESS:
5133 check_opnum = 1;
5134 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5135 break;
5136
5137 case RELOAD_FOR_OPERAND_ADDRESS:
5138 used_in_set = &reload_reg_used_in_op_addr;
5139 break;
5140
5141 case RELOAD_FOR_OPADDR_ADDR:
5142 check_any = 1;
5143 used_in_set = &reload_reg_used_in_op_addr_reload;
5144 break;
5145
5146 case RELOAD_FOR_OTHER_ADDRESS:
5147 used_in_set = &reload_reg_used_in_other_addr;
5148 check_any = 1;
5149 break;
5150
5151 case RELOAD_FOR_INPUT:
5152 used_in_set = &reload_reg_used_in_input[opnum];
5153 break;
5154
5155 case RELOAD_FOR_OUTPUT:
5156 used_in_set = &reload_reg_used_in_output[opnum];
5157 break;
5158
5159 case RELOAD_FOR_INSN:
5160 used_in_set = &reload_reg_used_in_insn;
5161 break;
5162 default:
5163 gcc_unreachable ();
5164 }
5165 /* We resolve conflicts with remaining reloads of the same type by
5166 excluding the intervals of reload registers by them from the
5167 interval of freed reload registers. Since we only keep track of
5168 one set of interval bounds, we might have to exclude somewhat
5169 more than what would be necessary if we used a HARD_REG_SET here.
5170 But this should only happen very infrequently, so there should
5171 be no reason to worry about it. */
5172
5173 start_regno = regno;
5174 end_regno = regno + nregs;
5175 if (check_opnum || check_any)
5176 {
5177 for (i = n_reloads - 1; i >= 0; i--)
5178 {
5179 if (rld[i].when_needed == type
5180 && (check_any || rld[i].opnum == opnum)
5181 && rld[i].reg_rtx)
5182 {
5183 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5184 unsigned int conflict_end
5185 = end_hard_regno (rld[i].mode, conflict_start);
5186
5187 /* If there is an overlap with the first to-be-freed register,
5188 adjust the interval start. */
5189 if (conflict_start <= start_regno && conflict_end > start_regno)
5190 start_regno = conflict_end;
5191 /* Otherwise, if there is a conflict with one of the other
5192 to-be-freed registers, adjust the interval end. */
5193 if (conflict_start > start_regno && conflict_start < end_regno)
5194 end_regno = conflict_start;
5195 }
5196 }
5197 }
5198
5199 for (r = start_regno; r < end_regno; r++)
5200 CLEAR_HARD_REG_BIT (*used_in_set, r);
5201 }
5202
5203 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5204 specified by OPNUM and TYPE. */
5205
5206 static int
5207 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5208 {
5209 int i;
5210
5211 /* In use for a RELOAD_OTHER means it's not available for anything. */
5212 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5213 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5214 return 0;
5215
5216 switch (type)
5217 {
5218 case RELOAD_OTHER:
5219 /* In use for anything means we can't use it for RELOAD_OTHER. */
5220 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5221 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5222 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5223 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5224 return 0;
5225
5226 for (i = 0; i < reload_n_operands; i++)
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5228 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5230 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5231 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5232 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5233 return 0;
5234
5235 return 1;
5236
5237 case RELOAD_FOR_INPUT:
5238 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5239 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5240 return 0;
5241
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5243 return 0;
5244
5245 /* If it is used for some other input, can't use it. */
5246 for (i = 0; i < reload_n_operands; i++)
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5248 return 0;
5249
5250 /* If it is used in a later operand's address, can't use it. */
5251 for (i = opnum + 1; i < reload_n_operands; i++)
5252 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5253 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5254 return 0;
5255
5256 return 1;
5257
5258 case RELOAD_FOR_INPUT_ADDRESS:
5259 /* Can't use a register if it is used for an input address for this
5260 operand or used as an input in an earlier one. */
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5262 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5263 return 0;
5264
5265 for (i = 0; i < opnum; i++)
5266 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5267 return 0;
5268
5269 return 1;
5270
5271 case RELOAD_FOR_INPADDR_ADDRESS:
5272 /* Can't use a register if it is used for an input address
5273 for this operand or used as an input in an earlier
5274 one. */
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5276 return 0;
5277
5278 for (i = 0; i < opnum; i++)
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5280 return 0;
5281
5282 return 1;
5283
5284 case RELOAD_FOR_OUTPUT_ADDRESS:
5285 /* Can't use a register if it is used for an output address for this
5286 operand or used as an output in this or a later operand. Note
5287 that multiple output operands are emitted in reverse order, so
5288 the conflicting ones are those with lower indices. */
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5290 return 0;
5291
5292 for (i = 0; i <= opnum; i++)
5293 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5294 return 0;
5295
5296 return 1;
5297
5298 case RELOAD_FOR_OUTADDR_ADDRESS:
5299 /* Can't use a register if it is used for an output address
5300 for this operand or used as an output in this or a
5301 later operand. Note that multiple output operands are
5302 emitted in reverse order, so the conflicting ones are
5303 those with lower indices. */
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5305 return 0;
5306
5307 for (i = 0; i <= opnum; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5309 return 0;
5310
5311 return 1;
5312
5313 case RELOAD_FOR_OPERAND_ADDRESS:
5314 for (i = 0; i < reload_n_operands; i++)
5315 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5316 return 0;
5317
5318 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5319 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5320
5321 case RELOAD_FOR_OPADDR_ADDR:
5322 for (i = 0; i < reload_n_operands; i++)
5323 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5324 return 0;
5325
5326 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5327
5328 case RELOAD_FOR_OUTPUT:
5329 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5330 outputs, or an operand address for this or an earlier output.
5331 Note that multiple output operands are emitted in reverse order,
5332 so the conflicting ones are those with higher indices. */
5333 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5334 return 0;
5335
5336 for (i = 0; i < reload_n_operands; i++)
5337 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5338 return 0;
5339
5340 for (i = opnum; i < reload_n_operands; i++)
5341 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5342 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5343 return 0;
5344
5345 return 1;
5346
5347 case RELOAD_FOR_INSN:
5348 for (i = 0; i < reload_n_operands; i++)
5349 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5350 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5351 return 0;
5352
5353 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5354 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5355
5356 case RELOAD_FOR_OTHER_ADDRESS:
5357 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5358
5359 default:
5360 gcc_unreachable ();
5361 }
5362 }
5363
5364 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5365 the number RELOADNUM, is still available in REGNO at the end of the insn.
5366
5367 We can assume that the reload reg was already tested for availability
5368 at the time it is needed, and we should not check this again,
5369 in case the reg has already been marked in use. */
5370
5371 static int
5372 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5373 {
5374 int opnum = rld[reloadnum].opnum;
5375 enum reload_type type = rld[reloadnum].when_needed;
5376 int i;
5377
5378 /* See if there is a reload with the same type for this operand, using
5379 the same register. This case is not handled by the code below. */
5380 for (i = reloadnum + 1; i < n_reloads; i++)
5381 {
5382 rtx reg;
5383 int nregs;
5384
5385 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5386 continue;
5387 reg = rld[i].reg_rtx;
5388 if (reg == NULL_RTX)
5389 continue;
5390 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5391 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5392 return 0;
5393 }
5394
5395 switch (type)
5396 {
5397 case RELOAD_OTHER:
5398 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5399 its value must reach the end. */
5400 return 1;
5401
5402 /* If this use is for part of the insn,
5403 its value reaches if no subsequent part uses the same register.
5404 Just like the above function, don't try to do this with lots
5405 of fallthroughs. */
5406
5407 case RELOAD_FOR_OTHER_ADDRESS:
5408 /* Here we check for everything else, since these don't conflict
5409 with anything else and everything comes later. */
5410
5411 for (i = 0; i < reload_n_operands; i++)
5412 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5413 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5414 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5415 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5417 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5418 return 0;
5419
5420 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5421 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5422 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5423 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5424
5425 case RELOAD_FOR_INPUT_ADDRESS:
5426 case RELOAD_FOR_INPADDR_ADDRESS:
5427 /* Similar, except that we check only for this and subsequent inputs
5428 and the address of only subsequent inputs and we do not need
5429 to check for RELOAD_OTHER objects since they are known not to
5430 conflict. */
5431
5432 for (i = opnum; i < reload_n_operands; i++)
5433 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5434 return 0;
5435
5436 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5437 could be killed if the register is also used by reload with type
5438 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5439 if (type == RELOAD_FOR_INPADDR_ADDRESS
5440 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5441 return 0;
5442
5443 for (i = opnum + 1; i < reload_n_operands; i++)
5444 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5445 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5446 return 0;
5447
5448 for (i = 0; i < reload_n_operands; i++)
5449 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5452 return 0;
5453
5454 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5455 return 0;
5456
5457 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5458 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5459 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5460
5461 case RELOAD_FOR_INPUT:
5462 /* Similar to input address, except we start at the next operand for
5463 both input and input address and we do not check for
5464 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5465 would conflict. */
5466
5467 for (i = opnum + 1; i < reload_n_operands; i++)
5468 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5469 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5470 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5471 return 0;
5472
5473 /* ... fall through ... */
5474
5475 case RELOAD_FOR_OPERAND_ADDRESS:
5476 /* Check outputs and their addresses. */
5477
5478 for (i = 0; i < reload_n_operands; i++)
5479 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5480 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5481 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5482 return 0;
5483
5484 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5485
5486 case RELOAD_FOR_OPADDR_ADDR:
5487 for (i = 0; i < reload_n_operands; i++)
5488 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5489 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5490 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5491 return 0;
5492
5493 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5494 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5495 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5496
5497 case RELOAD_FOR_INSN:
5498 /* These conflict with other outputs with RELOAD_OTHER. So
5499 we need only check for output addresses. */
5500
5501 opnum = reload_n_operands;
5502
5503 /* ... fall through ... */
5504
5505 case RELOAD_FOR_OUTPUT:
5506 case RELOAD_FOR_OUTPUT_ADDRESS:
5507 case RELOAD_FOR_OUTADDR_ADDRESS:
5508 /* We already know these can't conflict with a later output. So the
5509 only thing to check are later output addresses.
5510 Note that multiple output operands are emitted in reverse order,
5511 so the conflicting ones are those with lower indices. */
5512 for (i = 0; i < opnum; i++)
5513 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5514 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5515 return 0;
5516
5517 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5518 could be killed if the register is also used by reload with type
5519 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5520 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5521 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5522 return 0;
5523
5524 return 1;
5525
5526 default:
5527 gcc_unreachable ();
5528 }
5529 }
5530
5531 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5532 every register in REG. */
5533
5534 static bool
5535 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5536 {
5537 unsigned int i;
5538
5539 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5540 if (!reload_reg_reaches_end_p (i, reloadnum))
5541 return false;
5542 return true;
5543 }
5544 \f
5545
5546 /* Returns whether R1 and R2 are uniquely chained: the value of one
5547 is used by the other, and that value is not used by any other
5548 reload for this insn. This is used to partially undo the decision
5549 made in find_reloads when in the case of multiple
5550 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5551 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5552 reloads. This code tries to avoid the conflict created by that
5553 change. It might be cleaner to explicitly keep track of which
5554 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5555 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5556 this after the fact. */
5557 static bool
5558 reloads_unique_chain_p (int r1, int r2)
5559 {
5560 int i;
5561
5562 /* We only check input reloads. */
5563 if (! rld[r1].in || ! rld[r2].in)
5564 return false;
5565
5566 /* Avoid anything with output reloads. */
5567 if (rld[r1].out || rld[r2].out)
5568 return false;
5569
5570 /* "chained" means one reload is a component of the other reload,
5571 not the same as the other reload. */
5572 if (rld[r1].opnum != rld[r2].opnum
5573 || rtx_equal_p (rld[r1].in, rld[r2].in)
5574 || rld[r1].optional || rld[r2].optional
5575 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5576 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5577 return false;
5578
5579 /* The following loop assumes that r1 is the reload that feeds r2. */
5580 if (r1 > r2)
5581 {
5582 int tmp = r2;
5583 r2 = r1;
5584 r1 = tmp;
5585 }
5586
5587 for (i = 0; i < n_reloads; i ++)
5588 /* Look for input reloads that aren't our two */
5589 if (i != r1 && i != r2 && rld[i].in)
5590 {
5591 /* If our reload is mentioned at all, it isn't a simple chain. */
5592 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5593 return false;
5594 }
5595 return true;
5596 }
5597
5598 /* The recursive function change all occurrences of WHAT in *WHERE
5599 to REPL. */
5600 static void
5601 substitute (rtx *where, const_rtx what, rtx repl)
5602 {
5603 const char *fmt;
5604 int i;
5605 enum rtx_code code;
5606
5607 if (*where == 0)
5608 return;
5609
5610 if (*where == what || rtx_equal_p (*where, what))
5611 {
5612 /* Record the location of the changed rtx. */
5613 substitute_stack.safe_push (where);
5614 *where = repl;
5615 return;
5616 }
5617
5618 code = GET_CODE (*where);
5619 fmt = GET_RTX_FORMAT (code);
5620 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5621 {
5622 if (fmt[i] == 'E')
5623 {
5624 int j;
5625
5626 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5627 substitute (&XVECEXP (*where, i, j), what, repl);
5628 }
5629 else if (fmt[i] == 'e')
5630 substitute (&XEXP (*where, i), what, repl);
5631 }
5632 }
5633
5634 /* The function returns TRUE if chain of reload R1 and R2 (in any
5635 order) can be evaluated without usage of intermediate register for
5636 the reload containing another reload. It is important to see
5637 gen_reload to understand what the function is trying to do. As an
5638 example, let us have reload chain
5639
5640 r2: const
5641 r1: <something> + const
5642
5643 and reload R2 got reload reg HR. The function returns true if
5644 there is a correct insn HR = HR + <something>. Otherwise,
5645 gen_reload will use intermediate register (and this is the reload
5646 reg for R1) to reload <something>.
5647
5648 We need this function to find a conflict for chain reloads. In our
5649 example, if HR = HR + <something> is incorrect insn, then we cannot
5650 use HR as a reload register for R2. If we do use it then we get a
5651 wrong code:
5652
5653 HR = const
5654 HR = <something>
5655 HR = HR + HR
5656
5657 */
5658 static bool
5659 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5660 {
5661 /* Assume other cases in gen_reload are not possible for
5662 chain reloads or do need an intermediate hard registers. */
5663 bool result = true;
5664 int regno, n, code;
5665 rtx out, in, insn;
5666 rtx last = get_last_insn ();
5667
5668 /* Make r2 a component of r1. */
5669 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5670 {
5671 n = r1;
5672 r1 = r2;
5673 r2 = n;
5674 }
5675 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5676 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5677 gcc_assert (regno >= 0);
5678 out = gen_rtx_REG (rld[r1].mode, regno);
5679 in = rld[r1].in;
5680 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5681
5682 /* If IN is a paradoxical SUBREG, remove it and try to put the
5683 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5684 strip_paradoxical_subreg (&in, &out);
5685
5686 if (GET_CODE (in) == PLUS
5687 && (REG_P (XEXP (in, 0))
5688 || GET_CODE (XEXP (in, 0)) == SUBREG
5689 || MEM_P (XEXP (in, 0)))
5690 && (REG_P (XEXP (in, 1))
5691 || GET_CODE (XEXP (in, 1)) == SUBREG
5692 || CONSTANT_P (XEXP (in, 1))
5693 || MEM_P (XEXP (in, 1))))
5694 {
5695 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5696 code = recog_memoized (insn);
5697 result = false;
5698
5699 if (code >= 0)
5700 {
5701 extract_insn (insn);
5702 /* We want constrain operands to treat this insn strictly in
5703 its validity determination, i.e., the way it would after
5704 reload has completed. */
5705 result = constrain_operands (1);
5706 }
5707
5708 delete_insns_since (last);
5709 }
5710
5711 /* Restore the original value at each changed address within R1. */
5712 while (!substitute_stack.is_empty ())
5713 {
5714 rtx *where = substitute_stack.pop ();
5715 *where = rld[r2].in;
5716 }
5717
5718 return result;
5719 }
5720
5721 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5722 Return 0 otherwise.
