]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
re PR testsuite/27476 (ACATS: Ada testsuite Bourne shell compatibility problem on...
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "obstack.h"
33 #include "insn-config.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "reload.h"
42 #include "recog.h"
43 #include "output.h"
44 #include "real.h"
45 #include "toplev.h"
46 #include "except.h"
47 #include "tree.h"
48 #include "target.h"
49
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
56
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
60
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
64
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
72
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
76
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
83 \f
84 /* During reload_as_needed, element N contains a REG rtx for the hard reg
85 into which reg N has been reloaded (perhaps for a previous insn). */
86 static rtx *reg_last_reload_reg;
87
88 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
89 for an output reload that stores into reg N. */
90 static char *reg_has_output_reload;
91
92 /* Indicates which hard regs are reload-registers for an output reload
93 in the current insn. */
94 static HARD_REG_SET reg_is_output_reload;
95
96 /* Element N is the constant value to which pseudo reg N is equivalent,
97 or zero if pseudo reg N is not equivalent to a constant.
98 find_reloads looks at this in order to replace pseudo reg N
99 with the constant it stands for. */
100 rtx *reg_equiv_constant;
101
102 /* Element N is an invariant value to which pseudo reg N is equivalent.
103 eliminate_regs_in_insn uses this to replace pseudos in particular
104 contexts. */
105 rtx *reg_equiv_invariant;
106
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
112
113 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
114 collector can keep track of what is inside. */
115 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
116
117 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
118 This is used when the address is not valid as a memory address
119 (because its displacement is too big for the machine.) */
120 rtx *reg_equiv_address;
121
122 /* Element N is the memory slot to which pseudo reg N is equivalent,
123 or zero if pseudo reg N is not equivalent to a memory slot. */
124 rtx *reg_equiv_mem;
125
126 /* Widest width in which each pseudo reg is referred to (via subreg). */
127 static unsigned int *reg_max_ref_width;
128
129 /* Element N is the list of insns that initialized reg N from its equivalent
130 constant or memory slot. */
131 rtx *reg_equiv_init;
132 int reg_equiv_init_size;
133
134 /* Vector to remember old contents of reg_renumber before spilling. */
135 static short *reg_old_renumber;
136
137 /* During reload_as_needed, element N contains the last pseudo regno reloaded
138 into hard register N. If that pseudo reg occupied more than one register,
139 reg_reloaded_contents points to that pseudo for each spill register in
140 use; all of these must remain set for an inheritance to occur. */
141 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
142
143 /* During reload_as_needed, element N contains the insn for which
144 hard register N was last used. Its contents are significant only
145 when reg_reloaded_valid is set for this register. */
146 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
147
148 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
149 static HARD_REG_SET reg_reloaded_valid;
150 /* Indicate if the register was dead at the end of the reload.
151 This is only valid if reg_reloaded_contents is set and valid. */
152 static HARD_REG_SET reg_reloaded_dead;
153
154 /* Indicate whether the register's current value is one that is not
155 safe to retain across a call, even for registers that are normally
156 call-saved. */
157 static HARD_REG_SET reg_reloaded_call_part_clobbered;
158
159 /* Number of spill-regs so far; number of valid elements of spill_regs. */
160 static int n_spills;
161
162 /* In parallel with spill_regs, contains REG rtx's for those regs.
163 Holds the last rtx used for any given reg, or 0 if it has never
164 been used for spilling yet. This rtx is reused, provided it has
165 the proper mode. */
166 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
167
168 /* In parallel with spill_regs, contains nonzero for a spill reg
169 that was stored after the last time it was used.
170 The precise value is the insn generated to do the store. */
171 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
172
173 /* This is the register that was stored with spill_reg_store. This is a
174 copy of reload_out / reload_out_reg when the value was stored; if
175 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
176 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
177
178 /* This table is the inverse mapping of spill_regs:
179 indexed by hard reg number,
180 it contains the position of that reg in spill_regs,
181 or -1 for something that is not in spill_regs.
182
183 ?!? This is no longer accurate. */
184 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
185
186 /* This reg set indicates registers that can't be used as spill registers for
187 the currently processed insn. These are the hard registers which are live
188 during the insn, but not allocated to pseudos, as well as fixed
189 registers. */
190 static HARD_REG_SET bad_spill_regs;
191
192 /* These are the hard registers that can't be used as spill register for any
193 insn. This includes registers used for user variables and registers that
194 we can't eliminate. A register that appears in this set also can't be used
195 to retry register allocation. */
196 static HARD_REG_SET bad_spill_regs_global;
197
198 /* Describes order of use of registers for reloading
199 of spilled pseudo-registers. `n_spills' is the number of
200 elements that are actually valid; new ones are added at the end.
201
202 Both spill_regs and spill_reg_order are used on two occasions:
203 once during find_reload_regs, where they keep track of the spill registers
204 for a single insn, but also during reload_as_needed where they show all
205 the registers ever used by reload. For the latter case, the information
206 is calculated during finish_spills. */
207 static short spill_regs[FIRST_PSEUDO_REGISTER];
208
209 /* This vector of reg sets indicates, for each pseudo, which hard registers
210 may not be used for retrying global allocation because the register was
211 formerly spilled from one of them. If we allowed reallocating a pseudo to
212 a register that it was already allocated to, reload might not
213 terminate. */
214 static HARD_REG_SET *pseudo_previous_regs;
215
216 /* This vector of reg sets indicates, for each pseudo, which hard
217 registers may not be used for retrying global allocation because they
218 are used as spill registers during one of the insns in which the
219 pseudo is live. */
220 static HARD_REG_SET *pseudo_forbidden_regs;
221
222 /* All hard regs that have been used as spill registers for any insn are
223 marked in this set. */
224 static HARD_REG_SET used_spill_regs;
225
226 /* Index of last register assigned as a spill register. We allocate in
227 a round-robin fashion. */
228 static int last_spill_reg;
229
230 /* Nonzero if indirect addressing is supported on the machine; this means
231 that spilling (REG n) does not require reloading it into a register in
232 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
233 value indicates the level of indirect addressing supported, e.g., two
234 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
235 a hard register. */
236 static char spill_indirect_levels;
237
238 /* Nonzero if indirect addressing is supported when the innermost MEM is
239 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
240 which these are valid is the same as spill_indirect_levels, above. */
241 char indirect_symref_ok;
242
243 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
244 char double_reg_address_ok;
245
246 /* Record the stack slot for each spilled hard register. */
247 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
248
249 /* Width allocated so far for that stack slot. */
250 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
251
252 /* Record which pseudos needed to be spilled. */
253 static regset_head spilled_pseudos;
254
255 /* Used for communication between order_regs_for_reload and count_pseudo.
256 Used to avoid counting one pseudo twice. */
257 static regset_head pseudos_counted;
258
259 /* First uid used by insns created by reload in this function.
260 Used in find_equiv_reg. */
261 int reload_first_uid;
262
263 /* Flag set by local-alloc or global-alloc if anything is live in
264 a call-clobbered reg across calls. */
265 int caller_save_needed;
266
267 /* Set to 1 while reload_as_needed is operating.
268 Required by some machines to handle any generated moves differently. */
269 int reload_in_progress = 0;
270
271 /* These arrays record the insn_code of insns that may be needed to
272 perform input and output reloads of special objects. They provide a
273 place to pass a scratch register. */
274 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
275 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
276
277 /* This obstack is used for allocation of rtl during register elimination.
278 The allocated storage can be freed once find_reloads has processed the
279 insn. */
280 static struct obstack reload_obstack;
281
282 /* Points to the beginning of the reload_obstack. All insn_chain structures
283 are allocated first. */
284 static char *reload_startobj;
285
286 /* The point after all insn_chain structures. Used to quickly deallocate
287 memory allocated in copy_reloads during calculate_needs_all_insns. */
288 static char *reload_firstobj;
289
290 /* This points before all local rtl generated by register elimination.
291 Used to quickly free all memory after processing one insn. */
292 static char *reload_insn_firstobj;
293
294 /* List of insn_chain instructions, one for every insn that reload needs to
295 examine. */
296 struct insn_chain *reload_insn_chain;
297
298 /* List of all insns needing reloads. */
299 static struct insn_chain *insns_need_reload;
300 \f
301 /* This structure is used to record information about register eliminations.
302 Each array entry describes one possible way of eliminating a register
303 in favor of another. If there is more than one way of eliminating a
304 particular register, the most preferred should be specified first. */
305
306 struct elim_table
307 {
308 int from; /* Register number to be eliminated. */
309 int to; /* Register number used as replacement. */
310 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
311 int can_eliminate; /* Nonzero if this elimination can be done. */
312 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
313 insns made by reload. */
314 HOST_WIDE_INT offset; /* Current offset between the two regs. */
315 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
316 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
317 rtx from_rtx; /* REG rtx for the register to be eliminated.
318 We cannot simply compare the number since
319 we might then spuriously replace a hard
320 register corresponding to a pseudo
321 assigned to the reg to be eliminated. */
322 rtx to_rtx; /* REG rtx for the replacement. */
323 };
324
325 static struct elim_table *reg_eliminate = 0;
326
327 /* This is an intermediate structure to initialize the table. It has
328 exactly the members provided by ELIMINABLE_REGS. */
329 static const struct elim_table_1
330 {
331 const int from;
332 const int to;
333 } reg_eliminate_1[] =
334
335 /* If a set of eliminable registers was specified, define the table from it.
336 Otherwise, default to the normal case of the frame pointer being
337 replaced by the stack pointer. */
338
339 #ifdef ELIMINABLE_REGS
340 ELIMINABLE_REGS;
341 #else
342 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
343 #endif
344
345 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
346
347 /* Record the number of pending eliminations that have an offset not equal
348 to their initial offset. If nonzero, we use a new copy of each
349 replacement result in any insns encountered. */
350 int num_not_at_initial_offset;
351
352 /* Count the number of registers that we may be able to eliminate. */
353 static int num_eliminable;
354 /* And the number of registers that are equivalent to a constant that
355 can be eliminated to frame_pointer / arg_pointer + constant. */
356 static int num_eliminable_invariants;
357
358 /* For each label, we record the offset of each elimination. If we reach
359 a label by more than one path and an offset differs, we cannot do the
360 elimination. This information is indexed by the difference of the
361 number of the label and the first label number. We can't offset the
362 pointer itself as this can cause problems on machines with segmented
363 memory. The first table is an array of flags that records whether we
364 have yet encountered a label and the second table is an array of arrays,
365 one entry in the latter array for each elimination. */
366
367 static int first_label_num;
368 static char *offsets_known_at;
369 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
370
371 /* Number of labels in the current function. */
372
373 static int num_labels;
374 \f
375 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
376 static void maybe_fix_stack_asms (void);
377 static void copy_reloads (struct insn_chain *);
378 static void calculate_needs_all_insns (int);
379 static int find_reg (struct insn_chain *, int);
380 static void find_reload_regs (struct insn_chain *);
381 static void select_reload_regs (void);
382 static void delete_caller_save_insns (void);
383
384 static void spill_failure (rtx, enum reg_class);
385 static void count_spilled_pseudo (int, int, int);
386 static void delete_dead_insn (rtx);
387 static void alter_reg (int, int);
388 static void set_label_offsets (rtx, rtx, int);
389 static void check_eliminable_occurrences (rtx);
390 static void elimination_effects (rtx, enum machine_mode);
391 static int eliminate_regs_in_insn (rtx, int);
392 static void update_eliminable_offsets (void);
393 static void mark_not_eliminable (rtx, rtx, void *);
394 static void set_initial_elim_offsets (void);
395 static bool verify_initial_elim_offsets (void);
396 static void set_initial_label_offsets (void);
397 static void set_offsets_for_label (rtx);
398 static void init_elim_table (void);
399 static void update_eliminables (HARD_REG_SET *);
400 static void spill_hard_reg (unsigned int, int);
401 static int finish_spills (int);
402 static void scan_paradoxical_subregs (rtx);
403 static void count_pseudo (int);
404 static void order_regs_for_reload (struct insn_chain *);
405 static void reload_as_needed (int);
406 static void forget_old_reloads_1 (rtx, rtx, void *);
407 static int reload_reg_class_lower (const void *, const void *);
408 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
409 enum machine_mode);
410 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
411 enum machine_mode);
412 static int reload_reg_free_p (unsigned int, int, enum reload_type);
413 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
414 rtx, rtx, int, int);
415 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
416 rtx, rtx, int, int);
417 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
418 static int allocate_reload_reg (struct insn_chain *, int, int);
419 static int conflicts_with_override (rtx);
420 static void failed_reload (rtx, int);
421 static int set_reload_reg (int, int);
422 static void choose_reload_regs_init (struct insn_chain *, rtx *);
423 static void choose_reload_regs (struct insn_chain *);
424 static void merge_assigned_reloads (rtx);
425 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
426 rtx, int);
427 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
428 int);
429 static void do_input_reload (struct insn_chain *, struct reload *, int);
430 static void do_output_reload (struct insn_chain *, struct reload *, int);
431 static bool inherit_piecemeal_p (int, int);
432 static void emit_reload_insns (struct insn_chain *);
433 static void delete_output_reload (rtx, int, int);
434 static void delete_address_reloads (rtx, rtx);
435 static void delete_address_reloads_1 (rtx, rtx, rtx);
436 static rtx inc_for_reload (rtx, rtx, rtx, int);
437 #ifdef AUTO_INC_DEC
438 static void add_auto_inc_notes (rtx, rtx);
439 #endif
440 static void copy_eh_notes (rtx, rtx);
441 static int reloads_conflict (int, int);
442 static rtx gen_reload (rtx, rtx, int, enum reload_type);
443 static rtx emit_insn_if_valid_for_reload (rtx);
444 \f
445 /* Initialize the reload pass once per compilation. */
446
447 void
448 init_reload (void)
449 {
450 int i;
451
452 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
453 Set spill_indirect_levels to the number of levels such addressing is
454 permitted, zero if it is not permitted at all. */
455
456 rtx tem
457 = gen_rtx_MEM (Pmode,
458 gen_rtx_PLUS (Pmode,
459 gen_rtx_REG (Pmode,
460 LAST_VIRTUAL_REGISTER + 1),
461 GEN_INT (4)));
462 spill_indirect_levels = 0;
463
464 while (memory_address_p (QImode, tem))
465 {
466 spill_indirect_levels++;
467 tem = gen_rtx_MEM (Pmode, tem);
468 }
469
470 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
471
472 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
473 indirect_symref_ok = memory_address_p (QImode, tem);
474
475 /* See if reg+reg is a valid (and offsettable) address. */
476
477 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
478 {
479 tem = gen_rtx_PLUS (Pmode,
480 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
481 gen_rtx_REG (Pmode, i));
482
483 /* This way, we make sure that reg+reg is an offsettable address. */
484 tem = plus_constant (tem, 4);
485
486 if (memory_address_p (QImode, tem))
487 {
488 double_reg_address_ok = 1;
489 break;
490 }
491 }
492
493 /* Initialize obstack for our rtl allocation. */
494 gcc_obstack_init (&reload_obstack);
495 reload_startobj = obstack_alloc (&reload_obstack, 0);
496
497 INIT_REG_SET (&spilled_pseudos);
498 INIT_REG_SET (&pseudos_counted);
499 }
500
501 /* List of insn chains that are currently unused. */
502 static struct insn_chain *unused_insn_chains = 0;
503
504 /* Allocate an empty insn_chain structure. */
505 struct insn_chain *
506 new_insn_chain (void)
507 {
508 struct insn_chain *c;
509
510 if (unused_insn_chains == 0)
511 {
512 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
513 INIT_REG_SET (&c->live_throughout);
514 INIT_REG_SET (&c->dead_or_set);
515 }
516 else
517 {
518 c = unused_insn_chains;
519 unused_insn_chains = c->next;
520 }
521 c->is_caller_save_insn = 0;
522 c->need_operand_change = 0;
523 c->need_reload = 0;
524 c->need_elim = 0;
525 return c;
526 }
527
528 /* Small utility function to set all regs in hard reg set TO which are
529 allocated to pseudos in regset FROM. */
530
531 void
532 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
533 {
534 unsigned int regno;
535 reg_set_iterator rsi;
536
537 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
538 {
539 int r = reg_renumber[regno];
540 int nregs;
541
542 if (r < 0)
543 {
544 /* reload_combine uses the information from
545 BASIC_BLOCK->global_live_at_start, which might still
546 contain registers that have not actually been allocated
547 since they have an equivalence. */
548 gcc_assert (reload_completed);
549 }
550 else
551 {
552 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
553 while (nregs-- > 0)
554 SET_HARD_REG_BIT (*to, r + nregs);
555 }
556 }
557 }
558
559 /* Replace all pseudos found in LOC with their corresponding
560 equivalences. */
561
562 static void
563 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
564 {
565 rtx x = *loc;
566 enum rtx_code code;
567 const char *fmt;
568 int i, j;
569
570 if (! x)
571 return;
572
573 code = GET_CODE (x);
574 if (code == REG)
575 {
576 unsigned int regno = REGNO (x);
577
578 if (regno < FIRST_PSEUDO_REGISTER)
579 return;
580
581 x = eliminate_regs (x, mem_mode, usage);
582 if (x != *loc)
583 {
584 *loc = x;
585 replace_pseudos_in (loc, mem_mode, usage);
586 return;
587 }
588
589 if (reg_equiv_constant[regno])
590 *loc = reg_equiv_constant[regno];
591 else if (reg_equiv_mem[regno])
592 *loc = reg_equiv_mem[regno];
593 else if (reg_equiv_address[regno])
594 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
595 else
596 {
597 gcc_assert (!REG_P (regno_reg_rtx[regno])
598 || REGNO (regno_reg_rtx[regno]) != regno);
599 *loc = regno_reg_rtx[regno];
600 }
601
602 return;
603 }
604 else if (code == MEM)
605 {
606 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
607 return;
608 }
609
610 /* Process each of our operands recursively. */
611 fmt = GET_RTX_FORMAT (code);
612 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
613 if (*fmt == 'e')
614 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
615 else if (*fmt == 'E')
616 for (j = 0; j < XVECLEN (x, i); j++)
617 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
618 }
619
620 \f
621 /* Global variables used by reload and its subroutines. */
622
623 /* Set during calculate_needs if an insn needs register elimination. */
624 static int something_needs_elimination;
625 /* Set during calculate_needs if an insn needs an operand changed. */
626 static int something_needs_operands_changed;
627
628 /* Nonzero means we couldn't get enough spill regs. */
629 static int failure;
630
631 /* Main entry point for the reload pass.
632
633 FIRST is the first insn of the function being compiled.
634
635 GLOBAL nonzero means we were called from global_alloc
636 and should attempt to reallocate any pseudoregs that we
637 displace from hard regs we will use for reloads.
638 If GLOBAL is zero, we do not have enough information to do that,
639 so any pseudo reg that is spilled must go to the stack.
640
641 Return value is nonzero if reload failed
642 and we must not do any more for this function. */
643
644 int
645 reload (rtx first, int global)
646 {
647 int i;
648 rtx insn;
649 struct elim_table *ep;
650 basic_block bb;
651
652 /* Make sure even insns with volatile mem refs are recognizable. */
653 init_recog ();
654
655 failure = 0;
656
657 reload_firstobj = obstack_alloc (&reload_obstack, 0);
658
659 /* Make sure that the last insn in the chain
660 is not something that needs reloading. */
661 emit_note (NOTE_INSN_DELETED);
662
663 /* Enable find_equiv_reg to distinguish insns made by reload. */
664 reload_first_uid = get_max_uid ();
665
666 #ifdef SECONDARY_MEMORY_NEEDED
667 /* Initialize the secondary memory table. */
668 clear_secondary_mem ();
669 #endif
670
671 /* We don't have a stack slot for any spill reg yet. */
672 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
673 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
674
675 /* Initialize the save area information for caller-save, in case some
676 are needed. */
677 init_save_areas ();
678
679 /* Compute which hard registers are now in use
680 as homes for pseudo registers.
681 This is done here rather than (eg) in global_alloc
682 because this point is reached even if not optimizing. */
683 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
684 mark_home_live (i);
685
686 /* A function that receives a nonlocal goto must save all call-saved
687 registers. */
688 if (current_function_has_nonlocal_label)
689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
690 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
691 regs_ever_live[i] = 1;
692
693 /* Find all the pseudo registers that didn't get hard regs
694 but do have known equivalent constants or memory slots.
695 These include parameters (known equivalent to parameter slots)
696 and cse'd or loop-moved constant memory addresses.
697
698 Record constant equivalents in reg_equiv_constant
699 so they will be substituted by find_reloads.
700 Record memory equivalents in reg_mem_equiv so they can
701 be substituted eventually by altering the REG-rtx's. */
702
703 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
704 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
705 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
706 reg_equiv_address = XCNEWVEC (rtx, max_regno);
707 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
708 reg_old_renumber = XCNEWVEC (short, max_regno);
709 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
710 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
711 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
712
713 CLEAR_HARD_REG_SET (bad_spill_regs_global);
714
715 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
716 to. Also find all paradoxical subregs and find largest such for
717 each pseudo. */
718
719 num_eliminable_invariants = 0;
720 for (insn = first; insn; insn = NEXT_INSN (insn))
721 {
722 rtx set = single_set (insn);
723
724 /* We may introduce USEs that we want to remove at the end, so
725 we'll mark them with QImode. Make sure there are no
726 previously-marked insns left by say regmove. */
727 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
728 && GET_MODE (insn) != VOIDmode)
729 PUT_MODE (insn, VOIDmode);
730
731 if (INSN_P (insn))
732 scan_paradoxical_subregs (PATTERN (insn));
733
734 if (set != 0 && REG_P (SET_DEST (set)))
735 {
736 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
737 rtx x;
738
739 if (! note)
740 continue;
741
742 i = REGNO (SET_DEST (set));
743 x = XEXP (note, 0);
744
745 if (i <= LAST_VIRTUAL_REGISTER)
746 continue;
747
748 if (! function_invariant_p (x)
749 || ! flag_pic
750 /* A function invariant is often CONSTANT_P but may
751 include a register. We promise to only pass
752 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
753 || (CONSTANT_P (x)
754 && LEGITIMATE_PIC_OPERAND_P (x)))
755 {
756 /* It can happen that a REG_EQUIV note contains a MEM
757 that is not a legitimate memory operand. As later
758 stages of reload assume that all addresses found
759 in the reg_equiv_* arrays were originally legitimate,
760 we ignore such REG_EQUIV notes. */
761 if (memory_operand (x, VOIDmode))
762 {
763 /* Always unshare the equivalence, so we can
764 substitute into this insn without touching the
765 equivalence. */
766 reg_equiv_memory_loc[i] = copy_rtx (x);
767 }
768 else if (function_invariant_p (x))
769 {
770 if (GET_CODE (x) == PLUS)
771 {
772 /* This is PLUS of frame pointer and a constant,
773 and might be shared. Unshare it. */
774 reg_equiv_invariant[i] = copy_rtx (x);
775 num_eliminable_invariants++;
776 }
777 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
778 {
779 reg_equiv_invariant[i] = x;
780 num_eliminable_invariants++;
781 }
782 else if (LEGITIMATE_CONSTANT_P (x))
783 reg_equiv_constant[i] = x;
784 else
785 {
786 reg_equiv_memory_loc[i]
787 = force_const_mem (GET_MODE (SET_DEST (set)), x);
788 if (! reg_equiv_memory_loc[i])
789 reg_equiv_init[i] = NULL_RTX;
790 }
791 }
792 else
793 {
794 reg_equiv_init[i] = NULL_RTX;
795 continue;
796 }
797 }
798 else
799 reg_equiv_init[i] = NULL_RTX;
800 }
801 }
802
803 if (dump_file)
804 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
805 if (reg_equiv_init[i])
806 {
807 fprintf (dump_file, "init_insns for %u: ", i);
808 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
809 fprintf (dump_file, "\n");
810 }
811
812 init_elim_table ();
813
814 first_label_num = get_first_label_num ();
815 num_labels = max_label_num () - first_label_num;
816
817 /* Allocate the tables used to store offset information at labels. */
818 /* We used to use alloca here, but the size of what it would try to
819 allocate would occasionally cause it to exceed the stack limit and
820 cause a core dump. */
821 offsets_known_at = XNEWVEC (char, num_labels);
822 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
823
824 /* Alter each pseudo-reg rtx to contain its hard reg number.
825 Assign stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
827
828 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
829 alter_reg (i, -1);
830
831 /* If we have some registers we think can be eliminated, scan all insns to
832 see if there is an insn that sets one of these registers to something
833 other than itself plus a constant. If so, the register cannot be
834 eliminated. Doing this scan here eliminates an extra pass through the
835 main reload loop in the most common case where register elimination
836 cannot be done. */
837 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
838 if (INSN_P (insn))
839 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
840
841 maybe_fix_stack_asms ();
842
843 insns_need_reload = 0;
844 something_needs_elimination = 0;
845
846 /* Initialize to -1, which means take the first spill register. */
847 last_spill_reg = -1;
848
849 /* Spill any hard regs that we know we can't eliminate. */
850 CLEAR_HARD_REG_SET (used_spill_regs);
851 /* There can be multiple ways to eliminate a register;
852 they should be listed adjacently.
853 Elimination for any register fails only if all possible ways fail. */
854 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
855 {
856 int from = ep->from;
857 int can_eliminate = 0;
858 do
859 {
860 can_eliminate |= ep->can_eliminate;
861 ep++;
862 }
863 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
864 if (! can_eliminate)
865 spill_hard_reg (from, 1);
866 }
867
868 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
869 if (frame_pointer_needed)
870 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
871 #endif
872 finish_spills (global);
873
874 /* From now on, we may need to generate moves differently. We may also
875 allow modifications of insns which cause them to not be recognized.
876 Any such modifications will be cleaned up during reload itself. */
877 reload_in_progress = 1;
878
879 /* This loop scans the entire function each go-round
880 and repeats until one repetition spills no additional hard regs. */
881 for (;;)
882 {
883 int something_changed;
884 int did_spill;
885
886 HOST_WIDE_INT starting_frame_size;
887
888 /* Round size of stack frame to stack_alignment_needed. This must be done
889 here because the stack size may be a part of the offset computation
890 for register elimination, and there might have been new stack slots
891 created in the last iteration of this loop. */
892 if (cfun->stack_alignment_needed)
893 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
894
895 starting_frame_size = get_frame_size ();
896
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
899
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
904
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
907
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
914
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
920
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
923
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
926 {
927 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
928
929 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
930 XEXP (x, 0)))
931 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
941 else
942 {
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc[i] = 0;
950 reg_equiv_init[i] = 0;
951 alter_reg (i, -1);
952 }
953 }
954
955 if (caller_save_needed)
956 setup_save_areas ();
957
958 /* If we allocated another stack slot, redo elimination bookkeeping. */
959 if (starting_frame_size != get_frame_size ())
960 continue;
961
962 if (caller_save_needed)
963 {
964 save_call_clobbered_regs ();
965 /* That might have allocated new insn_chain structures. */
966 reload_firstobj = obstack_alloc (&reload_obstack, 0);
967 }
968
969 calculate_needs_all_insns (global);
970
971 CLEAR_REG_SET (&spilled_pseudos);
972 did_spill = 0;
973
974 something_changed = 0;
975
976 /* If we allocated any new memory locations, make another pass
977 since it might have changed elimination offsets. */
978 if (starting_frame_size != get_frame_size ())
979 something_changed = 1;
980
981 /* Even if the frame size remained the same, we might still have
982 changed elimination offsets, e.g. if find_reloads called
983 force_const_mem requiring the back end to allocate a constant
984 pool base register that needs to be saved on the stack. */
985 else if (!verify_initial_elim_offsets ())
986 something_changed = 1;
987
988 {
989 HARD_REG_SET to_spill;
990 CLEAR_HARD_REG_SET (to_spill);
991 update_eliminables (&to_spill);
992 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
993 if (TEST_HARD_REG_BIT (to_spill, i))
994 {
995 spill_hard_reg (i, 1);
996 did_spill = 1;
997
998 /* Regardless of the state of spills, if we previously had
999 a register that we thought we could eliminate, but now can
1000 not eliminate, we must run another pass.
1001
1002 Consider pseudos which have an entry in reg_equiv_* which
1003 reference an eliminable register. We must make another pass
1004 to update reg_equiv_* so that we do not substitute in the
1005 old value from when we thought the elimination could be
1006 performed. */
1007 something_changed = 1;
1008 }
1009 }
1010
1011 select_reload_regs ();
1012 if (failure)
1013 goto failed;
1014
1015 if (insns_need_reload != 0 || did_spill)
1016 something_changed |= finish_spills (global);
1017
1018 if (! something_changed)
1019 break;
1020
1021 if (caller_save_needed)
1022 delete_caller_save_insns ();
1023
1024 obstack_free (&reload_obstack, reload_firstobj);
1025 }
1026
1027 /* If global-alloc was run, notify it of any register eliminations we have
1028 done. */
1029 if (global)
1030 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1031 if (ep->can_eliminate)
1032 mark_elimination (ep->from, ep->to);
1033
1034 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1035 If that insn didn't set the register (i.e., it copied the register to
1036 memory), just delete that insn instead of the equivalencing insn plus
1037 anything now dead. If we call delete_dead_insn on that insn, we may
1038 delete the insn that actually sets the register if the register dies
1039 there and that is incorrect. */
1040
1041 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1042 {
1043 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1044 {
1045 rtx list;
1046 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1047 {
1048 rtx equiv_insn = XEXP (list, 0);
1049
1050 /* If we already deleted the insn or if it may trap, we can't
1051 delete it. The latter case shouldn't happen, but can
1052 if an insn has a variable address, gets a REG_EH_REGION
1053 note added to it, and then gets converted into a load
1054 from a constant address. */
1055 if (NOTE_P (equiv_insn)
1056 || can_throw_internal (equiv_insn))
1057 ;
1058 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1059 delete_dead_insn (equiv_insn);
1060 else
1061 SET_INSN_DELETED (equiv_insn);
1062 }
1063 }
1064 }
1065
1066 /* Use the reload registers where necessary
1067 by generating move instructions to move the must-be-register
1068 values into or out of the reload registers. */
1069
1070 if (insns_need_reload != 0 || something_needs_elimination
1071 || something_needs_operands_changed)
1072 {
1073 HOST_WIDE_INT old_frame_size = get_frame_size ();
1074
1075 reload_as_needed (global);
1076
1077 gcc_assert (old_frame_size == get_frame_size ());
1078
1079 gcc_assert (verify_initial_elim_offsets ());
1080 }
1081
1082 /* If we were able to eliminate the frame pointer, show that it is no
1083 longer live at the start of any basic block. If it ls live by
1084 virtue of being in a pseudo, that pseudo will be marked live
1085 and hence the frame pointer will be known to be live via that
1086 pseudo. */
1087
1088 if (! frame_pointer_needed)
1089 FOR_EACH_BB (bb)
1090 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1091 HARD_FRAME_POINTER_REGNUM);
1092
1093 /* Come here (with failure set nonzero) if we can't get enough spill
1094 regs. */
1095 failed:
1096
1097 CLEAR_REG_SET (&spilled_pseudos);
1098 reload_in_progress = 0;
1099
1100 /* Now eliminate all pseudo regs by modifying them into
1101 their equivalent memory references.
1102 The REG-rtx's for the pseudos are modified in place,
1103 so all insns that used to refer to them now refer to memory.
