]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
expander: Optimize store_expr from STRING_CST [PR95052]
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45 #include "function-abi.h"
46
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
53
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
57
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
61
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
69
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
73
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
80 \f
81 struct target_reload default_target_reload;
82 #if SWITCHABLE_TARGET
83 struct target_reload *this_target_reload = &default_target_reload;
84 #endif
85
86 #define spill_indirect_levels \
87 (this_target_reload->x_spill_indirect_levels)
88
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx *reg_last_reload_reg;
92
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static regset_head reg_has_output_reload;
96
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload;
100
101 /* Widest mode in which each pseudo reg is referred to (via subreg). */
102 static machine_mode *reg_max_ref_mode;
103
104 /* Vector to remember old contents of reg_renumber before spilling. */
105 static short *reg_old_renumber;
106
107 /* During reload_as_needed, element N contains the last pseudo regno reloaded
108 into hard register N. If that pseudo reg occupied more than one register,
109 reg_reloaded_contents points to that pseudo for each spill register in
110 use; all of these must remain set for an inheritance to occur. */
111 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112
113 /* During reload_as_needed, element N contains the insn for which
114 hard register N was last used. Its contents are significant only
115 when reg_reloaded_valid is set for this register. */
116 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117
118 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
119 static HARD_REG_SET reg_reloaded_valid;
120 /* Indicate if the register was dead at the end of the reload.
121 This is only valid if reg_reloaded_contents is set and valid. */
122 static HARD_REG_SET reg_reloaded_dead;
123
124 /* Number of spill-regs so far; number of valid elements of spill_regs. */
125 static int n_spills;
126
127 /* In parallel with spill_regs, contains REG rtx's for those regs.
128 Holds the last rtx used for any given reg, or 0 if it has never
129 been used for spilling yet. This rtx is reused, provided it has
130 the proper mode. */
131 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
132
133 /* In parallel with spill_regs, contains nonzero for a spill reg
134 that was stored after the last time it was used.
135 The precise value is the insn generated to do the store. */
136 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
137
138 /* This is the register that was stored with spill_reg_store. This is a
139 copy of reload_out / reload_out_reg when the value was stored; if
140 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
141 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
142
143 /* This table is the inverse mapping of spill_regs:
144 indexed by hard reg number,
145 it contains the position of that reg in spill_regs,
146 or -1 for something that is not in spill_regs.
147
148 ?!? This is no longer accurate. */
149 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
150
151 /* This reg set indicates registers that can't be used as spill registers for
152 the currently processed insn. These are the hard registers which are live
153 during the insn, but not allocated to pseudos, as well as fixed
154 registers. */
155 static HARD_REG_SET bad_spill_regs;
156
157 /* These are the hard registers that can't be used as spill register for any
158 insn. This includes registers used for user variables and registers that
159 we can't eliminate. A register that appears in this set also can't be used
160 to retry register allocation. */
161 static HARD_REG_SET bad_spill_regs_global;
162
163 /* Describes order of use of registers for reloading
164 of spilled pseudo-registers. `n_spills' is the number of
165 elements that are actually valid; new ones are added at the end.
166
167 Both spill_regs and spill_reg_order are used on two occasions:
168 once during find_reload_regs, where they keep track of the spill registers
169 for a single insn, but also during reload_as_needed where they show all
170 the registers ever used by reload. For the latter case, the information
171 is calculated during finish_spills. */
172 static short spill_regs[FIRST_PSEUDO_REGISTER];
173
174 /* This vector of reg sets indicates, for each pseudo, which hard registers
175 may not be used for retrying global allocation because the register was
176 formerly spilled from one of them. If we allowed reallocating a pseudo to
177 a register that it was already allocated to, reload might not
178 terminate. */
179 static HARD_REG_SET *pseudo_previous_regs;
180
181 /* This vector of reg sets indicates, for each pseudo, which hard
182 registers may not be used for retrying global allocation because they
183 are used as spill registers during one of the insns in which the
184 pseudo is live. */
185 static HARD_REG_SET *pseudo_forbidden_regs;
186
187 /* All hard regs that have been used as spill registers for any insn are
188 marked in this set. */
189 static HARD_REG_SET used_spill_regs;
190
191 /* Index of last register assigned as a spill register. We allocate in
192 a round-robin fashion. */
193 static int last_spill_reg;
194
195 /* Record the stack slot for each spilled hard register. */
196 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
197
198 /* Width allocated so far for that stack slot. */
199 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
200
201 /* Record which pseudos needed to be spilled. */
202 static regset_head spilled_pseudos;
203
204 /* Record which pseudos changed their allocation in finish_spills. */
205 static regset_head changed_allocation_pseudos;
206
207 /* Used for communication between order_regs_for_reload and count_pseudo.
208 Used to avoid counting one pseudo twice. */
209 static regset_head pseudos_counted;
210
211 /* First uid used by insns created by reload in this function.
212 Used in find_equiv_reg. */
213 int reload_first_uid;
214
215 /* Flag set by local-alloc or global-alloc if anything is live in
216 a call-clobbered reg across calls. */
217 int caller_save_needed;
218
219 /* Set to 1 while reload_as_needed is operating.
220 Required by some machines to handle any generated moves differently. */
221 int reload_in_progress = 0;
222
223 /* This obstack is used for allocation of rtl during register elimination.
224 The allocated storage can be freed once find_reloads has processed the
225 insn. */
226 static struct obstack reload_obstack;
227
228 /* Points to the beginning of the reload_obstack. All insn_chain structures
229 are allocated first. */
230 static char *reload_startobj;
231
232 /* The point after all insn_chain structures. Used to quickly deallocate
233 memory allocated in copy_reloads during calculate_needs_all_insns. */
234 static char *reload_firstobj;
235
236 /* This points before all local rtl generated by register elimination.
237 Used to quickly free all memory after processing one insn. */
238 static char *reload_insn_firstobj;
239
240 /* List of insn_chain instructions, one for every insn that reload needs to
241 examine. */
242 class insn_chain *reload_insn_chain;
243
244 /* TRUE if we potentially left dead insns in the insn stream and want to
245 run DCE immediately after reload, FALSE otherwise. */
246 static bool need_dce;
247
248 /* List of all insns needing reloads. */
249 static class insn_chain *insns_need_reload;
250 \f
251 /* This structure is used to record information about register eliminations.
252 Each array entry describes one possible way of eliminating a register
253 in favor of another. If there is more than one way of eliminating a
254 particular register, the most preferred should be specified first. */
255
256 struct elim_table
257 {
258 int from; /* Register number to be eliminated. */
259 int to; /* Register number used as replacement. */
260 poly_int64_pod initial_offset; /* Initial difference between values. */
261 int can_eliminate; /* Nonzero if this elimination can be done. */
262 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
263 target hook in previous scan over insns
264 made by reload. */
265 poly_int64_pod offset; /* Current offset between the two regs. */
266 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
267 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
268 rtx from_rtx; /* REG rtx for the register to be eliminated.
269 We cannot simply compare the number since
270 we might then spuriously replace a hard
271 register corresponding to a pseudo
272 assigned to the reg to be eliminated. */
273 rtx to_rtx; /* REG rtx for the replacement. */
274 };
275
276 static struct elim_table *reg_eliminate = 0;
277
278 /* This is an intermediate structure to initialize the table. It has
279 exactly the members provided by ELIMINABLE_REGS. */
280 static const struct elim_table_1
281 {
282 const int from;
283 const int to;
284 } reg_eliminate_1[] =
285
286 ELIMINABLE_REGS;
287
288 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
289
290 /* Record the number of pending eliminations that have an offset not equal
291 to their initial offset. If nonzero, we use a new copy of each
292 replacement result in any insns encountered. */
293 int num_not_at_initial_offset;
294
295 /* Count the number of registers that we may be able to eliminate. */
296 static int num_eliminable;
297 /* And the number of registers that are equivalent to a constant that
298 can be eliminated to frame_pointer / arg_pointer + constant. */
299 static int num_eliminable_invariants;
300
301 /* For each label, we record the offset of each elimination. If we reach
302 a label by more than one path and an offset differs, we cannot do the
303 elimination. This information is indexed by the difference of the
304 number of the label and the first label number. We can't offset the
305 pointer itself as this can cause problems on machines with segmented
306 memory. The first table is an array of flags that records whether we
307 have yet encountered a label and the second table is an array of arrays,
308 one entry in the latter array for each elimination. */
309
310 static int first_label_num;
311 static char *offsets_known_at;
312 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
313
314 vec<reg_equivs_t, va_gc> *reg_equivs;
315
316 /* Stack of addresses where an rtx has been changed. We can undo the
317 changes by popping items off the stack and restoring the original
318 value at each location.
319
320 We use this simplistic undo capability rather than copy_rtx as copy_rtx
321 will not make a deep copy of a normally sharable rtx, such as
322 (const (plus (symbol_ref) (const_int))). If such an expression appears
323 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
324 rtx expression would be changed. See PR 42431. */
325
326 typedef rtx *rtx_p;
327 static vec<rtx_p> substitute_stack;
328
329 /* Number of labels in the current function. */
330
331 static int num_labels;
332 \f
333 static void replace_pseudos_in (rtx *, machine_mode, rtx);
334 static void maybe_fix_stack_asms (void);
335 static void copy_reloads (class insn_chain *);
336 static void calculate_needs_all_insns (int);
337 static int find_reg (class insn_chain *, int);
338 static void find_reload_regs (class insn_chain *);
339 static void select_reload_regs (void);
340 static void delete_caller_save_insns (void);
341
342 static void spill_failure (rtx_insn *, enum reg_class);
343 static void count_spilled_pseudo (int, int, int);
344 static void delete_dead_insn (rtx_insn *);
345 static void alter_reg (int, int, bool);
346 static void set_label_offsets (rtx, rtx_insn *, int);
347 static void check_eliminable_occurrences (rtx);
348 static void elimination_effects (rtx, machine_mode);
349 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
350 static int eliminate_regs_in_insn (rtx_insn *, int);
351 static void update_eliminable_offsets (void);
352 static void mark_not_eliminable (rtx, const_rtx, void *);
353 static void set_initial_elim_offsets (void);
354 static bool verify_initial_elim_offsets (void);
355 static void set_initial_label_offsets (void);
356 static void set_offsets_for_label (rtx_insn *);
357 static void init_eliminable_invariants (rtx_insn *, bool);
358 static void init_elim_table (void);
359 static void free_reg_equiv (void);
360 static void update_eliminables (HARD_REG_SET *);
361 static bool update_eliminables_and_spill (void);
362 static void elimination_costs_in_insn (rtx_insn *);
363 static void spill_hard_reg (unsigned int, int);
364 static int finish_spills (int);
365 static void scan_paradoxical_subregs (rtx);
366 static void count_pseudo (int);
367 static void order_regs_for_reload (class insn_chain *);
368 static void reload_as_needed (int);
369 static void forget_old_reloads_1 (rtx, const_rtx, void *);
370 static void forget_marked_reloads (regset);
371 static int reload_reg_class_lower (const void *, const void *);
372 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
373 machine_mode);
374 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
375 machine_mode);
376 static int reload_reg_free_p (unsigned int, int, enum reload_type);
377 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
378 rtx, rtx, int, int);
379 static int free_for_value_p (int, machine_mode, int, enum reload_type,
380 rtx, rtx, int, int);
381 static int allocate_reload_reg (class insn_chain *, int, int);
382 static int conflicts_with_override (rtx);
383 static void failed_reload (rtx_insn *, int);
384 static int set_reload_reg (int, int);
385 static void choose_reload_regs_init (class insn_chain *, rtx *);
386 static void choose_reload_regs (class insn_chain *);
387 static void emit_input_reload_insns (class insn_chain *, struct reload *,
388 rtx, int);
389 static void emit_output_reload_insns (class insn_chain *, struct reload *,
390 int);
391 static void do_input_reload (class insn_chain *, struct reload *, int);
392 static void do_output_reload (class insn_chain *, struct reload *, int);
393 static void emit_reload_insns (class insn_chain *);
394 static void delete_output_reload (rtx_insn *, int, int, rtx);
395 static void delete_address_reloads (rtx_insn *, rtx_insn *);
396 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
397 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
398 static void add_auto_inc_notes (rtx_insn *, rtx);
399 static void substitute (rtx *, const_rtx, rtx);
400 static bool gen_reload_chain_without_interm_reg_p (int, int);
401 static int reloads_conflict (int, int);
402 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
403 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
404 \f
405 /* Initialize the reload pass. This is called at the beginning of compilation
406 and may be called again if the target is reinitialized. */
407
408 void
409 init_reload (void)
410 {
411 int i;
412
413 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
414 Set spill_indirect_levels to the number of levels such addressing is
415 permitted, zero if it is not permitted at all. */
416
417 rtx tem
418 = gen_rtx_MEM (Pmode,
419 gen_rtx_PLUS (Pmode,
420 gen_rtx_REG (Pmode,
421 LAST_VIRTUAL_REGISTER + 1),
422 gen_int_mode (4, Pmode)));
423 spill_indirect_levels = 0;
424
425 while (memory_address_p (QImode, tem))
426 {
427 spill_indirect_levels++;
428 tem = gen_rtx_MEM (Pmode, tem);
429 }
430
431 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
432
433 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
434 indirect_symref_ok = memory_address_p (QImode, tem);
435
436 /* See if reg+reg is a valid (and offsettable) address. */
437
438 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
439 {
440 tem = gen_rtx_PLUS (Pmode,
441 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
442 gen_rtx_REG (Pmode, i));
443
444 /* This way, we make sure that reg+reg is an offsettable address. */
445 tem = plus_constant (Pmode, tem, 4);
446
447 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
448 if (!double_reg_address_ok[mode]
449 && memory_address_p ((enum machine_mode)mode, tem))
450 double_reg_address_ok[mode] = 1;
451 }
452
453 /* Initialize obstack for our rtl allocation. */
454 if (reload_startobj == NULL)
455 {
456 gcc_obstack_init (&reload_obstack);
457 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
458 }
459
460 INIT_REG_SET (&spilled_pseudos);
461 INIT_REG_SET (&changed_allocation_pseudos);
462 INIT_REG_SET (&pseudos_counted);
463 }
464
465 /* List of insn chains that are currently unused. */
466 static class insn_chain *unused_insn_chains = 0;
467
468 /* Allocate an empty insn_chain structure. */
469 class insn_chain *
470 new_insn_chain (void)
471 {
472 class insn_chain *c;
473
474 if (unused_insn_chains == 0)
475 {
476 c = XOBNEW (&reload_obstack, class insn_chain);
477 INIT_REG_SET (&c->live_throughout);
478 INIT_REG_SET (&c->dead_or_set);
479 }
480 else
481 {
482 c = unused_insn_chains;
483 unused_insn_chains = c->next;
484 }
485 c->is_caller_save_insn = 0;
486 c->need_operand_change = 0;
487 c->need_reload = 0;
488 c->need_elim = 0;
489 return c;
490 }
491
492 /* Small utility function to set all regs in hard reg set TO which are
493 allocated to pseudos in regset FROM. */
494
495 void
496 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
497 {
498 unsigned int regno;
499 reg_set_iterator rsi;
500
501 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
502 {
503 int r = reg_renumber[regno];
504
505 if (r < 0)
506 {
507 /* reload_combine uses the information from DF_LIVE_IN,
508 which might still contain registers that have not
509 actually been allocated since they have an
510 equivalence. */
511 gcc_assert (ira_conflicts_p || reload_completed);
512 }
513 else
514 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
515 }
516 }
517
518 /* Replace all pseudos found in LOC with their corresponding
519 equivalences. */
520
521 static void
522 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
523 {
524 rtx x = *loc;
525 enum rtx_code code;
526 const char *fmt;
527 int i, j;
528
529 if (! x)
530 return;
531
532 code = GET_CODE (x);
533 if (code == REG)
534 {
535 unsigned int regno = REGNO (x);
536
537 if (regno < FIRST_PSEUDO_REGISTER)
538 return;
539
540 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
541 if (x != *loc)
542 {
543 *loc = x;
544 replace_pseudos_in (loc, mem_mode, usage);
545 return;
546 }
547
548 if (reg_equiv_constant (regno))
549 *loc = reg_equiv_constant (regno);
550 else if (reg_equiv_invariant (regno))
551 *loc = reg_equiv_invariant (regno);
552 else if (reg_equiv_mem (regno))
553 *loc = reg_equiv_mem (regno);
554 else if (reg_equiv_address (regno))
555 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
556 else
557 {
558 gcc_assert (!REG_P (regno_reg_rtx[regno])
559 || REGNO (regno_reg_rtx[regno]) != regno);
560 *loc = regno_reg_rtx[regno];
561 }
562
563 return;
564 }
565 else if (code == MEM)
566 {
567 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
568 return;
569 }
570
571 /* Process each of our operands recursively. */
572 fmt = GET_RTX_FORMAT (code);
573 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
574 if (*fmt == 'e')
575 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
576 else if (*fmt == 'E')
577 for (j = 0; j < XVECLEN (x, i); j++)
578 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
579 }
580
581 /* Determine if the current function has an exception receiver block
582 that reaches the exit block via non-exceptional edges */
583
584 static bool
585 has_nonexceptional_receiver (void)
586 {
587 edge e;
588 edge_iterator ei;
589 basic_block *tos, *worklist, bb;
590
591 /* If we're not optimizing, then just err on the safe side. */
592 if (!optimize)
593 return true;
594
595 /* First determine which blocks can reach exit via normal paths. */
596 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
597
598 FOR_EACH_BB_FN (bb, cfun)
599 bb->flags &= ~BB_REACHABLE;
600
601 /* Place the exit block on our worklist. */
602 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
603 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
604
605 /* Iterate: find everything reachable from what we've already seen. */
606 while (tos != worklist)
607 {
608 bb = *--tos;
609
610 FOR_EACH_EDGE (e, ei, bb->preds)
611 if (!(e->flags & EDGE_ABNORMAL))
612 {
613 basic_block src = e->src;
614
615 if (!(src->flags & BB_REACHABLE))
616 {
617 src->flags |= BB_REACHABLE;
618 *tos++ = src;
619 }
620 }
621 }
622 free (worklist);
623
624 /* Now see if there's a reachable block with an exceptional incoming
625 edge. */
626 FOR_EACH_BB_FN (bb, cfun)
627 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
628 return true;
629
630 /* No exceptional block reached exit unexceptionally. */
631 return false;
632 }
633
634 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
635 zero elements) to MAX_REG_NUM elements.
636
637 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
638 void
639 grow_reg_equivs (void)
640 {
641 int old_size = vec_safe_length (reg_equivs);
642 int max_regno = max_reg_num ();
643 int i;
644 reg_equivs_t ze;
645
646 memset (&ze, 0, sizeof (reg_equivs_t));
647 vec_safe_reserve (reg_equivs, max_regno);
648 for (i = old_size; i < max_regno; i++)
649 reg_equivs->quick_insert (i, ze);
650 }
651
652 \f
653 /* Global variables used by reload and its subroutines. */
654
655 /* The current basic block while in calculate_elim_costs_all_insns. */
656 static basic_block elim_bb;
657
658 /* Set during calculate_needs if an insn needs register elimination. */
659 static int something_needs_elimination;
660 /* Set during calculate_needs if an insn needs an operand changed. */
661 static int something_needs_operands_changed;
662 /* Set by alter_regs if we spilled a register to the stack. */
663 static bool something_was_spilled;
664
665 /* Nonzero means we couldn't get enough spill regs. */
666 static int failure;
667
668 /* Temporary array of pseudo-register number. */
669 static int *temp_pseudo_reg_arr;
670
671 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
672 If that insn didn't set the register (i.e., it copied the register to
673 memory), just delete that insn instead of the equivalencing insn plus
674 anything now dead. If we call delete_dead_insn on that insn, we may
675 delete the insn that actually sets the register if the register dies
676 there and that is incorrect. */
677 static void
678 remove_init_insns ()
679 {
680 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
681 {
682 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
683 {
684 rtx list;
685 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
686 {
687 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
688
689 /* If we already deleted the insn or if it may trap, we can't
690 delete it. The latter case shouldn't happen, but can
691 if an insn has a variable address, gets a REG_EH_REGION
692 note added to it, and then gets converted into a load
693 from a constant address. */
694 if (NOTE_P (equiv_insn)
695 || can_throw_internal (equiv_insn))
696 ;
697 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
698 delete_dead_insn (equiv_insn);
699 else
700 SET_INSN_DELETED (equiv_insn);
701 }
702 }
703 }
704 }
705
706 /* Return true if remove_init_insns will delete INSN. */
707 static bool
708 will_delete_init_insn_p (rtx_insn *insn)
709 {
710 rtx set = single_set (insn);
711 if (!set || !REG_P (SET_DEST (set)))
712 return false;
713 unsigned regno = REGNO (SET_DEST (set));
714
715 if (can_throw_internal (insn))
716 return false;
717
718 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
719 return false;
720
721 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
722 {
723 rtx equiv_insn = XEXP (list, 0);
724 if (equiv_insn == insn)
725 return true;
726 }
727 return false;
728 }
729
730 /* Main entry point for the reload pass.
731
732 FIRST is the first insn of the function being compiled.
733
734 GLOBAL nonzero means we were called from global_alloc
735 and should attempt to reallocate any pseudoregs that we
736 displace from hard regs we will use for reloads.
737 If GLOBAL is zero, we do not have enough information to do that,
738 so any pseudo reg that is spilled must go to the stack.
739
740 Return value is TRUE if reload likely left dead insns in the
741 stream and a DCE pass should be run to elimiante them. Else the
742 return value is FALSE. */
743
744 bool
745 reload (rtx_insn *first, int global)
746 {
747 int i, n;
748 rtx_insn *insn;
749 struct elim_table *ep;
750 basic_block bb;
751 bool inserted;
752
753 /* Make sure even insns with volatile mem refs are recognizable. */
754 init_recog ();
755
756 failure = 0;
757
758 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
759
760 /* Make sure that the last insn in the chain
761 is not something that needs reloading. */
762 emit_note (NOTE_INSN_DELETED);
763
764 /* Enable find_equiv_reg to distinguish insns made by reload. */
765 reload_first_uid = get_max_uid ();
766
767 /* Initialize the secondary memory table. */
768 clear_secondary_mem ();
769
770 /* We don't have a stack slot for any spill reg yet. */
771 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
772 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
773
774 /* Initialize the save area information for caller-save, in case some
775 are needed. */
776 init_save_areas ();
777
778 /* Compute which hard registers are now in use
779 as homes for pseudo registers.
780 This is done here rather than (eg) in global_alloc
781 because this point is reached even if not optimizing. */
782 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
783 mark_home_live (i);
784
785 /* A function that has a nonlocal label that can reach the exit
786 block via non-exceptional paths must save all call-saved
787 registers. */
788 if (cfun->has_nonlocal_label
789 && has_nonexceptional_receiver ())
790 crtl->saves_all_registers = 1;
791
792 if (crtl->saves_all_registers)
793 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
794 if (! crtl->abi->clobbers_full_reg_p (i)
795 && ! fixed_regs[i]
796 && ! LOCAL_REGNO (i))
797 df_set_regs_ever_live (i, true);
798
799 /* Find all the pseudo registers that didn't get hard regs
800 but do have known equivalent constants or memory slots.
801 These include parameters (known equivalent to parameter slots)
802 and cse'd or loop-moved constant memory addresses.
803
804 Record constant equivalents in reg_equiv_constant
805 so they will be substituted by find_reloads.
806 Record memory equivalents in reg_mem_equiv so they can
807 be substituted eventually by altering the REG-rtx's. */
808
809 grow_reg_equivs ();
810 reg_old_renumber = XCNEWVEC (short, max_regno);
811 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
812 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
813 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
814
815 CLEAR_HARD_REG_SET (bad_spill_regs_global);
816
817 init_eliminable_invariants (first, true);
818 init_elim_table ();
819
820 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
821 stack slots to the pseudos that lack hard regs or equivalents.
822 Do not touch virtual registers. */
823
824 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
825 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
826 temp_pseudo_reg_arr[n++] = i;
827
828 if (ira_conflicts_p)
829 /* Ask IRA to order pseudo-registers for better stack slot
830 sharing. */
831 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
832
833 for (i = 0; i < n; i++)
834 alter_reg (temp_pseudo_reg_arr[i], -1, false);
835
836 /* If we have some registers we think can be eliminated, scan all insns to
837 see if there is an insn that sets one of these registers to something
838 other than itself plus a constant. If so, the register cannot be
839 eliminated. Doing this scan here eliminates an extra pass through the
840 main reload loop in the most common case where register elimination
841 cannot be done. */
842 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
843 if (INSN_P (insn))
844 note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL);
845
846 maybe_fix_stack_asms ();
847
848 insns_need_reload = 0;
849 something_needs_elimination = 0;
850
851 /* Initialize to -1, which means take the first spill register. */
852 last_spill_reg = -1;
853
854 /* Spill any hard regs that we know we can't eliminate. */
855 CLEAR_HARD_REG_SET (used_spill_regs);
856 /* There can be multiple ways to eliminate a register;
857 they should be listed adjacently.
858 Elimination for any register fails only if all possible ways fail. */
859 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
860 {
861 int from = ep->from;
862 int can_eliminate = 0;
863 do
864 {
865 can_eliminate |= ep->can_eliminate;
866 ep++;
867 }
868 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
869 if (! can_eliminate)
870 spill_hard_reg (from, 1);
871 }
872
873 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
874 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
875
876 finish_spills (global);
877
878 /* From now on, we may need to generate moves differently. We may also
879 allow modifications of insns which cause them to not be recognized.
880 Any such modifications will be cleaned up during reload itself. */
881 reload_in_progress = 1;
882
883 /* This loop scans the entire function each go-round
884 and repeats until one repetition spills no additional hard regs. */
885 for (;;)
886 {
887 int something_changed;
888 poly_int64 starting_frame_size;
889
890 starting_frame_size = get_frame_size ();
891 something_was_spilled = false;
892
893 set_initial_elim_offsets ();
894 set_initial_label_offsets ();
895
896 /* For each pseudo register that has an equivalent location defined,
897 try to eliminate any eliminable registers (such as the frame pointer)
898 assuming initial offsets for the replacement register, which
899 is the normal case.
900
901 If the resulting location is directly addressable, substitute
902 the MEM we just got directly for the old REG.
903
904 If it is not addressable but is a constant or the sum of a hard reg
905 and constant, it is probably not addressable because the constant is
906 out of range, in that case record the address; we will generate
907 hairy code to compute the address in a register each time it is
908 needed. Similarly if it is a hard register, but one that is not
909 valid as an address register.
910
911 If the location is not addressable, but does not have one of the
912 above forms, assign a stack slot. We have to do this to avoid the
913 potential of producing lots of reloads if, e.g., a location involves
914 a pseudo that didn't get a hard register and has an equivalent memory
915 location that also involves a pseudo that didn't get a hard register.
916
917 Perhaps at some point we will improve reload_when_needed handling
918 so this problem goes away. But that's very hairy. */
919
920 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
921 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
922 {
923 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
924 NULL_RTX);
925
926 if (strict_memory_address_addr_space_p
927 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
928 MEM_ADDR_SPACE (x)))
929 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
930 else if (CONSTANT_P (XEXP (x, 0))
931 || (REG_P (XEXP (x, 0))
932 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
933 || (GET_CODE (XEXP (x, 0)) == PLUS
934 && REG_P (XEXP (XEXP (x, 0), 0))
935 && (REGNO (XEXP (XEXP (x, 0), 0))
936 < FIRST_PSEUDO_REGISTER)
937 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
938 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
939 else
940 {
941 /* Make a new stack slot. Then indicate that something
942 changed so we go back and recompute offsets for
943 eliminable registers because the allocation of memory
944 below might change some offset. reg_equiv_{mem,address}
945 will be set up for this pseudo on the next pass around
946 the loop. */
947 reg_equiv_memory_loc (i) = 0;
948 reg_equiv_init (i) = 0;
949 alter_reg (i, -1, true);
950 }
951 }
952
953 if (caller_save_needed)
954 setup_save_areas ();
955
956 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
957 {
958 /* If we have a stack frame, we must align it now. The
959 stack size may be a part of the offset computation for
960 register elimination. So if this changes the stack size,
961 then repeat the elimination bookkeeping. We don't
962 realign when there is no stack, as that will cause a
963 stack frame when none is needed should
964 TARGET_STARTING_FRAME_OFFSET not be already aligned to
965 STACK_BOUNDARY. */
966 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
967 }
968 /* If we allocated another stack slot, redo elimination bookkeeping. */
969 if (something_was_spilled
970 || maybe_ne (starting_frame_size, get_frame_size ()))
971 {
972 if (update_eliminables_and_spill ())
973 finish_spills (0);
974 continue;
975 }
976
977 if (caller_save_needed)
978 {
979 save_call_clobbered_regs ();
980 /* That might have allocated new insn_chain structures. */
981 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
982 }
983
984 calculate_needs_all_insns (global);
985
986 if (! ira_conflicts_p)
987 /* Don't do it for IRA. We need this info because we don't
988 change live_throughout and dead_or_set for chains when IRA
989 is used. */
990 CLEAR_REG_SET (&spilled_pseudos);
991
992 something_changed = 0;
993
994 /* If we allocated any new memory locations, make another pass
995 since it might have changed elimination offsets. */
996 if (something_was_spilled
997 || maybe_ne (starting_frame_size, get_frame_size ()))
998 something_changed = 1;
999
1000 /* Even if the frame size remained the same, we might still have
1001 changed elimination offsets, e.g. if find_reloads called
1002 force_const_mem requiring the back end to allocate a constant
1003 pool base register that needs to be saved on the stack. */
1004 else if (!verify_initial_elim_offsets ())
1005 something_changed = 1;
1006
1007 if (update_eliminables_and_spill ())
1008 {
1009 finish_spills (0);
1010 something_changed = 1;
1011 }
1012 else
1013 {
1014 select_reload_regs ();
1015 if (failure)
1016 goto failed;
1017 if (insns_need_reload)
1018 something_changed |= finish_spills (global);
1019 }
1020
1021 if (! something_changed)
1022 break;
1023
1024 if (caller_save_needed)
1025 delete_caller_save_insns ();
1026
1027 obstack_free (&reload_obstack, reload_firstobj);
1028 }
1029
1030 /* If global-alloc was run, notify it of any register eliminations we have
1031 done. */
1032 if (global)
1033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1034 if (ep->can_eliminate)
1035 mark_elimination (ep->from, ep->to);
1036
1037 remove_init_insns ();
1038
1039 /* Use the reload registers where necessary
1040 by generating move instructions to move the must-be-register
1041 values into or out of the reload registers. */
1042
1043 if (insns_need_reload != 0 || something_needs_elimination
1044 || something_needs_operands_changed)
1045 {
1046 poly_int64 old_frame_size = get_frame_size ();
1047
1048 reload_as_needed (global);
1049
1050 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1051
1052 gcc_assert (verify_initial_elim_offsets ());
1053 }
1054
1055 /* If we were able to eliminate the frame pointer, show that it is no
1056 longer live at the start of any basic block. If it ls live by
1057 virtue of being in a pseudo, that pseudo will be marked live
1058 and hence the frame pointer will be known to be live via that
1059 pseudo. */
1060
1061 if (! frame_pointer_needed)
1062 FOR_EACH_BB_FN (bb, cfun)
1063 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1064
1065 /* Come here (with failure set nonzero) if we can't get enough spill
1066 regs. */
1067 failed:
1068
1069 CLEAR_REG_SET (&changed_allocation_pseudos);
1070 CLEAR_REG_SET (&spilled_pseudos);
1071 reload_in_progress = 0;
1072
1073 /* Now eliminate all pseudo regs by modifying them into
1074 their equivalent memory references.
1075 The REG-rtx's for the pseudos are modified in place,
1076 so all insns that used to refer to them now refer to memory.
1077
1078 For a reg that has a reg_equiv_address, all those insns
1079 were changed by reloading so that no insns refer to it any longer;
1080 but the DECL_RTL of a variable decl may refer to it,
1081 and if so this causes the debugging info to mention the variable. */
1082
1083 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1084 {
1085 rtx addr = 0;
1086
1087 if (reg_equiv_mem (i))
1088 addr = XEXP (reg_equiv_mem (i), 0);
1089
1090 if (reg_equiv_address (i))
1091 addr = reg_equiv_address (i);
1092
1093 if (addr)
1094 {
1095 if (reg_renumber[i] < 0)
1096 {
1097 rtx reg = regno_reg_rtx[i];
1098
1099 REG_USERVAR_P (reg) = 0;
1100 PUT_CODE (reg, MEM);
1101 XEXP (reg, 0) = addr;
1102 if (reg_equiv_memory_loc (i))
1103 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1104 else
1105 MEM_ATTRS (reg) = 0;
1106 MEM_NOTRAP_P (reg) = 1;
1107 }
1108 else if (reg_equiv_mem (i))
1109 XEXP (reg_equiv_mem (i), 0) = addr;
1110 }
1111
1112 /* We don't want complex addressing modes in debug insns
1113 if simpler ones will do, so delegitimize equivalences
1114 in debug insns. */
1115 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1116 {
1117 rtx reg = regno_reg_rtx[i];
1118 rtx equiv = 0;
1119 df_ref use, next;
1120
1121 if (reg_equiv_constant (i))
1122 equiv = reg_equiv_constant (i);
1123 else if (reg_equiv_invariant (i))
1124 equiv = reg_equiv_invariant (i);
1125 else if (reg && MEM_P (reg))
1126 equiv = targetm.delegitimize_address (reg);
1127 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1128 equiv = reg;
1129
1130 if (equiv == reg)
1131 continue;
1132
1133 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1134 {
1135 insn = DF_REF_INSN (use);
1136
1137 /* Make sure the next ref is for a different instruction,
1138 so that we're not affected by the rescan. */
1139 next = DF_REF_NEXT_REG (use);
1140 while (next && DF_REF_INSN (next) == insn)
1141 next = DF_REF_NEXT_REG (next);
1142
1143 if (DEBUG_BIND_INSN_P (insn))
1144 {
1145 if (!equiv)
1146 {
1147 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1148 df_insn_rescan_debug_internal (insn);
1149 }
1150 else
1151 INSN_VAR_LOCATION_LOC (insn)
1152 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1153 reg, equiv);
1154 }
1155 }
1156 }
1157 }
1158
1159 /* We must set reload_completed now since the cleanup_subreg_operands call
1160 below will re-recognize each insn and reload may have generated insns
1161 which are only valid during and after reload. */
1162 reload_completed = 1;
1163
1164 /* Make a pass over all the insns and delete all USEs which we inserted
1165 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1166 notes. Delete all CLOBBER insns, except those that refer to the return
1167 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1168 from misarranging variable-array code, and simplify (subreg (reg))
1169 operands. Strip and regenerate REG_INC notes that may have been moved
1170 around. */
1171
1172 for (insn = first; insn; insn = NEXT_INSN (insn))
1173 if (INSN_P (insn))
1174 {
1175 rtx *pnote;
1176
1177 if (CALL_P (insn))
1178 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1179 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1180
1181 if ((GET_CODE (PATTERN (insn)) == USE
1182 /* We mark with QImode USEs introduced by reload itself. */
1183 && (GET_MODE (insn) == QImode
1184 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1185 || (GET_CODE (PATTERN (insn)) == CLOBBER
1186 && (!MEM_P (XEXP (PATTERN (insn), 0))
1187 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1188 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1189 && XEXP (XEXP (PATTERN (insn), 0), 0)
1190 != stack_pointer_rtx))
1191 && (!REG_P (XEXP (PATTERN (insn), 0))
1192 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1193 {
1194 delete_insn (insn);
1195 continue;
1196 }
1197
1198 /* Some CLOBBERs may survive until here and still reference unassigned
1199 pseudos with const equivalent, which may in turn cause ICE in later
1200 passes if the reference remains in place. */
1201 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1202 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1203 VOIDmode, PATTERN (insn));
1204
1205 /* Discard obvious no-ops, even without -O. This optimization
1206 is fast and doesn't interfere with debugging. */
1207 if (NONJUMP_INSN_P (insn)
1208 && GET_CODE (PATTERN (insn)) == SET
1209 && REG_P (SET_SRC (PATTERN (insn)))
1210 && REG_P (SET_DEST (PATTERN (insn)))
1211 && (REGNO (SET_SRC (PATTERN (insn)))
1212 == REGNO (SET_DEST (PATTERN (insn)))))
1213 {
1214 delete_insn (insn);
1215 continue;
1216 }
1217
1218 pnote = &REG_NOTES (insn);
1219 while (*pnote != 0)
1220 {
1221 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1222 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1223 || REG_NOTE_KIND (*pnote) == REG_INC)
1224 *pnote = XEXP (*pnote, 1);
1225 else
1226 pnote = &XEXP (*pnote, 1);
1227 }
1228
1229 if (AUTO_INC_DEC)
1230 add_auto_inc_notes (insn, PATTERN (insn));
1231
1232 /* Simplify (subreg (reg)) if it appears as an operand. */
1233 cleanup_subreg_operands (insn);
1234
1235 /* Clean up invalid ASMs so that they don't confuse later passes.
