]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27
28 #include "rtl-error.h"
29 #include "tm_p.h"
30 #include "obstack.h"
31 #include "insn-config.h"
32 #include "flags.h"
33 #include "alias.h"
34 #include "expmed.h"
35 #include "dojump.h"
36 #include "explow.h"
37 #include "calls.h"
38 #include "emit-rtl.h"
39 #include "varasm.h"
40 #include "stmt.h"
41 #include "expr.h"
42 #include "insn-codes.h"
43 #include "optabs.h"
44 #include "regs.h"
45 #include "addresses.h"
46 #include "cfgrtl.h"
47 #include "cfgbuild.h"
48 #include "reload.h"
49 #include "recog.h"
50 #include "except.h"
51 #include "ira.h"
52 #include "target.h"
53 #include "dumpfile.h"
54 #include "rtl-iter.h"
55
56 /* This file contains the reload pass of the compiler, which is
57 run after register allocation has been done. It checks that
58 each insn is valid (operands required to be in registers really
59 are in registers of the proper class) and fixes up invalid ones
60 by copying values temporarily into registers for the insns
61 that need them.
62
63 The results of register allocation are described by the vector
64 reg_renumber; the insns still contain pseudo regs, but reg_renumber
65 can be used to find which hard reg, if any, a pseudo reg is in.
66
67 The technique we always use is to free up a few hard regs that are
68 called ``reload regs'', and for each place where a pseudo reg
69 must be in a hard reg, copy it temporarily into one of the reload regs.
70
71 Reload regs are allocated locally for every instruction that needs
72 reloads. When there are pseudos which are allocated to a register that
73 has been chosen as a reload reg, such pseudos must be ``spilled''.
74 This means that they go to other hard regs, or to stack slots if no other
75 available hard regs can be found. Spilling can invalidate more
76 insns, requiring additional need for reloads, so we must keep checking
77 until the process stabilizes.
78
79 For machines with different classes of registers, we must keep track
80 of the register class needed for each reload, and make sure that
81 we allocate enough reload registers of each class.
82
83 The file reload.c contains the code that checks one insn for
84 validity and reports the reloads that it needs. This file
85 is in charge of scanning the entire rtl code, accumulating the
86 reload needs, spilling, assigning reload registers to use for
87 fixing up each insn, and generating the new insns to copy values
88 into the reload registers. */
89 \f
90 struct target_reload default_target_reload;
91 #if SWITCHABLE_TARGET
92 struct target_reload *this_target_reload = &default_target_reload;
93 #endif
94
95 #define spill_indirect_levels \
96 (this_target_reload->x_spill_indirect_levels)
97
98 /* During reload_as_needed, element N contains a REG rtx for the hard reg
99 into which reg N has been reloaded (perhaps for a previous insn). */
100 static rtx *reg_last_reload_reg;
101
102 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
103 for an output reload that stores into reg N. */
104 static regset_head reg_has_output_reload;
105
106 /* Indicates which hard regs are reload-registers for an output reload
107 in the current insn. */
108 static HARD_REG_SET reg_is_output_reload;
109
110 /* Widest width in which each pseudo reg is referred to (via subreg). */
111 static unsigned int *reg_max_ref_width;
112
113 /* Vector to remember old contents of reg_renumber before spilling. */
114 static short *reg_old_renumber;
115
116 /* During reload_as_needed, element N contains the last pseudo regno reloaded
117 into hard register N. If that pseudo reg occupied more than one register,
118 reg_reloaded_contents points to that pseudo for each spill register in
119 use; all of these must remain set for an inheritance to occur. */
120 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
121
122 /* During reload_as_needed, element N contains the insn for which
123 hard register N was last used. Its contents are significant only
124 when reg_reloaded_valid is set for this register. */
125 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
126
127 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
128 static HARD_REG_SET reg_reloaded_valid;
129 /* Indicate if the register was dead at the end of the reload.
130 This is only valid if reg_reloaded_contents is set and valid. */
131 static HARD_REG_SET reg_reloaded_dead;
132
133 /* Indicate whether the register's current value is one that is not
134 safe to retain across a call, even for registers that are normally
135 call-saved. This is only meaningful for members of reg_reloaded_valid. */
136 static HARD_REG_SET reg_reloaded_call_part_clobbered;
137
138 /* Number of spill-regs so far; number of valid elements of spill_regs. */
139 static int n_spills;
140
141 /* In parallel with spill_regs, contains REG rtx's for those regs.
142 Holds the last rtx used for any given reg, or 0 if it has never
143 been used for spilling yet. This rtx is reused, provided it has
144 the proper mode. */
145 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
146
147 /* In parallel with spill_regs, contains nonzero for a spill reg
148 that was stored after the last time it was used.