1104
1105 For a reg that has a reg_equiv_address, all those insns
1106 were changed by reloading so that no insns refer to it any longer;
1107 but the DECL_RTL of a variable decl may refer to it,
1108 and if so this causes the debugging info to mention the variable. */
1109
1110 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1111 {
1112 rtx addr = 0;
1113
1114 if (reg_equiv_mem[i])
1115 addr = XEXP (reg_equiv_mem[i], 0);
1116
1117 if (reg_equiv_address[i])
1118 addr = reg_equiv_address[i];
1119
1120 if (addr)
1121 {
1122 if (reg_renumber[i] < 0)
1123 {
1124 rtx reg = regno_reg_rtx[i];
1125
1126 REG_USERVAR_P (reg) = 0;
1127 PUT_CODE (reg, MEM);
1128 XEXP (reg, 0) = addr;
1129 if (reg_equiv_memory_loc[i])
1130 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1131 else
1132 {
1133 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1134 MEM_ATTRS (reg) = 0;
1135 }
1136 MEM_NOTRAP_P (reg) = 1;
1137 }
1138 else if (reg_equiv_mem[i])
1139 XEXP (reg_equiv_mem[i], 0) = addr;
1140 }
1141 }
1142
1143 /* We must set reload_completed now since the cleanup_subreg_operands call
1144 below will re-recognize each insn and reload may have generated insns
1145 which are only valid during and after reload. */
1146 reload_completed = 1;
1147
1148 /* Make a pass over all the insns and delete all USEs which we inserted
1149 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1150 notes. Delete all CLOBBER insns, except those that refer to the return
1151 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1152 from misarranging variable-array code, and simplify (subreg (reg))
1153 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1154 are no longer useful or accurate. Strip and regenerate REG_INC notes
1155 that may have been moved around. */
1156
1157 for (insn = first; insn; insn = NEXT_INSN (insn))
1158 if (INSN_P (insn))
1159 {
1160 rtx *pnote;
1161
1162 if (CALL_P (insn))
1163 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1164 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1165
1166 if ((GET_CODE (PATTERN (insn)) == USE
1167 /* We mark with QImode USEs introduced by reload itself. */
1168 && (GET_MODE (insn) == QImode
1169 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1170 || (GET_CODE (PATTERN (insn)) == CLOBBER
1171 && (!MEM_P (XEXP (PATTERN (insn), 0))
1172 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1173 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1174 && XEXP (XEXP (PATTERN (insn), 0), 0)
1175 != stack_pointer_rtx))
1176 && (!REG_P (XEXP (PATTERN (insn), 0))
1177 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1178 {
1179 delete_insn (insn);
1180 continue;
1181 }
1182
1183 /* Some CLOBBERs may survive until here and still reference unassigned
1184 pseudos with const equivalent, which may in turn cause ICE in later
1185 passes if the reference remains in place. */
1186 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1187 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1188 VOIDmode, PATTERN (insn));
1189
1190 /* Discard obvious no-ops, even without -O. This optimization
1191 is fast and doesn't interfere with debugging. */
1192 if (NONJUMP_INSN_P (insn)
1193 && GET_CODE (PATTERN (insn)) == SET
1194 && REG_P (SET_SRC (PATTERN (insn)))
1195 && REG_P (SET_DEST (PATTERN (insn)))
1196 && (REGNO (SET_SRC (PATTERN (insn)))
1197 == REGNO (SET_DEST (PATTERN (insn)))))
1198 {
1199 delete_insn (insn);
1200 continue;
1201 }
1202
1203 pnote = &REG_NOTES (insn);
1204 while (*pnote != 0)
1205 {
1206 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1207 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1208 || REG_NOTE_KIND (*pnote) == REG_INC
1209 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1210 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1211 *pnote = XEXP (*pnote, 1);
1212 else
1213 pnote = &XEXP (*pnote, 1);
1214 }
1215
1216 #ifdef AUTO_INC_DEC
1217 add_auto_inc_notes (insn, PATTERN (insn));
1218 #endif
1219
1220 /* And simplify (subreg (reg)) if it appears as an operand. */
1221 cleanup_subreg_operands (insn);
1222 }
1223
1224 /* If we are doing stack checking, give a warning if this function's
1225 frame size is larger than we expect. */
1226 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1227 {
1228 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1229 static int verbose_warned = 0;
1230
1231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1232 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1233 size += UNITS_PER_WORD;
1234
1235 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1236 {
1237 warning (0, "frame size too large for reliable stack checking");
1238 if (! verbose_warned)
1239 {
1240 warning (0, "try reducing the number of local variables");
1241 verbose_warned = 1;
1242 }
1243 }
1244 }
1245
1246 /* Indicate that we no longer have known memory locations or constants. */
1247 if (reg_equiv_constant)
1248 free (reg_equiv_constant);
1249 if (reg_equiv_invariant)
1250 free (reg_equiv_invariant);
1251 reg_equiv_constant = 0;
1252 reg_equiv_invariant = 0;
1253 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1254 reg_equiv_memory_loc = 0;
1255
1256 if (offsets_known_at)
1257 free (offsets_known_at);
1258 if (offsets_at)
1259 free (offsets_at);
1260
1261 free (reg_equiv_mem);
1262 reg_equiv_init = 0;
1263 free (reg_equiv_address);
1264 free (reg_max_ref_width);
1265 free (reg_old_renumber);
1266 free (pseudo_previous_regs);
1267 free (pseudo_forbidden_regs);
1268
1269 CLEAR_HARD_REG_SET (used_spill_regs);
1270 for (i = 0; i < n_spills; i++)
1271 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1272
1273 /* Free all the insn_chain structures at once. */
1274 obstack_free (&reload_obstack, reload_startobj);
1275 unused_insn_chains = 0;
1276 fixup_abnormal_edges ();
1277
1278 /* Replacing pseudos with their memory equivalents might have
1279 created shared rtx. Subsequent passes would get confused
1280 by this, so unshare everything here. */
1281 unshare_all_rtl_again (first);
1282
1283 #ifdef STACK_BOUNDARY
1284 /* init_emit has set the alignment of the hard frame pointer
1285 to STACK_BOUNDARY. It is very likely no longer valid if
1286 the hard frame pointer was used for register allocation. */
1287 if (!frame_pointer_needed)
1288 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1289 #endif
1290
1291 return failure;
1292 }
1293
1294 /* Yet another special case. Unfortunately, reg-stack forces people to
1295 write incorrect clobbers in asm statements. These clobbers must not
1296 cause the register to appear in bad_spill_regs, otherwise we'll call
1297 fatal_insn later. We clear the corresponding regnos in the live
1298 register sets to avoid this.
1299 The whole thing is rather sick, I'm afraid. */
1300
1301 static void
1302 maybe_fix_stack_asms (void)
1303 {
1304 #ifdef STACK_REGS
1305 const char *constraints[MAX_RECOG_OPERANDS];
1306 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1307 struct insn_chain *chain;
1308
1309 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1310 {
1311 int i, noperands;
1312 HARD_REG_SET clobbered, allowed;
1313 rtx pat;
1314
1315 if (! INSN_P (chain->insn)
1316 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1317 continue;
1318 pat = PATTERN (chain->insn);
1319 if (GET_CODE (pat) != PARALLEL)
1320 continue;
1321
1322 CLEAR_HARD_REG_SET (clobbered);
1323 CLEAR_HARD_REG_SET (allowed);
1324
1325 /* First, make a mask of all stack regs that are clobbered. */
1326 for (i = 0; i < XVECLEN (pat, 0); i++)
1327 {
1328 rtx t = XVECEXP (pat, 0, i);
1329 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1330 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1331 }
1332
1333 /* Get the operand values and constraints out of the insn. */
1334 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1335 constraints, operand_mode);
1336
1337 /* For every operand, see what registers are allowed. */
1338 for (i = 0; i < noperands; i++)
1339 {
1340 const char *p = constraints[i];
1341 /* For every alternative, we compute the class of registers allowed
1342 for reloading in CLS, and merge its contents into the reg set
1343 ALLOWED. */
1344 int cls = (int) NO_REGS;
1345
1346 for (;;)
1347 {
1348 char c = *p;
1349
1350 if (c == '\0' || c == ',' || c == '#')
1351 {
1352 /* End of one alternative - mark the regs in the current
1353 class, and reset the class. */
1354 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1355 cls = NO_REGS;
1356 p++;
1357 if (c == '#')
1358 do {
1359 c = *p++;
1360 } while (c != '\0' && c != ',');
1361 if (c == '\0')
1362 break;
1363 continue;
1364 }
1365
1366 switch (c)
1367 {
1368 case '=': case '+': case '*': case '%': case '?': case '!':
1369 case '0': case '1': case '2': case '3': case '4': case 'm':
1370 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1371 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1372 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1373 case 'P':
1374 break;
1375
1376 case 'p':
1377 cls = (int) reg_class_subunion[cls]
1378 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1379 break;
1380
1381 case 'g':
1382 case 'r':
1383 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1384 break;
1385
1386 default:
1387 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1388 cls = (int) reg_class_subunion[cls]
1389 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1390 else
1391 cls = (int) reg_class_subunion[cls]
1392 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1393 }
1394 p += CONSTRAINT_LEN (c, p);
1395 }
1396 }
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1403 {
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1406 }
1407 }
1408
1409 #endif
1410 }
1411 \f
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1416 {
1417 chain->n_reloads = n_reloads;
1418 chain->rld = obstack_alloc (&reload_obstack,
1419 n_reloads * sizeof (struct reload));
1420 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1421 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1422 }
1423
1424 /* Walk the chain of insns, and determine for each whether it needs reloads
1425 and/or eliminations. Build the corresponding insns_need_reload list, and
1426 set something_needs_elimination as appropriate. */
1427 static void
1428 calculate_needs_all_insns (int global)
1429 {
1430 struct insn_chain **pprev_reload = &insns_need_reload;
1431 struct insn_chain *chain, *next = 0;
1432
1433 something_needs_elimination = 0;
1434
1435 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1436 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 {
1438 rtx insn = chain->insn;
1439
1440 next = chain->next;
1441
1442 /* Clear out the shortcuts. */
1443 chain->n_reloads = 0;
1444 chain->need_elim = 0;
1445 chain->need_reload = 0;
1446 chain->need_operand_change = 0;
1447
1448 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1449 include REG_LABEL), we need to see what effects this has on the
1450 known offsets at labels. */
1451
1452 if (LABEL_P (insn) || JUMP_P (insn)
1453 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1454 set_label_offsets (insn, insn, 0);
1455
1456 if (INSN_P (insn))
1457 {
1458 rtx old_body = PATTERN (insn);
1459 int old_code = INSN_CODE (insn);
1460 rtx old_notes = REG_NOTES (insn);
1461 int did_elimination = 0;
1462 int operands_changed = 0;
1463 rtx set = single_set (insn);
1464
1465 /* Skip insns that only set an equivalence. */
1466 if (set && REG_P (SET_DEST (set))
1467 && reg_renumber[REGNO (SET_DEST (set))] < 0
1468 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1469 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1470 && reg_equiv_init[REGNO (SET_DEST (set))])
1471 continue;
1472
1473 /* If needed, eliminate any eliminable registers. */
1474 if (num_eliminable || num_eliminable_invariants)
1475 did_elimination = eliminate_regs_in_insn (insn, 0);
1476
1477 /* Analyze the instruction. */
1478 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1479 global, spill_reg_order);
1480
1481 /* If a no-op set needs more than one reload, this is likely
1482 to be something that needs input address reloads. We
1483 can't get rid of this cleanly later, and it is of no use
1484 anyway, so discard it now.
1485 We only do this when expensive_optimizations is enabled,
1486 since this complements reload inheritance / output
1487 reload deletion, and it can make debugging harder. */
1488 if (flag_expensive_optimizations && n_reloads > 1)
1489 {
1490 rtx set = single_set (insn);
1491 if (set
1492 && SET_SRC (set) == SET_DEST (set)
1493 && REG_P (SET_SRC (set))
1494 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1495 {
1496 delete_insn (insn);
1497 /* Delete it from the reload chain. */
1498 if (chain->prev)
1499 chain->prev->next = next;
1500 else
1501 reload_insn_chain = next;
1502 if (next)
1503 next->prev = chain->prev;
1504 chain->next = unused_insn_chains;
1505 unused_insn_chains = chain;
1506 continue;
1507 }
1508 }
1509 if (num_eliminable)
1510 update_eliminable_offsets ();
1511
1512 /* Remember for later shortcuts which insns had any reloads or
1513 register eliminations. */
1514 chain->need_elim = did_elimination;
1515 chain->need_reload = n_reloads > 0;
1516 chain->need_operand_change = operands_changed;
1517
1518 /* Discard any register replacements done. */
1519 if (did_elimination)
1520 {
1521 obstack_free (&reload_obstack, reload_insn_firstobj);
1522 PATTERN (insn) = old_body;
1523 INSN_CODE (insn) = old_code;
1524 REG_NOTES (insn) = old_notes;
1525 something_needs_elimination = 1;
1526 }
1527
1528 something_needs_operands_changed |= operands_changed;
1529
1530 if (n_reloads != 0)
1531 {
1532 copy_reloads (chain);
1533 *pprev_reload = chain;
1534 pprev_reload = &chain->next_need_reload;
1535 }
1536 }
1537 }
1538 *pprev_reload = 0;
1539 }
1540 \f
1541 /* Comparison function for qsort to decide which of two reloads
1542 should be handled first. *P1 and *P2 are the reload numbers. */
1543
1544 static int
1545 reload_reg_class_lower (const void *r1p, const void *r2p)
1546 {
1547 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1548 int t;
1549
1550 /* Consider required reloads before optional ones. */
1551 t = rld[r1].optional - rld[r2].optional;
1552 if (t != 0)
1553 return t;
1554
1555 /* Count all solitary classes before non-solitary ones. */
1556 t = ((reg_class_size[(int) rld[r2].class] == 1)
1557 - (reg_class_size[(int) rld[r1].class] == 1));
1558 if (t != 0)
1559 return t;
1560
1561 /* Aside from solitaires, consider all multi-reg groups first. */
1562 t = rld[r2].nregs - rld[r1].nregs;
1563 if (t != 0)
1564 return t;
1565
1566 /* Consider reloads in order of increasing reg-class number. */
1567 t = (int) rld[r1].class - (int) rld[r2].class;
1568 if (t != 0)
1569 return t;
1570
1571 /* If reloads are equally urgent, sort by reload number,
1572 so that the results of qsort leave nothing to chance. */
1573 return r1 - r2;
1574 }
1575 \f
1576 /* The cost of spilling each hard reg. */
1577 static int spill_cost[FIRST_PSEUDO_REGISTER];
1578
1579 /* When spilling multiple hard registers, we use SPILL_COST for the first
1580 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1581 only the first hard reg for a multi-reg pseudo. */
1582 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1583
1584 /* Update the spill cost arrays, considering that pseudo REG is live. */
1585
1586 static void
1587 count_pseudo (int reg)
1588 {
1589 int freq = REG_FREQ (reg);
1590 int r = reg_renumber[reg];
1591 int nregs;
1592
1593 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1594 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1595 return;
1596
1597 SET_REGNO_REG_SET (&pseudos_counted, reg);
1598
1599 gcc_assert (r >= 0);
1600
1601 spill_add_cost[r] += freq;
1602
1603 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1604 while (nregs-- > 0)
1605 spill_cost[r + nregs] += freq;
1606 }
1607
1608 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1609 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1610
1611 static void
1612 order_regs_for_reload (struct insn_chain *chain)
1613 {
1614 unsigned i;
1615 HARD_REG_SET used_by_pseudos;
1616 HARD_REG_SET used_by_pseudos2;
1617 reg_set_iterator rsi;
1618
1619 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1620
1621 memset (spill_cost, 0, sizeof spill_cost);
1622 memset (spill_add_cost, 0, sizeof spill_add_cost);
1623
1624 /* Count number of uses of each hard reg by pseudo regs allocated to it
1625 and then order them by decreasing use. First exclude hard registers
1626 that are live in or across this insn. */
1627
1628 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1629 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1630 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1631 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1632
1633 /* Now find out which pseudos are allocated to it, and update
1634 hard_reg_n_uses. */
1635 CLEAR_REG_SET (&pseudos_counted);
1636
1637 EXECUTE_IF_SET_IN_REG_SET
1638 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1639 {
1640 count_pseudo (i);
1641 }
1642 EXECUTE_IF_SET_IN_REG_SET
1643 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1644 {
1645 count_pseudo (i);
1646 }
1647 CLEAR_REG_SET (&pseudos_counted);
1648 }
1649 \f
1650 /* Vector of reload-numbers showing the order in which the reloads should
1651 be processed. */
1652 static short reload_order[MAX_RELOADS];
1653
1654 /* This is used to keep track of the spill regs used in one insn. */
1655 static HARD_REG_SET used_spill_regs_local;
1656
1657 /* We decided to spill hard register SPILLED, which has a size of
1658 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1659 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1660 update SPILL_COST/SPILL_ADD_COST. */
1661
1662 static void
1663 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1664 {
1665 int r = reg_renumber[reg];
1666 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1667
1668 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1669 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1670 return;
1671
1672 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1673
1674 spill_add_cost[r] -= REG_FREQ (reg);
1675 while (nregs-- > 0)
1676 spill_cost[r + nregs] -= REG_FREQ (reg);
1677 }
1678
1679 /* Find reload register to use for reload number ORDER. */
1680
1681 static int
1682 find_reg (struct insn_chain *chain, int order)
1683 {
1684 int rnum = reload_order[order];
1685 struct reload *rl = rld + rnum;
1686 int best_cost = INT_MAX;
1687 int best_reg = -1;
1688 unsigned int i, j;
1689 int k;
1690 HARD_REG_SET not_usable;
1691 HARD_REG_SET used_by_other_reload;
1692 reg_set_iterator rsi;
1693
1694 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1695 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1696 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1697
1698 CLEAR_HARD_REG_SET (used_by_other_reload);
1699 for (k = 0; k < order; k++)
1700 {
1701 int other = reload_order[k];
1702
1703 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1704 for (j = 0; j < rld[other].nregs; j++)
1705 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1706 }
1707
1708 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1709 {
1710 unsigned int regno = i;
1711
1712 if (! TEST_HARD_REG_BIT (not_usable, regno)
1713 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1714 && HARD_REGNO_MODE_OK (regno, rl->mode))
1715 {
1716 int this_cost = spill_cost[regno];
1717 int ok = 1;
1718 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1719
1720 for (j = 1; j < this_nregs; j++)
1721 {
1722 this_cost += spill_add_cost[regno + j];
1723 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1724 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1725 ok = 0;
1726 }
1727 if (! ok)
1728 continue;
1729 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1730 this_cost--;
1731 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1732 this_cost--;
1733 if (this_cost < best_cost
1734 /* Among registers with equal cost, prefer caller-saved ones, or
1735 use REG_ALLOC_ORDER if it is defined. */
1736 || (this_cost == best_cost
1737 #ifdef REG_ALLOC_ORDER
1738 && (inv_reg_alloc_order[regno]
1739 < inv_reg_alloc_order[best_reg])
1740 #else
1741 && call_used_regs[regno]
1742 && ! call_used_regs[best_reg]
1743 #endif
1744 ))
1745 {
1746 best_reg = regno;
1747 best_cost = this_cost;
1748 }
1749 }
1750 }
1751 if (best_reg == -1)
1752 return 0;
1753
1754 if (dump_file)
1755 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1756
1757 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1758 rl->regno = best_reg;
1759
1760 EXECUTE_IF_SET_IN_REG_SET
1761 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1762 {
1763 count_spilled_pseudo (best_reg, rl->nregs, j);
1764 }
1765
1766 EXECUTE_IF_SET_IN_REG_SET
1767 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1768 {
1769 count_spilled_pseudo (best_reg, rl->nregs, j);
1770 }
1771
1772 for (i = 0; i < rl->nregs; i++)
1773 {
1774 gcc_assert (spill_cost[best_reg + i] == 0);
1775 gcc_assert (spill_add_cost[best_reg + i] == 0);
1776 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1777 }
1778 return 1;
1779 }
1780
1781 /* Find more reload regs to satisfy the remaining need of an insn, which
1782 is given by CHAIN.
1783 Do it by ascending class number, since otherwise a reg
1784 might be spilled for a big class and might fail to count
1785 for a smaller class even though it belongs to that class. */
1786
1787 static void
1788 find_reload_regs (struct insn_chain *chain)
1789 {
1790 int i;
1791
1792 /* In order to be certain of getting the registers we need,
1793 we must sort the reloads into order of increasing register class.
1794 Then our grabbing of reload registers will parallel the process
1795 that provided the reload registers. */
1796 for (i = 0; i < chain->n_reloads; i++)
1797 {
1798 /* Show whether this reload already has a hard reg. */
1799 if (chain->rld[i].reg_rtx)
1800 {
1801 int regno = REGNO (chain->rld[i].reg_rtx);
1802 chain->rld[i].regno = regno;
1803 chain->rld[i].nregs
1804 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1805 }
1806 else
1807 chain->rld[i].regno = -1;
1808 reload_order[i] = i;
1809 }
1810
1811 n_reloads = chain->n_reloads;
1812 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1813
1814 CLEAR_HARD_REG_SET (used_spill_regs_local);
1815
1816 if (dump_file)
1817 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1818
1819 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1820
1821 /* Compute the order of preference for hard registers to spill. */
1822
1823 order_regs_for_reload (chain);
1824
1825 for (i = 0; i < n_reloads; i++)
1826 {
1827 int r = reload_order[i];
1828
1829 /* Ignore reloads that got marked inoperative. */
1830 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1831 && ! rld[r].optional
1832 && rld[r].regno == -1)
1833 if (! find_reg (chain, i))
1834 {
1835 if (dump_file)
1836 fprintf(dump_file, "reload failure for reload %d\n", r);
1837 spill_failure (chain->insn, rld[r].class);
1838 failure = 1;
1839 return;
1840 }
1841 }
1842
1843 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1844 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1845
1846 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1847 }
1848
1849 static void
1850 select_reload_regs (void)
1851 {
1852 struct insn_chain *chain;
1853
1854 /* Try to satisfy the needs for each insn. */
1855 for (chain = insns_need_reload; chain != 0;
1856 chain = chain->next_need_reload)
1857 find_reload_regs (chain);
1858 }
1859 \f
1860 /* Delete all insns that were inserted by emit_caller_save_insns during
1861 this iteration. */
1862 static void
1863 delete_caller_save_insns (void)
1864 {
1865 struct insn_chain *c = reload_insn_chain;
1866
1867 while (c != 0)
1868 {
1869 while (c != 0 && c->is_caller_save_insn)
1870 {
1871 struct insn_chain *next = c->next;
1872 rtx insn = c->insn;
1873
1874 if (c == reload_insn_chain)
1875 reload_insn_chain = next;
1876 delete_insn (insn);
1877
1878 if (next)
1879 next->prev = c->prev;
1880 if (c->prev)
1881 c->prev->next = next;
1882 c->next = unused_insn_chains;
1883 unused_insn_chains = c;
1884 c = next;
1885 }
1886 if (c != 0)
1887 c = c->next;
1888 }
1889 }
1890 \f
1891 /* Handle the failure to find a register to spill.
1892 INSN should be one of the insns which needed this particular spill reg. */
1893
1894 static void
1895 spill_failure (rtx insn, enum reg_class class)
1896 {
1897 if (asm_noperands (PATTERN (insn)) >= 0)
1898 error_for_asm (insn, "can't find a register in class %qs while "
1899 "reloading %<asm%>",
1900 reg_class_names[class]);
1901 else
1902 {
1903 error ("unable to find a register to spill in class %qs",
1904 reg_class_names[class]);
1905
1906 if (dump_file)
1907 {
1908 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1909 debug_reload_to_stream (dump_file);
1910 }
1911 fatal_insn ("this is the insn:", insn);
1912 }
1913 }
1914 \f
1915 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1916 data that is dead in INSN. */
1917
1918 static void
1919 delete_dead_insn (rtx insn)
1920 {
1921 rtx prev = prev_real_insn (insn);
1922 rtx prev_dest;
1923
1924 /* If the previous insn sets a register that dies in our insn, delete it
1925 too. */
1926 if (prev && GET_CODE (PATTERN (prev)) == SET
1927 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1928 && reg_mentioned_p (prev_dest, PATTERN (insn))
1929 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1930 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1931 delete_dead_insn (prev);
1932
1933 SET_INSN_DELETED (insn);
1934 }
1935
1936 /* Modify the home of pseudo-reg I.
1937 The new home is present in reg_renumber[I].
1938
1939 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1940 or it may be -1, meaning there is none or it is not relevant.
1941 This is used so that all pseudos spilled from a given hard reg
1942 can share one stack slot. */
1943
1944 static void
1945 alter_reg (int i, int from_reg)
1946 {
1947 /* When outputting an inline function, this can happen
1948 for a reg that isn't actually used. */
1949 if (regno_reg_rtx[i] == 0)
1950 return;
1951
1952 /* If the reg got changed to a MEM at rtl-generation time,
1953 ignore it. */
1954 if (!REG_P (regno_reg_rtx[i]))
1955 return;
1956
1957 /* Modify the reg-rtx to contain the new hard reg
1958 number or else to contain its pseudo reg number. */
1959 REGNO (regno_reg_rtx[i])
1960 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1961
1962 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1963 allocate a stack slot for it. */
1964
1965 if (reg_renumber[i] < 0
1966 && REG_N_REFS (i) > 0
1967 && reg_equiv_constant[i] == 0
1968 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
1969 && reg_equiv_memory_loc[i] == 0)
1970 {
1971 rtx x;
1972 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1973 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1974 int adjust = 0;
1975
1976 /* Each pseudo reg has an inherent size which comes from its own mode,
1977 and a total size which provides room for paradoxical subregs
1978 which refer to the pseudo reg in wider modes.
1979
1980 We can use a slot already allocated if it provides both
1981 enough inherent space and enough total space.
1982 Otherwise, we allocate a new slot, making sure that it has no less
1983 inherent space, and no less total space, then the previous slot. */
1984 if (from_reg == -1)
1985 {
1986 /* No known place to spill from => no slot to reuse. */
1987 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1988 inherent_size == total_size ? 0 : -1);
1989 if (BYTES_BIG_ENDIAN)
1990 /* Cancel the big-endian correction done in assign_stack_local.
1991 Get the address of the beginning of the slot.
1992 This is so we can do a big-endian correction unconditionally
1993 below. */
1994 adjust = inherent_size - total_size;
1995
1996 /* Nothing can alias this slot except this pseudo. */
1997 set_mem_alias_set (x, new_alias_set ());
1998 }
1999
2000 /* Reuse a stack slot if possible. */
2001 else if (spill_stack_slot[from_reg] != 0
2002 && spill_stack_slot_width[from_reg] >= total_size
2003 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2004 >= inherent_size))
2005 x = spill_stack_slot[from_reg];
2006
2007 /* Allocate a bigger slot. */
2008 else
2009 {
2010 /* Compute maximum size needed, both for inherent size
2011 and for total size. */
2012 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2013 rtx stack_slot;
2014
2015 if (spill_stack_slot[from_reg])
2016 {
2017 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2018 > inherent_size)
2019 mode = GET_MODE (spill_stack_slot[from_reg]);
2020 if (spill_stack_slot_width[from_reg] > total_size)
2021 total_size = spill_stack_slot_width[from_reg];
2022 }
2023
2024 /* Make a slot with that size. */
2025 x = assign_stack_local (mode, total_size,
2026 inherent_size == total_size ? 0 : -1);
2027 stack_slot = x;
2028
2029 /* All pseudos mapped to this slot can alias each other. */
2030 if (spill_stack_slot[from_reg])
2031 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2032 else
2033 set_mem_alias_set (x, new_alias_set ());
2034
2035 if (BYTES_BIG_ENDIAN)
2036 {
2037 /* Cancel the big-endian correction done in assign_stack_local.
2038 Get the address of the beginning of the slot.
2039 This is so we can do a big-endian correction unconditionally
2040 below. */
2041 adjust = GET_MODE_SIZE (mode) - total_size;
2042 if (adjust)
2043 stack_slot
2044 = adjust_address_nv (x, mode_for_size (total_size
2045 * BITS_PER_UNIT,
2046 MODE_INT, 1),
2047 adjust);
2048 }
2049
2050 spill_stack_slot[from_reg] = stack_slot;
2051 spill_stack_slot_width[from_reg] = total_size;
2052 }
2053
2054 /* On a big endian machine, the "address" of the slot
2055 is the address of the low part that fits its inherent mode. */
2056 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2057 adjust += (total_size - inherent_size);
2058
2059 /* If we have any adjustment to make, or if the stack slot is the
2060 wrong mode, make a new stack slot. */
2061 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2062
2063 /* If we have a decl for the original register, set it for the
2064 memory. If this is a shared MEM, make a copy. */
2065 if (REG_EXPR (regno_reg_rtx[i])
2066 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2067 {
2068 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2069
2070 /* We can do this only for the DECLs home pseudo, not for
2071 any copies of it, since otherwise when the stack slot
2072 is reused, nonoverlapping_memrefs_p might think they
2073 cannot overlap. */
2074 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2075 {
2076 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2077 x = copy_rtx (x);
2078
2079 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2080 }
2081 }
2082
2083 /* Save the stack slot for later. */
2084 reg_equiv_memory_loc[i] = x;
2085 }
2086 }
2087
2088 /* Mark the slots in regs_ever_live for the hard regs
2089 used by pseudo-reg number REGNO. */
2090
2091 void
2092 mark_home_live (int regno)
2093 {
2094 int i, lim;
2095
2096 i = reg_renumber[regno];
2097 if (i < 0)
2098 return;
2099 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2100 while (i < lim)
2101 regs_ever_live[i++] = 1;
2102 }
2103 \f
2104 /* This function handles the tracking of elimination offsets around branches.
2105
2106 X is a piece of RTL being scanned.
2107
2108 INSN is the insn that it came from, if any.
2109
2110 INITIAL_P is nonzero if we are to set the offset to be the initial
2111 offset and zero if we are setting the offset of the label to be the
2112 current offset. */
2113
2114 static void
2115 set_label_offsets (rtx x, rtx insn, int initial_p)
2116 {
2117 enum rtx_code code = GET_CODE (x);
2118 rtx tem;
2119 unsigned int i;
2120 struct elim_table *p;
2121
2122 switch (code)
2123 {
2124 case LABEL_REF:
2125 if (LABEL_REF_NONLOCAL_P (x))
2126 return;
2127
2128 x = XEXP (x, 0);
2129
2130 /* ... fall through ... */
2131
2132 case CODE_LABEL:
2133 /* If we know nothing about this label, set the desired offsets. Note
2134 that this sets the offset at a label to be the offset before a label
2135 if we don't know anything about the label. This is not correct for
2136 the label after a BARRIER, but is the best guess we can make. If
2137 we guessed wrong, we will suppress an elimination that might have
2138 been possible had we been able to guess correctly. */
2139
2140 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2141 {
2142 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2143 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2144 = (initial_p ? reg_eliminate[i].initial_offset
2145 : reg_eliminate[i].offset);
2146 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2147 }
2148
2149 /* Otherwise, if this is the definition of a label and it is
2150 preceded by a BARRIER, set our offsets to the known offset of
2151 that label. */
2152
2153 else if (x == insn
2154 && (tem = prev_nonnote_insn (insn)) != 0
2155 && BARRIER_P (tem))
2156 set_offsets_for_label (insn);
2157 else
2158 /* If neither of the above cases is true, compare each offset
2159 with those previously recorded and suppress any eliminations
2160 where the offsets disagree. */
2161
2162 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2163 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2164 != (initial_p ? reg_eliminate[i].initial_offset
2165 : reg_eliminate[i].offset))
2166 reg_eliminate[i].can_eliminate = 0;
2167
2168 return;
2169
2170 case JUMP_INSN:
2171 set_label_offsets (PATTERN (insn), insn, initial_p);
2172
2173 /* ... fall through ... */
2174
2175 case INSN:
2176 case CALL_INSN:
2177 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2178 and hence must have all eliminations at their initial offsets. */
2179 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2180 if (REG_NOTE_KIND (tem) == REG_LABEL)
2181 set_label_offsets (XEXP (tem, 0), insn, 1);
2182 return;
2183
2184 case PARALLEL:
2185 case ADDR_VEC:
2186 case ADDR_DIFF_VEC:
2187 /* Each of the labels in the parallel or address vector must be
2188 at their initial offsets. We want the first field for PARALLEL
2189 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2190
2191 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2192 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2193 insn, initial_p);
2194 return;
2195
2196 case SET:
2197 /* We only care about setting PC. If the source is not RETURN,
2198 IF_THEN_ELSE, or a label, disable any eliminations not at
2199 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2200 isn't one of those possibilities. For branches to a label,
2201 call ourselves recursively.