1236 See PR 21299. */
1237 if (asm_noperands (PATTERN (insn)) >= 0)
1238 {
1239 extract_insn (insn);
1240 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1241 {
1242 error_for_asm (insn,
1243 "%<asm%> operand has impossible constraints");
1244 delete_insn (insn);
1245 continue;
1246 }
1247 }
1248 }
1249
1250 free (temp_pseudo_reg_arr);
1251
1252 /* Indicate that we no longer have known memory locations or constants. */
1253 free_reg_equiv ();
1254
1255 free (reg_max_ref_mode);
1256 free (reg_old_renumber);
1257 free (pseudo_previous_regs);
1258 free (pseudo_forbidden_regs);
1259
1260 CLEAR_HARD_REG_SET (used_spill_regs);
1261 for (i = 0; i < n_spills; i++)
1262 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1263
1264 /* Free all the insn_chain structures at once. */
1265 obstack_free (&reload_obstack, reload_startobj);
1266 unused_insn_chains = 0;
1267
1268 inserted = fixup_abnormal_edges ();
1269
1270 /* We've possibly turned single trapping insn into multiple ones. */
1271 if (cfun->can_throw_non_call_exceptions)
1272 {
1273 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1274 bitmap_ones (blocks);
1275 find_many_sub_basic_blocks (blocks);
1276 }
1277
1278 if (inserted)
1279 commit_edge_insertions ();
1280
1281 /* Replacing pseudos with their memory equivalents might have
1282 created shared rtx. Subsequent passes would get confused
1283 by this, so unshare everything here. */
1284 unshare_all_rtl_again (first);
1285
1286 #ifdef STACK_BOUNDARY
1287 /* init_emit has set the alignment of the hard frame pointer
1288 to STACK_BOUNDARY. It is very likely no longer valid if
1289 the hard frame pointer was used for register allocation. */
1290 if (!frame_pointer_needed)
1291 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1292 #endif
1293
1294 substitute_stack.release ();
1295
1296 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1297
1298 reload_completed = !failure;
1299
1300 return need_dce;
1301 }
1302
1303 /* Yet another special case. Unfortunately, reg-stack forces people to
1304 write incorrect clobbers in asm statements. These clobbers must not
1305 cause the register to appear in bad_spill_regs, otherwise we'll call
1306 fatal_insn later. We clear the corresponding regnos in the live
1307 register sets to avoid this.
1308 The whole thing is rather sick, I'm afraid. */
1309
1310 static void
1311 maybe_fix_stack_asms (void)
1312 {
1313 #ifdef STACK_REGS
1314 const char *constraints[MAX_RECOG_OPERANDS];
1315 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1316 class insn_chain *chain;
1317
1318 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1319 {
1320 int i, noperands;
1321 HARD_REG_SET clobbered, allowed;
1322 rtx pat;
1323
1324 if (! INSN_P (chain->insn)
1325 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1326 continue;
1327 pat = PATTERN (chain->insn);
1328 if (GET_CODE (pat) != PARALLEL)
1329 continue;
1330
1331 CLEAR_HARD_REG_SET (clobbered);
1332 CLEAR_HARD_REG_SET (allowed);
1333
1334 /* First, make a mask of all stack regs that are clobbered. */
1335 for (i = 0; i < XVECLEN (pat, 0); i++)
1336 {
1337 rtx t = XVECEXP (pat, 0, i);
1338 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1339 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1340 }
1341
1342 /* Get the operand values and constraints out of the insn. */
1343 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1344 constraints, operand_mode, NULL);
1345
1346 /* For every operand, see what registers are allowed. */
1347 for (i = 0; i < noperands; i++)
1348 {
1349 const char *p = constraints[i];
1350 /* For every alternative, we compute the class of registers allowed
1351 for reloading in CLS, and merge its contents into the reg set
1352 ALLOWED. */
1353 int cls = (int) NO_REGS;
1354
1355 for (;;)
1356 {
1357 char c = *p;
1358
1359 if (c == '\0' || c == ',' || c == '#')
1360 {
1361 /* End of one alternative - mark the regs in the current
1362 class, and reset the class. */
1363 allowed |= reg_class_contents[cls];
1364 cls = NO_REGS;
1365 p++;
1366 if (c == '#')
1367 do {
1368 c = *p++;
1369 } while (c != '\0' && c != ',');
1370 if (c == '\0')
1371 break;
1372 continue;
1373 }
1374
1375 switch (c)
1376 {
1377 case 'g':
1378 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1379 break;
1380
1381 default:
1382 enum constraint_num cn = lookup_constraint (p);
1383 if (insn_extra_address_constraint (cn))
1384 cls = (int) reg_class_subunion[cls]
1385 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1386 ADDRESS, SCRATCH)];
1387 else
1388 cls = (int) reg_class_subunion[cls]
1389 [reg_class_for_constraint (cn)];
1390 break;
1391 }
1392 p += CONSTRAINT_LEN (c, p);
1393 }
1394 }
1395 /* Those of the registers which are clobbered, but allowed by the
1396 constraints, must be usable as reload registers. So clear them
1397 out of the life information. */
1398 allowed &= clobbered;
1399 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1400 if (TEST_HARD_REG_BIT (allowed, i))
1401 {
1402 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1403 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1404 }
1405 }
1406
1407 #endif
1408 }
1409 \f
1410 /* Copy the global variables n_reloads and rld into the corresponding elts
1411 of CHAIN. */
1412 static void
1413 copy_reloads (class insn_chain *chain)
1414 {
1415 chain->n_reloads = n_reloads;
1416 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1417 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1418 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1419 }
1420
1421 /* Walk the chain of insns, and determine for each whether it needs reloads
1422 and/or eliminations. Build the corresponding insns_need_reload list, and
1423 set something_needs_elimination as appropriate. */
1424 static void
1425 calculate_needs_all_insns (int global)
1426 {
1427 class insn_chain **pprev_reload = &insns_need_reload;
1428 class insn_chain *chain, *next = 0;
1429
1430 something_needs_elimination = 0;
1431
1432 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1433 for (chain = reload_insn_chain; chain != 0; chain = next)
1434 {
1435 rtx_insn *insn = chain->insn;
1436
1437 next = chain->next;
1438
1439 /* Clear out the shortcuts. */
1440 chain->n_reloads = 0;
1441 chain->need_elim = 0;
1442 chain->need_reload = 0;
1443 chain->need_operand_change = 0;
1444
1445 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1446 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1447 what effects this has on the known offsets at labels. */
1448
1449 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1450 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1451 set_label_offsets (insn, insn, 0);
1452
1453 if (INSN_P (insn))
1454 {
1455 rtx old_body = PATTERN (insn);
1456 int old_code = INSN_CODE (insn);
1457 rtx old_notes = REG_NOTES (insn);
1458 int did_elimination = 0;
1459 int operands_changed = 0;
1460
1461 /* Skip insns that only set an equivalence. */
1462 if (will_delete_init_insn_p (insn))
1463 continue;
1464
1465 /* If needed, eliminate any eliminable registers. */
1466 if (num_eliminable || num_eliminable_invariants)
1467 did_elimination = eliminate_regs_in_insn (insn, 0);
1468
1469 /* Analyze the instruction. */
1470 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1471 global, spill_reg_order);
1472
1473 /* If a no-op set needs more than one reload, this is likely
1474 to be something that needs input address reloads. We
1475 can't get rid of this cleanly later, and it is of no use
1476 anyway, so discard it now.
1477 We only do this when expensive_optimizations is enabled,
1478 since this complements reload inheritance / output
1479 reload deletion, and it can make debugging harder. */
1480 if (flag_expensive_optimizations && n_reloads > 1)
1481 {
1482 rtx set = single_set (insn);
1483 if (set
1484 &&
1485 ((SET_SRC (set) == SET_DEST (set)
1486 && REG_P (SET_SRC (set))
1487 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1488 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1489 && reg_renumber[REGNO (SET_SRC (set))] < 0
1490 && reg_renumber[REGNO (SET_DEST (set))] < 0
1491 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1492 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1493 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1494 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1495 {
1496 if (ira_conflicts_p)
1497 /* Inform IRA about the insn deletion. */
1498 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1499 REGNO (SET_SRC (set)));
1500 delete_insn (insn);
1501 /* Delete it from the reload chain. */
1502 if (chain->prev)
1503 chain->prev->next = next;
1504 else
1505 reload_insn_chain = next;
1506 if (next)
1507 next->prev = chain->prev;
1508 chain->next = unused_insn_chains;
1509 unused_insn_chains = chain;
1510 continue;
1511 }
1512 }
1513 if (num_eliminable)
1514 update_eliminable_offsets ();
1515
1516 /* Remember for later shortcuts which insns had any reloads or
1517 register eliminations. */
1518 chain->need_elim = did_elimination;
1519 chain->need_reload = n_reloads > 0;
1520 chain->need_operand_change = operands_changed;
1521
1522 /* Discard any register replacements done. */
1523 if (did_elimination)
1524 {
1525 obstack_free (&reload_obstack, reload_insn_firstobj);
1526 PATTERN (insn) = old_body;
1527 INSN_CODE (insn) = old_code;
1528 REG_NOTES (insn) = old_notes;
1529 something_needs_elimination = 1;
1530 }
1531
1532 something_needs_operands_changed |= operands_changed;
1533
1534 if (n_reloads != 0)
1535 {
1536 copy_reloads (chain);
1537 *pprev_reload = chain;
1538 pprev_reload = &chain->next_need_reload;
1539 }
1540 }
1541 }
1542 *pprev_reload = 0;
1543 }
1544 \f
1545 /* This function is called from the register allocator to set up estimates
1546 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1547 an invariant. The structure is similar to calculate_needs_all_insns. */
1548
1549 void
1550 calculate_elim_costs_all_insns (void)
1551 {
1552 int *reg_equiv_init_cost;
1553 basic_block bb;
1554 int i;
1555
1556 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1557 init_elim_table ();
1558 init_eliminable_invariants (get_insns (), false);
1559
1560 set_initial_elim_offsets ();
1561 set_initial_label_offsets ();
1562
1563 FOR_EACH_BB_FN (bb, cfun)
1564 {
1565 rtx_insn *insn;
1566 elim_bb = bb;
1567
1568 FOR_BB_INSNS (bb, insn)
1569 {
1570 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1571 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1572 what effects this has on the known offsets at labels. */
1573
1574 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1575 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1576 set_label_offsets (insn, insn, 0);
1577
1578 if (INSN_P (insn))
1579 {
1580 rtx set = single_set (insn);
1581
1582 /* Skip insns that only set an equivalence. */
1583 if (set && REG_P (SET_DEST (set))
1584 && reg_renumber[REGNO (SET_DEST (set))] < 0
1585 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1586 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1587 {
1588 unsigned regno = REGNO (SET_DEST (set));
1589 rtx_insn_list *init = reg_equiv_init (regno);
1590 if (init)
1591 {
1592 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1593 false, true);
1594 machine_mode mode = GET_MODE (SET_DEST (set));
1595 int cost = set_src_cost (t, mode,
1596 optimize_bb_for_speed_p (bb));
1597 int freq = REG_FREQ_FROM_BB (bb);
1598
1599 reg_equiv_init_cost[regno] = cost * freq;
1600 continue;
1601 }
1602 }
1603 /* If needed, eliminate any eliminable registers. */
1604 if (num_eliminable || num_eliminable_invariants)
1605 elimination_costs_in_insn (insn);
1606
1607 if (num_eliminable)
1608 update_eliminable_offsets ();
1609 }
1610 }
1611 }
1612 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1613 {
1614 if (reg_equiv_invariant (i))
1615 {
1616 if (reg_equiv_init (i))
1617 {
1618 int cost = reg_equiv_init_cost[i];
1619 if (dump_file)
1620 fprintf (dump_file,
1621 "Reg %d has equivalence, initial gains %d\n", i, cost);
1622 if (cost != 0)
1623 ira_adjust_equiv_reg_cost (i, cost);
1624 }
1625 else
1626 {
1627 if (dump_file)
1628 fprintf (dump_file,
1629 "Reg %d had equivalence, but can't be eliminated\n",
1630 i);
1631 ira_adjust_equiv_reg_cost (i, 0);
1632 }
1633 }
1634 }
1635
1636 free (reg_equiv_init_cost);
1637 free (offsets_known_at);
1638 free (offsets_at);
1639 offsets_at = NULL;
1640 offsets_known_at = NULL;
1641 }
1642 \f
1643 /* Comparison function for qsort to decide which of two reloads
1644 should be handled first. *P1 and *P2 are the reload numbers. */
1645
1646 static int
1647 reload_reg_class_lower (const void *r1p, const void *r2p)
1648 {
1649 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1650 int t;
1651
1652 /* Consider required reloads before optional ones. */
1653 t = rld[r1].optional - rld[r2].optional;
1654 if (t != 0)
1655 return t;
1656
1657 /* Count all solitary classes before non-solitary ones. */
1658 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1659 - (reg_class_size[(int) rld[r1].rclass] == 1));
1660 if (t != 0)
1661 return t;
1662
1663 /* Aside from solitaires, consider all multi-reg groups first. */
1664 t = rld[r2].nregs - rld[r1].nregs;
1665 if (t != 0)
1666 return t;
1667
1668 /* Consider reloads in order of increasing reg-class number. */
1669 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1670 if (t != 0)
1671 return t;
1672
1673 /* If reloads are equally urgent, sort by reload number,
1674 so that the results of qsort leave nothing to chance. */
1675 return r1 - r2;
1676 }
1677 \f
1678 /* The cost of spilling each hard reg. */
1679 static int spill_cost[FIRST_PSEUDO_REGISTER];
1680
1681 /* When spilling multiple hard registers, we use SPILL_COST for the first
1682 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1683 only the first hard reg for a multi-reg pseudo. */
1684 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1685
1686 /* Map of hard regno to pseudo regno currently occupying the hard
1687 reg. */
1688 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1689
1690 /* Update the spill cost arrays, considering that pseudo REG is live. */
1691
1692 static void
1693 count_pseudo (int reg)
1694 {
1695 int freq = REG_FREQ (reg);
1696 int r = reg_renumber[reg];
1697 int nregs;
1698
1699 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1700 if (ira_conflicts_p && r < 0)
1701 return;
1702
1703 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1704 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1705 return;
1706
1707 SET_REGNO_REG_SET (&pseudos_counted, reg);
1708
1709 gcc_assert (r >= 0);
1710
1711 spill_add_cost[r] += freq;
1712 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1713 while (nregs-- > 0)
1714 {
1715 hard_regno_to_pseudo_regno[r + nregs] = reg;
1716 spill_cost[r + nregs] += freq;
1717 }
1718 }
1719
1720 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1721 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1722
1723 static void
1724 order_regs_for_reload (class insn_chain *chain)
1725 {
1726 unsigned i;
1727 HARD_REG_SET used_by_pseudos;
1728 HARD_REG_SET used_by_pseudos2;
1729 reg_set_iterator rsi;
1730
1731 bad_spill_regs = fixed_reg_set;
1732
1733 memset (spill_cost, 0, sizeof spill_cost);
1734 memset (spill_add_cost, 0, sizeof spill_add_cost);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736 hard_regno_to_pseudo_regno[i] = -1;
1737
1738 /* Count number of uses of each hard reg by pseudo regs allocated to it
1739 and then order them by decreasing use. First exclude hard registers
1740 that are live in or across this insn. */
1741
1742 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1743 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1744 bad_spill_regs |= used_by_pseudos;
1745 bad_spill_regs |= used_by_pseudos2;
1746
1747 /* Now find out which pseudos are allocated to it, and update
1748 hard_reg_n_uses. */
1749 CLEAR_REG_SET (&pseudos_counted);
1750
1751 EXECUTE_IF_SET_IN_REG_SET
1752 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1753 {
1754 count_pseudo (i);
1755 }
1756 EXECUTE_IF_SET_IN_REG_SET
1757 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1758 {
1759 count_pseudo (i);
1760 }
1761 CLEAR_REG_SET (&pseudos_counted);
1762 }
1763 \f
1764 /* Vector of reload-numbers showing the order in which the reloads should
1765 be processed. */
1766 static short reload_order[MAX_RELOADS];
1767
1768 /* This is used to keep track of the spill regs used in one insn. */
1769 static HARD_REG_SET used_spill_regs_local;
1770
1771 /* We decided to spill hard register SPILLED, which has a size of
1772 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1773 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1774 update SPILL_COST/SPILL_ADD_COST. */
1775
1776 static void
1777 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1778 {
1779 int freq = REG_FREQ (reg);
1780 int r = reg_renumber[reg];
1781 int nregs;
1782
1783 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1784 if (ira_conflicts_p && r < 0)
1785 return;
1786
1787 gcc_assert (r >= 0);
1788
1789 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1790
1791 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1792 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1793 return;
1794
1795 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1796
1797 spill_add_cost[r] -= freq;
1798 while (nregs-- > 0)
1799 {
1800 hard_regno_to_pseudo_regno[r + nregs] = -1;
1801 spill_cost[r + nregs] -= freq;
1802 }
1803 }
1804
1805 /* Find reload register to use for reload number ORDER. */
1806
1807 static int
1808 find_reg (class insn_chain *chain, int order)
1809 {
1810 int rnum = reload_order[order];
1811 struct reload *rl = rld + rnum;
1812 int best_cost = INT_MAX;
1813 int best_reg = -1;
1814 unsigned int i, j, n;
1815 int k;
1816 HARD_REG_SET not_usable;
1817 HARD_REG_SET used_by_other_reload;
1818 reg_set_iterator rsi;
1819 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1820 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1821
1822 not_usable = (bad_spill_regs
1823 | bad_spill_regs_global
1824 | ~reg_class_contents[rl->rclass]);
1825
1826 CLEAR_HARD_REG_SET (used_by_other_reload);
1827 for (k = 0; k < order; k++)
1828 {
1829 int other = reload_order[k];
1830
1831 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1832 for (j = 0; j < rld[other].nregs; j++)
1833 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1834 }
1835
1836 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1837 {
1838 #ifdef REG_ALLOC_ORDER
1839 unsigned int regno = reg_alloc_order[i];
1840 #else
1841 unsigned int regno = i;
1842 #endif
1843
1844 if (! TEST_HARD_REG_BIT (not_usable, regno)
1845 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1846 && targetm.hard_regno_mode_ok (regno, rl->mode))
1847 {
1848 int this_cost = spill_cost[regno];
1849 int ok = 1;
1850 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1851
1852 for (j = 1; j < this_nregs; j++)
1853 {
1854 this_cost += spill_add_cost[regno + j];
1855 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1856 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1857 ok = 0;
1858 }
1859 if (! ok)
1860 continue;
1861
1862 if (ira_conflicts_p)
1863 {
1864 /* Ask IRA to find a better pseudo-register for
1865 spilling. */
1866 for (n = j = 0; j < this_nregs; j++)
1867 {
1868 int r = hard_regno_to_pseudo_regno[regno + j];
1869
1870 if (r < 0)
1871 continue;
1872 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1873 regno_pseudo_regs[n++] = r;
1874 }
1875 regno_pseudo_regs[n++] = -1;
1876 if (best_reg < 0
1877 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1878 best_regno_pseudo_regs,
1879 rl->in, rl->out,
1880 chain->insn))
1881 {
1882 best_reg = regno;
1883 for (j = 0;; j++)
1884 {
1885 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1886 if (regno_pseudo_regs[j] < 0)
1887 break;
1888 }
1889 }
1890 continue;
1891 }
1892
1893 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1894 this_cost--;
1895 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1896 this_cost--;
1897 if (this_cost < best_cost
1898 /* Among registers with equal cost, prefer caller-saved ones, or
1899 use REG_ALLOC_ORDER if it is defined. */
1900 || (this_cost == best_cost
1901 #ifdef REG_ALLOC_ORDER
1902 && (inv_reg_alloc_order[regno]
1903 < inv_reg_alloc_order[best_reg])
1904 #else
1905 && crtl->abi->clobbers_full_reg_p (regno)
1906 && !crtl->abi->clobbers_full_reg_p (best_reg)
1907 #endif
1908 ))
1909 {
1910 best_reg = regno;
1911 best_cost = this_cost;
1912 }
1913 }
1914 }
1915 if (best_reg == -1)
1916 return 0;
1917
1918 if (dump_file)
1919 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1920
1921 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1922 rl->regno = best_reg;
1923
1924 EXECUTE_IF_SET_IN_REG_SET
1925 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1926 {
1927 count_spilled_pseudo (best_reg, rl->nregs, j);
1928 }
1929
1930 EXECUTE_IF_SET_IN_REG_SET
1931 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1932 {
1933 count_spilled_pseudo (best_reg, rl->nregs, j);
1934 }
1935
1936 for (i = 0; i < rl->nregs; i++)
1937 {
1938 gcc_assert (spill_cost[best_reg + i] == 0);
1939 gcc_assert (spill_add_cost[best_reg + i] == 0);
1940 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1941 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1942 }
1943 return 1;
1944 }
1945
1946 /* Find more reload regs to satisfy the remaining need of an insn, which
1947 is given by CHAIN.
1948 Do it by ascending class number, since otherwise a reg
1949 might be spilled for a big class and might fail to count
1950 for a smaller class even though it belongs to that class. */
1951
1952 static void
1953 find_reload_regs (class insn_chain *chain)
1954 {
1955 int i;
1956
1957 /* In order to be certain of getting the registers we need,
1958 we must sort the reloads into order of increasing register class.
1959 Then our grabbing of reload registers will parallel the process
1960 that provided the reload registers. */
1961 for (i = 0; i < chain->n_reloads; i++)
1962 {
1963 /* Show whether this reload already has a hard reg. */
1964 if (chain->rld[i].reg_rtx)
1965 {
1966 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1967 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1968 }
1969 else
1970 chain->rld[i].regno = -1;
1971 reload_order[i] = i;
1972 }
1973
1974 n_reloads = chain->n_reloads;
1975 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1976
1977 CLEAR_HARD_REG_SET (used_spill_regs_local);
1978
1979 if (dump_file)
1980 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1981
1982 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1983
1984 /* Compute the order of preference for hard registers to spill. */
1985
1986 order_regs_for_reload (chain);
1987
1988 for (i = 0; i < n_reloads; i++)
1989 {
1990 int r = reload_order[i];
1991
1992 /* Ignore reloads that got marked inoperative. */
1993 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1994 && ! rld[r].optional
1995 && rld[r].regno == -1)
1996 if (! find_reg (chain, i))
1997 {
1998 if (dump_file)
1999 fprintf (dump_file, "reload failure for reload %d\n", r);
2000 spill_failure (chain->insn, rld[r].rclass);
2001 failure = 1;
2002 return;
2003 }
2004 }
2005
2006 chain->used_spill_regs = used_spill_regs_local;
2007 used_spill_regs |= used_spill_regs_local;
2008
2009 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2010 }
2011
2012 static void
2013 select_reload_regs (void)
2014 {
2015 class insn_chain *chain;
2016
2017 /* Try to satisfy the needs for each insn. */
2018 for (chain = insns_need_reload; chain != 0;
2019 chain = chain->next_need_reload)
2020 find_reload_regs (chain);
2021 }
2022 \f
2023 /* Delete all insns that were inserted by emit_caller_save_insns during
2024 this iteration. */
2025 static void
2026 delete_caller_save_insns (void)
2027 {
2028 class insn_chain *c = reload_insn_chain;
2029
2030 while (c != 0)
2031 {
2032 while (c != 0 && c->is_caller_save_insn)
2033 {
2034 class insn_chain *next = c->next;
2035 rtx_insn *insn = c->insn;
2036
2037 if (c == reload_insn_chain)
2038 reload_insn_chain = next;
2039 delete_insn (insn);
2040
2041 if (next)
2042 next->prev = c->prev;
2043 if (c->prev)
2044 c->prev->next = next;
2045 c->next = unused_insn_chains;
2046 unused_insn_chains = c;
2047 c = next;
2048 }
2049 if (c != 0)
2050 c = c->next;
2051 }
2052 }
2053 \f
2054 /* Handle the failure to find a register to spill.
2055 INSN should be one of the insns which needed this particular spill reg. */
2056
2057 static void
2058 spill_failure (rtx_insn *insn, enum reg_class rclass)
2059 {
2060 if (asm_noperands (PATTERN (insn)) >= 0)
2061 error_for_asm (insn, "cannot find a register in class %qs while "
2062 "reloading %<asm%>",
2063 reg_class_names[rclass]);
2064 else
2065 {
2066 error ("unable to find a register to spill in class %qs",
2067 reg_class_names[rclass]);
2068
2069 if (dump_file)
2070 {
2071 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2072 debug_reload_to_stream (dump_file);
2073 }
2074 fatal_insn ("this is the insn:", insn);
2075 }
2076 }
2077 \f
2078 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2079 data that is dead in INSN. */
2080
2081 static void
2082 delete_dead_insn (rtx_insn *insn)
2083 {
2084 rtx_insn *prev = prev_active_insn (insn);
2085 rtx prev_dest;
2086
2087 /* If the previous insn sets a register that dies in our insn make
2088 a note that we want to run DCE immediately after reload.
2089
2090 We used to delete the previous insn & recurse, but that's wrong for
2091 block local equivalences. Instead of trying to figure out the exact
2092 circumstances where we can delete the potentially dead insns, just
2093 let DCE do the job. */
2094 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2095 && GET_CODE (PATTERN (prev)) == SET
2096 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2097 && reg_mentioned_p (prev_dest, PATTERN (insn))
2098 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2099 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2100 need_dce = 1;
2101
2102 SET_INSN_DELETED (insn);
2103 }
2104
2105 /* Modify the home of pseudo-reg I.
2106 The new home is present in reg_renumber[I].
2107
2108 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2109 or it may be -1, meaning there is none or it is not relevant.
2110 This is used so that all pseudos spilled from a given hard reg
2111 can share one stack slot. */
2112
2113 static void
2114 alter_reg (int i, int from_reg, bool dont_share_p)
2115 {
2116 /* When outputting an inline function, this can happen
2117 for a reg that isn't actually used. */
2118 if (regno_reg_rtx[i] == 0)
2119 return;
2120
2121 /* If the reg got changed to a MEM at rtl-generation time,
2122 ignore it. */
2123 if (!REG_P (regno_reg_rtx[i]))
2124 return;
2125
2126 /* Modify the reg-rtx to contain the new hard reg
2127 number or else to contain its pseudo reg number. */
2128 SET_REGNO (regno_reg_rtx[i],
2129 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2130
2131 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2132 allocate a stack slot for it. */
2133
2134 if (reg_renumber[i] < 0
2135 && REG_N_REFS (i) > 0
2136 && reg_equiv_constant (i) == 0
2137 && (reg_equiv_invariant (i) == 0
2138 || reg_equiv_init (i) == 0)
2139 && reg_equiv_memory_loc (i) == 0)
2140 {
2141 rtx x = NULL_RTX;
2142 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2143 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2144 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2145 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2146 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2147 /* ??? Seems strange to derive the minimum alignment from the size,
2148 but that's the traditional behavior. For polynomial-size modes,
2149 the natural extension is to use the minimum possible size. */
2150 unsigned int min_align
2151 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2152 poly_int64 adjust = 0;
2153
2154 something_was_spilled = true;
2155
2156 if (ira_conflicts_p)
2157 {
2158 /* Mark the spill for IRA. */
2159 SET_REGNO_REG_SET (&spilled_pseudos, i);
2160 if (!dont_share_p)
2161 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2162 }
2163
2164 if (x)
2165 ;
2166
2167 /* Each pseudo reg has an inherent size which comes from its own mode,
2168 and a total size which provides room for paradoxical subregs
2169 which refer to the pseudo reg in wider modes.
2170
2171 We can use a slot already allocated if it provides both
2172 enough inherent space and enough total space.
2173 Otherwise, we allocate a new slot, making sure that it has no less
2174 inherent space, and no less total space, then the previous slot. */
2175 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 {
2177 rtx stack_slot;
2178
2179 /* The sizes are taken from a subreg operation, which guarantees
2180 that they're ordered. */
2181 gcc_checking_assert (ordered_p (total_size, inherent_size));
2182
2183 /* No known place to spill from => no slot to reuse. */
2184 x = assign_stack_local (mode, total_size,
2185 min_align > inherent_align
2186 || maybe_gt (total_size, inherent_size)
2187 ? -1 : 0);
2188
2189 stack_slot = x;
2190
2191 /* Cancel the big-endian correction done in assign_stack_local.
2192 Get the address of the beginning of the slot. This is so we
2193 can do a big-endian correction unconditionally below. */
2194 if (BYTES_BIG_ENDIAN)
2195 {
2196 adjust = inherent_size - total_size;
2197 if (maybe_ne (adjust, 0))
2198 {
2199 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2200 machine_mode mem_mode
2201 = int_mode_for_size (total_bits, 1).else_blk ();
2202 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2203 }
2204 }
2205
2206 if (! dont_share_p && ira_conflicts_p)
2207 /* Inform IRA about allocation a new stack slot. */
2208 ira_mark_new_stack_slot (stack_slot, i, total_size);
2209 }
2210
2211 /* Reuse a stack slot if possible. */
2212 else if (spill_stack_slot[from_reg] != 0
2213 && known_ge (spill_stack_slot_width[from_reg], total_size)
2214 && known_ge (GET_MODE_SIZE
2215 (GET_MODE (spill_stack_slot[from_reg])),
2216 inherent_size)
2217 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2218 x = spill_stack_slot[from_reg];
2219
2220 /* Allocate a bigger slot. */
2221 else
2222 {
2223 /* Compute maximum size needed, both for inherent size
2224 and for total size. */
2225 rtx stack_slot;
2226
2227 if (spill_stack_slot[from_reg])
2228 {
2229 if (partial_subreg_p (mode,
2230 GET_MODE (spill_stack_slot[from_reg])))
2231 mode = GET_MODE (spill_stack_slot[from_reg]);
2232 total_size = ordered_max (total_size,
2233 spill_stack_slot_width[from_reg]);
2234 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2235 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2236 }
2237
2238 /* The sizes are taken from a subreg operation, which guarantees
2239 that they're ordered. */
2240 gcc_checking_assert (ordered_p (total_size, inherent_size));
2241
2242 /* Make a slot with that size. */
2243 x = assign_stack_local (mode, total_size,
2244 min_align > inherent_align
2245 || maybe_gt (total_size, inherent_size)
2246 ? -1 : 0);
2247 stack_slot = x;
2248
2249 /* Cancel the big-endian correction done in assign_stack_local.
2250 Get the address of the beginning of the slot. This is so we
2251 can do a big-endian correction unconditionally below. */
2252 if (BYTES_BIG_ENDIAN)
2253 {
2254 adjust = GET_MODE_SIZE (mode) - total_size;
2255 if (maybe_ne (adjust, 0))
2256 {
2257 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2258 machine_mode mem_mode
2259 = int_mode_for_size (total_bits, 1).else_blk ();
2260 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2261 }
2262 }
2263
2264 spill_stack_slot[from_reg] = stack_slot;
2265 spill_stack_slot_width[from_reg] = total_size;
2266 }
2267
2268 /* On a big endian machine, the "address" of the slot
2269 is the address of the low part that fits its inherent mode. */
2270 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2271
2272 /* If we have any adjustment to make, or if the stack slot is the
2273 wrong mode, make a new stack slot. */
2274 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2275
2276 /* Set all of the memory attributes as appropriate for a spill. */
2277 set_mem_attrs_for_spill (x);
2278
2279 /* Save the stack slot for later. */
2280 reg_equiv_memory_loc (i) = x;
2281 }
2282 }
2283
2284 /* Mark the slots in regs_ever_live for the hard regs used by
2285 pseudo-reg number REGNO, accessed in MODE. */
2286
2287 static void
2288 mark_home_live_1 (int regno, machine_mode mode)
2289 {
2290 int i, lim;
2291
2292 i = reg_renumber[regno];
2293 if (i < 0)
2294 return;
2295 lim = end_hard_regno (mode, i);
2296 while (i < lim)
2297 df_set_regs_ever_live (i++, true);
2298 }
2299
2300 /* Mark the slots in regs_ever_live for the hard regs
2301 used by pseudo-reg number REGNO. */
2302
2303 void
2304 mark_home_live (int regno)
2305 {
2306 if (reg_renumber[regno] >= 0)
2307 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2308 }
2309 \f
2310 /* This function handles the tracking of elimination offsets around branches.
2311
2312 X is a piece of RTL being scanned.
2313
2314 INSN is the insn that it came from, if any.
2315
2316 INITIAL_P is nonzero if we are to set the offset to be the initial
2317 offset and zero if we are setting the offset of the label to be the
2318 current offset. */
2319
2320 static void
2321 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2322 {
2323 enum rtx_code code = GET_CODE (x);
2324 rtx tem;
2325 unsigned int i;
2326 struct elim_table *p;
2327
2328 switch (code)
2329 {
2330 case LABEL_REF:
2331 if (LABEL_REF_NONLOCAL_P (x))
2332 return;
2333
2334 x = label_ref_label (x);
2335
2336 /* fall through */
2337
2338 case CODE_LABEL:
2339 /* If we know nothing about this label, set the desired offsets. Note
2340 that this sets the offset at a label to be the offset before a label
2341 if we don't know anything about the label. This is not correct for
2342 the label after a BARRIER, but is the best guess we can make. If
2343 we guessed wrong, we will suppress an elimination that might have
2344 been possible had we been able to guess correctly. */
2345
2346 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2347 {
2348 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2349 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2350 = (initial_p ? reg_eliminate[i].initial_offset
2351 : reg_eliminate[i].offset);
2352 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2353 }
2354
2355 /* Otherwise, if this is the definition of a label and it is
2356 preceded by a BARRIER, set our offsets to the known offset of
2357 that label. */
2358
2359 else if (x == insn
2360 && (tem = prev_nonnote_insn (insn)) != 0
2361 && BARRIER_P (tem))
2362 set_offsets_for_label (insn);
2363 else
2364 /* If neither of the above cases is true, compare each offset
2365 with those previously recorded and suppress any eliminations
2366 where the offsets disagree. */
2367
2368 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2369 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2370 (initial_p ? reg_eliminate[i].initial_offset
2371 : reg_eliminate[i].offset)))
2372 reg_eliminate[i].can_eliminate = 0;
2373
2374 return;
2375
2376 case JUMP_TABLE_DATA:
2377 set_label_offsets (PATTERN (insn), insn, initial_p);
2378 return;
2379
2380 case JUMP_INSN:
2381 set_label_offsets (PATTERN (insn), insn, initial_p);
2382
2383 /* fall through */
2384
2385 case INSN:
2386 case CALL_INSN:
2387 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2388 to indirectly and hence must have all eliminations at their
2389 initial offsets. */
2390 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2391 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2392 set_label_offsets (XEXP (tem, 0), insn, 1);
2393 return;
2394
2395 case PARALLEL:
2396 case ADDR_VEC:
2397 case ADDR_DIFF_VEC:
2398 /* Each of the labels in the parallel or address vector must be
2399 at their initial offsets. We want the first field for PARALLEL
2400 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2401
2402 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2403 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2404 insn, initial_p);
2405 return;
2406
2407 case SET:
2408 /* We only care about setting PC. If the source is not RETURN,
2409 IF_THEN_ELSE, or a label, disable any eliminations not at
2410 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2411 isn't one of those possibilities. For branches to a label,
2412 call ourselves recursively.