149 The precise value is the insn generated to do the store. */
150 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
151
152 /* This is the register that was stored with spill_reg_store. This is a
153 copy of reload_out / reload_out_reg when the value was stored; if
154 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
155 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
156
157 /* This table is the inverse mapping of spill_regs:
158 indexed by hard reg number,
159 it contains the position of that reg in spill_regs,
160 or -1 for something that is not in spill_regs.
161
162 ?!? This is no longer accurate. */
163 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
164
165 /* This reg set indicates registers that can't be used as spill registers for
166 the currently processed insn. These are the hard registers which are live
167 during the insn, but not allocated to pseudos, as well as fixed
168 registers. */
169 static HARD_REG_SET bad_spill_regs;
170
171 /* These are the hard registers that can't be used as spill register for any
172 insn. This includes registers used for user variables and registers that
173 we can't eliminate. A register that appears in this set also can't be used
174 to retry register allocation. */
175 static HARD_REG_SET bad_spill_regs_global;
176
177 /* Describes order of use of registers for reloading
178 of spilled pseudo-registers. `n_spills' is the number of
179 elements that are actually valid; new ones are added at the end.
180
181 Both spill_regs and spill_reg_order are used on two occasions:
182 once during find_reload_regs, where they keep track of the spill registers
183 for a single insn, but also during reload_as_needed where they show all
184 the registers ever used by reload. For the latter case, the information
185 is calculated during finish_spills. */
186 static short spill_regs[FIRST_PSEUDO_REGISTER];
187
188 /* This vector of reg sets indicates, for each pseudo, which hard registers
189 may not be used for retrying global allocation because the register was
190 formerly spilled from one of them. If we allowed reallocating a pseudo to
191 a register that it was already allocated to, reload might not
192 terminate. */
193 static HARD_REG_SET *pseudo_previous_regs;
194
195 /* This vector of reg sets indicates, for each pseudo, which hard
196 registers may not be used for retrying global allocation because they
197 are used as spill registers during one of the insns in which the
198 pseudo is live. */
199 static HARD_REG_SET *pseudo_forbidden_regs;
200
201 /* All hard regs that have been used as spill registers for any insn are
202 marked in this set. */
203 static HARD_REG_SET used_spill_regs;
204
205 /* Index of last register assigned as a spill register. We allocate in
206 a round-robin fashion. */
207 static int last_spill_reg;
208
209 /* Record the stack slot for each spilled hard register. */
210 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
211
212 /* Width allocated so far for that stack slot. */
213 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
214
215 /* Record which pseudos needed to be spilled. */
216 static regset_head spilled_pseudos;
217
218 /* Record which pseudos changed their allocation in finish_spills. */
219 static regset_head changed_allocation_pseudos;
220
221 /* Used for communication between order_regs_for_reload and count_pseudo.
222 Used to avoid counting one pseudo twice. */
223 static regset_head pseudos_counted;
224
225 /* First uid used by insns created by reload in this function.
226 Used in find_equiv_reg. */
227 int reload_first_uid;
228
229 /* Flag set by local-alloc or global-alloc if anything is live in
230 a call-clobbered reg across calls. */
231 int caller_save_needed;
232
233 /* Set to 1 while reload_as_needed is operating.
234 Required by some machines to handle any generated moves differently. */
235 int reload_in_progress = 0;
236
237 /* This obstack is used for allocation of rtl during register elimination.
238 The allocated storage can be freed once find_reloads has processed the
239 insn. */
240 static struct obstack reload_obstack;
241
242 /* Points to the beginning of the reload_obstack. All insn_chain structures
243 are allocated first. */
244 static char *reload_startobj;
245
246 /* The point after all insn_chain structures. Used to quickly deallocate
247 memory allocated in copy_reloads during calculate_needs_all_insns. */
248 static char *reload_firstobj;
249
250 /* This points before all local rtl generated by register elimination.
251 Used to quickly free all memory after processing one insn. */
252 static char *reload_insn_firstobj;
253
254 /* List of insn_chain instructions, one for every insn that reload needs to
255 examine. */
256 struct insn_chain *reload_insn_chain;
257
258 /* TRUE if we potentially left dead insns in the insn stream and want to
259 run DCE immediately after reload, FALSE otherwise. */
260 static bool need_dce;
261
262 /* List of all insns needing reloads. */
263 static struct insn_chain *insns_need_reload;
264 \f
265 /* This structure is used to record information about register eliminations.
266 Each array entry describes one possible way of eliminating a register
267 in favor of another. If there is more than one way of eliminating a
268 particular register, the most preferred should be specified first. */
269
270 struct elim_table
271 {
272 int from; /* Register number to be eliminated. */
273 int to; /* Register number used as replacement. */
274 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
275 int can_eliminate; /* Nonzero if this elimination can be done. */
276 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
277 target hook in previous scan over insns
278 made by reload. */
279 HOST_WIDE_INT offset; /* Current offset between the two regs. */
280 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
281 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
282 rtx from_rtx; /* REG rtx for the register to be eliminated.