2202
2203 Note that this can disable elimination unnecessarily when we have
2204 a non-local goto since it will look like a non-constant jump to
2205 someplace in the current function. This isn't a significant
2206 problem since such jumps will normally be when all elimination
2207 pairs are back to their initial offsets. */
2208
2209 if (SET_DEST (x) != pc_rtx)
2210 return;
2211
2212 switch (GET_CODE (SET_SRC (x)))
2213 {
2214 case PC:
2215 case RETURN:
2216 return;
2217
2218 case LABEL_REF:
2219 set_label_offsets (SET_SRC (x), insn, initial_p);
2220 return;
2221
2222 case IF_THEN_ELSE:
2223 tem = XEXP (SET_SRC (x), 1);
2224 if (GET_CODE (tem) == LABEL_REF)
2225 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2226 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2227 break;
2228
2229 tem = XEXP (SET_SRC (x), 2);
2230 if (GET_CODE (tem) == LABEL_REF)
2231 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2232 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2233 break;
2234 return;
2235
2236 default:
2237 break;
2238 }
2239
2240 /* If we reach here, all eliminations must be at their initial
2241 offset because we are doing a jump to a variable address. */
2242 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2243 if (p->offset != p->initial_offset)
2244 p->can_eliminate = 0;
2245 break;
2246
2247 default:
2248 break;
2249 }
2250 }
2251 \f
2252 /* Scan X and replace any eliminable registers (such as fp) with a
2253 replacement (such as sp), plus an offset.
2254
2255 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2256 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2257 MEM, we are allowed to replace a sum of a register and the constant zero
2258 with the register, which we cannot do outside a MEM. In addition, we need
2259 to record the fact that a register is referenced outside a MEM.
2260
2261 If INSN is an insn, it is the insn containing X. If we replace a REG
2262 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2263 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2264 the REG is being modified.
2265
2266 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2267 That's used when we eliminate in expressions stored in notes.
2268 This means, do not set ref_outside_mem even if the reference
2269 is outside of MEMs.
2270
2271 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2272 replacements done assuming all offsets are at their initial values. If
2273 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2274 encounter, return the actual location so that find_reloads will do
2275 the proper thing. */
2276
2277 static rtx
2278 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2279 bool may_use_invariant)
2280 {
2281 enum rtx_code code = GET_CODE (x);
2282 struct elim_table *ep;
2283 int regno;
2284 rtx new;
2285 int i, j;
2286 const char *fmt;
2287 int copied = 0;
2288
2289 if (! current_function_decl)
2290 return x;
2291
2292 switch (code)
2293 {
2294 case CONST_INT:
2295 case CONST_DOUBLE:
2296 case CONST_VECTOR:
2297 case CONST:
2298 case SYMBOL_REF:
2299 case CODE_LABEL:
2300 case PC:
2301 case CC0:
2302 case ASM_INPUT:
2303 case ADDR_VEC:
2304 case ADDR_DIFF_VEC:
2305 case RETURN:
2306 return x;
2307
2308 case REG:
2309 regno = REGNO (x);
2310
2311 /* First handle the case where we encounter a bare register that
2312 is eliminable. Replace it with a PLUS. */
2313 if (regno < FIRST_PSEUDO_REGISTER)
2314 {
2315 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2316 ep++)
2317 if (ep->from_rtx == x && ep->can_eliminate)
2318 return plus_constant (ep->to_rtx, ep->previous_offset);
2319
2320 }
2321 else if (reg_renumber && reg_renumber[regno] < 0
2322 && reg_equiv_invariant && reg_equiv_invariant[regno])
2323 {
2324 if (may_use_invariant)
2325 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2326 mem_mode, insn, true);
2327 /* There exists at least one use of REGNO that cannot be
2328 eliminated. Prevent the defining insn from being deleted. */
2329 reg_equiv_init[regno] = NULL_RTX;
2330 alter_reg (regno, -1);
2331 }
2332 return x;
2333
2334 /* You might think handling MINUS in a manner similar to PLUS is a
2335 good idea. It is not. It has been tried multiple times and every
2336 time the change has had to have been reverted.
2337
2338 Other parts of reload know a PLUS is special (gen_reload for example)
2339 and require special code to handle code a reloaded PLUS operand.
2340
2341 Also consider backends where the flags register is clobbered by a
2342 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2343 lea instruction comes to mind). If we try to reload a MINUS, we
2344 may kill the flags register that was holding a useful value.
2345
2346 So, please before trying to handle MINUS, consider reload as a
2347 whole instead of this little section as well as the backend issues. */
2348 case PLUS:
2349 /* If this is the sum of an eliminable register and a constant, rework
2350 the sum. */
2351 if (REG_P (XEXP (x, 0))
2352 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2353 && CONSTANT_P (XEXP (x, 1)))
2354 {
2355 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2356 ep++)
2357 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2358 {
2359 /* The only time we want to replace a PLUS with a REG (this
2360 occurs when the constant operand of the PLUS is the negative
2361 of the offset) is when we are inside a MEM. We won't want
2362 to do so at other times because that would change the
2363 structure of the insn in a way that reload can't handle.
2364 We special-case the commonest situation in
2365 eliminate_regs_in_insn, so just replace a PLUS with a
2366 PLUS here, unless inside a MEM. */
2367 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2368 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2369 return ep->to_rtx;
2370 else
2371 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2372 plus_constant (XEXP (x, 1),
2373 ep->previous_offset));
2374 }
2375
2376 /* If the register is not eliminable, we are done since the other
2377 operand is a constant. */
2378 return x;
2379 }
2380
2381 /* If this is part of an address, we want to bring any constant to the
2382 outermost PLUS. We will do this by doing register replacement in
2383 our operands and seeing if a constant shows up in one of them.
2384
2385 Note that there is no risk of modifying the structure of the insn,
2386 since we only get called for its operands, thus we are either
2387 modifying the address inside a MEM, or something like an address
2388 operand of a load-address insn. */
2389
2390 {
2391 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2392 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2393
2394 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2395 {
2396 /* If one side is a PLUS and the other side is a pseudo that
2397 didn't get a hard register but has a reg_equiv_constant,
2398 we must replace the constant here since it may no longer
2399 be in the position of any operand. */
2400 if (GET_CODE (new0) == PLUS && REG_P (new1)
2401 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2402 && reg_renumber[REGNO (new1)] < 0
2403 && reg_equiv_constant != 0
2404 && reg_equiv_constant[REGNO (new1)] != 0)
2405 new1 = reg_equiv_constant[REGNO (new1)];
2406 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2407 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2408 && reg_renumber[REGNO (new0)] < 0
2409 && reg_equiv_constant[REGNO (new0)] != 0)
2410 new0 = reg_equiv_constant[REGNO (new0)];
2411
2412 new = form_sum (new0, new1);
2413
2414 /* As above, if we are not inside a MEM we do not want to
2415 turn a PLUS into something else. We might try to do so here
2416 for an addition of 0 if we aren't optimizing. */
2417 if (! mem_mode && GET_CODE (new) != PLUS)
2418 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2419 else
2420 return new;
2421 }
2422 }
2423 return x;
2424
2425 case MULT:
2426 /* If this is the product of an eliminable register and a
2427 constant, apply the distribute law and move the constant out
2428 so that we have (plus (mult ..) ..). This is needed in order
2429 to keep load-address insns valid. This case is pathological.
2430 We ignore the possibility of overflow here. */
2431 if (REG_P (XEXP (x, 0))
2432 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2433 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2434 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2435 ep++)
2436 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2437 {
2438 if (! mem_mode
2439 /* Refs inside notes don't count for this purpose. */
2440 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2441 || GET_CODE (insn) == INSN_LIST)))
2442 ep->ref_outside_mem = 1;
2443
2444 return
2445 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2446 ep->previous_offset * INTVAL (XEXP (x, 1)));
2447 }
2448
2449 /* ... fall through ... */
2450
2451 case CALL:
2452 case COMPARE:
2453 /* See comments before PLUS about handling MINUS. */
2454 case MINUS:
2455 case DIV: case UDIV:
2456 case MOD: case UMOD:
2457 case AND: case IOR: case XOR:
2458 case ROTATERT: case ROTATE:
2459 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2460 case NE: case EQ:
2461 case GE: case GT: case GEU: case GTU:
2462 case LE: case LT: case LEU: case LTU:
2463 {
2464 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2465 rtx new1 = XEXP (x, 1)
2466 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2467
2468 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2469 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2470 }
2471 return x;
2472
2473 case EXPR_LIST:
2474 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2475 if (XEXP (x, 0))
2476 {
2477 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2478 if (new != XEXP (x, 0))
2479 {
2480 /* If this is a REG_DEAD note, it is not valid anymore.
2481 Using the eliminated version could result in creating a
2482 REG_DEAD note for the stack or frame pointer. */
2483 if (GET_MODE (x) == REG_DEAD)
2484 return (XEXP (x, 1)
2485 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2486 : NULL_RTX);
2487
2488 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2489 }
2490 }
2491
2492 /* ... fall through ... */
2493
2494 case INSN_LIST:
2495 /* Now do eliminations in the rest of the chain. If this was
2496 an EXPR_LIST, this might result in allocating more memory than is
2497 strictly needed, but it simplifies the code. */
2498 if (XEXP (x, 1))
2499 {
2500 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2501 if (new != XEXP (x, 1))
2502 return
2503 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2504 }
2505 return x;
2506
2507 case PRE_INC:
2508 case POST_INC:
2509 case PRE_DEC:
2510 case POST_DEC:
2511 case STRICT_LOW_PART:
2512 case NEG: case NOT:
2513 case SIGN_EXTEND: case ZERO_EXTEND:
2514 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2515 case FLOAT: case FIX:
2516 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2517 case ABS:
2518 case SQRT:
2519 case FFS:
2520 case CLZ:
2521 case CTZ:
2522 case POPCOUNT:
2523 case PARITY:
2524 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2525 if (new != XEXP (x, 0))
2526 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2527 return x;
2528
2529 case SUBREG:
2530 /* Similar to above processing, but preserve SUBREG_BYTE.
2531 Convert (subreg (mem)) to (mem) if not paradoxical.
2532 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2533 pseudo didn't get a hard reg, we must replace this with the
2534 eliminated version of the memory location because push_reload
2535 may do the replacement in certain circumstances. */
2536 if (REG_P (SUBREG_REG (x))
2537 && (GET_MODE_SIZE (GET_MODE (x))
2538 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2539 && reg_equiv_memory_loc != 0
2540 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2541 {
2542 new = SUBREG_REG (x);
2543 }
2544 else
2545 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2546
2547 if (new != SUBREG_REG (x))
2548 {
2549 int x_size = GET_MODE_SIZE (GET_MODE (x));
2550 int new_size = GET_MODE_SIZE (GET_MODE (new));
2551
2552 if (MEM_P (new)
2553 && ((x_size < new_size
2554 #ifdef WORD_REGISTER_OPERATIONS
2555 /* On these machines, combine can create rtl of the form
2556 (set (subreg:m1 (reg:m2 R) 0) ...)
2557 where m1 < m2, and expects something interesting to
2558 happen to the entire word. Moreover, it will use the
2559 (reg:m2 R) later, expecting all bits to be preserved.
2560 So if the number of words is the same, preserve the
2561 subreg so that push_reload can see it. */
2562 && ! ((x_size - 1) / UNITS_PER_WORD
2563 == (new_size -1 ) / UNITS_PER_WORD)
2564 #endif
2565 )
2566 || x_size == new_size)
2567 )
2568 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2569 else
2570 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2571 }
2572
2573 return x;
2574
2575 case MEM:
2576 /* Our only special processing is to pass the mode of the MEM to our
2577 recursive call and copy the flags. While we are here, handle this
2578 case more efficiently. */
2579 return
2580 replace_equiv_address_nv (x,
2581 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2582 insn, true));
2583
2584 case USE:
2585 /* Handle insn_list USE that a call to a pure function may generate. */
2586 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2587 if (new != XEXP (x, 0))
2588 return gen_rtx_USE (GET_MODE (x), new);
2589 return x;
2590
2591 case CLOBBER:
2592 case ASM_OPERANDS:
2593 case SET:
2594 gcc_unreachable ();
2595
2596 default:
2597 break;
2598 }
2599
2600 /* Process each of our operands recursively. If any have changed, make a
2601 copy of the rtx. */
2602 fmt = GET_RTX_FORMAT (code);
2603 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2604 {
2605 if (*fmt == 'e')
2606 {
2607 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2608 if (new != XEXP (x, i) && ! copied)
2609 {
2610 x = shallow_copy_rtx (x);
2611 copied = 1;
2612 }
2613 XEXP (x, i) = new;
2614 }
2615 else if (*fmt == 'E')
2616 {
2617 int copied_vec = 0;
2618 for (j = 0; j < XVECLEN (x, i); j++)
2619 {
2620 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2621 if (new != XVECEXP (x, i, j) && ! copied_vec)
2622 {
2623 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2624 XVEC (x, i)->elem);
2625 if (! copied)
2626 {
2627 x = shallow_copy_rtx (x);
2628 copied = 1;
2629 }
2630 XVEC (x, i) = new_v;
2631 copied_vec = 1;
2632 }
2633 XVECEXP (x, i, j) = new;
2634 }
2635 }
2636 }
2637
2638 return x;
2639 }
2640
2641 rtx
2642 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2643 {
2644 return eliminate_regs_1 (x, mem_mode, insn, false);
2645 }
2646
2647 /* Scan rtx X for modifications of elimination target registers. Update
2648 the table of eliminables to reflect the changed state. MEM_MODE is
2649 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2650
2651 static void
2652 elimination_effects (rtx x, enum machine_mode mem_mode)
2653 {
2654 enum rtx_code code = GET_CODE (x);
2655 struct elim_table *ep;
2656 int regno;
2657 int i, j;
2658 const char *fmt;
2659
2660 switch (code)
2661 {
2662 case CONST_INT:
2663 case CONST_DOUBLE:
2664 case CONST_VECTOR:
2665 case CONST:
2666 case SYMBOL_REF:
2667 case CODE_LABEL:
2668 case PC:
2669 case CC0:
2670 case ASM_INPUT:
2671 case ADDR_VEC:
2672 case ADDR_DIFF_VEC:
2673 case RETURN:
2674 return;
2675
2676 case REG:
2677 regno = REGNO (x);
2678
2679 /* First handle the case where we encounter a bare register that
2680 is eliminable. Replace it with a PLUS. */
2681 if (regno < FIRST_PSEUDO_REGISTER)
2682 {
2683 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2684 ep++)
2685 if (ep->from_rtx == x && ep->can_eliminate)
2686 {
2687 if (! mem_mode)
2688 ep->ref_outside_mem = 1;
2689 return;
2690 }
2691
2692 }
2693 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2694 && reg_equiv_constant[regno]
2695 && ! function_invariant_p (reg_equiv_constant[regno]))
2696 elimination_effects (reg_equiv_constant[regno], mem_mode);
2697 return;
2698
2699 case PRE_INC:
2700 case POST_INC:
2701 case PRE_DEC:
2702 case POST_DEC:
2703 case POST_MODIFY:
2704 case PRE_MODIFY:
2705 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2706 if (ep->to_rtx == XEXP (x, 0))
2707 {
2708 int size = GET_MODE_SIZE (mem_mode);
2709
2710 /* If more bytes than MEM_MODE are pushed, account for them. */
2711 #ifdef PUSH_ROUNDING
2712 if (ep->to_rtx == stack_pointer_rtx)
2713 size = PUSH_ROUNDING (size);
2714 #endif
2715 if (code == PRE_DEC || code == POST_DEC)
2716 ep->offset += size;
2717 else if (code == PRE_INC || code == POST_INC)
2718 ep->offset -= size;
2719 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2720 && GET_CODE (XEXP (x, 1)) == PLUS
2721 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2722 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2723 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2724 }
2725
2726 /* These two aren't unary operators. */
2727 if (code == POST_MODIFY || code == PRE_MODIFY)
2728 break;
2729
2730 /* Fall through to generic unary operation case. */
2731 case STRICT_LOW_PART:
2732 case NEG: case NOT:
2733 case SIGN_EXTEND: case ZERO_EXTEND:
2734 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2735 case FLOAT: case FIX:
2736 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2737 case ABS:
2738 case SQRT:
2739 case FFS:
2740 case CLZ:
2741 case CTZ:
2742 case POPCOUNT:
2743 case PARITY:
2744 elimination_effects (XEXP (x, 0), mem_mode);
2745 return;
2746
2747 case SUBREG:
2748 if (REG_P (SUBREG_REG (x))
2749 && (GET_MODE_SIZE (GET_MODE (x))
2750 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2751 && reg_equiv_memory_loc != 0
2752 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2753 return;
2754
2755 elimination_effects (SUBREG_REG (x), mem_mode);
2756 return;
2757
2758 case USE:
2759 /* If using a register that is the source of an eliminate we still
2760 think can be performed, note it cannot be performed since we don't
2761 know how this register is used. */
2762 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2763 if (ep->from_rtx == XEXP (x, 0))
2764 ep->can_eliminate = 0;
2765
2766 elimination_effects (XEXP (x, 0), mem_mode);
2767 return;
2768
2769 case CLOBBER:
2770 /* If clobbering a register that is the replacement register for an
2771 elimination we still think can be performed, note that it cannot
2772 be performed. Otherwise, we need not be concerned about it. */
2773 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2774 if (ep->to_rtx == XEXP (x, 0))
2775 ep->can_eliminate = 0;
2776
2777 elimination_effects (XEXP (x, 0), mem_mode);
2778 return;
2779
2780 case SET:
2781 /* Check for setting a register that we know about. */
2782 if (REG_P (SET_DEST (x)))
2783 {
2784 /* See if this is setting the replacement register for an
2785 elimination.
2786
2787 If DEST is the hard frame pointer, we do nothing because we
2788 assume that all assignments to the frame pointer are for
2789 non-local gotos and are being done at a time when they are valid
2790 and do not disturb anything else. Some machines want to
2791 eliminate a fake argument pointer (or even a fake frame pointer)
2792 with either the real frame or the stack pointer. Assignments to
2793 the hard frame pointer must not prevent this elimination. */
2794
2795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2796 ep++)
2797 if (ep->to_rtx == SET_DEST (x)
2798 && SET_DEST (x) != hard_frame_pointer_rtx)
2799 {
2800 /* If it is being incremented, adjust the offset. Otherwise,
2801 this elimination can't be done. */
2802 rtx src = SET_SRC (x);
2803
2804 if (GET_CODE (src) == PLUS
2805 && XEXP (src, 0) == SET_DEST (x)
2806 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2807 ep->offset -= INTVAL (XEXP (src, 1));
2808 else
2809 ep->can_eliminate = 0;
2810 }
2811 }
2812
2813 elimination_effects (SET_DEST (x), 0);
2814 elimination_effects (SET_SRC (x), 0);
2815 return;
2816
2817 case MEM:
2818 /* Our only special processing is to pass the mode of the MEM to our
2819 recursive call. */
2820 elimination_effects (XEXP (x, 0), GET_MODE (x));
2821 return;
2822
2823 default:
2824 break;
2825 }
2826
2827 fmt = GET_RTX_FORMAT (code);
2828 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2829 {
2830 if (*fmt == 'e')
2831 elimination_effects (XEXP (x, i), mem_mode);
2832 else if (*fmt == 'E')
2833 for (j = 0; j < XVECLEN (x, i); j++)
2834 elimination_effects (XVECEXP (x, i, j), mem_mode);
2835 }
2836 }
2837
2838 /* Descend through rtx X and verify that no references to eliminable registers
2839 remain. If any do remain, mark the involved register as not
2840 eliminable. */
2841
2842 static void
2843 check_eliminable_occurrences (rtx x)
2844 {
2845 const char *fmt;
2846 int i;
2847 enum rtx_code code;
2848
2849 if (x == 0)
2850 return;
2851
2852 code = GET_CODE (x);
2853
2854 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2855 {
2856 struct elim_table *ep;
2857
2858 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2859 if (ep->from_rtx == x)
2860 ep->can_eliminate = 0;
2861 return;
2862 }
2863
2864 fmt = GET_RTX_FORMAT (code);
2865 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2866 {
2867 if (*fmt == 'e')
2868 check_eliminable_occurrences (XEXP (x, i));
2869 else if (*fmt == 'E')
2870 {
2871 int j;
2872 for (j = 0; j < XVECLEN (x, i); j++)
2873 check_eliminable_occurrences (XVECEXP (x, i, j));
2874 }
2875 }
2876 }
2877 \f
2878 /* Scan INSN and eliminate all eliminable registers in it.
2879
2880 If REPLACE is nonzero, do the replacement destructively. Also
2881 delete the insn as dead it if it is setting an eliminable register.
2882
2883 If REPLACE is zero, do all our allocations in reload_obstack.
2884
2885 If no eliminations were done and this insn doesn't require any elimination
2886 processing (these are not identical conditions: it might be updating sp,
2887 but not referencing fp; this needs to be seen during reload_as_needed so
2888 that the offset between fp and sp can be taken into consideration), zero
2889 is returned. Otherwise, 1 is returned. */
2890
2891 static int
2892 eliminate_regs_in_insn (rtx insn, int replace)
2893 {
2894 int icode = recog_memoized (insn);
2895 rtx old_body = PATTERN (insn);
2896 int insn_is_asm = asm_noperands (old_body) >= 0;
2897 rtx old_set = single_set (insn);
2898 rtx new_body;
2899 int val = 0;
2900 int i;
2901 rtx substed_operand[MAX_RECOG_OPERANDS];
2902 rtx orig_operand[MAX_RECOG_OPERANDS];
2903 struct elim_table *ep;
2904 rtx plus_src, plus_cst_src;
2905
2906 if (! insn_is_asm && icode < 0)
2907 {
2908 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2909 || GET_CODE (PATTERN (insn)) == CLOBBER
2910 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2911 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2912 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2913 return 0;
2914 }
2915
2916 if (old_set != 0 && REG_P (SET_DEST (old_set))
2917 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2918 {
2919 /* Check for setting an eliminable register. */
2920 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2921 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2922 {
2923 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2924 /* If this is setting the frame pointer register to the
2925 hardware frame pointer register and this is an elimination
2926 that will be done (tested above), this insn is really
2927 adjusting the frame pointer downward to compensate for
2928 the adjustment done before a nonlocal goto. */
2929 if (ep->from == FRAME_POINTER_REGNUM
2930 && ep->to == HARD_FRAME_POINTER_REGNUM)
2931 {
2932 rtx base = SET_SRC (old_set);
2933 rtx base_insn = insn;
2934 HOST_WIDE_INT offset = 0;
2935
2936 while (base != ep->to_rtx)
2937 {
2938 rtx prev_insn, prev_set;
2939
2940 if (GET_CODE (base) == PLUS
2941 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2942 {
2943 offset += INTVAL (XEXP (base, 1));
2944 base = XEXP (base, 0);
2945 }
2946 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2947 && (prev_set = single_set (prev_insn)) != 0
2948 && rtx_equal_p (SET_DEST (prev_set), base))
2949 {
2950 base = SET_SRC (prev_set);
2951 base_insn = prev_insn;
2952 }
2953 else
2954 break;
2955 }
2956
2957 if (base == ep->to_rtx)
2958 {
2959 rtx src
2960 = plus_constant (ep->to_rtx, offset - ep->offset);
2961
2962 new_body = old_body;
2963 if (! replace)
2964 {
2965 new_body = copy_insn (old_body);
2966 if (REG_NOTES (insn))
2967 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2968 }
2969 PATTERN (insn) = new_body;
2970 old_set = single_set (insn);
2971
2972 /* First see if this insn remains valid when we
2973 make the change. If not, keep the INSN_CODE
2974 the same and let reload fit it up. */
2975 validate_change (insn, &SET_SRC (old_set), src, 1);
2976 validate_change (insn, &SET_DEST (old_set),
2977 ep->to_rtx, 1);
2978 if (! apply_change_group ())
2979 {
2980 SET_SRC (old_set) = src;
2981 SET_DEST (old_set) = ep->to_rtx;
2982 }
2983
2984 val = 1;
2985 goto done;
2986 }
2987 }
2988 #endif
2989
2990 /* In this case this insn isn't serving a useful purpose. We
2991 will delete it in reload_as_needed once we know that this
2992 elimination is, in fact, being done.
2993
2994 If REPLACE isn't set, we can't delete this insn, but needn't
2995 process it since it won't be used unless something changes. */
2996 if (replace)
2997 {
2998 delete_dead_insn (insn);
2999 return 1;
3000 }
3001 val = 1;
3002 goto done;
3003 }
3004 }
3005
3006 /* We allow one special case which happens to work on all machines we
3007 currently support: a single set with the source or a REG_EQUAL
3008 note being a PLUS of an eliminable register and a constant. */
3009 plus_src = plus_cst_src = 0;
3010 if (old_set && REG_P (SET_DEST (old_set)))
3011 {
3012 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3013 plus_src = SET_SRC (old_set);
3014 /* First see if the source is of the form (plus (...) CST). */
3015 if (plus_src
3016 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3017 plus_cst_src = plus_src;
3018 else if (REG_P (SET_SRC (old_set))
3019 || plus_src)
3020 {
3021 /* Otherwise, see if we have a REG_EQUAL note of the form
3022 (plus (...) CST). */
3023 rtx links;
3024 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3025 {
3026 if (REG_NOTE_KIND (links) == REG_EQUAL
3027 && GET_CODE (XEXP (links, 0)) == PLUS
3028 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3029 {
3030 plus_cst_src = XEXP (links, 0);
3031 break;
3032 }
3033 }
3034 }
3035
3036 /* Check that the first operand of the PLUS is a hard reg or
3037 the lowpart subreg of one. */
3038 if (plus_cst_src)
3039 {
3040 rtx reg = XEXP (plus_cst_src, 0);
3041 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3042 reg = SUBREG_REG (reg);
3043
3044 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3045 plus_cst_src = 0;
3046 }
3047 }
3048 if (plus_cst_src)
3049 {
3050 rtx reg = XEXP (plus_cst_src, 0);
3051 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3052
3053 if (GET_CODE (reg) == SUBREG)
3054 reg = SUBREG_REG (reg);
3055
3056 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3057 if (ep->from_rtx == reg && ep->can_eliminate)
3058 {
3059 rtx to_rtx = ep->to_rtx;
3060 offset += ep->offset;
3061
3062 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3063 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3064 to_rtx);
3065 if (offset == 0)
3066 {
3067 int num_clobbers;
3068 /* We assume here that if we need a PARALLEL with
3069 CLOBBERs for this assignment, we can do with the
3070 MATCH_SCRATCHes that add_clobbers allocates.
3071 There's not much we can do if that doesn't work. */
3072 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3073 SET_DEST (old_set),
3074 to_rtx);
3075 num_clobbers = 0;
3076 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3077 if (num_clobbers)
3078 {
3079 rtvec vec = rtvec_alloc (num_clobbers + 1);
3080
3081 vec->elem[0] = PATTERN (insn);
3082 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3083 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3084 }
3085 gcc_assert (INSN_CODE (insn) >= 0);
3086 }
3087 /* If we have a nonzero offset, and the source is already
3088 a simple REG, the following transformation would
3089 increase the cost of the insn by replacing a simple REG
3090 with (plus (reg sp) CST). So try only when we already
3091 had a PLUS before. */
3092 else if (plus_src)
3093 {
3094 new_body = old_body;
3095 if (! replace)
3096 {
3097 new_body = copy_insn (old_body);
3098 if (REG_NOTES (insn))
3099 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3100 }
3101 PATTERN (insn) = new_body;
3102 old_set = single_set (insn);
3103
3104 XEXP (SET_SRC (old_set), 0) = to_rtx;
3105 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3106 }
3107 else
3108 break;
3109
3110 val = 1;
3111 /* This can't have an effect on elimination offsets, so skip right
3112 to the end. */
3113 goto done;
3114 }
3115 }
3116
3117 /* Determine the effects of this insn on elimination offsets. */
3118 elimination_effects (old_body, 0);
3119
3120 /* Eliminate all eliminable registers occurring in operands that
3121 can be handled by reload. */
3122 extract_insn (insn);
3123 for (i = 0; i < recog_data.n_operands; i++)
3124 {
3125 orig_operand[i] = recog_data.operand[i];
3126 substed_operand[i] = recog_data.operand[i];
3127
3128 /* For an asm statement, every operand is eliminable. */
3129 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3130 {
3131 bool is_set_src, in_plus;
3132
3133 /* Check for setting a register that we know about. */
3134 if (recog_data.operand_type[i] != OP_IN
3135 && REG_P (orig_operand[i]))
3136 {
3137 /* If we are assigning to a register that can be eliminated, it
3138 must be as part of a PARALLEL, since the code above handles
3139 single SETs. We must indicate that we can no longer
3140 eliminate this reg. */
3141 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3142 ep++)
3143 if (ep->from_rtx == orig_operand[i])
3144 ep->can_eliminate = 0;
3145 }
3146
3147 /* Companion to the above plus substitution, we can allow
3148 invariants as the source of a plain move. */
3149 is_set_src = false;
3150 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3151 is_set_src = true;
3152 in_plus = false;
3153 if (plus_src
3154 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3155 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3156 in_plus = true;
3157
3158 substed_operand[i]
3159 = eliminate_regs_1 (recog_data.operand[i], 0,
3160 replace ? insn : NULL_RTX,
3161 is_set_src || in_plus);
3162 if (substed_operand[i] != orig_operand[i])
3163 val = 1;
3164 /* Terminate the search in check_eliminable_occurrences at
3165 this point. */
3166 *recog_data.operand_loc[i] = 0;
3167
3168 /* If an output operand changed from a REG to a MEM and INSN is an
3169 insn, write a CLOBBER insn. */
3170 if (recog_data.operand_type[i] != OP_IN
3171 && REG_P (orig_operand[i])
3172 && MEM_P (substed_operand[i])
3173 && replace)
3174 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3175 insn);
3176 }
3177 }
3178
3179 for (i = 0; i < recog_data.n_dups; i++)
3180 *recog_data.dup_loc[i]
3181 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3182
3183 /* If any eliminable remain, they aren't eliminable anymore. */
3184 check_eliminable_occurrences (old_body);
3185
3186 /* Substitute the operands; the new values are in the substed_operand
3187 array. */
3188 for (i = 0; i < recog_data.n_operands; i++)
3189 *recog_data.operand_loc[i] = substed_operand[i];
3190 for (i = 0; i < recog_data.n_dups; i++)
3191 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3192
3193 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3194 re-recognize the insn. We do this in case we had a simple addition
3195 but now can do this as a load-address. This saves an insn in this
3196 common case.
3197 If re-recognition fails, the old insn code number will still be used,
3198 and some register operands may have changed into PLUS expressions.
3199 These will be handled by find_reloads by loading them into a register
3200 again. */
3201
3202 if (val)
3203 {
3204 /* If we aren't replacing things permanently and we changed something,
3205 make another copy to ensure that all the RTL is new. Otherwise
3206 things can go wrong if find_reload swaps commutative operands
3207 and one is inside RTL that has been copied while the other is not. */
3208 new_body = old_body;
3209 if (! replace)
3210 {
3211 new_body = copy_insn (old_body);
3212 if (REG_NOTES (insn))
3213 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3214 }
3215 PATTERN (insn) = new_body;
3216
3217 /* If we had a move insn but now we don't, rerecognize it. This will
3218 cause spurious re-recognition if the old move had a PARALLEL since
3219 the new one still will, but we can't call single_set without
3220 having put NEW_BODY into the insn and the re-recognition won't
3221 hurt in this rare case. */
3222 /* ??? Why this huge if statement - why don't we just rerecognize the
3223 thing always? */
3224 if (! insn_is_asm
3225 && old_set != 0
3226 && ((REG_P (SET_SRC (old_set))
3227 && (GET_CODE (new_body) != SET
3228 || !REG_P (SET_SRC (new_body))))
3229 /* If this was a load from or store to memory, compare
3230 the MEM in recog_data.operand to the one in the insn.
3231 If they are not equal, then rerecognize the insn. */
3232 || (old_set != 0
3233 && ((MEM_P (SET_SRC (old_set))
3234 && SET_SRC (old_set) != recog_data.operand[1])
3235 || (MEM_P (SET_DEST (old_set))
3236 && SET_DEST (old_set) != recog_data.operand[0])))
3237 /* If this was an add insn before, rerecognize. */
3238 || GET_CODE (SET_SRC (old_set)) == PLUS))
3239 {
3240 int new_icode = recog (PATTERN (insn), insn, 0);
3241 if (new_icode >= 0)
3242 INSN_CODE (insn) = new_icode;
3243 }
3244 }
3245
3246 /* Restore the old body. If there were any changes to it, we made a copy
3247 of it while the changes were still in place, so we'll correctly return
3248 a modified insn below. */
3249 if (! replace)
3250 {
3251 /* Restore the old body. */
3252 for (i = 0; i < recog_data.n_operands; i++)
3253 *recog_data.operand_loc[i] = orig_operand[i];
3254 for (i = 0; i < recog_data.n_dups; i++)
3255 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3256 }
3257
3258 /* Update all elimination pairs to reflect the status after the current
3259 insn. The changes we make were determined by the earlier call to
3260 elimination_effects.