2413
2414 Note that this can disable elimination unnecessarily when we have
2415 a non-local goto since it will look like a non-constant jump to
2416 someplace in the current function. This isn't a significant
2417 problem since such jumps will normally be when all elimination
2418 pairs are back to their initial offsets. */
2419
2420 if (SET_DEST (x) != pc_rtx)
2421 return;
2422
2423 switch (GET_CODE (SET_SRC (x)))
2424 {
2425 case PC:
2426 case RETURN:
2427 return;
2428
2429 case LABEL_REF:
2430 set_label_offsets (SET_SRC (x), insn, initial_p);
2431 return;
2432
2433 case IF_THEN_ELSE:
2434 tem = XEXP (SET_SRC (x), 1);
2435 if (GET_CODE (tem) == LABEL_REF)
2436 set_label_offsets (label_ref_label (tem), insn, initial_p);
2437 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2438 break;
2439
2440 tem = XEXP (SET_SRC (x), 2);
2441 if (GET_CODE (tem) == LABEL_REF)
2442 set_label_offsets (label_ref_label (tem), insn, initial_p);
2443 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2444 break;
2445 return;
2446
2447 default:
2448 break;
2449 }
2450
2451 /* If we reach here, all eliminations must be at their initial
2452 offset because we are doing a jump to a variable address. */
2453 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2454 if (maybe_ne (p->offset, p->initial_offset))
2455 p->can_eliminate = 0;
2456 break;
2457
2458 default:
2459 break;
2460 }
2461 }
2462 \f
2463 /* This function examines every reg that occurs in X and adjusts the
2464 costs for its elimination which are gathered by IRA. INSN is the
2465 insn in which X occurs. We do not recurse into MEM expressions. */
2466
2467 static void
2468 note_reg_elim_costly (const_rtx x, rtx insn)
2469 {
2470 subrtx_iterator::array_type array;
2471 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2472 {
2473 const_rtx x = *iter;
2474 if (MEM_P (x))
2475 iter.skip_subrtxes ();
2476 else if (REG_P (x)
2477 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2478 && reg_equiv_init (REGNO (x))
2479 && reg_equiv_invariant (REGNO (x)))
2480 {
2481 rtx t = reg_equiv_invariant (REGNO (x));
2482 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2483 int cost = set_src_cost (new_rtx, Pmode,
2484 optimize_bb_for_speed_p (elim_bb));
2485 int freq = REG_FREQ_FROM_BB (elim_bb);
2486
2487 if (cost != 0)
2488 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2489 }
2490 }
2491 }
2492
2493 /* Scan X and replace any eliminable registers (such as fp) with a
2494 replacement (such as sp), plus an offset.
2495
2496 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2497 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2498 MEM, we are allowed to replace a sum of a register and the constant zero
2499 with the register, which we cannot do outside a MEM. In addition, we need
2500 to record the fact that a register is referenced outside a MEM.
2501
2502 If INSN is an insn, it is the insn containing X. If we replace a REG
2503 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2504 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2505 the REG is being modified.
2506
2507 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2508 That's used when we eliminate in expressions stored in notes.
2509 This means, do not set ref_outside_mem even if the reference
2510 is outside of MEMs.
2511
2512 If FOR_COSTS is true, we are being called before reload in order to
2513 estimate the costs of keeping registers with an equivalence unallocated.
2514
2515 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2516 replacements done assuming all offsets are at their initial values. If
2517 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2518 encounter, return the actual location so that find_reloads will do
2519 the proper thing. */
2520
2521 static rtx
2522 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2523 bool may_use_invariant, bool for_costs)
2524 {
2525 enum rtx_code code = GET_CODE (x);
2526 struct elim_table *ep;
2527 int regno;
2528 rtx new_rtx;
2529 int i, j;
2530 const char *fmt;
2531 int copied = 0;
2532
2533 if (! current_function_decl)
2534 return x;
2535
2536 switch (code)
2537 {
2538 CASE_CONST_ANY:
2539 case CONST:
2540 case SYMBOL_REF:
2541 case CODE_LABEL:
2542 case PC:
2543 case CC0:
2544 case ASM_INPUT:
2545 case ADDR_VEC:
2546 case ADDR_DIFF_VEC:
2547 case RETURN:
2548 return x;
2549
2550 case REG:
2551 regno = REGNO (x);
2552
2553 /* First handle the case where we encounter a bare register that
2554 is eliminable. Replace it with a PLUS. */
2555 if (regno < FIRST_PSEUDO_REGISTER)
2556 {
2557 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2558 ep++)
2559 if (ep->from_rtx == x && ep->can_eliminate)
2560 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2561
2562 }
2563 else if (reg_renumber && reg_renumber[regno] < 0
2564 && reg_equivs
2565 && reg_equiv_invariant (regno))
2566 {
2567 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2568 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2569 mem_mode, insn, true, for_costs);
2570 /* There exists at least one use of REGNO that cannot be
2571 eliminated. Prevent the defining insn from being deleted. */
2572 reg_equiv_init (regno) = NULL;
2573 if (!for_costs)
2574 alter_reg (regno, -1, true);
2575 }
2576 return x;
2577
2578 /* You might think handling MINUS in a manner similar to PLUS is a
2579 good idea. It is not. It has been tried multiple times and every
2580 time the change has had to have been reverted.
2581
2582 Other parts of reload know a PLUS is special (gen_reload for example)
2583 and require special code to handle code a reloaded PLUS operand.
2584
2585 Also consider backends where the flags register is clobbered by a
2586 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2587 lea instruction comes to mind). If we try to reload a MINUS, we
2588 may kill the flags register that was holding a useful value.
2589
2590 So, please before trying to handle MINUS, consider reload as a
2591 whole instead of this little section as well as the backend issues. */
2592 case PLUS:
2593 /* If this is the sum of an eliminable register and a constant, rework
2594 the sum. */
2595 if (REG_P (XEXP (x, 0))
2596 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2597 && CONSTANT_P (XEXP (x, 1)))
2598 {
2599 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2600 ep++)
2601 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2602 {
2603 /* The only time we want to replace a PLUS with a REG (this
2604 occurs when the constant operand of the PLUS is the negative
2605 of the offset) is when we are inside a MEM. We won't want
2606 to do so at other times because that would change the
2607 structure of the insn in a way that reload can't handle.
2608 We special-case the commonest situation in
2609 eliminate_regs_in_insn, so just replace a PLUS with a
2610 PLUS here, unless inside a MEM. In DEBUG_INSNs, it is
2611 always ok to replace a PLUS with just a REG. */
2612 if ((mem_mode != 0 || (insn && DEBUG_INSN_P (insn)))
2613 && CONST_INT_P (XEXP (x, 1))
2614 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2615 return ep->to_rtx;
2616 else
2617 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2618 plus_constant (Pmode, XEXP (x, 1),
2619 ep->previous_offset));
2620 }
2621
2622 /* If the register is not eliminable, we are done since the other
2623 operand is a constant. */
2624 return x;
2625 }
2626
2627 /* If this is part of an address, we want to bring any constant to the
2628 outermost PLUS. We will do this by doing register replacement in
2629 our operands and seeing if a constant shows up in one of them.
2630
2631 Note that there is no risk of modifying the structure of the insn,
2632 since we only get called for its operands, thus we are either
2633 modifying the address inside a MEM, or something like an address
2634 operand of a load-address insn. */
2635
2636 {
2637 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2638 for_costs);
2639 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2640 for_costs);
2641
2642 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2643 {
2644 /* If one side is a PLUS and the other side is a pseudo that
2645 didn't get a hard register but has a reg_equiv_constant,
2646 we must replace the constant here since it may no longer
2647 be in the position of any operand. */
2648 if (GET_CODE (new0) == PLUS && REG_P (new1)
2649 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2650 && reg_renumber[REGNO (new1)] < 0
2651 && reg_equivs
2652 && reg_equiv_constant (REGNO (new1)) != 0)
2653 new1 = reg_equiv_constant (REGNO (new1));
2654 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2655 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2656 && reg_renumber[REGNO (new0)] < 0
2657 && reg_equiv_constant (REGNO (new0)) != 0)
2658 new0 = reg_equiv_constant (REGNO (new0));
2659
2660 new_rtx = form_sum (GET_MODE (x), new0, new1);
2661
2662 /* As above, if we are not inside a MEM we do not want to
2663 turn a PLUS into something else. We might try to do so here
2664 for an addition of 0 if we aren't optimizing. */
2665 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2666 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2667 else
2668 return new_rtx;
2669 }
2670 }
2671 return x;
2672
2673 case MULT:
2674 /* If this is the product of an eliminable register and a
2675 constant, apply the distribute law and move the constant out
2676 so that we have (plus (mult ..) ..). This is needed in order
2677 to keep load-address insns valid. This case is pathological.
2678 We ignore the possibility of overflow here. */
2679 if (REG_P (XEXP (x, 0))
2680 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2681 && CONST_INT_P (XEXP (x, 1)))
2682 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2683 ep++)
2684 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2685 {
2686 if (! mem_mode
2687 /* Refs inside notes or in DEBUG_INSNs don't count for
2688 this purpose. */
2689 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2690 || GET_CODE (insn) == INSN_LIST
2691 || DEBUG_INSN_P (insn))))
2692 ep->ref_outside_mem = 1;
2693
2694 return
2695 plus_constant (Pmode,
2696 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2697 ep->previous_offset * INTVAL (XEXP (x, 1)));
2698 }
2699
2700 /* fall through */
2701
2702 case CALL:
2703 case COMPARE:
2704 /* See comments before PLUS about handling MINUS. */
2705 case MINUS:
2706 case DIV: case UDIV:
2707 case MOD: case UMOD:
2708 case AND: case IOR: case XOR:
2709 case ROTATERT: case ROTATE:
2710 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2711 case NE: case EQ:
2712 case GE: case GT: case GEU: case GTU:
2713 case LE: case LT: case LEU: case LTU:
2714 {
2715 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2716 for_costs);
2717 rtx new1 = XEXP (x, 1)
2718 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2719 for_costs) : 0;
2720
2721 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2722 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2723 }
2724 return x;
2725
2726 case EXPR_LIST:
2727 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2728 if (XEXP (x, 0))
2729 {
2730 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2731 for_costs);
2732 if (new_rtx != XEXP (x, 0))
2733 {
2734 /* If this is a REG_DEAD note, it is not valid anymore.
2735 Using the eliminated version could result in creating a
2736 REG_DEAD note for the stack or frame pointer. */
2737 if (REG_NOTE_KIND (x) == REG_DEAD)
2738 return (XEXP (x, 1)
2739 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2740 for_costs)
2741 : NULL_RTX);
2742
2743 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2744 }
2745 }
2746
2747 /* fall through */
2748
2749 case INSN_LIST:
2750 case INT_LIST:
2751 /* Now do eliminations in the rest of the chain. If this was
2752 an EXPR_LIST, this might result in allocating more memory than is
2753 strictly needed, but it simplifies the code. */
2754 if (XEXP (x, 1))
2755 {
2756 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2757 for_costs);
2758 if (new_rtx != XEXP (x, 1))
2759 return
2760 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2761 }
2762 return x;
2763
2764 case PRE_INC:
2765 case POST_INC:
2766 case PRE_DEC:
2767 case POST_DEC:
2768 /* We do not support elimination of a register that is modified.
2769 elimination_effects has already make sure that this does not
2770 happen. */
2771 return x;
2772
2773 case PRE_MODIFY:
2774 case POST_MODIFY:
2775 /* We do not support elimination of a register that is modified.
2776 elimination_effects has already make sure that this does not
2777 happen. The only remaining case we need to consider here is
2778 that the increment value may be an eliminable register. */
2779 if (GET_CODE (XEXP (x, 1)) == PLUS
2780 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2781 {
2782 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2783 insn, true, for_costs);
2784
2785 if (new_rtx != XEXP (XEXP (x, 1), 1))
2786 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2787 gen_rtx_PLUS (GET_MODE (x),
2788 XEXP (x, 0), new_rtx));
2789 }
2790 return x;
2791
2792 case STRICT_LOW_PART:
2793 case NEG: case NOT:
2794 case SIGN_EXTEND: case ZERO_EXTEND:
2795 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2796 case FLOAT: case FIX:
2797 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2798 case ABS:
2799 case SQRT:
2800 case FFS:
2801 case CLZ:
2802 case CTZ:
2803 case POPCOUNT:
2804 case PARITY:
2805 case BSWAP:
2806 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2807 for_costs);
2808 if (new_rtx != XEXP (x, 0))
2809 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2810 return x;
2811
2812 case SUBREG:
2813 /* Similar to above processing, but preserve SUBREG_BYTE.
2814 Convert (subreg (mem)) to (mem) if not paradoxical.
2815 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2816 pseudo didn't get a hard reg, we must replace this with the
2817 eliminated version of the memory location because push_reload
2818 may do the replacement in certain circumstances. */
2819 if (REG_P (SUBREG_REG (x))
2820 && !paradoxical_subreg_p (x)
2821 && reg_equivs
2822 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2823 {
2824 new_rtx = SUBREG_REG (x);
2825 }
2826 else
2827 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2828
2829 if (new_rtx != SUBREG_REG (x))
2830 {
2831 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2832 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2833
2834 if (MEM_P (new_rtx)
2835 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2836 /* On RISC machines, combine can create rtl of the form
2837 (set (subreg:m1 (reg:m2 R) 0) ...)
2838 where m1 < m2, and expects something interesting to
2839 happen to the entire word. Moreover, it will use the
2840 (reg:m2 R) later, expecting all bits to be preserved.
2841 So if the number of words is the same, preserve the
2842 subreg so that push_reload can see it. */
2843 && !(WORD_REGISTER_OPERATIONS
2844 && known_equal_after_align_down (x_size - 1,
2845 new_size - 1,
2846 UNITS_PER_WORD)))
2847 || known_eq (x_size, new_size))
2848 )
2849 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2850 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2851 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2852 else
2853 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2854 }
2855
2856 return x;
2857
2858 case MEM:
2859 /* Our only special processing is to pass the mode of the MEM to our
2860 recursive call and copy the flags. While we are here, handle this
2861 case more efficiently. */
2862
2863 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2864 for_costs);
2865 if (for_costs
2866 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2867 && !memory_address_p (GET_MODE (x), new_rtx))
2868 note_reg_elim_costly (XEXP (x, 0), insn);
2869
2870 return replace_equiv_address_nv (x, new_rtx);
2871
2872 case USE:
2873 /* Handle insn_list USE that a call to a pure function may generate. */
2874 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2875 for_costs);
2876 if (new_rtx != XEXP (x, 0))
2877 return gen_rtx_USE (GET_MODE (x), new_rtx);
2878 return x;
2879
2880 case CLOBBER:
2881 case ASM_OPERANDS:
2882 gcc_assert (insn && DEBUG_INSN_P (insn));
2883 break;
2884
2885 case SET:
2886 gcc_unreachable ();
2887
2888 default:
2889 break;
2890 }
2891
2892 /* Process each of our operands recursively. If any have changed, make a
2893 copy of the rtx. */
2894 fmt = GET_RTX_FORMAT (code);
2895 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2896 {
2897 if (*fmt == 'e')
2898 {
2899 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2900 for_costs);
2901 if (new_rtx != XEXP (x, i) && ! copied)
2902 {
2903 x = shallow_copy_rtx (x);
2904 copied = 1;
2905 }
2906 XEXP (x, i) = new_rtx;
2907 }
2908 else if (*fmt == 'E')
2909 {
2910 int copied_vec = 0;
2911 for (j = 0; j < XVECLEN (x, i); j++)
2912 {
2913 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2914 for_costs);
2915 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2916 {
2917 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2918 XVEC (x, i)->elem);
2919 if (! copied)
2920 {
2921 x = shallow_copy_rtx (x);
2922 copied = 1;
2923 }
2924 XVEC (x, i) = new_v;
2925 copied_vec = 1;
2926 }
2927 XVECEXP (x, i, j) = new_rtx;
2928 }
2929 }
2930 }
2931
2932 return x;
2933 }
2934
2935 rtx
2936 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2937 {
2938 if (reg_eliminate == NULL)
2939 {
2940 gcc_assert (targetm.no_register_allocation);
2941 return x;
2942 }
2943 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2944 }
2945
2946 /* Scan rtx X for modifications of elimination target registers. Update
2947 the table of eliminables to reflect the changed state. MEM_MODE is
2948 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2949
2950 static void
2951 elimination_effects (rtx x, machine_mode mem_mode)
2952 {
2953 enum rtx_code code = GET_CODE (x);
2954 struct elim_table *ep;
2955 int regno;
2956 int i, j;
2957 const char *fmt;
2958
2959 switch (code)
2960 {
2961 CASE_CONST_ANY:
2962 case CONST:
2963 case SYMBOL_REF:
2964 case CODE_LABEL:
2965 case PC:
2966 case CC0:
2967 case ASM_INPUT:
2968 case ADDR_VEC:
2969 case ADDR_DIFF_VEC:
2970 case RETURN:
2971 return;
2972
2973 case REG:
2974 regno = REGNO (x);
2975
2976 /* First handle the case where we encounter a bare register that
2977 is eliminable. Replace it with a PLUS. */
2978 if (regno < FIRST_PSEUDO_REGISTER)
2979 {
2980 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2981 ep++)
2982 if (ep->from_rtx == x && ep->can_eliminate)
2983 {
2984 if (! mem_mode)
2985 ep->ref_outside_mem = 1;
2986 return;
2987 }
2988
2989 }
2990 else if (reg_renumber[regno] < 0
2991 && reg_equivs
2992 && reg_equiv_constant (regno)
2993 && ! function_invariant_p (reg_equiv_constant (regno)))
2994 elimination_effects (reg_equiv_constant (regno), mem_mode);
2995 return;
2996
2997 case PRE_INC:
2998 case POST_INC:
2999 case PRE_DEC:
3000 case POST_DEC:
3001 case POST_MODIFY:
3002 case PRE_MODIFY:
3003 /* If we modify the source of an elimination rule, disable it. */
3004 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3005 if (ep->from_rtx == XEXP (x, 0))
3006 ep->can_eliminate = 0;
3007
3008 /* If we modify the target of an elimination rule by adding a constant,
3009 update its offset. If we modify the target in any other way, we'll
3010 have to disable the rule as well. */
3011 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3012 if (ep->to_rtx == XEXP (x, 0))
3013 {
3014 poly_int64 size = GET_MODE_SIZE (mem_mode);
3015
3016 /* If more bytes than MEM_MODE are pushed, account for them. */
3017 #ifdef PUSH_ROUNDING
3018 if (ep->to_rtx == stack_pointer_rtx)
3019 size = PUSH_ROUNDING (size);
3020 #endif
3021 if (code == PRE_DEC || code == POST_DEC)
3022 ep->offset += size;
3023 else if (code == PRE_INC || code == POST_INC)
3024 ep->offset -= size;
3025 else if (code == PRE_MODIFY || code == POST_MODIFY)
3026 {
3027 if (GET_CODE (XEXP (x, 1)) == PLUS
3028 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3029 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3030 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3031 else
3032 ep->can_eliminate = 0;
3033 }
3034 }
3035
3036 /* These two aren't unary operators. */
3037 if (code == POST_MODIFY || code == PRE_MODIFY)
3038 break;
3039
3040 /* Fall through to generic unary operation case. */
3041 gcc_fallthrough ();
3042 case STRICT_LOW_PART:
3043 case NEG: case NOT:
3044 case SIGN_EXTEND: case ZERO_EXTEND:
3045 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3046 case FLOAT: case FIX:
3047 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3048 case ABS:
3049 case SQRT:
3050 case FFS:
3051 case CLZ:
3052 case CTZ:
3053 case POPCOUNT:
3054 case PARITY:
3055 case BSWAP:
3056 elimination_effects (XEXP (x, 0), mem_mode);
3057 return;
3058
3059 case SUBREG:
3060 if (REG_P (SUBREG_REG (x))
3061 && !paradoxical_subreg_p (x)
3062 && reg_equivs
3063 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3064 return;
3065
3066 elimination_effects (SUBREG_REG (x), mem_mode);
3067 return;
3068
3069 case USE:
3070 /* If using a register that is the source of an eliminate we still
3071 think can be performed, note it cannot be performed since we don't
3072 know how this register is used. */
3073 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3074 if (ep->from_rtx == XEXP (x, 0))
3075 ep->can_eliminate = 0;
3076
3077 elimination_effects (XEXP (x, 0), mem_mode);
3078 return;
3079
3080 case CLOBBER:
3081 /* If clobbering a register that is the replacement register for an
3082 elimination we still think can be performed, note that it cannot
3083 be performed. Otherwise, we need not be concerned about it. */
3084 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3085 if (ep->to_rtx == XEXP (x, 0))
3086 ep->can_eliminate = 0;
3087
3088 elimination_effects (XEXP (x, 0), mem_mode);
3089 return;
3090
3091 case SET:
3092 /* Check for setting a register that we know about. */
3093 if (REG_P (SET_DEST (x)))
3094 {
3095 /* See if this is setting the replacement register for an
3096 elimination.
3097
3098 If DEST is the hard frame pointer, we do nothing because we
3099 assume that all assignments to the frame pointer are for
3100 non-local gotos and are being done at a time when they are valid
3101 and do not disturb anything else. Some machines want to
3102 eliminate a fake argument pointer (or even a fake frame pointer)
3103 with either the real frame or the stack pointer. Assignments to
3104 the hard frame pointer must not prevent this elimination. */
3105
3106 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3107 ep++)
3108 if (ep->to_rtx == SET_DEST (x)
3109 && SET_DEST (x) != hard_frame_pointer_rtx)
3110 {
3111 /* If it is being incremented, adjust the offset. Otherwise,
3112 this elimination can't be done. */
3113 rtx src = SET_SRC (x);
3114
3115 if (GET_CODE (src) == PLUS
3116 && XEXP (src, 0) == SET_DEST (x)
3117 && CONST_INT_P (XEXP (src, 1)))
3118 ep->offset -= INTVAL (XEXP (src, 1));
3119 else
3120 ep->can_eliminate = 0;
3121 }
3122 }
3123
3124 elimination_effects (SET_DEST (x), VOIDmode);
3125 elimination_effects (SET_SRC (x), VOIDmode);
3126 return;
3127
3128 case MEM:
3129 /* Our only special processing is to pass the mode of the MEM to our
3130 recursive call. */
3131 elimination_effects (XEXP (x, 0), GET_MODE (x));
3132 return;
3133
3134 default:
3135 break;
3136 }
3137
3138 fmt = GET_RTX_FORMAT (code);
3139 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3140 {
3141 if (*fmt == 'e')
3142 elimination_effects (XEXP (x, i), mem_mode);
3143 else if (*fmt == 'E')
3144 for (j = 0; j < XVECLEN (x, i); j++)
3145 elimination_effects (XVECEXP (x, i, j), mem_mode);
3146 }
3147 }
3148
3149 /* Descend through rtx X and verify that no references to eliminable registers
3150 remain. If any do remain, mark the involved register as not
3151 eliminable. */
3152
3153 static void
3154 check_eliminable_occurrences (rtx x)
3155 {
3156 const char *fmt;
3157 int i;
3158 enum rtx_code code;
3159
3160 if (x == 0)
3161 return;
3162
3163 code = GET_CODE (x);
3164
3165 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3166 {
3167 struct elim_table *ep;
3168
3169 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3170 if (ep->from_rtx == x)
3171 ep->can_eliminate = 0;
3172 return;
3173 }
3174
3175 fmt = GET_RTX_FORMAT (code);
3176 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3177 {
3178 if (*fmt == 'e')
3179 check_eliminable_occurrences (XEXP (x, i));
3180 else if (*fmt == 'E')
3181 {
3182 int j;
3183 for (j = 0; j < XVECLEN (x, i); j++)
3184 check_eliminable_occurrences (XVECEXP (x, i, j));
3185 }
3186 }
3187 }
3188 \f
3189 /* Scan INSN and eliminate all eliminable registers in it.
3190
3191 If REPLACE is nonzero, do the replacement destructively. Also
3192 delete the insn as dead it if it is setting an eliminable register.
3193
3194 If REPLACE is zero, do all our allocations in reload_obstack.
3195
3196 If no eliminations were done and this insn doesn't require any elimination
3197 processing (these are not identical conditions: it might be updating sp,
3198 but not referencing fp; this needs to be seen during reload_as_needed so
3199 that the offset between fp and sp can be taken into consideration), zero
3200 is returned. Otherwise, 1 is returned. */
3201
3202 static int
3203 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3204 {
3205 int icode = recog_memoized (insn);
3206 rtx old_body = PATTERN (insn);
3207 int insn_is_asm = asm_noperands (old_body) >= 0;
3208 rtx old_set = single_set (insn);
3209 rtx new_body;
3210 int val = 0;
3211 int i;
3212 rtx substed_operand[MAX_RECOG_OPERANDS];
3213 rtx orig_operand[MAX_RECOG_OPERANDS];
3214 struct elim_table *ep;
3215 rtx plus_src, plus_cst_src;
3216
3217 if (! insn_is_asm && icode < 0)
3218 {
3219 gcc_assert (DEBUG_INSN_P (insn)
3220 || GET_CODE (PATTERN (insn)) == USE
3221 || GET_CODE (PATTERN (insn)) == CLOBBER
3222 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3223 if (DEBUG_BIND_INSN_P (insn))
3224 INSN_VAR_LOCATION_LOC (insn)
3225 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3226 return 0;
3227 }
3228
3229 /* We allow one special case which happens to work on all machines we
3230 currently support: a single set with the source or a REG_EQUAL
3231 note being a PLUS of an eliminable register and a constant. */
3232 plus_src = plus_cst_src = 0;
3233 if (old_set && REG_P (SET_DEST (old_set)))
3234 {
3235 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3236 plus_src = SET_SRC (old_set);
3237 /* First see if the source is of the form (plus (...) CST). */
3238 if (plus_src
3239 && CONST_INT_P (XEXP (plus_src, 1)))
3240 plus_cst_src = plus_src;
3241 else if (REG_P (SET_SRC (old_set))
3242 || plus_src)
3243 {
3244 /* Otherwise, see if we have a REG_EQUAL note of the form
3245 (plus (...) CST). */
3246 rtx links;
3247 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3248 {
3249 if ((REG_NOTE_KIND (links) == REG_EQUAL
3250 || REG_NOTE_KIND (links) == REG_EQUIV)
3251 && GET_CODE (XEXP (links, 0)) == PLUS
3252 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3253 {
3254 plus_cst_src = XEXP (links, 0);
3255 break;
3256 }
3257 }
3258 }
3259
3260 /* Check that the first operand of the PLUS is a hard reg or
3261 the lowpart subreg of one. */
3262 if (plus_cst_src)
3263 {
3264 rtx reg = XEXP (plus_cst_src, 0);
3265 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3266 reg = SUBREG_REG (reg);
3267
3268 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3269 plus_cst_src = 0;
3270 }
3271 }
3272 if (plus_cst_src)
3273 {
3274 rtx reg = XEXP (plus_cst_src, 0);
3275 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3276
3277 if (GET_CODE (reg) == SUBREG)
3278 reg = SUBREG_REG (reg);
3279
3280 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3281 if (ep->from_rtx == reg && ep->can_eliminate)
3282 {
3283 rtx to_rtx = ep->to_rtx;
3284 offset += ep->offset;
3285 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3286
3287 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3288 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3289 to_rtx);
3290 /* If we have a nonzero offset, and the source is already
3291 a simple REG, the following transformation would
3292 increase the cost of the insn by replacing a simple REG
3293 with (plus (reg sp) CST). So try only when we already
3294 had a PLUS before. */
3295 if (known_eq (offset, 0) || plus_src)
3296 {
3297 rtx new_src = plus_constant (GET_MODE (to_rtx),
3298 to_rtx, offset);
3299
3300 new_body = old_body;
3301 if (! replace)
3302 {
3303 new_body = copy_insn (old_body);
3304 if (REG_NOTES (insn))
3305 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3306 }
3307 PATTERN (insn) = new_body;
3308 old_set = single_set (insn);
3309
3310 /* First see if this insn remains valid when we make the
3311 change. If not, try to replace the whole pattern with
3312 a simple set (this may help if the original insn was a
3313 PARALLEL that was only recognized as single_set due to
3314 REG_UNUSED notes). If this isn't valid either, keep
3315 the INSN_CODE the same and let reload fix it up. */
3316 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3317 {
3318 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3319
3320 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3321 SET_SRC (old_set) = new_src;
3322 }
3323 }
3324 else
3325 break;
3326
3327 val = 1;
3328 /* This can't have an effect on elimination offsets, so skip right
3329 to the end. */
3330 goto done;
3331 }
3332 }
3333
3334 /* Determine the effects of this insn on elimination offsets. */
3335 elimination_effects (old_body, VOIDmode);
3336
3337 /* Eliminate all eliminable registers occurring in operands that
3338 can be handled by reload. */
3339 extract_insn (insn);
3340 for (i = 0; i < recog_data.n_operands; i++)
3341 {
3342 orig_operand[i] = recog_data.operand[i];
3343 substed_operand[i] = recog_data.operand[i];
3344
3345 /* For an asm statement, every operand is eliminable. */
3346 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3347 {
3348 bool is_set_src, in_plus;
3349
3350 /* Check for setting a register that we know about. */
3351 if (recog_data.operand_type[i] != OP_IN
3352 && REG_P (orig_operand[i]))
3353 {
3354 /* If we are assigning to a register that can be eliminated, it
3355 must be as part of a PARALLEL, since the code above handles
3356 single SETs. We must indicate that we can no longer
3357 eliminate this reg. */
3358 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3359 ep++)
3360 if (ep->from_rtx == orig_operand[i])
3361 ep->can_eliminate = 0;
3362 }
3363
3364 /* Companion to the above plus substitution, we can allow
3365 invariants as the source of a plain move. */
3366 is_set_src = false;
3367 if (old_set
3368 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3369 is_set_src = true;
3370 in_plus = false;
3371 if (plus_src
3372 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3373 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3374 in_plus = true;
3375
3376 substed_operand[i]
3377 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3378 replace ? insn : NULL_RTX,
3379 is_set_src || in_plus, false);
3380 if (substed_operand[i] != orig_operand[i])
3381 val = 1;
3382 /* Terminate the search in check_eliminable_occurrences at
3383 this point. */
3384 *recog_data.operand_loc[i] = 0;
3385
3386 /* If an output operand changed from a REG to a MEM and INSN is an
3387 insn, write a CLOBBER insn. */
3388 if (recog_data.operand_type[i] != OP_IN
3389 && REG_P (orig_operand[i])
3390 && MEM_P (substed_operand[i])
3391 && replace)
3392 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3393 }
3394 }
3395
3396 for (i = 0; i < recog_data.n_dups; i++)
3397 *recog_data.dup_loc[i]
3398 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3399
3400 /* If any eliminable remain, they aren't eliminable anymore. */
3401 check_eliminable_occurrences (old_body);
3402
3403 /* Substitute the operands; the new values are in the substed_operand
3404 array. */
3405 for (i = 0; i < recog_data.n_operands; i++)
3406 *recog_data.operand_loc[i] = substed_operand[i];
3407 for (i = 0; i < recog_data.n_dups; i++)
3408 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3409
3410 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3411 re-recognize the insn. We do this in case we had a simple addition
3412 but now can do this as a load-address. This saves an insn in this
3413 common case.
3414 If re-recognition fails, the old insn code number will still be used,
3415 and some register operands may have changed into PLUS expressions.
3416 These will be handled by find_reloads by loading them into a register
3417 again. */
3418
3419 if (val)
3420 {
3421 /* If we aren't replacing things permanently and we changed something,
3422 make another copy to ensure that all the RTL is new. Otherwise
3423 things can go wrong if find_reload swaps commutative operands
3424 and one is inside RTL that has been copied while the other is not. */
3425 new_body = old_body;
3426 if (! replace)
3427 {
3428 new_body = copy_insn (old_body);
3429 if (REG_NOTES (insn))
3430 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3431 }
3432 PATTERN (insn) = new_body;
3433
3434 /* If we had a move insn but now we don't, rerecognize it. This will
3435 cause spurious re-recognition if the old move had a PARALLEL since
3436 the new one still will, but we can't call single_set without
3437 having put NEW_BODY into the insn and the re-recognition won't
3438 hurt in this rare case. */
3439 /* ??? Why this huge if statement - why don't we just rerecognize the
3440 thing always? */
3441 if (! insn_is_asm
3442 && old_set != 0
3443 && ((REG_P (SET_SRC (old_set))
3444 && (GET_CODE (new_body) != SET
3445 || !REG_P (SET_SRC (new_body))))
3446 /* If this was a load from or store to memory, compare
3447 the MEM in recog_data.operand to the one in the insn.
3448 If they are not equal, then rerecognize the insn. */
3449 || (old_set != 0
3450 && ((MEM_P (SET_SRC (old_set))
3451 && SET_SRC (old_set) != recog_data.operand[1])
3452 || (MEM_P (SET_DEST (old_set))
3453 && SET_DEST (old_set) != recog_data.operand[0])))
3454 /* If this was an add insn before, rerecognize. */
3455 || GET_CODE (SET_SRC (old_set)) == PLUS))
3456 {
3457 int new_icode = recog (PATTERN (insn), insn, 0);
3458 if (new_icode >= 0)
3459 INSN_CODE (insn) = new_icode;
3460 }
3461 }
3462
3463 /* Restore the old body. If there were any changes to it, we made a copy
3464 of it while the changes were still in place, so we'll correctly return
3465 a modified insn below. */
3466 if (! replace)
3467 {
3468 /* Restore the old body. */
3469 for (i = 0; i < recog_data.n_operands; i++)
3470 /* Restoring a top-level match_parallel would clobber the new_body
3471 we installed in the insn. */
3472 if (recog_data.operand_loc[i] != &PATTERN (insn))
3473 *recog_data.operand_loc[i] = orig_operand[i];
3474 for (i = 0; i < recog_data.n_dups; i++)
3475 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3476 }
3477
3478 /* Update all elimination pairs to reflect the status after the current
3479 insn. The changes we make were determined by the earlier call to
3480 elimination_effects.