283 We cannot simply compare the number since
284 we might then spuriously replace a hard
285 register corresponding to a pseudo
286 assigned to the reg to be eliminated. */
287 rtx to_rtx; /* REG rtx for the replacement. */
288 };
289
290 static struct elim_table *reg_eliminate = 0;
291
292 /* This is an intermediate structure to initialize the table. It has
293 exactly the members provided by ELIMINABLE_REGS. */
294 static const struct elim_table_1
295 {
296 const int from;
297 const int to;
298 } reg_eliminate_1[] =
299
300 /* If a set of eliminable registers was specified, define the table from it.
301 Otherwise, default to the normal case of the frame pointer being
302 replaced by the stack pointer. */
303
304 #ifdef ELIMINABLE_REGS
305 ELIMINABLE_REGS;
306 #else
307 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
308 #endif
309
310 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
311
312 /* Record the number of pending eliminations that have an offset not equal
313 to their initial offset. If nonzero, we use a new copy of each
314 replacement result in any insns encountered. */
315 int num_not_at_initial_offset;
316
317 /* Count the number of registers that we may be able to eliminate. */
318 static int num_eliminable;
319 /* And the number of registers that are equivalent to a constant that
320 can be eliminated to frame_pointer / arg_pointer + constant. */
321 static int num_eliminable_invariants;
322
323 /* For each label, we record the offset of each elimination. If we reach
324 a label by more than one path and an offset differs, we cannot do the
325 elimination. This information is indexed by the difference of the
326 number of the label and the first label number. We can't offset the
327 pointer itself as this can cause problems on machines with segmented
328 memory. The first table is an array of flags that records whether we
329 have yet encountered a label and the second table is an array of arrays,
330 one entry in the latter array for each elimination. */
331
332 static int first_label_num;
333 static char *offsets_known_at;
334 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
335
336 vec<reg_equivs_t, va_gc> *reg_equivs;
337
338 /* Stack of addresses where an rtx has been changed. We can undo the
339 changes by popping items off the stack and restoring the original
340 value at each location.
341
342 We use this simplistic undo capability rather than copy_rtx as copy_rtx
343 will not make a deep copy of a normally sharable rtx, such as
344 (const (plus (symbol_ref) (const_int))). If such an expression appears
345 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
346 rtx expression would be changed. See PR 42431. */
347
348 typedef rtx *rtx_p;
349 static vec<rtx_p> substitute_stack;
350
351 /* Number of labels in the current function. */
352
353 static int num_labels;
354 \f
355 static void replace_pseudos_in (rtx *, machine_mode, rtx);
356 static void maybe_fix_stack_asms (void);
357 static void copy_reloads (struct insn_chain *);
358 static void calculate_needs_all_insns (int);
359 static int find_reg (struct insn_chain *, int);
360 static void find_reload_regs (struct insn_chain *);
361 static void select_reload_regs (void);
362 static void delete_caller_save_insns (void);
363
364 static void spill_failure (rtx_insn *, enum reg_class);
365 static void count_spilled_pseudo (int, int, int);
366 static void delete_dead_insn (rtx_insn *);
367 static void alter_reg (int, int, bool);
368 static void set_label_offsets (rtx, rtx_insn *, int);
369 static void check_eliminable_occurrences (rtx);
370 static void elimination_effects (rtx, machine_mode);
371 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
372 static int eliminate_regs_in_insn (rtx_insn *, int);
373 static void update_eliminable_offsets (void);
374 static void mark_not_eliminable (rtx, const_rtx, void *);
375 static void set_initial_elim_offsets (void);
376 static bool verify_initial_elim_offsets (void);
377 static void set_initial_label_offsets (void);
378 static void set_offsets_for_label (rtx_insn *);
379 static void init_eliminable_invariants (rtx_insn *, bool);
380 static void init_elim_table (void);
381 static void free_reg_equiv (void);
382 static void update_eliminables (HARD_REG_SET *);
383 static bool update_eliminables_and_spill (void);
384 static void elimination_costs_in_insn (rtx_insn *);
385 static void spill_hard_reg (unsigned int, int);
386 static int finish_spills (int);
387 static void scan_paradoxical_subregs (rtx);
388 static void count_pseudo (int);
389 static void order_regs_for_reload (struct insn_chain *);
390 static void reload_as_needed (int);
391 static void forget_old_reloads_1 (rtx, const_rtx, void *);
392 static void forget_marked_reloads (regset);
393 static int reload_reg_class_lower (const void *, const void *);
394 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
395 machine_mode);
396 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
397 machine_mode);
398 static int reload_reg_free_p (unsigned int, int, enum reload_type);
399 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
400 rtx, rtx, int, int);
401 static int free_for_value_p (int, machine_mode, int, enum reload_type,