3261
3262 We also detect cases where register elimination cannot be done,
3263 namely, if a register would be both changed and referenced outside a MEM
3264 in the resulting insn since such an insn is often undefined and, even if
3265 not, we cannot know what meaning will be given to it. Note that it is
3266 valid to have a register used in an address in an insn that changes it
3267 (presumably with a pre- or post-increment or decrement).
3268
3269 If anything changes, return nonzero. */
3270
3271 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3272 {
3273 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3274 ep->can_eliminate = 0;
3275
3276 ep->ref_outside_mem = 0;
3277
3278 if (ep->previous_offset != ep->offset)
3279 val = 1;
3280 }
3281
3282 done:
3283 /* If we changed something, perform elimination in REG_NOTES. This is
3284 needed even when REPLACE is zero because a REG_DEAD note might refer
3285 to a register that we eliminate and could cause a different number
3286 of spill registers to be needed in the final reload pass than in
3287 the pre-passes. */
3288 if (val && REG_NOTES (insn) != 0)
3289 REG_NOTES (insn)
3290 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3291
3292 return val;
3293 }
3294
3295 /* Loop through all elimination pairs.
3296 Recalculate the number not at initial offset.
3297
3298 Compute the maximum offset (minimum offset if the stack does not
3299 grow downward) for each elimination pair. */
3300
3301 static void
3302 update_eliminable_offsets (void)
3303 {
3304 struct elim_table *ep;
3305
3306 num_not_at_initial_offset = 0;
3307 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3308 {
3309 ep->previous_offset = ep->offset;
3310 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3311 num_not_at_initial_offset++;
3312 }
3313 }
3314
3315 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3316 replacement we currently believe is valid, mark it as not eliminable if X
3317 modifies DEST in any way other than by adding a constant integer to it.
3318
3319 If DEST is the frame pointer, we do nothing because we assume that
3320 all assignments to the hard frame pointer are nonlocal gotos and are being
3321 done at a time when they are valid and do not disturb anything else.
3322 Some machines want to eliminate a fake argument pointer with either the
3323 frame or stack pointer. Assignments to the hard frame pointer must not
3324 prevent this elimination.
3325
3326 Called via note_stores from reload before starting its passes to scan
3327 the insns of the function. */
3328
3329 static void
3330 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3331 {
3332 unsigned int i;
3333
3334 /* A SUBREG of a hard register here is just changing its mode. We should
3335 not see a SUBREG of an eliminable hard register, but check just in
3336 case. */
3337 if (GET_CODE (dest) == SUBREG)
3338 dest = SUBREG_REG (dest);
3339
3340 if (dest == hard_frame_pointer_rtx)
3341 return;
3342
3343 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3344 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3345 && (GET_CODE (x) != SET
3346 || GET_CODE (SET_SRC (x)) != PLUS
3347 || XEXP (SET_SRC (x), 0) != dest
3348 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3349 {
3350 reg_eliminate[i].can_eliminate_previous
3351 = reg_eliminate[i].can_eliminate = 0;
3352 num_eliminable--;
3353 }
3354 }
3355
3356 /* Verify that the initial elimination offsets did not change since the
3357 last call to set_initial_elim_offsets. This is used to catch cases
3358 where something illegal happened during reload_as_needed that could
3359 cause incorrect code to be generated if we did not check for it. */
3360
3361 static bool
3362 verify_initial_elim_offsets (void)
3363 {
3364 HOST_WIDE_INT t;
3365
3366 if (!num_eliminable)
3367 return true;
3368
3369 #ifdef ELIMINABLE_REGS
3370 {
3371 struct elim_table *ep;
3372
3373 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3374 {
3375 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3376 if (t != ep->initial_offset)
3377 return false;
3378 }
3379 }
3380 #else
3381 INITIAL_FRAME_POINTER_OFFSET (t);
3382 if (t != reg_eliminate[0].initial_offset)
3383 return false;
3384 #endif
3385
3386 return true;
3387 }
3388
3389 /* Reset all offsets on eliminable registers to their initial values. */
3390
3391 static void
3392 set_initial_elim_offsets (void)
3393 {
3394 struct elim_table *ep = reg_eliminate;
3395
3396 #ifdef ELIMINABLE_REGS
3397 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3398 {
3399 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3400 ep->previous_offset = ep->offset = ep->initial_offset;
3401 }
3402 #else
3403 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3404 ep->previous_offset = ep->offset = ep->initial_offset;
3405 #endif
3406
3407 num_not_at_initial_offset = 0;
3408 }
3409
3410 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3411
3412 static void
3413 set_initial_eh_label_offset (rtx label)
3414 {
3415 set_label_offsets (label, NULL_RTX, 1);
3416 }
3417
3418 /* Initialize the known label offsets.
3419 Set a known offset for each forced label to be at the initial offset
3420 of each elimination. We do this because we assume that all
3421 computed jumps occur from a location where each elimination is
3422 at its initial offset.
3423 For all other labels, show that we don't know the offsets. */
3424
3425 static void
3426 set_initial_label_offsets (void)
3427 {
3428 rtx x;
3429 memset (offsets_known_at, 0, num_labels);
3430
3431 for (x = forced_labels; x; x = XEXP (x, 1))
3432 if (XEXP (x, 0))
3433 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3434
3435 for_each_eh_label (set_initial_eh_label_offset);
3436 }
3437
3438 /* Set all elimination offsets to the known values for the code label given
3439 by INSN. */
3440
3441 static void
3442 set_offsets_for_label (rtx insn)
3443 {
3444 unsigned int i;
3445 int label_nr = CODE_LABEL_NUMBER (insn);
3446 struct elim_table *ep;
3447
3448 num_not_at_initial_offset = 0;
3449 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3450 {
3451 ep->offset = ep->previous_offset
3452 = offsets_at[label_nr - first_label_num][i];
3453 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3454 num_not_at_initial_offset++;
3455 }
3456 }
3457
3458 /* See if anything that happened changes which eliminations are valid.
3459 For example, on the SPARC, whether or not the frame pointer can
3460 be eliminated can depend on what registers have been used. We need
3461 not check some conditions again (such as flag_omit_frame_pointer)
3462 since they can't have changed. */
3463
3464 static void
3465 update_eliminables (HARD_REG_SET *pset)
3466 {
3467 int previous_frame_pointer_needed = frame_pointer_needed;
3468 struct elim_table *ep;
3469
3470 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3471 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3472 #ifdef ELIMINABLE_REGS
3473 || ! CAN_ELIMINATE (ep->from, ep->to)
3474 #endif
3475 )
3476 ep->can_eliminate = 0;
3477
3478 /* Look for the case where we have discovered that we can't replace
3479 register A with register B and that means that we will now be
3480 trying to replace register A with register C. This means we can
3481 no longer replace register C with register B and we need to disable
3482 such an elimination, if it exists. This occurs often with A == ap,
3483 B == sp, and C == fp. */
3484
3485 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3486 {
3487 struct elim_table *op;
3488 int new_to = -1;
3489
3490 if (! ep->can_eliminate && ep->can_eliminate_previous)
3491 {
3492 /* Find the current elimination for ep->from, if there is a
3493 new one. */
3494 for (op = reg_eliminate;
3495 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3496 if (op->from == ep->from && op->can_eliminate)
3497 {
3498 new_to = op->to;
3499 break;
3500 }
3501
3502 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3503 disable it. */
3504 for (op = reg_eliminate;
3505 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3506 if (op->from == new_to && op->to == ep->to)
3507 op->can_eliminate = 0;
3508 }
3509 }
3510
3511 /* See if any registers that we thought we could eliminate the previous
3512 time are no longer eliminable. If so, something has changed and we
3513 must spill the register. Also, recompute the number of eliminable
3514 registers and see if the frame pointer is needed; it is if there is
3515 no elimination of the frame pointer that we can perform. */
3516
3517 frame_pointer_needed = 1;
3518 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3519 {
3520 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3521 && ep->to != HARD_FRAME_POINTER_REGNUM)
3522 frame_pointer_needed = 0;
3523
3524 if (! ep->can_eliminate && ep->can_eliminate_previous)
3525 {
3526 ep->can_eliminate_previous = 0;
3527 SET_HARD_REG_BIT (*pset, ep->from);
3528 num_eliminable--;
3529 }
3530 }
3531
3532 /* If we didn't need a frame pointer last time, but we do now, spill
3533 the hard frame pointer. */
3534 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3535 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3536 }
3537
3538 /* Initialize the table of registers to eliminate. */
3539
3540 static void
3541 init_elim_table (void)
3542 {
3543 struct elim_table *ep;
3544 #ifdef ELIMINABLE_REGS
3545 const struct elim_table_1 *ep1;
3546 #endif
3547
3548 if (!reg_eliminate)
3549 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3550
3551 /* Does this function require a frame pointer? */
3552
3553 frame_pointer_needed = (! flag_omit_frame_pointer
3554 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3555 and restore sp for alloca. So we can't eliminate
3556 the frame pointer in that case. At some point,
3557 we should improve this by emitting the
3558 sp-adjusting insns for this case. */
3559 || (current_function_calls_alloca
3560 && EXIT_IGNORE_STACK)
3561 || current_function_accesses_prior_frames
3562 || FRAME_POINTER_REQUIRED);
3563
3564 num_eliminable = 0;
3565
3566 #ifdef ELIMINABLE_REGS
3567 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3568 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3569 {
3570 ep->from = ep1->from;
3571 ep->to = ep1->to;
3572 ep->can_eliminate = ep->can_eliminate_previous
3573 = (CAN_ELIMINATE (ep->from, ep->to)
3574 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3575 }
3576 #else
3577 reg_eliminate[0].from = reg_eliminate_1[0].from;
3578 reg_eliminate[0].to = reg_eliminate_1[0].to;
3579 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3580 = ! frame_pointer_needed;
3581 #endif
3582
3583 /* Count the number of eliminable registers and build the FROM and TO
3584 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3585 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3586 We depend on this. */
3587 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3588 {
3589 num_eliminable += ep->can_eliminate;
3590 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3591 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3592 }
3593 }
3594 \f
3595 /* Kick all pseudos out of hard register REGNO.
3596
3597 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3598 because we found we can't eliminate some register. In the case, no pseudos
3599 are allowed to be in the register, even if they are only in a block that
3600 doesn't require spill registers, unlike the case when we are spilling this
3601 hard reg to produce another spill register.
3602
3603 Return nonzero if any pseudos needed to be kicked out. */
3604
3605 static void
3606 spill_hard_reg (unsigned int regno, int cant_eliminate)
3607 {
3608 int i;
3609
3610 if (cant_eliminate)
3611 {
3612 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3613 regs_ever_live[regno] = 1;
3614 }
3615
3616 /* Spill every pseudo reg that was allocated to this reg
3617 or to something that overlaps this reg. */
3618
3619 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3620 if (reg_renumber[i] >= 0
3621 && (unsigned int) reg_renumber[i] <= regno
3622 && ((unsigned int) reg_renumber[i]
3623 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3624 [PSEUDO_REGNO_MODE (i)]
3625 > regno))
3626 SET_REGNO_REG_SET (&spilled_pseudos, i);
3627 }
3628
3629 /* After find_reload_regs has been run for all insn that need reloads,
3630 and/or spill_hard_regs was called, this function is used to actually
3631 spill pseudo registers and try to reallocate them. It also sets up the
3632 spill_regs array for use by choose_reload_regs. */
3633
3634 static int
3635 finish_spills (int global)
3636 {
3637 struct insn_chain *chain;
3638 int something_changed = 0;
3639 unsigned i;
3640 reg_set_iterator rsi;
3641
3642 /* Build the spill_regs array for the function. */
3643 /* If there are some registers still to eliminate and one of the spill regs
3644 wasn't ever used before, additional stack space may have to be
3645 allocated to store this register. Thus, we may have changed the offset
3646 between the stack and frame pointers, so mark that something has changed.
3647
3648 One might think that we need only set VAL to 1 if this is a call-used
3649 register. However, the set of registers that must be saved by the
3650 prologue is not identical to the call-used set. For example, the
3651 register used by the call insn for the return PC is a call-used register,
3652 but must be saved by the prologue. */
3653
3654 n_spills = 0;
3655 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3656 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3657 {
3658 spill_reg_order[i] = n_spills;
3659 spill_regs[n_spills++] = i;
3660 if (num_eliminable && ! regs_ever_live[i])
3661 something_changed = 1;
3662 regs_ever_live[i] = 1;
3663 }
3664 else
3665 spill_reg_order[i] = -1;
3666
3667 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3668 {
3669 /* Record the current hard register the pseudo is allocated to in
3670 pseudo_previous_regs so we avoid reallocating it to the same
3671 hard reg in a later pass. */
3672 gcc_assert (reg_renumber[i] >= 0);
3673
3674 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3675 /* Mark it as no longer having a hard register home. */
3676 reg_renumber[i] = -1;
3677 /* We will need to scan everything again. */
3678 something_changed = 1;
3679 }
3680
3681 /* Retry global register allocation if possible. */
3682 if (global)
3683 {
3684 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3685 /* For every insn that needs reloads, set the registers used as spill
3686 regs in pseudo_forbidden_regs for every pseudo live across the
3687 insn. */
3688 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3689 {
3690 EXECUTE_IF_SET_IN_REG_SET
3691 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3692 {
3693 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3694 chain->used_spill_regs);
3695 }
3696 EXECUTE_IF_SET_IN_REG_SET
3697 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3698 {
3699 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3700 chain->used_spill_regs);
3701 }
3702 }
3703
3704 /* Retry allocating the spilled pseudos. For each reg, merge the
3705 various reg sets that indicate which hard regs can't be used,
3706 and call retry_global_alloc.
3707 We change spill_pseudos here to only contain pseudos that did not
3708 get a new hard register. */
3709 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3710 if (reg_old_renumber[i] != reg_renumber[i])
3711 {
3712 HARD_REG_SET forbidden;
3713 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3714 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3715 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3716 retry_global_alloc (i, forbidden);
3717 if (reg_renumber[i] >= 0)
3718 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3719 }
3720 }
3721
3722 /* Fix up the register information in the insn chain.
3723 This involves deleting those of the spilled pseudos which did not get
3724 a new hard register home from the live_{before,after} sets. */
3725 for (chain = reload_insn_chain; chain; chain = chain->next)
3726 {
3727 HARD_REG_SET used_by_pseudos;
3728 HARD_REG_SET used_by_pseudos2;
3729
3730 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3731 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3732
3733 /* Mark any unallocated hard regs as available for spills. That
3734 makes inheritance work somewhat better. */
3735 if (chain->need_reload)
3736 {
3737 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3738 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3739 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3740
3741 /* Save the old value for the sanity test below. */
3742 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3743
3744 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3745 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3746 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3747 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3748
3749 /* Make sure we only enlarge the set. */
3750 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3751 gcc_unreachable ();
3752 ok:;
3753 }
3754 }
3755
3756 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3757 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3758 {
3759 int regno = reg_renumber[i];
3760 if (reg_old_renumber[i] == regno)
3761 continue;
3762
3763 alter_reg (i, reg_old_renumber[i]);
3764 reg_old_renumber[i] = regno;
3765 if (dump_file)
3766 {
3767 if (regno == -1)
3768 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3769 else
3770 fprintf (dump_file, " Register %d now in %d.\n\n",
3771 i, reg_renumber[i]);
3772 }
3773 }
3774
3775 return something_changed;
3776 }
3777 \f
3778 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3779
3780 static void
3781 scan_paradoxical_subregs (rtx x)
3782 {
3783 int i;
3784 const char *fmt;
3785 enum rtx_code code = GET_CODE (x);
3786
3787 switch (code)
3788 {
3789 case REG:
3790 case CONST_INT:
3791 case CONST:
3792 case SYMBOL_REF:
3793 case LABEL_REF:
3794 case CONST_DOUBLE:
3795 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3796 case CC0:
3797 case PC:
3798 case USE:
3799 case CLOBBER:
3800 return;
3801
3802 case SUBREG:
3803 if (REG_P (SUBREG_REG (x))
3804 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3805 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3806 = GET_MODE_SIZE (GET_MODE (x));
3807 return;
3808
3809 default:
3810 break;
3811 }
3812
3813 fmt = GET_RTX_FORMAT (code);
3814 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3815 {
3816 if (fmt[i] == 'e')
3817 scan_paradoxical_subregs (XEXP (x, i));
3818 else if (fmt[i] == 'E')
3819 {
3820 int j;
3821 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3822 scan_paradoxical_subregs (XVECEXP (x, i, j));
3823 }
3824 }
3825 }
3826 \f
3827 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3828 examine all of the reload insns between PREV and NEXT exclusive, and
3829 annotate all that may trap. */
3830
3831 static void
3832 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3833 {
3834 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3835 unsigned int trap_count;
3836 rtx i;
3837
3838 if (note == NULL)
3839 return;
3840
3841 if (may_trap_p (PATTERN (insn)))
3842 trap_count = 1;
3843 else
3844 {
3845 remove_note (insn, note);
3846 trap_count = 0;
3847 }
3848
3849 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3850 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3851 {
3852 trap_count++;
3853 REG_NOTES (i)
3854 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3855 }
3856 }
3857
3858 /* Reload pseudo-registers into hard regs around each insn as needed.
3859 Additional register load insns are output before the insn that needs it
3860 and perhaps store insns after insns that modify the reloaded pseudo reg.
3861
3862 reg_last_reload_reg and reg_reloaded_contents keep track of
3863 which registers are already available in reload registers.
3864 We update these for the reloads that we perform,
3865 as the insns are scanned. */
3866
3867 static void
3868 reload_as_needed (int live_known)
3869 {
3870 struct insn_chain *chain;
3871 #if defined (AUTO_INC_DEC)
3872 int i;
3873 #endif
3874 rtx x;
3875
3876 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3877 memset (spill_reg_store, 0, sizeof spill_reg_store);
3878 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
3879 reg_has_output_reload = XNEWVEC (char, max_regno);
3880 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3881 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3882
3883 set_initial_elim_offsets ();
3884
3885 for (chain = reload_insn_chain; chain; chain = chain->next)
3886 {
3887 rtx prev = 0;
3888 rtx insn = chain->insn;
3889 rtx old_next = NEXT_INSN (insn);
3890
3891 /* If we pass a label, copy the offsets from the label information
3892 into the current offsets of each elimination. */
3893 if (LABEL_P (insn))
3894 set_offsets_for_label (insn);
3895
3896 else if (INSN_P (insn))
3897 {
3898 rtx oldpat = copy_rtx (PATTERN (insn));
3899
3900 /* If this is a USE and CLOBBER of a MEM, ensure that any
3901 references to eliminable registers have been removed. */
3902
3903 if ((GET_CODE (PATTERN (insn)) == USE
3904 || GET_CODE (PATTERN (insn)) == CLOBBER)
3905 && MEM_P (XEXP (PATTERN (insn), 0)))
3906 XEXP (XEXP (PATTERN (insn), 0), 0)
3907 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3908 GET_MODE (XEXP (PATTERN (insn), 0)),
3909 NULL_RTX);
3910
3911 /* If we need to do register elimination processing, do so.
3912 This might delete the insn, in which case we are done. */
3913 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3914 {
3915 eliminate_regs_in_insn (insn, 1);
3916 if (NOTE_P (insn))
3917 {
3918 update_eliminable_offsets ();
3919 continue;
3920 }
3921 }
3922
3923 /* If need_elim is nonzero but need_reload is zero, one might think
3924 that we could simply set n_reloads to 0. However, find_reloads
3925 could have done some manipulation of the insn (such as swapping
3926 commutative operands), and these manipulations are lost during
3927 the first pass for every insn that needs register elimination.
3928 So the actions of find_reloads must be redone here. */
3929
3930 if (! chain->need_elim && ! chain->need_reload
3931 && ! chain->need_operand_change)
3932 n_reloads = 0;
3933 /* First find the pseudo regs that must be reloaded for this insn.
3934 This info is returned in the tables reload_... (see reload.h).
3935 Also modify the body of INSN by substituting RELOAD
3936 rtx's for those pseudo regs. */
3937 else
3938 {
3939 memset (reg_has_output_reload, 0, max_regno);
3940 CLEAR_HARD_REG_SET (reg_is_output_reload);
3941
3942 find_reloads (insn, 1, spill_indirect_levels, live_known,
3943 spill_reg_order);
3944 }
3945
3946 if (n_reloads > 0)
3947 {
3948 rtx next = NEXT_INSN (insn);
3949 rtx p;
3950
3951 prev = PREV_INSN (insn);
3952
3953 /* Now compute which reload regs to reload them into. Perhaps
3954 reusing reload regs from previous insns, or else output
3955 load insns to reload them. Maybe output store insns too.
3956 Record the choices of reload reg in reload_reg_rtx. */
3957 choose_reload_regs (chain);
3958
3959 /* Merge any reloads that we didn't combine for fear of
3960 increasing the number of spill registers needed but now
3961 discover can be safely merged. */
3962 if (SMALL_REGISTER_CLASSES)
3963 merge_assigned_reloads (insn);
3964
3965 /* Generate the insns to reload operands into or out of
3966 their reload regs. */
3967 emit_reload_insns (chain);
3968
3969 /* Substitute the chosen reload regs from reload_reg_rtx
3970 into the insn's body (or perhaps into the bodies of other
3971 load and store insn that we just made for reloading
3972 and that we moved the structure into). */
3973 subst_reloads (insn);
3974
3975 /* Adjust the exception region notes for loads and stores. */
3976 if (flag_non_call_exceptions && !CALL_P (insn))
3977 fixup_eh_region_note (insn, prev, next);
3978
3979 /* If this was an ASM, make sure that all the reload insns
3980 we have generated are valid. If not, give an error
3981 and delete them. */
3982 if (asm_noperands (PATTERN (insn)) >= 0)
3983 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3984 if (p != insn && INSN_P (p)
3985 && GET_CODE (PATTERN (p)) != USE
3986 && (recog_memoized (p) < 0
3987 || (extract_insn (p), ! constrain_operands (1))))
3988 {
3989 error_for_asm (insn,
3990 "%<asm%> operand requires "
3991 "impossible reload");
3992 delete_insn (p);
3993 }
3994 }
3995
3996 if (num_eliminable && chain->need_elim)
3997 update_eliminable_offsets ();
3998
3999 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4000 is no longer validly lying around to save a future reload.
4001 Note that this does not detect pseudos that were reloaded
4002 for this insn in order to be stored in
4003 (obeying register constraints). That is correct; such reload
4004 registers ARE still valid. */
4005 note_stores (oldpat, forget_old_reloads_1, NULL);
4006
4007 /* There may have been CLOBBER insns placed after INSN. So scan
4008 between INSN and NEXT and use them to forget old reloads. */
4009 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4010 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4011 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4012
4013 #ifdef AUTO_INC_DEC
4014 /* Likewise for regs altered by auto-increment in this insn.
4015 REG_INC notes have been changed by reloading:
4016 find_reloads_address_1 records substitutions for them,
4017 which have been performed by subst_reloads above. */
4018 for (i = n_reloads - 1; i >= 0; i--)
4019 {
4020 rtx in_reg = rld[i].in_reg;
4021 if (in_reg)
4022 {
4023 enum rtx_code code = GET_CODE (in_reg);
4024 /* PRE_INC / PRE_DEC will have the reload register ending up
4025 with the same value as the stack slot, but that doesn't
4026 hold true for POST_INC / POST_DEC. Either we have to
4027 convert the memory access to a true POST_INC / POST_DEC,
4028 or we can't use the reload register for inheritance. */
4029 if ((code == POST_INC || code == POST_DEC)
4030 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4031 REGNO (rld[i].reg_rtx))
4032 /* Make sure it is the inc/dec pseudo, and not
4033 some other (e.g. output operand) pseudo. */
4034 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4035 == REGNO (XEXP (in_reg, 0))))
4036
4037 {
4038 rtx reload_reg = rld[i].reg_rtx;
4039 enum machine_mode mode = GET_MODE (reload_reg);
4040 int n = 0;
4041 rtx p;
4042
4043 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4044 {
4045 /* We really want to ignore REG_INC notes here, so
4046 use PATTERN (p) as argument to reg_set_p . */
4047 if (reg_set_p (reload_reg, PATTERN (p)))
4048 break;
4049 n = count_occurrences (PATTERN (p), reload_reg, 0);
4050 if (! n)
4051 continue;
4052 if (n == 1)
4053 {
4054 n = validate_replace_rtx (reload_reg,
4055 gen_rtx_fmt_e (code,
4056 mode,
4057 reload_reg),
4058 p);
4059
4060 /* We must also verify that the constraints
4061 are met after the replacement. */
4062 extract_insn (p);
4063 if (n)
4064 n = constrain_operands (1);
4065 else
4066 break;
4067
4068 /* If the constraints were not met, then
4069 undo the replacement. */
4070 if (!n)
4071 {
4072 validate_replace_rtx (gen_rtx_fmt_e (code,
4073 mode,
4074 reload_reg),
4075 reload_reg, p);
4076 break;
4077 }
4078
4079 }
4080 break;
4081 }
4082 if (n == 1)
4083 {
4084 REG_NOTES (p)
4085 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4086 REG_NOTES (p));
4087 /* Mark this as having an output reload so that the
4088 REG_INC processing code below won't invalidate
4089 the reload for inheritance. */
4090 SET_HARD_REG_BIT (reg_is_output_reload,
4091 REGNO (reload_reg));
4092 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4093 }
4094 else
4095 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4096 NULL);
4097 }
4098 else if ((code == PRE_INC || code == PRE_DEC)
4099 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4100 REGNO (rld[i].reg_rtx))
4101 /* Make sure it is the inc/dec pseudo, and not
4102 some other (e.g. output operand) pseudo. */
4103 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4104 == REGNO (XEXP (in_reg, 0))))
4105 {
4106 SET_HARD_REG_BIT (reg_is_output_reload,
4107 REGNO (rld[i].reg_rtx));
4108 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4109 }
4110 }
4111 }
4112 /* If a pseudo that got a hard register is auto-incremented,
4113 we must purge records of copying it into pseudos without
4114 hard registers. */
4115 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4116 if (REG_NOTE_KIND (x) == REG_INC)
4117 {
4118 /* See if this pseudo reg was reloaded in this insn.
4119 If so, its last-reload info is still valid
4120 because it is based on this insn's reload. */
4121 for (i = 0; i < n_reloads; i++)
4122 if (rld[i].out == XEXP (x, 0))
4123 break;
4124
4125 if (i == n_reloads)
4126 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4127 }
4128 #endif
4129 }
4130 /* A reload reg's contents are unknown after a label. */
4131 if (LABEL_P (insn))
4132 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4133
4134 /* Don't assume a reload reg is still good after a call insn
4135 if it is a call-used reg, or if it contains a value that will
4136 be partially clobbered by the call. */
4137 else if (CALL_P (insn))
4138 {
4139 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4140 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4141 }
4142 }
4143
4144 /* Clean up. */
4145 free (reg_last_reload_reg);
4146 free (reg_has_output_reload);
4147 }
4148
4149 /* Discard all record of any value reloaded from X,
4150 or reloaded in X from someplace else;
4151 unless X is an output reload reg of the current insn.
4152
4153 X may be a hard reg (the reload reg)
4154 or it may be a pseudo reg that was reloaded from. */
4155
4156 static void
4157 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4158 void *data ATTRIBUTE_UNUSED)
4159 {
4160 unsigned int regno;
4161 unsigned int nr;
4162
4163 /* note_stores does give us subregs of hard regs,
4164 subreg_regno_offset requires a hard reg. */
4165 while (GET_CODE (x) == SUBREG)
4166 {
4167 /* We ignore the subreg offset when calculating the regno,
4168 because we are using the entire underlying hard register
4169 below. */
4170 x = SUBREG_REG (x);
4171 }
4172
4173 if (!REG_P (x))
4174 return;
4175
4176 regno = REGNO (x);
4177
4178 if (regno >= FIRST_PSEUDO_REGISTER)
4179 nr = 1;
4180 else
4181 {
4182 unsigned int i;
4183
4184 nr = hard_regno_nregs[regno][GET_MODE (x)];
4185 /* Storing into a spilled-reg invalidates its contents.
4186 This can happen if a block-local pseudo is allocated to that reg
4187 and it wasn't spilled because this block's total need is 0.
4188 Then some insn might have an optional reload and use this reg. */
4189 for (i = 0; i < nr; i++)
4190 /* But don't do this if the reg actually serves as an output
4191 reload reg in the current instruction. */
4192 if (n_reloads == 0
4193 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4194 {
4195 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4196 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4197 spill_reg_store[regno + i] = 0;
4198 }
4199 }
4200
4201 /* Since value of X has changed,
4202 forget any value previously copied from it. */
4203
4204 while (nr-- > 0)
4205 /* But don't forget a copy if this is the output reload
4206 that establishes the copy's validity. */
4207 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4208 reg_last_reload_reg[regno + nr] = 0;
4209 }
4210 \f
4211 /* The following HARD_REG_SETs indicate when each hard register is
4212 used for a reload of various parts of the current insn. */
4213
4214 /* If reg is unavailable for all reloads. */
4215 static HARD_REG_SET reload_reg_unavailable;
4216 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4217 static HARD_REG_SET reload_reg_used;
4218 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4219 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4220 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4221 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4222 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4223 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4224 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4225 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4226 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4227 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4228 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4229 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4230 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4231 static HARD_REG_SET reload_reg_used_in_op_addr;
4232 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4233 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4234 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4235 static HARD_REG_SET reload_reg_used_in_insn;
4236 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4237 static HARD_REG_SET reload_reg_used_in_other_addr;
4238
4239 /* If reg is in use as a reload reg for any sort of reload. */
4240 static HARD_REG_SET reload_reg_used_at_all;
4241
4242 /* If reg is use as an inherited reload. We just mark the first register
4243 in the group. */
4244 static HARD_REG_SET reload_reg_used_for_inherit;
4245
4246 /* Records which hard regs are used in any way, either as explicit use or
4247 by being allocated to a pseudo during any point of the current insn. */
4248 static HARD_REG_SET reg_used_in_insn;
4249
4250 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4251 TYPE. MODE is used to indicate how many consecutive regs are
4252 actually used. */
4253
4254 static void
4255 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4256 enum machine_mode mode)
4257 {
4258 unsigned int nregs = hard_regno_nregs[regno][mode];
4259 unsigned int i;
4260
4261 for (i = regno; i < nregs + regno; i++)
4262 {
4263 switch (type)
4264 {
4265 case RELOAD_OTHER:
4266 SET_HARD_REG_BIT (reload_reg_used, i);
4267 break;
4268
4269 case RELOAD_FOR_INPUT_ADDRESS:
4270 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4271 break;
4272
4273 case RELOAD_FOR_INPADDR_ADDRESS:
4274 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4275 break;
4276
4277 case RELOAD_FOR_OUTPUT_ADDRESS:
4278 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4279 break;
4280
4281 case RELOAD_FOR_OUTADDR_ADDRESS:
4282 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4283 break;
4284
4285 case RELOAD_FOR_OPERAND_ADDRESS:
4286 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4287 break;
4288
4289 case RELOAD_FOR_OPADDR_ADDR:
4290 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4291 break;
4292
4293 case RELOAD_FOR_OTHER_ADDRESS:
4294 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4295 break;
4296
4297 case RELOAD_FOR_INPUT:
4298 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4299 break;
4300
4301 case RELOAD_FOR_OUTPUT:
4302 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4303 break;
4304
4305 case RELOAD_FOR_INSN:
4306 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4307 break;
4308 }
4309
4310 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4311 }
4312 }
4313
4314 /* Similarly, but show REGNO is no longer in use for a reload. */
4315
4316 static void
4317 clear_reload_reg_in_use (unsigned int regno, int opnum,
4318 enum reload_type type, enum machine_mode mode)
4319 {
4320 unsigned int nregs = hard_regno_nregs[regno][mode];
4321 unsigned int start_regno, end_regno, r;
4322 int i;
4323 /* A complication is that for some reload types, inheritance might
4324 allow multiple reloads of the same types to share a reload register.