3481
3482 We also detect cases where register elimination cannot be done,
3483 namely, if a register would be both changed and referenced outside a MEM
3484 in the resulting insn since such an insn is often undefined and, even if
3485 not, we cannot know what meaning will be given to it. Note that it is
3486 valid to have a register used in an address in an insn that changes it
3487 (presumably with a pre- or post-increment or decrement).
3488
3489 If anything changes, return nonzero. */
3490
3491 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3492 {
3493 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3494 ep->can_eliminate = 0;
3495
3496 ep->ref_outside_mem = 0;
3497
3498 if (maybe_ne (ep->previous_offset, ep->offset))
3499 val = 1;
3500 }
3501
3502 done:
3503 /* If we changed something, perform elimination in REG_NOTES. This is
3504 needed even when REPLACE is zero because a REG_DEAD note might refer
3505 to a register that we eliminate and could cause a different number
3506 of spill registers to be needed in the final reload pass than in
3507 the pre-passes. */
3508 if (val && REG_NOTES (insn) != 0)
3509 REG_NOTES (insn)
3510 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3511 false);
3512
3513 return val;
3514 }
3515
3516 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3517 register allocator. INSN is the instruction we need to examine, we perform
3518 eliminations in its operands and record cases where eliminating a reg with
3519 an invariant equivalence would add extra cost. */
3520
3521 #pragma GCC diagnostic push
3522 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3523 static void
3524 elimination_costs_in_insn (rtx_insn *insn)
3525 {
3526 int icode = recog_memoized (insn);
3527 rtx old_body = PATTERN (insn);
3528 int insn_is_asm = asm_noperands (old_body) >= 0;
3529 rtx old_set = single_set (insn);
3530 int i;
3531 rtx orig_operand[MAX_RECOG_OPERANDS];
3532 rtx orig_dup[MAX_RECOG_OPERANDS];
3533 struct elim_table *ep;
3534 rtx plus_src, plus_cst_src;
3535 bool sets_reg_p;
3536
3537 if (! insn_is_asm && icode < 0)
3538 {
3539 gcc_assert (DEBUG_INSN_P (insn)
3540 || GET_CODE (PATTERN (insn)) == USE
3541 || GET_CODE (PATTERN (insn)) == CLOBBER
3542 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3543 return;
3544 }
3545
3546 if (old_set != 0 && REG_P (SET_DEST (old_set))
3547 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3548 {
3549 /* Check for setting an eliminable register. */
3550 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3551 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3552 return;
3553 }
3554
3555 /* We allow one special case which happens to work on all machines we
3556 currently support: a single set with the source or a REG_EQUAL
3557 note being a PLUS of an eliminable register and a constant. */
3558 plus_src = plus_cst_src = 0;
3559 sets_reg_p = false;
3560 if (old_set && REG_P (SET_DEST (old_set)))
3561 {
3562 sets_reg_p = true;
3563 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3564 plus_src = SET_SRC (old_set);
3565 /* First see if the source is of the form (plus (...) CST). */
3566 if (plus_src
3567 && CONST_INT_P (XEXP (plus_src, 1)))
3568 plus_cst_src = plus_src;
3569 else if (REG_P (SET_SRC (old_set))
3570 || plus_src)
3571 {
3572 /* Otherwise, see if we have a REG_EQUAL note of the form
3573 (plus (...) CST). */
3574 rtx links;
3575 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3576 {
3577 if ((REG_NOTE_KIND (links) == REG_EQUAL
3578 || REG_NOTE_KIND (links) == REG_EQUIV)
3579 && GET_CODE (XEXP (links, 0)) == PLUS
3580 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3581 {
3582 plus_cst_src = XEXP (links, 0);
3583 break;
3584 }
3585 }
3586 }
3587 }
3588
3589 /* Determine the effects of this insn on elimination offsets. */
3590 elimination_effects (old_body, VOIDmode);
3591
3592 /* Eliminate all eliminable registers occurring in operands that
3593 can be handled by reload. */
3594 extract_insn (insn);
3595 int n_dups = recog_data.n_dups;
3596 for (i = 0; i < n_dups; i++)
3597 orig_dup[i] = *recog_data.dup_loc[i];
3598
3599 int n_operands = recog_data.n_operands;
3600 for (i = 0; i < n_operands; i++)
3601 {
3602 orig_operand[i] = recog_data.operand[i];
3603
3604 /* For an asm statement, every operand is eliminable. */
3605 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3606 {
3607 bool is_set_src, in_plus;
3608
3609 /* Check for setting a register that we know about. */
3610 if (recog_data.operand_type[i] != OP_IN
3611 && REG_P (orig_operand[i]))
3612 {
3613 /* If we are assigning to a register that can be eliminated, it
3614 must be as part of a PARALLEL, since the code above handles
3615 single SETs. We must indicate that we can no longer
3616 eliminate this reg. */
3617 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3618 ep++)
3619 if (ep->from_rtx == orig_operand[i])
3620 ep->can_eliminate = 0;
3621 }
3622
3623 /* Companion to the above plus substitution, we can allow
3624 invariants as the source of a plain move. */
3625 is_set_src = false;
3626 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3627 is_set_src = true;
3628 if (is_set_src && !sets_reg_p)
3629 note_reg_elim_costly (SET_SRC (old_set), insn);
3630 in_plus = false;
3631 if (plus_src && sets_reg_p
3632 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3633 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3634 in_plus = true;
3635
3636 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3637 NULL_RTX,
3638 is_set_src || in_plus, true);
3639 /* Terminate the search in check_eliminable_occurrences at
3640 this point. */
3641 *recog_data.operand_loc[i] = 0;
3642 }
3643 }
3644
3645 for (i = 0; i < n_dups; i++)
3646 *recog_data.dup_loc[i]
3647 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3648
3649 /* If any eliminable remain, they aren't eliminable anymore. */
3650 check_eliminable_occurrences (old_body);
3651
3652 /* Restore the old body. */
3653 for (i = 0; i < n_operands; i++)
3654 *recog_data.operand_loc[i] = orig_operand[i];
3655 for (i = 0; i < n_dups; i++)
3656 *recog_data.dup_loc[i] = orig_dup[i];
3657
3658 /* Update all elimination pairs to reflect the status after the current
3659 insn. The changes we make were determined by the earlier call to
3660 elimination_effects. */
3661
3662 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 {
3664 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3665 ep->can_eliminate = 0;
3666
3667 ep->ref_outside_mem = 0;
3668 }
3669
3670 return;
3671 }
3672 #pragma GCC diagnostic pop
3673
3674 /* Loop through all elimination pairs.
3675 Recalculate the number not at initial offset.
3676
3677 Compute the maximum offset (minimum offset if the stack does not
3678 grow downward) for each elimination pair. */
3679
3680 static void
3681 update_eliminable_offsets (void)
3682 {
3683 struct elim_table *ep;
3684
3685 num_not_at_initial_offset = 0;
3686 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3687 {
3688 ep->previous_offset = ep->offset;
3689 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3690 num_not_at_initial_offset++;
3691 }
3692 }
3693
3694 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3695 replacement we currently believe is valid, mark it as not eliminable if X
3696 modifies DEST in any way other than by adding a constant integer to it.
3697
3698 If DEST is the frame pointer, we do nothing because we assume that
3699 all assignments to the hard frame pointer are nonlocal gotos and are being
3700 done at a time when they are valid and do not disturb anything else.
3701 Some machines want to eliminate a fake argument pointer with either the
3702 frame or stack pointer. Assignments to the hard frame pointer must not
3703 prevent this elimination.
3704
3705 Called via note_stores from reload before starting its passes to scan
3706 the insns of the function. */
3707
3708 static void
3709 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3710 {
3711 unsigned int i;
3712
3713 /* A SUBREG of a hard register here is just changing its mode. We should
3714 not see a SUBREG of an eliminable hard register, but check just in
3715 case. */
3716 if (GET_CODE (dest) == SUBREG)
3717 dest = SUBREG_REG (dest);
3718
3719 if (dest == hard_frame_pointer_rtx)
3720 return;
3721
3722 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3723 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3724 && (GET_CODE (x) != SET
3725 || GET_CODE (SET_SRC (x)) != PLUS
3726 || XEXP (SET_SRC (x), 0) != dest
3727 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3728 {
3729 reg_eliminate[i].can_eliminate_previous
3730 = reg_eliminate[i].can_eliminate = 0;
3731 num_eliminable--;
3732 }
3733 }
3734
3735 /* Verify that the initial elimination offsets did not change since the
3736 last call to set_initial_elim_offsets. This is used to catch cases
3737 where something illegal happened during reload_as_needed that could
3738 cause incorrect code to be generated if we did not check for it. */
3739
3740 static bool
3741 verify_initial_elim_offsets (void)
3742 {
3743 poly_int64 t;
3744 struct elim_table *ep;
3745
3746 if (!num_eliminable)
3747 return true;
3748
3749 targetm.compute_frame_layout ();
3750 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3751 {
3752 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3753 if (maybe_ne (t, ep->initial_offset))
3754 return false;
3755 }
3756
3757 return true;
3758 }
3759
3760 /* Reset all offsets on eliminable registers to their initial values. */
3761
3762 static void
3763 set_initial_elim_offsets (void)
3764 {
3765 struct elim_table *ep = reg_eliminate;
3766
3767 targetm.compute_frame_layout ();
3768 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3769 {
3770 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3771 ep->previous_offset = ep->offset = ep->initial_offset;
3772 }
3773
3774 num_not_at_initial_offset = 0;
3775 }
3776
3777 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3778
3779 static void
3780 set_initial_eh_label_offset (rtx label)
3781 {
3782 set_label_offsets (label, NULL, 1);
3783 }
3784
3785 /* Initialize the known label offsets.
3786 Set a known offset for each forced label to be at the initial offset
3787 of each elimination. We do this because we assume that all
3788 computed jumps occur from a location where each elimination is
3789 at its initial offset.
3790 For all other labels, show that we don't know the offsets. */
3791
3792 static void
3793 set_initial_label_offsets (void)
3794 {
3795 memset (offsets_known_at, 0, num_labels);
3796
3797 unsigned int i;
3798 rtx_insn *insn;
3799 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3800 set_label_offsets (insn, NULL, 1);
3801
3802 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3803 if (x->insn ())
3804 set_label_offsets (x->insn (), NULL, 1);
3805
3806 for_each_eh_label (set_initial_eh_label_offset);
3807 }
3808
3809 /* Set all elimination offsets to the known values for the code label given
3810 by INSN. */
3811
3812 static void
3813 set_offsets_for_label (rtx_insn *insn)
3814 {
3815 unsigned int i;
3816 int label_nr = CODE_LABEL_NUMBER (insn);
3817 struct elim_table *ep;
3818
3819 num_not_at_initial_offset = 0;
3820 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3821 {
3822 ep->offset = ep->previous_offset
3823 = offsets_at[label_nr - first_label_num][i];
3824 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3825 num_not_at_initial_offset++;
3826 }
3827 }
3828
3829 /* See if anything that happened changes which eliminations are valid.
3830 For example, on the SPARC, whether or not the frame pointer can
3831 be eliminated can depend on what registers have been used. We need
3832 not check some conditions again (such as flag_omit_frame_pointer)
3833 since they can't have changed. */
3834
3835 static void
3836 update_eliminables (HARD_REG_SET *pset)
3837 {
3838 int previous_frame_pointer_needed = frame_pointer_needed;
3839 struct elim_table *ep;
3840
3841 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3842 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3843 && targetm.frame_pointer_required ())
3844 || ! targetm.can_eliminate (ep->from, ep->to)
3845 )
3846 ep->can_eliminate = 0;
3847
3848 /* Look for the case where we have discovered that we can't replace
3849 register A with register B and that means that we will now be
3850 trying to replace register A with register C. This means we can
3851 no longer replace register C with register B and we need to disable
3852 such an elimination, if it exists. This occurs often with A == ap,
3853 B == sp, and C == fp. */
3854
3855 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3856 {
3857 struct elim_table *op;
3858 int new_to = -1;
3859
3860 if (! ep->can_eliminate && ep->can_eliminate_previous)
3861 {
3862 /* Find the current elimination for ep->from, if there is a
3863 new one. */
3864 for (op = reg_eliminate;
3865 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3866 if (op->from == ep->from && op->can_eliminate)
3867 {
3868 new_to = op->to;
3869 break;
3870 }
3871
3872 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3873 disable it. */
3874 for (op = reg_eliminate;
3875 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3876 if (op->from == new_to && op->to == ep->to)
3877 op->can_eliminate = 0;
3878 }
3879 }
3880
3881 /* See if any registers that we thought we could eliminate the previous
3882 time are no longer eliminable. If so, something has changed and we
3883 must spill the register. Also, recompute the number of eliminable
3884 registers and see if the frame pointer is needed; it is if there is
3885 no elimination of the frame pointer that we can perform. */
3886
3887 frame_pointer_needed = 1;
3888 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3889 {
3890 if (ep->can_eliminate
3891 && ep->from == FRAME_POINTER_REGNUM
3892 && ep->to != HARD_FRAME_POINTER_REGNUM
3893 && (! SUPPORTS_STACK_ALIGNMENT
3894 || ! crtl->stack_realign_needed))
3895 frame_pointer_needed = 0;
3896
3897 if (! ep->can_eliminate && ep->can_eliminate_previous)
3898 {
3899 ep->can_eliminate_previous = 0;
3900 SET_HARD_REG_BIT (*pset, ep->from);
3901 num_eliminable--;
3902 }
3903 }
3904
3905 /* If we didn't need a frame pointer last time, but we do now, spill
3906 the hard frame pointer. */
3907 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3908 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3909 }
3910
3911 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3912 Return true iff a register was spilled. */
3913
3914 static bool
3915 update_eliminables_and_spill (void)
3916 {
3917 int i;
3918 bool did_spill = false;
3919 HARD_REG_SET to_spill;
3920 CLEAR_HARD_REG_SET (to_spill);
3921 update_eliminables (&to_spill);
3922 used_spill_regs &= ~to_spill;
3923
3924 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3925 if (TEST_HARD_REG_BIT (to_spill, i))
3926 {
3927 spill_hard_reg (i, 1);
3928 did_spill = true;
3929
3930 /* Regardless of the state of spills, if we previously had
3931 a register that we thought we could eliminate, but now
3932 cannot eliminate, we must run another pass.
3933
3934 Consider pseudos which have an entry in reg_equiv_* which
3935 reference an eliminable register. We must make another pass
3936 to update reg_equiv_* so that we do not substitute in the
3937 old value from when we thought the elimination could be
3938 performed. */
3939 }
3940 return did_spill;
3941 }
3942
3943 /* Return true if X is used as the target register of an elimination. */
3944
3945 bool
3946 elimination_target_reg_p (rtx x)
3947 {
3948 struct elim_table *ep;
3949
3950 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3951 if (ep->to_rtx == x && ep->can_eliminate)
3952 return true;
3953
3954 return false;
3955 }
3956
3957 /* Initialize the table of registers to eliminate.
3958 Pre-condition: global flag frame_pointer_needed has been set before
3959 calling this function. */
3960
3961 static void
3962 init_elim_table (void)
3963 {
3964 struct elim_table *ep;
3965 const struct elim_table_1 *ep1;
3966
3967 if (!reg_eliminate)
3968 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3969
3970 num_eliminable = 0;
3971
3972 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3973 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3974 {
3975 ep->from = ep1->from;
3976 ep->to = ep1->to;
3977 ep->can_eliminate = ep->can_eliminate_previous
3978 = (targetm.can_eliminate (ep->from, ep->to)
3979 && ! (ep->to == STACK_POINTER_REGNUM
3980 && frame_pointer_needed
3981 && (! SUPPORTS_STACK_ALIGNMENT
3982 || ! stack_realign_fp)));
3983 }
3984
3985 /* Count the number of eliminable registers and build the FROM and TO
3986 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3987 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3988 We depend on this. */
3989 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3990 {
3991 num_eliminable += ep->can_eliminate;
3992 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3993 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3994 }
3995 }
3996
3997 /* Find all the pseudo registers that didn't get hard regs
3998 but do have known equivalent constants or memory slots.
3999 These include parameters (known equivalent to parameter slots)
4000 and cse'd or loop-moved constant memory addresses.
4001
4002 Record constant equivalents in reg_equiv_constant
4003 so they will be substituted by find_reloads.
4004 Record memory equivalents in reg_mem_equiv so they can
4005 be substituted eventually by altering the REG-rtx's. */
4006
4007 static void
4008 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4009 {
4010 int i;
4011 rtx_insn *insn;
4012
4013 grow_reg_equivs ();
4014 if (do_subregs)
4015 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4016 else
4017 reg_max_ref_mode = NULL;
4018
4019 num_eliminable_invariants = 0;
4020
4021 first_label_num = get_first_label_num ();
4022 num_labels = max_label_num () - first_label_num;
4023
4024 /* Allocate the tables used to store offset information at labels. */
4025 offsets_known_at = XNEWVEC (char, num_labels);
4026 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4027 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4028
4029 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4030 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4031 find largest such for each pseudo. FIRST is the head of the insn
4032 list. */
4033
4034 for (insn = first; insn; insn = NEXT_INSN (insn))
4035 {
4036 rtx set = single_set (insn);
4037
4038 /* We may introduce USEs that we want to remove at the end, so
4039 we'll mark them with QImode. Make sure there are no
4040 previously-marked insns left by say regmove. */
4041 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4042 && GET_MODE (insn) != VOIDmode)
4043 PUT_MODE (insn, VOIDmode);
4044
4045 if (do_subregs && NONDEBUG_INSN_P (insn))
4046 scan_paradoxical_subregs (PATTERN (insn));
4047
4048 if (set != 0 && REG_P (SET_DEST (set)))
4049 {
4050 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4051 rtx x;
4052
4053 if (! note)
4054 continue;
4055
4056 i = REGNO (SET_DEST (set));
4057 x = XEXP (note, 0);
4058
4059 if (i <= LAST_VIRTUAL_REGISTER)
4060 continue;
4061
4062 /* If flag_pic and we have constant, verify it's legitimate. */
4063 if (!CONSTANT_P (x)
4064 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4065 {
4066 /* It can happen that a REG_EQUIV note contains a MEM
4067 that is not a legitimate memory operand. As later
4068 stages of reload assume that all addresses found
4069 in the reg_equiv_* arrays were originally legitimate,
4070 we ignore such REG_EQUIV notes. */
4071 if (memory_operand (x, VOIDmode))
4072 {
4073 /* Always unshare the equivalence, so we can
4074 substitute into this insn without touching the
4075 equivalence. */
4076 reg_equiv_memory_loc (i) = copy_rtx (x);
4077 }
4078 else if (function_invariant_p (x))
4079 {
4080 machine_mode mode;
4081
4082 mode = GET_MODE (SET_DEST (set));
4083 if (GET_CODE (x) == PLUS)
4084 {
4085 /* This is PLUS of frame pointer and a constant,
4086 and might be shared. Unshare it. */
4087 reg_equiv_invariant (i) = copy_rtx (x);
4088 num_eliminable_invariants++;
4089 }
4090 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4091 {
4092 reg_equiv_invariant (i) = x;
4093 num_eliminable_invariants++;
4094 }
4095 else if (targetm.legitimate_constant_p (mode, x))
4096 reg_equiv_constant (i) = x;
4097 else
4098 {
4099 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4100 if (! reg_equiv_memory_loc (i))
4101 reg_equiv_init (i) = NULL;
4102 }
4103 }
4104 else
4105 {
4106 reg_equiv_init (i) = NULL;
4107 continue;
4108 }
4109 }
4110 else
4111 reg_equiv_init (i) = NULL;
4112 }
4113 }
4114
4115 if (dump_file)
4116 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4117 if (reg_equiv_init (i))
4118 {
4119 fprintf (dump_file, "init_insns for %u: ", i);
4120 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4121 fprintf (dump_file, "\n");
4122 }
4123 }
4124
4125 /* Indicate that we no longer have known memory locations or constants.
4126 Free all data involved in tracking these. */
4127
4128 static void
4129 free_reg_equiv (void)
4130 {
4131 int i;
4132
4133 free (offsets_known_at);
4134 free (offsets_at);
4135 offsets_at = 0;
4136 offsets_known_at = 0;
4137
4138 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4139 if (reg_equiv_alt_mem_list (i))
4140 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4141 vec_free (reg_equivs);
4142 }
4143 \f
4144 /* Kick all pseudos out of hard register REGNO.
4145
4146 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4147 because we found we can't eliminate some register. In the case, no pseudos
4148 are allowed to be in the register, even if they are only in a block that
4149 doesn't require spill registers, unlike the case when we are spilling this
4150 hard reg to produce another spill register.
4151
4152 Return nonzero if any pseudos needed to be kicked out. */
4153
4154 static void
4155 spill_hard_reg (unsigned int regno, int cant_eliminate)
4156 {
4157 int i;
4158
4159 if (cant_eliminate)
4160 {
4161 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4162 df_set_regs_ever_live (regno, true);
4163 }
4164
4165 /* Spill every pseudo reg that was allocated to this reg
4166 or to something that overlaps this reg. */
4167
4168 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4169 if (reg_renumber[i] >= 0
4170 && (unsigned int) reg_renumber[i] <= regno
4171 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4172 SET_REGNO_REG_SET (&spilled_pseudos, i);
4173 }
4174
4175 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4176 insns that need reloads, this function is used to actually spill pseudo
4177 registers and try to reallocate them. It also sets up the spill_regs
4178 array for use by choose_reload_regs.
4179
4180 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4181 that we displace from hard registers. */
4182
4183 static int
4184 finish_spills (int global)
4185 {
4186 class insn_chain *chain;
4187 int something_changed = 0;
4188 unsigned i;
4189 reg_set_iterator rsi;
4190
4191 /* Build the spill_regs array for the function. */
4192 /* If there are some registers still to eliminate and one of the spill regs
4193 wasn't ever used before, additional stack space may have to be
4194 allocated to store this register. Thus, we may have changed the offset
4195 between the stack and frame pointers, so mark that something has changed.
4196
4197 One might think that we need only set VAL to 1 if this is a call-used
4198 register. However, the set of registers that must be saved by the
4199 prologue is not identical to the call-used set. For example, the
4200 register used by the call insn for the return PC is a call-used register,
4201 but must be saved by the prologue. */
4202
4203 n_spills = 0;
4204 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4205 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4206 {
4207 spill_reg_order[i] = n_spills;
4208 spill_regs[n_spills++] = i;
4209 if (num_eliminable && ! df_regs_ever_live_p (i))
4210 something_changed = 1;
4211 df_set_regs_ever_live (i, true);
4212 }
4213 else
4214 spill_reg_order[i] = -1;
4215
4216 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4217 if (reg_renumber[i] >= 0)
4218 {
4219 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4220 /* Mark it as no longer having a hard register home. */
4221 reg_renumber[i] = -1;
4222 if (ira_conflicts_p)
4223 /* Inform IRA about the change. */
4224 ira_mark_allocation_change (i);
4225 /* We will need to scan everything again. */
4226 something_changed = 1;
4227 }
4228
4229 /* Retry global register allocation if possible. */
4230 if (global && ira_conflicts_p)
4231 {
4232 unsigned int n;
4233
4234 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4235 /* For every insn that needs reloads, set the registers used as spill
4236 regs in pseudo_forbidden_regs for every pseudo live across the
4237 insn. */
4238 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4239 {
4240 EXECUTE_IF_SET_IN_REG_SET
4241 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4242 {
4243 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4244 }
4245 EXECUTE_IF_SET_IN_REG_SET
4246 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4247 {
4248 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4249 }
4250 }
4251
4252 /* Retry allocating the pseudos spilled in IRA and the
4253 reload. For each reg, merge the various reg sets that
4254 indicate which hard regs can't be used, and call
4255 ira_reassign_pseudos. */
4256 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4257 if (reg_old_renumber[i] != reg_renumber[i])
4258 {
4259 if (reg_renumber[i] < 0)
4260 temp_pseudo_reg_arr[n++] = i;
4261 else
4262 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4263 }
4264 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4265 bad_spill_regs_global,
4266 pseudo_forbidden_regs, pseudo_previous_regs,
4267 &spilled_pseudos))
4268 something_changed = 1;
4269 }
4270 /* Fix up the register information in the insn chain.
4271 This involves deleting those of the spilled pseudos which did not get
4272 a new hard register home from the live_{before,after} sets. */
4273 for (chain = reload_insn_chain; chain; chain = chain->next)
4274 {
4275 HARD_REG_SET used_by_pseudos;
4276 HARD_REG_SET used_by_pseudos2;
4277
4278 if (! ira_conflicts_p)
4279 {
4280 /* Don't do it for IRA because IRA and the reload still can
4281 assign hard registers to the spilled pseudos on next
4282 reload iterations. */
4283 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4284 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4285 }
4286 /* Mark any unallocated hard regs as available for spills. That
4287 makes inheritance work somewhat better. */
4288 if (chain->need_reload)
4289 {
4290 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4291 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4292 used_by_pseudos |= used_by_pseudos2;
4293
4294 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4295 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4296 /* Value of chain->used_spill_regs from previous iteration
4297 may be not included in the value calculated here because
4298 of possible removing caller-saves insns (see function
4299 delete_caller_save_insns. */
4300 chain->used_spill_regs = ~used_by_pseudos & used_spill_regs;
4301 }
4302 }
4303
4304 CLEAR_REG_SET (&changed_allocation_pseudos);
4305 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4306 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4307 {
4308 int regno = reg_renumber[i];
4309 if (reg_old_renumber[i] == regno)
4310 continue;
4311
4312 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4313
4314 alter_reg (i, reg_old_renumber[i], false);
4315 reg_old_renumber[i] = regno;
4316 if (dump_file)
4317 {
4318 if (regno == -1)
4319 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4320 else
4321 fprintf (dump_file, " Register %d now in %d.\n\n",
4322 i, reg_renumber[i]);
4323 }
4324 }
4325
4326 return something_changed;
4327 }
4328 \f
4329 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4330
4331 static void
4332 scan_paradoxical_subregs (rtx x)
4333 {
4334 int i;
4335 const char *fmt;
4336 enum rtx_code code = GET_CODE (x);
4337
4338 switch (code)
4339 {
4340 case REG:
4341 case CONST:
4342 case SYMBOL_REF:
4343 case LABEL_REF:
4344 CASE_CONST_ANY:
4345 case CC0:
4346 case PC:
4347 case USE:
4348 case CLOBBER:
4349 return;
4350
4351 case SUBREG:
4352 if (REG_P (SUBREG_REG (x)))
4353 {
4354 unsigned int regno = REGNO (SUBREG_REG (x));
4355 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4356 {
4357 reg_max_ref_mode[regno] = GET_MODE (x);
4358 mark_home_live_1 (regno, GET_MODE (x));
4359 }
4360 }
4361 return;
4362
4363 default:
4364 break;
4365 }
4366
4367 fmt = GET_RTX_FORMAT (code);
4368 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4369 {
4370 if (fmt[i] == 'e')
4371 scan_paradoxical_subregs (XEXP (x, i));
4372 else if (fmt[i] == 'E')
4373 {
4374 int j;
4375 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4376 scan_paradoxical_subregs (XVECEXP (x, i, j));
4377 }
4378 }
4379 }
4380
4381 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4382 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4383 and apply the corresponding narrowing subreg to *OTHER_PTR.
4384 Return true if the operands were changed, false otherwise. */
4385
4386 static bool
4387 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4388 {
4389 rtx op, inner, other, tem;
4390
4391 op = *op_ptr;
4392 if (!paradoxical_subreg_p (op))
4393 return false;
4394 inner = SUBREG_REG (op);
4395
4396 other = *other_ptr;
4397 tem = gen_lowpart_common (GET_MODE (inner), other);
4398 if (!tem)
4399 return false;
4400
4401 /* If the lowpart operation turned a hard register into a subreg,
4402 rather than simplifying it to another hard register, then the
4403 mode change cannot be properly represented. For example, OTHER
4404 might be valid in its current mode, but not in the new one. */
4405 if (GET_CODE (tem) == SUBREG
4406 && REG_P (other)
4407 && HARD_REGISTER_P (other))
4408 return false;
4409
4410 *op_ptr = inner;
4411 *other_ptr = tem;
4412 return true;
4413 }
4414 \f
4415 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4416 examine all of the reload insns between PREV and NEXT exclusive, and
4417 annotate all that may trap. */
4418
4419 static void
4420 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4421 {
4422 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4423 if (note == NULL)
4424 return;
4425 if (!insn_could_throw_p (insn))
4426 remove_note (insn, note);
4427 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4428 }
4429
4430 /* Reload pseudo-registers into hard regs around each insn as needed.
4431 Additional register load insns are output before the insn that needs it
4432 and perhaps store insns after insns that modify the reloaded pseudo reg.
4433
4434 reg_last_reload_reg and reg_reloaded_contents keep track of
4435 which registers are already available in reload registers.
4436 We update these for the reloads that we perform,
4437 as the insns are scanned. */
4438
4439 static void
4440 reload_as_needed (int live_known)
4441 {
4442 class insn_chain *chain;
4443 #if AUTO_INC_DEC
4444 int i;
4445 #endif
4446 rtx_note *marker;
4447
4448 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4449 memset (spill_reg_store, 0, sizeof spill_reg_store);
4450 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4451 INIT_REG_SET (&reg_has_output_reload);
4452 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4453
4454 set_initial_elim_offsets ();
4455
4456 /* Generate a marker insn that we will move around. */
4457 marker = emit_note (NOTE_INSN_DELETED);
4458 unlink_insn_chain (marker, marker);
4459
4460 for (chain = reload_insn_chain; chain; chain = chain->next)
4461 {
4462 rtx_insn *prev = 0;
4463 rtx_insn *insn = chain->insn;
4464 rtx_insn *old_next = NEXT_INSN (insn);
4465 #if AUTO_INC_DEC
4466 rtx_insn *old_prev = PREV_INSN (insn);
4467 #endif
4468
4469 if (will_delete_init_insn_p (insn))
4470 continue;
4471
4472 /* If we pass a label, copy the offsets from the label information
4473 into the current offsets of each elimination. */
4474 if (LABEL_P (insn))
4475 set_offsets_for_label (insn);
4476
4477 else if (INSN_P (insn))
4478 {
4479 regset_head regs_to_forget;
4480 INIT_REG_SET (&regs_to_forget);
4481 note_stores (insn, forget_old_reloads_1, &regs_to_forget);
4482
4483 /* If this is a USE and CLOBBER of a MEM, ensure that any
4484 references to eliminable registers have been removed. */
4485
4486 if ((GET_CODE (PATTERN (insn)) == USE
4487 || GET_CODE (PATTERN (insn)) == CLOBBER)
4488 && MEM_P (XEXP (PATTERN (insn), 0)))
4489 XEXP (XEXP (PATTERN (insn), 0), 0)
4490 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4491 GET_MODE (XEXP (PATTERN (insn), 0)),
4492 NULL_RTX);
4493
4494 /* If we need to do register elimination processing, do so.
4495 This might delete the insn, in which case we are done. */
4496 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4497 {
4498 eliminate_regs_in_insn (insn, 1);
4499 if (NOTE_P (insn))
4500 {
4501 update_eliminable_offsets ();
4502 CLEAR_REG_SET (&regs_to_forget);
4503 continue;
4504 }
4505 }
4506
4507 /* If need_elim is nonzero but need_reload is zero, one might think
4508 that we could simply set n_reloads to 0. However, find_reloads
4509 could have done some manipulation of the insn (such as swapping
4510 commutative operands), and these manipulations are lost during
4511 the first pass for every insn that needs register elimination.
4512 So the actions of find_reloads must be redone here. */
4513
4514 if (! chain->need_elim && ! chain->need_reload
4515 && ! chain->need_operand_change)
4516 n_reloads = 0;
4517 /* First find the pseudo regs that must be reloaded for this insn.
4518 This info is returned in the tables reload_... (see reload.h).
4519 Also modify the body of INSN by substituting RELOAD
4520 rtx's for those pseudo regs. */
4521 else
4522 {
4523 CLEAR_REG_SET (&reg_has_output_reload);
4524 CLEAR_HARD_REG_SET (reg_is_output_reload);
4525
4526 find_reloads (insn, 1, spill_indirect_levels, live_known,
4527 spill_reg_order);
4528 }
4529
4530 if (n_reloads > 0)
4531 {
4532 rtx_insn *next = NEXT_INSN (insn);
4533
4534 /* ??? PREV can get deleted by reload inheritance.
4535 Work around this by emitting a marker note. */
4536 prev = PREV_INSN (insn);
4537 reorder_insns_nobb (marker, marker, prev);
4538
4539 /* Now compute which reload regs to reload them into. Perhaps
4540 reusing reload regs from previous insns, or else output
4541 load insns to reload them. Maybe output store insns too.
4542 Record the choices of reload reg in reload_reg_rtx. */
4543 choose_reload_regs (chain);
4544
4545 /* Generate the insns to reload operands into or out of
4546 their reload regs. */
4547 emit_reload_insns (chain);
4548
4549 /* Substitute the chosen reload regs from reload_reg_rtx
4550 into the insn's body (or perhaps into the bodies of other
4551 load and store insn that we just made for reloading
4552 and that we moved the structure into). */
4553 subst_reloads (insn);
4554
4555 prev = PREV_INSN (marker);
4556 unlink_insn_chain (marker, marker);
4557
4558 /* Adjust the exception region notes for loads and stores. */
4559 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4560 fixup_eh_region_note (insn, prev, next);
4561
4562 /* Adjust the location of REG_ARGS_SIZE. */
4563 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4564 if (p)
4565 {
4566 remove_note (insn, p);
4567 fixup_args_size_notes (prev, PREV_INSN (next),
4568 get_args_size (p));
4569 }
4570
4571 /* If this was an ASM, make sure that all the reload insns
4572 we have generated are valid. If not, give an error
4573 and delete them. */
4574 if (asm_noperands (PATTERN (insn)) >= 0)
4575 for (rtx_insn *p = NEXT_INSN (prev);
4576 p != next;
4577 p = NEXT_INSN (p))
4578 if (p != insn && INSN_P (p)
4579 && GET_CODE (PATTERN (p)) != USE
4580 && (recog_memoized (p) < 0
4581 || (extract_insn (p),
4582 !(constrain_operands (1,
4583 get_enabled_alternatives (p))))))
4584 {
4585 error_for_asm (insn,
4586 "%<asm%> operand requires "
4587 "impossible reload");
4588 delete_insn (p);
4589 }
4590 }
4591
4592 if (num_eliminable && chain->need_elim)
4593 update_eliminable_offsets ();
4594
4595 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4596 is no longer validly lying around to save a future reload.
4597 Note that this does not detect pseudos that were reloaded
4598 for this insn in order to be stored in
4599 (obeying register constraints). That is correct; such reload
4600 registers ARE still valid. */
4601 forget_marked_reloads (&regs_to_forget);
4602 CLEAR_REG_SET (&regs_to_forget);
4603
4604 /* There may have been CLOBBER insns placed after INSN. So scan
4605 between INSN and NEXT and use them to forget old reloads. */
4606 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4607 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4608 note_stores (x, forget_old_reloads_1, NULL);
4609
4610 #if AUTO_INC_DEC
4611 /* Likewise for regs altered by auto-increment in this insn.