402 rtx, rtx, int, int);
403 static int allocate_reload_reg (struct insn_chain *, int, int);
404 static int conflicts_with_override (rtx);
405 static void failed_reload (rtx_insn *, int);
406 static int set_reload_reg (int, int);
407 static void choose_reload_regs_init (struct insn_chain *, rtx *);
408 static void choose_reload_regs (struct insn_chain *);
409 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
410 rtx, int);
411 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
412 int);
413 static void do_input_reload (struct insn_chain *, struct reload *, int);
414 static void do_output_reload (struct insn_chain *, struct reload *, int);
415 static void emit_reload_insns (struct insn_chain *);
416 static void delete_output_reload (rtx_insn *, int, int, rtx);
417 static void delete_address_reloads (rtx_insn *, rtx_insn *);
418 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
419 static void inc_for_reload (rtx, rtx, rtx, int);
420 #ifdef AUTO_INC_DEC
421 static void add_auto_inc_notes (rtx_insn *, rtx);
422 #endif
423 static void substitute (rtx *, const_rtx, rtx);
424 static bool gen_reload_chain_without_interm_reg_p (int, int);
425 static int reloads_conflict (int, int);
426 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
427 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
428 \f
429 /* Initialize the reload pass. This is called at the beginning of compilation
430 and may be called again if the target is reinitialized. */
431
432 void
433 init_reload (void)
434 {
435 int i;
436
437 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
438 Set spill_indirect_levels to the number of levels such addressing is
439 permitted, zero if it is not permitted at all. */
440
441 rtx tem
442 = gen_rtx_MEM (Pmode,
443 gen_rtx_PLUS (Pmode,
444 gen_rtx_REG (Pmode,
445 LAST_VIRTUAL_REGISTER + 1),
446 gen_int_mode (4, Pmode)));
447 spill_indirect_levels = 0;
448
449 while (memory_address_p (QImode, tem))
450 {
451 spill_indirect_levels++;
452 tem = gen_rtx_MEM (Pmode, tem);
453 }
454
455 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
456
457 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
458 indirect_symref_ok = memory_address_p (QImode, tem);
459
460 /* See if reg+reg is a valid (and offsettable) address. */
461
462 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
463 {
464 tem = gen_rtx_PLUS (Pmode,
465 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
466 gen_rtx_REG (Pmode, i));
467
468 /* This way, we make sure that reg+reg is an offsettable address. */
469 tem = plus_constant (Pmode, tem, 4);
470
471 if (memory_address_p (QImode, tem))
472 {
473 double_reg_address_ok = 1;
474 break;
475 }
476 }
477
478 /* Initialize obstack for our rtl allocation. */
479 if (reload_startobj == NULL)
480 {
481 gcc_obstack_init (&reload_obstack);
482 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
483 }
484
485 INIT_REG_SET (&spilled_pseudos);
486 INIT_REG_SET (&changed_allocation_pseudos);
487 INIT_REG_SET (&pseudos_counted);
488 }
489
490 /* List of insn chains that are currently unused. */
491 static struct insn_chain *unused_insn_chains = 0;
492
493 /* Allocate an empty insn_chain structure. */
494 struct insn_chain *
495 new_insn_chain (void)
496 {
497 struct insn_chain *c;
498
499 if (unused_insn_chains == 0)
500 {
501 c = XOBNEW (&reload_obstack, struct insn_chain);
502 INIT_REG_SET (&c->live_throughout);
503 INIT_REG_SET (&c->dead_or_set);
504 }
505 else
506 {
507 c = unused_insn_chains;
508 unused_insn_chains = c->next;
509 }
510 c->is_caller_save_insn = 0;
511 c->need_operand_change = 0;
512 c->need_reload = 0;
513 c->need_elim = 0;
514 return c;
515 }
516
517 /* Small utility function to set all regs in hard reg set TO which are
518 allocated to pseudos in regset FROM. */
519
520 void
521 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
522 {
523 unsigned int regno;
524 reg_set_iterator rsi;
525
526 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
527 {
528 int r = reg_renumber[regno];
529
530 if (r < 0)
531 {
532 /* reload_combine uses the information from DF_LIVE_IN,
533 which might still contain registers that have not
534 actually been allocated since they have an
535 equivalence. */
536 gcc_assert (ira_conflicts_p || reload_completed);
537 }
538 else
539 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
540 }
541 }
542
543 /* Replace all pseudos found in LOC with their corresponding
544 equivalences. */
545
546 static void
547 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
548 {
549 rtx x = *loc;
550 enum rtx_code code;
551 const char *fmt;
552 int i, j;
553
554 if (! x)
555 return;
556
557 code = GET_CODE (x);
558 if (code == REG)
559 {
560 unsigned int regno = REGNO (x);
561
562 if (regno < FIRST_PSEUDO_REGISTER)
563 return;
564
565 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
566 if (x != *loc)
567 {
568 *loc = x;
569 replace_pseudos_in (loc, mem_mode, usage);
570 return;
571 }
572
573 if (reg_equiv_constant (regno))
574 *loc = reg_equiv_constant (regno);
575 else if (reg_equiv_invariant (regno))
576 *loc = reg_equiv_invariant (regno);
577 else if (reg_equiv_mem (regno))
578 *loc = reg_equiv_mem (regno);