4325 We set check_opnum if we have to check only reloads with the same
4326 operand number, and check_any if we have to check all reloads. */
4327 int check_opnum = 0;
4328 int check_any = 0;
4329 HARD_REG_SET *used_in_set;
4330
4331 switch (type)
4332 {
4333 case RELOAD_OTHER:
4334 used_in_set = &reload_reg_used;
4335 break;
4336
4337 case RELOAD_FOR_INPUT_ADDRESS:
4338 used_in_set = &reload_reg_used_in_input_addr[opnum];
4339 break;
4340
4341 case RELOAD_FOR_INPADDR_ADDRESS:
4342 check_opnum = 1;
4343 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4344 break;
4345
4346 case RELOAD_FOR_OUTPUT_ADDRESS:
4347 used_in_set = &reload_reg_used_in_output_addr[opnum];
4348 break;
4349
4350 case RELOAD_FOR_OUTADDR_ADDRESS:
4351 check_opnum = 1;
4352 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4353 break;
4354
4355 case RELOAD_FOR_OPERAND_ADDRESS:
4356 used_in_set = &reload_reg_used_in_op_addr;
4357 break;
4358
4359 case RELOAD_FOR_OPADDR_ADDR:
4360 check_any = 1;
4361 used_in_set = &reload_reg_used_in_op_addr_reload;
4362 break;
4363
4364 case RELOAD_FOR_OTHER_ADDRESS:
4365 used_in_set = &reload_reg_used_in_other_addr;
4366 check_any = 1;
4367 break;
4368
4369 case RELOAD_FOR_INPUT:
4370 used_in_set = &reload_reg_used_in_input[opnum];
4371 break;
4372
4373 case RELOAD_FOR_OUTPUT:
4374 used_in_set = &reload_reg_used_in_output[opnum];
4375 break;
4376
4377 case RELOAD_FOR_INSN:
4378 used_in_set = &reload_reg_used_in_insn;
4379 break;
4380 default:
4381 gcc_unreachable ();
4382 }
4383 /* We resolve conflicts with remaining reloads of the same type by
4384 excluding the intervals of reload registers by them from the
4385 interval of freed reload registers. Since we only keep track of
4386 one set of interval bounds, we might have to exclude somewhat
4387 more than what would be necessary if we used a HARD_REG_SET here.
4388 But this should only happen very infrequently, so there should
4389 be no reason to worry about it. */
4390
4391 start_regno = regno;
4392 end_regno = regno + nregs;
4393 if (check_opnum || check_any)
4394 {
4395 for (i = n_reloads - 1; i >= 0; i--)
4396 {
4397 if (rld[i].when_needed == type
4398 && (check_any || rld[i].opnum == opnum)
4399 && rld[i].reg_rtx)
4400 {
4401 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4402 unsigned int conflict_end
4403 = (conflict_start
4404 + hard_regno_nregs[conflict_start][rld[i].mode]);
4405
4406 /* If there is an overlap with the first to-be-freed register,
4407 adjust the interval start. */
4408 if (conflict_start <= start_regno && conflict_end > start_regno)
4409 start_regno = conflict_end;
4410 /* Otherwise, if there is a conflict with one of the other
4411 to-be-freed registers, adjust the interval end. */
4412 if (conflict_start > start_regno && conflict_start < end_regno)
4413 end_regno = conflict_start;
4414 }
4415 }
4416 }
4417
4418 for (r = start_regno; r < end_regno; r++)
4419 CLEAR_HARD_REG_BIT (*used_in_set, r);
4420 }
4421
4422 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4423 specified by OPNUM and TYPE. */
4424
4425 static int
4426 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4427 {
4428 int i;
4429
4430 /* In use for a RELOAD_OTHER means it's not available for anything. */
4431 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4432 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4433 return 0;
4434
4435 switch (type)
4436 {
4437 case RELOAD_OTHER:
4438 /* In use for anything means we can't use it for RELOAD_OTHER. */
4439 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4440 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4441 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4442 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4443 return 0;
4444
4445 for (i = 0; i < reload_n_operands; i++)
4446 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4447 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4448 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4449 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4450 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4451 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4452 return 0;
4453
4454 return 1;
4455
4456 case RELOAD_FOR_INPUT:
4457 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4458 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4459 return 0;
4460
4461 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4462 return 0;
4463
4464 /* If it is used for some other input, can't use it. */
4465 for (i = 0; i < reload_n_operands; i++)
4466 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4467 return 0;
4468
4469 /* If it is used in a later operand's address, can't use it. */
4470 for (i = opnum + 1; i < reload_n_operands; i++)
4471 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4472 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4473 return 0;
4474
4475 return 1;
4476
4477 case RELOAD_FOR_INPUT_ADDRESS:
4478 /* Can't use a register if it is used for an input address for this
4479 operand or used as an input in an earlier one. */
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4481 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4482 return 0;
4483
4484 for (i = 0; i < opnum; i++)
4485 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4486 return 0;
4487
4488 return 1;
4489
4490 case RELOAD_FOR_INPADDR_ADDRESS:
4491 /* Can't use a register if it is used for an input address
4492 for this operand or used as an input in an earlier
4493 one. */
4494 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4495 return 0;
4496
4497 for (i = 0; i < opnum; i++)
4498 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4499 return 0;
4500
4501 return 1;
4502
4503 case RELOAD_FOR_OUTPUT_ADDRESS:
4504 /* Can't use a register if it is used for an output address for this
4505 operand or used as an output in this or a later operand. Note
4506 that multiple output operands are emitted in reverse order, so
4507 the conflicting ones are those with lower indices. */
4508 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4509 return 0;
4510
4511 for (i = 0; i <= opnum; i++)
4512 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4513 return 0;
4514
4515 return 1;
4516
4517 case RELOAD_FOR_OUTADDR_ADDRESS:
4518 /* Can't use a register if it is used for an output address
4519 for this operand or used as an output in this or a
4520 later operand. Note that multiple output operands are
4521 emitted in reverse order, so the conflicting ones are
4522 those with lower indices. */
4523 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4524 return 0;
4525
4526 for (i = 0; i <= opnum; i++)
4527 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4528 return 0;
4529
4530 return 1;
4531
4532 case RELOAD_FOR_OPERAND_ADDRESS:
4533 for (i = 0; i < reload_n_operands; i++)
4534 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4535 return 0;
4536
4537 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4538 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4539
4540 case RELOAD_FOR_OPADDR_ADDR:
4541 for (i = 0; i < reload_n_operands; i++)
4542 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4543 return 0;
4544
4545 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4546
4547 case RELOAD_FOR_OUTPUT:
4548 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4549 outputs, or an operand address for this or an earlier output.
4550 Note that multiple output operands are emitted in reverse order,
4551 so the conflicting ones are those with higher indices. */
4552 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4553 return 0;
4554
4555 for (i = 0; i < reload_n_operands; i++)
4556 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4557 return 0;
4558
4559 for (i = opnum; i < reload_n_operands; i++)
4560 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4561 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4562 return 0;
4563
4564 return 1;
4565
4566 case RELOAD_FOR_INSN:
4567 for (i = 0; i < reload_n_operands; i++)
4568 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4569 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4570 return 0;
4571
4572 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4573 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4574
4575 case RELOAD_FOR_OTHER_ADDRESS:
4576 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4577
4578 default:
4579 gcc_unreachable ();
4580 }
4581 }
4582
4583 /* Return 1 if the value in reload reg REGNO, as used by a reload
4584 needed for the part of the insn specified by OPNUM and TYPE,
4585 is still available in REGNO at the end of the insn.
4586
4587 We can assume that the reload reg was already tested for availability
4588 at the time it is needed, and we should not check this again,
4589 in case the reg has already been marked in use. */
4590
4591 static int
4592 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4593 {
4594 int i;
4595
4596 switch (type)
4597 {
4598 case RELOAD_OTHER:
4599 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4600 its value must reach the end. */
4601 return 1;
4602
4603 /* If this use is for part of the insn,
4604 its value reaches if no subsequent part uses the same register.
4605 Just like the above function, don't try to do this with lots
4606 of fallthroughs. */
4607
4608 case RELOAD_FOR_OTHER_ADDRESS:
4609 /* Here we check for everything else, since these don't conflict
4610 with anything else and everything comes later. */
4611
4612 for (i = 0; i < reload_n_operands; i++)
4613 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4614 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4615 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4616 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4617 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4618 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4619 return 0;
4620
4621 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4622 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4623 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4624 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4625
4626 case RELOAD_FOR_INPUT_ADDRESS:
4627 case RELOAD_FOR_INPADDR_ADDRESS:
4628 /* Similar, except that we check only for this and subsequent inputs
4629 and the address of only subsequent inputs and we do not need
4630 to check for RELOAD_OTHER objects since they are known not to
4631 conflict. */
4632
4633 for (i = opnum; i < reload_n_operands; i++)
4634 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4635 return 0;
4636
4637 for (i = opnum + 1; i < reload_n_operands; i++)
4638 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4639 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4640 return 0;
4641
4642 for (i = 0; i < reload_n_operands; i++)
4643 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4644 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4645 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4646 return 0;
4647
4648 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4649 return 0;
4650
4651 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4652 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4653 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4654
4655 case RELOAD_FOR_INPUT:
4656 /* Similar to input address, except we start at the next operand for
4657 both input and input address and we do not check for
4658 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4659 would conflict. */
4660
4661 for (i = opnum + 1; i < reload_n_operands; i++)
4662 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4663 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4664 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4665 return 0;
4666
4667 /* ... fall through ... */
4668
4669 case RELOAD_FOR_OPERAND_ADDRESS:
4670 /* Check outputs and their addresses. */
4671
4672 for (i = 0; i < reload_n_operands; i++)
4673 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4674 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4675 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4676 return 0;
4677
4678 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4679
4680 case RELOAD_FOR_OPADDR_ADDR:
4681 for (i = 0; i < reload_n_operands; i++)
4682 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4683 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4684 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4685 return 0;
4686
4687 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4688 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4689 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4690
4691 case RELOAD_FOR_INSN:
4692 /* These conflict with other outputs with RELOAD_OTHER. So
4693 we need only check for output addresses. */
4694
4695 opnum = reload_n_operands;
4696
4697 /* ... fall through ... */
4698
4699 case RELOAD_FOR_OUTPUT:
4700 case RELOAD_FOR_OUTPUT_ADDRESS:
4701 case RELOAD_FOR_OUTADDR_ADDRESS:
4702 /* We already know these can't conflict with a later output. So the
4703 only thing to check are later output addresses.
4704 Note that multiple output operands are emitted in reverse order,
4705 so the conflicting ones are those with lower indices. */
4706 for (i = 0; i < opnum; i++)
4707 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4708 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4709 return 0;
4710
4711 return 1;
4712
4713 default:
4714 gcc_unreachable ();
4715 }
4716 }
4717 \f
4718 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4719 Return 0 otherwise.
4720
4721 This function uses the same algorithm as reload_reg_free_p above. */
4722
4723 static int
4724 reloads_conflict (int r1, int r2)
4725 {
4726 enum reload_type r1_type = rld[r1].when_needed;
4727 enum reload_type r2_type = rld[r2].when_needed;
4728 int r1_opnum = rld[r1].opnum;
4729 int r2_opnum = rld[r2].opnum;
4730
4731 /* RELOAD_OTHER conflicts with everything. */
4732 if (r2_type == RELOAD_OTHER)
4733 return 1;
4734
4735 /* Otherwise, check conflicts differently for each type. */
4736
4737 switch (r1_type)
4738 {
4739 case RELOAD_FOR_INPUT:
4740 return (r2_type == RELOAD_FOR_INSN
4741 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4742 || r2_type == RELOAD_FOR_OPADDR_ADDR
4743 || r2_type == RELOAD_FOR_INPUT
4744 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4745 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4746 && r2_opnum > r1_opnum));
4747
4748 case RELOAD_FOR_INPUT_ADDRESS:
4749 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4750 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4751
4752 case RELOAD_FOR_INPADDR_ADDRESS:
4753 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4754 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4755
4756 case RELOAD_FOR_OUTPUT_ADDRESS:
4757 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4758 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4759
4760 case RELOAD_FOR_OUTADDR_ADDRESS:
4761 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4762 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4763
4764 case RELOAD_FOR_OPERAND_ADDRESS:
4765 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4766 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4767
4768 case RELOAD_FOR_OPADDR_ADDR:
4769 return (r2_type == RELOAD_FOR_INPUT
4770 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4771
4772 case RELOAD_FOR_OUTPUT:
4773 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4774 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4775 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4776 && r2_opnum >= r1_opnum));
4777
4778 case RELOAD_FOR_INSN:
4779 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4780 || r2_type == RELOAD_FOR_INSN
4781 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4782
4783 case RELOAD_FOR_OTHER_ADDRESS:
4784 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4785
4786 case RELOAD_OTHER:
4787 return 1;
4788
4789 default:
4790 gcc_unreachable ();
4791 }
4792 }
4793 \f
4794 /* Indexed by reload number, 1 if incoming value
4795 inherited from previous insns. */
4796 static char reload_inherited[MAX_RELOADS];
4797
4798 /* For an inherited reload, this is the insn the reload was inherited from,
4799 if we know it. Otherwise, this is 0. */
4800 static rtx reload_inheritance_insn[MAX_RELOADS];
4801
4802 /* If nonzero, this is a place to get the value of the reload,
4803 rather than using reload_in. */
4804 static rtx reload_override_in[MAX_RELOADS];
4805
4806 /* For each reload, the hard register number of the register used,
4807 or -1 if we did not need a register for this reload. */
4808 static int reload_spill_index[MAX_RELOADS];
4809
4810 /* Subroutine of free_for_value_p, used to check a single register.
4811 START_REGNO is the starting regno of the full reload register
4812 (possibly comprising multiple hard registers) that we are considering. */
4813
4814 static int
4815 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4816 enum reload_type type, rtx value, rtx out,
4817 int reloadnum, int ignore_address_reloads)
4818 {
4819 int time1;
4820 /* Set if we see an input reload that must not share its reload register
4821 with any new earlyclobber, but might otherwise share the reload
4822 register with an output or input-output reload. */
4823 int check_earlyclobber = 0;
4824 int i;
4825 int copy = 0;
4826
4827 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4828 return 0;
4829
4830 if (out == const0_rtx)
4831 {
4832 copy = 1;
4833 out = NULL_RTX;
4834 }
4835
4836 /* We use some pseudo 'time' value to check if the lifetimes of the
4837 new register use would overlap with the one of a previous reload
4838 that is not read-only or uses a different value.
4839 The 'time' used doesn't have to be linear in any shape or form, just
4840 monotonic.
4841 Some reload types use different 'buckets' for each operand.
4842 So there are MAX_RECOG_OPERANDS different time values for each
4843 such reload type.
4844 We compute TIME1 as the time when the register for the prospective
4845 new reload ceases to be live, and TIME2 for each existing
4846 reload as the time when that the reload register of that reload
4847 becomes live.
4848 Where there is little to be gained by exact lifetime calculations,
4849 we just make conservative assumptions, i.e. a longer lifetime;
4850 this is done in the 'default:' cases. */
4851 switch (type)
4852 {
4853 case RELOAD_FOR_OTHER_ADDRESS:
4854 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4855 time1 = copy ? 0 : 1;
4856 break;
4857 case RELOAD_OTHER:
4858 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4859 break;
4860 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4861 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4862 respectively, to the time values for these, we get distinct time
4863 values. To get distinct time values for each operand, we have to
4864 multiply opnum by at least three. We round that up to four because
4865 multiply by four is often cheaper. */
4866 case RELOAD_FOR_INPADDR_ADDRESS:
4867 time1 = opnum * 4 + 2;
4868 break;
4869 case RELOAD_FOR_INPUT_ADDRESS:
4870 time1 = opnum * 4 + 3;
4871 break;
4872 case RELOAD_FOR_INPUT:
4873 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4874 executes (inclusive). */
4875 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4876 break;
4877 case RELOAD_FOR_OPADDR_ADDR:
4878 /* opnum * 4 + 4
4879 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4880 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4881 break;
4882 case RELOAD_FOR_OPERAND_ADDRESS:
4883 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4884 is executed. */
4885 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4886 break;
4887 case RELOAD_FOR_OUTADDR_ADDRESS:
4888 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4889 break;
4890 case RELOAD_FOR_OUTPUT_ADDRESS:
4891 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4892 break;
4893 default:
4894 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4895 }
4896
4897 for (i = 0; i < n_reloads; i++)
4898 {
4899 rtx reg = rld[i].reg_rtx;
4900 if (reg && REG_P (reg)
4901 && ((unsigned) regno - true_regnum (reg)
4902 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4903 && i != reloadnum)
4904 {
4905 rtx other_input = rld[i].in;
4906
4907 /* If the other reload loads the same input value, that
4908 will not cause a conflict only if it's loading it into
4909 the same register. */
4910 if (true_regnum (reg) != start_regno)
4911 other_input = NULL_RTX;
4912 if (! other_input || ! rtx_equal_p (other_input, value)
4913 || rld[i].out || out)
4914 {
4915 int time2;
4916 switch (rld[i].when_needed)
4917 {
4918 case RELOAD_FOR_OTHER_ADDRESS:
4919 time2 = 0;
4920 break;
4921 case RELOAD_FOR_INPADDR_ADDRESS:
4922 /* find_reloads makes sure that a
4923 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4924 by at most one - the first -
4925 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4926 address reload is inherited, the address address reload
4927 goes away, so we can ignore this conflict. */
4928 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4929 && ignore_address_reloads
4930 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4931 Then the address address is still needed to store
4932 back the new address. */
4933 && ! rld[reloadnum].out)
4934 continue;
4935 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4936 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4937 reloads go away. */
4938 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4939 && ignore_address_reloads
4940 /* Unless we are reloading an auto_inc expression. */
4941 && ! rld[reloadnum].out)
4942 continue;
4943 time2 = rld[i].opnum * 4 + 2;
4944 break;
4945 case RELOAD_FOR_INPUT_ADDRESS:
4946 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4947 && ignore_address_reloads
4948 && ! rld[reloadnum].out)
4949 continue;
4950 time2 = rld[i].opnum * 4 + 3;
4951 break;
4952 case RELOAD_FOR_INPUT:
4953 time2 = rld[i].opnum * 4 + 4;
4954 check_earlyclobber = 1;
4955 break;
4956 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4957 == MAX_RECOG_OPERAND * 4 */
4958 case RELOAD_FOR_OPADDR_ADDR:
4959 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4960 && ignore_address_reloads
4961 && ! rld[reloadnum].out)
4962 continue;
4963 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4964 break;
4965 case RELOAD_FOR_OPERAND_ADDRESS:
4966 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4967 check_earlyclobber = 1;
4968 break;
4969 case RELOAD_FOR_INSN:
4970 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4971 break;
4972 case RELOAD_FOR_OUTPUT:
4973 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4974 instruction is executed. */
4975 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4976 break;
4977 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4978 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4979 value. */
4980 case RELOAD_FOR_OUTADDR_ADDRESS:
4981 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4982 && ignore_address_reloads
4983 && ! rld[reloadnum].out)
4984 continue;
4985 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4986 break;
4987 case RELOAD_FOR_OUTPUT_ADDRESS:
4988 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4989 break;
4990 case RELOAD_OTHER:
4991 /* If there is no conflict in the input part, handle this
4992 like an output reload. */
4993 if (! rld[i].in || rtx_equal_p (other_input, value))
4994 {
4995 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4996 /* Earlyclobbered outputs must conflict with inputs. */
4997 if (earlyclobber_operand_p (rld[i].out))
4998 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4999
5000 break;
5001 }
5002 time2 = 1;
5003 /* RELOAD_OTHER might be live beyond instruction execution,
5004 but this is not obvious when we set time2 = 1. So check
5005 here if there might be a problem with the new reload
5006 clobbering the register used by the RELOAD_OTHER. */
5007 if (out)
5008 return 0;
5009 break;
5010 default:
5011 return 0;
5012 }
5013 if ((time1 >= time2
5014 && (! rld[i].in || rld[i].out
5015 || ! rtx_equal_p (other_input, value)))
5016 || (out && rld[reloadnum].out_reg
5017 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5018 return 0;
5019 }
5020 }
5021 }
5022
5023 /* Earlyclobbered outputs must conflict with inputs. */
5024 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5025 return 0;
5026
5027 return 1;
5028 }
5029
5030 /* Return 1 if the value in reload reg REGNO, as used by a reload
5031 needed for the part of the insn specified by OPNUM and TYPE,
5032 may be used to load VALUE into it.
5033
5034 MODE is the mode in which the register is used, this is needed to
5035 determine how many hard regs to test.
5036
5037 Other read-only reloads with the same value do not conflict
5038 unless OUT is nonzero and these other reloads have to live while
5039 output reloads live.
5040 If OUT is CONST0_RTX, this is a special case: it means that the
5041 test should not be for using register REGNO as reload register, but
5042 for copying from register REGNO into the reload register.
5043
5044 RELOADNUM is the number of the reload we want to load this value for;
5045 a reload does not conflict with itself.
5046
5047 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5048 reloads that load an address for the very reload we are considering.
5049
5050 The caller has to make sure that there is no conflict with the return
5051 register. */
5052
5053 static int
5054 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5055 enum reload_type type, rtx value, rtx out, int reloadnum,
5056 int ignore_address_reloads)
5057 {
5058 int nregs = hard_regno_nregs[regno][mode];
5059 while (nregs-- > 0)
5060 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5061 value, out, reloadnum,
5062 ignore_address_reloads))
5063 return 0;
5064 return 1;
5065 }
5066
5067 /* Return nonzero if the rtx X is invariant over the current function. */
5068 /* ??? Actually, the places where we use this expect exactly what is
5069 tested here, and not everything that is function invariant. In
5070 particular, the frame pointer and arg pointer are special cased;
5071 pic_offset_table_rtx is not, and we must not spill these things to
5072 memory. */
5073
5074 int
5075 function_invariant_p (rtx x)
5076 {
5077 if (CONSTANT_P (x))
5078 return 1;
5079 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5080 return 1;
5081 if (GET_CODE (x) == PLUS
5082 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5083 && CONSTANT_P (XEXP (x, 1)))
5084 return 1;
5085 return 0;
5086 }
5087
5088 /* Determine whether the reload reg X overlaps any rtx'es used for
5089 overriding inheritance. Return nonzero if so. */
5090
5091 static int
5092 conflicts_with_override (rtx x)
5093 {
5094 int i;
5095 for (i = 0; i < n_reloads; i++)
5096 if (reload_override_in[i]
5097 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5098 return 1;
5099 return 0;
5100 }
5101 \f
5102 /* Give an error message saying we failed to find a reload for INSN,
5103 and clear out reload R. */
5104 static void
5105 failed_reload (rtx insn, int r)
5106 {
5107 if (asm_noperands (PATTERN (insn)) < 0)
5108 /* It's the compiler's fault. */
5109 fatal_insn ("could not find a spill register", insn);
5110
5111 /* It's the user's fault; the operand's mode and constraint
5112 don't match. Disable this reload so we don't crash in final. */
5113 error_for_asm (insn,
5114 "%<asm%> operand constraint incompatible with operand size");
5115 rld[r].in = 0;
5116 rld[r].out = 0;
5117 rld[r].reg_rtx = 0;
5118 rld[r].optional = 1;
5119 rld[r].secondary_p = 1;
5120 }
5121
5122 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5123 for reload R. If it's valid, get an rtx for it. Return nonzero if
5124 successful. */
5125 static int
5126 set_reload_reg (int i, int r)
5127 {
5128 int regno;
5129 rtx reg = spill_reg_rtx[i];
5130
5131 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5132 spill_reg_rtx[i] = reg
5133 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5134
5135 regno = true_regnum (reg);
5136
5137 /* Detect when the reload reg can't hold the reload mode.
5138 This used to be one `if', but Sequent compiler can't handle that. */
5139 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5140 {
5141 enum machine_mode test_mode = VOIDmode;
5142 if (rld[r].in)
5143 test_mode = GET_MODE (rld[r].in);
5144 /* If rld[r].in has VOIDmode, it means we will load it
5145 in whatever mode the reload reg has: to wit, rld[r].mode.
5146 We have already tested that for validity. */
5147 /* Aside from that, we need to test that the expressions
5148 to reload from or into have modes which are valid for this
5149 reload register. Otherwise the reload insns would be invalid. */
5150 if (! (rld[r].in != 0 && test_mode != VOIDmode
5151 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5152 if (! (rld[r].out != 0
5153 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5154 {
5155 /* The reg is OK. */
5156 last_spill_reg = i;
5157
5158 /* Mark as in use for this insn the reload regs we use
5159 for this. */
5160 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5161 rld[r].when_needed, rld[r].mode);
5162
5163 rld[r].reg_rtx = reg;
5164 reload_spill_index[r] = spill_regs[i];
5165 return 1;
5166 }
5167 }
5168 return 0;
5169 }
5170
5171 /* Find a spill register to use as a reload register for reload R.
5172 LAST_RELOAD is nonzero if this is the last reload for the insn being
5173 processed.
5174
5175 Set rld[R].reg_rtx to the register allocated.
5176
5177 We return 1 if successful, or 0 if we couldn't find a spill reg and
5178 we didn't change anything. */
5179
5180 static int
5181 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5182 int last_reload)
5183 {
5184 int i, pass, count;
5185
5186 /* If we put this reload ahead, thinking it is a group,
5187 then insist on finding a group. Otherwise we can grab a
5188 reg that some other reload needs.
5189 (That can happen when we have a 68000 DATA_OR_FP_REG
5190 which is a group of data regs or one fp reg.)
5191 We need not be so restrictive if there are no more reloads
5192 for this insn.
5193
5194 ??? Really it would be nicer to have smarter handling
5195 for that kind of reg class, where a problem like this is normal.
5196 Perhaps those classes should be avoided for reloading
5197 by use of more alternatives. */
5198
5199 int force_group = rld[r].nregs > 1 && ! last_reload;
5200
5201 /* If we want a single register and haven't yet found one,
5202 take any reg in the right class and not in use.
5203 If we want a consecutive group, here is where we look for it.
5204
5205 We use two passes so we can first look for reload regs to
5206 reuse, which are already in use for other reloads in this insn,
5207 and only then use additional registers.
5208 I think that maximizing reuse is needed to make sure we don't
5209 run out of reload regs. Suppose we have three reloads, and
5210 reloads A and B can share regs. These need two regs.
5211 Suppose A and B are given different regs.
5212 That leaves none for C. */
5213 for (pass = 0; pass < 2; pass++)
5214 {
5215 /* I is the index in spill_regs.
5216 We advance it round-robin between insns to use all spill regs
5217 equally, so that inherited reloads have a chance
5218 of leapfrogging each other. */
5219
5220 i = last_spill_reg;
5221
5222 for (count = 0; count < n_spills; count++)
5223 {
5224 int class = (int) rld[r].class;
5225 int regnum;
5226
5227 i++;
5228 if (i >= n_spills)
5229 i -= n_spills;
5230 regnum = spill_regs[i];
5231
5232 if ((reload_reg_free_p (regnum, rld[r].opnum,
5233 rld[r].when_needed)
5234 || (rld[r].in
5235 /* We check reload_reg_used to make sure we
5236 don't clobber the return register. */
5237 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5238 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5239 rld[r].when_needed, rld[r].in,
5240 rld[r].out, r, 1)))
5241 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5242 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5243 /* Look first for regs to share, then for unshared. But
5244 don't share regs used for inherited reloads; they are
5245 the ones we want to preserve. */
5246 && (pass
5247 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5248 regnum)
5249 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5250 regnum))))
5251 {
5252 int nr = hard_regno_nregs[regnum][rld[r].mode];
5253 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5254 (on 68000) got us two FP regs. If NR is 1,
5255 we would reject both of them. */
5256 if (force_group)
5257 nr = rld[r].nregs;
5258 /* If we need only one reg, we have already won. */
5259 if (nr == 1)
5260 {
5261 /* But reject a single reg if we demand a group. */
5262 if (force_group)
5263 continue;
5264 break;
5265 }
5266 /* Otherwise check that as many consecutive regs as we need
5267 are available here. */
5268 while (nr > 1)
5269 {
5270 int regno = regnum + nr - 1;
5271 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5272 && spill_reg_order[regno] >= 0
5273 && reload_reg_free_p (regno, rld[r].opnum,
5274 rld[r].when_needed)))
5275 break;
5276 nr--;
5277 }
5278 if (nr == 1)
5279 break;
5280 }
5281 }
5282
5283 /* If we found something on pass 1, omit pass 2. */
5284 if (count < n_spills)
5285 break;
5286 }
5287
5288 /* We should have found a spill register by now. */
5289 if (count >= n_spills)
5290 return 0;
5291
5292 /* I is the index in SPILL_REG_RTX of the reload register we are to
5293 allocate. Get an rtx for it and find its register number. */
5294
5295 return set_reload_reg (i, r);
5296 }
5297 \f
5298 /* Initialize all the tables needed to allocate reload registers.
5299 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5300 is the array we use to restore the reg_rtx field for every reload. */
5301
5302 static void
5303 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5304 {
5305 int i;
5306
5307 for (i = 0; i < n_reloads; i++)
5308 rld[i].reg_rtx = save_reload_reg_rtx[i];
5309
5310 memset (reload_inherited, 0, MAX_RELOADS);
5311 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5312 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5313
5314 CLEAR_HARD_REG_SET (reload_reg_used);
5315 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5316 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5317 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5318 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5319 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5320
5321 CLEAR_HARD_REG_SET (reg_used_in_insn);
5322 {
5323 HARD_REG_SET tmp;
5324 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5325 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5326 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5327 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5328 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5329 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5330 }
5331
5332 for (i = 0; i < reload_n_operands; i++)
5333 {
5334 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5335 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5336 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5337 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5338 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5339 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5340 }
5341
5342 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5343
5344 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5345
5346 for (i = 0; i < n_reloads; i++)
5347 /* If we have already decided to use a certain register,
5348 don't use it in another way. */
5349 if (rld[i].reg_rtx)
5350 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5351 rld[i].when_needed, rld[i].mode);
5352 }
5353
5354 /* Assign hard reg targets for the pseudo-registers we must reload
5355 into hard regs for this insn.
5356 Also output the instructions to copy them in and out of the hard regs.
5357
5358 For machines with register classes, we are responsible for
5359 finding a reload reg in the proper class. */
5360
5361 static void
5362 choose_reload_regs (struct insn_chain *chain)
5363 {
5364 rtx insn = chain->insn;
5365 int i, j;
5366 unsigned int max_group_size = 1;
5367 enum reg_class group_class = NO_REGS;
5368 int pass, win, inheritance;
5369
5370 rtx save_reload_reg_rtx[MAX_RELOADS];
5371
5372 /* In order to be certain of getting the registers we need,
5373 we must sort the reloads into order of increasing register class.
5374 Then our grabbing of reload registers will parallel the process
5375 that provided the reload registers.
5376
5377 Also note whether any of the reloads wants a consecutive group of regs.
5378 If so, record the maximum size of the group desired and what
5379 register class contains all the groups needed by this insn. */
5380
5381 for (j = 0; j < n_reloads; j++)
5382 {
5383 reload_order[j] = j;
5384 reload_spill_index[j] = -1;
5385
5386 if (rld[j].nregs > 1)
5387 {
5388 max_group_size = MAX (rld[j].nregs, max_group_size);
5389 group_class
5390 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5391 }
5392
5393 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5394 }
5395
5396 if (n_reloads > 1)
5397 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5398
5399 /* If -O, try first with inheritance, then turning it off.
5400 If not -O, don't do inheritance.
5401 Using inheritance when not optimizing leads to paradoxes
5402 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5403 because one side of the comparison might be inherited. */
5404 win = 0;
5405 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5406 {
5407 choose_reload_regs_init (chain, save_reload_reg_rtx);
5408
5409 /* Process the reloads in order of preference just found.
5410 Beyond this point, subregs can be found in reload_reg_rtx.
5411
5412 This used to look for an existing reloaded home for all of the
5413 reloads, and only then perform any new reloads. But that could lose
5414 if the reloads were done out of reg-class order because a later
5415 reload with a looser constraint might have an old home in a register
5416 needed by an earlier reload with a tighter constraint.