4612 REG_INC notes have been changed by reloading:
4613 find_reloads_address_1 records substitutions for them,
4614 which have been performed by subst_reloads above. */
4615 for (i = n_reloads - 1; i >= 0; i--)
4616 {
4617 rtx in_reg = rld[i].in_reg;
4618 if (in_reg)
4619 {
4620 enum rtx_code code = GET_CODE (in_reg);
4621 /* PRE_INC / PRE_DEC will have the reload register ending up
4622 with the same value as the stack slot, but that doesn't
4623 hold true for POST_INC / POST_DEC. Either we have to
4624 convert the memory access to a true POST_INC / POST_DEC,
4625 or we can't use the reload register for inheritance. */
4626 if ((code == POST_INC || code == POST_DEC)
4627 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4628 REGNO (rld[i].reg_rtx))
4629 /* Make sure it is the inc/dec pseudo, and not
4630 some other (e.g. output operand) pseudo. */
4631 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4632 == REGNO (XEXP (in_reg, 0))))
4633
4634 {
4635 rtx reload_reg = rld[i].reg_rtx;
4636 machine_mode mode = GET_MODE (reload_reg);
4637 int n = 0;
4638 rtx_insn *p;
4639
4640 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4641 {
4642 /* We really want to ignore REG_INC notes here, so
4643 use PATTERN (p) as argument to reg_set_p . */
4644 if (reg_set_p (reload_reg, PATTERN (p)))
4645 break;
4646 n = count_occurrences (PATTERN (p), reload_reg, 0);
4647 if (! n)
4648 continue;
4649 if (n == 1)
4650 {
4651 rtx replace_reg
4652 = gen_rtx_fmt_e (code, mode, reload_reg);
4653
4654 validate_replace_rtx_group (reload_reg,
4655 replace_reg, p);
4656 n = verify_changes (0);
4657
4658 /* We must also verify that the constraints
4659 are met after the replacement. Make sure
4660 extract_insn is only called for an insn
4661 where the replacements were found to be
4662 valid so far. */
4663 if (n)
4664 {
4665 extract_insn (p);
4666 n = constrain_operands (1,
4667 get_enabled_alternatives (p));
4668 }
4669
4670 /* If the constraints were not met, then
4671 undo the replacement, else confirm it. */
4672 if (!n)
4673 cancel_changes (0);
4674 else
4675 confirm_change_group ();
4676 }
4677 break;
4678 }
4679 if (n == 1)
4680 {
4681 add_reg_note (p, REG_INC, reload_reg);
4682 /* Mark this as having an output reload so that the
4683 REG_INC processing code below won't invalidate
4684 the reload for inheritance. */
4685 SET_HARD_REG_BIT (reg_is_output_reload,
4686 REGNO (reload_reg));
4687 SET_REGNO_REG_SET (&reg_has_output_reload,
4688 REGNO (XEXP (in_reg, 0)));
4689 }
4690 else
4691 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4692 NULL);
4693 }
4694 else if ((code == PRE_INC || code == PRE_DEC)
4695 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4696 REGNO (rld[i].reg_rtx))
4697 /* Make sure it is the inc/dec pseudo, and not
4698 some other (e.g. output operand) pseudo. */
4699 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4700 == REGNO (XEXP (in_reg, 0))))
4701 {
4702 SET_HARD_REG_BIT (reg_is_output_reload,
4703 REGNO (rld[i].reg_rtx));
4704 SET_REGNO_REG_SET (&reg_has_output_reload,
4705 REGNO (XEXP (in_reg, 0)));
4706 }
4707 else if (code == PRE_INC || code == PRE_DEC
4708 || code == POST_INC || code == POST_DEC)
4709 {
4710 int in_regno = REGNO (XEXP (in_reg, 0));
4711
4712 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4713 {
4714 int in_hard_regno;
4715 bool forget_p = true;
4716
4717 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4718 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4719 in_hard_regno))
4720 {
4721 for (rtx_insn *x = (old_prev ?
4722 NEXT_INSN (old_prev) : insn);
4723 x != old_next;
4724 x = NEXT_INSN (x))
4725 if (x == reg_reloaded_insn[in_hard_regno])
4726 {
4727 forget_p = false;
4728 break;
4729 }
4730 }
4731 /* If for some reasons, we didn't set up
4732 reg_last_reload_reg in this insn,
4733 invalidate inheritance from previous
4734 insns for the incremented/decremented
4735 register. Such registers will be not in
4736 reg_has_output_reload. Invalidate it
4737 also if the corresponding element in
4738 reg_reloaded_insn is also
4739 invalidated. */
4740 if (forget_p)
4741 forget_old_reloads_1 (XEXP (in_reg, 0),
4742 NULL_RTX, NULL);
4743 }
4744 }
4745 }
4746 }
4747 /* If a pseudo that got a hard register is auto-incremented,
4748 we must purge records of copying it into pseudos without
4749 hard registers. */
4750 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4751 if (REG_NOTE_KIND (x) == REG_INC)
4752 {
4753 /* See if this pseudo reg was reloaded in this insn.
4754 If so, its last-reload info is still valid
4755 because it is based on this insn's reload. */
4756 for (i = 0; i < n_reloads; i++)
4757 if (rld[i].out == XEXP (x, 0))
4758 break;
4759
4760 if (i == n_reloads)
4761 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4762 }
4763 #endif
4764 }
4765 /* A reload reg's contents are unknown after a label. */
4766 if (LABEL_P (insn))
4767 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4768
4769 /* Don't assume a reload reg is still good after a call insn
4770 if it is a call-used reg, or if it contains a value that will
4771 be partially clobbered by the call. */
4772 else if (CALL_P (insn))
4773 {
4774 reg_reloaded_valid
4775 &= ~insn_callee_abi (insn).full_and_partial_reg_clobbers ();
4776
4777 /* If this is a call to a setjmp-type function, we must not
4778 reuse any reload reg contents across the call; that will
4779 just be clobbered by other uses of the register in later
4780 code, before the longjmp. */
4781 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4782 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4783 }
4784 }
4785
4786 /* Clean up. */
4787 free (reg_last_reload_reg);
4788 CLEAR_REG_SET (&reg_has_output_reload);
4789 }
4790
4791 /* Discard all record of any value reloaded from X,
4792 or reloaded in X from someplace else;
4793 unless X is an output reload reg of the current insn.
4794
4795 X may be a hard reg (the reload reg)
4796 or it may be a pseudo reg that was reloaded from.
4797
4798 When DATA is non-NULL just mark the registers in regset
4799 to be forgotten later. */
4800
4801 static void
4802 forget_old_reloads_1 (rtx x, const_rtx, void *data)
4803 {
4804 unsigned int regno;
4805 unsigned int nr;
4806 regset regs = (regset) data;
4807
4808 /* note_stores does give us subregs of hard regs,
4809 subreg_regno_offset requires a hard reg. */
4810 while (GET_CODE (x) == SUBREG)
4811 {
4812 /* We ignore the subreg offset when calculating the regno,
4813 because we are using the entire underlying hard register
4814 below. */
4815 x = SUBREG_REG (x);
4816 }
4817
4818 if (!REG_P (x))
4819 return;
4820
4821 regno = REGNO (x);
4822
4823 if (regno >= FIRST_PSEUDO_REGISTER)
4824 nr = 1;
4825 else
4826 {
4827 unsigned int i;
4828
4829 nr = REG_NREGS (x);
4830 /* Storing into a spilled-reg invalidates its contents.
4831 This can happen if a block-local pseudo is allocated to that reg
4832 and it wasn't spilled because this block's total need is 0.
4833 Then some insn might have an optional reload and use this reg. */
4834 if (!regs)
4835 for (i = 0; i < nr; i++)
4836 /* But don't do this if the reg actually serves as an output
4837 reload reg in the current instruction. */
4838 if (n_reloads == 0
4839 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4840 {
4841 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4842 spill_reg_store[regno + i] = 0;
4843 }
4844 }
4845
4846 if (regs)
4847 while (nr-- > 0)
4848 SET_REGNO_REG_SET (regs, regno + nr);
4849 else
4850 {
4851 /* Since value of X has changed,
4852 forget any value previously copied from it. */
4853
4854 while (nr-- > 0)
4855 /* But don't forget a copy if this is the output reload
4856 that establishes the copy's validity. */
4857 if (n_reloads == 0
4858 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4859 reg_last_reload_reg[regno + nr] = 0;
4860 }
4861 }
4862
4863 /* Forget the reloads marked in regset by previous function. */
4864 static void
4865 forget_marked_reloads (regset regs)
4866 {
4867 unsigned int reg;
4868 reg_set_iterator rsi;
4869 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4870 {
4871 if (reg < FIRST_PSEUDO_REGISTER
4872 /* But don't do this if the reg actually serves as an output
4873 reload reg in the current instruction. */
4874 && (n_reloads == 0
4875 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4876 {
4877 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4878 spill_reg_store[reg] = 0;
4879 }
4880 if (n_reloads == 0
4881 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4882 reg_last_reload_reg[reg] = 0;
4883 }
4884 }
4885 \f
4886 /* The following HARD_REG_SETs indicate when each hard register is
4887 used for a reload of various parts of the current insn. */
4888
4889 /* If reg is unavailable for all reloads. */
4890 static HARD_REG_SET reload_reg_unavailable;
4891 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4892 static HARD_REG_SET reload_reg_used;
4893 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4894 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4895 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4896 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4897 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4898 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4899 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4900 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4901 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4902 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4903 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4904 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4905 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4906 static HARD_REG_SET reload_reg_used_in_op_addr;
4907 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4908 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4909 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4910 static HARD_REG_SET reload_reg_used_in_insn;
4911 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4912 static HARD_REG_SET reload_reg_used_in_other_addr;
4913
4914 /* If reg is in use as a reload reg for any sort of reload. */
4915 static HARD_REG_SET reload_reg_used_at_all;
4916
4917 /* If reg is use as an inherited reload. We just mark the first register
4918 in the group. */
4919 static HARD_REG_SET reload_reg_used_for_inherit;
4920
4921 /* Records which hard regs are used in any way, either as explicit use or
4922 by being allocated to a pseudo during any point of the current insn. */
4923 static HARD_REG_SET reg_used_in_insn;
4924
4925 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4926 TYPE. MODE is used to indicate how many consecutive regs are
4927 actually used. */
4928
4929 static void
4930 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4931 machine_mode mode)
4932 {
4933 switch (type)
4934 {
4935 case RELOAD_OTHER:
4936 add_to_hard_reg_set (&reload_reg_used, mode, regno);
4937 break;
4938
4939 case RELOAD_FOR_INPUT_ADDRESS:
4940 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4941 break;
4942
4943 case RELOAD_FOR_INPADDR_ADDRESS:
4944 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4945 break;
4946
4947 case RELOAD_FOR_OUTPUT_ADDRESS:
4948 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4949 break;
4950
4951 case RELOAD_FOR_OUTADDR_ADDRESS:
4952 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4953 break;
4954
4955 case RELOAD_FOR_OPERAND_ADDRESS:
4956 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4957 break;
4958
4959 case RELOAD_FOR_OPADDR_ADDR:
4960 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4961 break;
4962
4963 case RELOAD_FOR_OTHER_ADDRESS:
4964 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4965 break;
4966
4967 case RELOAD_FOR_INPUT:
4968 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4969 break;
4970
4971 case RELOAD_FOR_OUTPUT:
4972 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4973 break;
4974
4975 case RELOAD_FOR_INSN:
4976 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
4977 break;
4978 }
4979
4980 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
4981 }
4982
4983 /* Similarly, but show REGNO is no longer in use for a reload. */
4984
4985 static void
4986 clear_reload_reg_in_use (unsigned int regno, int opnum,
4987 enum reload_type type, machine_mode mode)
4988 {
4989 unsigned int nregs = hard_regno_nregs (regno, mode);
4990 unsigned int start_regno, end_regno, r;
4991 int i;
4992 /* A complication is that for some reload types, inheritance might
4993 allow multiple reloads of the same types to share a reload register.
4994 We set check_opnum if we have to check only reloads with the same
4995 operand number, and check_any if we have to check all reloads. */
4996 int check_opnum = 0;
4997 int check_any = 0;
4998 HARD_REG_SET *used_in_set;
4999
5000 switch (type)
5001 {
5002 case RELOAD_OTHER:
5003 used_in_set = &reload_reg_used;
5004 break;
5005
5006 case RELOAD_FOR_INPUT_ADDRESS:
5007 used_in_set = &reload_reg_used_in_input_addr[opnum];
5008 break;
5009
5010 case RELOAD_FOR_INPADDR_ADDRESS:
5011 check_opnum = 1;
5012 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5013 break;
5014
5015 case RELOAD_FOR_OUTPUT_ADDRESS:
5016 used_in_set = &reload_reg_used_in_output_addr[opnum];
5017 break;
5018
5019 case RELOAD_FOR_OUTADDR_ADDRESS:
5020 check_opnum = 1;
5021 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5022 break;
5023
5024 case RELOAD_FOR_OPERAND_ADDRESS:
5025 used_in_set = &reload_reg_used_in_op_addr;
5026 break;
5027
5028 case RELOAD_FOR_OPADDR_ADDR:
5029 check_any = 1;
5030 used_in_set = &reload_reg_used_in_op_addr_reload;
5031 break;
5032
5033 case RELOAD_FOR_OTHER_ADDRESS:
5034 used_in_set = &reload_reg_used_in_other_addr;
5035 check_any = 1;
5036 break;
5037
5038 case RELOAD_FOR_INPUT:
5039 used_in_set = &reload_reg_used_in_input[opnum];
5040 break;
5041
5042 case RELOAD_FOR_OUTPUT:
5043 used_in_set = &reload_reg_used_in_output[opnum];
5044 break;
5045
5046 case RELOAD_FOR_INSN:
5047 used_in_set = &reload_reg_used_in_insn;
5048 break;
5049 default:
5050 gcc_unreachable ();
5051 }
5052 /* We resolve conflicts with remaining reloads of the same type by
5053 excluding the intervals of reload registers by them from the
5054 interval of freed reload registers. Since we only keep track of
5055 one set of interval bounds, we might have to exclude somewhat
5056 more than what would be necessary if we used a HARD_REG_SET here.
5057 But this should only happen very infrequently, so there should
5058 be no reason to worry about it. */
5059
5060 start_regno = regno;
5061 end_regno = regno + nregs;
5062 if (check_opnum || check_any)
5063 {
5064 for (i = n_reloads - 1; i >= 0; i--)
5065 {
5066 if (rld[i].when_needed == type
5067 && (check_any || rld[i].opnum == opnum)
5068 && rld[i].reg_rtx)
5069 {
5070 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5071 unsigned int conflict_end
5072 = end_hard_regno (rld[i].mode, conflict_start);
5073
5074 /* If there is an overlap with the first to-be-freed register,
5075 adjust the interval start. */
5076 if (conflict_start <= start_regno && conflict_end > start_regno)
5077 start_regno = conflict_end;
5078 /* Otherwise, if there is a conflict with one of the other
5079 to-be-freed registers, adjust the interval end. */
5080 if (conflict_start > start_regno && conflict_start < end_regno)
5081 end_regno = conflict_start;
5082 }
5083 }
5084 }
5085
5086 for (r = start_regno; r < end_regno; r++)
5087 CLEAR_HARD_REG_BIT (*used_in_set, r);
5088 }
5089
5090 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5091 specified by OPNUM and TYPE. */
5092
5093 static int
5094 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5095 {
5096 int i;
5097
5098 /* In use for a RELOAD_OTHER means it's not available for anything. */
5099 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5100 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5101 return 0;
5102
5103 switch (type)
5104 {
5105 case RELOAD_OTHER:
5106 /* In use for anything means we can't use it for RELOAD_OTHER. */
5107 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5108 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5109 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5110 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5111 return 0;
5112
5113 for (i = 0; i < reload_n_operands; i++)
5114 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5115 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5116 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5117 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5118 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5119 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5120 return 0;
5121
5122 return 1;
5123
5124 case RELOAD_FOR_INPUT:
5125 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5126 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5127 return 0;
5128
5129 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5130 return 0;
5131
5132 /* If it is used for some other input, can't use it. */
5133 for (i = 0; i < reload_n_operands; i++)
5134 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5135 return 0;
5136
5137 /* If it is used in a later operand's address, can't use it. */
5138 for (i = opnum + 1; i < reload_n_operands; i++)
5139 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5140 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5141 return 0;
5142
5143 return 1;
5144
5145 case RELOAD_FOR_INPUT_ADDRESS:
5146 /* Can't use a register if it is used for an input address for this
5147 operand or used as an input in an earlier one. */
5148 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5149 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5150 return 0;
5151
5152 for (i = 0; i < opnum; i++)
5153 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5154 return 0;
5155
5156 return 1;
5157
5158 case RELOAD_FOR_INPADDR_ADDRESS:
5159 /* Can't use a register if it is used for an input address
5160 for this operand or used as an input in an earlier
5161 one. */
5162 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5163 return 0;
5164
5165 for (i = 0; i < opnum; i++)
5166 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5167 return 0;
5168
5169 return 1;
5170
5171 case RELOAD_FOR_OUTPUT_ADDRESS:
5172 /* Can't use a register if it is used for an output address for this
5173 operand or used as an output in this or a later operand. Note
5174 that multiple output operands are emitted in reverse order, so
5175 the conflicting ones are those with lower indices. */
5176 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5177 return 0;
5178
5179 for (i = 0; i <= opnum; i++)
5180 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5181 return 0;
5182
5183 return 1;
5184
5185 case RELOAD_FOR_OUTADDR_ADDRESS:
5186 /* Can't use a register if it is used for an output address
5187 for this operand or used as an output in this or a
5188 later operand. Note that multiple output operands are
5189 emitted in reverse order, so the conflicting ones are
5190 those with lower indices. */
5191 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5192 return 0;
5193
5194 for (i = 0; i <= opnum; i++)
5195 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5196 return 0;
5197
5198 return 1;
5199
5200 case RELOAD_FOR_OPERAND_ADDRESS:
5201 for (i = 0; i < reload_n_operands; i++)
5202 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5203 return 0;
5204
5205 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5206 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5207
5208 case RELOAD_FOR_OPADDR_ADDR:
5209 for (i = 0; i < reload_n_operands; i++)
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5211 return 0;
5212
5213 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5214
5215 case RELOAD_FOR_OUTPUT:
5216 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5217 outputs, or an operand address for this or an earlier output.
5218 Note that multiple output operands are emitted in reverse order,
5219 so the conflicting ones are those with higher indices. */
5220 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5221 return 0;
5222
5223 for (i = 0; i < reload_n_operands; i++)
5224 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5225 return 0;
5226
5227 for (i = opnum; i < reload_n_operands; i++)
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5230 return 0;
5231
5232 return 1;
5233
5234 case RELOAD_FOR_INSN:
5235 for (i = 0; i < reload_n_operands; i++)
5236 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5237 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5238 return 0;
5239
5240 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5241 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5242
5243 case RELOAD_FOR_OTHER_ADDRESS:
5244 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5245
5246 default:
5247 gcc_unreachable ();
5248 }
5249 }
5250
5251 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5252 the number RELOADNUM, is still available in REGNO at the end of the insn.
5253
5254 We can assume that the reload reg was already tested for availability
5255 at the time it is needed, and we should not check this again,
5256 in case the reg has already been marked in use. */
5257
5258 static int
5259 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5260 {
5261 int opnum = rld[reloadnum].opnum;
5262 enum reload_type type = rld[reloadnum].when_needed;
5263 int i;
5264
5265 /* See if there is a reload with the same type for this operand, using
5266 the same register. This case is not handled by the code below. */
5267 for (i = reloadnum + 1; i < n_reloads; i++)
5268 {
5269 rtx reg;
5270
5271 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5272 continue;
5273 reg = rld[i].reg_rtx;
5274 if (reg == NULL_RTX)
5275 continue;
5276 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5277 return 0;
5278 }
5279
5280 switch (type)
5281 {
5282 case RELOAD_OTHER:
5283 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5284 its value must reach the end. */
5285 return 1;
5286
5287 /* If this use is for part of the insn,
5288 its value reaches if no subsequent part uses the same register.
5289 Just like the above function, don't try to do this with lots
5290 of fallthroughs. */
5291
5292 case RELOAD_FOR_OTHER_ADDRESS:
5293 /* Here we check for everything else, since these don't conflict
5294 with anything else and everything comes later. */
5295
5296 for (i = 0; i < reload_n_operands; i++)
5297 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5298 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5299 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5300 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5301 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5302 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5303 return 0;
5304
5305 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5306 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5307 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5308 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5309
5310 case RELOAD_FOR_INPUT_ADDRESS:
5311 case RELOAD_FOR_INPADDR_ADDRESS:
5312 /* Similar, except that we check only for this and subsequent inputs
5313 and the address of only subsequent inputs and we do not need
5314 to check for RELOAD_OTHER objects since they are known not to
5315 conflict. */
5316
5317 for (i = opnum; i < reload_n_operands; i++)
5318 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5319 return 0;
5320
5321 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5322 could be killed if the register is also used by reload with type
5323 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5324 if (type == RELOAD_FOR_INPADDR_ADDRESS
5325 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5326 return 0;
5327
5328 for (i = opnum + 1; i < reload_n_operands; i++)
5329 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5330 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5331 return 0;
5332
5333 for (i = 0; i < reload_n_operands; i++)
5334 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5335 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5336 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5337 return 0;
5338
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5340 return 0;
5341
5342 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5343 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5344 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5345
5346 case RELOAD_FOR_INPUT:
5347 /* Similar to input address, except we start at the next operand for
5348 both input and input address and we do not check for
5349 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5350 would conflict. */
5351
5352 for (i = opnum + 1; i < reload_n_operands; i++)
5353 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5354 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5355 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5356 return 0;
5357
5358 /* ... fall through ... */
5359
5360 case RELOAD_FOR_OPERAND_ADDRESS:
5361 /* Check outputs and their addresses. */
5362
5363 for (i = 0; i < reload_n_operands; i++)
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5365 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5366 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5367 return 0;
5368
5369 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5370
5371 case RELOAD_FOR_OPADDR_ADDR:
5372 for (i = 0; i < reload_n_operands; i++)
5373 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5374 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5375 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5376 return 0;
5377
5378 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5379 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5380 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5381
5382 case RELOAD_FOR_INSN:
5383 /* These conflict with other outputs with RELOAD_OTHER. So
5384 we need only check for output addresses. */
5385
5386 opnum = reload_n_operands;
5387
5388 /* fall through */
5389
5390 case RELOAD_FOR_OUTPUT:
5391 case RELOAD_FOR_OUTPUT_ADDRESS:
5392 case RELOAD_FOR_OUTADDR_ADDRESS:
5393 /* We already know these can't conflict with a later output. So the
5394 only thing to check are later output addresses.
5395 Note that multiple output operands are emitted in reverse order,
5396 so the conflicting ones are those with lower indices. */
5397 for (i = 0; i < opnum; i++)
5398 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5399 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5400 return 0;
5401
5402 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5403 could be killed if the register is also used by reload with type
5404 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5405 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5406 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5407 return 0;
5408
5409 return 1;
5410
5411 default:
5412 gcc_unreachable ();
5413 }
5414 }
5415
5416 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5417 every register in REG. */
5418
5419 static bool
5420 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5421 {
5422 unsigned int i;
5423
5424 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5425 if (!reload_reg_reaches_end_p (i, reloadnum))
5426 return false;
5427 return true;
5428 }
5429 \f
5430
5431 /* Returns whether R1 and R2 are uniquely chained: the value of one
5432 is used by the other, and that value is not used by any other
5433 reload for this insn. This is used to partially undo the decision
5434 made in find_reloads when in the case of multiple
5435 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5436 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5437 reloads. This code tries to avoid the conflict created by that
5438 change. It might be cleaner to explicitly keep track of which
5439 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5440 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5441 this after the fact. */
5442 static bool
5443 reloads_unique_chain_p (int r1, int r2)
5444 {
5445 int i;
5446
5447 /* We only check input reloads. */
5448 if (! rld[r1].in || ! rld[r2].in)
5449 return false;
5450
5451 /* Avoid anything with output reloads. */
5452 if (rld[r1].out || rld[r2].out)
5453 return false;
5454
5455 /* "chained" means one reload is a component of the other reload,
5456 not the same as the other reload. */
5457 if (rld[r1].opnum != rld[r2].opnum
5458 || rtx_equal_p (rld[r1].in, rld[r2].in)
5459 || rld[r1].optional || rld[r2].optional
5460 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5461 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5462 return false;
5463
5464 /* The following loop assumes that r1 is the reload that feeds r2. */
5465 if (r1 > r2)
5466 std::swap (r1, r2);
5467
5468 for (i = 0; i < n_reloads; i ++)
5469 /* Look for input reloads that aren't our two */
5470 if (i != r1 && i != r2 && rld[i].in)
5471 {
5472 /* If our reload is mentioned at all, it isn't a simple chain. */
5473 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5474 return false;
5475 }
5476 return true;
5477 }
5478
5479 /* The recursive function change all occurrences of WHAT in *WHERE
5480 to REPL. */
5481 static void
5482 substitute (rtx *where, const_rtx what, rtx repl)
5483 {
5484 const char *fmt;
5485 int i;
5486 enum rtx_code code;
5487
5488 if (*where == 0)
5489 return;
5490
5491 if (*where == what || rtx_equal_p (*where, what))
5492 {
5493 /* Record the location of the changed rtx. */
5494 substitute_stack.safe_push (where);
5495 *where = repl;
5496 return;
5497 }
5498
5499 code = GET_CODE (*where);
5500 fmt = GET_RTX_FORMAT (code);
5501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5502 {
5503 if (fmt[i] == 'E')
5504 {
5505 int j;
5506
5507 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5508 substitute (&XVECEXP (*where, i, j), what, repl);
5509 }
5510 else if (fmt[i] == 'e')
5511 substitute (&XEXP (*where, i), what, repl);
5512 }
5513 }
5514
5515 /* The function returns TRUE if chain of reload R1 and R2 (in any
5516 order) can be evaluated without usage of intermediate register for
5517 the reload containing another reload. It is important to see
5518 gen_reload to understand what the function is trying to do. As an
5519 example, let us have reload chain
5520
5521 r2: const
5522 r1: <something> + const
5523
5524 and reload R2 got reload reg HR. The function returns true if
5525 there is a correct insn HR = HR + <something>. Otherwise,
5526 gen_reload will use intermediate register (and this is the reload
5527 reg for R1) to reload <something>.
5528
5529 We need this function to find a conflict for chain reloads. In our
5530 example, if HR = HR + <something> is incorrect insn, then we cannot
5531 use HR as a reload register for R2. If we do use it then we get a
5532 wrong code:
5533
5534 HR = const
5535 HR = <something>
5536 HR = HR + HR
5537
5538 */
5539 static bool
5540 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5541 {
5542 /* Assume other cases in gen_reload are not possible for
5543 chain reloads or do need an intermediate hard registers. */
5544 bool result = true;
5545 int regno, code;
5546 rtx out, in;
5547 rtx_insn *insn;
5548 rtx_insn *last = get_last_insn ();
5549
5550 /* Make r2 a component of r1. */
5551 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5552 std::swap (r1, r2);
5553
5554 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5555 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5556 gcc_assert (regno >= 0);
5557 out = gen_rtx_REG (rld[r1].mode, regno);
5558 in = rld[r1].in;
5559 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5560
5561 /* If IN is a paradoxical SUBREG, remove it and try to put the
5562 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5563 strip_paradoxical_subreg (&in, &out);
5564
5565 if (GET_CODE (in) == PLUS
5566 && (REG_P (XEXP (in, 0))
5567 || GET_CODE (XEXP (in, 0)) == SUBREG
5568 || MEM_P (XEXP (in, 0)))
5569 && (REG_P (XEXP (in, 1))
5570 || GET_CODE (XEXP (in, 1)) == SUBREG
5571 || CONSTANT_P (XEXP (in, 1))
5572 || MEM_P (XEXP (in, 1))))
5573 {
5574 insn = emit_insn (gen_rtx_SET (out, in));
5575 code = recog_memoized (insn);
5576 result = false;
5577
5578 if (code >= 0)
5579 {
5580 extract_insn (insn);
5581 /* We want constrain operands to treat this insn strictly in
5582 its validity determination, i.e., the way it would after
5583 reload has completed. */
5584 result = constrain_operands (1, get_enabled_alternatives (insn));
5585 }
5586
5587 delete_insns_since (last);
5588 }
5589
5590 /* Restore the original value at each changed address within R1. */
5591 while (!substitute_stack.is_empty ())
5592 {
5593 rtx *where = substitute_stack.pop ();
5594 *where = rld[r2].in;
5595 }
5596
5597 return result;
5598 }
5599
5600 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5601 Return 0 otherwise.
5602
5603 This function uses the same algorithm as reload_reg_free_p above. */
5604
5605 static int
5606 reloads_conflict (int r1, int r2)
5607 {
5608 enum reload_type r1_type = rld[r1].when_needed;
5609 enum reload_type r2_type = rld[r2].when_needed;
5610 int r1_opnum = rld[r1].opnum;
5611 int r2_opnum = rld[r2].opnum;
5612
5613 /* RELOAD_OTHER conflicts with everything. */
5614 if (r2_type == RELOAD_OTHER)
5615 return 1;
5616
5617 /* Otherwise, check conflicts differently for each type. */
5618
5619 switch (r1_type)
5620 {
5621 case RELOAD_FOR_INPUT:
5622 return (r2_type == RELOAD_FOR_INSN
5623 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5624 || r2_type == RELOAD_FOR_OPADDR_ADDR
5625 || r2_type == RELOAD_FOR_INPUT
5626 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5627 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5628 && r2_opnum > r1_opnum));
5629
5630 case RELOAD_FOR_INPUT_ADDRESS:
5631 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5632 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5633
5634 case RELOAD_FOR_INPADDR_ADDRESS:
5635 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5636 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5637
5638 case RELOAD_FOR_OUTPUT_ADDRESS:
5639 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5640 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5641
5642 case RELOAD_FOR_OUTADDR_ADDRESS:
5643 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5644 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5645
5646 case RELOAD_FOR_OPERAND_ADDRESS:
5647 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5648 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5649 && (!reloads_unique_chain_p (r1, r2)
5650 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5651
5652 case RELOAD_FOR_OPADDR_ADDR:
5653 return (r2_type == RELOAD_FOR_INPUT
5654 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5655
5656 case RELOAD_FOR_OUTPUT:
5657 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5658 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5659 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5660 && r2_opnum >= r1_opnum));
5661
5662 case RELOAD_FOR_INSN:
5663 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5664 || r2_type == RELOAD_FOR_INSN
5665 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5666
5667 case RELOAD_FOR_OTHER_ADDRESS:
5668 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5669
5670 case RELOAD_OTHER:
5671 return 1;
5672
5673 default:
5674 gcc_unreachable ();
5675 }
5676 }
5677 \f
5678 /* Indexed by reload number, 1 if incoming value
5679 inherited from previous insns. */
5680 static char reload_inherited[MAX_RELOADS];
5681
5682 /* For an inherited reload, this is the insn the reload was inherited from,
5683 if we know it. Otherwise, this is 0. */
5684 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5685
5686 /* If nonzero, this is a place to get the value of the reload,
5687 rather than using reload_in. */
5688 static rtx reload_override_in[MAX_RELOADS];
5689
5690 /* For each reload, the hard register number of the register used,
5691 or -1 if we did not need a register for this reload. */
5692 static int reload_spill_index[MAX_RELOADS];
5693
5694 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5695 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5696
5697 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5698 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5699
5700 /* Subroutine of free_for_value_p, used to check a single register.
5701 START_REGNO is the starting regno of the full reload register
5702 (possibly comprising multiple hard registers) that we are considering. */
5703
5704 static int
5705 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5706 enum reload_type type, rtx value, rtx out,
5707 int reloadnum, int ignore_address_reloads)
5708 {
5709 int time1;
5710 /* Set if we see an input reload that must not share its reload register
5711 with any new earlyclobber, but might otherwise share the reload
5712 register with an output or input-output reload. */
5713 int check_earlyclobber = 0;
5714 int i;
5715 int copy = 0;
5716
5717 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5718 return 0;
5719
5720 if (out == const0_rtx)
5721 {
5722 copy = 1;
5723 out = NULL_RTX;
5724 }
5725
5726 /* We use some pseudo 'time' value to check if the lifetimes of the
5727 new register use would overlap with the one of a previous reload
5728 that is not read-only or uses a different value.
5729 The 'time' used doesn't have to be linear in any shape or form, just
5730 monotonic.
5731 Some reload types use different 'buckets' for each operand.
5732 So there are MAX_RECOG_OPERANDS different time values for each
5733 such reload type.
5734 We compute TIME1 as the time when the register for the prospective
5735 new reload ceases to be live, and TIME2 for each existing
5736 reload as the time when that the reload register of that reload
5737 becomes live.
5738 Where there is little to be gained by exact lifetime calculations,
5739 we just make conservative assumptions, i.e. a longer lifetime;
5740 this is done in the 'default:' cases. */
5741 switch (type)
5742 {
5743 case RELOAD_FOR_OTHER_ADDRESS:
5744 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5745 time1 = copy ? 0 : 1;
5746 break;
5747 case RELOAD_OTHER:
5748 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5749 break;
5750 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5751 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5752 respectively, to the time values for these, we get distinct time
5753 values. To get distinct time values for each operand, we have to
5754 multiply opnum by at least three. We round that up to four because
5755 multiply by four is often cheaper. */
5756 case RELOAD_FOR_INPADDR_ADDRESS:
5757 time1 = opnum * 4 + 2;
5758 break;
5759 case RELOAD_FOR_INPUT_ADDRESS:
5760 time1 = opnum * 4 + 3;
5761 break;
5762 case RELOAD_FOR_INPUT:
5763 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5764 executes (inclusive). */
5765 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5766 break;
5767 case RELOAD_FOR_OPADDR_ADDR:
5768 /* opnum * 4 + 4
5769 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5770 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5771 break;
5772 case RELOAD_FOR_OPERAND_ADDRESS:
5773 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5774 is executed. */
5775 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5776 break;
5777 case RELOAD_FOR_OUTADDR_ADDRESS:
5778 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5779 break;
5780 case RELOAD_FOR_OUTPUT_ADDRESS:
5781 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5782 break;
5783 default:
5784 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5785 }
5786
5787 for (i = 0; i < n_reloads; i++)
5788 {
5789 rtx reg = rld[i].reg_rtx;
5790 if (reg && REG_P (reg)
5791 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5792 && i != reloadnum)
5793 {
5794 rtx other_input = rld[i].in;
5795
5796 /* If the other reload loads the same input value, that
5797 will not cause a conflict only if it's loading it into
5798 the same register. */
5799 if (true_regnum (reg) != start_regno)
5800 other_input = NULL_RTX;
5801 if (! other_input || ! rtx_equal_p (other_input, value)
5802 || rld[i].out || out)
5803 {
5804 int time2;
5805 switch (rld[i].when_needed)
5806 {
5807 case RELOAD_FOR_OTHER_ADDRESS:
5808 time2 = 0;
5809 break;
5810 case RELOAD_FOR_INPADDR_ADDRESS:
5811 /* find_reloads makes sure that a
5812 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5813 by at most one - the first -
5814 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5815 address reload is inherited, the address address reload
5816 goes away, so we can ignore this conflict. */
5817 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5818 && ignore_address_reloads
5819 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5820 Then the address address is still needed to store
5821 back the new address. */
5822 && ! rld[reloadnum].out)
5823 continue;
5824 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5825 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5826 reloads go away. */
5827 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5828 && ignore_address_reloads
5829 /* Unless we are reloading an auto_inc expression. */
5830 && ! rld[reloadnum].out)
5831 continue;
5832 time2 = rld[i].opnum * 4 + 2;
5833 break;
5834 case RELOAD_FOR_INPUT_ADDRESS:
5835 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5836 && ignore_address_reloads
5837 && ! rld[reloadnum].out)
5838 continue;
5839 time2 = rld[i].opnum * 4 + 3;
5840 break;
5841 case RELOAD_FOR_INPUT:
5842 time2 = rld[i].opnum * 4 + 4;
5843 check_earlyclobber = 1;
5844 break;
5845 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5846 == MAX_RECOG_OPERAND * 4 */
5847 case RELOAD_FOR_OPADDR_ADDR:
5848 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5849 && ignore_address_reloads
5850 && ! rld[reloadnum].out)
5851 continue;
5852 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5853 break;
5854 case RELOAD_FOR_OPERAND_ADDRESS:
5855 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5856 check_earlyclobber = 1;
5857 break;
5858 case RELOAD_FOR_INSN:
5859 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5860 break;
5861 case RELOAD_FOR_OUTPUT:
5862 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5863 instruction is executed. */
5864 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5865 break;
5866 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5867 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5868 value. */
5869 case RELOAD_FOR_OUTADDR_ADDRESS:
5870 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5871 && ignore_address_reloads
5872 && ! rld[reloadnum].out)
5873 continue;
5874 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5875 break;
5876 case RELOAD_FOR_OUTPUT_ADDRESS:
5877 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5878 break;
5879 case RELOAD_OTHER:
5880 /* If there is no conflict in the input part, handle this
5881 like an output reload. */
5882 if (! rld[i].in || rtx_equal_p (other_input, value))
5883 {
5884 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5885 /* Earlyclobbered outputs must conflict with inputs. */
5886 if (earlyclobber_operand_p (rld[i].out))
5887 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5888
5889 break;
5890 }
5891 time2 = 1;
5892 /* RELOAD_OTHER might be live beyond instruction execution,
5893 but this is not obvious when we set time2 = 1. So check
5894 here if there might be a problem with the new reload
5895 clobbering the register used by the RELOAD_OTHER. */
5896 if (out)
5897 return 0;
5898 break;
5899 default:
5900 return 0;
5901 }
5902 if ((time1 >= time2
5903 && (! rld[i].in || rld[i].out
5904 || ! rtx_equal_p (other_input, value)))
5905 || (out && rld[reloadnum].out_reg
5906 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5907 return 0;
5908 }
5909 }
5910 }
5911
5912 /* Earlyclobbered outputs must conflict with inputs. */
5913 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5914 return 0;
5915
5916 return 1;
5917 }
5918
5919 /* Return 1 if the value in reload reg REGNO, as used by a reload
5920 needed for the part of the insn specified by OPNUM and TYPE,
5921 may be used to load VALUE into it.