5723
5724 This function uses the same algorithm as reload_reg_free_p above. */
5725
5726 static int
5727 reloads_conflict (int r1, int r2)
5728 {
5729 enum reload_type r1_type = rld[r1].when_needed;
5730 enum reload_type r2_type = rld[r2].when_needed;
5731 int r1_opnum = rld[r1].opnum;
5732 int r2_opnum = rld[r2].opnum;
5733
5734 /* RELOAD_OTHER conflicts with everything. */
5735 if (r2_type == RELOAD_OTHER)
5736 return 1;
5737
5738 /* Otherwise, check conflicts differently for each type. */
5739
5740 switch (r1_type)
5741 {
5742 case RELOAD_FOR_INPUT:
5743 return (r2_type == RELOAD_FOR_INSN
5744 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5745 || r2_type == RELOAD_FOR_OPADDR_ADDR
5746 || r2_type == RELOAD_FOR_INPUT
5747 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5748 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5749 && r2_opnum > r1_opnum));
5750
5751 case RELOAD_FOR_INPUT_ADDRESS:
5752 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5753 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5754
5755 case RELOAD_FOR_INPADDR_ADDRESS:
5756 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5757 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5758
5759 case RELOAD_FOR_OUTPUT_ADDRESS:
5760 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5761 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5762
5763 case RELOAD_FOR_OUTADDR_ADDRESS:
5764 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5765 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5766
5767 case RELOAD_FOR_OPERAND_ADDRESS:
5768 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5769 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5770 && (!reloads_unique_chain_p (r1, r2)
5771 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5772
5773 case RELOAD_FOR_OPADDR_ADDR:
5774 return (r2_type == RELOAD_FOR_INPUT
5775 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5776
5777 case RELOAD_FOR_OUTPUT:
5778 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5779 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5780 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5781 && r2_opnum >= r1_opnum));
5782
5783 case RELOAD_FOR_INSN:
5784 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5785 || r2_type == RELOAD_FOR_INSN
5786 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5787
5788 case RELOAD_FOR_OTHER_ADDRESS:
5789 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5790
5791 case RELOAD_OTHER:
5792 return 1;
5793
5794 default:
5795 gcc_unreachable ();
5796 }
5797 }
5798 \f
5799 /* Indexed by reload number, 1 if incoming value
5800 inherited from previous insns. */
5801 static char reload_inherited[MAX_RELOADS];
5802
5803 /* For an inherited reload, this is the insn the reload was inherited from,
5804 if we know it. Otherwise, this is 0. */
5805 static rtx reload_inheritance_insn[MAX_RELOADS];
5806
5807 /* If nonzero, this is a place to get the value of the reload,
5808 rather than using reload_in. */
5809 static rtx reload_override_in[MAX_RELOADS];
5810
5811 /* For each reload, the hard register number of the register used,
5812 or -1 if we did not need a register for this reload. */
5813 static int reload_spill_index[MAX_RELOADS];
5814
5815 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5816 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5817
5818 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5819 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5820
5821 /* Subroutine of free_for_value_p, used to check a single register.
5822 START_REGNO is the starting regno of the full reload register
5823 (possibly comprising multiple hard registers) that we are considering. */
5824
5825 static int
5826 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5827 enum reload_type type, rtx value, rtx out,
5828 int reloadnum, int ignore_address_reloads)
5829 {
5830 int time1;
5831 /* Set if we see an input reload that must not share its reload register
5832 with any new earlyclobber, but might otherwise share the reload
5833 register with an output or input-output reload. */
5834 int check_earlyclobber = 0;
5835 int i;
5836 int copy = 0;
5837
5838 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5839 return 0;
5840
5841 if (out == const0_rtx)
5842 {
5843 copy = 1;
5844 out = NULL_RTX;
5845 }
5846
5847 /* We use some pseudo 'time' value to check if the lifetimes of the
5848 new register use would overlap with the one of a previous reload
5849 that is not read-only or uses a different value.
5850 The 'time' used doesn't have to be linear in any shape or form, just
5851 monotonic.
5852 Some reload types use different 'buckets' for each operand.
5853 So there are MAX_RECOG_OPERANDS different time values for each
5854 such reload type.
5855 We compute TIME1 as the time when the register for the prospective
5856 new reload ceases to be live, and TIME2 for each existing
5857 reload as the time when that the reload register of that reload
5858 becomes live.
5859 Where there is little to be gained by exact lifetime calculations,
5860 we just make conservative assumptions, i.e. a longer lifetime;
5861 this is done in the 'default:' cases. */
5862 switch (type)
5863 {
5864 case RELOAD_FOR_OTHER_ADDRESS:
5865 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5866 time1 = copy ? 0 : 1;
5867 break;
5868 case RELOAD_OTHER:
5869 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5870 break;
5871 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5872 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5873 respectively, to the time values for these, we get distinct time
5874 values. To get distinct time values for each operand, we have to
5875 multiply opnum by at least three. We round that up to four because
5876 multiply by four is often cheaper. */
5877 case RELOAD_FOR_INPADDR_ADDRESS:
5878 time1 = opnum * 4 + 2;
5879 break;
5880 case RELOAD_FOR_INPUT_ADDRESS:
5881 time1 = opnum * 4 + 3;
5882 break;
5883 case RELOAD_FOR_INPUT:
5884 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5885 executes (inclusive). */
5886 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5887 break;
5888 case RELOAD_FOR_OPADDR_ADDR:
5889 /* opnum * 4 + 4
5890 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5891 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5892 break;
5893 case RELOAD_FOR_OPERAND_ADDRESS:
5894 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5895 is executed. */
5896 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5897 break;
5898 case RELOAD_FOR_OUTADDR_ADDRESS:
5899 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5900 break;
5901 case RELOAD_FOR_OUTPUT_ADDRESS:
5902 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5903 break;
5904 default:
5905 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5906 }
5907
5908 for (i = 0; i < n_reloads; i++)
5909 {
5910 rtx reg = rld[i].reg_rtx;
5911 if (reg && REG_P (reg)
5912 && ((unsigned) regno - true_regnum (reg)
5913 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5914 && i != reloadnum)
5915 {
5916 rtx other_input = rld[i].in;
5917
5918 /* If the other reload loads the same input value, that
5919 will not cause a conflict only if it's loading it into
5920 the same register. */
5921 if (true_regnum (reg) != start_regno)
5922 other_input = NULL_RTX;
5923 if (! other_input || ! rtx_equal_p (other_input, value)
5924 || rld[i].out || out)
5925 {
5926 int time2;
5927 switch (rld[i].when_needed)
5928 {
5929 case RELOAD_FOR_OTHER_ADDRESS:
5930 time2 = 0;
5931 break;
5932 case RELOAD_FOR_INPADDR_ADDRESS:
5933 /* find_reloads makes sure that a
5934 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5935 by at most one - the first -
5936 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5937 address reload is inherited, the address address reload
5938 goes away, so we can ignore this conflict. */
5939 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5940 && ignore_address_reloads
5941 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5942 Then the address address is still needed to store
5943 back the new address. */
5944 && ! rld[reloadnum].out)
5945 continue;
5946 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5947 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5948 reloads go away. */
5949 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5950 && ignore_address_reloads
5951 /* Unless we are reloading an auto_inc expression. */
5952 && ! rld[reloadnum].out)
5953 continue;
5954 time2 = rld[i].opnum * 4 + 2;
5955 break;
5956 case RELOAD_FOR_INPUT_ADDRESS:
5957 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5958 && ignore_address_reloads
5959 && ! rld[reloadnum].out)
5960 continue;
5961 time2 = rld[i].opnum * 4 + 3;
5962 break;
5963 case RELOAD_FOR_INPUT:
5964 time2 = rld[i].opnum * 4 + 4;
5965 check_earlyclobber = 1;
5966 break;
5967 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5968 == MAX_RECOG_OPERAND * 4 */
5969 case RELOAD_FOR_OPADDR_ADDR:
5970 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5971 && ignore_address_reloads
5972 && ! rld[reloadnum].out)
5973 continue;
5974 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5975 break;
5976 case RELOAD_FOR_OPERAND_ADDRESS:
5977 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5978 check_earlyclobber = 1;
5979 break;
5980 case RELOAD_FOR_INSN:
5981 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5982 break;
5983 case RELOAD_FOR_OUTPUT:
5984 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5985 instruction is executed. */
5986 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5987 break;
5988 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5989 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5990 value. */
5991 case RELOAD_FOR_OUTADDR_ADDRESS:
5992 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5993 && ignore_address_reloads
5994 && ! rld[reloadnum].out)
5995 continue;
5996 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5997 break;
5998 case RELOAD_FOR_OUTPUT_ADDRESS:
5999 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6000 break;
6001 case RELOAD_OTHER:
6002 /* If there is no conflict in the input part, handle this
6003 like an output reload. */
6004 if (! rld[i].in || rtx_equal_p (other_input, value))
6005 {
6006 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6007 /* Earlyclobbered outputs must conflict with inputs. */
6008 if (earlyclobber_operand_p (rld[i].out))
6009 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6010
6011 break;
6012 }
6013 time2 = 1;
6014 /* RELOAD_OTHER might be live beyond instruction execution,
6015 but this is not obvious when we set time2 = 1. So check
6016 here if there might be a problem with the new reload
6017 clobbering the register used by the RELOAD_OTHER. */
6018 if (out)
6019 return 0;
6020 break;
6021 default:
6022 return 0;
6023 }
6024 if ((time1 >= time2
6025 && (! rld[i].in || rld[i].out
6026 || ! rtx_equal_p (other_input, value)))
6027 || (out && rld[reloadnum].out_reg
6028 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6029 return 0;
6030 }
6031 }
6032 }
6033
6034 /* Earlyclobbered outputs must conflict with inputs. */
6035 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6036 return 0;
6037
6038 return 1;
6039 }
6040
6041 /* Return 1 if the value in reload reg REGNO, as used by a reload
6042 needed for the part of the insn specified by OPNUM and TYPE,
6043 may be used to load VALUE into it.
6044
6045 MODE is the mode in which the register is used, this is needed to
6046 determine how many hard regs to test.
6047
6048 Other read-only reloads with the same value do not conflict
6049 unless OUT is nonzero and these other reloads have to live while
6050 output reloads live.
6051 If OUT is CONST0_RTX, this is a special case: it means that the
6052 test should not be for using register REGNO as reload register, but
6053 for copying from register REGNO into the reload register.
6054
6055 RELOADNUM is the number of the reload we want to load this value for;
6056 a reload does not conflict with itself.
6057
6058 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6059 reloads that load an address for the very reload we are considering.
6060
6061 The caller has to make sure that there is no conflict with the return
6062 register. */
6063
6064 static int
6065 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6066 enum reload_type type, rtx value, rtx out, int reloadnum,
6067 int ignore_address_reloads)
6068 {
6069 int nregs = hard_regno_nregs[regno][mode];
6070 while (nregs-- > 0)
6071 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6072 value, out, reloadnum,
6073 ignore_address_reloads))
6074 return 0;
6075 return 1;
6076 }
6077
6078 /* Return nonzero if the rtx X is invariant over the current function. */
6079 /* ??? Actually, the places where we use this expect exactly what is
6080 tested here, and not everything that is function invariant. In
6081 particular, the frame pointer and arg pointer are special cased;
6082 pic_offset_table_rtx is not, and we must not spill these things to
6083 memory. */
6084
6085 int
6086 function_invariant_p (const_rtx x)
6087 {
6088 if (CONSTANT_P (x))
6089 return 1;
6090 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6091 return 1;
6092 if (GET_CODE (x) == PLUS
6093 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6094 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6095 return 1;
6096 return 0;
6097 }
6098
6099 /* Determine whether the reload reg X overlaps any rtx'es used for
6100 overriding inheritance. Return nonzero if so. */
6101
6102 static int
6103 conflicts_with_override (rtx x)
6104 {
6105 int i;
6106 for (i = 0; i < n_reloads; i++)
6107 if (reload_override_in[i]
6108 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6109 return 1;
6110 return 0;
6111 }
6112 \f
6113 /* Give an error message saying we failed to find a reload for INSN,
6114 and clear out reload R. */
6115 static void
6116 failed_reload (rtx insn, int r)
6117 {
6118 if (asm_noperands (PATTERN (insn)) < 0)
6119 /* It's the compiler's fault. */
6120 fatal_insn ("could not find a spill register", insn);
6121
6122 /* It's the user's fault; the operand's mode and constraint
6123 don't match. Disable this reload so we don't crash in final. */
6124 error_for_asm (insn,
6125 "%<asm%> operand constraint incompatible with operand size");
6126 rld[r].in = 0;
6127 rld[r].out = 0;
6128 rld[r].reg_rtx = 0;
6129 rld[r].optional = 1;
6130 rld[r].secondary_p = 1;
6131 }
6132
6133 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6134 for reload R. If it's valid, get an rtx for it. Return nonzero if
6135 successful. */
6136 static int
6137 set_reload_reg (int i, int r)
6138 {
6139 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6140 parameter. */
6141 int regno ATTRIBUTE_UNUSED;
6142 rtx reg = spill_reg_rtx[i];
6143
6144 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6145 spill_reg_rtx[i] = reg
6146 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6147
6148 regno = true_regnum (reg);
6149
6150 /* Detect when the reload reg can't hold the reload mode.
6151 This used to be one `if', but Sequent compiler can't handle that. */
6152 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6153 {
6154 enum machine_mode test_mode = VOIDmode;
6155 if (rld[r].in)
6156 test_mode = GET_MODE (rld[r].in);
6157 /* If rld[r].in has VOIDmode, it means we will load it
6158 in whatever mode the reload reg has: to wit, rld[r].mode.
6159 We have already tested that for validity. */
6160 /* Aside from that, we need to test that the expressions
6161 to reload from or into have modes which are valid for this
6162 reload register. Otherwise the reload insns would be invalid. */
6163 if (! (rld[r].in != 0 && test_mode != VOIDmode
6164 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6165 if (! (rld[r].out != 0
6166 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6167 {
6168 /* The reg is OK. */
6169 last_spill_reg = i;
6170
6171 /* Mark as in use for this insn the reload regs we use
6172 for this. */
6173 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6174 rld[r].when_needed, rld[r].mode);
6175
6176 rld[r].reg_rtx = reg;
6177 reload_spill_index[r] = spill_regs[i];
6178 return 1;
6179 }
6180 }
6181 return 0;
6182 }
6183
6184 /* Find a spill register to use as a reload register for reload R.
6185 LAST_RELOAD is nonzero if this is the last reload for the insn being
6186 processed.
6187
6188 Set rld[R].reg_rtx to the register allocated.
6189
6190 We return 1 if successful, or 0 if we couldn't find a spill reg and
6191 we didn't change anything. */
6192
6193 static int
6194 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6195 int last_reload)
6196 {
6197 int i, pass, count;
6198
6199 /* If we put this reload ahead, thinking it is a group,
6200 then insist on finding a group. Otherwise we can grab a
6201 reg that some other reload needs.
6202 (That can happen when we have a 68000 DATA_OR_FP_REG
6203 which is a group of data regs or one fp reg.)
6204 We need not be so restrictive if there are no more reloads
6205 for this insn.
6206
6207 ??? Really it would be nicer to have smarter handling
6208 for that kind of reg class, where a problem like this is normal.
6209 Perhaps those classes should be avoided for reloading
6210 by use of more alternatives. */
6211
6212 int force_group = rld[r].nregs > 1 && ! last_reload;
6213
6214 /* If we want a single register and haven't yet found one,
6215 take any reg in the right class and not in use.
6216 If we want a consecutive group, here is where we look for it.
6217
6218 We use three passes so we can first look for reload regs to
6219 reuse, which are already in use for other reloads in this insn,
6220 and only then use additional registers which are not "bad", then
6221 finally any register.
6222
6223 I think that maximizing reuse is needed to make sure we don't
6224 run out of reload regs. Suppose we have three reloads, and
6225 reloads A and B can share regs. These need two regs.
6226 Suppose A and B are given different regs.
6227 That leaves none for C. */
6228 for (pass = 0; pass < 3; pass++)
6229 {
6230 /* I is the index in spill_regs.