5417
5418 To solve this, we make two passes over the reloads, in the order
5419 described above. In the first pass we try to inherit a reload
5420 from a previous insn. If there is a later reload that needs a
5421 class that is a proper subset of the class being processed, we must
5422 also allocate a spill register during the first pass.
5423
5424 Then make a second pass over the reloads to allocate any reloads
5425 that haven't been given registers yet. */
5426
5427 for (j = 0; j < n_reloads; j++)
5428 {
5429 int r = reload_order[j];
5430 rtx search_equiv = NULL_RTX;
5431
5432 /* Ignore reloads that got marked inoperative. */
5433 if (rld[r].out == 0 && rld[r].in == 0
5434 && ! rld[r].secondary_p)
5435 continue;
5436
5437 /* If find_reloads chose to use reload_in or reload_out as a reload
5438 register, we don't need to chose one. Otherwise, try even if it
5439 found one since we might save an insn if we find the value lying
5440 around.
5441 Try also when reload_in is a pseudo without a hard reg. */
5442 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5443 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5444 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5445 && !MEM_P (rld[r].in)
5446 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5447 continue;
5448
5449 #if 0 /* No longer needed for correct operation.
5450 It might give better code, or might not; worth an experiment? */
5451 /* If this is an optional reload, we can't inherit from earlier insns
5452 until we are sure that any non-optional reloads have been allocated.
5453 The following code takes advantage of the fact that optional reloads
5454 are at the end of reload_order. */
5455 if (rld[r].optional != 0)
5456 for (i = 0; i < j; i++)
5457 if ((rld[reload_order[i]].out != 0
5458 || rld[reload_order[i]].in != 0
5459 || rld[reload_order[i]].secondary_p)
5460 && ! rld[reload_order[i]].optional
5461 && rld[reload_order[i]].reg_rtx == 0)
5462 allocate_reload_reg (chain, reload_order[i], 0);
5463 #endif
5464
5465 /* First see if this pseudo is already available as reloaded
5466 for a previous insn. We cannot try to inherit for reloads
5467 that are smaller than the maximum number of registers needed
5468 for groups unless the register we would allocate cannot be used
5469 for the groups.
5470
5471 We could check here to see if this is a secondary reload for
5472 an object that is already in a register of the desired class.
5473 This would avoid the need for the secondary reload register.
5474 But this is complex because we can't easily determine what
5475 objects might want to be loaded via this reload. So let a
5476 register be allocated here. In `emit_reload_insns' we suppress
5477 one of the loads in the case described above. */
5478
5479 if (inheritance)
5480 {
5481 int byte = 0;
5482 int regno = -1;
5483 enum machine_mode mode = VOIDmode;
5484
5485 if (rld[r].in == 0)
5486 ;
5487 else if (REG_P (rld[r].in))
5488 {
5489 regno = REGNO (rld[r].in);
5490 mode = GET_MODE (rld[r].in);
5491 }
5492 else if (REG_P (rld[r].in_reg))
5493 {
5494 regno = REGNO (rld[r].in_reg);
5495 mode = GET_MODE (rld[r].in_reg);
5496 }
5497 else if (GET_CODE (rld[r].in_reg) == SUBREG
5498 && REG_P (SUBREG_REG (rld[r].in_reg)))
5499 {
5500 byte = SUBREG_BYTE (rld[r].in_reg);
5501 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5502 if (regno < FIRST_PSEUDO_REGISTER)
5503 regno = subreg_regno (rld[r].in_reg);
5504 mode = GET_MODE (rld[r].in_reg);
5505 }
5506 #ifdef AUTO_INC_DEC
5507 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5508 && REG_P (XEXP (rld[r].in_reg, 0)))
5509 {
5510 regno = REGNO (XEXP (rld[r].in_reg, 0));
5511 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5512 rld[r].out = rld[r].in;
5513 }
5514 #endif
5515 #if 0
5516 /* This won't work, since REGNO can be a pseudo reg number.
5517 Also, it takes much more hair to keep track of all the things
5518 that can invalidate an inherited reload of part of a pseudoreg. */
5519 else if (GET_CODE (rld[r].in) == SUBREG
5520 && REG_P (SUBREG_REG (rld[r].in)))
5521 regno = subreg_regno (rld[r].in);
5522 #endif
5523
5524 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5525 {
5526 enum reg_class class = rld[r].class, last_class;
5527 rtx last_reg = reg_last_reload_reg[regno];
5528 enum machine_mode need_mode;
5529
5530 i = REGNO (last_reg);
5531 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5532 last_class = REGNO_REG_CLASS (i);
5533
5534 if (byte == 0)
5535 need_mode = mode;
5536 else
5537 need_mode
5538 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5539 + byte * BITS_PER_UNIT,
5540 GET_MODE_CLASS (mode));
5541
5542 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5543 >= GET_MODE_SIZE (need_mode))
5544 #ifdef CANNOT_CHANGE_MODE_CLASS
5545 /* Verify that the register in "i" can be obtained
5546 from LAST_REG. */
5547 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5548 GET_MODE (last_reg),
5549 mode)
5550 #endif
5551 && reg_reloaded_contents[i] == regno
5552 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5553 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5554 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5555 /* Even if we can't use this register as a reload
5556 register, we might use it for reload_override_in,
5557 if copying it to the desired class is cheap
5558 enough. */
5559 || ((REGISTER_MOVE_COST (mode, last_class, class)
5560 < MEMORY_MOVE_COST (mode, class, 1))
5561 && (secondary_reload_class (1, class, mode,
5562 last_reg)
5563 == NO_REGS)
5564 #ifdef SECONDARY_MEMORY_NEEDED
5565 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5566 mode)
5567 #endif
5568 ))
5569
5570 && (rld[r].nregs == max_group_size
5571 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5572 i))
5573 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5574 rld[r].when_needed, rld[r].in,
5575 const0_rtx, r, 1))
5576 {
5577 /* If a group is needed, verify that all the subsequent
5578 registers still have their values intact. */
5579 int nr = hard_regno_nregs[i][rld[r].mode];
5580 int k;
5581
5582 for (k = 1; k < nr; k++)
5583 if (reg_reloaded_contents[i + k] != regno
5584 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5585 break;
5586
5587 if (k == nr)
5588 {
5589 int i1;
5590 int bad_for_class;
5591
5592 last_reg = (GET_MODE (last_reg) == mode
5593 ? last_reg : gen_rtx_REG (mode, i));
5594
5595 bad_for_class = 0;
5596 for (k = 0; k < nr; k++)
5597 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5598 i+k);
5599
5600 /* We found a register that contains the
5601 value we need. If this register is the
5602 same as an `earlyclobber' operand of the
5603 current insn, just mark it as a place to
5604 reload from since we can't use it as the
5605 reload register itself. */
5606
5607 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5608 if (reg_overlap_mentioned_for_reload_p
5609 (reg_last_reload_reg[regno],
5610 reload_earlyclobbers[i1]))
5611 break;
5612
5613 if (i1 != n_earlyclobbers
5614 || ! (free_for_value_p (i, rld[r].mode,
5615 rld[r].opnum,
5616 rld[r].when_needed, rld[r].in,
5617 rld[r].out, r, 1))
5618 /* Don't use it if we'd clobber a pseudo reg. */
5619 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5620 && rld[r].out
5621 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5622 /* Don't clobber the frame pointer. */
5623 || (i == HARD_FRAME_POINTER_REGNUM
5624 && frame_pointer_needed
5625 && rld[r].out)
5626 /* Don't really use the inherited spill reg
5627 if we need it wider than we've got it. */
5628 || (GET_MODE_SIZE (rld[r].mode)
5629 > GET_MODE_SIZE (mode))
5630 || bad_for_class
5631
5632 /* If find_reloads chose reload_out as reload
5633 register, stay with it - that leaves the
5634 inherited register for subsequent reloads. */
5635 || (rld[r].out && rld[r].reg_rtx
5636 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5637 {
5638 if (! rld[r].optional)
5639 {
5640 reload_override_in[r] = last_reg;
5641 reload_inheritance_insn[r]
5642 = reg_reloaded_insn[i];
5643 }
5644 }
5645 else
5646 {
5647 int k;
5648 /* We can use this as a reload reg. */
5649 /* Mark the register as in use for this part of
5650 the insn. */
5651 mark_reload_reg_in_use (i,
5652 rld[r].opnum,
5653 rld[r].when_needed,
5654 rld[r].mode);
5655 rld[r].reg_rtx = last_reg;
5656 reload_inherited[r] = 1;
5657 reload_inheritance_insn[r]
5658 = reg_reloaded_insn[i];
5659 reload_spill_index[r] = i;
5660 for (k = 0; k < nr; k++)
5661 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5662 i + k);
5663 }
5664 }
5665 }
5666 }
5667 }
5668
5669 /* Here's another way to see if the value is already lying around. */
5670 if (inheritance
5671 && rld[r].in != 0
5672 && ! reload_inherited[r]
5673 && rld[r].out == 0
5674 && (CONSTANT_P (rld[r].in)
5675 || GET_CODE (rld[r].in) == PLUS
5676 || REG_P (rld[r].in)
5677 || MEM_P (rld[r].in))
5678 && (rld[r].nregs == max_group_size
5679 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5680 search_equiv = rld[r].in;
5681 /* If this is an output reload from a simple move insn, look
5682 if an equivalence for the input is available. */
5683 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5684 {
5685 rtx set = single_set (insn);
5686
5687 if (set
5688 && rtx_equal_p (rld[r].out, SET_DEST (set))
5689 && CONSTANT_P (SET_SRC (set)))
5690 search_equiv = SET_SRC (set);
5691 }
5692
5693 if (search_equiv)
5694 {
5695 rtx equiv
5696 = find_equiv_reg (search_equiv, insn, rld[r].class,
5697 -1, NULL, 0, rld[r].mode);
5698 int regno = 0;
5699
5700 if (equiv != 0)
5701 {
5702 if (REG_P (equiv))
5703 regno = REGNO (equiv);
5704 else
5705 {
5706 /* This must be a SUBREG of a hard register.
5707 Make a new REG since this might be used in an
5708 address and not all machines support SUBREGs
5709 there. */
5710 gcc_assert (GET_CODE (equiv) == SUBREG);
5711 regno = subreg_regno (equiv);
5712 equiv = gen_rtx_REG (rld[r].mode, regno);
5713 /* If we choose EQUIV as the reload register, but the
5714 loop below decides to cancel the inheritance, we'll
5715 end up reloading EQUIV in rld[r].mode, not the mode
5716 it had originally. That isn't safe when EQUIV isn't
5717 available as a spill register since its value might
5718 still be live at this point. */
5719 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5720 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5721 equiv = 0;
5722 }
5723 }
5724
5725 /* If we found a spill reg, reject it unless it is free
5726 and of the desired class. */
5727 if (equiv != 0)
5728 {
5729 int regs_used = 0;
5730 int bad_for_class = 0;
5731 int max_regno = regno + rld[r].nregs;
5732
5733 for (i = regno; i < max_regno; i++)
5734 {
5735 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5736 i);
5737 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5738 i);
5739 }
5740
5741 if ((regs_used
5742 && ! free_for_value_p (regno, rld[r].mode,
5743 rld[r].opnum, rld[r].when_needed,
5744 rld[r].in, rld[r].out, r, 1))
5745 || bad_for_class)
5746 equiv = 0;
5747 }
5748
5749 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5750 equiv = 0;
5751
5752 /* We found a register that contains the value we need.
5753 If this register is the same as an `earlyclobber' operand
5754 of the current insn, just mark it as a place to reload from
5755 since we can't use it as the reload register itself. */
5756
5757 if (equiv != 0)
5758 for (i = 0; i < n_earlyclobbers; i++)
5759 if (reg_overlap_mentioned_for_reload_p (equiv,
5760 reload_earlyclobbers[i]))
5761 {
5762 if (! rld[r].optional)
5763 reload_override_in[r] = equiv;
5764 equiv = 0;
5765 break;
5766 }
5767
5768 /* If the equiv register we have found is explicitly clobbered
5769 in the current insn, it depends on the reload type if we
5770 can use it, use it for reload_override_in, or not at all.
5771 In particular, we then can't use EQUIV for a
5772 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5773
5774 if (equiv != 0)
5775 {
5776 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
5777 switch (rld[r].when_needed)
5778 {
5779 case RELOAD_FOR_OTHER_ADDRESS:
5780 case RELOAD_FOR_INPADDR_ADDRESS:
5781 case RELOAD_FOR_INPUT_ADDRESS:
5782 case RELOAD_FOR_OPADDR_ADDR:
5783 break;
5784 case RELOAD_OTHER:
5785 case RELOAD_FOR_INPUT:
5786 case RELOAD_FOR_OPERAND_ADDRESS:
5787 if (! rld[r].optional)
5788 reload_override_in[r] = equiv;
5789 /* Fall through. */
5790 default:
5791 equiv = 0;
5792 break;
5793 }
5794 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5795 switch (rld[r].when_needed)
5796 {
5797 case RELOAD_FOR_OTHER_ADDRESS:
5798 case RELOAD_FOR_INPADDR_ADDRESS:
5799 case RELOAD_FOR_INPUT_ADDRESS:
5800 case RELOAD_FOR_OPADDR_ADDR:
5801 case RELOAD_FOR_OPERAND_ADDRESS:
5802 case RELOAD_FOR_INPUT:
5803 break;
5804 case RELOAD_OTHER:
5805 if (! rld[r].optional)
5806 reload_override_in[r] = equiv;
5807 /* Fall through. */
5808 default:
5809 equiv = 0;
5810 break;
5811 }
5812 }
5813
5814 /* If we found an equivalent reg, say no code need be generated
5815 to load it, and use it as our reload reg. */
5816 if (equiv != 0
5817 && (regno != HARD_FRAME_POINTER_REGNUM
5818 || !frame_pointer_needed))
5819 {
5820 int nr = hard_regno_nregs[regno][rld[r].mode];
5821 int k;
5822 rld[r].reg_rtx = equiv;
5823 reload_inherited[r] = 1;
5824
5825 /* If reg_reloaded_valid is not set for this register,
5826 there might be a stale spill_reg_store lying around.
5827 We must clear it, since otherwise emit_reload_insns
5828 might delete the store. */
5829 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5830 spill_reg_store[regno] = NULL_RTX;
5831 /* If any of the hard registers in EQUIV are spill
5832 registers, mark them as in use for this insn. */
5833 for (k = 0; k < nr; k++)
5834 {
5835 i = spill_reg_order[regno + k];
5836 if (i >= 0)
5837 {
5838 mark_reload_reg_in_use (regno, rld[r].opnum,
5839 rld[r].when_needed,
5840 rld[r].mode);
5841 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5842 regno + k);
5843 }
5844 }
5845 }
5846 }
5847
5848 /* If we found a register to use already, or if this is an optional
5849 reload, we are done. */
5850 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5851 continue;
5852
5853 #if 0
5854 /* No longer needed for correct operation. Might or might
5855 not give better code on the average. Want to experiment? */
5856
5857 /* See if there is a later reload that has a class different from our
5858 class that intersects our class or that requires less register
5859 than our reload. If so, we must allocate a register to this
5860 reload now, since that reload might inherit a previous reload
5861 and take the only available register in our class. Don't do this
5862 for optional reloads since they will force all previous reloads
5863 to be allocated. Also don't do this for reloads that have been
5864 turned off. */
5865
5866 for (i = j + 1; i < n_reloads; i++)
5867 {
5868 int s = reload_order[i];
5869
5870 if ((rld[s].in == 0 && rld[s].out == 0
5871 && ! rld[s].secondary_p)
5872 || rld[s].optional)
5873 continue;
5874
5875 if ((rld[s].class != rld[r].class
5876 && reg_classes_intersect_p (rld[r].class,
5877 rld[s].class))
5878 || rld[s].nregs < rld[r].nregs)
5879 break;
5880 }
5881
5882 if (i == n_reloads)
5883 continue;
5884
5885 allocate_reload_reg (chain, r, j == n_reloads - 1);
5886 #endif
5887 }
5888
5889 /* Now allocate reload registers for anything non-optional that
5890 didn't get one yet. */
5891 for (j = 0; j < n_reloads; j++)
5892 {
5893 int r = reload_order[j];
5894
5895 /* Ignore reloads that got marked inoperative. */
5896 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5897 continue;
5898
5899 /* Skip reloads that already have a register allocated or are
5900 optional. */
5901 if (rld[r].reg_rtx != 0 || rld[r].optional)
5902 continue;
5903
5904 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5905 break;
5906 }
5907
5908 /* If that loop got all the way, we have won. */
5909 if (j == n_reloads)
5910 {
5911 win = 1;
5912 break;
5913 }
5914
5915 /* Loop around and try without any inheritance. */
5916 }
5917
5918 if (! win)
5919 {
5920 /* First undo everything done by the failed attempt
5921 to allocate with inheritance. */
5922 choose_reload_regs_init (chain, save_reload_reg_rtx);
5923
5924 /* Some sanity tests to verify that the reloads found in the first
5925 pass are identical to the ones we have now. */
5926 gcc_assert (chain->n_reloads == n_reloads);
5927
5928 for (i = 0; i < n_reloads; i++)
5929 {
5930 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5931 continue;
5932 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
5933 for (j = 0; j < n_spills; j++)
5934 if (spill_regs[j] == chain->rld[i].regno)
5935 if (! set_reload_reg (j, i))
5936 failed_reload (chain->insn, i);
5937 }
5938 }
5939
5940 /* If we thought we could inherit a reload, because it seemed that
5941 nothing else wanted the same reload register earlier in the insn,
5942 verify that assumption, now that all reloads have been assigned.
5943 Likewise for reloads where reload_override_in has been set. */
5944
5945 /* If doing expensive optimizations, do one preliminary pass that doesn't
5946 cancel any inheritance, but removes reloads that have been needed only
5947 for reloads that we know can be inherited. */
5948 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5949 {
5950 for (j = 0; j < n_reloads; j++)
5951 {
5952 int r = reload_order[j];
5953 rtx check_reg;
5954 if (reload_inherited[r] && rld[r].reg_rtx)
5955 check_reg = rld[r].reg_rtx;
5956 else if (reload_override_in[r]
5957 && (REG_P (reload_override_in[r])
5958 || GET_CODE (reload_override_in[r]) == SUBREG))
5959 check_reg = reload_override_in[r];
5960 else
5961 continue;
5962 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5963 rld[r].opnum, rld[r].when_needed, rld[r].in,
5964 (reload_inherited[r]
5965 ? rld[r].out : const0_rtx),
5966 r, 1))
5967 {
5968 if (pass)
5969 continue;
5970 reload_inherited[r] = 0;
5971 reload_override_in[r] = 0;
5972 }
5973 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5974 reload_override_in, then we do not need its related
5975 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5976 likewise for other reload types.
5977 We handle this by removing a reload when its only replacement
5978 is mentioned in reload_in of the reload we are going to inherit.
5979 A special case are auto_inc expressions; even if the input is
5980 inherited, we still need the address for the output. We can
5981 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5982 If we succeeded removing some reload and we are doing a preliminary
5983 pass just to remove such reloads, make another pass, since the
5984 removal of one reload might allow us to inherit another one. */
5985 else if (rld[r].in
5986 && rld[r].out != rld[r].in
5987 && remove_address_replacements (rld[r].in) && pass)
5988 pass = 2;
5989 }
5990 }
5991
5992 /* Now that reload_override_in is known valid,
5993 actually override reload_in. */
5994 for (j = 0; j < n_reloads; j++)
5995 if (reload_override_in[j])
5996 rld[j].in = reload_override_in[j];
5997
5998 /* If this reload won't be done because it has been canceled or is
5999 optional and not inherited, clear reload_reg_rtx so other
6000 routines (such as subst_reloads) don't get confused. */
6001 for (j = 0; j < n_reloads; j++)
6002 if (rld[j].reg_rtx != 0
6003 && ((rld[j].optional && ! reload_inherited[j])
6004 || (rld[j].in == 0 && rld[j].out == 0
6005 && ! rld[j].secondary_p)))
6006 {
6007 int regno = true_regnum (rld[j].reg_rtx);
6008
6009 if (spill_reg_order[regno] >= 0)
6010 clear_reload_reg_in_use (regno, rld[j].opnum,
6011 rld[j].when_needed, rld[j].mode);
6012 rld[j].reg_rtx = 0;
6013 reload_spill_index[j] = -1;
6014 }
6015
6016 /* Record which pseudos and which spill regs have output reloads. */
6017 for (j = 0; j < n_reloads; j++)
6018 {
6019 int r = reload_order[j];
6020
6021 i = reload_spill_index[r];
6022
6023 /* I is nonneg if this reload uses a register.
6024 If rld[r].reg_rtx is 0, this is an optional reload
6025 that we opted to ignore. */
6026 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6027 && rld[r].reg_rtx != 0)
6028 {
6029 int nregno = REGNO (rld[r].out_reg);
6030 int nr = 1;
6031
6032 if (nregno < FIRST_PSEUDO_REGISTER)
6033 nr = hard_regno_nregs[nregno][rld[r].mode];
6034
6035 while (--nr >= 0)
6036 reg_has_output_reload[nregno + nr] = 1;
6037
6038 if (i >= 0)
6039 {
6040 nr = hard_regno_nregs[i][rld[r].mode];
6041 while (--nr >= 0)
6042 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6043 }
6044
6045 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6046 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6047 || rld[r].when_needed == RELOAD_FOR_INSN);
6048 }
6049 }
6050 }
6051
6052 /* Deallocate the reload register for reload R. This is called from
6053 remove_address_replacements. */
6054
6055 void
6056 deallocate_reload_reg (int r)
6057 {
6058 int regno;
6059
6060 if (! rld[r].reg_rtx)
6061 return;
6062 regno = true_regnum (rld[r].reg_rtx);
6063 rld[r].reg_rtx = 0;
6064 if (spill_reg_order[regno] >= 0)
6065 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6066 rld[r].mode);
6067 reload_spill_index[r] = -1;
6068 }
6069 \f
6070 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6071 reloads of the same item for fear that we might not have enough reload
6072 registers. However, normally they will get the same reload register
6073 and hence actually need not be loaded twice.
6074
6075 Here we check for the most common case of this phenomenon: when we have
6076 a number of reloads for the same object, each of which were allocated
6077 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6078 reload, and is not modified in the insn itself. If we find such,
6079 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6080 This will not increase the number of spill registers needed and will
6081 prevent redundant code. */
6082
6083 static void
6084 merge_assigned_reloads (rtx insn)
6085 {
6086 int i, j;
6087
6088 /* Scan all the reloads looking for ones that only load values and
6089 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6090 assigned and not modified by INSN. */
6091
6092 for (i = 0; i < n_reloads; i++)
6093 {
6094 int conflicting_input = 0;
6095 int max_input_address_opnum = -1;
6096 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6097
6098 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6099 || rld[i].out != 0 || rld[i].reg_rtx == 0
6100 || reg_set_p (rld[i].reg_rtx, insn))
6101 continue;
6102
6103 /* Look at all other reloads. Ensure that the only use of this
6104 reload_reg_rtx is in a reload that just loads the same value
6105 as we do. Note that any secondary reloads must be of the identical
6106 class since the values, modes, and result registers are the
6107 same, so we need not do anything with any secondary reloads. */
6108
6109 for (j = 0; j < n_reloads; j++)
6110 {
6111 if (i == j || rld[j].reg_rtx == 0
6112 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6113 rld[i].reg_rtx))
6114 continue;
6115
6116 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6117 && rld[j].opnum > max_input_address_opnum)
6118 max_input_address_opnum = rld[j].opnum;
6119
6120 /* If the reload regs aren't exactly the same (e.g, different modes)
6121 or if the values are different, we can't merge this reload.
6122 But if it is an input reload, we might still merge
6123 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6124
6125 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6126 || rld[j].out != 0 || rld[j].in == 0
6127 || ! rtx_equal_p (rld[i].in, rld[j].in))
6128 {
6129 if (rld[j].when_needed != RELOAD_FOR_INPUT
6130 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6131 || rld[i].opnum > rld[j].opnum)
6132 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6133 break;
6134 conflicting_input = 1;
6135 if (min_conflicting_input_opnum > rld[j].opnum)
6136 min_conflicting_input_opnum = rld[j].opnum;
6137 }
6138 }
6139
6140 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6141 we, in fact, found any matching reloads. */
6142
6143 if (j == n_reloads
6144 && max_input_address_opnum <= min_conflicting_input_opnum)
6145 {
6146 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6147
6148 for (j = 0; j < n_reloads; j++)
6149 if (i != j && rld[j].reg_rtx != 0
6150 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6151 && (! conflicting_input
6152 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6153 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6154 {
6155 rld[i].when_needed = RELOAD_OTHER;
6156 rld[j].in = 0;
6157 reload_spill_index[j] = -1;
6158 transfer_replacements (i, j);
6159 }
6160
6161 /* If this is now RELOAD_OTHER, look for any reloads that load
6162 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6163 if they were for inputs, RELOAD_OTHER for outputs. Note that
6164 this test is equivalent to looking for reloads for this operand
6165 number. */
6166 /* We must take special care with RELOAD_FOR_OUTPUT_ADDRESS; it may
6167 share registers with a RELOAD_FOR_INPUT, so we can not change it
6168 to RELOAD_FOR_OTHER_ADDRESS. We should never need to, since we
6169 do not modify RELOAD_FOR_OUTPUT. */
6170
6171 if (rld[i].when_needed == RELOAD_OTHER)
6172 for (j = 0; j < n_reloads; j++)
6173 if (rld[j].in != 0
6174 && rld[j].when_needed != RELOAD_OTHER
6175 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6176 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6177 && (! conflicting_input
6178 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6179 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6180 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6181 rld[i].in))
6182 {
6183 int k;
6184
6185 rld[j].when_needed
6186 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6187 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6188 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6189
6190 /* Check to see if we accidentally converted two
6191 reloads that use the same reload register with
6192 different inputs to the same type. If so, the
6193 resulting code won't work. */
6194 if (rld[j].reg_rtx)
6195 for (k = 0; k < j; k++)
6196 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6197 || rld[k].when_needed != rld[j].when_needed
6198 || !rtx_equal_p (rld[k].reg_rtx,
6199 rld[j].reg_rtx)
6200 || rtx_equal_p (rld[k].in,
6201 rld[j].in));
6202 }
6203 }
6204 }
6205 }
6206 \f
6207 /* These arrays are filled by emit_reload_insns and its subroutines. */
6208 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6209 static rtx other_input_address_reload_insns = 0;
6210 static rtx other_input_reload_insns = 0;
6211 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6212 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6213 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6214 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6215 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6216 static rtx operand_reload_insns = 0;
6217 static rtx other_operand_reload_insns = 0;
6218 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6219
6220 /* Values to be put in spill_reg_store are put here first. */
6221 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6222 static HARD_REG_SET reg_reloaded_died;
6223
6224 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6225 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6226 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6227 adjusted register, and return true. Otherwise, return false. */
6228 static bool
6229 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6230 enum reg_class new_class,
6231 enum machine_mode new_mode)
6232
6233 {
6234 rtx reg;
6235
6236 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6237 {
6238 unsigned regno = REGNO (reg);
6239
6240 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6241 continue;
6242 if (GET_MODE (reg) != new_mode)
6243 {
6244 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6245 continue;
6246 if (hard_regno_nregs[regno][new_mode]
6247 > hard_regno_nregs[regno][GET_MODE (reg)])
6248 continue;
6249 reg = reload_adjust_reg_for_mode (reg, new_mode);
6250 }
6251 *reload_reg = reg;
6252 return true;
6253 }
6254 return false;
6255 }
6256
6257 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6258 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6259 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6260 adjusted register, and return true. Otherwise, return false. */
6261 static bool
6262 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6263 enum insn_code icode)
6264
6265 {
6266 enum reg_class new_class = scratch_reload_class (icode);
6267 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6268
6269 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6270 new_class, new_mode);
6271 }
6272
6273 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6274 has the number J. OLD contains the value to be used as input. */
6275
6276 static void
6277 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6278 rtx old, int j)
6279 {
6280 rtx insn = chain->insn;
6281 rtx reloadreg = rl->reg_rtx;
6282 rtx oldequiv_reg = 0;
6283 rtx oldequiv = 0;
6284 int special = 0;
6285 enum machine_mode mode;
6286 rtx *where;
6287
6288 /* Determine the mode to reload in.
6289 This is very tricky because we have three to choose from.
6290 There is the mode the insn operand wants (rl->inmode).
6291 There is the mode of the reload register RELOADREG.
6292 There is the intrinsic mode of the operand, which we could find
6293 by stripping some SUBREGs.
6294 It turns out that RELOADREG's mode is irrelevant:
6295 we can change that arbitrarily.
6296
6297 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6298 then the reload reg may not support QImode moves, so use SImode.
6299 If foo is in memory due to spilling a pseudo reg, this is safe,
6300 because the QImode value is in the least significant part of a
6301 slot big enough for a SImode. If foo is some other sort of
6302 memory reference, then it is impossible to reload this case,
6303 so previous passes had better make sure this never happens.
6304
6305 Then consider a one-word union which has SImode and one of its
6306 members is a float, being fetched as (SUBREG:SF union:SI).
6307 We must fetch that as SFmode because we could be loading into
6308 a float-only register. In this case OLD's mode is correct.
6309
6310 Consider an immediate integer: it has VOIDmode. Here we need
6311 to get a mode from something else.
6312
6313 In some cases, there is a fourth mode, the operand's
6314 containing mode. If the insn specifies a containing mode for
6315 this operand, it overrides all others.