579 else if (reg_equiv_address (regno))
580 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
581 else
582 {
583 gcc_assert (!REG_P (regno_reg_rtx[regno])
584 || REGNO (regno_reg_rtx[regno]) != regno);
585 *loc = regno_reg_rtx[regno];
586 }
587
588 return;
589 }
590 else if (code == MEM)
591 {
592 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
593 return;
594 }
595
596 /* Process each of our operands recursively. */
597 fmt = GET_RTX_FORMAT (code);
598 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
599 if (*fmt == 'e')
600 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
601 else if (*fmt == 'E')
602 for (j = 0; j < XVECLEN (x, i); j++)
603 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
604 }
605
606 /* Determine if the current function has an exception receiver block
607 that reaches the exit block via non-exceptional edges */
608
609 static bool
610 has_nonexceptional_receiver (void)
611 {
612 edge e;
613 edge_iterator ei;
614 basic_block *tos, *worklist, bb;
615
616 /* If we're not optimizing, then just err on the safe side. */
617 if (!optimize)
618 return true;
619
620 /* First determine which blocks can reach exit via normal paths. */
621 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
622
623 FOR_EACH_BB_FN (bb, cfun)
624 bb->flags &= ~BB_REACHABLE;
625
626 /* Place the exit block on our worklist. */
627 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
628 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
629
630 /* Iterate: find everything reachable from what we've already seen. */
631 while (tos != worklist)
632 {
633 bb = *--tos;
634
635 FOR_EACH_EDGE (e, ei, bb->preds)
636 if (!(e->flags & EDGE_ABNORMAL))
637 {
638 basic_block src = e->src;
639
640 if (!(src->flags & BB_REACHABLE))
641 {
642 src->flags |= BB_REACHABLE;
643 *tos++ = src;
644 }
645 }
646 }
647 free (worklist);
648
649 /* Now see if there's a reachable block with an exceptional incoming
650 edge. */
651 FOR_EACH_BB_FN (bb, cfun)
652 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
653 return true;
654
655 /* No exceptional block reached exit unexceptionally. */
656 return false;
657 }
658
659 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
660 zero elements) to MAX_REG_NUM elements.
661
662 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
663 void
664 grow_reg_equivs (void)
665 {
666 int old_size = vec_safe_length (reg_equivs);
667 int max_regno = max_reg_num ();
668 int i;
669 reg_equivs_t ze;
670
671 memset (&ze, 0, sizeof (reg_equivs_t));
672 vec_safe_reserve (reg_equivs, max_regno);
673 for (i = old_size; i < max_regno; i++)
674 reg_equivs->quick_insert (i, ze);
675 }
676
677 \f
678 /* Global variables used by reload and its subroutines. */
679
680 /* The current basic block while in calculate_elim_costs_all_insns. */
681 static basic_block elim_bb;
682
683 /* Set during calculate_needs if an insn needs register elimination. */
684 static int something_needs_elimination;
685 /* Set during calculate_needs if an insn needs an operand changed. */
686 static int something_needs_operands_changed;
687 /* Set by alter_regs if we spilled a register to the stack. */
688 static bool something_was_spilled;
689
690 /* Nonzero means we couldn't get enough spill regs. */
691 static int failure;
692
693 /* Temporary array of pseudo-register number. */
694 static int *temp_pseudo_reg_arr;
695
696 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
697 If that insn didn't set the register (i.e., it copied the register to
698 memory), just delete that insn instead of the equivalencing insn plus
699 anything now dead. If we call delete_dead_insn on that insn, we may
700 delete the insn that actually sets the register if the register dies
701 there and that is incorrect. */
702 static void
703 remove_init_insns ()
704 {
705 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
706 {
707 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
708 {
709 rtx list;
710 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
711 {
712 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
713
714 /* If we already deleted the insn or if it may trap, we can't
715 delete it. The latter case shouldn't happen, but can
716 if an insn has a variable address, gets a REG_EH_REGION
717 note added to it, and then gets converted into a load
718 from a constant address. */
719 if (NOTE_P (equiv_insn)
720 || can_throw_internal (equiv_insn))
721 ;
722 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
723 delete_dead_insn (equiv_insn);
724 else
725 SET_INSN_DELETED (equiv_insn);
726 }
727 }
728 }
729 }
730
731 /* Return true if remove_init_insns will delete INSN. */
732 static bool
733 will_delete_init_insn_p (rtx_insn *insn)
734 {
735 rtx set = single_set (insn);
736 if (!set || !REG_P (SET_DEST (set)))
737 return false;
738 unsigned regno = REGNO (SET_DEST (set));
739
740 if (can_throw_internal (insn))
741 return false;
742
743 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
744 return false;
745
746 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
747 {
748 rtx equiv_insn = XEXP (list, 0);
749 if (equiv_insn == insn)
750 return true;
751 }
752 return false;
753 }
754
755 /* Main entry point for the reload pass.