6231 We advance it round-robin between insns to use all spill regs
6232 equally, so that inherited reloads have a chance
6233 of leapfrogging each other. */
6234
6235 i = last_spill_reg;
6236
6237 for (count = 0; count < n_spills; count++)
6238 {
6239 int rclass = (int) rld[r].rclass;
6240 int regnum;
6241
6242 i++;
6243 if (i >= n_spills)
6244 i -= n_spills;
6245 regnum = spill_regs[i];
6246
6247 if ((reload_reg_free_p (regnum, rld[r].opnum,
6248 rld[r].when_needed)
6249 || (rld[r].in
6250 /* We check reload_reg_used to make sure we
6251 don't clobber the return register. */
6252 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6253 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6254 rld[r].when_needed, rld[r].in,
6255 rld[r].out, r, 1)))
6256 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6257 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6258 /* Look first for regs to share, then for unshared. But
6259 don't share regs used for inherited reloads; they are
6260 the ones we want to preserve. */
6261 && (pass
6262 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6263 regnum)
6264 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6265 regnum))))
6266 {
6267 int nr = hard_regno_nregs[regnum][rld[r].mode];
6268
6269 /* During the second pass we want to avoid reload registers
6270 which are "bad" for this reload. */
6271 if (pass == 1
6272 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6273 continue;
6274
6275 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6276 (on 68000) got us two FP regs. If NR is 1,
6277 we would reject both of them. */
6278 if (force_group)
6279 nr = rld[r].nregs;
6280 /* If we need only one reg, we have already won. */
6281 if (nr == 1)
6282 {
6283 /* But reject a single reg if we demand a group. */
6284 if (force_group)
6285 continue;
6286 break;
6287 }
6288 /* Otherwise check that as many consecutive regs as we need
6289 are available here. */
6290 while (nr > 1)
6291 {
6292 int regno = regnum + nr - 1;
6293 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6294 && spill_reg_order[regno] >= 0
6295 && reload_reg_free_p (regno, rld[r].opnum,
6296 rld[r].when_needed)))
6297 break;
6298 nr--;
6299 }
6300 if (nr == 1)
6301 break;
6302 }
6303 }
6304
6305 /* If we found something on the current pass, omit later passes. */
6306 if (count < n_spills)
6307 break;
6308 }
6309
6310 /* We should have found a spill register by now. */
6311 if (count >= n_spills)
6312 return 0;
6313
6314 /* I is the index in SPILL_REG_RTX of the reload register we are to
6315 allocate. Get an rtx for it and find its register number. */
6316
6317 return set_reload_reg (i, r);
6318 }
6319 \f
6320 /* Initialize all the tables needed to allocate reload registers.
6321 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6322 is the array we use to restore the reg_rtx field for every reload. */
6323
6324 static void
6325 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6326 {
6327 int i;
6328
6329 for (i = 0; i < n_reloads; i++)
6330 rld[i].reg_rtx = save_reload_reg_rtx[i];
6331
6332 memset (reload_inherited, 0, MAX_RELOADS);
6333 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6334 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6335
6336 CLEAR_HARD_REG_SET (reload_reg_used);
6337 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6338 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6339 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6340 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6341 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6342
6343 CLEAR_HARD_REG_SET (reg_used_in_insn);
6344 {
6345 HARD_REG_SET tmp;
6346 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6347 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6348 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6349 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6350 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6351 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6352 }
6353
6354 for (i = 0; i < reload_n_operands; i++)
6355 {
6356 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6357 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6358 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6359 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6360 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6361 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6362 }
6363
6364 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6365
6366 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6367
6368 for (i = 0; i < n_reloads; i++)
6369 /* If we have already decided to use a certain register,
6370 don't use it in another way. */
6371 if (rld[i].reg_rtx)
6372 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6373 rld[i].when_needed, rld[i].mode);
6374 }
6375
6376 #ifdef SECONDARY_MEMORY_NEEDED
6377 /* If X is not a subreg, return it unmodified. If it is a subreg,
6378 look up whether we made a replacement for the SUBREG_REG. Return
6379 either the replacement or the SUBREG_REG. */
6380
6381 static rtx
6382 replaced_subreg (rtx x)
6383 {
6384 if (GET_CODE (x) == SUBREG)
6385 return find_replacement (&SUBREG_REG (x));
6386 return x;
6387 }
6388 #endif
6389
6390 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6391 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6392 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6393 otherwise it is NULL. */
6394
6395 static int
6396 compute_reload_subreg_offset (enum machine_mode outermode,
6397 rtx subreg,
6398 enum machine_mode innermode)
6399 {
6400 int outer_offset;
6401 enum machine_mode middlemode;
6402
6403 if (!subreg)
6404 return subreg_lowpart_offset (outermode, innermode);
6405
6406 outer_offset = SUBREG_BYTE (subreg);
6407 middlemode = GET_MODE (SUBREG_REG (subreg));
6408
6409 /* If SUBREG is paradoxical then return the normal lowpart offset
6410 for OUTERMODE and INNERMODE. Our caller has already checked
6411 that OUTERMODE fits in INNERMODE. */
6412 if (outer_offset == 0
6413 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6414 return subreg_lowpart_offset (outermode, innermode);
6415
6416 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6417 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6418 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6419 }
6420
6421 /* Assign hard reg targets for the pseudo-registers we must reload
6422 into hard regs for this insn.
6423 Also output the instructions to copy them in and out of the hard regs.
6424
6425 For machines with register classes, we are responsible for
6426 finding a reload reg in the proper class. */
6427
6428 static void
6429 choose_reload_regs (struct insn_chain *chain)
6430 {
6431 rtx insn = chain->insn;
6432 int i, j;
6433 unsigned int max_group_size = 1;
6434 enum reg_class group_class = NO_REGS;
6435 int pass, win, inheritance;
6436
6437 rtx save_reload_reg_rtx[MAX_RELOADS];
6438
6439 /* In order to be certain of getting the registers we need,
6440 we must sort the reloads into order of increasing register class.
6441 Then our grabbing of reload registers will parallel the process
6442 that provided the reload registers.
6443
6444 Also note whether any of the reloads wants a consecutive group of regs.
6445 If so, record the maximum size of the group desired and what
6446 register class contains all the groups needed by this insn. */
6447
6448 for (j = 0; j < n_reloads; j++)
6449 {
6450 reload_order[j] = j;
6451 if (rld[j].reg_rtx != NULL_RTX)
6452 {
6453 gcc_assert (REG_P (rld[j].reg_rtx)
6454 && HARD_REGISTER_P (rld[j].reg_rtx));
6455 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6456 }
6457 else
6458 reload_spill_index[j] = -1;
6459
6460 if (rld[j].nregs > 1)
6461 {
6462 max_group_size = MAX (rld[j].nregs, max_group_size);
6463 group_class
6464 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6465 }
6466
6467 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6468 }
6469
6470 if (n_reloads > 1)
6471 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6472
6473 /* If -O, try first with inheritance, then turning it off.
6474 If not -O, don't do inheritance.
6475 Using inheritance when not optimizing leads to paradoxes
6476 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6477 because one side of the comparison might be inherited. */
6478 win = 0;
6479 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6480 {
6481 choose_reload_regs_init (chain, save_reload_reg_rtx);
6482
6483 /* Process the reloads in order of preference just found.
6484 Beyond this point, subregs can be found in reload_reg_rtx.
6485
6486 This used to look for an existing reloaded home for all of the
6487 reloads, and only then perform any new reloads. But that could lose
6488 if the reloads were done out of reg-class order because a later
6489 reload with a looser constraint might have an old home in a register
6490 needed by an earlier reload with a tighter constraint.
6491
6492 To solve this, we make two passes over the reloads, in the order
6493 described above. In the first pass we try to inherit a reload
6494 from a previous insn. If there is a later reload that needs a
6495 class that is a proper subset of the class being processed, we must
6496 also allocate a spill register during the first pass.
6497
6498 Then make a second pass over the reloads to allocate any reloads
6499 that haven't been given registers yet. */
6500
6501 for (j = 0; j < n_reloads; j++)
6502 {
6503 int r = reload_order[j];
6504 rtx search_equiv = NULL_RTX;
6505
6506 /* Ignore reloads that got marked inoperative. */
6507 if (rld[r].out == 0 && rld[r].in == 0
6508 && ! rld[r].secondary_p)
6509 continue;
6510
6511 /* If find_reloads chose to use reload_in or reload_out as a reload
6512 register, we don't need to chose one. Otherwise, try even if it
6513 found one since we might save an insn if we find the value lying
6514 around.
6515 Try also when reload_in is a pseudo without a hard reg. */
6516 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6517 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6518 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6519 && !MEM_P (rld[r].in)
6520 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6521 continue;
6522
6523 #if 0 /* No longer needed for correct operation.
6524 It might give better code, or might not; worth an experiment? */
6525 /* If this is an optional reload, we can't inherit from earlier insns
6526 until we are sure that any non-optional reloads have been allocated.
6527 The following code takes advantage of the fact that optional reloads
6528 are at the end of reload_order. */
6529 if (rld[r].optional != 0)
6530 for (i = 0; i < j; i++)
6531 if ((rld[reload_order[i]].out != 0
6532 || rld[reload_order[i]].in != 0
6533 || rld[reload_order[i]].secondary_p)
6534 && ! rld[reload_order[i]].optional
6535 && rld[reload_order[i]].reg_rtx == 0)
6536 allocate_reload_reg (chain, reload_order[i], 0);
6537 #endif
6538
6539 /* First see if this pseudo is already available as reloaded
6540 for a previous insn. We cannot try to inherit for reloads
6541 that are smaller than the maximum number of registers needed
6542 for groups unless the register we would allocate cannot be used
6543 for the groups.
6544
6545 We could check here to see if this is a secondary reload for
6546 an object that is already in a register of the desired class.
6547 This would avoid the need for the secondary reload register.
6548 But this is complex because we can't easily determine what
6549 objects might want to be loaded via this reload. So let a
6550 register be allocated here. In `emit_reload_insns' we suppress
6551 one of the loads in the case described above. */
6552
6553 if (inheritance)
6554 {
6555 int byte = 0;
6556 int regno = -1;
6557 enum machine_mode mode = VOIDmode;
6558 rtx subreg = NULL_RTX;
6559
6560 if (rld[r].in == 0)
6561 ;
6562 else if (REG_P (rld[r].in))
6563 {
6564 regno = REGNO (rld[r].in);
6565 mode = GET_MODE (rld[r].in);
6566 }
6567 else if (REG_P (rld[r].in_reg))
6568 {
6569 regno = REGNO (rld[r].in_reg);
6570 mode = GET_MODE (rld[r].in_reg);
6571 }
6572 else if (GET_CODE (rld[r].in_reg) == SUBREG
6573 && REG_P (SUBREG_REG (rld[r].in_reg)))
6574 {
6575 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6576 if (regno < FIRST_PSEUDO_REGISTER)
6577 regno = subreg_regno (rld[r].in_reg);
6578 else
6579 {
6580 subreg = rld[r].in_reg;
6581 byte = SUBREG_BYTE (subreg);
6582 }
6583 mode = GET_MODE (rld[r].in_reg);
6584 }
6585 #ifdef AUTO_INC_DEC
6586 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6587 && REG_P (XEXP (rld[r].in_reg, 0)))
6588 {
6589 regno = REGNO (XEXP (rld[r].in_reg, 0));
6590 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6591 rld[r].out = rld[r].in;
6592 }
6593 #endif
6594 #if 0
6595 /* This won't work, since REGNO can be a pseudo reg number.
6596 Also, it takes much more hair to keep track of all the things
6597 that can invalidate an inherited reload of part of a pseudoreg. */
6598 else if (GET_CODE (rld[r].in) == SUBREG
6599 && REG_P (SUBREG_REG (rld[r].in)))
6600 regno = subreg_regno (rld[r].in);
6601 #endif
6602
6603 if (regno >= 0
6604 && reg_last_reload_reg[regno] != 0
6605 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6606 >= GET_MODE_SIZE (mode) + byte)
6607 #ifdef CANNOT_CHANGE_MODE_CLASS
6608 /* Verify that the register it's in can be used in
6609 mode MODE. */
6610 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6611 GET_MODE (reg_last_reload_reg[regno]),
6612 mode)
6613 #endif
6614 )
6615 {
6616 enum reg_class rclass = rld[r].rclass, last_class;
6617 rtx last_reg = reg_last_reload_reg[regno];
6618
6619 i = REGNO (last_reg);
6620 byte = compute_reload_subreg_offset (mode,
6621 subreg,
6622 GET_MODE (last_reg));
6623 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6624 last_class = REGNO_REG_CLASS (i);
6625
6626 if (reg_reloaded_contents[i] == regno
6627 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6628 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6629 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6630 /* Even if we can't use this register as a reload
6631 register, we might use it for reload_override_in,
6632 if copying it to the desired class is cheap
6633 enough. */
6634 || ((register_move_cost (mode, last_class, rclass)
6635 < memory_move_cost (mode, rclass, true))
6636 && (secondary_reload_class (1, rclass, mode,
6637 last_reg)
6638 == NO_REGS)
6639 #ifdef SECONDARY_MEMORY_NEEDED
6640 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6641 mode)
6642 #endif
6643 ))
6644
6645 && (rld[r].nregs == max_group_size
6646 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6647 i))
6648 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6649 rld[r].when_needed, rld[r].in,
6650 const0_rtx, r, 1))
6651 {
6652 /* If a group is needed, verify that all the subsequent
6653 registers still have their values intact. */
6654 int nr = hard_regno_nregs[i][rld[r].mode];
6655 int k;
6656
6657 for (k = 1; k < nr; k++)
6658 if (reg_reloaded_contents[i + k] != regno
6659 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6660 break;
6661
6662 if (k == nr)
6663 {
6664 int i1;
6665 int bad_for_class;
6666
6667 last_reg = (GET_MODE (last_reg) == mode
6668 ? last_reg : gen_rtx_REG (mode, i));
6669
6670 bad_for_class = 0;
6671 for (k = 0; k < nr; k++)
6672 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6673 i+k);
6674
6675 /* We found a register that contains the
6676 value we need. If this register is the
6677 same as an `earlyclobber' operand of the
6678 current insn, just mark it as a place to
6679 reload from since we can't use it as the
6680 reload register itself. */
6681
6682 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6683 if (reg_overlap_mentioned_for_reload_p
6684 (reg_last_reload_reg[regno],
6685 reload_earlyclobbers[i1]))
6686 break;
6687
6688 if (i1 != n_earlyclobbers
6689 || ! (free_for_value_p (i, rld[r].mode,
6690 rld[r].opnum,
6691 rld[r].when_needed, rld[r].in,
6692 rld[r].out, r, 1))
6693 /* Don't use it if we'd clobber a pseudo reg. */
6694 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6695 && rld[r].out
6696 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6697 /* Don't clobber the frame pointer. */
6698 || (i == HARD_FRAME_POINTER_REGNUM
6699 && frame_pointer_needed
6700 && rld[r].out)
6701 /* Don't really use the inherited spill reg
6702 if we need it wider than we've got it. */
6703 || (GET_MODE_SIZE (rld[r].mode)
6704 > GET_MODE_SIZE (mode))
6705 || bad_for_class
6706
6707 /* If find_reloads chose reload_out as reload
6708 register, stay with it - that leaves the
6709 inherited register for subsequent reloads. */
6710 || (rld[r].out && rld[r].reg_rtx
6711 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6712 {
6713 if (! rld[r].optional)
6714 {
6715 reload_override_in[r] = last_reg;
6716 reload_inheritance_insn[r]
6717 = reg_reloaded_insn[i];
6718 }
6719 }
6720 else
6721 {
6722 int k;
6723 /* We can use this as a reload reg. */
6724 /* Mark the register as in use for this part of
6725 the insn. */
6726 mark_reload_reg_in_use (i,
6727 rld[r].opnum,
6728 rld[r].when_needed,
6729 rld[r].mode);
6730 rld[r].reg_rtx = last_reg;
6731 reload_inherited[r] = 1;
6732 reload_inheritance_insn[r]
6733 = reg_reloaded_insn[i];
6734 reload_spill_index[r] = i;
6735 for (k = 0; k < nr; k++)
6736 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6737 i + k);
6738 }
6739 }
6740 }
6741 }
6742 }
6743
6744 /* Here's another way to see if the value is already lying around. */
6745 if (inheritance
6746 && rld[r].in != 0
6747 && ! reload_inherited[r]
6748 && rld[r].out == 0
6749 && (CONSTANT_P (rld[r].in)
6750 || GET_CODE (rld[r].in) == PLUS
6751 || REG_P (rld[r].in)
6752 || MEM_P (rld[r].in))
6753 && (rld[r].nregs == max_group_size
6754 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6755 search_equiv = rld[r].in;
6756
6757 if (search_equiv)
6758 {
6759 rtx equiv
6760 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6761 -1, NULL, 0, rld[r].mode);
6762 int regno = 0;
6763
6764 if (equiv != 0)
6765 {
6766 if (REG_P (equiv))
6767 regno = REGNO (equiv);
6768 else
6769 {
6770 /* This must be a SUBREG of a hard register.