6316
6317 I am not sure whether the algorithm here is always right,
6318 but it does the right things in those cases. */
6319
6320 mode = GET_MODE (old);
6321 if (mode == VOIDmode)
6322 mode = rl->inmode;
6323
6324 /* delete_output_reload is only invoked properly if old contains
6325 the original pseudo register. Since this is replaced with a
6326 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6327 find the pseudo in RELOAD_IN_REG. */
6328 if (reload_override_in[j]
6329 && REG_P (rl->in_reg))
6330 {
6331 oldequiv = old;
6332 old = rl->in_reg;
6333 }
6334 if (oldequiv == 0)
6335 oldequiv = old;
6336 else if (REG_P (oldequiv))
6337 oldequiv_reg = oldequiv;
6338 else if (GET_CODE (oldequiv) == SUBREG)
6339 oldequiv_reg = SUBREG_REG (oldequiv);
6340
6341 /* If we are reloading from a register that was recently stored in
6342 with an output-reload, see if we can prove there was
6343 actually no need to store the old value in it. */
6344
6345 if (optimize && REG_P (oldequiv)
6346 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6347 && spill_reg_store[REGNO (oldequiv)]
6348 && REG_P (old)
6349 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6350 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6351 rl->out_reg)))
6352 delete_output_reload (insn, j, REGNO (oldequiv));
6353
6354 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6355 then load RELOADREG from OLDEQUIV. Note that we cannot use
6356 gen_lowpart_common since it can do the wrong thing when
6357 RELOADREG has a multi-word mode. Note that RELOADREG
6358 must always be a REG here. */
6359
6360 if (GET_MODE (reloadreg) != mode)
6361 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6362 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6363 oldequiv = SUBREG_REG (oldequiv);
6364 if (GET_MODE (oldequiv) != VOIDmode
6365 && mode != GET_MODE (oldequiv))
6366 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6367
6368 /* Switch to the right place to emit the reload insns. */
6369 switch (rl->when_needed)
6370 {
6371 case RELOAD_OTHER:
6372 where = &other_input_reload_insns;
6373 break;
6374 case RELOAD_FOR_INPUT:
6375 where = &input_reload_insns[rl->opnum];
6376 break;
6377 case RELOAD_FOR_INPUT_ADDRESS:
6378 where = &input_address_reload_insns[rl->opnum];
6379 break;
6380 case RELOAD_FOR_INPADDR_ADDRESS:
6381 where = &inpaddr_address_reload_insns[rl->opnum];
6382 break;
6383 case RELOAD_FOR_OUTPUT_ADDRESS:
6384 where = &output_address_reload_insns[rl->opnum];
6385 break;
6386 case RELOAD_FOR_OUTADDR_ADDRESS:
6387 where = &outaddr_address_reload_insns[rl->opnum];
6388 break;
6389 case RELOAD_FOR_OPERAND_ADDRESS:
6390 where = &operand_reload_insns;
6391 break;
6392 case RELOAD_FOR_OPADDR_ADDR:
6393 where = &other_operand_reload_insns;
6394 break;
6395 case RELOAD_FOR_OTHER_ADDRESS:
6396 where = &other_input_address_reload_insns;
6397 break;
6398 default:
6399 gcc_unreachable ();
6400 }
6401
6402 push_to_sequence (*where);
6403
6404 /* Auto-increment addresses must be reloaded in a special way. */
6405 if (rl->out && ! rl->out_reg)
6406 {
6407 /* We are not going to bother supporting the case where a
6408 incremented register can't be copied directly from
6409 OLDEQUIV since this seems highly unlikely. */
6410 gcc_assert (rl->secondary_in_reload < 0);
6411
6412 if (reload_inherited[j])
6413 oldequiv = reloadreg;
6414
6415 old = XEXP (rl->in_reg, 0);
6416
6417 if (optimize && REG_P (oldequiv)
6418 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6419 && spill_reg_store[REGNO (oldequiv)]
6420 && REG_P (old)
6421 && (dead_or_set_p (insn,
6422 spill_reg_stored_to[REGNO (oldequiv)])
6423 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6424 old)))
6425 delete_output_reload (insn, j, REGNO (oldequiv));
6426
6427 /* Prevent normal processing of this reload. */
6428 special = 1;
6429 /* Output a special code sequence for this case. */
6430 new_spill_reg_store[REGNO (reloadreg)]
6431 = inc_for_reload (reloadreg, oldequiv, rl->out,
6432 rl->inc);
6433 }
6434
6435 /* If we are reloading a pseudo-register that was set by the previous
6436 insn, see if we can get rid of that pseudo-register entirely
6437 by redirecting the previous insn into our reload register. */
6438
6439 else if (optimize && REG_P (old)
6440 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6441 && dead_or_set_p (insn, old)
6442 /* This is unsafe if some other reload
6443 uses the same reg first. */
6444 && ! conflicts_with_override (reloadreg)
6445 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6446 rl->when_needed, old, rl->out, j, 0))
6447 {
6448 rtx temp = PREV_INSN (insn);
6449 while (temp && NOTE_P (temp))
6450 temp = PREV_INSN (temp);
6451 if (temp
6452 && NONJUMP_INSN_P (temp)
6453 && GET_CODE (PATTERN (temp)) == SET
6454 && SET_DEST (PATTERN (temp)) == old
6455 /* Make sure we can access insn_operand_constraint. */
6456 && asm_noperands (PATTERN (temp)) < 0
6457 /* This is unsafe if operand occurs more than once in current
6458 insn. Perhaps some occurrences aren't reloaded. */
6459 && count_occurrences (PATTERN (insn), old, 0) == 1)
6460 {
6461 rtx old = SET_DEST (PATTERN (temp));
6462 /* Store into the reload register instead of the pseudo. */
6463 SET_DEST (PATTERN (temp)) = reloadreg;
6464
6465 /* Verify that resulting insn is valid. */
6466 extract_insn (temp);
6467 if (constrain_operands (1))
6468 {
6469 /* If the previous insn is an output reload, the source is
6470 a reload register, and its spill_reg_store entry will
6471 contain the previous destination. This is now
6472 invalid. */
6473 if (REG_P (SET_SRC (PATTERN (temp)))
6474 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6475 {
6476 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6477 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6478 }
6479
6480 /* If these are the only uses of the pseudo reg,
6481 pretend for GDB it lives in the reload reg we used. */
6482 if (REG_N_DEATHS (REGNO (old)) == 1
6483 && REG_N_SETS (REGNO (old)) == 1)
6484 {
6485 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6486 alter_reg (REGNO (old), -1);
6487 }
6488 special = 1;
6489 }
6490 else
6491 {
6492 SET_DEST (PATTERN (temp)) = old;
6493 }
6494 }
6495 }
6496
6497 /* We can't do that, so output an insn to load RELOADREG. */
6498
6499 /* If we have a secondary reload, pick up the secondary register
6500 and icode, if any. If OLDEQUIV and OLD are different or
6501 if this is an in-out reload, recompute whether or not we
6502 still need a secondary register and what the icode should
6503 be. If we still need a secondary register and the class or
6504 icode is different, go back to reloading from OLD if using
6505 OLDEQUIV means that we got the wrong type of register. We
6506 cannot have different class or icode due to an in-out reload
6507 because we don't make such reloads when both the input and
6508 output need secondary reload registers. */
6509
6510 if (! special && rl->secondary_in_reload >= 0)
6511 {
6512 rtx second_reload_reg = 0;
6513 rtx third_reload_reg = 0;
6514 int secondary_reload = rl->secondary_in_reload;
6515 rtx real_oldequiv = oldequiv;
6516 rtx real_old = old;
6517 rtx tmp;
6518 enum insn_code icode;
6519 enum insn_code tertiary_icode = CODE_FOR_nothing;
6520
6521 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6522 and similarly for OLD.
6523 See comments in get_secondary_reload in reload.c. */
6524 /* If it is a pseudo that cannot be replaced with its
6525 equivalent MEM, we must fall back to reload_in, which
6526 will have all the necessary substitutions registered.
6527 Likewise for a pseudo that can't be replaced with its
6528 equivalent constant.
6529
6530 Take extra care for subregs of such pseudos. Note that
6531 we cannot use reg_equiv_mem in this case because it is
6532 not in the right mode. */
6533
6534 tmp = oldequiv;
6535 if (GET_CODE (tmp) == SUBREG)
6536 tmp = SUBREG_REG (tmp);
6537 if (REG_P (tmp)
6538 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6539 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6540 || reg_equiv_constant[REGNO (tmp)] != 0))
6541 {
6542 if (! reg_equiv_mem[REGNO (tmp)]
6543 || num_not_at_initial_offset
6544 || GET_CODE (oldequiv) == SUBREG)
6545 real_oldequiv = rl->in;
6546 else
6547 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6548 }
6549
6550 tmp = old;
6551 if (GET_CODE (tmp) == SUBREG)
6552 tmp = SUBREG_REG (tmp);
6553 if (REG_P (tmp)
6554 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6555 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6556 || reg_equiv_constant[REGNO (tmp)] != 0))
6557 {
6558 if (! reg_equiv_mem[REGNO (tmp)]
6559 || num_not_at_initial_offset
6560 || GET_CODE (old) == SUBREG)
6561 real_old = rl->in;
6562 else
6563 real_old = reg_equiv_mem[REGNO (tmp)];
6564 }
6565
6566 second_reload_reg = rld[secondary_reload].reg_rtx;
6567 if (rld[secondary_reload].secondary_in_reload >= 0)
6568 {
6569 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6570
6571 third_reload_reg = rld[tertiary_reload].reg_rtx;
6572 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6573 /* We'd have to add more code for quartary reloads. */
6574 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6575 }
6576 icode = rl->secondary_in_icode;
6577
6578 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6579 || (rl->in != 0 && rl->out != 0))
6580 {
6581 secondary_reload_info sri, sri2;
6582 enum reg_class new_class, new_t_class;
6583
6584 sri.icode = CODE_FOR_nothing;
6585 sri.prev_sri = NULL;
6586 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6587 mode, &sri);
6588
6589 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6590 second_reload_reg = 0;
6591 else if (new_class == NO_REGS)
6592 {
6593 if (reload_adjust_reg_for_icode (&second_reload_reg,
6594 third_reload_reg, sri.icode))
6595 icode = sri.icode, third_reload_reg = 0;
6596 else
6597 oldequiv = old, real_oldequiv = real_old;
6598 }
6599 else if (sri.icode != CODE_FOR_nothing)
6600 /* We currently lack a way to express this in reloads. */
6601 gcc_unreachable ();
6602 else
6603 {
6604 sri2.icode = CODE_FOR_nothing;
6605 sri2.prev_sri = &sri;
6606 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6607 new_class, mode, &sri);
6608 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6609 {
6610 if (reload_adjust_reg_for_temp (&second_reload_reg,
6611 third_reload_reg,
6612 new_class, mode))
6613 third_reload_reg = 0, tertiary_icode = sri2.icode;
6614 else
6615 oldequiv = old, real_oldequiv = real_old;
6616 }
6617 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6618 {
6619 rtx intermediate = second_reload_reg;
6620
6621 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6622 new_class, mode)
6623 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6624 sri2.icode))
6625 {
6626 second_reload_reg = intermediate;
6627 tertiary_icode = sri2.icode;
6628 }
6629 else
6630 oldequiv = old, real_oldequiv = real_old;
6631 }
6632 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6633 {
6634 rtx intermediate = second_reload_reg;
6635
6636 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6637 new_class, mode)
6638 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6639 new_t_class, mode))
6640 {
6641 second_reload_reg = intermediate;
6642 tertiary_icode = sri2.icode;
6643 }
6644 else
6645 oldequiv = old, real_oldequiv = real_old;
6646 }
6647 else
6648 /* This could be handled more intelligently too. */
6649 oldequiv = old, real_oldequiv = real_old;
6650 }
6651 }
6652
6653 /* If we still need a secondary reload register, check
6654 to see if it is being used as a scratch or intermediate
6655 register and generate code appropriately. If we need
6656 a scratch register, use REAL_OLDEQUIV since the form of
6657 the insn may depend on the actual address if it is
6658 a MEM. */
6659
6660 if (second_reload_reg)
6661 {
6662 if (icode != CODE_FOR_nothing)
6663 {
6664 /* We'd have to add extra code to handle this case. */
6665 gcc_assert (!third_reload_reg);
6666
6667 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6668 second_reload_reg));
6669 special = 1;
6670 }
6671 else
6672 {
6673 /* See if we need a scratch register to load the
6674 intermediate register (a tertiary reload). */
6675 if (tertiary_icode != CODE_FOR_nothing)
6676 {
6677 emit_insn ((GEN_FCN (tertiary_icode)
6678 (second_reload_reg, real_oldequiv,
6679 third_reload_reg)));
6680 }
6681 else if (third_reload_reg)
6682 {
6683 gen_reload (third_reload_reg, real_oldequiv,
6684 rl->opnum,
6685 rl->when_needed);
6686 gen_reload (second_reload_reg, third_reload_reg,
6687 rl->opnum,
6688 rl->when_needed);
6689 }
6690 else
6691 gen_reload (second_reload_reg, real_oldequiv,
6692 rl->opnum,
6693 rl->when_needed);
6694
6695 oldequiv = second_reload_reg;
6696 }
6697 }
6698 }
6699
6700 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6701 {
6702 rtx real_oldequiv = oldequiv;
6703
6704 if ((REG_P (oldequiv)
6705 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6706 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6707 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6708 || (GET_CODE (oldequiv) == SUBREG
6709 && REG_P (SUBREG_REG (oldequiv))
6710 && (REGNO (SUBREG_REG (oldequiv))
6711 >= FIRST_PSEUDO_REGISTER)
6712 && ((reg_equiv_memory_loc
6713 [REGNO (SUBREG_REG (oldequiv))] != 0)
6714 || (reg_equiv_constant
6715 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6716 || (CONSTANT_P (oldequiv)
6717 && (PREFERRED_RELOAD_CLASS (oldequiv,
6718 REGNO_REG_CLASS (REGNO (reloadreg)))
6719 == NO_REGS)))
6720 real_oldequiv = rl->in;
6721 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6722 rl->when_needed);
6723 }
6724
6725 if (flag_non_call_exceptions)
6726 copy_eh_notes (insn, get_insns ());
6727
6728 /* End this sequence. */
6729 *where = get_insns ();
6730 end_sequence ();
6731
6732 /* Update reload_override_in so that delete_address_reloads_1
6733 can see the actual register usage. */
6734 if (oldequiv_reg)
6735 reload_override_in[j] = oldequiv;
6736 }
6737
6738 /* Generate insns to for the output reload RL, which is for the insn described
6739 by CHAIN and has the number J. */
6740 static void
6741 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6742 int j)
6743 {
6744 rtx reloadreg = rl->reg_rtx;
6745 rtx insn = chain->insn;
6746 int special = 0;
6747 rtx old = rl->out;
6748 enum machine_mode mode = GET_MODE (old);
6749 rtx p;
6750
6751 if (rl->when_needed == RELOAD_OTHER)
6752 start_sequence ();
6753 else
6754 push_to_sequence (output_reload_insns[rl->opnum]);
6755
6756 /* Determine the mode to reload in.
6757 See comments above (for input reloading). */
6758
6759 if (mode == VOIDmode)
6760 {
6761 /* VOIDmode should never happen for an output. */
6762 if (asm_noperands (PATTERN (insn)) < 0)
6763 /* It's the compiler's fault. */
6764 fatal_insn ("VOIDmode on an output", insn);
6765 error_for_asm (insn, "output operand is constant in %<asm%>");
6766 /* Prevent crash--use something we know is valid. */
6767 mode = word_mode;
6768 old = gen_rtx_REG (mode, REGNO (reloadreg));
6769 }
6770
6771 if (GET_MODE (reloadreg) != mode)
6772 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6773
6774 /* If we need two reload regs, set RELOADREG to the intermediate
6775 one, since it will be stored into OLD. We might need a secondary
6776 register only for an input reload, so check again here. */
6777
6778 if (rl->secondary_out_reload >= 0)
6779 {
6780 rtx real_old = old;
6781 int secondary_reload = rl->secondary_out_reload;
6782 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
6783
6784 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6785 && reg_equiv_mem[REGNO (old)] != 0)
6786 real_old = reg_equiv_mem[REGNO (old)];
6787
6788 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
6789 {
6790 rtx second_reloadreg = reloadreg;
6791 reloadreg = rld[secondary_reload].reg_rtx;
6792
6793 /* See if RELOADREG is to be used as a scratch register
6794 or as an intermediate register. */
6795 if (rl->secondary_out_icode != CODE_FOR_nothing)
6796 {
6797 /* We'd have to add extra code to handle this case. */
6798 gcc_assert (tertiary_reload < 0);
6799
6800 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6801 (real_old, second_reloadreg, reloadreg)));
6802 special = 1;
6803 }
6804 else
6805 {
6806 /* See if we need both a scratch and intermediate reload
6807 register. */
6808
6809 enum insn_code tertiary_icode
6810 = rld[secondary_reload].secondary_out_icode;
6811
6812 /* We'd have to add more code for quartary reloads. */
6813 gcc_assert (tertiary_reload < 0
6814 || rld[tertiary_reload].secondary_out_reload < 0);
6815
6816 if (GET_MODE (reloadreg) != mode)
6817 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6818
6819 if (tertiary_icode != CODE_FOR_nothing)
6820 {
6821 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6822 rtx tem;
6823
6824 /* Copy primary reload reg to secondary reload reg.
6825 (Note that these have been swapped above, then
6826 secondary reload reg to OLD using our insn.) */
6827
6828 /* If REAL_OLD is a paradoxical SUBREG, remove it
6829 and try to put the opposite SUBREG on
6830 RELOADREG. */
6831 if (GET_CODE (real_old) == SUBREG
6832 && (GET_MODE_SIZE (GET_MODE (real_old))
6833 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6834 && 0 != (tem = gen_lowpart_common
6835 (GET_MODE (SUBREG_REG (real_old)),
6836 reloadreg)))
6837 real_old = SUBREG_REG (real_old), reloadreg = tem;
6838
6839 gen_reload (reloadreg, second_reloadreg,
6840 rl->opnum, rl->when_needed);
6841 emit_insn ((GEN_FCN (tertiary_icode)
6842 (real_old, reloadreg, third_reloadreg)));
6843 special = 1;
6844 }
6845
6846 else
6847 {
6848 /* Copy between the reload regs here and then to
6849 OUT later. */
6850
6851 gen_reload (reloadreg, second_reloadreg,
6852 rl->opnum, rl->when_needed);
6853 if (tertiary_reload >= 0)
6854 {
6855 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
6856
6857 gen_reload (third_reloadreg, reloadreg,
6858 rl->opnum, rl->when_needed);
6859 reloadreg = third_reloadreg;
6860 }
6861 }
6862 }
6863 }
6864 }
6865
6866 /* Output the last reload insn. */
6867 if (! special)
6868 {
6869 rtx set;
6870
6871 /* Don't output the last reload if OLD is not the dest of
6872 INSN and is in the src and is clobbered by INSN. */
6873 if (! flag_expensive_optimizations
6874 || !REG_P (old)
6875 || !(set = single_set (insn))
6876 || rtx_equal_p (old, SET_DEST (set))
6877 || !reg_mentioned_p (old, SET_SRC (set))
6878 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6879 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6880 gen_reload (old, reloadreg, rl->opnum,
6881 rl->when_needed);
6882 }
6883
6884 /* Look at all insns we emitted, just to be safe. */
6885 for (p = get_insns (); p; p = NEXT_INSN (p))
6886 if (INSN_P (p))
6887 {
6888 rtx pat = PATTERN (p);
6889
6890 /* If this output reload doesn't come from a spill reg,
6891 clear any memory of reloaded copies of the pseudo reg.
6892 If this output reload comes from a spill reg,
6893 reg_has_output_reload will make this do nothing. */
6894 note_stores (pat, forget_old_reloads_1, NULL);
6895
6896 if (reg_mentioned_p (rl->reg_rtx, pat))
6897 {
6898 rtx set = single_set (insn);
6899 if (reload_spill_index[j] < 0
6900 && set
6901 && SET_SRC (set) == rl->reg_rtx)
6902 {
6903 int src = REGNO (SET_SRC (set));
6904
6905 reload_spill_index[j] = src;
6906 SET_HARD_REG_BIT (reg_is_output_reload, src);
6907 if (find_regno_note (insn, REG_DEAD, src))
6908 SET_HARD_REG_BIT (reg_reloaded_died, src);
6909 }
6910 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6911 {
6912 int s = rl->secondary_out_reload;
6913 set = single_set (p);
6914 /* If this reload copies only to the secondary reload
6915 register, the secondary reload does the actual
6916 store. */
6917 if (s >= 0 && set == NULL_RTX)
6918 /* We can't tell what function the secondary reload
6919 has and where the actual store to the pseudo is
6920 made; leave new_spill_reg_store alone. */
6921 ;
6922 else if (s >= 0
6923 && SET_SRC (set) == rl->reg_rtx
6924 && SET_DEST (set) == rld[s].reg_rtx)
6925 {
6926 /* Usually the next instruction will be the
6927 secondary reload insn; if we can confirm
6928 that it is, setting new_spill_reg_store to
6929 that insn will allow an extra optimization. */
6930 rtx s_reg = rld[s].reg_rtx;
6931 rtx next = NEXT_INSN (p);
6932 rld[s].out = rl->out;
6933 rld[s].out_reg = rl->out_reg;
6934 set = single_set (next);
6935 if (set && SET_SRC (set) == s_reg
6936 && ! new_spill_reg_store[REGNO (s_reg)])
6937 {
6938 SET_HARD_REG_BIT (reg_is_output_reload,
6939 REGNO (s_reg));
6940 new_spill_reg_store[REGNO (s_reg)] = next;
6941 }
6942 }
6943 else
6944 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6945 }
6946 }
6947 }
6948
6949 if (rl->when_needed == RELOAD_OTHER)
6950 {
6951 emit_insn (other_output_reload_insns[rl->opnum]);
6952 other_output_reload_insns[rl->opnum] = get_insns ();
6953 }
6954 else
6955 output_reload_insns[rl->opnum] = get_insns ();
6956
6957 if (flag_non_call_exceptions)
6958 copy_eh_notes (insn, get_insns ());
6959
6960 end_sequence ();
6961 }
6962
6963 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6964 and has the number J. */
6965 static void
6966 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6967 {
6968 rtx insn = chain->insn;
6969 rtx old = (rl->in && MEM_P (rl->in)
6970 ? rl->in_reg : rl->in);
6971
6972 if (old != 0
6973 /* AUTO_INC reloads need to be handled even if inherited. We got an
6974 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6975 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6976 && ! rtx_equal_p (rl->reg_rtx, old)
6977 && rl->reg_rtx != 0)
6978 emit_input_reload_insns (chain, rld + j, old, j);
6979
6980 /* When inheriting a wider reload, we have a MEM in rl->in,
6981 e.g. inheriting a SImode output reload for
6982 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6983 if (optimize && reload_inherited[j] && rl->in
6984 && MEM_P (rl->in)
6985 && MEM_P (rl->in_reg)
6986 && reload_spill_index[j] >= 0
6987 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6988 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6989
6990 /* If we are reloading a register that was recently stored in with an
6991 output-reload, see if we can prove there was
6992 actually no need to store the old value in it. */
6993
6994 if (optimize
6995 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
6996 that there may be multiple uses of the previous output reload.
6997 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
6998 && rl->when_needed == RELOAD_FOR_INPUT
6999 && (reload_inherited[j] || reload_override_in[j])
7000 && rl->reg_rtx
7001 && REG_P (rl->reg_rtx)
7002 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
7003 #if 0
7004 /* There doesn't seem to be any reason to restrict this to pseudos
7005 and doing so loses in the case where we are copying from a
7006 register of the wrong class. */
7007 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
7008 >= FIRST_PSEUDO_REGISTER)
7009 #endif
7010 /* The insn might have already some references to stackslots
7011 replaced by MEMs, while reload_out_reg still names the
7012 original pseudo. */
7013 && (dead_or_set_p (insn,
7014 spill_reg_stored_to[REGNO (rl->reg_rtx)])
7015 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
7016 rl->out_reg)))
7017 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
7018 }
7019
7020 /* Do output reloading for reload RL, which is for the insn described by
7021 CHAIN and has the number J.
7022 ??? At some point we need to support handling output reloads of
7023 JUMP_INSNs or insns that set cc0. */
7024 static void
7025 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7026 {
7027 rtx note, old;
7028 rtx insn = chain->insn;
7029 /* If this is an output reload that stores something that is
7030 not loaded in this same reload, see if we can eliminate a previous
7031 store. */
7032 rtx pseudo = rl->out_reg;
7033
7034 if (pseudo
7035 && optimize
7036 && REG_P (pseudo)
7037 && ! rtx_equal_p (rl->in_reg, pseudo)
7038 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7039 && reg_last_reload_reg[REGNO (pseudo)])
7040 {
7041 int pseudo_no = REGNO (pseudo);
7042 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7043
7044 /* We don't need to test full validity of last_regno for
7045 inherit here; we only want to know if the store actually
7046 matches the pseudo. */
7047 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7048 && reg_reloaded_contents[last_regno] == pseudo_no
7049 && spill_reg_store[last_regno]
7050 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7051 delete_output_reload (insn, j, last_regno);
7052 }
7053
7054 old = rl->out_reg;
7055 if (old == 0
7056 || rl->reg_rtx == old
7057 || rl->reg_rtx == 0)
7058 return;
7059
7060 /* An output operand that dies right away does need a reload,
7061 but need not be copied from it. Show the new location in the
7062 REG_UNUSED note. */
7063 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7064 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7065 {
7066 XEXP (note, 0) = rl->reg_rtx;
7067 return;
7068 }
7069 /* Likewise for a SUBREG of an operand that dies. */
7070 else if (GET_CODE (old) == SUBREG
7071 && REG_P (SUBREG_REG (old))
7072 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7073 SUBREG_REG (old))))
7074 {
7075 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
7076 rl->reg_rtx);
7077 return;
7078 }
7079 else if (GET_CODE (old) == SCRATCH)
7080 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7081 but we don't want to make an output reload. */
7082 return;
7083
7084 /* If is a JUMP_INSN, we can't support output reloads yet. */
7085 gcc_assert (NONJUMP_INSN_P (insn));
7086
7087 emit_output_reload_insns (chain, rld + j, j);
7088 }
7089
7090 /* Reload number R reloads from or to a group of hard registers starting at
7091 register REGNO. Return true if it can be treated for inheritance purposes
7092 like a group of reloads, each one reloading a single hard register.
7093 The caller has already checked that the spill register and REGNO use
7094 the same number of registers to store the reload value. */
7095
7096 static bool
7097 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7098 {
7099 #ifdef CANNOT_CHANGE_MODE_CLASS
7100 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7101 GET_MODE (rld[r].reg_rtx),
7102 reg_raw_mode[reload_spill_index[r]])
7103 && !REG_CANNOT_CHANGE_MODE_P (regno,
7104 GET_MODE (rld[r].reg_rtx),
7105 reg_raw_mode[regno]));
7106 #else
7107 return true;
7108 #endif
7109 }
7110
7111 /* Output insns to reload values in and out of the chosen reload regs. */
7112
7113 static void
7114 emit_reload_insns (struct insn_chain *chain)
7115 {
7116 rtx insn = chain->insn;
7117
7118 int j;
7119
7120 CLEAR_HARD_REG_SET (reg_reloaded_died);
7121
7122 for (j = 0; j < reload_n_operands; j++)
7123 input_reload_insns[j] = input_address_reload_insns[j]
7124 = inpaddr_address_reload_insns[j]
7125 = output_reload_insns[j] = output_address_reload_insns[j]
7126 = outaddr_address_reload_insns[j]
7127 = other_output_reload_insns[j] = 0;
7128 other_input_address_reload_insns = 0;
7129 other_input_reload_insns = 0;
7130 operand_reload_insns = 0;
7131 other_operand_reload_insns = 0;
7132
7133 /* Dump reloads into the dump file. */
7134 if (dump_file)
7135 {
7136 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7137 debug_reload_to_stream (dump_file);
7138 }
7139
7140 /* Now output the instructions to copy the data into and out of the
7141 reload registers. Do these in the order that the reloads were reported,
7142 since reloads of base and index registers precede reloads of operands
7143 and the operands may need the base and index registers reloaded. */
7144
7145 for (j = 0; j < n_reloads; j++)
7146 {
7147 if (rld[j].reg_rtx
7148 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7149 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7150
7151 do_input_reload (chain, rld + j, j);
7152 do_output_reload (chain, rld + j, j);
7153 }
7154
7155 /* Now write all the insns we made for reloads in the order expected by
7156 the allocation functions. Prior to the insn being reloaded, we write
7157 the following reloads:
7158
7159 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7160
7161 RELOAD_OTHER reloads.
7162
7163 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7164 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7165 RELOAD_FOR_INPUT reload for the operand.
7166
7167 RELOAD_FOR_OPADDR_ADDRS reloads.
7168
7169 RELOAD_FOR_OPERAND_ADDRESS reloads.
7170
7171 After the insn being reloaded, we write the following:
7172
7173 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7174 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7175 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7176 reloads for the operand. The RELOAD_OTHER output reloads are
7177 output in descending order by reload number. */
7178
7179 emit_insn_before (other_input_address_reload_insns, insn);
7180 emit_insn_before (other_input_reload_insns, insn);
7181
7182 for (j = 0; j < reload_n_operands; j++)
7183 {
7184 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7185 emit_insn_before (input_address_reload_insns[j], insn);
7186 emit_insn_before (input_reload_insns[j], insn);
7187 }
7188
7189 emit_insn_before (other_operand_reload_insns, insn);
7190 emit_insn_before (operand_reload_insns, insn);
7191
7192 for (j = 0; j < reload_n_operands; j++)
7193 {
7194 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7195 x = emit_insn_after (output_address_reload_insns[j], x);
7196 x = emit_insn_after (output_reload_insns[j], x);
7197 emit_insn_after (other_output_reload_insns[j], x);
7198 }
7199
7200 /* For all the spill regs newly reloaded in this instruction,
7201 record what they were reloaded from, so subsequent instructions
7202 can inherit the reloads.
7203
7204 Update spill_reg_store for the reloads of this insn.
7205 Copy the elements that were updated in the loop above. */
7206
7207 for (j = 0; j < n_reloads; j++)
7208 {
7209 int r = reload_order[j];
7210 int i = reload_spill_index[r];
7211
7212 /* If this is a non-inherited input reload from a pseudo, we must
7213 clear any memory of a previous store to the same pseudo. Only do
7214 something if there will not be an output reload for the pseudo
7215 being reloaded. */
7216 if (rld[r].in_reg != 0
7217 && ! (reload_inherited[r] || reload_override_in[r]))
7218 {
7219 rtx reg = rld[r].in_reg;
7220
7221 if (GET_CODE (reg) == SUBREG)
7222 reg = SUBREG_REG (reg);
7223
7224 if (REG_P (reg)
7225 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7226 && ! reg_has_output_reload[REGNO (reg)])
7227 {
7228 int nregno = REGNO (reg);
7229
7230 if (reg_last_reload_reg[nregno])
7231 {
7232 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7233
7234 if (reg_reloaded_contents[last_regno] == nregno)
7235 spill_reg_store[last_regno] = 0;
7236 }
7237 }
7238 }
7239
7240 /* I is nonneg if this reload used a register.
7241 If rld[r].reg_rtx is 0, this is an optional reload
7242 that we opted to ignore. */
7243
7244 if (i >= 0 && rld[r].reg_rtx != 0)
7245 {
7246 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7247 int k;
7248 int part_reaches_end = 0;
7249 int all_reaches_end = 1;
7250
7251 /* For a multi register reload, we need to check if all or part
7252 of the value lives to the end. */
7253 for (k = 0; k < nr; k++)
7254 {
7255 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7256 rld[r].when_needed))
7257 part_reaches_end = 1;
7258 else
7259 all_reaches_end = 0;
7260 }
7261
7262 /* Ignore reloads that don't reach the end of the insn in
7263 entirety. */
7264 if (all_reaches_end)
7265 {
7266 /* First, clear out memory of what used to be in this spill reg.
7267 If consecutive registers are used, clear them all. */
7268
7269 for (k = 0; k < nr; k++)
7270 {
7271 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7272 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7273 }
7274
7275 /* Maybe the spill reg contains a copy of reload_out. */
7276 if (rld[r].out != 0
7277 && (REG_P (rld[r].out)
7278 #ifdef AUTO_INC_DEC
7279 || ! rld[r].out_reg
7280 #endif
7281 || REG_P (rld[r].out_reg)))
7282 {
7283 rtx out = (REG_P (rld[r].out)
7284 ? rld[r].out
7285 : rld[r].out_reg
7286 ? rld[r].out_reg
7287 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7288 int nregno = REGNO (out);
7289 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7290 : hard_regno_nregs[nregno]
7291 [GET_MODE (rld[r].reg_rtx)]);
7292 bool piecemeal;
7293
7294 spill_reg_store[i] = new_spill_reg_store[i];
7295 spill_reg_stored_to[i] = out;
7296 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7297
7298 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7299 && nr == nnr
7300 && inherit_piecemeal_p (r, nregno));
7301
7302 /* If NREGNO is a hard register, it may occupy more than
7303 one register. If it does, say what is in the
7304 rest of the registers assuming that both registers
7305 agree on how many words the object takes. If not,
7306 invalidate the subsequent registers. */
7307
7308 if (nregno < FIRST_PSEUDO_REGISTER)
7309 for (k = 1; k < nnr; k++)
7310 reg_last_reload_reg[nregno + k]
7311 = (piecemeal
7312 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7313 : 0);
7314
7315 /* Now do the inverse operation. */
7316 for (k = 0; k < nr; k++)
7317 {
7318 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7319 reg_reloaded_contents[i + k]
7320 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7321 ? nregno
7322 : nregno + k);
7323 reg_reloaded_insn[i + k] = insn;
7324 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7325 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7326 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7327 }
7328 }
7329
7330 /* Maybe the spill reg contains a copy of reload_in. Only do
7331 something if there will not be an output reload for
7332 the register being reloaded. */
7333 else if (rld[r].out_reg == 0
7334 && rld[r].in != 0
7335 && ((REG_P (rld[r].in)
7336 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7337 && ! reg_has_output_reload[REGNO (rld[r].in)])
7338 || (REG_P (rld[r].in_reg)
7339 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7340 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7341 {
7342 int nregno;
7343 int nnr;
7344 rtx in;
7345 bool piecemeal;
7346
7347 if (REG_P (rld[r].in)
7348 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7349 in = rld[r].in;
7350 else if (REG_P (rld[r].in_reg))
7351 in = rld[r].in_reg;
7352 else
7353 in = XEXP (rld[r].in_reg, 0);
7354 nregno = REGNO (in);
7355
7356 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7357 : hard_regno_nregs[nregno]
7358 [GET_MODE (rld[r].reg_rtx)]);
7359
7360 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7361
7362 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7363 && nr == nnr
7364 && inherit_piecemeal_p (r, nregno));
7365
7366 if (nregno < FIRST_PSEUDO_REGISTER)
7367 for (k = 1; k < nnr; k++)
7368 reg_last_reload_reg[nregno + k]
7369 = (piecemeal
7370 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7371 : 0);
7372
7373 /* Unless we inherited this reload, show we haven't
7374 recently done a store.