756
757 FIRST is the first insn of the function being compiled.
758
759 GLOBAL nonzero means we were called from global_alloc
760 and should attempt to reallocate any pseudoregs that we
761 displace from hard regs we will use for reloads.
762 If GLOBAL is zero, we do not have enough information to do that,
763 so any pseudo reg that is spilled must go to the stack.
764
765 Return value is TRUE if reload likely left dead insns in the
766 stream and a DCE pass should be run to elimiante them. Else the
767 return value is FALSE. */
768
769 bool
770 reload (rtx_insn *first, int global)
771 {
772 int i, n;
773 rtx_insn *insn;
774 struct elim_table *ep;
775 basic_block bb;
776 bool inserted;
777
778 /* Make sure even insns with volatile mem refs are recognizable. */
779 init_recog ();
780
781 failure = 0;
782
783 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
784
785 /* Make sure that the last insn in the chain
786 is not something that needs reloading. */
787 emit_note (NOTE_INSN_DELETED);
788
789 /* Enable find_equiv_reg to distinguish insns made by reload. */
790 reload_first_uid = get_max_uid ();
791
792 #ifdef SECONDARY_MEMORY_NEEDED
793 /* Initialize the secondary memory table. */
794 clear_secondary_mem ();
795 #endif
796
797 /* We don't have a stack slot for any spill reg yet. */
798 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
799 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
800
801 /* Initialize the save area information for caller-save, in case some
802 are needed. */
803 init_save_areas ();
804
805 /* Compute which hard registers are now in use
806 as homes for pseudo registers.
807 This is done here rather than (eg) in global_alloc
808 because this point is reached even if not optimizing. */
809 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
810 mark_home_live (i);
811
812 /* A function that has a nonlocal label that can reach the exit
813 block via non-exceptional paths must save all call-saved
814 registers. */
815 if (cfun->has_nonlocal_label
816 && has_nonexceptional_receiver ())
817 crtl->saves_all_registers = 1;
818
819 if (crtl->saves_all_registers)
820 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
821 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
822 df_set_regs_ever_live (i, true);
823
824 /* Find all the pseudo registers that didn't get hard regs
825 but do have known equivalent constants or memory slots.
826 These include parameters (known equivalent to parameter slots)
827 and cse'd or loop-moved constant memory addresses.
828
829 Record constant equivalents in reg_equiv_constant
830 so they will be substituted by find_reloads.
831 Record memory equivalents in reg_mem_equiv so they can
832 be substituted eventually by altering the REG-rtx's. */
833
834 grow_reg_equivs ();
835 reg_old_renumber = XCNEWVEC (short, max_regno);
836 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
837 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
838 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
839
840 CLEAR_HARD_REG_SET (bad_spill_regs_global);
841
842 init_eliminable_invariants (first, true);
843 init_elim_table ();
844
845 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
846 stack slots to the pseudos that lack hard regs or equivalents.
847 Do not touch virtual registers. */
848
849 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
850 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
851 temp_pseudo_reg_arr[n++] = i;
852
853 if (ira_conflicts_p)
854 /* Ask IRA to order pseudo-registers for better stack slot
855 sharing. */
856 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
857
858 for (i = 0; i < n; i++)
859 alter_reg (temp_pseudo_reg_arr[i], -1, false);
860
861 /* If we have some registers we think can be eliminated, scan all insns to
862 see if there is an insn that sets one of these registers to something
863 other than itself plus a constant. If so, the register cannot be
864 eliminated. Doing this scan here eliminates an extra pass through the
865 main reload loop in the most common case where register elimination
866 cannot be done. */
867 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
868 if (INSN_P (insn))
869 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
870
871 maybe_fix_stack_asms ();
872
873 insns_need_reload = 0;
874 something_needs_elimination = 0;
875
876 /* Initialize to -1, which means take the first spill register. */
877 last_spill_reg = -1;
878
879 /* Spill any hard regs that we know we can't eliminate. */
880 CLEAR_HARD_REG_SET (used_spill_regs);
881 /* There can be multiple ways to eliminate a register;
882 they should be listed adjacently.