6771 Make a new REG since this might be used in an
6772 address and not all machines support SUBREGs
6773 there. */
6774 gcc_assert (GET_CODE (equiv) == SUBREG);
6775 regno = subreg_regno (equiv);
6776 equiv = gen_rtx_REG (rld[r].mode, regno);
6777 /* If we choose EQUIV as the reload register, but the
6778 loop below decides to cancel the inheritance, we'll
6779 end up reloading EQUIV in rld[r].mode, not the mode
6780 it had originally. That isn't safe when EQUIV isn't
6781 available as a spill register since its value might
6782 still be live at this point. */
6783 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6784 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6785 equiv = 0;
6786 }
6787 }
6788
6789 /* If we found a spill reg, reject it unless it is free
6790 and of the desired class. */
6791 if (equiv != 0)
6792 {
6793 int regs_used = 0;
6794 int bad_for_class = 0;
6795 int max_regno = regno + rld[r].nregs;
6796
6797 for (i = regno; i < max_regno; i++)
6798 {
6799 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6800 i);
6801 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6802 i);
6803 }
6804
6805 if ((regs_used
6806 && ! free_for_value_p (regno, rld[r].mode,
6807 rld[r].opnum, rld[r].when_needed,
6808 rld[r].in, rld[r].out, r, 1))
6809 || bad_for_class)
6810 equiv = 0;
6811 }
6812
6813 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6814 equiv = 0;
6815
6816 /* We found a register that contains the value we need.
6817 If this register is the same as an `earlyclobber' operand
6818 of the current insn, just mark it as a place to reload from
6819 since we can't use it as the reload register itself. */
6820
6821 if (equiv != 0)
6822 for (i = 0; i < n_earlyclobbers; i++)
6823 if (reg_overlap_mentioned_for_reload_p (equiv,
6824 reload_earlyclobbers[i]))
6825 {
6826 if (! rld[r].optional)
6827 reload_override_in[r] = equiv;
6828 equiv = 0;
6829 break;
6830 }
6831
6832 /* If the equiv register we have found is explicitly clobbered
6833 in the current insn, it depends on the reload type if we
6834 can use it, use it for reload_override_in, or not at all.
6835 In particular, we then can't use EQUIV for a
6836 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6837
6838 if (equiv != 0)
6839 {
6840 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6841 switch (rld[r].when_needed)
6842 {
6843 case RELOAD_FOR_OTHER_ADDRESS:
6844 case RELOAD_FOR_INPADDR_ADDRESS:
6845 case RELOAD_FOR_INPUT_ADDRESS:
6846 case RELOAD_FOR_OPADDR_ADDR:
6847 break;
6848 case RELOAD_OTHER:
6849 case RELOAD_FOR_INPUT:
6850 case RELOAD_FOR_OPERAND_ADDRESS:
6851 if (! rld[r].optional)
6852 reload_override_in[r] = equiv;
6853 /* Fall through. */
6854 default:
6855 equiv = 0;
6856 break;
6857 }
6858 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6859 switch (rld[r].when_needed)
6860 {
6861 case RELOAD_FOR_OTHER_ADDRESS:
6862 case RELOAD_FOR_INPADDR_ADDRESS:
6863 case RELOAD_FOR_INPUT_ADDRESS:
6864 case RELOAD_FOR_OPADDR_ADDR:
6865 case RELOAD_FOR_OPERAND_ADDRESS:
6866 case RELOAD_FOR_INPUT:
6867 break;
6868 case RELOAD_OTHER:
6869 if (! rld[r].optional)
6870 reload_override_in[r] = equiv;
6871 /* Fall through. */
6872 default:
6873 equiv = 0;
6874 break;
6875 }
6876 }
6877
6878 /* If we found an equivalent reg, say no code need be generated
6879 to load it, and use it as our reload reg. */
6880 if (equiv != 0
6881 && (regno != HARD_FRAME_POINTER_REGNUM
6882 || !frame_pointer_needed))
6883 {
6884 int nr = hard_regno_nregs[regno][rld[r].mode];
6885 int k;
6886 rld[r].reg_rtx = equiv;
6887 reload_spill_index[r] = regno;
6888 reload_inherited[r] = 1;
6889
6890 /* If reg_reloaded_valid is not set for this register,
6891 there might be a stale spill_reg_store lying around.
6892 We must clear it, since otherwise emit_reload_insns
6893 might delete the store. */
6894 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6895 spill_reg_store[regno] = NULL_RTX;
6896 /* If any of the hard registers in EQUIV are spill
6897 registers, mark them as in use for this insn. */
6898 for (k = 0; k < nr; k++)
6899 {
6900 i = spill_reg_order[regno + k];
6901 if (i >= 0)
6902 {
6903 mark_reload_reg_in_use (regno, rld[r].opnum,
6904 rld[r].when_needed,
6905 rld[r].mode);
6906 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6907 regno + k);
6908 }
6909 }
6910 }
6911 }
6912
6913 /* If we found a register to use already, or if this is an optional
6914 reload, we are done. */
6915 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6916 continue;
6917
6918 #if 0
6919 /* No longer needed for correct operation. Might or might
6920 not give better code on the average. Want to experiment? */
6921
6922 /* See if there is a later reload that has a class different from our
6923 class that intersects our class or that requires less register
6924 than our reload. If so, we must allocate a register to this
6925 reload now, since that reload might inherit a previous reload
6926 and take the only available register in our class. Don't do this
6927 for optional reloads since they will force all previous reloads
6928 to be allocated. Also don't do this for reloads that have been
6929 turned off. */
6930
6931 for (i = j + 1; i < n_reloads; i++)
6932 {
6933 int s = reload_order[i];
6934
6935 if ((rld[s].in == 0 && rld[s].out == 0
6936 && ! rld[s].secondary_p)
6937 || rld[s].optional)
6938 continue;
6939
6940 if ((rld[s].rclass != rld[r].rclass
6941 && reg_classes_intersect_p (rld[r].rclass,
6942 rld[s].rclass))
6943 || rld[s].nregs < rld[r].nregs)
6944 break;
6945 }
6946
6947 if (i == n_reloads)
6948 continue;
6949
6950 allocate_reload_reg (chain, r, j == n_reloads - 1);
6951 #endif
6952 }
6953
6954 /* Now allocate reload registers for anything non-optional that
6955 didn't get one yet. */
6956 for (j = 0; j < n_reloads; j++)
6957 {
6958 int r = reload_order[j];
6959
6960 /* Ignore reloads that got marked inoperative. */
6961 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6962 continue;
6963
6964 /* Skip reloads that already have a register allocated or are
6965 optional. */
6966 if (rld[r].reg_rtx != 0 || rld[r].optional)
6967 continue;
6968
6969 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6970 break;
6971 }
6972
6973 /* If that loop got all the way, we have won. */
6974 if (j == n_reloads)
6975 {
6976 win = 1;
6977 break;
6978 }
6979
6980 /* Loop around and try without any inheritance. */
6981 }
6982
6983 if (! win)
6984 {
6985 /* First undo everything done by the failed attempt
6986 to allocate with inheritance. */
6987 choose_reload_regs_init (chain, save_reload_reg_rtx);
6988
6989 /* Some sanity tests to verify that the reloads found in the first
6990 pass are identical to the ones we have now. */
6991 gcc_assert (chain->n_reloads == n_reloads);
6992
6993 for (i = 0; i < n_reloads; i++)
6994 {
6995 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6996 continue;
6997 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6998 for (j = 0; j < n_spills; j++)
6999 if (spill_regs[j] == chain->rld[i].regno)
7000 if (! set_reload_reg (j, i))
7001 failed_reload (chain->insn, i);
7002 }
7003 }
7004
7005 /* If we thought we could inherit a reload, because it seemed that
7006 nothing else wanted the same reload register earlier in the insn,
7007 verify that assumption, now that all reloads have been assigned.
7008 Likewise for reloads where reload_override_in has been set. */
7009
7010 /* If doing expensive optimizations, do one preliminary pass that doesn't
7011 cancel any inheritance, but removes reloads that have been needed only
7012 for reloads that we know can be inherited. */
7013 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7014 {
7015 for (j = 0; j < n_reloads; j++)
7016 {
7017 int r = reload_order[j];
7018 rtx check_reg;
7019 #ifdef SECONDARY_MEMORY_NEEDED
7020 rtx tem;
7021 #endif
7022 if (reload_inherited[r] && rld[r].reg_rtx)
7023 check_reg = rld[r].reg_rtx;
7024 else if (reload_override_in[r]
7025 && (REG_P (reload_override_in[r])
7026 || GET_CODE (reload_override_in[r]) == SUBREG))
7027 check_reg = reload_override_in[r];
7028 else
7029 continue;
7030 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7031 rld[r].opnum, rld[r].when_needed, rld[r].in,
7032 (reload_inherited[r]
7033 ? rld[r].out : const0_rtx),
7034 r, 1))
7035 {
7036 if (pass)
7037 continue;
7038 reload_inherited[r] = 0;
7039 reload_override_in[r] = 0;
7040 }
7041 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7042 reload_override_in, then we do not need its related
7043 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7044 likewise for other reload types.
7045 We handle this by removing a reload when its only replacement
7046 is mentioned in reload_in of the reload we are going to inherit.
7047 A special case are auto_inc expressions; even if the input is
7048 inherited, we still need the address for the output. We can
7049 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7050 If we succeeded removing some reload and we are doing a preliminary
7051 pass just to remove such reloads, make another pass, since the
7052 removal of one reload might allow us to inherit another one. */
7053 else if (rld[r].in
7054 && rld[r].out != rld[r].in
7055 && remove_address_replacements (rld[r].in))
7056 {
7057 if (pass)
7058 pass = 2;
7059 }
7060 #ifdef SECONDARY_MEMORY_NEEDED
7061 /* If we needed a memory location for the reload, we also have to
7062 remove its related reloads. */
7063 else if (rld[r].in
7064 && rld[r].out != rld[r].in
7065 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7066 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7067 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7068 rld[r].rclass, rld[r].inmode)
7069 && remove_address_replacements
7070 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7071 rld[r].when_needed)))
7072 {
7073 if (pass)
7074 pass = 2;
7075 }
7076 #endif
7077 }
7078 }
7079
7080 /* Now that reload_override_in is known valid,
7081 actually override reload_in. */
7082 for (j = 0; j < n_reloads; j++)
7083 if (reload_override_in[j])
7084 rld[j].in = reload_override_in[j];
7085
7086 /* If this reload won't be done because it has been canceled or is
7087 optional and not inherited, clear reload_reg_rtx so other
7088 routines (such as subst_reloads) don't get confused. */
7089 for (j = 0; j < n_reloads; j++)
7090 if (rld[j].reg_rtx != 0
7091 && ((rld[j].optional && ! reload_inherited[j])
7092 || (rld[j].in == 0 && rld[j].out == 0
7093 && ! rld[j].secondary_p)))
7094 {
7095 int regno = true_regnum (rld[j].reg_rtx);
7096
7097 if (spill_reg_order[regno] >= 0)
7098 clear_reload_reg_in_use (regno, rld[j].opnum,
7099 rld[j].when_needed, rld[j].mode);
7100 rld[j].reg_rtx = 0;
7101 reload_spill_index[j] = -1;
7102 }
7103
7104 /* Record which pseudos and which spill regs have output reloads. */
7105 for (j = 0; j < n_reloads; j++)
7106 {
7107 int r = reload_order[j];
7108
7109 i = reload_spill_index[r];
7110
7111 /* I is nonneg if this reload uses a register.