5922
5923 MODE is the mode in which the register is used, this is needed to
5924 determine how many hard regs to test.
5925
5926 Other read-only reloads with the same value do not conflict
5927 unless OUT is nonzero and these other reloads have to live while
5928 output reloads live.
5929 If OUT is CONST0_RTX, this is a special case: it means that the
5930 test should not be for using register REGNO as reload register, but
5931 for copying from register REGNO into the reload register.
5932
5933 RELOADNUM is the number of the reload we want to load this value for;
5934 a reload does not conflict with itself.
5935
5936 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5937 reloads that load an address for the very reload we are considering.
5938
5939 The caller has to make sure that there is no conflict with the return
5940 register. */
5941
5942 static int
5943 free_for_value_p (int regno, machine_mode mode, int opnum,
5944 enum reload_type type, rtx value, rtx out, int reloadnum,
5945 int ignore_address_reloads)
5946 {
5947 int nregs = hard_regno_nregs (regno, mode);
5948 while (nregs-- > 0)
5949 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5950 value, out, reloadnum,
5951 ignore_address_reloads))
5952 return 0;
5953 return 1;
5954 }
5955
5956 /* Return nonzero if the rtx X is invariant over the current function. */
5957 /* ??? Actually, the places where we use this expect exactly what is
5958 tested here, and not everything that is function invariant. In
5959 particular, the frame pointer and arg pointer are special cased;
5960 pic_offset_table_rtx is not, and we must not spill these things to
5961 memory. */
5962
5963 int
5964 function_invariant_p (const_rtx x)
5965 {
5966 if (CONSTANT_P (x))
5967 return 1;
5968 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5969 return 1;
5970 if (GET_CODE (x) == PLUS
5971 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5972 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5973 return 1;
5974 return 0;
5975 }
5976
5977 /* Determine whether the reload reg X overlaps any rtx'es used for
5978 overriding inheritance. Return nonzero if so. */
5979
5980 static int
5981 conflicts_with_override (rtx x)
5982 {
5983 int i;
5984 for (i = 0; i < n_reloads; i++)
5985 if (reload_override_in[i]
5986 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5987 return 1;
5988 return 0;
5989 }
5990 \f
5991 /* Give an error message saying we failed to find a reload for INSN,
5992 and clear out reload R. */
5993 static void
5994 failed_reload (rtx_insn *insn, int r)
5995 {
5996 if (asm_noperands (PATTERN (insn)) < 0)
5997 /* It's the compiler's fault. */
5998 fatal_insn ("could not find a spill register", insn);
5999
6000 /* It's the user's fault; the operand's mode and constraint
6001 don't match. Disable this reload so we don't crash in final. */
6002 error_for_asm (insn,
6003 "%<asm%> operand constraint incompatible with operand size");
6004 rld[r].in = 0;
6005 rld[r].out = 0;
6006 rld[r].reg_rtx = 0;
6007 rld[r].optional = 1;
6008 rld[r].secondary_p = 1;
6009 }
6010
6011 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6012 for reload R. If it's valid, get an rtx for it. Return nonzero if
6013 successful. */
6014 static int
6015 set_reload_reg (int i, int r)
6016 {
6017 int regno;
6018 rtx reg = spill_reg_rtx[i];
6019
6020 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6021 spill_reg_rtx[i] = reg
6022 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6023
6024 regno = true_regnum (reg);
6025
6026 /* Detect when the reload reg can't hold the reload mode.
6027 This used to be one `if', but Sequent compiler can't handle that. */
6028 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6029 {
6030 machine_mode test_mode = VOIDmode;
6031 if (rld[r].in)
6032 test_mode = GET_MODE (rld[r].in);
6033 /* If rld[r].in has VOIDmode, it means we will load it
6034 in whatever mode the reload reg has: to wit, rld[r].mode.
6035 We have already tested that for validity. */
6036 /* Aside from that, we need to test that the expressions
6037 to reload from or into have modes which are valid for this
6038 reload register. Otherwise the reload insns would be invalid. */
6039 if (! (rld[r].in != 0 && test_mode != VOIDmode
6040 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6041 if (! (rld[r].out != 0
6042 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6043 {
6044 /* The reg is OK. */
6045 last_spill_reg = i;
6046
6047 /* Mark as in use for this insn the reload regs we use
6048 for this. */
6049 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6050 rld[r].when_needed, rld[r].mode);
6051
6052 rld[r].reg_rtx = reg;
6053 reload_spill_index[r] = spill_regs[i];
6054 return 1;
6055 }
6056 }
6057 return 0;
6058 }
6059
6060 /* Find a spill register to use as a reload register for reload R.
6061 LAST_RELOAD is nonzero if this is the last reload for the insn being
6062 processed.
6063
6064 Set rld[R].reg_rtx to the register allocated.
6065
6066 We return 1 if successful, or 0 if we couldn't find a spill reg and
6067 we didn't change anything. */
6068
6069 static int
6070 allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
6071 int last_reload)
6072 {
6073 int i, pass, count;
6074
6075 /* If we put this reload ahead, thinking it is a group,
6076 then insist on finding a group. Otherwise we can grab a
6077 reg that some other reload needs.
6078 (That can happen when we have a 68000 DATA_OR_FP_REG
6079 which is a group of data regs or one fp reg.)
6080 We need not be so restrictive if there are no more reloads
6081 for this insn.
6082
6083 ??? Really it would be nicer to have smarter handling
6084 for that kind of reg class, where a problem like this is normal.
6085 Perhaps those classes should be avoided for reloading
6086 by use of more alternatives. */
6087
6088 int force_group = rld[r].nregs > 1 && ! last_reload;
6089
6090 /* If we want a single register and haven't yet found one,
6091 take any reg in the right class and not in use.
6092 If we want a consecutive group, here is where we look for it.
6093
6094 We use three passes so we can first look for reload regs to
6095 reuse, which are already in use for other reloads in this insn,
6096 and only then use additional registers which are not "bad", then
6097 finally any register.
6098
6099 I think that maximizing reuse is needed to make sure we don't
6100 run out of reload regs. Suppose we have three reloads, and
6101 reloads A and B can share regs. These need two regs.
6102 Suppose A and B are given different regs.
6103 That leaves none for C. */
6104 for (pass = 0; pass < 3; pass++)
6105 {
6106 /* I is the index in spill_regs.
6107 We advance it round-robin between insns to use all spill regs
6108 equally, so that inherited reloads have a chance
6109 of leapfrogging each other. */
6110
6111 i = last_spill_reg;
6112
6113 for (count = 0; count < n_spills; count++)
6114 {
6115 int rclass = (int) rld[r].rclass;
6116 int regnum;
6117
6118 i++;
6119 if (i >= n_spills)
6120 i -= n_spills;
6121 regnum = spill_regs[i];
6122
6123 if ((reload_reg_free_p (regnum, rld[r].opnum,
6124 rld[r].when_needed)
6125 || (rld[r].in
6126 /* We check reload_reg_used to make sure we
6127 don't clobber the return register. */
6128 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6129 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6130 rld[r].when_needed, rld[r].in,
6131 rld[r].out, r, 1)))
6132 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6133 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6134 /* Look first for regs to share, then for unshared. But
6135 don't share regs used for inherited reloads; they are
6136 the ones we want to preserve. */
6137 && (pass
6138 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6139 regnum)
6140 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6141 regnum))))
6142 {
6143 int nr = hard_regno_nregs (regnum, rld[r].mode);
6144
6145 /* During the second pass we want to avoid reload registers
6146 which are "bad" for this reload. */
6147 if (pass == 1
6148 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6149 continue;
6150
6151 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6152 (on 68000) got us two FP regs. If NR is 1,
6153 we would reject both of them. */
6154 if (force_group)
6155 nr = rld[r].nregs;
6156 /* If we need only one reg, we have already won. */
6157 if (nr == 1)
6158 {
6159 /* But reject a single reg if we demand a group. */
6160 if (force_group)
6161 continue;
6162 break;
6163 }
6164 /* Otherwise check that as many consecutive regs as we need
6165 are available here. */
6166 while (nr > 1)
6167 {
6168 int regno = regnum + nr - 1;
6169 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6170 && spill_reg_order[regno] >= 0
6171 && reload_reg_free_p (regno, rld[r].opnum,
6172 rld[r].when_needed)))
6173 break;
6174 nr--;
6175 }
6176 if (nr == 1)
6177 break;
6178 }
6179 }
6180
6181 /* If we found something on the current pass, omit later passes. */
6182 if (count < n_spills)
6183 break;
6184 }
6185
6186 /* We should have found a spill register by now. */
6187 if (count >= n_spills)
6188 return 0;
6189
6190 /* I is the index in SPILL_REG_RTX of the reload register we are to
6191 allocate. Get an rtx for it and find its register number. */
6192
6193 return set_reload_reg (i, r);
6194 }
6195 \f
6196 /* Initialize all the tables needed to allocate reload registers.
6197 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6198 is the array we use to restore the reg_rtx field for every reload. */
6199
6200 static void
6201 choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
6202 {
6203 int i;
6204
6205 for (i = 0; i < n_reloads; i++)
6206 rld[i].reg_rtx = save_reload_reg_rtx[i];
6207
6208 memset (reload_inherited, 0, MAX_RELOADS);
6209 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6210 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6211
6212 CLEAR_HARD_REG_SET (reload_reg_used);
6213 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6214 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6215 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6216 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6217 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6218
6219 CLEAR_HARD_REG_SET (reg_used_in_insn);
6220 {
6221 HARD_REG_SET tmp;
6222 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6223 reg_used_in_insn |= tmp;
6224 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6225 reg_used_in_insn |= tmp;
6226 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6227 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6228 }
6229
6230 for (i = 0; i < reload_n_operands; i++)
6231 {
6232 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6233 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6234 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6235 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6236 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6237 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6238 }
6239
6240 reload_reg_unavailable = ~chain->used_spill_regs;
6241
6242 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6243
6244 for (i = 0; i < n_reloads; i++)
6245 /* If we have already decided to use a certain register,
6246 don't use it in another way. */
6247 if (rld[i].reg_rtx)
6248 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6249 rld[i].when_needed, rld[i].mode);
6250 }
6251
6252 /* If X is not a subreg, return it unmodified. If it is a subreg,
6253 look up whether we made a replacement for the SUBREG_REG. Return
6254 either the replacement or the SUBREG_REG. */
6255
6256 static rtx
6257 replaced_subreg (rtx x)
6258 {
6259 if (GET_CODE (x) == SUBREG)
6260 return find_replacement (&SUBREG_REG (x));
6261 return x;
6262 }
6263
6264 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6265 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6266 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6267 otherwise it is NULL. */
6268
6269 static poly_int64
6270 compute_reload_subreg_offset (machine_mode outermode,
6271 rtx subreg,
6272 machine_mode innermode)
6273 {
6274 poly_int64 outer_offset;
6275 machine_mode middlemode;
6276
6277 if (!subreg)
6278 return subreg_lowpart_offset (outermode, innermode);
6279
6280 outer_offset = SUBREG_BYTE (subreg);
6281 middlemode = GET_MODE (SUBREG_REG (subreg));
6282
6283 /* If SUBREG is paradoxical then return the normal lowpart offset
6284 for OUTERMODE and INNERMODE. Our caller has already checked
6285 that OUTERMODE fits in INNERMODE. */
6286 if (paradoxical_subreg_p (outermode, middlemode))
6287 return subreg_lowpart_offset (outermode, innermode);
6288
6289 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6290 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6291 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6292 }
6293
6294 /* Assign hard reg targets for the pseudo-registers we must reload
6295 into hard regs for this insn.
6296 Also output the instructions to copy them in and out of the hard regs.
6297
6298 For machines with register classes, we are responsible for
6299 finding a reload reg in the proper class. */
6300
6301 static void
6302 choose_reload_regs (class insn_chain *chain)
6303 {
6304 rtx_insn *insn = chain->insn;
6305 int i, j;
6306 unsigned int max_group_size = 1;
6307 enum reg_class group_class = NO_REGS;
6308 int pass, win, inheritance;
6309
6310 rtx save_reload_reg_rtx[MAX_RELOADS];
6311
6312 /* In order to be certain of getting the registers we need,
6313 we must sort the reloads into order of increasing register class.
6314 Then our grabbing of reload registers will parallel the process
6315 that provided the reload registers.
6316
6317 Also note whether any of the reloads wants a consecutive group of regs.
6318 If so, record the maximum size of the group desired and what
6319 register class contains all the groups needed by this insn. */
6320
6321 for (j = 0; j < n_reloads; j++)
6322 {
6323 reload_order[j] = j;
6324 if (rld[j].reg_rtx != NULL_RTX)
6325 {
6326 gcc_assert (REG_P (rld[j].reg_rtx)
6327 && HARD_REGISTER_P (rld[j].reg_rtx));
6328 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6329 }
6330 else
6331 reload_spill_index[j] = -1;
6332
6333 if (rld[j].nregs > 1)
6334 {
6335 max_group_size = MAX (rld[j].nregs, max_group_size);
6336 group_class
6337 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6338 }
6339
6340 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6341 }
6342
6343 if (n_reloads > 1)
6344 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6345
6346 /* If -O, try first with inheritance, then turning it off.
6347 If not -O, don't do inheritance.
6348 Using inheritance when not optimizing leads to paradoxes
6349 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6350 because one side of the comparison might be inherited. */
6351 win = 0;
6352 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6353 {
6354 choose_reload_regs_init (chain, save_reload_reg_rtx);
6355
6356 /* Process the reloads in order of preference just found.
6357 Beyond this point, subregs can be found in reload_reg_rtx.
6358
6359 This used to look for an existing reloaded home for all of the
6360 reloads, and only then perform any new reloads. But that could lose
6361 if the reloads were done out of reg-class order because a later
6362 reload with a looser constraint might have an old home in a register
6363 needed by an earlier reload with a tighter constraint.
6364
6365 To solve this, we make two passes over the reloads, in the order
6366 described above. In the first pass we try to inherit a reload
6367 from a previous insn. If there is a later reload that needs a
6368 class that is a proper subset of the class being processed, we must
6369 also allocate a spill register during the first pass.
6370
6371 Then make a second pass over the reloads to allocate any reloads
6372 that haven't been given registers yet. */
6373
6374 for (j = 0; j < n_reloads; j++)
6375 {
6376 int r = reload_order[j];
6377 rtx search_equiv = NULL_RTX;
6378
6379 /* Ignore reloads that got marked inoperative. */
6380 if (rld[r].out == 0 && rld[r].in == 0
6381 && ! rld[r].secondary_p)
6382 continue;
6383
6384 /* If find_reloads chose to use reload_in or reload_out as a reload
6385 register, we don't need to chose one. Otherwise, try even if it
6386 found one since we might save an insn if we find the value lying
6387 around.
6388 Try also when reload_in is a pseudo without a hard reg. */
6389 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6390 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6391 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6392 && !MEM_P (rld[r].in)
6393 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6394 continue;
6395
6396 #if 0 /* No longer needed for correct operation.
6397 It might give better code, or might not; worth an experiment? */
6398 /* If this is an optional reload, we can't inherit from earlier insns
6399 until we are sure that any non-optional reloads have been allocated.
6400 The following code takes advantage of the fact that optional reloads
6401 are at the end of reload_order. */
6402 if (rld[r].optional != 0)
6403 for (i = 0; i < j; i++)
6404 if ((rld[reload_order[i]].out != 0
6405 || rld[reload_order[i]].in != 0
6406 || rld[reload_order[i]].secondary_p)
6407 && ! rld[reload_order[i]].optional
6408 && rld[reload_order[i]].reg_rtx == 0)
6409 allocate_reload_reg (chain, reload_order[i], 0);
6410 #endif
6411
6412 /* First see if this pseudo is already available as reloaded
6413 for a previous insn. We cannot try to inherit for reloads
6414 that are smaller than the maximum number of registers needed
6415 for groups unless the register we would allocate cannot be used
6416 for the groups.
6417
6418 We could check here to see if this is a secondary reload for
6419 an object that is already in a register of the desired class.
6420 This would avoid the need for the secondary reload register.
6421 But this is complex because we can't easily determine what
6422 objects might want to be loaded via this reload. So let a
6423 register be allocated here. In `emit_reload_insns' we suppress
6424 one of the loads in the case described above. */
6425
6426 if (inheritance)
6427 {
6428 poly_int64 byte = 0;
6429 int regno = -1;
6430 machine_mode mode = VOIDmode;
6431 rtx subreg = NULL_RTX;
6432
6433 if (rld[r].in == 0)
6434 ;
6435 else if (REG_P (rld[r].in))
6436 {
6437 regno = REGNO (rld[r].in);
6438 mode = GET_MODE (rld[r].in);
6439 }
6440 else if (REG_P (rld[r].in_reg))
6441 {
6442 regno = REGNO (rld[r].in_reg);
6443 mode = GET_MODE (rld[r].in_reg);
6444 }
6445 else if (GET_CODE (rld[r].in_reg) == SUBREG
6446 && REG_P (SUBREG_REG (rld[r].in_reg)))
6447 {
6448 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6449 if (regno < FIRST_PSEUDO_REGISTER)
6450 regno = subreg_regno (rld[r].in_reg);
6451 else
6452 {
6453 subreg = rld[r].in_reg;
6454 byte = SUBREG_BYTE (subreg);
6455 }
6456 mode = GET_MODE (rld[r].in_reg);
6457 }
6458 #if AUTO_INC_DEC
6459 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6460 && REG_P (XEXP (rld[r].in_reg, 0)))
6461 {
6462 regno = REGNO (XEXP (rld[r].in_reg, 0));
6463 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6464 rld[r].out = rld[r].in;
6465 }
6466 #endif
6467 #if 0
6468 /* This won't work, since REGNO can be a pseudo reg number.
6469 Also, it takes much more hair to keep track of all the things
6470 that can invalidate an inherited reload of part of a pseudoreg. */
6471 else if (GET_CODE (rld[r].in) == SUBREG
6472 && REG_P (SUBREG_REG (rld[r].in)))
6473 regno = subreg_regno (rld[r].in);
6474 #endif
6475
6476 if (regno >= 0
6477 && reg_last_reload_reg[regno] != 0
6478 && (known_ge
6479 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6480 GET_MODE_SIZE (mode) + byte))
6481 /* Verify that the register it's in can be used in
6482 mode MODE. */
6483 && (REG_CAN_CHANGE_MODE_P
6484 (REGNO (reg_last_reload_reg[regno]),
6485 GET_MODE (reg_last_reload_reg[regno]),
6486 mode)))
6487 {
6488 enum reg_class rclass = rld[r].rclass, last_class;
6489 rtx last_reg = reg_last_reload_reg[regno];
6490
6491 i = REGNO (last_reg);
6492 byte = compute_reload_subreg_offset (mode,
6493 subreg,
6494 GET_MODE (last_reg));
6495 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6496 last_class = REGNO_REG_CLASS (i);
6497
6498 if (reg_reloaded_contents[i] == regno
6499 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6500 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6501 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6502 /* Even if we can't use this register as a reload
6503 register, we might use it for reload_override_in,
6504 if copying it to the desired class is cheap
6505 enough. */
6506 || ((register_move_cost (mode, last_class, rclass)
6507 < memory_move_cost (mode, rclass, true))
6508 && (secondary_reload_class (1, rclass, mode,
6509 last_reg)
6510 == NO_REGS)
6511 && !(targetm.secondary_memory_needed
6512 (mode, last_class, rclass))))
6513 && (rld[r].nregs == max_group_size
6514 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6515 i))
6516 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6517 rld[r].when_needed, rld[r].in,
6518 const0_rtx, r, 1))
6519 {
6520 /* If a group is needed, verify that all the subsequent
6521 registers still have their values intact. */
6522 int nr = hard_regno_nregs (i, rld[r].mode);
6523 int k;
6524
6525 for (k = 1; k < nr; k++)
6526 if (reg_reloaded_contents[i + k] != regno
6527 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6528 break;
6529
6530 if (k == nr)
6531 {
6532 int i1;
6533 int bad_for_class;
6534
6535 last_reg = (GET_MODE (last_reg) == mode
6536 ? last_reg : gen_rtx_REG (mode, i));
6537
6538 bad_for_class = 0;
6539 for (k = 0; k < nr; k++)
6540 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6541 i+k);
6542
6543 /* We found a register that contains the
6544 value we need. If this register is the
6545 same as an `earlyclobber' operand of the
6546 current insn, just mark it as a place to
6547 reload from since we can't use it as the
6548 reload register itself. */
6549
6550 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6551 if (reg_overlap_mentioned_for_reload_p
6552 (reg_last_reload_reg[regno],
6553 reload_earlyclobbers[i1]))
6554 break;
6555
6556 if (i1 != n_earlyclobbers
6557 || ! (free_for_value_p (i, rld[r].mode,
6558 rld[r].opnum,
6559 rld[r].when_needed, rld[r].in,
6560 rld[r].out, r, 1))
6561 /* Don't use it if we'd clobber a pseudo reg. */
6562 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6563 && rld[r].out
6564 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6565 /* Don't clobber the frame pointer. */
6566 || (i == HARD_FRAME_POINTER_REGNUM
6567 && frame_pointer_needed
6568 && rld[r].out)
6569 /* Don't really use the inherited spill reg
6570 if we need it wider than we've got it. */
6571 || paradoxical_subreg_p (rld[r].mode, mode)
6572 || bad_for_class
6573
6574 /* If find_reloads chose reload_out as reload
6575 register, stay with it - that leaves the
6576 inherited register for subsequent reloads. */
6577 || (rld[r].out && rld[r].reg_rtx
6578 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6579 {
6580 if (! rld[r].optional)
6581 {
6582 reload_override_in[r] = last_reg;
6583 reload_inheritance_insn[r]
6584 = reg_reloaded_insn[i];
6585 }
6586 }
6587 else
6588 {
6589 int k;
6590 /* We can use this as a reload reg. */
6591 /* Mark the register as in use for this part of
6592 the insn. */
6593 mark_reload_reg_in_use (i,
6594 rld[r].opnum,
6595 rld[r].when_needed,
6596 rld[r].mode);
6597 rld[r].reg_rtx = last_reg;
6598 reload_inherited[r] = 1;
6599 reload_inheritance_insn[r]
6600 = reg_reloaded_insn[i];
6601 reload_spill_index[r] = i;
6602 for (k = 0; k < nr; k++)
6603 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6604 i + k);
6605 }
6606 }
6607 }
6608 }
6609 }
6610
6611 /* Here's another way to see if the value is already lying around. */
6612 if (inheritance
6613 && rld[r].in != 0
6614 && ! reload_inherited[r]
6615 && rld[r].out == 0
6616 && (CONSTANT_P (rld[r].in)
6617 || GET_CODE (rld[r].in) == PLUS
6618 || REG_P (rld[r].in)
6619 || MEM_P (rld[r].in))
6620 && (rld[r].nregs == max_group_size
6621 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6622 search_equiv = rld[r].in;
6623
6624 if (search_equiv)
6625 {
6626 rtx equiv
6627 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6628 -1, NULL, 0, rld[r].mode);
6629 int regno = 0;
6630
6631 if (equiv != 0)
6632 {
6633 if (REG_P (equiv))
6634 regno = REGNO (equiv);
6635 else
6636 {
6637 /* This must be a SUBREG of a hard register.
6638 Make a new REG since this might be used in an
6639 address and not all machines support SUBREGs
6640 there. */
6641 gcc_assert (GET_CODE (equiv) == SUBREG);
6642 regno = subreg_regno (equiv);
6643 equiv = gen_rtx_REG (rld[r].mode, regno);
6644 /* If we choose EQUIV as the reload register, but the
6645 loop below decides to cancel the inheritance, we'll
6646 end up reloading EQUIV in rld[r].mode, not the mode
6647 it had originally. That isn't safe when EQUIV isn't
6648 available as a spill register since its value might
6649 still be live at this point. */
6650 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6651 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6652 equiv = 0;
6653 }
6654 }
6655
6656 /* If we found a spill reg, reject it unless it is free
6657 and of the desired class. */
6658 if (equiv != 0)
6659 {
6660 int regs_used = 0;
6661 int bad_for_class = 0;
6662 int max_regno = regno + rld[r].nregs;
6663
6664 for (i = regno; i < max_regno; i++)
6665 {
6666 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6667 i);
6668 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6669 i);
6670 }
6671
6672 if ((regs_used
6673 && ! free_for_value_p (regno, rld[r].mode,
6674 rld[r].opnum, rld[r].when_needed,
6675 rld[r].in, rld[r].out, r, 1))
6676 || bad_for_class)
6677 equiv = 0;
6678 }
6679
6680 if (equiv != 0
6681 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6682 equiv = 0;
6683
6684 /* We found a register that contains the value we need.
6685 If this register is the same as an `earlyclobber' operand
6686 of the current insn, just mark it as a place to reload from
6687 since we can't use it as the reload register itself. */
6688
6689 if (equiv != 0)
6690 for (i = 0; i < n_earlyclobbers; i++)
6691 if (reg_overlap_mentioned_for_reload_p (equiv,
6692 reload_earlyclobbers[i]))
6693 {
6694 if (! rld[r].optional)
6695 reload_override_in[r] = equiv;
6696 equiv = 0;
6697 break;
6698 }
6699
6700 /* If the equiv register we have found is explicitly clobbered
6701 in the current insn, it depends on the reload type if we
6702 can use it, use it for reload_override_in, or not at all.
6703 In particular, we then can't use EQUIV for a
6704 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6705
6706 if (equiv != 0)
6707 {
6708 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6709 switch (rld[r].when_needed)
6710 {
6711 case RELOAD_FOR_OTHER_ADDRESS:
6712 case RELOAD_FOR_INPADDR_ADDRESS:
6713 case RELOAD_FOR_INPUT_ADDRESS:
6714 case RELOAD_FOR_OPADDR_ADDR:
6715 break;
6716 case RELOAD_OTHER:
6717 case RELOAD_FOR_INPUT:
6718 case RELOAD_FOR_OPERAND_ADDRESS:
6719 if (! rld[r].optional)
6720 reload_override_in[r] = equiv;
6721 /* Fall through. */
6722 default:
6723 equiv = 0;
6724 break;
6725 }
6726 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6727 switch (rld[r].when_needed)
6728 {
6729 case RELOAD_FOR_OTHER_ADDRESS:
6730 case RELOAD_FOR_INPADDR_ADDRESS:
6731 case RELOAD_FOR_INPUT_ADDRESS:
6732 case RELOAD_FOR_OPADDR_ADDR:
6733 case RELOAD_FOR_OPERAND_ADDRESS:
6734 case RELOAD_FOR_INPUT:
6735 break;
6736 case RELOAD_OTHER:
6737 if (! rld[r].optional)
6738 reload_override_in[r] = equiv;
6739 /* Fall through. */
6740 default:
6741 equiv = 0;
6742 break;
6743 }
6744 }
6745
6746 /* If we found an equivalent reg, say no code need be generated
6747 to load it, and use it as our reload reg. */
6748 if (equiv != 0
6749 && (regno != HARD_FRAME_POINTER_REGNUM
6750 || !frame_pointer_needed))
6751 {
6752 int nr = hard_regno_nregs (regno, rld[r].mode);
6753 int k;
6754 rld[r].reg_rtx = equiv;
6755 reload_spill_index[r] = regno;
6756 reload_inherited[r] = 1;
6757
6758 /* If reg_reloaded_valid is not set for this register,
6759 there might be a stale spill_reg_store lying around.
6760 We must clear it, since otherwise emit_reload_insns
6761 might delete the store. */
6762 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6763 spill_reg_store[regno] = NULL;
6764 /* If any of the hard registers in EQUIV are spill
6765 registers, mark them as in use for this insn. */
6766 for (k = 0; k < nr; k++)
6767 {
6768 i = spill_reg_order[regno + k];
6769 if (i >= 0)
6770 {
6771 mark_reload_reg_in_use (regno, rld[r].opnum,
6772 rld[r].when_needed,
6773 rld[r].mode);
6774 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6775 regno + k);
6776 }
6777 }
6778 }
6779 }
6780
6781 /* If we found a register to use already, or if this is an optional
6782 reload, we are done. */
6783 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6784 continue;
6785
6786 #if 0
6787 /* No longer needed for correct operation. Might or might
6788 not give better code on the average. Want to experiment? */
6789
6790 /* See if there is a later reload that has a class different from our
6791 class that intersects our class or that requires less register
6792 than our reload. If so, we must allocate a register to this
6793 reload now, since that reload might inherit a previous reload
6794 and take the only available register in our class. Don't do this
6795 for optional reloads since they will force all previous reloads
6796 to be allocated. Also don't do this for reloads that have been
6797 turned off. */
6798
6799 for (i = j + 1; i < n_reloads; i++)
6800 {
6801 int s = reload_order[i];
6802
6803 if ((rld[s].in == 0 && rld[s].out == 0
6804 && ! rld[s].secondary_p)
6805 || rld[s].optional)
6806 continue;
6807
6808 if ((rld[s].rclass != rld[r].rclass
6809 && reg_classes_intersect_p (rld[r].rclass,
6810 rld[s].rclass))
6811 || rld[s].nregs < rld[r].nregs)
6812 break;
6813 }
6814
6815 if (i == n_reloads)
6816 continue;
6817
6818 allocate_reload_reg (chain, r, j == n_reloads - 1);
6819 #endif
6820 }
6821
6822 /* Now allocate reload registers for anything non-optional that
6823 didn't get one yet. */
6824 for (j = 0; j < n_reloads; j++)
6825 {
6826 int r = reload_order[j];
6827
6828 /* Ignore reloads that got marked inoperative. */
6829 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6830 continue;
6831
6832 /* Skip reloads that already have a register allocated or are
6833 optional. */
6834 if (rld[r].reg_rtx != 0 || rld[r].optional)
6835 continue;
6836
6837 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6838 break;
6839 }
6840
6841 /* If that loop got all the way, we have won. */
6842 if (j == n_reloads)
6843 {
6844 win = 1;
6845 break;
6846 }
6847
6848 /* Loop around and try without any inheritance. */
6849 }
6850
6851 if (! win)
6852 {
6853 /* First undo everything done by the failed attempt
6854 to allocate with inheritance. */
6855 choose_reload_regs_init (chain, save_reload_reg_rtx);
6856
6857 /* Some sanity tests to verify that the reloads found in the first
6858 pass are identical to the ones we have now. */
6859 gcc_assert (chain->n_reloads == n_reloads);
6860
6861 for (i = 0; i < n_reloads; i++)
6862 {
6863 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6864 continue;
6865 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6866 for (j = 0; j < n_spills; j++)
6867 if (spill_regs[j] == chain->rld[i].regno)
6868 if (! set_reload_reg (j, i))
6869 failed_reload (chain->insn, i);
6870 }
6871 }
6872
6873 /* If we thought we could inherit a reload, because it seemed that
6874 nothing else wanted the same reload register earlier in the insn,
6875 verify that assumption, now that all reloads have been assigned.
6876 Likewise for reloads where reload_override_in has been set. */
6877
6878 /* If doing expensive optimizations, do one preliminary pass that doesn't
6879 cancel any inheritance, but removes reloads that have been needed only
6880 for reloads that we know can be inherited. */
6881 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6882 {
6883 for (j = 0; j < n_reloads; j++)
6884 {
6885 int r = reload_order[j];
6886 rtx check_reg;
6887 rtx tem;
6888 if (reload_inherited[r] && rld[r].reg_rtx)
6889 check_reg = rld[r].reg_rtx;
6890 else if (reload_override_in[r]
6891 && (REG_P (reload_override_in[r])
6892 || GET_CODE (reload_override_in[r]) == SUBREG))
6893 check_reg = reload_override_in[r];
6894 else
6895 continue;
6896 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6897 rld[r].opnum, rld[r].when_needed, rld[r].in,
6898 (reload_inherited[r]
6899 ? rld[r].out : const0_rtx),
6900 r, 1))
6901 {
6902 if (pass)
6903 continue;
6904 reload_inherited[r] = 0;
6905 reload_override_in[r] = 0;
6906 }
6907 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6908 reload_override_in, then we do not need its related
6909 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6910 likewise for other reload types.
6911 We handle this by removing a reload when its only replacement
6912 is mentioned in reload_in of the reload we are going to inherit.