883 Elimination for any register fails only if all possible ways fail. */
884 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
885 {
886 int from = ep->from;
887 int can_eliminate = 0;
888 do
889 {
890 can_eliminate |= ep->can_eliminate;
891 ep++;
892 }
893 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
894 if (! can_eliminate)
895 spill_hard_reg (from, 1);
896 }
897
898 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
899 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
900
901 finish_spills (global);
902
903 /* From now on, we may need to generate moves differently. We may also
904 allow modifications of insns which cause them to not be recognized.
905 Any such modifications will be cleaned up during reload itself. */
906 reload_in_progress = 1;
907
908 /* This loop scans the entire function each go-round
909 and repeats until one repetition spills no additional hard regs. */
910 for (;;)
911 {
912 int something_changed;
913 int did_spill;
914 HOST_WIDE_INT starting_frame_size;
915
916 starting_frame_size = get_frame_size ();
917 something_was_spilled = false;
918
919 set_initial_elim_offsets ();
920 set_initial_label_offsets ();
921
922 /* For each pseudo register that has an equivalent location defined,
923 try to eliminate any eliminable registers (such as the frame pointer)
924 assuming initial offsets for the replacement register, which
925 is the normal case.
926
927 If the resulting location is directly addressable, substitute
928 the MEM we just got directly for the old REG.
929
930 If it is not addressable but is a constant or the sum of a hard reg
931 and constant, it is probably not addressable because the constant is
932 out of range, in that case record the address; we will generate
933 hairy code to compute the address in a register each time it is
934 needed. Similarly if it is a hard register, but one that is not
935 valid as an address register.
936
937 If the location is not addressable, but does not have one of the
938 above forms, assign a stack slot. We have to do this to avoid the
939 potential of producing lots of reloads if, e.g., a location involves
940 a pseudo that didn't get a hard register and has an equivalent memory
941 location that also involves a pseudo that didn't get a hard register.
942
943 Perhaps at some point we will improve reload_when_needed handling
944 so this problem goes away. But that's very hairy. */
945
946 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
947 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
948 {
949 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
950 NULL_RTX);
951
952 if (strict_memory_address_addr_space_p
953 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
954 MEM_ADDR_SPACE (x)))
955 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
956 else if (CONSTANT_P (XEXP (x, 0))
957 || (REG_P (XEXP (x, 0))
958 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
959 || (GET_CODE (XEXP (x, 0)) == PLUS
960 && REG_P (XEXP (XEXP (x, 0), 0))
961 && (REGNO (XEXP (XEXP (x, 0), 0))
962 < FIRST_PSEUDO_REGISTER)
963 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
964 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
965 else
966 {
967 /* Make a new stack slot. Then indicate that something
968 changed so we go back and recompute offsets for
969 eliminable registers because the allocation of memory
970 below might change some offset. reg_equiv_{mem,address}
971 will be set up for this pseudo on the next pass around
972 the loop. */
973 reg_equiv_memory_loc (i) = 0;
974 reg_equiv_init (i) = 0;
975 alter_reg (i, -1, true);
976 }
977 }
978
979 if (caller_save_needed)
980 setup_save_areas ();
981
982 if (starting_frame_size && crtl->stack_alignment_needed)
983 {
984 /* If we have a stack frame, we must align it now. The
985 stack size may be a part of the offset computation for
986 register elimination. So if this changes the stack size,
987 then repeat the elimination bookkeeping. We don't
988 realign when there is no stack, as that will cause a
989 stack frame when none is needed should
990 STARTING_FRAME_OFFSET not be already aligned to
991 STACK_BOUNDARY. */
992 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
993 }
994 /* If we allocated another stack slot, redo elimination bookkeeping. */
995 if (something_was_spilled || starting_frame_size != get_frame_size ())
996 {
997 update_eliminables_and_spill ();
998 continue;
999 }
1000
1001 if (caller_save_needed)
1002 {
1003 save_call_clobbered_regs ();
1004 /* That might have allocated new insn_chain structures. */
1005 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1006 }
1007
1008 calculate_needs_all_insns (global);
1009
1010 if (! ira_conflicts_p)
1011 /* Don't do it for IRA. We need this info because we don't
1012 change live_throughout and dead_or_set for chains when IRA
1013 is used. */
1014 CLEAR_REG_SET (&spilled_pseudos);
1015
1016 did_spill = 0;
1017
1018 something_changed = 0;