7112 If rld[r].reg_rtx is 0, this is an optional reload
7113 that we opted to ignore. */
7114 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7115 && rld[r].reg_rtx != 0)
7116 {
7117 int nregno = REGNO (rld[r].out_reg);
7118 int nr = 1;
7119
7120 if (nregno < FIRST_PSEUDO_REGISTER)
7121 nr = hard_regno_nregs[nregno][rld[r].mode];
7122
7123 while (--nr >= 0)
7124 SET_REGNO_REG_SET (&reg_has_output_reload,
7125 nregno + nr);
7126
7127 if (i >= 0)
7128 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7129
7130 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7131 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7132 || rld[r].when_needed == RELOAD_FOR_INSN);
7133 }
7134 }
7135 }
7136
7137 /* Deallocate the reload register for reload R. This is called from
7138 remove_address_replacements. */
7139
7140 void
7141 deallocate_reload_reg (int r)
7142 {
7143 int regno;
7144
7145 if (! rld[r].reg_rtx)
7146 return;
7147 regno = true_regnum (rld[r].reg_rtx);
7148 rld[r].reg_rtx = 0;
7149 if (spill_reg_order[regno] >= 0)
7150 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7151 rld[r].mode);
7152 reload_spill_index[r] = -1;
7153 }
7154 \f
7155 /* These arrays are filled by emit_reload_insns and its subroutines. */
7156 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7157 static rtx other_input_address_reload_insns = 0;
7158 static rtx other_input_reload_insns = 0;
7159 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7160 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7161 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7162 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7163 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7164 static rtx operand_reload_insns = 0;
7165 static rtx other_operand_reload_insns = 0;
7166 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7167
7168 /* Values to be put in spill_reg_store are put here first. Instructions
7169 must only be placed here if the associated reload register reaches
7170 the end of the instruction's reload sequence. */
7171 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7172 static HARD_REG_SET reg_reloaded_died;
7173
7174 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7175 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7176 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7177 adjusted register, and return true. Otherwise, return false. */
7178 static bool
7179 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7180 enum reg_class new_class,
7181 enum machine_mode new_mode)
7182
7183 {
7184 rtx reg;
7185
7186 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7187 {
7188 unsigned regno = REGNO (reg);
7189
7190 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7191 continue;
7192 if (GET_MODE (reg) != new_mode)
7193 {
7194 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7195 continue;
7196 if (hard_regno_nregs[regno][new_mode]
7197 > hard_regno_nregs[regno][GET_MODE (reg)])
7198 continue;
7199 reg = reload_adjust_reg_for_mode (reg, new_mode);
7200 }
7201 *reload_reg = reg;
7202 return true;
7203 }
7204 return false;
7205 }
7206
7207 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7208 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7209 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7210 adjusted register, and return true. Otherwise, return false. */
7211 static bool
7212 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7213 enum insn_code icode)
7214
7215 {
7216 enum reg_class new_class = scratch_reload_class (icode);
7217 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7218
7219 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7220 new_class, new_mode);
7221 }
7222
7223 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7224 has the number J. OLD contains the value to be used as input. */
7225
7226 static void
7227 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7228 rtx old, int j)
7229 {
7230 rtx insn = chain->insn;
7231 rtx reloadreg;
7232 rtx oldequiv_reg = 0;
7233 rtx oldequiv = 0;
7234 int special = 0;
7235 enum machine_mode mode;
7236 rtx *where;
7237
7238 /* delete_output_reload is only invoked properly if old contains
7239 the original pseudo register. Since this is replaced with a
7240 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7241 find the pseudo in RELOAD_IN_REG. */
7242 if (reload_override_in[j]
7243 && REG_P (rl->in_reg))
7244 {
7245 oldequiv = old;
7246 old = rl->in_reg;
7247 }
7248 if (oldequiv == 0)
7249 oldequiv = old;
7250 else if (REG_P (oldequiv))
7251 oldequiv_reg = oldequiv;
7252 else if (GET_CODE (oldequiv) == SUBREG)
7253 oldequiv_reg = SUBREG_REG (oldequiv);
7254
7255 reloadreg = reload_reg_rtx_for_input[j];
7256 mode = GET_MODE (reloadreg);
7257
7258 /* If we are reloading from a register that was recently stored in
7259 with an output-reload, see if we can prove there was
7260 actually no need to store the old value in it. */
7261
7262 if (optimize && REG_P (oldequiv)
7263 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7264 && spill_reg_store[REGNO (oldequiv)]
7265 && REG_P (old)
7266 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7267 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7268 rl->out_reg)))
7269 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7270
7271 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7272 OLDEQUIV. */
7273
7274 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7275 oldequiv = SUBREG_REG (oldequiv);
7276 if (GET_MODE (oldequiv) != VOIDmode
7277 && mode != GET_MODE (oldequiv))
7278 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7279
7280 /* Switch to the right place to emit the reload insns. */
7281 switch (rl->when_needed)
7282 {
7283 case RELOAD_OTHER:
7284 where = &other_input_reload_insns;
7285 break;
7286 case RELOAD_FOR_INPUT:
7287 where = &input_reload_insns[rl->opnum];
7288 break;
7289 case RELOAD_FOR_INPUT_ADDRESS:
7290 where = &input_address_reload_insns[rl->opnum];
7291 break;
7292 case RELOAD_FOR_INPADDR_ADDRESS:
7293 where = &inpaddr_address_reload_insns[rl->opnum];
7294 break;
7295 case RELOAD_FOR_OUTPUT_ADDRESS:
7296 where = &output_address_reload_insns[rl->opnum];
7297 break;
7298 case RELOAD_FOR_OUTADDR_ADDRESS:
7299 where = &outaddr_address_reload_insns[rl->opnum];
7300 break;
7301 case RELOAD_FOR_OPERAND_ADDRESS:
7302 where = &operand_reload_insns;
7303 break;
7304 case RELOAD_FOR_OPADDR_ADDR:
7305 where = &other_operand_reload_insns;
7306 break;
7307 case RELOAD_FOR_OTHER_ADDRESS:
7308 where = &other_input_address_reload_insns;
7309 break;
7310 default:
7311 gcc_unreachable ();
7312 }
7313
7314 push_to_sequence (*where);
7315
7316 /* Auto-increment addresses must be reloaded in a special way. */
7317 if (rl->out && ! rl->out_reg)
7318 {
7319 /* We are not going to bother supporting the case where a
7320 incremented register can't be copied directly from
7321 OLDEQUIV since this seems highly unlikely. */
7322 gcc_assert (rl->secondary_in_reload < 0);
7323
7324 if (reload_inherited[j])
7325 oldequiv = reloadreg;
7326
7327 old = XEXP (rl->in_reg, 0);
7328
7329 /* Prevent normal processing of this reload. */
7330 special = 1;
7331 /* Output a special code sequence for this case. */
7332 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7333 }
7334
7335 /* If we are reloading a pseudo-register that was set by the previous
7336 insn, see if we can get rid of that pseudo-register entirely
7337 by redirecting the previous insn into our reload register. */
7338
7339 else if (optimize && REG_P (old)
7340 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7341 && dead_or_set_p (insn, old)
7342 /* This is unsafe if some other reload
7343 uses the same reg first. */
7344 && ! conflicts_with_override (reloadreg)
7345 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7346 rl->when_needed, old, rl->out, j, 0))
7347 {
7348 rtx temp = PREV_INSN (insn);
7349 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7350 temp = PREV_INSN (temp);
7351 if (temp
7352 && NONJUMP_INSN_P (temp)
7353 && GET_CODE (PATTERN (temp)) == SET
7354 && SET_DEST (PATTERN (temp)) == old
7355 /* Make sure we can access insn_operand_constraint. */
7356 && asm_noperands (PATTERN (temp)) < 0
7357 /* This is unsafe if operand occurs more than once in current
7358 insn. Perhaps some occurrences aren't reloaded. */
7359 && count_occurrences (PATTERN (insn), old, 0) == 1)
7360 {
7361 rtx old = SET_DEST (PATTERN (temp));
7362 /* Store into the reload register instead of the pseudo. */
7363 SET_DEST (PATTERN (temp)) = reloadreg;
7364
7365 /* Verify that resulting insn is valid. */
7366 extract_insn (temp);
7367 if (constrain_operands (1))
7368 {
7369 /* If the previous insn is an output reload, the source is
7370 a reload register, and its spill_reg_store entry will
7371 contain the previous destination. This is now
7372 invalid. */
7373 if (REG_P (SET_SRC (PATTERN (temp)))
7374 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7375 {
7376 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7377 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7378 }
7379
7380 /* If these are the only uses of the pseudo reg,
7381 pretend for GDB it lives in the reload reg we used. */
7382 if (REG_N_DEATHS (REGNO (old)) == 1
7383 && REG_N_SETS (REGNO (old)) == 1)
7384 {
7385 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7386 if (ira_conflicts_p)
7387 /* Inform IRA about the change. */
7388 ira_mark_allocation_change (REGNO (old));
7389 alter_reg (REGNO (old), -1, false);
7390 }
7391 special = 1;
7392
7393 /* Adjust any debug insns between temp and insn. */
7394 while ((temp = NEXT_INSN (temp)) != insn)
7395 if (DEBUG_INSN_P (temp))
7396 replace_rtx (PATTERN (temp), old, reloadreg);
7397 else
7398 gcc_assert (NOTE_P (temp));
7399 }
7400 else
7401 {
7402 SET_DEST (PATTERN (temp)) = old;
7403 }
7404 }
7405 }
7406
7407 /* We can't do that, so output an insn to load RELOADREG. */
7408
7409 /* If we have a secondary reload, pick up the secondary register
7410 and icode, if any. If OLDEQUIV and OLD are different or
7411 if this is an in-out reload, recompute whether or not we
7412 still need a secondary register and what the icode should
7413 be. If we still need a secondary register and the class or
7414 icode is different, go back to reloading from OLD if using
7415 OLDEQUIV means that we got the wrong type of register. We
7416 cannot have different class or icode due to an in-out reload
7417 because we don't make such reloads when both the input and
7418 output need secondary reload registers. */
7419
7420 if (! special && rl->secondary_in_reload >= 0)
7421 {
7422 rtx second_reload_reg = 0;
7423 rtx third_reload_reg = 0;
7424 int secondary_reload = rl->secondary_in_reload;
7425 rtx real_oldequiv = oldequiv;
7426 rtx real_old = old;
7427 rtx tmp;
7428 enum insn_code icode;
7429 enum insn_code tertiary_icode = CODE_FOR_nothing;
7430
7431 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7432 and similarly for OLD.
7433 See comments in get_secondary_reload in reload.c. */
7434 /* If it is a pseudo that cannot be replaced with its
7435 equivalent MEM, we must fall back to reload_in, which
7436 will have all the necessary substitutions registered.
7437 Likewise for a pseudo that can't be replaced with its
7438 equivalent constant.
7439
7440 Take extra care for subregs of such pseudos. Note that
7441 we cannot use reg_equiv_mem in this case because it is
7442 not in the right mode. */
7443
7444 tmp = oldequiv;
7445 if (GET_CODE (tmp) == SUBREG)
7446 tmp = SUBREG_REG (tmp);
7447 if (REG_P (tmp)
7448 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7449 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7450 || reg_equiv_constant (REGNO (tmp)) != 0))
7451 {
7452 if (! reg_equiv_mem (REGNO (tmp))
7453 || num_not_at_initial_offset
7454 || GET_CODE (oldequiv) == SUBREG)
7455 real_oldequiv = rl->in;
7456 else
7457 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7458 }
7459
7460 tmp = old;
7461 if (GET_CODE (tmp) == SUBREG)
7462 tmp = SUBREG_REG (tmp);
7463 if (REG_P (tmp)
7464 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7465 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7466 || reg_equiv_constant (REGNO (tmp)) != 0))
7467 {
7468 if (! reg_equiv_mem (REGNO (tmp))
7469 || num_not_at_initial_offset
7470 || GET_CODE (old) == SUBREG)
7471 real_old = rl->in;
7472 else
7473 real_old = reg_equiv_mem (REGNO (tmp));
7474 }
7475
7476 second_reload_reg = rld[secondary_reload].reg_rtx;
7477 if (rld[secondary_reload].secondary_in_reload >= 0)
7478 {
7479 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7480
7481 third_reload_reg = rld[tertiary_reload].reg_rtx;
7482 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7483 /* We'd have to add more code for quartary reloads. */
7484 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7485 }
7486 icode = rl->secondary_in_icode;
7487
7488 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7489 || (rl->in != 0 && rl->out != 0))
7490 {
7491 secondary_reload_info sri, sri2;
7492 enum reg_class new_class, new_t_class;
7493
7494 sri.icode = CODE_FOR_nothing;
7495 sri.prev_sri = NULL;
7496 new_class
7497 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7498 rl->rclass, mode,
7499 &sri);
7500
7501 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7502 second_reload_reg = 0;
7503 else if (new_class == NO_REGS)
7504 {
7505 if (reload_adjust_reg_for_icode (&second_reload_reg,
7506 third_reload_reg,
7507 (enum insn_code) sri.icode))
7508 {
7509 icode = (enum insn_code) sri.icode;
7510 third_reload_reg = 0;
7511 }
7512 else
7513 {
7514 oldequiv = old;
7515 real_oldequiv = real_old;
7516 }
7517 }
7518 else if (sri.icode != CODE_FOR_nothing)
7519 /* We currently lack a way to express this in reloads. */
7520 gcc_unreachable ();
7521 else
7522 {
7523 sri2.icode = CODE_FOR_nothing;
7524 sri2.prev_sri = &sri;
7525 new_t_class
7526 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7527 new_class, mode,
7528 &sri);
7529 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7530 {
7531 if (reload_adjust_reg_for_temp (&second_reload_reg,
7532 third_reload_reg,
7533 new_class, mode))
7534 {
7535 third_reload_reg = 0;
7536 tertiary_icode = (enum insn_code) sri2.icode;
7537 }
7538 else
7539 {
7540 oldequiv = old;
7541 real_oldequiv = real_old;
7542 }
7543 }
7544 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7545 {
7546 rtx intermediate = second_reload_reg;
7547
7548 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7549 new_class, mode)
7550 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7551 ((enum insn_code)
7552 sri2.icode)))
7553 {
7554 second_reload_reg = intermediate;
7555 tertiary_icode = (enum insn_code) sri2.icode;
7556 }
7557 else
7558 {
7559 oldequiv = old;
7560 real_oldequiv = real_old;
7561 }
7562 }
7563 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7564 {
7565 rtx intermediate = second_reload_reg;
7566
7567 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7568 new_class, mode)
7569 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7570 new_t_class, mode))
7571 {
7572 second_reload_reg = intermediate;
7573 tertiary_icode = (enum insn_code) sri2.icode;
7574 }
7575 else
7576 {
7577 oldequiv = old;
7578 real_oldequiv = real_old;
7579 }
7580 }
7581 else
7582 {
7583 /* This could be handled more intelligently too. */
7584 oldequiv = old;
7585 real_oldequiv = real_old;
7586 }
7587 }
7588 }
7589
7590 /* If we still need a secondary reload register, check
7591 to see if it is being used as a scratch or intermediate
7592 register and generate code appropriately. If we need
7593 a scratch register, use REAL_OLDEQUIV since the form of
7594 the insn may depend on the actual address if it is
7595 a MEM. */
7596
7597 if (second_reload_reg)
7598 {
7599 if (icode != CODE_FOR_nothing)
7600 {
7601 /* We'd have to add extra code to handle this case. */
7602 gcc_assert (!third_reload_reg);
7603
7604 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7605 second_reload_reg));
7606 special = 1;
7607 }
7608 else
7609 {
7610 /* See if we need a scratch register to load the
7611 intermediate register (a tertiary reload). */
7612 if (tertiary_icode != CODE_FOR_nothing)
7613 {
7614 emit_insn ((GEN_FCN (tertiary_icode)
7615 (second_reload_reg, real_oldequiv,
7616 third_reload_reg)));
7617 }
7618 else if (third_reload_reg)
7619 {
7620 gen_reload (third_reload_reg, real_oldequiv,
7621 rl->opnum,
7622 rl->when_needed);
7623 gen_reload (second_reload_reg, third_reload_reg,
7624 rl->opnum,
7625 rl->when_needed);
7626 }
7627 else
7628 gen_reload (second_reload_reg, real_oldequiv,
7629 rl->opnum,
7630 rl->when_needed);
7631
7632 oldequiv = second_reload_reg;
7633 }
7634 }
7635 }
7636
7637 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7638 {
7639 rtx real_oldequiv = oldequiv;
7640
7641 if ((REG_P (oldequiv)
7642 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7643 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7644 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7645 || (GET_CODE (oldequiv) == SUBREG
7646 && REG_P (SUBREG_REG (oldequiv))
7647 && (REGNO (SUBREG_REG (oldequiv))
7648 >= FIRST_PSEUDO_REGISTER)
7649 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7650 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7651 || (CONSTANT_P (oldequiv)
7652 && (targetm.preferred_reload_class (oldequiv,
7653 REGNO_REG_CLASS (REGNO (reloadreg)))
7654 == NO_REGS)))
7655 real_oldequiv = rl->in;
7656 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7657 rl->when_needed);
7658 }
7659
7660 if (cfun->can_throw_non_call_exceptions)
7661 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7662
7663 /* End this sequence. */
7664 *where = get_insns ();
7665 end_sequence ();
7666
7667 /* Update reload_override_in so that delete_address_reloads_1
7668 can see the actual register usage. */
7669 if (oldequiv_reg)
7670 reload_override_in[j] = oldequiv;
7671 }
7672
7673 /* Generate insns to for the output reload RL, which is for the insn described
7674 by CHAIN and has the number J. */
7675 static void
7676 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7677 int j)
7678 {
7679 rtx reloadreg;
7680 rtx insn = chain->insn;
7681 int special = 0;
7682 rtx old = rl->out;
7683 enum machine_mode mode;
7684 rtx p;
7685 rtx rl_reg_rtx;
7686
7687 if (rl->when_needed == RELOAD_OTHER)
7688 start_sequence ();
7689 else
7690 push_to_sequence (output_reload_insns[rl->opnum]);
7691
7692 rl_reg_rtx = reload_reg_rtx_for_output[j];
7693 mode = GET_MODE (rl_reg_rtx);
7694
7695 reloadreg = rl_reg_rtx;
7696
7697 /* If we need two reload regs, set RELOADREG to the intermediate
7698 one, since it will be stored into OLD. We might need a secondary
7699 register only for an input reload, so check again here. */
7700
7701 if (rl->secondary_out_reload >= 0)
7702 {
7703 rtx real_old = old;
7704 int secondary_reload = rl->secondary_out_reload;
7705 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7706
7707 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7708 && reg_equiv_mem (REGNO (old)) != 0)
7709 real_old = reg_equiv_mem (REGNO (old));
7710
7711 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7712 {
7713 rtx second_reloadreg = reloadreg;
7714 reloadreg = rld[secondary_reload].reg_rtx;
7715
7716 /* See if RELOADREG is to be used as a scratch register
7717 or as an intermediate register. */
7718 if (rl->secondary_out_icode != CODE_FOR_nothing)
7719 {
7720 /* We'd have to add extra code to handle this case. */
7721 gcc_assert (tertiary_reload < 0);
7722
7723 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7724 (real_old, second_reloadreg, reloadreg)));
7725 special = 1;
7726 }
7727 else
7728 {
7729 /* See if we need both a scratch and intermediate reload
7730 register. */
7731
7732 enum insn_code tertiary_icode
7733 = rld[secondary_reload].secondary_out_icode;
7734
7735 /* We'd have to add more code for quartary reloads. */
7736 gcc_assert (tertiary_reload < 0
7737 || rld[tertiary_reload].secondary_out_reload < 0);
7738
7739 if (GET_MODE (reloadreg) != mode)
7740 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7741
7742 if (tertiary_icode != CODE_FOR_nothing)
7743 {
7744 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7745
7746 /* Copy primary reload reg to secondary reload reg.
7747 (Note that these have been swapped above, then
7748 secondary reload reg to OLD using our insn.) */
7749
7750 /* If REAL_OLD is a paradoxical SUBREG, remove it
7751 and try to put the opposite SUBREG on
7752 RELOADREG. */
7753 strip_paradoxical_subreg (&real_old, &reloadreg);
7754
7755 gen_reload (reloadreg, second_reloadreg,
7756 rl->opnum, rl->when_needed);
7757 emit_insn ((GEN_FCN (tertiary_icode)
7758 (real_old, reloadreg, third_reloadreg)));
7759 special = 1;
7760 }
7761
7762 else
7763 {
7764 /* Copy between the reload regs here and then to
7765 OUT later. */
7766
7767 gen_reload (reloadreg, second_reloadreg,
7768 rl->opnum, rl->when_needed);
7769 if (tertiary_reload >= 0)
7770 {
7771 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7772
7773 gen_reload (third_reloadreg, reloadreg,
7774 rl->opnum, rl->when_needed);
7775 reloadreg = third_reloadreg;
7776 }
7777 }
7778 }
7779 }
7780 }
7781
7782 /* Output the last reload insn. */
7783 if (! special)
7784 {
7785 rtx set;
7786
7787 /* Don't output the last reload if OLD is not the dest of
7788 INSN and is in the src and is clobbered by INSN. */
7789 if (! flag_expensive_optimizations
7790 || !REG_P (old)
7791 || !(set = single_set (insn))
7792 || rtx_equal_p (old, SET_DEST (set))
7793 || !reg_mentioned_p (old, SET_SRC (set))
7794 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7795 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7796 gen_reload (old, reloadreg, rl->opnum,
7797 rl->when_needed);
7798 }
7799
7800 /* Look at all insns we emitted, just to be safe. */
7801 for (p = get_insns (); p; p = NEXT_INSN (p))
7802 if (INSN_P (p))
7803 {
7804 rtx pat = PATTERN (p);
7805
7806 /* If this output reload doesn't come from a spill reg,
7807 clear any memory of reloaded copies of the pseudo reg.