6913 A special case are auto_inc expressions; even if the input is
6914 inherited, we still need the address for the output. We can
6915 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6916 If we succeeded removing some reload and we are doing a preliminary
6917 pass just to remove such reloads, make another pass, since the
6918 removal of one reload might allow us to inherit another one. */
6919 else if (rld[r].in
6920 && rld[r].out != rld[r].in
6921 && remove_address_replacements (rld[r].in))
6922 {
6923 if (pass)
6924 pass = 2;
6925 }
6926 /* If we needed a memory location for the reload, we also have to
6927 remove its related reloads. */
6928 else if (rld[r].in
6929 && rld[r].out != rld[r].in
6930 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6931 && REGNO (tem) < FIRST_PSEUDO_REGISTER
6932 && (targetm.secondary_memory_needed
6933 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6934 rld[r].rclass))
6935 && remove_address_replacements
6936 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6937 rld[r].when_needed)))
6938 {
6939 if (pass)
6940 pass = 2;
6941 }
6942 }
6943 }
6944
6945 /* Now that reload_override_in is known valid,
6946 actually override reload_in. */
6947 for (j = 0; j < n_reloads; j++)
6948 if (reload_override_in[j])
6949 rld[j].in = reload_override_in[j];
6950
6951 /* If this reload won't be done because it has been canceled or is
6952 optional and not inherited, clear reload_reg_rtx so other
6953 routines (such as subst_reloads) don't get confused. */
6954 for (j = 0; j < n_reloads; j++)
6955 if (rld[j].reg_rtx != 0
6956 && ((rld[j].optional && ! reload_inherited[j])
6957 || (rld[j].in == 0 && rld[j].out == 0
6958 && ! rld[j].secondary_p)))
6959 {
6960 int regno = true_regnum (rld[j].reg_rtx);
6961
6962 if (spill_reg_order[regno] >= 0)
6963 clear_reload_reg_in_use (regno, rld[j].opnum,
6964 rld[j].when_needed, rld[j].mode);
6965 rld[j].reg_rtx = 0;
6966 reload_spill_index[j] = -1;
6967 }
6968
6969 /* Record which pseudos and which spill regs have output reloads. */
6970 for (j = 0; j < n_reloads; j++)
6971 {
6972 int r = reload_order[j];
6973
6974 i = reload_spill_index[r];
6975
6976 /* I is nonneg if this reload uses a register.
6977 If rld[r].reg_rtx is 0, this is an optional reload
6978 that we opted to ignore. */
6979 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6980 && rld[r].reg_rtx != 0)
6981 {
6982 int nregno = REGNO (rld[r].out_reg);
6983 int nr = 1;
6984
6985 if (nregno < FIRST_PSEUDO_REGISTER)
6986 nr = hard_regno_nregs (nregno, rld[r].mode);
6987
6988 while (--nr >= 0)
6989 SET_REGNO_REG_SET (&reg_has_output_reload,
6990 nregno + nr);
6991
6992 if (i >= 0)
6993 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
6994
6995 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6996 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6997 || rld[r].when_needed == RELOAD_FOR_INSN);
6998 }
6999 }
7000 }
7001
7002 /* Deallocate the reload register for reload R. This is called from
7003 remove_address_replacements. */
7004
7005 void
7006 deallocate_reload_reg (int r)
7007 {
7008 int regno;
7009
7010 if (! rld[r].reg_rtx)
7011 return;
7012 regno = true_regnum (rld[r].reg_rtx);
7013 rld[r].reg_rtx = 0;
7014 if (spill_reg_order[regno] >= 0)
7015 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7016 rld[r].mode);
7017 reload_spill_index[r] = -1;
7018 }
7019 \f
7020 /* These arrays are filled by emit_reload_insns and its subroutines. */
7021 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7022 static rtx_insn *other_input_address_reload_insns = 0;
7023 static rtx_insn *other_input_reload_insns = 0;
7024 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7025 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7026 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7027 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7028 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7029 static rtx_insn *operand_reload_insns = 0;
7030 static rtx_insn *other_operand_reload_insns = 0;
7031 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7032
7033 /* Values to be put in spill_reg_store are put here first. Instructions
7034 must only be placed here if the associated reload register reaches
7035 the end of the instruction's reload sequence. */
7036 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7037 static HARD_REG_SET reg_reloaded_died;
7038
7039 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7040 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7041 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7042 adjusted register, and return true. Otherwise, return false. */
7043 static bool
7044 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7045 enum reg_class new_class,
7046 machine_mode new_mode)
7047
7048 {
7049 rtx reg;
7050
7051 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7052 {
7053 unsigned regno = REGNO (reg);
7054
7055 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7056 continue;
7057 if (GET_MODE (reg) != new_mode)
7058 {
7059 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7060 continue;
7061 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7062 continue;
7063 reg = reload_adjust_reg_for_mode (reg, new_mode);
7064 }
7065 *reload_reg = reg;
7066 return true;
7067 }
7068 return false;
7069 }
7070
7071 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7072 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7073 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7074 adjusted register, and return true. Otherwise, return false. */
7075 static bool
7076 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7077 enum insn_code icode)
7078
7079 {
7080 enum reg_class new_class = scratch_reload_class (icode);
7081 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7082
7083 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7084 new_class, new_mode);
7085 }
7086
7087 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7088 has the number J. OLD contains the value to be used as input. */
7089
7090 static void
7091 emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
7092 rtx old, int j)
7093 {
7094 rtx_insn *insn = chain->insn;
7095 rtx reloadreg;
7096 rtx oldequiv_reg = 0;
7097 rtx oldequiv = 0;
7098 int special = 0;
7099 machine_mode mode;
7100 rtx_insn **where;
7101
7102 /* delete_output_reload is only invoked properly if old contains
7103 the original pseudo register. Since this is replaced with a
7104 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7105 find the pseudo in RELOAD_IN_REG. This is also used to
7106 determine whether a secondary reload is needed. */
7107 if (reload_override_in[j]
7108 && (REG_P (rl->in_reg)
7109 || (GET_CODE (rl->in_reg) == SUBREG
7110 && REG_P (SUBREG_REG (rl->in_reg)))))
7111 {
7112 oldequiv = old;
7113 old = rl->in_reg;
7114 }
7115 if (oldequiv == 0)
7116 oldequiv = old;
7117 else if (REG_P (oldequiv))
7118 oldequiv_reg = oldequiv;
7119 else if (GET_CODE (oldequiv) == SUBREG)
7120 oldequiv_reg = SUBREG_REG (oldequiv);
7121
7122 reloadreg = reload_reg_rtx_for_input[j];
7123 mode = GET_MODE (reloadreg);
7124
7125 /* If we are reloading from a register that was recently stored in
7126 with an output-reload, see if we can prove there was
7127 actually no need to store the old value in it. */
7128
7129 if (optimize && REG_P (oldequiv)
7130 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7131 && spill_reg_store[REGNO (oldequiv)]
7132 && REG_P (old)
7133 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7134 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7135 rl->out_reg)))
7136 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7137
7138 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7139 OLDEQUIV. */
7140
7141 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7142 oldequiv = SUBREG_REG (oldequiv);
7143 if (GET_MODE (oldequiv) != VOIDmode
7144 && mode != GET_MODE (oldequiv))
7145 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7146
7147 /* Switch to the right place to emit the reload insns. */
7148 switch (rl->when_needed)
7149 {
7150 case RELOAD_OTHER:
7151 where = &other_input_reload_insns;
7152 break;
7153 case RELOAD_FOR_INPUT:
7154 where = &input_reload_insns[rl->opnum];
7155 break;
7156 case RELOAD_FOR_INPUT_ADDRESS:
7157 where = &input_address_reload_insns[rl->opnum];
7158 break;
7159 case RELOAD_FOR_INPADDR_ADDRESS:
7160 where = &inpaddr_address_reload_insns[rl->opnum];
7161 break;
7162 case RELOAD_FOR_OUTPUT_ADDRESS:
7163 where = &output_address_reload_insns[rl->opnum];
7164 break;
7165 case RELOAD_FOR_OUTADDR_ADDRESS:
7166 where = &outaddr_address_reload_insns[rl->opnum];
7167 break;
7168 case RELOAD_FOR_OPERAND_ADDRESS:
7169 where = &operand_reload_insns;
7170 break;
7171 case RELOAD_FOR_OPADDR_ADDR:
7172 where = &other_operand_reload_insns;
7173 break;
7174 case RELOAD_FOR_OTHER_ADDRESS:
7175 where = &other_input_address_reload_insns;
7176 break;
7177 default:
7178 gcc_unreachable ();
7179 }
7180
7181 push_to_sequence (*where);
7182
7183 /* Auto-increment addresses must be reloaded in a special way. */
7184 if (rl->out && ! rl->out_reg)
7185 {
7186 /* We are not going to bother supporting the case where a
7187 incremented register can't be copied directly from
7188 OLDEQUIV since this seems highly unlikely. */
7189 gcc_assert (rl->secondary_in_reload < 0);
7190
7191 if (reload_inherited[j])
7192 oldequiv = reloadreg;
7193
7194 old = XEXP (rl->in_reg, 0);
7195
7196 /* Prevent normal processing of this reload. */
7197 special = 1;
7198 /* Output a special code sequence for this case. */
7199 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7200 }
7201
7202 /* If we are reloading a pseudo-register that was set by the previous
7203 insn, see if we can get rid of that pseudo-register entirely
7204 by redirecting the previous insn into our reload register. */
7205
7206 else if (optimize && REG_P (old)
7207 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7208 && dead_or_set_p (insn, old)
7209 /* This is unsafe if some other reload
7210 uses the same reg first. */
7211 && ! conflicts_with_override (reloadreg)
7212 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7213 rl->when_needed, old, rl->out, j, 0))
7214 {
7215 rtx_insn *temp = PREV_INSN (insn);
7216 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7217 temp = PREV_INSN (temp);
7218 if (temp
7219 && NONJUMP_INSN_P (temp)
7220 && GET_CODE (PATTERN (temp)) == SET
7221 && SET_DEST (PATTERN (temp)) == old
7222 /* Make sure we can access insn_operand_constraint. */
7223 && asm_noperands (PATTERN (temp)) < 0
7224 /* This is unsafe if operand occurs more than once in current
7225 insn. Perhaps some occurrences aren't reloaded. */
7226 && count_occurrences (PATTERN (insn), old, 0) == 1)
7227 {
7228 rtx old = SET_DEST (PATTERN (temp));
7229 /* Store into the reload register instead of the pseudo. */
7230 SET_DEST (PATTERN (temp)) = reloadreg;
7231
7232 /* Verify that resulting insn is valid.
7233
7234 Note that we have replaced the destination of TEMP with
7235 RELOADREG. If TEMP references RELOADREG within an
7236 autoincrement addressing mode, then the resulting insn
7237 is ill-formed and we must reject this optimization. */
7238 extract_insn (temp);
7239 if (constrain_operands (1, get_enabled_alternatives (temp))
7240 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7241 {
7242 /* If the previous insn is an output reload, the source is
7243 a reload register, and its spill_reg_store entry will
7244 contain the previous destination. This is now
7245 invalid. */
7246 if (REG_P (SET_SRC (PATTERN (temp)))
7247 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7248 {
7249 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7250 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7251 }
7252
7253 /* If these are the only uses of the pseudo reg,
7254 pretend for GDB it lives in the reload reg we used. */
7255 if (REG_N_DEATHS (REGNO (old)) == 1
7256 && REG_N_SETS (REGNO (old)) == 1)
7257 {
7258 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7259 if (ira_conflicts_p)
7260 /* Inform IRA about the change. */
7261 ira_mark_allocation_change (REGNO (old));
7262 alter_reg (REGNO (old), -1, false);
7263 }
7264 special = 1;
7265
7266 /* Adjust any debug insns between temp and insn. */
7267 while ((temp = NEXT_INSN (temp)) != insn)
7268 if (DEBUG_BIND_INSN_P (temp))
7269 INSN_VAR_LOCATION_LOC (temp)
7270 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7271 old, reloadreg);
7272 else
7273 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7274 }
7275 else
7276 {
7277 SET_DEST (PATTERN (temp)) = old;
7278 }
7279 }
7280 }
7281
7282 /* We can't do that, so output an insn to load RELOADREG. */
7283
7284 /* If we have a secondary reload, pick up the secondary register
7285 and icode, if any. If OLDEQUIV and OLD are different or
7286 if this is an in-out reload, recompute whether or not we
7287 still need a secondary register and what the icode should
7288 be. If we still need a secondary register and the class or
7289 icode is different, go back to reloading from OLD if using
7290 OLDEQUIV means that we got the wrong type of register. We
7291 cannot have different class or icode due to an in-out reload
7292 because we don't make such reloads when both the input and
7293 output need secondary reload registers. */
7294
7295 if (! special && rl->secondary_in_reload >= 0)
7296 {
7297 rtx second_reload_reg = 0;
7298 rtx third_reload_reg = 0;
7299 int secondary_reload = rl->secondary_in_reload;
7300 rtx real_oldequiv = oldequiv;
7301 rtx real_old = old;
7302 rtx tmp;
7303 enum insn_code icode;
7304 enum insn_code tertiary_icode = CODE_FOR_nothing;
7305
7306 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7307 and similarly for OLD.
7308 See comments in get_secondary_reload in reload.c. */
7309 /* If it is a pseudo that cannot be replaced with its
7310 equivalent MEM, we must fall back to reload_in, which
7311 will have all the necessary substitutions registered.
7312 Likewise for a pseudo that can't be replaced with its
7313 equivalent constant.
7314
7315 Take extra care for subregs of such pseudos. Note that
7316 we cannot use reg_equiv_mem in this case because it is
7317 not in the right mode. */
7318
7319 tmp = oldequiv;
7320 if (GET_CODE (tmp) == SUBREG)
7321 tmp = SUBREG_REG (tmp);
7322 if (REG_P (tmp)
7323 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7324 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7325 || reg_equiv_constant (REGNO (tmp)) != 0))
7326 {
7327 if (! reg_equiv_mem (REGNO (tmp))
7328 || num_not_at_initial_offset
7329 || GET_CODE (oldequiv) == SUBREG)
7330 real_oldequiv = rl->in;
7331 else
7332 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7333 }
7334
7335 tmp = old;
7336 if (GET_CODE (tmp) == SUBREG)
7337 tmp = SUBREG_REG (tmp);
7338 if (REG_P (tmp)
7339 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7340 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7341 || reg_equiv_constant (REGNO (tmp)) != 0))
7342 {
7343 if (! reg_equiv_mem (REGNO (tmp))
7344 || num_not_at_initial_offset
7345 || GET_CODE (old) == SUBREG)
7346 real_old = rl->in;
7347 else
7348 real_old = reg_equiv_mem (REGNO (tmp));
7349 }
7350
7351 second_reload_reg = rld[secondary_reload].reg_rtx;
7352 if (rld[secondary_reload].secondary_in_reload >= 0)
7353 {
7354 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7355
7356 third_reload_reg = rld[tertiary_reload].reg_rtx;
7357 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7358 /* We'd have to add more code for quartary reloads. */
7359 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7360 }
7361 icode = rl->secondary_in_icode;
7362
7363 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7364 || (rl->in != 0 && rl->out != 0))
7365 {
7366 secondary_reload_info sri, sri2;
7367 enum reg_class new_class, new_t_class;
7368
7369 sri.icode = CODE_FOR_nothing;
7370 sri.prev_sri = NULL;
7371 new_class
7372 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7373 rl->rclass, mode,
7374 &sri);
7375
7376 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7377 second_reload_reg = 0;
7378 else if (new_class == NO_REGS)
7379 {
7380 if (reload_adjust_reg_for_icode (&second_reload_reg,
7381 third_reload_reg,
7382 (enum insn_code) sri.icode))
7383 {
7384 icode = (enum insn_code) sri.icode;
7385 third_reload_reg = 0;
7386 }
7387 else
7388 {
7389 oldequiv = old;
7390 real_oldequiv = real_old;
7391 }
7392 }
7393 else if (sri.icode != CODE_FOR_nothing)
7394 /* We currently lack a way to express this in reloads. */
7395 gcc_unreachable ();
7396 else
7397 {
7398 sri2.icode = CODE_FOR_nothing;
7399 sri2.prev_sri = &sri;
7400 new_t_class
7401 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7402 new_class, mode,
7403 &sri);
7404 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7405 {
7406 if (reload_adjust_reg_for_temp (&second_reload_reg,
7407 third_reload_reg,
7408 new_class, mode))
7409 {
7410 third_reload_reg = 0;
7411 tertiary_icode = (enum insn_code) sri2.icode;
7412 }
7413 else
7414 {
7415 oldequiv = old;
7416 real_oldequiv = real_old;
7417 }
7418 }
7419 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7420 {
7421 rtx intermediate = second_reload_reg;
7422
7423 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7424 new_class, mode)
7425 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7426 ((enum insn_code)
7427 sri2.icode)))
7428 {
7429 second_reload_reg = intermediate;
7430 tertiary_icode = (enum insn_code) sri2.icode;
7431 }
7432 else
7433 {
7434 oldequiv = old;
7435 real_oldequiv = real_old;
7436 }
7437 }
7438 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7439 {
7440 rtx intermediate = second_reload_reg;
7441
7442 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7443 new_class, mode)
7444 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7445 new_t_class, mode))
7446 {
7447 second_reload_reg = intermediate;
7448 tertiary_icode = (enum insn_code) sri2.icode;
7449 }
7450 else
7451 {
7452 oldequiv = old;
7453 real_oldequiv = real_old;
7454 }
7455 }
7456 else
7457 {
7458 /* This could be handled more intelligently too. */
7459 oldequiv = old;
7460 real_oldequiv = real_old;
7461 }
7462 }
7463 }
7464
7465 /* If we still need a secondary reload register, check
7466 to see if it is being used as a scratch or intermediate
7467 register and generate code appropriately. If we need
7468 a scratch register, use REAL_OLDEQUIV since the form of
7469 the insn may depend on the actual address if it is
7470 a MEM. */
7471
7472 if (second_reload_reg)
7473 {
7474 if (icode != CODE_FOR_nothing)
7475 {
7476 /* We'd have to add extra code to handle this case. */
7477 gcc_assert (!third_reload_reg);
7478
7479 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7480 second_reload_reg));
7481 special = 1;
7482 }
7483 else
7484 {
7485 /* See if we need a scratch register to load the
7486 intermediate register (a tertiary reload). */
7487 if (tertiary_icode != CODE_FOR_nothing)
7488 {
7489 emit_insn ((GEN_FCN (tertiary_icode)
7490 (second_reload_reg, real_oldequiv,
7491 third_reload_reg)));
7492 }
7493 else if (third_reload_reg)
7494 {
7495 gen_reload (third_reload_reg, real_oldequiv,
7496 rl->opnum,
7497 rl->when_needed);
7498 gen_reload (second_reload_reg, third_reload_reg,
7499 rl->opnum,
7500 rl->when_needed);
7501 }
7502 else
7503 gen_reload (second_reload_reg, real_oldequiv,
7504 rl->opnum,
7505 rl->when_needed);
7506
7507 oldequiv = second_reload_reg;
7508 }
7509 }
7510 }
7511
7512 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7513 {
7514 rtx real_oldequiv = oldequiv;
7515
7516 if ((REG_P (oldequiv)
7517 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7518 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7519 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7520 || (GET_CODE (oldequiv) == SUBREG
7521 && REG_P (SUBREG_REG (oldequiv))
7522 && (REGNO (SUBREG_REG (oldequiv))
7523 >= FIRST_PSEUDO_REGISTER)
7524 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7525 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7526 || (CONSTANT_P (oldequiv)
7527 && (targetm.preferred_reload_class (oldequiv,
7528 REGNO_REG_CLASS (REGNO (reloadreg)))
7529 == NO_REGS)))
7530 real_oldequiv = rl->in;
7531 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7532 rl->when_needed);
7533 }
7534
7535 if (cfun->can_throw_non_call_exceptions)
7536 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7537
7538 /* End this sequence. */
7539 *where = get_insns ();
7540 end_sequence ();
7541
7542 /* Update reload_override_in so that delete_address_reloads_1
7543 can see the actual register usage. */
7544 if (oldequiv_reg)
7545 reload_override_in[j] = oldequiv;
7546 }
7547
7548 /* Generate insns to for the output reload RL, which is for the insn described
7549 by CHAIN and has the number J. */
7550 static void
7551 emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
7552 int j)
7553 {
7554 rtx reloadreg;
7555 rtx_insn *insn = chain->insn;
7556 int special = 0;
7557 rtx old = rl->out;
7558 machine_mode mode;
7559 rtx_insn *p;
7560 rtx rl_reg_rtx;
7561
7562 if (rl->when_needed == RELOAD_OTHER)
7563 start_sequence ();
7564 else
7565 push_to_sequence (output_reload_insns[rl->opnum]);
7566
7567 rl_reg_rtx = reload_reg_rtx_for_output[j];
7568 mode = GET_MODE (rl_reg_rtx);
7569
7570 reloadreg = rl_reg_rtx;
7571
7572 /* If we need two reload regs, set RELOADREG to the intermediate
7573 one, since it will be stored into OLD. We might need a secondary
7574 register only for an input reload, so check again here. */
7575
7576 if (rl->secondary_out_reload >= 0)
7577 {
7578 rtx real_old = old;
7579 int secondary_reload = rl->secondary_out_reload;
7580 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7581
7582 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7583 && reg_equiv_mem (REGNO (old)) != 0)
7584 real_old = reg_equiv_mem (REGNO (old));
7585
7586 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7587 {
7588 rtx second_reloadreg = reloadreg;
7589 reloadreg = rld[secondary_reload].reg_rtx;
7590
7591 /* See if RELOADREG is to be used as a scratch register
7592 or as an intermediate register. */
7593 if (rl->secondary_out_icode != CODE_FOR_nothing)
7594 {
7595 /* We'd have to add extra code to handle this case. */
7596 gcc_assert (tertiary_reload < 0);
7597
7598 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7599 (real_old, second_reloadreg, reloadreg)));
7600 special = 1;
7601 }
7602 else
7603 {
7604 /* See if we need both a scratch and intermediate reload
7605 register. */
7606
7607 enum insn_code tertiary_icode
7608 = rld[secondary_reload].secondary_out_icode;
7609
7610 /* We'd have to add more code for quartary reloads. */
7611 gcc_assert (tertiary_reload < 0
7612 || rld[tertiary_reload].secondary_out_reload < 0);
7613
7614 if (GET_MODE (reloadreg) != mode)
7615 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7616
7617 if (tertiary_icode != CODE_FOR_nothing)
7618 {
7619 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7620
7621 /* Copy primary reload reg to secondary reload reg.
7622 (Note that these have been swapped above, then
7623 secondary reload reg to OLD using our insn.) */
7624
7625 /* If REAL_OLD is a paradoxical SUBREG, remove it
7626 and try to put the opposite SUBREG on
7627 RELOADREG. */
7628 strip_paradoxical_subreg (&real_old, &reloadreg);
7629
7630 gen_reload (reloadreg, second_reloadreg,
7631 rl->opnum, rl->when_needed);
7632 emit_insn ((GEN_FCN (tertiary_icode)
7633 (real_old, reloadreg, third_reloadreg)));
7634 special = 1;
7635 }
7636
7637 else
7638 {
7639 /* Copy between the reload regs here and then to
7640 OUT later. */
7641
7642 gen_reload (reloadreg, second_reloadreg,
7643 rl->opnum, rl->when_needed);
7644 if (tertiary_reload >= 0)
7645 {
7646 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7647
7648 gen_reload (third_reloadreg, reloadreg,
7649 rl->opnum, rl->when_needed);
7650 reloadreg = third_reloadreg;
7651 }
7652 }
7653 }
7654 }
7655 }
7656
7657 /* Output the last reload insn. */
7658 if (! special)
7659 {
7660 rtx set;
7661
7662 /* Don't output the last reload if OLD is not the dest of
7663 INSN and is in the src and is clobbered by INSN. */
7664 if (! flag_expensive_optimizations
7665 || !REG_P (old)
7666 || !(set = single_set (insn))
7667 || rtx_equal_p (old, SET_DEST (set))
7668 || !reg_mentioned_p (old, SET_SRC (set))
7669 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7670 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7671 gen_reload (old, reloadreg, rl->opnum,
7672 rl->when_needed);
7673 }
7674
7675 /* Look at all insns we emitted, just to be safe. */
7676 for (p = get_insns (); p; p = NEXT_INSN (p))
7677 if (INSN_P (p))
7678 {
7679 rtx pat = PATTERN (p);
7680
7681 /* If this output reload doesn't come from a spill reg,
7682 clear any memory of reloaded copies of the pseudo reg.
7683 If this output reload comes from a spill reg,
7684 reg_has_output_reload will make this do nothing. */
7685 note_stores (p, forget_old_reloads_1, NULL);
7686
7687 if (reg_mentioned_p (rl_reg_rtx, pat))
7688 {
7689 rtx set = single_set (insn);
7690 if (reload_spill_index[j] < 0
7691 && set
7692 && SET_SRC (set) == rl_reg_rtx)
7693 {
7694 int src = REGNO (SET_SRC (set));
7695
7696 reload_spill_index[j] = src;
7697 SET_HARD_REG_BIT (reg_is_output_reload, src);
7698 if (find_regno_note (insn, REG_DEAD, src))
7699 SET_HARD_REG_BIT (reg_reloaded_died, src);
7700 }
7701 if (HARD_REGISTER_P (rl_reg_rtx))
7702 {
7703 int s = rl->secondary_out_reload;
7704 set = single_set (p);
7705 /* If this reload copies only to the secondary reload
7706 register, the secondary reload does the actual
7707 store. */
7708 if (s >= 0 && set == NULL_RTX)
7709 /* We can't tell what function the secondary reload
7710 has and where the actual store to the pseudo is
7711 made; leave new_spill_reg_store alone. */
7712 ;
7713 else if (s >= 0
7714 && SET_SRC (set) == rl_reg_rtx
7715 && SET_DEST (set) == rld[s].reg_rtx)
7716 {
7717 /* Usually the next instruction will be the
7718 secondary reload insn; if we can confirm
7719 that it is, setting new_spill_reg_store to
7720 that insn will allow an extra optimization. */
7721 rtx s_reg = rld[s].reg_rtx;
7722 rtx_insn *next = NEXT_INSN (p);
7723 rld[s].out = rl->out;
7724 rld[s].out_reg = rl->out_reg;
7725 set = single_set (next);
7726 if (set && SET_SRC (set) == s_reg
7727 && reload_reg_rtx_reaches_end_p (s_reg, s))
7728 {
7729 SET_HARD_REG_BIT (reg_is_output_reload,
7730 REGNO (s_reg));
7731 new_spill_reg_store[REGNO (s_reg)] = next;
7732 }
7733 }
7734 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7735 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7736 }
7737 }
7738 }
7739
7740 if (rl->when_needed == RELOAD_OTHER)
7741 {
7742 emit_insn (other_output_reload_insns[rl->opnum]);
7743 other_output_reload_insns[rl->opnum] = get_insns ();
7744 }
7745 else
7746 output_reload_insns[rl->opnum] = get_insns ();
7747
7748 if (cfun->can_throw_non_call_exceptions)
7749 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7750
7751 end_sequence ();
7752 }
7753
7754 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7755 and has the number J. */
7756 static void
7757 do_input_reload (class insn_chain *chain, struct reload *rl, int j)
7758 {
7759 rtx_insn *insn = chain->insn;
7760 rtx old = (rl->in && MEM_P (rl->in)
7761 ? rl->in_reg : rl->in);
7762 rtx reg_rtx = rl->reg_rtx;
7763
7764 if (old && reg_rtx)
7765 {
7766 machine_mode mode;
7767
7768 /* Determine the mode to reload in.
7769 This is very tricky because we have three to choose from.
7770 There is the mode the insn operand wants (rl->inmode).
7771 There is the mode of the reload register RELOADREG.
7772 There is the intrinsic mode of the operand, which we could find
7773 by stripping some SUBREGs.
7774 It turns out that RELOADREG's mode is irrelevant:
7775 we can change that arbitrarily.
7776
7777 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7778 then the reload reg may not support QImode moves, so use SImode.
7779 If foo is in memory due to spilling a pseudo reg, this is safe,
7780 because the QImode value is in the least significant part of a
7781 slot big enough for a SImode. If foo is some other sort of
7782 memory reference, then it is impossible to reload this case,
7783 so previous passes had better make sure this never happens.
7784
7785 Then consider a one-word union which has SImode and one of its
7786 members is a float, being fetched as (SUBREG:SF union:SI).
7787 We must fetch that as SFmode because we could be loading into
7788 a float-only register. In this case OLD's mode is correct.
7789
7790 Consider an immediate integer: it has VOIDmode. Here we need
7791 to get a mode from something else.
7792
7793 In some cases, there is a fourth mode, the operand's
7794 containing mode. If the insn specifies a containing mode for
7795 this operand, it overrides all others.
7796
7797 I am not sure whether the algorithm here is always right,
7798 but it does the right things in those cases. */
7799
7800 mode = GET_MODE (old);
7801 if (mode == VOIDmode)
7802 mode = rl->inmode;
7803
7804 /* We cannot use gen_lowpart_common since it can do the wrong thing
7805 when REG_RTX has a multi-word mode. Note that REG_RTX must
7806 always be a REG here. */
7807 if (GET_MODE (reg_rtx) != mode)
7808 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7809 }
7810 reload_reg_rtx_for_input[j] = reg_rtx;
7811
7812 if (old != 0
7813 /* AUTO_INC reloads need to be handled even if inherited. We got an
7814 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7815 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7816 && ! rtx_equal_p (reg_rtx, old)
7817 && reg_rtx != 0)
7818 emit_input_reload_insns (chain, rld + j, old, j);
7819
7820 /* When inheriting a wider reload, we have a MEM in rl->in,
7821 e.g. inheriting a SImode output reload for
7822 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7823 if (optimize && reload_inherited[j] && rl->in
7824 && MEM_P (rl->in)
7825 && MEM_P (rl->in_reg)
7826 && reload_spill_index[j] >= 0
7827 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7828 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7829
7830 /* If we are reloading a register that was recently stored in with an
7831 output-reload, see if we can prove there was
7832 actually no need to store the old value in it. */
7833
7834 if (optimize
7835 && (reload_inherited[j] || reload_override_in[j])
7836 && reg_rtx
7837 && REG_P (reg_rtx)
7838 && spill_reg_store[REGNO (reg_rtx)] != 0
7839 #if 0
7840 /* There doesn't seem to be any reason to restrict this to pseudos
7841 and doing so loses in the case where we are copying from a
7842 register of the wrong class. */
7843 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7844 #endif
7845 /* The insn might have already some references to stackslots
7846 replaced by MEMs, while reload_out_reg still names the
7847 original pseudo. */
7848 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7849 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7850 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7851 }
7852
7853 /* Do output reloading for reload RL, which is for the insn described by
7854 CHAIN and has the number J.
7855 ??? At some point we need to support handling output reloads of
7856 JUMP_INSNs or insns that set cc0. */
7857 static void
7858 do_output_reload (class insn_chain *chain, struct reload *rl, int j)
7859 {
7860 rtx note, old;
7861 rtx_insn *insn = chain->insn;
7862 /* If this is an output reload that stores something that is
7863 not loaded in this same reload, see if we can eliminate a previous
7864 store. */
7865 rtx pseudo = rl->out_reg;
7866 rtx reg_rtx = rl->reg_rtx;
7867
7868 if (rl->out && reg_rtx)
7869 {
7870 machine_mode mode;
7871
7872 /* Determine the mode to reload in.
7873 See comments above (for input reloading). */
7874 mode = GET_MODE (rl->out);
7875 if (mode == VOIDmode)
7876 {
7877 /* VOIDmode should never happen for an output. */
7878 if (asm_noperands (PATTERN (insn)) < 0)
7879 /* It's the compiler's fault. */
7880 fatal_insn ("VOIDmode on an output", insn);
7881 error_for_asm (insn, "output operand is constant in %<asm%>");
7882 /* Prevent crash--use something we know is valid. */
7883 mode = word_mode;
7884 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7885 }
7886 if (GET_MODE (reg_rtx) != mode)
7887 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7888 }
7889 reload_reg_rtx_for_output[j] = reg_rtx;
7890
7891 if (pseudo
7892 && optimize
7893 && REG_P (pseudo)
7894 && ! rtx_equal_p (rl->in_reg, pseudo)
7895 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7896 && reg_last_reload_reg[REGNO (pseudo)])
7897 {
7898 int pseudo_no = REGNO (pseudo);
7899 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7900
7901 /* We don't need to test full validity of last_regno for
7902 inherit here; we only want to know if the store actually
7903 matches the pseudo. */
7904 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7905 && reg_reloaded_contents[last_regno] == pseudo_no
7906 && spill_reg_store[last_regno]
7907 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7908 delete_output_reload (insn, j, last_regno, reg_rtx);
7909 }
7910
7911 old = rl->out_reg;
7912 if (old == 0
7913 || reg_rtx == 0
7914 || rtx_equal_p (old, reg_rtx))
7915 return;
7916
7917 /* An output operand that dies right away does need a reload,
7918 but need not be copied from it. Show the new location in the
7919 REG_UNUSED note. */
7920 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7921 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7922 {
7923 XEXP (note, 0) = reg_rtx;
7924 return;
7925 }
7926 /* Likewise for a SUBREG of an operand that dies. */
7927 else if (GET_CODE (old) == SUBREG
7928 && REG_P (SUBREG_REG (old))
7929 && (note = find_reg_note (insn, REG_UNUSED,
7930 SUBREG_REG (old))) != 0)
7931 {
7932 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7933 return;
7934 }
7935 else if (GET_CODE (old) == SCRATCH)
7936 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7937 but we don't want to make an output reload. */
7938 return;
7939
7940 /* If is a JUMP_INSN, we can't support output reloads yet. */
7941 gcc_assert (NONJUMP_INSN_P (insn));
7942
7943 emit_output_reload_insns (chain, rld + j, j);
7944 }
7945
7946 /* A reload copies values of MODE from register SRC to register DEST.
7947 Return true if it can be treated for inheritance purposes like a
7948 group of reloads, each one reloading a single hard register. The
7949 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7950 occupy the same number of hard registers. */
7951
7952 static bool
7953 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7954 int src ATTRIBUTE_UNUSED,
7955 machine_mode mode ATTRIBUTE_UNUSED)
7956 {
7957 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7958 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7959 }
7960
7961 /* Output insns to reload values in and out of the chosen reload regs. */
7962
7963 static void
7964 emit_reload_insns (class insn_chain *chain)
7965 {
7966 rtx_insn *insn = chain->insn;
7967
7968 int j;
7969
7970 CLEAR_HARD_REG_SET (reg_reloaded_died);
7971
7972 for (j = 0; j < reload_n_operands; j++)
7973 input_reload_insns[j] = input_address_reload_insns[j]
7974 = inpaddr_address_reload_insns[j]
7975 = output_reload_insns[j] = output_address_reload_insns[j]
7976 = outaddr_address_reload_insns[j]
7977 = other_output_reload_insns[j] = 0;
7978 other_input_address_reload_insns = 0;
7979 other_input_reload_insns = 0;
7980 operand_reload_insns = 0;
7981 other_operand_reload_insns = 0;
7982
7983 /* Dump reloads into the dump file. */
7984 if (dump_file)
7985 {
7986 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7987 debug_reload_to_stream (dump_file);
7988 }
7989
7990 for (j = 0; j < n_reloads; j++)
7991 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7992 {
7993 unsigned int i;
7994
7995 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7996 new_spill_reg_store[i] = 0;
7997 }
7998
7999 /* Now output the instructions to copy the data into and out of the
8000 reload registers. Do these in the order that the reloads were reported,
8001 since reloads of base and index registers precede reloads of operands
8002 and the operands may need the base and index registers reloaded. */
8003
8004 for (j = 0; j < n_reloads; j++)
8005 {
8006 do_input_reload (chain, rld + j, j);
8007 do_output_reload (chain, rld + j, j);
8008 }
8009
8010 /* Now write all the insns we made for reloads in the order expected by
8011 the allocation functions. Prior to the insn being reloaded, we write
8012 the following reloads:
8013
8014 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8015
8016 RELOAD_OTHER reloads.
8017
8018 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8019 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8020 RELOAD_FOR_INPUT reload for the operand.