7375 Previous stores of inherited auto_inc expressions
7376 also have to be discarded. */
7377 if (! reload_inherited[r]
7378 || (rld[r].out && ! rld[r].out_reg))
7379 spill_reg_store[i] = 0;
7380
7381 for (k = 0; k < nr; k++)
7382 {
7383 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7384 reg_reloaded_contents[i + k]
7385 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7386 ? nregno
7387 : nregno + k);
7388 reg_reloaded_insn[i + k] = insn;
7389 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7390 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7391 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7392 }
7393 }
7394 }
7395
7396 /* However, if part of the reload reaches the end, then we must
7397 invalidate the old info for the part that survives to the end. */
7398 else if (part_reaches_end)
7399 {
7400 for (k = 0; k < nr; k++)
7401 if (reload_reg_reaches_end_p (i + k,
7402 rld[r].opnum,
7403 rld[r].when_needed))
7404 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7405 }
7406 }
7407
7408 /* The following if-statement was #if 0'd in 1.34 (or before...).
7409 It's reenabled in 1.35 because supposedly nothing else
7410 deals with this problem. */
7411
7412 /* If a register gets output-reloaded from a non-spill register,
7413 that invalidates any previous reloaded copy of it.
7414 But forget_old_reloads_1 won't get to see it, because
7415 it thinks only about the original insn. So invalidate it here.
7416 Also do the same thing for RELOAD_OTHER constraints where the
7417 output is discarded. */
7418 if (i < 0
7419 && ((rld[r].out != 0
7420 && (REG_P (rld[r].out)
7421 || (MEM_P (rld[r].out)
7422 && REG_P (rld[r].out_reg))))
7423 || (rld[r].out == 0 && rld[r].out_reg
7424 && REG_P (rld[r].out_reg))))
7425 {
7426 rtx out = ((rld[r].out && REG_P (rld[r].out))
7427 ? rld[r].out : rld[r].out_reg);
7428 int nregno = REGNO (out);
7429 if (nregno >= FIRST_PSEUDO_REGISTER)
7430 {
7431 rtx src_reg, store_insn = NULL_RTX;
7432
7433 reg_last_reload_reg[nregno] = 0;
7434
7435 /* If we can find a hard register that is stored, record
7436 the storing insn so that we may delete this insn with
7437 delete_output_reload. */
7438 src_reg = rld[r].reg_rtx;
7439
7440 /* If this is an optional reload, try to find the source reg
7441 from an input reload. */
7442 if (! src_reg)
7443 {
7444 rtx set = single_set (insn);
7445 if (set && SET_DEST (set) == rld[r].out)
7446 {
7447 int k;
7448
7449 src_reg = SET_SRC (set);
7450 store_insn = insn;
7451 for (k = 0; k < n_reloads; k++)
7452 {
7453 if (rld[k].in == src_reg)
7454 {
7455 src_reg = rld[k].reg_rtx;
7456 break;
7457 }
7458 }
7459 }
7460 }
7461 else
7462 store_insn = new_spill_reg_store[REGNO (src_reg)];
7463 if (src_reg && REG_P (src_reg)
7464 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7465 {
7466 int src_regno = REGNO (src_reg);
7467 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7468 /* The place where to find a death note varies with
7469 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7470 necessarily checked exactly in the code that moves
7471 notes, so just check both locations. */
7472 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7473 if (! note && store_insn)
7474 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7475 while (nr-- > 0)
7476 {
7477 spill_reg_store[src_regno + nr] = store_insn;
7478 spill_reg_stored_to[src_regno + nr] = out;
7479 reg_reloaded_contents[src_regno + nr] = nregno;
7480 reg_reloaded_insn[src_regno + nr] = store_insn;
7481 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7482 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7483 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7484 GET_MODE (src_reg)))
7485 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7486 src_regno + nr);
7487 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7488 if (note)
7489 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7490 else
7491 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7492 }
7493 reg_last_reload_reg[nregno] = src_reg;
7494 /* We have to set reg_has_output_reload here, or else
7495 forget_old_reloads_1 will clear reg_last_reload_reg
7496 right away. */
7497 reg_has_output_reload[nregno] = 1;
7498 }
7499 }
7500 else
7501 {
7502 int num_regs = hard_regno_nregs[nregno][GET_MODE (out)];
7503
7504 while (num_regs-- > 0)
7505 reg_last_reload_reg[nregno + num_regs] = 0;
7506 }
7507 }
7508 }
7509 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7510 }
7511 \f
7512 /* Go through the motions to emit INSN and test if it is strictly valid.
7513 Return the emitted insn if valid, else return NULL. */
7514
7515 static rtx
7516 emit_insn_if_valid_for_reload (rtx insn)
7517 {
7518 rtx last = get_last_insn ();
7519 int code;
7520
7521 insn = emit_insn (insn);
7522 code = recog_memoized (insn);
7523
7524 if (code >= 0)
7525 {
7526 extract_insn (insn);
7527 /* We want constrain operands to treat this insn strictly in its
7528 validity determination, i.e., the way it would after reload has
7529 completed. */
7530 if (constrain_operands (1))
7531 return insn;
7532 }
7533
7534 delete_insns_since (last);
7535 return NULL;
7536 }
7537
7538 /* Emit code to perform a reload from IN (which may be a reload register) to
7539 OUT (which may also be a reload register). IN or OUT is from operand
7540 OPNUM with reload type TYPE.
7541
7542 Returns first insn emitted. */
7543
7544 static rtx
7545 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7546 {
7547 rtx last = get_last_insn ();
7548 rtx tem;
7549
7550 /* If IN is a paradoxical SUBREG, remove it and try to put the
7551 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7552 if (GET_CODE (in) == SUBREG
7553 && (GET_MODE_SIZE (GET_MODE (in))
7554 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7555 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7556 in = SUBREG_REG (in), out = tem;
7557 else if (GET_CODE (out) == SUBREG
7558 && (GET_MODE_SIZE (GET_MODE (out))
7559 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7560 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7561 out = SUBREG_REG (out), in = tem;
7562
7563 /* How to do this reload can get quite tricky. Normally, we are being
7564 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7565 register that didn't get a hard register. In that case we can just
7566 call emit_move_insn.
7567
7568 We can also be asked to reload a PLUS that adds a register or a MEM to
7569 another register, constant or MEM. This can occur during frame pointer
7570 elimination and while reloading addresses. This case is handled by
7571 trying to emit a single insn to perform the add. If it is not valid,
7572 we use a two insn sequence.
7573
7574 Or we can be asked to reload an unary operand that was a fragment of
7575 an addressing mode, into a register. If it isn't recognized as-is,
7576 we try making the unop operand and the reload-register the same:
7577 (set reg:X (unop:X expr:Y))
7578 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7579
7580 Finally, we could be called to handle an 'o' constraint by putting
7581 an address into a register. In that case, we first try to do this
7582 with a named pattern of "reload_load_address". If no such pattern
7583 exists, we just emit a SET insn and hope for the best (it will normally
7584 be valid on machines that use 'o').
7585
7586 This entire process is made complex because reload will never
7587 process the insns we generate here and so we must ensure that
7588 they will fit their constraints and also by the fact that parts of
7589 IN might be being reloaded separately and replaced with spill registers.
7590 Because of this, we are, in some sense, just guessing the right approach
7591 here. The one listed above seems to work.
7592
7593 ??? At some point, this whole thing needs to be rethought. */
7594
7595 if (GET_CODE (in) == PLUS
7596 && (REG_P (XEXP (in, 0))
7597 || GET_CODE (XEXP (in, 0)) == SUBREG
7598 || MEM_P (XEXP (in, 0)))
7599 && (REG_P (XEXP (in, 1))
7600 || GET_CODE (XEXP (in, 1)) == SUBREG
7601 || CONSTANT_P (XEXP (in, 1))
7602 || MEM_P (XEXP (in, 1))))
7603 {
7604 /* We need to compute the sum of a register or a MEM and another
7605 register, constant, or MEM, and put it into the reload
7606 register. The best possible way of doing this is if the machine
7607 has a three-operand ADD insn that accepts the required operands.
7608
7609 The simplest approach is to try to generate such an insn and see if it
7610 is recognized and matches its constraints. If so, it can be used.
7611
7612 It might be better not to actually emit the insn unless it is valid,
7613 but we need to pass the insn as an operand to `recog' and
7614 `extract_insn' and it is simpler to emit and then delete the insn if
7615 not valid than to dummy things up. */
7616
7617 rtx op0, op1, tem, insn;
7618 int code;
7619
7620 op0 = find_replacement (&XEXP (in, 0));
7621 op1 = find_replacement (&XEXP (in, 1));
7622
7623 /* Since constraint checking is strict, commutativity won't be
7624 checked, so we need to do that here to avoid spurious failure
7625 if the add instruction is two-address and the second operand
7626 of the add is the same as the reload reg, which is frequently
7627 the case. If the insn would be A = B + A, rearrange it so
7628 it will be A = A + B as constrain_operands expects. */
7629
7630 if (REG_P (XEXP (in, 1))
7631 && REGNO (out) == REGNO (XEXP (in, 1)))
7632 tem = op0, op0 = op1, op1 = tem;
7633
7634 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7635 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7636
7637 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7638 if (insn)
7639 return insn;
7640
7641 /* If that failed, we must use a conservative two-insn sequence.
7642
7643 Use a move to copy one operand into the reload register. Prefer
7644 to reload a constant, MEM or pseudo since the move patterns can
7645 handle an arbitrary operand. If OP1 is not a constant, MEM or
7646 pseudo and OP1 is not a valid operand for an add instruction, then
7647 reload OP1.
7648
7649 After reloading one of the operands into the reload register, add
7650 the reload register to the output register.
7651
7652 If there is another way to do this for a specific machine, a
7653 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7654 we emit below. */
7655
7656 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7657
7658 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7659 || (REG_P (op1)
7660 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7661 || (code != CODE_FOR_nothing
7662 && ! ((*insn_data[code].operand[2].predicate)
7663 (op1, insn_data[code].operand[2].mode))))
7664 tem = op0, op0 = op1, op1 = tem;
7665
7666 gen_reload (out, op0, opnum, type);
7667
7668 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7669 This fixes a problem on the 32K where the stack pointer cannot
7670 be used as an operand of an add insn. */
7671
7672 if (rtx_equal_p (op0, op1))
7673 op1 = out;
7674
7675 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
7676 if (insn)
7677 {
7678 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7679 REG_NOTES (insn)
7680 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7681 return insn;
7682 }
7683
7684 /* If that failed, copy the address register to the reload register.
7685 Then add the constant to the reload register. */
7686
7687 gen_reload (out, op1, opnum, type);
7688 insn = emit_insn (gen_add2_insn (out, op0));
7689 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7690 }
7691
7692 #ifdef SECONDARY_MEMORY_NEEDED
7693 /* If we need a memory location to do the move, do it that way. */
7694 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7695 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7696 && (REG_P (out) || GET_CODE (out) == SUBREG)
7697 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7698 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7699 REGNO_REG_CLASS (reg_or_subregno (out)),
7700 GET_MODE (out)))
7701 {
7702 /* Get the memory to use and rewrite both registers to its mode. */
7703 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7704
7705 if (GET_MODE (loc) != GET_MODE (out))
7706 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7707
7708 if (GET_MODE (loc) != GET_MODE (in))
7709 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7710
7711 gen_reload (loc, in, opnum, type);
7712 gen_reload (out, loc, opnum, type);
7713 }
7714 #endif
7715 else if (REG_P (out) && UNARY_P (in))
7716 {
7717 rtx insn;
7718 rtx op1;
7719 rtx out_moded;
7720 rtx set;
7721
7722 op1 = find_replacement (&XEXP (in, 0));
7723 if (op1 != XEXP (in, 0))
7724 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
7725
7726 /* First, try a plain SET. */
7727 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7728 if (set)
7729 return set;
7730
7731 /* If that failed, move the inner operand to the reload
7732 register, and try the same unop with the inner expression
7733 replaced with the reload register. */
7734
7735 if (GET_MODE (op1) != GET_MODE (out))
7736 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
7737 else
7738 out_moded = out;
7739
7740 gen_reload (out_moded, op1, opnum, type);
7741
7742 insn
7743 = gen_rtx_SET (VOIDmode, out,
7744 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
7745 out_moded));
7746 insn = emit_insn_if_valid_for_reload (insn);
7747 if (insn)
7748 {
7749 REG_NOTES (insn)
7750 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7751 return insn;
7752 }
7753
7754 fatal_insn ("Failure trying to reload:", set);
7755 }
7756 /* If IN is a simple operand, use gen_move_insn. */
7757 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7758 emit_insn (gen_move_insn (out, in));
7759
7760 #ifdef HAVE_reload_load_address
7761 else if (HAVE_reload_load_address)
7762 emit_insn (gen_reload_load_address (out, in));
7763 #endif
7764
7765 /* Otherwise, just write (set OUT IN) and hope for the best. */
7766 else
7767 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7768
7769 /* Return the first insn emitted.
7770 We can not just return get_last_insn, because there may have
7771 been multiple instructions emitted. Also note that gen_move_insn may
7772 emit more than one insn itself, so we can not assume that there is one
7773 insn emitted per emit_insn_before call. */
7774
7775 return last ? NEXT_INSN (last) : get_insns ();
7776 }
7777 \f
7778 /* Delete a previously made output-reload whose result we now believe
7779 is not needed. First we double-check.
7780
7781 INSN is the insn now being processed.
7782 LAST_RELOAD_REG is the hard register number for which we want to delete
7783 the last output reload.
7784 J is the reload-number that originally used REG. The caller has made
7785 certain that reload J doesn't use REG any longer for input. */
7786
7787 static void
7788 delete_output_reload (rtx insn, int j, int last_reload_reg)
7789 {
7790 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7791 rtx reg = spill_reg_stored_to[last_reload_reg];
7792 int k;
7793 int n_occurrences;
7794 int n_inherited = 0;
7795 rtx i1;
7796 rtx substed;
7797
7798 /* It is possible that this reload has been only used to set another reload
7799 we eliminated earlier and thus deleted this instruction too. */
7800 if (INSN_DELETED_P (output_reload_insn))
7801 return;
7802
7803 /* Get the raw pseudo-register referred to. */
7804
7805 while (GET_CODE (reg) == SUBREG)
7806 reg = SUBREG_REG (reg);
7807 substed = reg_equiv_memory_loc[REGNO (reg)];
7808
7809 /* This is unsafe if the operand occurs more often in the current
7810 insn than it is inherited. */
7811 for (k = n_reloads - 1; k >= 0; k--)
7812 {
7813 rtx reg2 = rld[k].in;
7814 if (! reg2)
7815 continue;
7816 if (MEM_P (reg2) || reload_override_in[k])
7817 reg2 = rld[k].in_reg;
7818 #ifdef AUTO_INC_DEC
7819 if (rld[k].out && ! rld[k].out_reg)
7820 reg2 = XEXP (rld[k].in_reg, 0);
7821 #endif
7822 while (GET_CODE (reg2) == SUBREG)
7823 reg2 = SUBREG_REG (reg2);
7824 if (rtx_equal_p (reg2, reg))
7825 {
7826 if (reload_inherited[k] || reload_override_in[k] || k == j)
7827 {
7828 n_inherited++;
7829 reg2 = rld[k].out_reg;
7830 if (! reg2)
7831 continue;
7832 while (GET_CODE (reg2) == SUBREG)
7833 reg2 = XEXP (reg2, 0);
7834 if (rtx_equal_p (reg2, reg))
7835 n_inherited++;
7836 }
7837 else
7838 return;
7839 }
7840 }
7841 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7842 if (substed)
7843 n_occurrences += count_occurrences (PATTERN (insn),
7844 eliminate_regs (substed, 0,
7845 NULL_RTX), 0);
7846 if (n_occurrences > n_inherited)
7847 return;
7848
7849 /* If the pseudo-reg we are reloading is no longer referenced
7850 anywhere between the store into it and here,
7851 and we're within the same basic block, then the value can only
7852 pass through the reload reg and end up here.
7853 Otherwise, give up--return. */
7854 for (i1 = NEXT_INSN (output_reload_insn);
7855 i1 != insn; i1 = NEXT_INSN (i1))
7856 {
7857 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7858 return;
7859 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7860 && reg_mentioned_p (reg, PATTERN (i1)))
7861 {
7862 /* If this is USE in front of INSN, we only have to check that
7863 there are no more references than accounted for by inheritance. */
7864 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7865 {
7866 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7867 i1 = NEXT_INSN (i1);
7868 }
7869 if (n_occurrences <= n_inherited && i1 == insn)
7870 break;
7871 return;
7872 }
7873 }
7874
7875 /* We will be deleting the insn. Remove the spill reg information. */
7876 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7877 {
7878 spill_reg_store[last_reload_reg + k] = 0;
7879 spill_reg_stored_to[last_reload_reg + k] = 0;
7880 }
7881
7882 /* The caller has already checked that REG dies or is set in INSN.
7883 It has also checked that we are optimizing, and thus some
7884 inaccuracies in the debugging information are acceptable.
7885 So we could just delete output_reload_insn. But in some cases
7886 we can improve the debugging information without sacrificing
7887 optimization - maybe even improving the code: See if the pseudo
7888 reg has been completely replaced with reload regs. If so, delete
7889 the store insn and forget we had a stack slot for the pseudo. */
7890 if (rld[j].out != rld[j].in
7891 && REG_N_DEATHS (REGNO (reg)) == 1
7892 && REG_N_SETS (REGNO (reg)) == 1
7893 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7894 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7895 {
7896 rtx i2;
7897
7898 /* We know that it was used only between here and the beginning of
7899 the current basic block. (We also know that the last use before
7900 INSN was the output reload we are thinking of deleting, but never
7901 mind that.) Search that range; see if any ref remains. */
7902 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7903 {
7904 rtx set = single_set (i2);
7905
7906 /* Uses which just store in the pseudo don't count,
7907 since if they are the only uses, they are dead. */
7908 if (set != 0 && SET_DEST (set) == reg)
7909 continue;
7910 if (LABEL_P (i2)
7911 || JUMP_P (i2))
7912 break;
7913 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
7914 && reg_mentioned_p (reg, PATTERN (i2)))
7915 {
7916 /* Some other ref remains; just delete the output reload we
7917 know to be dead. */
7918 delete_address_reloads (output_reload_insn, insn);
7919 delete_insn (output_reload_insn);
7920 return;
7921 }
7922 }
7923
7924 /* Delete the now-dead stores into this pseudo. Note that this
7925 loop also takes care of deleting output_reload_insn. */
7926 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7927 {
7928 rtx set = single_set (i2);
7929
7930 if (set != 0 && SET_DEST (set) == reg)
7931 {
7932 delete_address_reloads (i2, insn);
7933 delete_insn (i2);
7934 }
7935 if (LABEL_P (i2)
7936 || JUMP_P (i2))
7937 break;
7938 }
7939
7940 /* For the debugging info, say the pseudo lives in this reload reg. */
7941 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7942 alter_reg (REGNO (reg), -1);
7943 }
7944 else
7945 {
7946 delete_address_reloads (output_reload_insn, insn);
7947 delete_insn (output_reload_insn);
7948 }
7949 }
7950
7951 /* We are going to delete DEAD_INSN. Recursively delete loads of
7952 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7953 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7954 static void
7955 delete_address_reloads (rtx dead_insn, rtx current_insn)
7956 {
7957 rtx set = single_set (dead_insn);
7958 rtx set2, dst, prev, next;
7959 if (set)
7960 {
7961 rtx dst = SET_DEST (set);
7962 if (MEM_P (dst))
7963 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7964 }
7965 /* If we deleted the store from a reloaded post_{in,de}c expression,
7966 we can delete the matching adds. */
7967 prev = PREV_INSN (dead_insn);
7968 next = NEXT_INSN (dead_insn);
7969 if (! prev || ! next)
7970 return;
7971 set = single_set (next);
7972 set2 = single_set (prev);
7973 if (! set || ! set2
7974 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7975 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7976 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7977 return;
7978 dst = SET_DEST (set);
7979 if (! rtx_equal_p (dst, SET_DEST (set2))
7980 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7981 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7982 || (INTVAL (XEXP (SET_SRC (set), 1))
7983 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7984 return;
7985 delete_related_insns (prev);
7986 delete_related_insns (next);
7987 }
7988
7989 /* Subfunction of delete_address_reloads: process registers found in X. */
7990 static void
7991 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7992 {
7993 rtx prev, set, dst, i2;
7994 int i, j;
7995 enum rtx_code code = GET_CODE (x);
7996
7997 if (code != REG)
7998 {
7999 const char *fmt = GET_RTX_FORMAT (code);
8000 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8001 {
8002 if (fmt[i] == 'e')
8003 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8004 else if (fmt[i] == 'E')
8005 {
8006 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8007 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8008 current_insn);
8009 }
8010 }
8011 return;
8012 }
8013
8014 if (spill_reg_order[REGNO (x)] < 0)
8015 return;
8016
8017 /* Scan backwards for the insn that sets x. This might be a way back due
8018 to inheritance. */
8019 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8020 {
8021 code = GET_CODE (prev);
8022 if (code == CODE_LABEL || code == JUMP_INSN)
8023 return;
8024 if (!INSN_P (prev))
8025 continue;
8026 if (reg_set_p (x, PATTERN (prev)))
8027 break;
8028 if (reg_referenced_p (x, PATTERN (prev)))
8029 return;
8030 }
8031 if (! prev || INSN_UID (prev) < reload_first_uid)
8032 return;
8033 /* Check that PREV only sets the reload register. */
8034 set = single_set (prev);
8035 if (! set)
8036 return;
8037 dst = SET_DEST (set);
8038 if (!REG_P (dst)
8039 || ! rtx_equal_p (dst, x))
8040 return;
8041 if (! reg_set_p (dst, PATTERN (dead_insn)))
8042 {
8043 /* Check if DST was used in a later insn -
8044 it might have been inherited. */
8045 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8046 {
8047 if (LABEL_P (i2))
8048 break;
8049 if (! INSN_P (i2))
8050 continue;
8051 if (reg_referenced_p (dst, PATTERN (i2)))
8052 {
8053 /* If there is a reference to the register in the current insn,
8054 it might be loaded in a non-inherited reload. If no other
8055 reload uses it, that means the register is set before
8056 referenced. */
8057 if (i2 == current_insn)
8058 {
8059 for (j = n_reloads - 1; j >= 0; j--)
8060 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8061 || reload_override_in[j] == dst)
8062 return;
8063 for (j = n_reloads - 1; j >= 0; j--)
8064 if (rld[j].in && rld[j].reg_rtx == dst)
8065 break;
8066 if (j >= 0)
8067 break;
8068 }
8069 return;
8070 }
8071 if (JUMP_P (i2))
8072 break;
8073 /* If DST is still live at CURRENT_INSN, check if it is used for
8074 any reload. Note that even if CURRENT_INSN sets DST, we still
8075 have to check the reloads. */
8076 if (i2 == current_insn)
8077 {
8078 for (j = n_reloads - 1; j >= 0; j--)
8079 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8080 || reload_override_in[j] == dst)
8081 return;
8082 /* ??? We can't finish the loop here, because dst might be
8083 allocated to a pseudo in this block if no reload in this
8084 block needs any of the classes containing DST - see
8085 spill_hard_reg. There is no easy way to tell this, so we
8086 have to scan till the end of the basic block. */
8087 }
8088 if (reg_set_p (dst, PATTERN (i2)))
8089 break;
8090 }
8091 }
8092 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8093 reg_reloaded_contents[REGNO (dst)] = -1;
8094 delete_insn (prev);
8095 }
8096 \f
8097 /* Output reload-insns to reload VALUE into RELOADREG.
8098 VALUE is an autoincrement or autodecrement RTX whose operand
8099 is a register or memory location;
8100 so reloading involves incrementing that location.
8101 IN is either identical to VALUE, or some cheaper place to reload from.
8102
8103 INC_AMOUNT is the number to increment or decrement by (always positive).
8104 This cannot be deduced from VALUE.
8105
8106 Return the instruction that stores into RELOADREG. */
8107
8108 static rtx
8109 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8110 {
8111 /* REG or MEM to be copied and incremented. */
8112 rtx incloc = XEXP (value, 0);
8113 /* Nonzero if increment after copying. */
8114 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8115 || GET_CODE (value) == POST_MODIFY);
8116 rtx last;
8117 rtx inc;
8118 rtx add_insn;
8119 int code;
8120 rtx store;
8121 rtx real_in = in == value ? XEXP (in, 0) : in;
8122
8123 /* No hard register is equivalent to this register after
8124 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8125 we could inc/dec that register as well (maybe even using it for
8126 the source), but I'm not sure it's worth worrying about. */
8127 if (REG_P (incloc))
8128 reg_last_reload_reg[REGNO (incloc)] = 0;
8129
8130 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8131 {
8132 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8133 inc = XEXP (XEXP (value, 1), 1);
8134 }
8135 else
8136 {
8137 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8138 inc_amount = -inc_amount;
8139
8140 inc = GEN_INT (inc_amount);
8141 }
8142
8143 /* If this is post-increment, first copy the location to the reload reg. */
8144 if (post && real_in != reloadreg)
8145 emit_insn (gen_move_insn (reloadreg, real_in));
8146
8147 if (in == value)
8148 {
8149 /* See if we can directly increment INCLOC. Use a method similar to
8150 that in gen_reload. */
8151
8152 last = get_last_insn ();
8153 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8154 gen_rtx_PLUS (GET_MODE (incloc),
8155 incloc, inc)));
8156
8157 code = recog_memoized (add_insn);
8158 if (code >= 0)
8159 {
8160 extract_insn (add_insn);
8161 if (constrain_operands (1))
8162 {
8163 /* If this is a pre-increment and we have incremented the value
8164 where it lives, copy the incremented value to RELOADREG to
8165 be used as an address. */
8166
8167 if (! post)
8168 emit_insn (gen_move_insn (reloadreg, incloc));
8169
8170 return add_insn;
8171 }
8172 }
8173 delete_insns_since (last);
8174 }
8175
8176 /* If couldn't do the increment directly, must increment in RELOADREG.
8177 The way we do this depends on whether this is pre- or post-increment.
8178 For pre-increment, copy INCLOC to the reload register, increment it
8179 there, then save back. */
8180
8181 if (! post)
8182 {
8183 if (in != reloadreg)
8184 emit_insn (gen_move_insn (reloadreg, real_in));
8185 emit_insn (gen_add2_insn (reloadreg, inc));
8186 store = emit_insn (gen_move_insn (incloc, reloadreg));
8187 }
8188 else
8189 {
8190 /* Postincrement.
8191 Because this might be a jump insn or a compare, and because RELOADREG
8192 may not be available after the insn in an input reload, we must do
8193 the incrementation before the insn being reloaded for.
8194
8195 We have already copied IN to RELOADREG. Increment the copy in
8196 RELOADREG, save that back, then decrement RELOADREG so it has
8197 the original value. */
8198
8199 emit_insn (gen_add2_insn (reloadreg, inc));
8200 store = emit_insn (gen_move_insn (incloc, reloadreg));
8201 if (GET_CODE (inc) == CONST_INT)
8202 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL(inc))));
8203 else
8204 emit_insn (gen_sub2_insn (reloadreg, inc));
8205 }
8206
8207 return store;
8208 }
8209 \f
8210 #ifdef AUTO_INC_DEC
8211 static void
8212 add_auto_inc_notes (rtx insn, rtx x)
8213 {
8214 enum rtx_code code = GET_CODE (x);
8215 const char *fmt;
8216 int i, j;
8217
8218 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8219 {
8220 REG_NOTES (insn)
8221 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8222 return;
8223 }
8224
8225 /* Scan all the operand sub-expressions. */
8226 fmt = GET_RTX_FORMAT (code);
8227 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8228 {
8229 if (fmt[i] == 'e')
8230 add_auto_inc_notes (insn, XEXP (x, i));
8231 else if (fmt[i] == 'E')
8232 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8233 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8234 }
8235 }
8236 #endif
8237
8238 /* Copy EH notes from an insn to its reloads. */
8239 static void
8240 copy_eh_notes (rtx insn, rtx x)
8241 {
8242 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8243 if (eh_note)
8244 {
8245 for (; x != 0; x = NEXT_INSN (x))
8246 {
8247 if (may_trap_p (PATTERN (x)))
8248 REG_NOTES (x)
8249 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8250 REG_NOTES (x));
8251 }
8252 }
8253 }
8254
8255 /* This is used by reload pass, that does emit some instructions after
8256 abnormal calls moving basic block end, but in fact it wants to emit
8257 them on the edge. Looks for abnormal call edges, find backward the
8258 proper call and fix the damage.
8259
8260 Similar handle instructions throwing exceptions internally. */
8261 void
8262 fixup_abnormal_edges (void)
8263 {
8264 bool inserted = false;
8265 basic_block bb;
8266
8267 FOR_EACH_BB (bb)
8268 {
8269 edge e;
8270 edge_iterator ei;
8271
8272 /* Look for cases we are interested in - calls or instructions causing
8273 exceptions. */
8274 FOR_EACH_EDGE (e, ei, bb->succs)
8275 {
8276 if (e->flags & EDGE_ABNORMAL_CALL)
8277 break;
8278 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8279 == (EDGE_ABNORMAL | EDGE_EH))
8280 break;
8281 }
8282 if (e && !CALL_P (BB_END (bb))
8283 && !can_throw_internal (BB_END (bb)))
8284 {
8285 rtx insn;
8286
8287 /* Get past the new insns generated. Allow notes, as the insns
8288 may be already deleted. */
8289 insn = BB_END (bb);
8290 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8291 && !can_throw_internal (insn)
8292 && insn != BB_HEAD (bb))
8293 insn = PREV_INSN (insn);
8294
8295 if (CALL_P (insn) || can_throw_internal (insn))
8296 {
8297 rtx stop, next;
8298
8299 stop = NEXT_INSN (BB_END (bb));
8300 BB_END (bb) = insn;
8301 insn = NEXT_INSN (insn);
8302
8303 FOR_EACH_EDGE (e, ei, bb->succs)
8304 if (e->flags & EDGE_FALLTHRU)
8305 break;
8306
8307 while (insn && insn != stop)
8308 {
8309 next = NEXT_INSN (insn);
8310 if (INSN_P (insn))
8311 {
8312 delete_insn (insn);
8313
8314 /* Sometimes there's still the return value USE.
8315 If it's placed after a trapping call (i.e. that
8316 call is the last insn anyway), we have no fallthru
8317 edge. Simply delete this use and don't try to insert
8318 on the non-existent edge. */
8319 if (GET_CODE (PATTERN (insn)) != USE)
8320 {
8321 /* We're not deleting it, we're moving it. */
8322 INSN_DELETED_P (insn) = 0;
8323 PREV_INSN (insn) = NULL_RTX;
8324 NEXT_INSN (insn) = NULL_RTX;
8325
8326 insert_insn_on_edge (insn, e);
8327 inserted = true;
8328 }
8329 }
8330 insn = next;
8331 }
8332 }
8333
8334 /* It may be that we don't find any such trapping insn. In this
8335 case we discovered quite late that the insn that had been
8336 marked as can_throw_internal in fact couldn't trap at all.
8337 So we should in fact delete the EH edges out of the block. */
8338 else
8339 purge_dead_edges (bb);
8340 }
8341 }
8342
8343 /* We've possibly turned single trapping insn into multiple ones. */
8344 if (flag_non_call_exceptions)
8345 {
8346 sbitmap blocks;
8347 blocks = sbitmap_alloc (last_basic_block);
8348 sbitmap_ones (blocks);
8349 find_many_sub_basic_blocks (blocks);
8350 }
8351
8352 if (inserted)
8353 commit_edge_insertions ();
8354
8355 #ifdef ENABLE_CHECKING
8356 /* Verify that we didn't turn one trapping insn into many, and that
8357 we found and corrected all of the problems wrt fixups on the
8358 fallthru edge. */
8359 verify_flow_info ();
8360 #endif
8361 }