7808 If this output reload comes from a spill reg,
7809 reg_has_output_reload will make this do nothing. */
7810 note_stores (pat, forget_old_reloads_1, NULL);
7811
7812 if (reg_mentioned_p (rl_reg_rtx, pat))
7813 {
7814 rtx set = single_set (insn);
7815 if (reload_spill_index[j] < 0
7816 && set
7817 && SET_SRC (set) == rl_reg_rtx)
7818 {
7819 int src = REGNO (SET_SRC (set));
7820
7821 reload_spill_index[j] = src;
7822 SET_HARD_REG_BIT (reg_is_output_reload, src);
7823 if (find_regno_note (insn, REG_DEAD, src))
7824 SET_HARD_REG_BIT (reg_reloaded_died, src);
7825 }
7826 if (HARD_REGISTER_P (rl_reg_rtx))
7827 {
7828 int s = rl->secondary_out_reload;
7829 set = single_set (p);
7830 /* If this reload copies only to the secondary reload
7831 register, the secondary reload does the actual
7832 store. */
7833 if (s >= 0 && set == NULL_RTX)
7834 /* We can't tell what function the secondary reload
7835 has and where the actual store to the pseudo is
7836 made; leave new_spill_reg_store alone. */
7837 ;
7838 else if (s >= 0
7839 && SET_SRC (set) == rl_reg_rtx
7840 && SET_DEST (set) == rld[s].reg_rtx)
7841 {
7842 /* Usually the next instruction will be the
7843 secondary reload insn; if we can confirm
7844 that it is, setting new_spill_reg_store to
7845 that insn will allow an extra optimization. */
7846 rtx s_reg = rld[s].reg_rtx;
7847 rtx next = NEXT_INSN (p);
7848 rld[s].out = rl->out;
7849 rld[s].out_reg = rl->out_reg;
7850 set = single_set (next);
7851 if (set && SET_SRC (set) == s_reg
7852 && reload_reg_rtx_reaches_end_p (s_reg, s))
7853 {
7854 SET_HARD_REG_BIT (reg_is_output_reload,
7855 REGNO (s_reg));
7856 new_spill_reg_store[REGNO (s_reg)] = next;
7857 }
7858 }
7859 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7860 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7861 }
7862 }
7863 }
7864
7865 if (rl->when_needed == RELOAD_OTHER)
7866 {
7867 emit_insn (other_output_reload_insns[rl->opnum]);
7868 other_output_reload_insns[rl->opnum] = get_insns ();
7869 }
7870 else
7871 output_reload_insns[rl->opnum] = get_insns ();
7872
7873 if (cfun->can_throw_non_call_exceptions)
7874 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7875
7876 end_sequence ();
7877 }
7878
7879 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7880 and has the number J. */
7881 static void
7882 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7883 {
7884 rtx insn = chain->insn;
7885 rtx old = (rl->in && MEM_P (rl->in)
7886 ? rl->in_reg : rl->in);
7887 rtx reg_rtx = rl->reg_rtx;
7888
7889 if (old && reg_rtx)
7890 {
7891 enum machine_mode mode;
7892
7893 /* Determine the mode to reload in.
7894 This is very tricky because we have three to choose from.
7895 There is the mode the insn operand wants (rl->inmode).
7896 There is the mode of the reload register RELOADREG.
7897 There is the intrinsic mode of the operand, which we could find
7898 by stripping some SUBREGs.
7899 It turns out that RELOADREG's mode is irrelevant:
7900 we can change that arbitrarily.
7901
7902 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7903 then the reload reg may not support QImode moves, so use SImode.
7904 If foo is in memory due to spilling a pseudo reg, this is safe,
7905 because the QImode value is in the least significant part of a
7906 slot big enough for a SImode. If foo is some other sort of
7907 memory reference, then it is impossible to reload this case,
7908 so previous passes had better make sure this never happens.
7909
7910 Then consider a one-word union which has SImode and one of its
7911 members is a float, being fetched as (SUBREG:SF union:SI).
7912 We must fetch that as SFmode because we could be loading into
7913 a float-only register. In this case OLD's mode is correct.
7914
7915 Consider an immediate integer: it has VOIDmode. Here we need
7916 to get a mode from something else.
7917
7918 In some cases, there is a fourth mode, the operand's
7919 containing mode. If the insn specifies a containing mode for
7920 this operand, it overrides all others.
7921
7922 I am not sure whether the algorithm here is always right,
7923 but it does the right things in those cases. */
7924
7925 mode = GET_MODE (old);
7926 if (mode == VOIDmode)
7927 mode = rl->inmode;
7928
7929 /* We cannot use gen_lowpart_common since it can do the wrong thing
7930 when REG_RTX has a multi-word mode. Note that REG_RTX must
7931 always be a REG here. */
7932 if (GET_MODE (reg_rtx) != mode)
7933 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7934 }
7935 reload_reg_rtx_for_input[j] = reg_rtx;
7936
7937 if (old != 0
7938 /* AUTO_INC reloads need to be handled even if inherited. We got an
7939 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7940 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7941 && ! rtx_equal_p (reg_rtx, old)
7942 && reg_rtx != 0)
7943 emit_input_reload_insns (chain, rld + j, old, j);
7944
7945 /* When inheriting a wider reload, we have a MEM in rl->in,
7946 e.g. inheriting a SImode output reload for
7947 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7948 if (optimize && reload_inherited[j] && rl->in
7949 && MEM_P (rl->in)
7950 && MEM_P (rl->in_reg)
7951 && reload_spill_index[j] >= 0
7952 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7953 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7954
7955 /* If we are reloading a register that was recently stored in with an
7956 output-reload, see if we can prove there was
7957 actually no need to store the old value in it. */
7958
7959 if (optimize
7960 && (reload_inherited[j] || reload_override_in[j])
7961 && reg_rtx
7962 && REG_P (reg_rtx)
7963 && spill_reg_store[REGNO (reg_rtx)] != 0
7964 #if 0
7965 /* There doesn't seem to be any reason to restrict this to pseudos
7966 and doing so loses in the case where we are copying from a
7967 register of the wrong class. */
7968 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7969 #endif
7970 /* The insn might have already some references to stackslots
7971 replaced by MEMs, while reload_out_reg still names the
7972 original pseudo. */
7973 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7974 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7975 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7976 }
7977
7978 /* Do output reloading for reload RL, which is for the insn described by
7979 CHAIN and has the number J.
7980 ??? At some point we need to support handling output reloads of
7981 JUMP_INSNs or insns that set cc0. */
7982 static void
7983 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7984 {
7985 rtx note, old;
7986 rtx insn = chain->insn;
7987 /* If this is an output reload that stores something that is
7988 not loaded in this same reload, see if we can eliminate a previous
7989 store. */
7990 rtx pseudo = rl->out_reg;
7991 rtx reg_rtx = rl->reg_rtx;
7992
7993 if (rl->out && reg_rtx)
7994 {
7995 enum machine_mode mode;
7996
7997 /* Determine the mode to reload in.
7998 See comments above (for input reloading). */
7999 mode = GET_MODE (rl->out);
8000 if (mode == VOIDmode)
8001 {
8002 /* VOIDmode should never happen for an output. */
8003 if (asm_noperands (PATTERN (insn)) < 0)
8004 /* It's the compiler's fault. */
8005 fatal_insn ("VOIDmode on an output", insn);
8006 error_for_asm (insn, "output operand is constant in %<asm%>");
8007 /* Prevent crash--use something we know is valid. */
8008 mode = word_mode;
8009 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8010 }
8011 if (GET_MODE (reg_rtx) != mode)
8012 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8013 }
8014 reload_reg_rtx_for_output[j] = reg_rtx;
8015
8016 if (pseudo
8017 && optimize
8018 && REG_P (pseudo)
8019 && ! rtx_equal_p (rl->in_reg, pseudo)
8020 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8021 && reg_last_reload_reg[REGNO (pseudo)])
8022 {
8023 int pseudo_no = REGNO (pseudo);
8024 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8025
8026 /* We don't need to test full validity of last_regno for
8027 inherit here; we only want to know if the store actually
8028 matches the pseudo. */
8029 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8030 && reg_reloaded_contents[last_regno] == pseudo_no
8031 && spill_reg_store[last_regno]
8032 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8033 delete_output_reload (insn, j, last_regno, reg_rtx);
8034 }
8035
8036 old = rl->out_reg;
8037 if (old == 0
8038 || reg_rtx == 0
8039 || rtx_equal_p (old, reg_rtx))
8040 return;
8041
8042 /* An output operand that dies right away does need a reload,
8043 but need not be copied from it. Show the new location in the
8044 REG_UNUSED note. */
8045 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8046 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8047 {
8048 XEXP (note, 0) = reg_rtx;
8049 return;
8050 }
8051 /* Likewise for a SUBREG of an operand that dies. */
8052 else if (GET_CODE (old) == SUBREG
8053 && REG_P (SUBREG_REG (old))
8054 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8055 SUBREG_REG (old))))
8056 {
8057 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8058 return;
8059 }
8060 else if (GET_CODE (old) == SCRATCH)
8061 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8062 but we don't want to make an output reload. */
8063 return;
8064
8065 /* If is a JUMP_INSN, we can't support output reloads yet. */
8066 gcc_assert (NONJUMP_INSN_P (insn));
8067
8068 emit_output_reload_insns (chain, rld + j, j);
8069 }
8070
8071 /* A reload copies values of MODE from register SRC to register DEST.
8072 Return true if it can be treated for inheritance purposes like a
8073 group of reloads, each one reloading a single hard register. The
8074 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8075 occupy the same number of hard registers. */
8076
8077 static bool
8078 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8079 int src ATTRIBUTE_UNUSED,
8080 enum machine_mode mode ATTRIBUTE_UNUSED)
8081 {
8082 #ifdef CANNOT_CHANGE_MODE_CLASS
8083 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8084 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8085 #else
8086 return true;
8087 #endif
8088 }
8089
8090 /* Output insns to reload values in and out of the chosen reload regs. */
8091
8092 static void
8093 emit_reload_insns (struct insn_chain *chain)
8094 {
8095 rtx insn = chain->insn;
8096
8097 int j;
8098
8099 CLEAR_HARD_REG_SET (reg_reloaded_died);
8100
8101 for (j = 0; j < reload_n_operands; j++)
8102 input_reload_insns[j] = input_address_reload_insns[j]
8103 = inpaddr_address_reload_insns[j]
8104 = output_reload_insns[j] = output_address_reload_insns[j]
8105 = outaddr_address_reload_insns[j]
8106 = other_output_reload_insns[j] = 0;
8107 other_input_address_reload_insns = 0;
8108 other_input_reload_insns = 0;
8109 operand_reload_insns = 0;
8110 other_operand_reload_insns = 0;
8111
8112 /* Dump reloads into the dump file. */
8113 if (dump_file)
8114 {
8115 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8116 debug_reload_to_stream (dump_file);
8117 }
8118
8119 for (j = 0; j < n_reloads; j++)
8120 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8121 {
8122 unsigned int i;
8123
8124 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8125 new_spill_reg_store[i] = 0;
8126 }
8127
8128 /* Now output the instructions to copy the data into and out of the
8129 reload registers. Do these in the order that the reloads were reported,
8130 since reloads of base and index registers precede reloads of operands
8131 and the operands may need the base and index registers reloaded. */
8132
8133 for (j = 0; j < n_reloads; j++)
8134 {
8135 do_input_reload (chain, rld + j, j);
8136 do_output_reload (chain, rld + j, j);
8137 }
8138
8139 /* Now write all the insns we made for reloads in the order expected by
8140 the allocation functions. Prior to the insn being reloaded, we write
8141 the following reloads:
8142
8143 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8144
8145 RELOAD_OTHER reloads.
8146
8147 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8148 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8149 RELOAD_FOR_INPUT reload for the operand.
8150
8151 RELOAD_FOR_OPADDR_ADDRS reloads.
8152
8153 RELOAD_FOR_OPERAND_ADDRESS reloads.
8154
8155 After the insn being reloaded, we write the following:
8156
8157 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8158 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8159 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8160 reloads for the operand. The RELOAD_OTHER output reloads are
8161 output in descending order by reload number. */
8162
8163 emit_insn_before (other_input_address_reload_insns, insn);
8164 emit_insn_before (other_input_reload_insns, insn);
8165
8166 for (j = 0; j < reload_n_operands; j++)
8167 {
8168 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8169 emit_insn_before (input_address_reload_insns[j], insn);
8170 emit_insn_before (input_reload_insns[j], insn);
8171 }
8172
8173 emit_insn_before (other_operand_reload_insns, insn);
8174 emit_insn_before (operand_reload_insns, insn);
8175
8176 for (j = 0; j < reload_n_operands; j++)
8177 {
8178 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8179 x = emit_insn_after (output_address_reload_insns[j], x);
8180 x = emit_insn_after (output_reload_insns[j], x);
8181 emit_insn_after (other_output_reload_insns[j], x);
8182 }
8183
8184 /* For all the spill regs newly reloaded in this instruction,
8185 record what they were reloaded from, so subsequent instructions
8186 can inherit the reloads.
8187
8188 Update spill_reg_store for the reloads of this insn.
8189 Copy the elements that were updated in the loop above. */
8190
8191 for (j = 0; j < n_reloads; j++)
8192 {
8193 int r = reload_order[j];
8194 int i = reload_spill_index[r];
8195
8196 /* If this is a non-inherited input reload from a pseudo, we must
8197 clear any memory of a previous store to the same pseudo. Only do
8198 something if there will not be an output reload for the pseudo
8199 being reloaded. */
8200 if (rld[r].in_reg != 0
8201 && ! (reload_inherited[r] || reload_override_in[r]))
8202 {
8203 rtx reg = rld[r].in_reg;
8204
8205 if (GET_CODE (reg) == SUBREG)
8206 reg = SUBREG_REG (reg);
8207
8208 if (REG_P (reg)
8209 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8210 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8211 {
8212 int nregno = REGNO (reg);
8213
8214 if (reg_last_reload_reg[nregno])
8215 {
8216 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8217
8218 if (reg_reloaded_contents[last_regno] == nregno)
8219 spill_reg_store[last_regno] = 0;
8220 }
8221 }
8222 }
8223
8224 /* I is nonneg if this reload used a register.
8225 If rld[r].reg_rtx is 0, this is an optional reload
8226 that we opted to ignore. */
8227
8228 if (i >= 0 && rld[r].reg_rtx != 0)
8229 {
8230 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8231 int k;
8232
8233 /* For a multi register reload, we need to check if all or part
8234 of the value lives to the end. */
8235 for (k = 0; k < nr; k++)
8236 if (reload_reg_reaches_end_p (i + k, r))
8237 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8238
8239 /* Maybe the spill reg contains a copy of reload_out. */
8240 if (rld[r].out != 0
8241 && (REG_P (rld[r].out)
8242 || (rld[r].out_reg
8243 ? REG_P (rld[r].out_reg)
8244 /* The reload value is an auto-modification of
8245 some kind. For PRE_INC, POST_INC, PRE_DEC
8246 and POST_DEC, we record an equivalence
8247 between the reload register and the operand
8248 on the optimistic assumption that we can make
8249 the equivalence hold. reload_as_needed must
8250 then either make it hold or invalidate the
8251 equivalence.