8021
8022 RELOAD_FOR_OPADDR_ADDRS reloads.
8023
8024 RELOAD_FOR_OPERAND_ADDRESS reloads.
8025
8026 After the insn being reloaded, we write the following:
8027
8028 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8029 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8030 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8031 reloads for the operand. The RELOAD_OTHER output reloads are
8032 output in descending order by reload number. */
8033
8034 emit_insn_before (other_input_address_reload_insns, insn);
8035 emit_insn_before (other_input_reload_insns, insn);
8036
8037 for (j = 0; j < reload_n_operands; j++)
8038 {
8039 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8040 emit_insn_before (input_address_reload_insns[j], insn);
8041 emit_insn_before (input_reload_insns[j], insn);
8042 }
8043
8044 emit_insn_before (other_operand_reload_insns, insn);
8045 emit_insn_before (operand_reload_insns, insn);
8046
8047 for (j = 0; j < reload_n_operands; j++)
8048 {
8049 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8050 x = emit_insn_after (output_address_reload_insns[j], x);
8051 x = emit_insn_after (output_reload_insns[j], x);
8052 emit_insn_after (other_output_reload_insns[j], x);
8053 }
8054
8055 /* For all the spill regs newly reloaded in this instruction,
8056 record what they were reloaded from, so subsequent instructions
8057 can inherit the reloads.
8058
8059 Update spill_reg_store for the reloads of this insn.
8060 Copy the elements that were updated in the loop above. */
8061
8062 for (j = 0; j < n_reloads; j++)
8063 {
8064 int r = reload_order[j];
8065 int i = reload_spill_index[r];
8066
8067 /* If this is a non-inherited input reload from a pseudo, we must
8068 clear any memory of a previous store to the same pseudo. Only do
8069 something if there will not be an output reload for the pseudo
8070 being reloaded. */
8071 if (rld[r].in_reg != 0
8072 && ! (reload_inherited[r] || reload_override_in[r]))
8073 {
8074 rtx reg = rld[r].in_reg;
8075
8076 if (GET_CODE (reg) == SUBREG)
8077 reg = SUBREG_REG (reg);
8078
8079 if (REG_P (reg)
8080 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8081 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8082 {
8083 int nregno = REGNO (reg);
8084
8085 if (reg_last_reload_reg[nregno])
8086 {
8087 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8088
8089 if (reg_reloaded_contents[last_regno] == nregno)
8090 spill_reg_store[last_regno] = 0;
8091 }
8092 }
8093 }
8094
8095 /* I is nonneg if this reload used a register.
8096 If rld[r].reg_rtx is 0, this is an optional reload
8097 that we opted to ignore. */
8098
8099 if (i >= 0 && rld[r].reg_rtx != 0)
8100 {
8101 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8102 int k;
8103
8104 /* For a multi register reload, we need to check if all or part
8105 of the value lives to the end. */
8106 for (k = 0; k < nr; k++)
8107 if (reload_reg_reaches_end_p (i + k, r))
8108 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8109
8110 /* Maybe the spill reg contains a copy of reload_out. */
8111 if (rld[r].out != 0
8112 && (REG_P (rld[r].out)
8113 || (rld[r].out_reg
8114 ? REG_P (rld[r].out_reg)
8115 /* The reload value is an auto-modification of
8116 some kind. For PRE_INC, POST_INC, PRE_DEC
8117 and POST_DEC, we record an equivalence
8118 between the reload register and the operand
8119 on the optimistic assumption that we can make
8120 the equivalence hold. reload_as_needed must
8121 then either make it hold or invalidate the
8122 equivalence.
8123
8124 PRE_MODIFY and POST_MODIFY addresses are reloaded
8125 somewhat differently, and allowing them here leads
8126 to problems. */
8127 : (GET_CODE (rld[r].out) != POST_MODIFY
8128 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8129 {
8130 rtx reg;
8131
8132 reg = reload_reg_rtx_for_output[r];
8133 if (reload_reg_rtx_reaches_end_p (reg, r))
8134 {
8135 machine_mode mode = GET_MODE (reg);
8136 int regno = REGNO (reg);
8137 int nregs = REG_NREGS (reg);
8138 rtx out = (REG_P (rld[r].out)
8139 ? rld[r].out
8140 : rld[r].out_reg
8141 ? rld[r].out_reg
8142 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8143 int out_regno = REGNO (out);
8144 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8145 : hard_regno_nregs (out_regno, mode));
8146 bool piecemeal;
8147
8148 spill_reg_store[regno] = new_spill_reg_store[regno];
8149 spill_reg_stored_to[regno] = out;
8150 reg_last_reload_reg[out_regno] = reg;
8151
8152 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8153 && nregs == out_nregs
8154 && inherit_piecemeal_p (out_regno, regno, mode));
8155
8156 /* If OUT_REGNO is a hard register, it may occupy more than
8157 one register. If it does, say what is in the
8158 rest of the registers assuming that both registers
8159 agree on how many words the object takes. If not,
8160 invalidate the subsequent registers. */
8161
8162 if (HARD_REGISTER_NUM_P (out_regno))
8163 for (k = 1; k < out_nregs; k++)
8164 reg_last_reload_reg[out_regno + k]
8165 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8166
8167 /* Now do the inverse operation. */
8168 for (k = 0; k < nregs; k++)
8169 {
8170 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8171 reg_reloaded_contents[regno + k]
8172 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8173 ? out_regno
8174 : out_regno + k);
8175 reg_reloaded_insn[regno + k] = insn;
8176 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8177 }
8178 }
8179 }
8180 /* Maybe the spill reg contains a copy of reload_in. Only do
8181 something if there will not be an output reload for
8182 the register being reloaded. */
8183 else if (rld[r].out_reg == 0
8184 && rld[r].in != 0
8185 && ((REG_P (rld[r].in)
8186 && !HARD_REGISTER_P (rld[r].in)
8187 && !REGNO_REG_SET_P (&reg_has_output_reload,
8188 REGNO (rld[r].in)))
8189 || (REG_P (rld[r].in_reg)
8190 && !REGNO_REG_SET_P (&reg_has_output_reload,
8191 REGNO (rld[r].in_reg))))
8192 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8193 {
8194 rtx reg;
8195
8196 reg = reload_reg_rtx_for_input[r];
8197 if (reload_reg_rtx_reaches_end_p (reg, r))
8198 {
8199 machine_mode mode;
8200 int regno;
8201 int nregs;
8202 int in_regno;
8203 int in_nregs;
8204 rtx in;
8205 bool piecemeal;
8206
8207 mode = GET_MODE (reg);
8208 regno = REGNO (reg);
8209 nregs = REG_NREGS (reg);
8210 if (REG_P (rld[r].in)
8211 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8212 in = rld[r].in;
8213 else if (REG_P (rld[r].in_reg))
8214 in = rld[r].in_reg;
8215 else
8216 in = XEXP (rld[r].in_reg, 0);
8217 in_regno = REGNO (in);
8218
8219 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8220 : hard_regno_nregs (in_regno, mode));
8221
8222 reg_last_reload_reg[in_regno] = reg;
8223
8224 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8225 && nregs == in_nregs
8226 && inherit_piecemeal_p (regno, in_regno, mode));
8227
8228 if (HARD_REGISTER_NUM_P (in_regno))
8229 for (k = 1; k < in_nregs; k++)
8230 reg_last_reload_reg[in_regno + k]
8231 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8232
8233 /* Unless we inherited this reload, show we haven't
8234 recently done a store.
8235 Previous stores of inherited auto_inc expressions
8236 also have to be discarded. */
8237 if (! reload_inherited[r]
8238 || (rld[r].out && ! rld[r].out_reg))
8239 spill_reg_store[regno] = 0;
8240
8241 for (k = 0; k < nregs; k++)
8242 {
8243 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8244 reg_reloaded_contents[regno + k]
8245 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8246 ? in_regno
8247 : in_regno + k);
8248 reg_reloaded_insn[regno + k] = insn;
8249 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8250 }
8251 }
8252 }
8253 }
8254
8255 /* The following if-statement was #if 0'd in 1.34 (or before...).
8256 It's reenabled in 1.35 because supposedly nothing else
8257 deals with this problem. */
8258
8259 /* If a register gets output-reloaded from a non-spill register,
8260 that invalidates any previous reloaded copy of it.
8261 But forget_old_reloads_1 won't get to see it, because
8262 it thinks only about the original insn. So invalidate it here.
8263 Also do the same thing for RELOAD_OTHER constraints where the
8264 output is discarded. */
8265 if (i < 0
8266 && ((rld[r].out != 0
8267 && (REG_P (rld[r].out)
8268 || (MEM_P (rld[r].out)
8269 && REG_P (rld[r].out_reg))))
8270 || (rld[r].out == 0 && rld[r].out_reg
8271 && REG_P (rld[r].out_reg))))
8272 {
8273 rtx out = ((rld[r].out && REG_P (rld[r].out))
8274 ? rld[r].out : rld[r].out_reg);
8275 int out_regno = REGNO (out);
8276 machine_mode mode = GET_MODE (out);
8277
8278 /* REG_RTX is now set or clobbered by the main instruction.
8279 As the comment above explains, forget_old_reloads_1 only
8280 sees the original instruction, and there is no guarantee
8281 that the original instruction also clobbered REG_RTX.
8282 For example, if find_reloads sees that the input side of
8283 a matched operand pair dies in this instruction, it may
8284 use the input register as the reload register.
8285
8286 Calling forget_old_reloads_1 is a waste of effort if
8287 REG_RTX is also the output register.
8288
8289 If we know that REG_RTX holds the value of a pseudo
8290 register, the code after the call will record that fact. */
8291 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8292 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8293
8294 if (!HARD_REGISTER_NUM_P (out_regno))
8295 {
8296 rtx src_reg;
8297 rtx_insn *store_insn = NULL;
8298
8299 reg_last_reload_reg[out_regno] = 0;
8300
8301 /* If we can find a hard register that is stored, record
8302 the storing insn so that we may delete this insn with
8303 delete_output_reload. */
8304 src_reg = reload_reg_rtx_for_output[r];
8305
8306 if (src_reg)
8307 {
8308 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8309 store_insn = new_spill_reg_store[REGNO (src_reg)];
8310 else
8311 src_reg = NULL_RTX;
8312 }
8313 else
8314 {
8315 /* If this is an optional reload, try to find the
8316 source reg from an input reload. */
8317 rtx set = single_set (insn);
8318 if (set && SET_DEST (set) == rld[r].out)
8319 {
8320 int k;
8321
8322 src_reg = SET_SRC (set);
8323 store_insn = insn;
8324 for (k = 0; k < n_reloads; k++)
8325 {
8326 if (rld[k].in == src_reg)
8327 {
8328 src_reg = reload_reg_rtx_for_input[k];
8329 break;
8330 }
8331 }
8332 }
8333 }
8334 if (src_reg && REG_P (src_reg)
8335 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8336 {
8337 int src_regno, src_nregs, k;
8338 rtx note;
8339
8340 gcc_assert (GET_MODE (src_reg) == mode);
8341 src_regno = REGNO (src_reg);
8342 src_nregs = hard_regno_nregs (src_regno, mode);
8343 /* The place where to find a death note varies with
8344 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8345 necessarily checked exactly in the code that moves
8346 notes, so just check both locations. */
8347 note = find_regno_note (insn, REG_DEAD, src_regno);
8348 if (! note && store_insn)
8349 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8350 for (k = 0; k < src_nregs; k++)
8351 {
8352 spill_reg_store[src_regno + k] = store_insn;
8353 spill_reg_stored_to[src_regno + k] = out;
8354 reg_reloaded_contents[src_regno + k] = out_regno;
8355 reg_reloaded_insn[src_regno + k] = store_insn;
8356 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8357 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8358 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8359 if (note)
8360 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8361 else
8362 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8363 }
8364 reg_last_reload_reg[out_regno] = src_reg;
8365 /* We have to set reg_has_output_reload here, or else
8366 forget_old_reloads_1 will clear reg_last_reload_reg
8367 right away. */
8368 SET_REGNO_REG_SET (&reg_has_output_reload,
8369 out_regno);
8370 }
8371 }
8372 else
8373 {
8374 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8375
8376 for (k = 0; k < out_nregs; k++)
8377 reg_last_reload_reg[out_regno + k] = 0;
8378 }
8379 }
8380 }
8381 reg_reloaded_dead |= reg_reloaded_died;
8382 }
8383 \f
8384 /* Go through the motions to emit INSN and test if it is strictly valid.
8385 Return the emitted insn if valid, else return NULL. */
8386
8387 static rtx_insn *
8388 emit_insn_if_valid_for_reload (rtx pat)
8389 {
8390 rtx_insn *last = get_last_insn ();
8391 int code;
8392
8393 rtx_insn *insn = emit_insn (pat);
8394 code = recog_memoized (insn);
8395
8396 if (code >= 0)
8397 {
8398 extract_insn (insn);
8399 /* We want constrain operands to treat this insn strictly in its
8400 validity determination, i.e., the way it would after reload has
8401 completed. */
8402 if (constrain_operands (1, get_enabled_alternatives (insn)))
8403 return insn;
8404 }
8405
8406 delete_insns_since (last);
8407 return NULL;
8408 }
8409
8410 /* Emit code to perform a reload from IN (which may be a reload register) to
8411 OUT (which may also be a reload register). IN or OUT is from operand
8412 OPNUM with reload type TYPE.
8413
8414 Returns first insn emitted. */
8415
8416 static rtx_insn *
8417 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8418 {
8419 rtx_insn *last = get_last_insn ();
8420 rtx_insn *tem;
8421 rtx tem1, tem2;
8422
8423 /* If IN is a paradoxical SUBREG, remove it and try to put the
8424 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8425 if (!strip_paradoxical_subreg (&in, &out))
8426 strip_paradoxical_subreg (&out, &in);
8427
8428 /* How to do this reload can get quite tricky. Normally, we are being
8429 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8430 register that didn't get a hard register. In that case we can just
8431 call emit_move_insn.
8432
8433 We can also be asked to reload a PLUS that adds a register or a MEM to
8434 another register, constant or MEM. This can occur during frame pointer
8435 elimination and while reloading addresses. This case is handled by
8436 trying to emit a single insn to perform the add. If it is not valid,
8437 we use a two insn sequence.
8438
8439 Or we can be asked to reload an unary operand that was a fragment of
8440 an addressing mode, into a register. If it isn't recognized as-is,
8441 we try making the unop operand and the reload-register the same:
8442 (set reg:X (unop:X expr:Y))
8443 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8444
8445 Finally, we could be called to handle an 'o' constraint by putting
8446 an address into a register. In that case, we first try to do this
8447 with a named pattern of "reload_load_address". If no such pattern
8448 exists, we just emit a SET insn and hope for the best (it will normally
8449 be valid on machines that use 'o').
8450
8451 This entire process is made complex because reload will never
8452 process the insns we generate here and so we must ensure that
8453 they will fit their constraints and also by the fact that parts of
8454 IN might be being reloaded separately and replaced with spill registers.
8455 Because of this, we are, in some sense, just guessing the right approach
8456 here. The one listed above seems to work.
8457
8458 ??? At some point, this whole thing needs to be rethought. */
8459
8460 if (GET_CODE (in) == PLUS
8461 && (REG_P (XEXP (in, 0))
8462 || GET_CODE (XEXP (in, 0)) == SUBREG
8463 || MEM_P (XEXP (in, 0)))
8464 && (REG_P (XEXP (in, 1))
8465 || GET_CODE (XEXP (in, 1)) == SUBREG
8466 || CONSTANT_P (XEXP (in, 1))
8467 || MEM_P (XEXP (in, 1))))
8468 {
8469 /* We need to compute the sum of a register or a MEM and another
8470 register, constant, or MEM, and put it into the reload
8471 register. The best possible way of doing this is if the machine
8472 has a three-operand ADD insn that accepts the required operands.
8473
8474 The simplest approach is to try to generate such an insn and see if it
8475 is recognized and matches its constraints. If so, it can be used.
8476
8477 It might be better not to actually emit the insn unless it is valid,
8478 but we need to pass the insn as an operand to `recog' and
8479 `extract_insn' and it is simpler to emit and then delete the insn if
8480 not valid than to dummy things up. */
8481
8482 rtx op0, op1, tem;
8483 rtx_insn *insn;
8484 enum insn_code code;
8485
8486 op0 = find_replacement (&XEXP (in, 0));
8487 op1 = find_replacement (&XEXP (in, 1));
8488
8489 /* Since constraint checking is strict, commutativity won't be
8490 checked, so we need to do that here to avoid spurious failure
8491 if the add instruction is two-address and the second operand
8492 of the add is the same as the reload reg, which is frequently
8493 the case. If the insn would be A = B + A, rearrange it so
8494 it will be A = A + B as constrain_operands expects. */
8495
8496 if (REG_P (XEXP (in, 1))
8497 && REGNO (out) == REGNO (XEXP (in, 1)))
8498 tem = op0, op0 = op1, op1 = tem;
8499
8500 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8501 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8502
8503 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8504 if (insn)
8505 return insn;
8506
8507 /* If that failed, we must use a conservative two-insn sequence.
8508
8509 Use a move to copy one operand into the reload register. Prefer
8510 to reload a constant, MEM or pseudo since the move patterns can
8511 handle an arbitrary operand. If OP1 is not a constant, MEM or
8512 pseudo and OP1 is not a valid operand for an add instruction, then
8513 reload OP1.
8514
8515 After reloading one of the operands into the reload register, add
8516 the reload register to the output register.
8517
8518 If there is another way to do this for a specific machine, a
8519 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8520 we emit below. */
8521
8522 code = optab_handler (add_optab, GET_MODE (out));
8523
8524 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8525 || (REG_P (op1)
8526 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8527 || (code != CODE_FOR_nothing
8528 && !insn_operand_matches (code, 2, op1)))
8529 tem = op0, op0 = op1, op1 = tem;
8530
8531 gen_reload (out, op0, opnum, type);
8532
8533 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8534 This fixes a problem on the 32K where the stack pointer cannot
8535 be used as an operand of an add insn. */
8536
8537 if (rtx_equal_p (op0, op1))
8538 op1 = out;
8539
8540 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8541 if (insn)
8542 {
8543 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8544 set_dst_reg_note (insn, REG_EQUIV, in, out);
8545 return insn;
8546 }
8547
8548 /* If that failed, copy the address register to the reload register.
8549 Then add the constant to the reload register. */
8550
8551 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8552 gen_reload (out, op1, opnum, type);
8553 insn = emit_insn (gen_add2_insn (out, op0));
8554 set_dst_reg_note (insn, REG_EQUIV, in, out);
8555 }
8556
8557 /* If we need a memory location to do the move, do it that way. */
8558 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8559 (REG_P (tem1) && REG_P (tem2)))
8560 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8561 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8562 && targetm.secondary_memory_needed (GET_MODE (out),
8563 REGNO_REG_CLASS (REGNO (tem1)),
8564 REGNO_REG_CLASS (REGNO (tem2))))
8565 {
8566 /* Get the memory to use and rewrite both registers to its mode. */
8567 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8568
8569 if (GET_MODE (loc) != GET_MODE (out))
8570 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8571
8572 if (GET_MODE (loc) != GET_MODE (in))
8573 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8574
8575 gen_reload (loc, in, opnum, type);
8576 gen_reload (out, loc, opnum, type);
8577 }
8578 else if (REG_P (out) && UNARY_P (in))
8579 {
8580 rtx op1;
8581 rtx out_moded;
8582 rtx_insn *set;
8583
8584 op1 = find_replacement (&XEXP (in, 0));
8585 if (op1 != XEXP (in, 0))
8586 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8587
8588 /* First, try a plain SET. */
8589 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8590 if (set)
8591 return set;
8592
8593 /* If that failed, move the inner operand to the reload
8594 register, and try the same unop with the inner expression
8595 replaced with the reload register. */
8596
8597 if (GET_MODE (op1) != GET_MODE (out))
8598 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8599 else
8600 out_moded = out;
8601
8602 gen_reload (out_moded, op1, opnum, type);
8603
8604 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8605 out_moded));
8606 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8607 if (insn)
8608 {
8609 set_unique_reg_note (insn, REG_EQUIV, in);
8610 return insn;
8611 }
8612
8613 fatal_insn ("failure trying to reload:", set);
8614 }
8615 /* If IN is a simple operand, use gen_move_insn. */
8616 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8617 {
8618 tem = emit_insn (gen_move_insn (out, in));
8619 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8620 mark_jump_label (in, tem, 0);
8621 }
8622
8623 else if (targetm.have_reload_load_address ())
8624 emit_insn (targetm.gen_reload_load_address (out, in));
8625
8626 /* Otherwise, just write (set OUT IN) and hope for the best. */
8627 else
8628 emit_insn (gen_rtx_SET (out, in));
8629
8630 /* Return the first insn emitted.
8631 We cannot just return get_last_insn, because there may have
8632 been multiple instructions emitted. Also note that gen_move_insn may
8633 emit more than one insn itself, so we cannot assume that there is one
8634 insn emitted per emit_insn_before call. */
8635
8636 return last ? NEXT_INSN (last) : get_insns ();
8637 }
8638 \f
8639 /* Delete a previously made output-reload whose result we now believe
8640 is not needed. First we double-check.
8641
8642 INSN is the insn now being processed.
8643 LAST_RELOAD_REG is the hard register number for which we want to delete
8644 the last output reload.
8645 J is the reload-number that originally used REG. The caller has made
8646 certain that reload J doesn't use REG any longer for input.
8647 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8648
8649 static void
8650 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8651 rtx new_reload_reg)
8652 {
8653 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8654 rtx reg = spill_reg_stored_to[last_reload_reg];
8655 int k;
8656 int n_occurrences;
8657 int n_inherited = 0;
8658 rtx substed;
8659 unsigned regno;
8660 int nregs;
8661
8662 /* It is possible that this reload has been only used to set another reload
8663 we eliminated earlier and thus deleted this instruction too. */
8664 if (output_reload_insn->deleted ())
8665 return;
8666
8667 /* Get the raw pseudo-register referred to. */
8668
8669 while (GET_CODE (reg) == SUBREG)
8670 reg = SUBREG_REG (reg);
8671 substed = reg_equiv_memory_loc (REGNO (reg));
8672
8673 /* This is unsafe if the operand occurs more often in the current
8674 insn than it is inherited. */
8675 for (k = n_reloads - 1; k >= 0; k--)
8676 {
8677 rtx reg2 = rld[k].in;
8678 if (! reg2)
8679 continue;
8680 if (MEM_P (reg2) || reload_override_in[k])
8681 reg2 = rld[k].in_reg;
8682
8683 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8684 reg2 = XEXP (rld[k].in_reg, 0);
8685
8686 while (GET_CODE (reg2) == SUBREG)
8687 reg2 = SUBREG_REG (reg2);
8688 if (rtx_equal_p (reg2, reg))
8689 {
8690 if (reload_inherited[k] || reload_override_in[k] || k == j)
8691 n_inherited++;
8692 else
8693 return;
8694 }
8695 }
8696 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8697 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8698 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8699 reg, 0);
8700 if (substed)
8701 n_occurrences += count_occurrences (PATTERN (insn),
8702 eliminate_regs (substed, VOIDmode,
8703 NULL_RTX), 0);
8704 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8705 {
8706 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8707 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8708 }
8709 if (n_occurrences > n_inherited)
8710 return;
8711
8712 regno = REGNO (reg);
8713 nregs = REG_NREGS (reg);
8714
8715 /* If the pseudo-reg we are reloading is no longer referenced
8716 anywhere between the store into it and here,
8717 and we're within the same basic block, then the value can only
8718 pass through the reload reg and end up here.
8719 Otherwise, give up--return. */
8720 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8721 i1 != insn; i1 = NEXT_INSN (i1))
8722 {
8723 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8724 return;
8725 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8726 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8727 {
8728 /* If this is USE in front of INSN, we only have to check that
8729 there are no more references than accounted for by inheritance. */
8730 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8731 {
8732 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8733 i1 = NEXT_INSN (i1);
8734 }
8735 if (n_occurrences <= n_inherited && i1 == insn)
8736 break;
8737 return;
8738 }
8739 }
8740
8741 /* We will be deleting the insn. Remove the spill reg information. */
8742 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8743 {
8744 spill_reg_store[last_reload_reg + k] = 0;
8745 spill_reg_stored_to[last_reload_reg + k] = 0;
8746 }
8747
8748 /* The caller has already checked that REG dies or is set in INSN.
8749 It has also checked that we are optimizing, and thus some
8750 inaccuracies in the debugging information are acceptable.
8751 So we could just delete output_reload_insn. But in some cases
8752 we can improve the debugging information without sacrificing
8753 optimization - maybe even improving the code: See if the pseudo
8754 reg has been completely replaced with reload regs. If so, delete
8755 the store insn and forget we had a stack slot for the pseudo. */
8756 if (rld[j].out != rld[j].in
8757 && REG_N_DEATHS (REGNO (reg)) == 1
8758 && REG_N_SETS (REGNO (reg)) == 1
8759 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8760 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8761 {
8762 rtx_insn *i2;
8763
8764 /* We know that it was used only between here and the beginning of
8765 the current basic block. (We also know that the last use before
8766 INSN was the output reload we are thinking of deleting, but never
8767 mind that.) Search that range; see if any ref remains. */
8768 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8769 {
8770 rtx set = single_set (i2);
8771
8772 /* Uses which just store in the pseudo don't count,
8773 since if they are the only uses, they are dead. */
8774 if (set != 0 && SET_DEST (set) == reg)
8775 continue;
8776 if (LABEL_P (i2) || JUMP_P (i2))
8777 break;
8778 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8779 && reg_mentioned_p (reg, PATTERN (i2)))
8780 {
8781 /* Some other ref remains; just delete the output reload we
8782 know to be dead. */
8783 delete_address_reloads (output_reload_insn, insn);
8784 delete_insn (output_reload_insn);
8785 return;
8786 }
8787 }
8788
8789 /* Delete the now-dead stores into this pseudo. Note that this
8790 loop also takes care of deleting output_reload_insn. */
8791 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8792 {
8793 rtx set = single_set (i2);
8794
8795 if (set != 0 && SET_DEST (set) == reg)
8796 {
8797 delete_address_reloads (i2, insn);
8798 delete_insn (i2);
8799 }
8800 if (LABEL_P (i2) || JUMP_P (i2))
8801 break;
8802 }
8803
8804 /* For the debugging info, say the pseudo lives in this reload reg. */
8805 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8806 if (ira_conflicts_p)
8807 /* Inform IRA about the change. */
8808 ira_mark_allocation_change (REGNO (reg));
8809 alter_reg (REGNO (reg), -1, false);
8810 }
8811 else
8812 {
8813 delete_address_reloads (output_reload_insn, insn);
8814 delete_insn (output_reload_insn);
8815 }
8816 }
8817
8818 /* We are going to delete DEAD_INSN. Recursively delete loads of
8819 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8820 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8821 static void
8822 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8823 {
8824 rtx set = single_set (dead_insn);
8825 rtx set2, dst;
8826 rtx_insn *prev, *next;
8827 if (set)
8828 {
8829 rtx dst = SET_DEST (set);
8830 if (MEM_P (dst))
8831 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8832 }
8833 /* If we deleted the store from a reloaded post_{in,de}c expression,
8834 we can delete the matching adds. */
8835 prev = PREV_INSN (dead_insn);
8836 next = NEXT_INSN (dead_insn);
8837 if (! prev || ! next)
8838 return;
8839 set = single_set (next);
8840 set2 = single_set (prev);
8841 if (! set || ! set2
8842 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8843 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8844 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8845 return;
8846 dst = SET_DEST (set);
8847 if (! rtx_equal_p (dst, SET_DEST (set2))
8848 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8849 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8850 || (INTVAL (XEXP (SET_SRC (set), 1))
8851 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8852 return;
8853 delete_related_insns (prev);
8854 delete_related_insns (next);
8855 }
8856
8857 /* Subfunction of delete_address_reloads: process registers found in X. */
8858 static void
8859 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8860 {
8861 rtx_insn *prev, *i2;
8862 rtx set, dst;
8863 int i, j;
8864 enum rtx_code code = GET_CODE (x);
8865
8866 if (code != REG)
8867 {
8868 const char *fmt = GET_RTX_FORMAT (code);
8869 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8870 {
8871 if (fmt[i] == 'e')
8872 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8873 else if (fmt[i] == 'E')
8874 {
8875 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8876 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8877 current_insn);
8878 }
8879 }
8880 return;
8881 }
8882
8883 if (spill_reg_order[REGNO (x)] < 0)
8884 return;
8885
8886 /* Scan backwards for the insn that sets x. This might be a way back due
8887 to inheritance. */
8888 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8889 {
8890 code = GET_CODE (prev);
8891 if (code == CODE_LABEL || code == JUMP_INSN)
8892 return;
8893 if (!INSN_P (prev))
8894 continue;
8895 if (reg_set_p (x, PATTERN (prev)))
8896 break;
8897 if (reg_referenced_p (x, PATTERN (prev)))
8898 return;
8899 }
8900 if (! prev || INSN_UID (prev) < reload_first_uid)
8901 return;
8902 /* Check that PREV only sets the reload register. */
8903 set = single_set (prev);
8904 if (! set)
8905 return;
8906 dst = SET_DEST (set);
8907 if (!REG_P (dst)
8908 || ! rtx_equal_p (dst, x))
8909 return;
8910 if (! reg_set_p (dst, PATTERN (dead_insn)))
8911 {
8912 /* Check if DST was used in a later insn -
8913 it might have been inherited. */
8914 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8915 {
8916 if (LABEL_P (i2))
8917 break;
8918 if (! INSN_P (i2))
8919 continue;
8920 if (reg_referenced_p (dst, PATTERN (i2)))
8921 {
8922 /* If there is a reference to the register in the current insn,
8923 it might be loaded in a non-inherited reload. If no other
8924 reload uses it, that means the register is set before
8925 referenced. */
8926 if (i2 == current_insn)
8927 {
8928 for (j = n_reloads - 1; j >= 0; j--)
8929 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8930 || reload_override_in[j] == dst)
8931 return;
8932 for (j = n_reloads - 1; j >= 0; j--)
8933 if (rld[j].in && rld[j].reg_rtx == dst)
8934 break;
8935 if (j >= 0)
8936 break;
8937 }
8938 return;
8939 }
8940 if (JUMP_P (i2))
8941 break;
8942 /* If DST is still live at CURRENT_INSN, check if it is used for
8943 any reload. Note that even if CURRENT_INSN sets DST, we still
8944 have to check the reloads. */
8945 if (i2 == current_insn)
8946 {
8947 for (j = n_reloads - 1; j >= 0; j--)
8948 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8949 || reload_override_in[j] == dst)
8950 return;
8951 /* ??? We can't finish the loop here, because dst might be
8952 allocated to a pseudo in this block if no reload in this
8953 block needs any of the classes containing DST - see
8954 spill_hard_reg. There is no easy way to tell this, so we
8955 have to scan till the end of the basic block. */
8956 }
8957 if (reg_set_p (dst, PATTERN (i2)))
8958 break;
8959 }
8960 }
8961 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8962 reg_reloaded_contents[REGNO (dst)] = -1;
8963 delete_insn (prev);
8964 }
8965 \f
8966 /* Output reload-insns to reload VALUE into RELOADREG.
8967 VALUE is an autoincrement or autodecrement RTX whose operand
8968 is a register or memory location;
8969 so reloading involves incrementing that location.
8970 IN is either identical to VALUE, or some cheaper place to reload from.
8971
8972 INC_AMOUNT is the number to increment or decrement by (always positive).
8973 This cannot be deduced from VALUE. */
8974
8975 static void
8976 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
8977 {
8978 /* REG or MEM to be copied and incremented. */
8979 rtx incloc = find_replacement (&XEXP (value, 0));
8980 /* Nonzero if increment after copying. */
8981 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8982 || GET_CODE (value) == POST_MODIFY);
8983 rtx_insn *last;
8984 rtx inc;
8985 rtx_insn *add_insn;
8986 int code;
8987 rtx real_in = in == value ? incloc : in;
8988
8989 /* No hard register is equivalent to this register after
8990 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8991 we could inc/dec that register as well (maybe even using it for
8992 the source), but I'm not sure it's worth worrying about. */
8993 if (REG_P (incloc))
8994 reg_last_reload_reg[REGNO (incloc)] = 0;
8995
8996 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8997 {
8998 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8999 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9000 }
9001 else
9002 {
9003 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9004 inc_amount = -inc_amount;
9005
9006 inc = gen_int_mode (inc_amount, Pmode);
9007 }
9008
9009 /* If this is post-increment, first copy the location to the reload reg. */
9010 if (post && real_in != reloadreg)
9011 emit_insn (gen_move_insn (reloadreg, real_in));
9012
9013 if (in == value)
9014 {
9015 /* See if we can directly increment INCLOC. Use a method similar to
9016 that in gen_reload. */
9017
9018 last = get_last_insn ();
9019 add_insn = emit_insn (gen_rtx_SET (incloc,
9020 gen_rtx_PLUS (GET_MODE (incloc),
9021 incloc, inc)));
9022
9023 code = recog_memoized (add_insn);
9024 if (code >= 0)
9025 {
9026 extract_insn (add_insn);
9027 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9028 {
9029 /* If this is a pre-increment and we have incremented the value
9030 where it lives, copy the incremented value to RELOADREG to
9031 be used as an address. */
9032
9033 if (! post)
9034 emit_insn (gen_move_insn (reloadreg, incloc));
9035 return;
9036 }
9037 }
9038 delete_insns_since (last);
9039 }
9040
9041 /* If couldn't do the increment directly, must increment in RELOADREG.
9042 The way we do this depends on whether this is pre- or post-increment.
9043 For pre-increment, copy INCLOC to the reload register, increment it
9044 there, then save back. */
9045
9046 if (! post)
9047 {
9048 if (in != reloadreg)
9049 emit_insn (gen_move_insn (reloadreg, real_in));
9050 emit_insn (gen_add2_insn (reloadreg, inc));
9051 emit_insn (gen_move_insn (incloc, reloadreg));
9052 }
9053 else
9054 {
9055 /* Postincrement.
9056 Because this might be a jump insn or a compare, and because RELOADREG
9057 may not be available after the insn in an input reload, we must do
9058 the incrementation before the insn being reloaded for.
9059
9060 We have already copied IN to RELOADREG. Increment the copy in
9061 RELOADREG, save that back, then decrement RELOADREG so it has
9062 the original value. */
9063
9064 emit_insn (gen_add2_insn (reloadreg, inc));
9065 emit_insn (gen_move_insn (incloc, reloadreg));
9066 if (CONST_INT_P (inc))
9067 emit_insn (gen_add2_insn (reloadreg,
9068 gen_int_mode (-INTVAL (inc),
9069 GET_MODE (reloadreg))));
9070 else
9071 emit_insn (gen_sub2_insn (reloadreg, inc));
9072 }
9073 }
9074 \f
9075 static void
9076 add_auto_inc_notes (rtx_insn *insn, rtx x)
9077 {
9078 enum rtx_code code = GET_CODE (x);
9079 const char *fmt;
9080 int i, j;
9081
9082 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9083 {
9084 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9085 return;
9086 }
9087
9088 /* Scan all the operand sub-expressions. */
9089 fmt = GET_RTX_FORMAT (code);
9090 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9091 {
9092 if (fmt[i] == 'e')
9093 add_auto_inc_notes (insn, XEXP (x, i));
9094 else if (fmt[i] == 'E')
9095 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9096 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9097 }
9098 }