8252
8253 PRE_MODIFY and POST_MODIFY addresses are reloaded
8254 somewhat differently, and allowing them here leads
8255 to problems. */
8256 : (GET_CODE (rld[r].out) != POST_MODIFY
8257 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8258 {
8259 rtx reg;
8260
8261 reg = reload_reg_rtx_for_output[r];
8262 if (reload_reg_rtx_reaches_end_p (reg, r))
8263 {
8264 enum machine_mode mode = GET_MODE (reg);
8265 int regno = REGNO (reg);
8266 int nregs = hard_regno_nregs[regno][mode];
8267 rtx out = (REG_P (rld[r].out)
8268 ? rld[r].out
8269 : rld[r].out_reg
8270 ? rld[r].out_reg
8271 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8272 int out_regno = REGNO (out);
8273 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8274 : hard_regno_nregs[out_regno][mode]);
8275 bool piecemeal;
8276
8277 spill_reg_store[regno] = new_spill_reg_store[regno];
8278 spill_reg_stored_to[regno] = out;
8279 reg_last_reload_reg[out_regno] = reg;
8280
8281 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8282 && nregs == out_nregs
8283 && inherit_piecemeal_p (out_regno, regno, mode));
8284
8285 /* If OUT_REGNO is a hard register, it may occupy more than
8286 one register. If it does, say what is in the
8287 rest of the registers assuming that both registers
8288 agree on how many words the object takes. If not,
8289 invalidate the subsequent registers. */
8290
8291 if (HARD_REGISTER_NUM_P (out_regno))
8292 for (k = 1; k < out_nregs; k++)
8293 reg_last_reload_reg[out_regno + k]
8294 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8295
8296 /* Now do the inverse operation. */
8297 for (k = 0; k < nregs; k++)
8298 {
8299 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8300 reg_reloaded_contents[regno + k]
8301 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8302 ? out_regno
8303 : out_regno + k);
8304 reg_reloaded_insn[regno + k] = insn;
8305 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8306 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8307 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8308 regno + k);
8309 else
8310 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8311 regno + k);
8312 }
8313 }
8314 }
8315 /* Maybe the spill reg contains a copy of reload_in. Only do
8316 something if there will not be an output reload for
8317 the register being reloaded. */
8318 else if (rld[r].out_reg == 0
8319 && rld[r].in != 0
8320 && ((REG_P (rld[r].in)
8321 && !HARD_REGISTER_P (rld[r].in)
8322 && !REGNO_REG_SET_P (&reg_has_output_reload,
8323 REGNO (rld[r].in)))
8324 || (REG_P (rld[r].in_reg)
8325 && !REGNO_REG_SET_P (&reg_has_output_reload,
8326 REGNO (rld[r].in_reg))))
8327 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8328 {
8329 rtx reg;
8330
8331 reg = reload_reg_rtx_for_input[r];
8332 if (reload_reg_rtx_reaches_end_p (reg, r))
8333 {
8334 enum machine_mode mode;
8335 int regno;
8336 int nregs;
8337 int in_regno;
8338 int in_nregs;
8339 rtx in;
8340 bool piecemeal;
8341
8342 mode = GET_MODE (reg);
8343 regno = REGNO (reg);
8344 nregs = hard_regno_nregs[regno][mode];
8345 if (REG_P (rld[r].in)
8346 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8347 in = rld[r].in;
8348 else if (REG_P (rld[r].in_reg))
8349 in = rld[r].in_reg;
8350 else
8351 in = XEXP (rld[r].in_reg, 0);
8352 in_regno = REGNO (in);
8353
8354 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8355 : hard_regno_nregs[in_regno][mode]);
8356
8357 reg_last_reload_reg[in_regno] = reg;
8358
8359 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8360 && nregs == in_nregs
8361 && inherit_piecemeal_p (regno, in_regno, mode));
8362
8363 if (HARD_REGISTER_NUM_P (in_regno))
8364 for (k = 1; k < in_nregs; k++)
8365 reg_last_reload_reg[in_regno + k]
8366 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8367
8368 /* Unless we inherited this reload, show we haven't
8369 recently done a store.
8370 Previous stores of inherited auto_inc expressions
8371 also have to be discarded. */
8372 if (! reload_inherited[r]
8373 || (rld[r].out && ! rld[r].out_reg))
8374 spill_reg_store[regno] = 0;
8375
8376 for (k = 0; k < nregs; k++)
8377 {
8378 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8379 reg_reloaded_contents[regno + k]
8380 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8381 ? in_regno
8382 : in_regno + k);
8383 reg_reloaded_insn[regno + k] = insn;
8384 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8385 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8386 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8387 regno + k);
8388 else
8389 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8390 regno + k);
8391 }
8392 }
8393 }
8394 }
8395
8396 /* The following if-statement was #if 0'd in 1.34 (or before...).
8397 It's reenabled in 1.35 because supposedly nothing else
8398 deals with this problem. */
8399
8400 /* If a register gets output-reloaded from a non-spill register,
8401 that invalidates any previous reloaded copy of it.
8402 But forget_old_reloads_1 won't get to see it, because
8403 it thinks only about the original insn. So invalidate it here.
8404 Also do the same thing for RELOAD_OTHER constraints where the
8405 output is discarded. */
8406 if (i < 0
8407 && ((rld[r].out != 0
8408 && (REG_P (rld[r].out)
8409 || (MEM_P (rld[r].out)
8410 && REG_P (rld[r].out_reg))))
8411 || (rld[r].out == 0 && rld[r].out_reg
8412 && REG_P (rld[r].out_reg))))
8413 {
8414 rtx out = ((rld[r].out && REG_P (rld[r].out))
8415 ? rld[r].out : rld[r].out_reg);
8416 int out_regno = REGNO (out);
8417 enum machine_mode mode = GET_MODE (out);
8418
8419 /* REG_RTX is now set or clobbered by the main instruction.
8420 As the comment above explains, forget_old_reloads_1 only
8421 sees the original instruction, and there is no guarantee
8422 that the original instruction also clobbered REG_RTX.
8423 For example, if find_reloads sees that the input side of
8424 a matched operand pair dies in this instruction, it may
8425 use the input register as the reload register.
8426
8427 Calling forget_old_reloads_1 is a waste of effort if
8428 REG_RTX is also the output register.
8429
8430 If we know that REG_RTX holds the value of a pseudo
8431 register, the code after the call will record that fact. */
8432 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8433 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8434
8435 if (!HARD_REGISTER_NUM_P (out_regno))
8436 {
8437 rtx src_reg, store_insn = NULL_RTX;
8438
8439 reg_last_reload_reg[out_regno] = 0;
8440
8441 /* If we can find a hard register that is stored, record
8442 the storing insn so that we may delete this insn with
8443 delete_output_reload. */
8444 src_reg = reload_reg_rtx_for_output[r];
8445
8446 if (src_reg)
8447 {
8448 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8449 store_insn = new_spill_reg_store[REGNO (src_reg)];
8450 else
8451 src_reg = NULL_RTX;
8452 }
8453 else
8454 {
8455 /* If this is an optional reload, try to find the
8456 source reg from an input reload. */
8457 rtx set = single_set (insn);
8458 if (set && SET_DEST (set) == rld[r].out)
8459 {
8460 int k;
8461
8462 src_reg = SET_SRC (set);
8463 store_insn = insn;
8464 for (k = 0; k < n_reloads; k++)
8465 {
8466 if (rld[k].in == src_reg)
8467 {
8468 src_reg = reload_reg_rtx_for_input[k];
8469 break;
8470 }
8471 }
8472 }
8473 }
8474 if (src_reg && REG_P (src_reg)
8475 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8476 {
8477 int src_regno, src_nregs, k;
8478 rtx note;
8479
8480 gcc_assert (GET_MODE (src_reg) == mode);
8481 src_regno = REGNO (src_reg);
8482 src_nregs = hard_regno_nregs[src_regno][mode];
8483 /* The place where to find a death note varies with
8484 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8485 necessarily checked exactly in the code that moves
8486 notes, so just check both locations. */
8487 note = find_regno_note (insn, REG_DEAD, src_regno);
8488 if (! note && store_insn)
8489 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8490 for (k = 0; k < src_nregs; k++)
8491 {
8492 spill_reg_store[src_regno + k] = store_insn;
8493 spill_reg_stored_to[src_regno + k] = out;
8494 reg_reloaded_contents[src_regno + k] = out_regno;
8495 reg_reloaded_insn[src_regno + k] = store_insn;
8496 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8497 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8498 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8499 mode))
8500 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8501 src_regno + k);
8502 else
8503 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8504 src_regno + k);
8505 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8506 if (note)
8507 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8508 else
8509 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8510 }
8511 reg_last_reload_reg[out_regno] = src_reg;
8512 /* We have to set reg_has_output_reload here, or else
8513 forget_old_reloads_1 will clear reg_last_reload_reg
8514 right away. */
8515 SET_REGNO_REG_SET (&reg_has_output_reload,
8516 out_regno);
8517 }
8518 }
8519 else
8520 {
8521 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8522
8523 for (k = 0; k < out_nregs; k++)
8524 reg_last_reload_reg[out_regno + k] = 0;
8525 }
8526 }
8527 }
8528 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8529 }
8530 \f
8531 /* Go through the motions to emit INSN and test if it is strictly valid.
8532 Return the emitted insn if valid, else return NULL. */
8533
8534 static rtx
8535 emit_insn_if_valid_for_reload (rtx insn)
8536 {
8537 rtx last = get_last_insn ();
8538 int code;
8539
8540 insn = emit_insn (insn);
8541 code = recog_memoized (insn);
8542
8543 if (code >= 0)
8544 {
8545 extract_insn (insn);
8546 /* We want constrain operands to treat this insn strictly in its
8547 validity determination, i.e., the way it would after reload has
8548 completed. */
8549 if (constrain_operands (1))
8550 return insn;
8551 }
8552
8553 delete_insns_since (last);
8554 return NULL;
8555 }
8556
8557 /* Emit code to perform a reload from IN (which may be a reload register) to
8558 OUT (which may also be a reload register). IN or OUT is from operand
8559 OPNUM with reload type TYPE.
8560
8561 Returns first insn emitted. */
8562
8563 static rtx
8564 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8565 {
8566 rtx last = get_last_insn ();
8567 rtx tem;
8568 #ifdef SECONDARY_MEMORY_NEEDED
8569 rtx tem1, tem2;
8570 #endif
8571
8572 /* If IN is a paradoxical SUBREG, remove it and try to put the
8573 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8574 if (!strip_paradoxical_subreg (&in, &out))
8575 strip_paradoxical_subreg (&out, &in);
8576
8577 /* How to do this reload can get quite tricky. Normally, we are being
8578 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8579 register that didn't get a hard register. In that case we can just
8580 call emit_move_insn.
8581
8582 We can also be asked to reload a PLUS that adds a register or a MEM to
8583 another register, constant or MEM. This can occur during frame pointer
8584 elimination and while reloading addresses. This case is handled by
8585 trying to emit a single insn to perform the add. If it is not valid,
8586 we use a two insn sequence.
8587
8588 Or we can be asked to reload an unary operand that was a fragment of
8589 an addressing mode, into a register. If it isn't recognized as-is,
8590 we try making the unop operand and the reload-register the same:
8591 (set reg:X (unop:X expr:Y))
8592 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8593
8594 Finally, we could be called to handle an 'o' constraint by putting
8595 an address into a register. In that case, we first try to do this
8596 with a named pattern of "reload_load_address". If no such pattern
8597 exists, we just emit a SET insn and hope for the best (it will normally
8598 be valid on machines that use 'o').
8599
8600 This entire process is made complex because reload will never
8601 process the insns we generate here and so we must ensure that
8602 they will fit their constraints and also by the fact that parts of
8603 IN might be being reloaded separately and replaced with spill registers.
8604 Because of this, we are, in some sense, just guessing the right approach
8605 here. The one listed above seems to work.
8606
8607 ??? At some point, this whole thing needs to be rethought. */
8608
8609 if (GET_CODE (in) == PLUS
8610 && (REG_P (XEXP (in, 0))
8611 || GET_CODE (XEXP (in, 0)) == SUBREG
8612 || MEM_P (XEXP (in, 0)))
8613 && (REG_P (XEXP (in, 1))
8614 || GET_CODE (XEXP (in, 1)) == SUBREG
8615 || CONSTANT_P (XEXP (in, 1))
8616 || MEM_P (XEXP (in, 1))))
8617 {
8618 /* We need to compute the sum of a register or a MEM and another
8619 register, constant, or MEM, and put it into the reload
8620 register. The best possible way of doing this is if the machine
8621 has a three-operand ADD insn that accepts the required operands.
8622
8623 The simplest approach is to try to generate such an insn and see if it
8624 is recognized and matches its constraints. If so, it can be used.
8625
8626 It might be better not to actually emit the insn unless it is valid,
8627 but we need to pass the insn as an operand to `recog' and
8628 `extract_insn' and it is simpler to emit and then delete the insn if
8629 not valid than to dummy things up. */
8630
8631 rtx op0, op1, tem, insn;
8632 enum insn_code code;
8633
8634 op0 = find_replacement (&XEXP (in, 0));
8635 op1 = find_replacement (&XEXP (in, 1));
8636
8637 /* Since constraint checking is strict, commutativity won't be
8638 checked, so we need to do that here to avoid spurious failure
8639 if the add instruction is two-address and the second operand
8640 of the add is the same as the reload reg, which is frequently
8641 the case. If the insn would be A = B + A, rearrange it so
8642 it will be A = A + B as constrain_operands expects. */
8643
8644 if (REG_P (XEXP (in, 1))
8645 && REGNO (out) == REGNO (XEXP (in, 1)))
8646 tem = op0, op0 = op1, op1 = tem;
8647
8648 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8649 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8650
8651 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8652 if (insn)
8653 return insn;
8654
8655 /* If that failed, we must use a conservative two-insn sequence.
8656
8657 Use a move to copy one operand into the reload register. Prefer
8658 to reload a constant, MEM or pseudo since the move patterns can
8659 handle an arbitrary operand. If OP1 is not a constant, MEM or
8660 pseudo and OP1 is not a valid operand for an add instruction, then
8661 reload OP1.
8662
8663 After reloading one of the operands into the reload register, add
8664 the reload register to the output register.
8665
8666 If there is another way to do this for a specific machine, a
8667 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8668 we emit below. */
8669
8670 code = optab_handler (add_optab, GET_MODE (out));
8671
8672 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8673 || (REG_P (op1)
8674 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8675 || (code != CODE_FOR_nothing
8676 && !insn_operand_matches (code, 2, op1)))
8677 tem = op0, op0 = op1, op1 = tem;
8678
8679 gen_reload (out, op0, opnum, type);
8680
8681 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8682 This fixes a problem on the 32K where the stack pointer cannot
8683 be used as an operand of an add insn. */
8684
8685 if (rtx_equal_p (op0, op1))
8686 op1 = out;
8687
8688 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8689 if (insn)
8690 {
8691 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8692 set_dst_reg_note (insn, REG_EQUIV, in, out);
8693 return insn;
8694 }
8695
8696 /* If that failed, copy the address register to the reload register.
8697 Then add the constant to the reload register. */
8698
8699 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8700 gen_reload (out, op1, opnum, type);
8701 insn = emit_insn (gen_add2_insn (out, op0));
8702 set_dst_reg_note (insn, REG_EQUIV, in, out);
8703 }
8704
8705 #ifdef SECONDARY_MEMORY_NEEDED
8706 /* If we need a memory location to do the move, do it that way. */
8707 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8708 (REG_P (tem1) && REG_P (tem2)))
8709 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8710 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8711 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8712 REGNO_REG_CLASS (REGNO (tem2)),
8713 GET_MODE (out)))
8714 {
8715 /* Get the memory to use and rewrite both registers to its mode. */
8716 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8717
8718 if (GET_MODE (loc) != GET_MODE (out))
8719 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8720
8721 if (GET_MODE (loc) != GET_MODE (in))
8722 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8723
8724 gen_reload (loc, in, opnum, type);
8725 gen_reload (out, loc, opnum, type);
8726 }
8727 #endif
8728 else if (REG_P (out) && UNARY_P (in))
8729 {
8730 rtx insn;
8731 rtx op1;
8732 rtx out_moded;
8733 rtx set;
8734
8735 op1 = find_replacement (&XEXP (in, 0));
8736 if (op1 != XEXP (in, 0))
8737 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8738
8739 /* First, try a plain SET. */
8740 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8741 if (set)
8742 return set;
8743
8744 /* If that failed, move the inner operand to the reload
8745 register, and try the same unop with the inner expression
8746 replaced with the reload register. */
8747
8748 if (GET_MODE (op1) != GET_MODE (out))
8749 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8750 else
8751 out_moded = out;
8752
8753 gen_reload (out_moded, op1, opnum, type);
8754
8755 insn
8756 = gen_rtx_SET (VOIDmode, out,
8757 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8758 out_moded));
8759 insn = emit_insn_if_valid_for_reload (insn);
8760 if (insn)
8761 {
8762 set_unique_reg_note (insn, REG_EQUIV, in);
8763 return insn;
8764 }
8765
8766 fatal_insn ("failure trying to reload:", set);
8767 }
8768 /* If IN is a simple operand, use gen_move_insn. */
8769 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8770 {
8771 tem = emit_insn (gen_move_insn (out, in));
8772 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8773 mark_jump_label (in, tem, 0);
8774 }
8775
8776 #ifdef HAVE_reload_load_address
8777 else if (HAVE_reload_load_address)
8778 emit_insn (gen_reload_load_address (out, in));
8779 #endif
8780
8781 /* Otherwise, just write (set OUT IN) and hope for the best. */
8782 else
8783 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8784
8785 /* Return the first insn emitted.
8786 We can not just return get_last_insn, because there may have
8787 been multiple instructions emitted. Also note that gen_move_insn may
8788 emit more than one insn itself, so we can not assume that there is one
8789 insn emitted per emit_insn_before call. */
8790
8791 return last ? NEXT_INSN (last) : get_insns ();
8792 }
8793 \f
8794 /* Delete a previously made output-reload whose result we now believe
8795 is not needed. First we double-check.
8796
8797 INSN is the insn now being processed.
8798 LAST_RELOAD_REG is the hard register number for which we want to delete
8799 the last output reload.
8800 J is the reload-number that originally used REG. The caller has made
8801 certain that reload J doesn't use REG any longer for input.
8802 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8803
8804 static void
8805 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8806 {
8807 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8808 rtx reg = spill_reg_stored_to[last_reload_reg];
8809 int k;
8810 int n_occurrences;
8811 int n_inherited = 0;
8812 rtx i1;
8813 rtx substed;
8814 unsigned regno;
8815 int nregs;
8816
8817 /* It is possible that this reload has been only used to set another reload
8818 we eliminated earlier and thus deleted this instruction too. */
8819 if (INSN_DELETED_P (output_reload_insn))
8820 return;
8821
8822 /* Get the raw pseudo-register referred to. */
8823
8824 while (GET_CODE (reg) == SUBREG)
8825 reg = SUBREG_REG (reg);
8826 substed = reg_equiv_memory_loc (REGNO (reg));
8827
8828 /* This is unsafe if the operand occurs more often in the current
8829 insn than it is inherited. */
8830 for (k = n_reloads - 1; k >= 0; k--)
8831 {
8832 rtx reg2 = rld[k].in;
8833 if (! reg2)
8834 continue;
8835 if (MEM_P (reg2) || reload_override_in[k])
8836 reg2 = rld[k].in_reg;
8837 #ifdef AUTO_INC_DEC
8838 if (rld[k].out && ! rld[k].out_reg)
8839 reg2 = XEXP (rld[k].in_reg, 0);
8840 #endif
8841 while (GET_CODE (reg2) == SUBREG)
8842 reg2 = SUBREG_REG (reg2);
8843 if (rtx_equal_p (reg2, reg))
8844 {
8845 if (reload_inherited[k] || reload_override_in[k] || k == j)
8846 n_inherited++;
8847 else
8848 return;
8849 }
8850 }
8851 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8852 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8853 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8854 reg, 0);
8855 if (substed)
8856 n_occurrences += count_occurrences (PATTERN (insn),
8857 eliminate_regs (substed, VOIDmode,
8858 NULL_RTX), 0);
8859 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8860 {
8861 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8862 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8863 }
8864 if (n_occurrences > n_inherited)
8865 return;
8866
8867 regno = REGNO (reg);
8868 if (regno >= FIRST_PSEUDO_REGISTER)
8869 nregs = 1;
8870 else
8871 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8872
8873 /* If the pseudo-reg we are reloading is no longer referenced
8874 anywhere between the store into it and here,
8875 and we're within the same basic block, then the value can only
8876 pass through the reload reg and end up here.
8877 Otherwise, give up--return. */
8878 for (i1 = NEXT_INSN (output_reload_insn);
8879 i1 != insn; i1 = NEXT_INSN (i1))
8880 {
8881 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8882 return;
8883 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8884 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8885 {
8886 /* If this is USE in front of INSN, we only have to check that
8887 there are no more references than accounted for by inheritance. */
8888 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8889 {
8890 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8891 i1 = NEXT_INSN (i1);
8892 }
8893 if (n_occurrences <= n_inherited && i1 == insn)
8894 break;
8895 return;
8896 }
8897 }
8898
8899 /* We will be deleting the insn. Remove the spill reg information. */
8900 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8901 {
8902 spill_reg_store[last_reload_reg + k] = 0;
8903 spill_reg_stored_to[last_reload_reg + k] = 0;
8904 }
8905
8906 /* The caller has already checked that REG dies or is set in INSN.
8907 It has also checked that we are optimizing, and thus some
8908 inaccuracies in the debugging information are acceptable.
8909 So we could just delete output_reload_insn. But in some cases
8910 we can improve the debugging information without sacrificing
8911 optimization - maybe even improving the code: See if the pseudo
8912 reg has been completely replaced with reload regs. If so, delete
8913 the store insn and forget we had a stack slot for the pseudo. */
8914 if (rld[j].out != rld[j].in
8915 && REG_N_DEATHS (REGNO (reg)) == 1
8916 && REG_N_SETS (REGNO (reg)) == 1
8917 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8918 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8919 {
8920 rtx i2;
8921
8922 /* We know that it was used only between here and the beginning of
8923 the current basic block. (We also know that the last use before
8924 INSN was the output reload we are thinking of deleting, but never
8925 mind that.) Search that range; see if any ref remains. */
8926 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8927 {
8928 rtx set = single_set (i2);
8929
8930 /* Uses which just store in the pseudo don't count,
8931 since if they are the only uses, they are dead. */
8932 if (set != 0 && SET_DEST (set) == reg)
8933 continue;
8934 if (LABEL_P (i2) || JUMP_P (i2))
8935 break;
8936 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8937 && reg_mentioned_p (reg, PATTERN (i2)))
8938 {
8939 /* Some other ref remains; just delete the output reload we
8940 know to be dead. */
8941 delete_address_reloads (output_reload_insn, insn);
8942 delete_insn (output_reload_insn);
8943 return;
8944 }
8945 }
8946
8947 /* Delete the now-dead stores into this pseudo. Note that this
8948 loop also takes care of deleting output_reload_insn. */
8949 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8950 {
8951 rtx set = single_set (i2);
8952
8953 if (set != 0 && SET_DEST (set) == reg)
8954 {
8955 delete_address_reloads (i2, insn);
8956 delete_insn (i2);
8957 }
8958 if (LABEL_P (i2) || JUMP_P (i2))
8959 break;
8960 }
8961
8962 /* For the debugging info, say the pseudo lives in this reload reg. */
8963 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8964 if (ira_conflicts_p)
8965 /* Inform IRA about the change. */
8966 ira_mark_allocation_change (REGNO (reg));
8967 alter_reg (REGNO (reg), -1, false);
8968 }
8969 else
8970 {
8971 delete_address_reloads (output_reload_insn, insn);
8972 delete_insn (output_reload_insn);
8973 }
8974 }
8975
8976 /* We are going to delete DEAD_INSN. Recursively delete loads of
8977 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8978 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8979 static void
8980 delete_address_reloads (rtx dead_insn, rtx current_insn)
8981 {
8982 rtx set = single_set (dead_insn);
8983 rtx set2, dst, prev, next;
8984 if (set)
8985 {
8986 rtx dst = SET_DEST (set);
8987 if (MEM_P (dst))
8988 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8989 }
8990 /* If we deleted the store from a reloaded post_{in,de}c expression,
8991 we can delete the matching adds. */
8992 prev = PREV_INSN (dead_insn);
8993 next = NEXT_INSN (dead_insn);
8994 if (! prev || ! next)
8995 return;
8996 set = single_set (next);
8997 set2 = single_set (prev);
8998 if (! set || ! set2
8999 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9000 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9001 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9002 return;
9003 dst = SET_DEST (set);
9004 if (! rtx_equal_p (dst, SET_DEST (set2))
9005 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9006 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9007 || (INTVAL (XEXP (SET_SRC (set), 1))
9008 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9009 return;
9010 delete_related_insns (prev);
9011 delete_related_insns (next);
9012 }
9013
9014 /* Subfunction of delete_address_reloads: process registers found in X. */
9015 static void
9016 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
9017 {
9018 rtx prev, set, dst, i2;
9019 int i, j;
9020 enum rtx_code code = GET_CODE (x);
9021
9022 if (code != REG)
9023 {
9024 const char *fmt = GET_RTX_FORMAT (code);
9025 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9026 {
9027 if (fmt[i] == 'e')
9028 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9029 else if (fmt[i] == 'E')
9030 {
9031 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9032 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9033 current_insn);
9034 }
9035 }
9036 return;
9037 }
9038
9039 if (spill_reg_order[REGNO (x)] < 0)
9040 return;
9041
9042 /* Scan backwards for the insn that sets x. This might be a way back due
9043 to inheritance. */
9044 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9045 {
9046 code = GET_CODE (prev);
9047 if (code == CODE_LABEL || code == JUMP_INSN)
9048 return;
9049 if (!INSN_P (prev))
9050 continue;
9051 if (reg_set_p (x, PATTERN (prev)))
9052 break;
9053 if (reg_referenced_p (x, PATTERN (prev)))
9054 return;
9055 }
9056 if (! prev || INSN_UID (prev) < reload_first_uid)
9057 return;
9058 /* Check that PREV only sets the reload register. */
9059 set = single_set (prev);
9060 if (! set)
9061 return;
9062 dst = SET_DEST (set);
9063 if (!REG_P (dst)
9064 || ! rtx_equal_p (dst, x))
9065 return;
9066 if (! reg_set_p (dst, PATTERN (dead_insn)))
9067 {
9068 /* Check if DST was used in a later insn -
9069 it might have been inherited. */
9070 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9071 {
9072 if (LABEL_P (i2))
9073 break;
9074 if (! INSN_P (i2))
9075 continue;
9076 if (reg_referenced_p (dst, PATTERN (i2)))
9077 {
9078 /* If there is a reference to the register in the current insn,
9079 it might be loaded in a non-inherited reload. If no other
9080 reload uses it, that means the register is set before
9081 referenced. */
9082 if (i2 == current_insn)
9083 {
9084 for (j = n_reloads - 1; j >= 0; j--)
9085 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9086 || reload_override_in[j] == dst)
9087 return;
9088 for (j = n_reloads - 1; j >= 0; j--)
9089 if (rld[j].in && rld[j].reg_rtx == dst)
9090 break;
9091 if (j >= 0)
9092 break;
9093 }
9094 return;
9095 }
9096 if (JUMP_P (i2))
9097 break;
9098 /* If DST is still live at CURRENT_INSN, check if it is used for
9099 any reload. Note that even if CURRENT_INSN sets DST, we still
9100 have to check the reloads. */
9101 if (i2 == current_insn)
9102 {
9103 for (j = n_reloads - 1; j >= 0; j--)
9104 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9105 || reload_override_in[j] == dst)
9106 return;
9107 /* ??? We can't finish the loop here, because dst might be
9108 allocated to a pseudo in this block if no reload in this
9109 block needs any of the classes containing DST - see
9110 spill_hard_reg. There is no easy way to tell this, so we
9111 have to scan till the end of the basic block. */
9112 }
9113 if (reg_set_p (dst, PATTERN (i2)))
9114 break;
9115 }
9116 }
9117 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9118 reg_reloaded_contents[REGNO (dst)] = -1;
9119 delete_insn (prev);
9120 }
9121 \f
9122 /* Output reload-insns to reload VALUE into RELOADREG.
9123 VALUE is an autoincrement or autodecrement RTX whose operand
9124 is a register or memory location;
9125 so reloading involves incrementing that location.
9126 IN is either identical to VALUE, or some cheaper place to reload from.
9127
9128 INC_AMOUNT is the number to increment or decrement by (always positive).
9129 This cannot be deduced from VALUE. */
9130
9131 static void
9132 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9133 {
9134 /* REG or MEM to be copied and incremented. */
9135 rtx incloc = find_replacement (&XEXP (value, 0));
9136 /* Nonzero if increment after copying. */
9137 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9138 || GET_CODE (value) == POST_MODIFY);
9139 rtx last;
9140 rtx inc;
9141 rtx add_insn;
9142 int code;
9143 rtx real_in = in == value ? incloc : in;
9144
9145 /* No hard register is equivalent to this register after
9146 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9147 we could inc/dec that register as well (maybe even using it for
9148 the source), but I'm not sure it's worth worrying about. */
9149 if (REG_P (incloc))
9150 reg_last_reload_reg[REGNO (incloc)] = 0;
9151
9152 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9153 {
9154 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9155 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9156 }
9157 else
9158 {
9159 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9160 inc_amount = -inc_amount;
9161
9162 inc = GEN_INT (inc_amount);
9163 }
9164
9165 /* If this is post-increment, first copy the location to the reload reg. */
9166 if (post && real_in != reloadreg)
9167 emit_insn (gen_move_insn (reloadreg, real_in));
9168
9169 if (in == value)
9170 {
9171 /* See if we can directly increment INCLOC. Use a method similar to
9172 that in gen_reload. */
9173
9174 last = get_last_insn ();
9175 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9176 gen_rtx_PLUS (GET_MODE (incloc),
9177 incloc, inc)));
9178
9179 code = recog_memoized (add_insn);
9180 if (code >= 0)
9181 {
9182 extract_insn (add_insn);
9183 if (constrain_operands (1))
9184 {
9185 /* If this is a pre-increment and we have incremented the value
9186 where it lives, copy the incremented value to RELOADREG to
9187 be used as an address. */
9188
9189 if (! post)
9190 emit_insn (gen_move_insn (reloadreg, incloc));
9191 return;
9192 }
9193 }
9194 delete_insns_since (last);
9195 }
9196
9197 /* If couldn't do the increment directly, must increment in RELOADREG.
9198 The way we do this depends on whether this is pre- or post-increment.
9199 For pre-increment, copy INCLOC to the reload register, increment it
9200 there, then save back. */
9201
9202 if (! post)
9203 {
9204 if (in != reloadreg)
9205 emit_insn (gen_move_insn (reloadreg, real_in));
9206 emit_insn (gen_add2_insn (reloadreg, inc));
9207 emit_insn (gen_move_insn (incloc, reloadreg));
9208 }
9209 else
9210 {
9211 /* Postincrement.
9212 Because this might be a jump insn or a compare, and because RELOADREG
9213 may not be available after the insn in an input reload, we must do
9214 the incrementation before the insn being reloaded for.
9215
9216 We have already copied IN to RELOADREG. Increment the copy in
9217 RELOADREG, save that back, then decrement RELOADREG so it has
9218 the original value. */
9219
9220 emit_insn (gen_add2_insn (reloadreg, inc));
9221 emit_insn (gen_move_insn (incloc, reloadreg));
9222 if (CONST_INT_P (inc))
9223 emit_insn (gen_add2_insn (reloadreg,
9224 gen_int_mode (-INTVAL (inc),
9225 GET_MODE (reloadreg))));
9226 else
9227 emit_insn (gen_sub2_insn (reloadreg, inc));
9228 }
9229 }
9230 \f
9231 #ifdef AUTO_INC_DEC
9232 static void
9233 add_auto_inc_notes (rtx insn, rtx x)
9234 {
9235 enum rtx_code code = GET_CODE (x);
9236 const char *fmt;
9237 int i, j;
9238
9239 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9240 {
9241 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9242 return;
9243 }
9244
9245 /* Scan all the operand sub-expressions. */
9246 fmt = GET_RTX_FORMAT (code);
9247 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9248 {
9249 if (fmt[i] == 'e')
9250 add_auto_inc_notes (insn, XEXP (x, i));
9251 else if (fmt[i] == 'E')
9252 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9253 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9254 }
9255 }
9256 #endif