1019
1020 /* If we allocated any new memory locations, make another pass
1021 since it might have changed elimination offsets. */
1022 if (something_was_spilled || starting_frame_size != get_frame_size ())
1023 something_changed = 1;
1024
1025 /* Even if the frame size remained the same, we might still have
1026 changed elimination offsets, e.g. if find_reloads called
1027 force_const_mem requiring the back end to allocate a constant
1028 pool base register that needs to be saved on the stack. */
1029 else if (!verify_initial_elim_offsets ())
1030 something_changed = 1;
1031
1032 if (update_eliminables_and_spill ())
1033 {
1034 did_spill = 1;
1035 something_changed = 1;
1036 }
1037
1038 select_reload_regs ();
1039 if (failure)
1040 goto failed;
1041
1042 if (insns_need_reload != 0 || did_spill)
1043 something_changed |= finish_spills (global);
1044
1045 if (! something_changed)
1046 break;
1047
1048 if (caller_save_needed)
1049 delete_caller_save_insns ();
1050
1051 obstack_free (&reload_obstack, reload_firstobj);
1052 }
1053
1054 /* If global-alloc was run, notify it of any register eliminations we have
1055 done. */
1056 if (global)
1057 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1058 if (ep->can_eliminate)
1059 mark_elimination (ep->from, ep->to);
1060
1061 remove_init_insns ();
1062
1063 /* Use the reload registers where necessary
1064 by generating move instructions to move the must-be-register
1065 values into or out of the reload registers. */
1066
1067 if (insns_need_reload != 0 || something_needs_elimination
1068 || something_needs_operands_changed)
1069 {
1070 HOST_WIDE_INT old_frame_size = get_frame_size ();
1071
1072 reload_as_needed (global);
1073
1074 gcc_assert (old_frame_size == get_frame_size ());
1075
1076 gcc_assert (verify_initial_elim_offsets ());
1077 }
1078
1079 /* If we were able to eliminate the frame pointer, show that it is no
1080 longer live at the start of any basic block. If it ls live by
1081 virtue of being in a pseudo, that pseudo will be marked live
1082 and hence the frame pointer will be known to be live via that
1083 pseudo. */
1084
1085 if (! frame_pointer_needed)
1086 FOR_EACH_BB_FN (bb, cfun)
1087 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1088
1089 /* Come here (with failure set nonzero) if we can't get enough spill
1090 regs. */
1091 failed:
1092
1093 CLEAR_REG_SET (&changed_allocation_pseudos);
1094 CLEAR_REG_SET (&spilled_pseudos);
1095 reload_in_progress = 0;
1096
1097 /* Now eliminate all pseudo regs by modifying them into
1098 their equivalent memory references.
1099 The REG-rtx's for the pseudos are modified in place,
1100 so all insns that used to refer to them now refer to memory.
1101
1102 For a reg that has a reg_equiv_address, all those insns
1103 were changed by reloading so that no insns refer to it any longer;
1104 but the DECL_RTL of a variable decl may refer to it,
1105 and if so this causes the debugging info to mention the variable. */
1106
1107 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1108 {
1109 rtx addr = 0;
1110
1111 if (reg_equiv_mem (i))
1112 addr = XEXP (reg_equiv_mem (i), 0);
1113
1114 if (reg_equiv_address (i))
1115 addr = reg_equiv_address (i);
1116
1117 if (addr)
1118 {
1119 if (reg_renumber[i] < 0)
1120 {
1121 rtx reg = regno_reg_rtx[i];
1122
1123 REG_USERVAR_P (reg) = 0;
1124 PUT_CODE (reg, MEM);
1125 XEXP (reg, 0) = addr;
1126 if (reg_equiv_memory_loc (i))
1127 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1128 else
1129 MEM_ATTRS (reg) = 0;
1130 MEM_NOTRAP_P (reg) = 1;
1131 }
1132 else if (reg_equiv_mem (i))
1133 XEXP (reg_equiv_mem (i), 0) = addr;
1134 }
1135
1136 /* We don't want complex addressing modes in debug insns
1137 if simpler ones will do, so delegitimize equivalences
1138 in debug insns. */
1139 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1140 {
1141 rtx reg = regno_reg_rtx[i];
1142 rtx equiv = 0;
1143 df_ref use, next;
1144
1145 if (reg_equiv_constant (i))
1146 equiv = reg_equiv_constant (i);
1147 else if (reg_equiv_invariant (i))
1148 equiv = reg_equiv_invariant (i);
1149 else if (reg && MEM_P (reg))
1150 equiv = targetm.delegitimize_address (reg);
1151 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1152 equiv = reg;
1153
1154 if (equiv == reg)
1155 continue;
1156
1157 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1158 {
1159 insn = DF_REF_INSN (use);
1160
1161 /* Make sure the next ref is for a different instruction,
1162 so that we're not affected by the rescan. */
1163 next = DF_REF_NEXT_REG (use);
1164 while (next && DF_REF_INSN (next) == insn)
1165 next = DF_REF_NEXT_REG (next);
1166
1167 if (DEBUG_INSN_P (insn))
1168 {
1169 if (!equiv)
1170 {
1171 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1172 df_insn_rescan_debug_internal (insn);
1173 }
1174 else
1175 INSN_VAR_LOCATION_LOC (insn)
1176 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1177 reg, equiv);
1178 }
1179 }
1180 }
1181 }
1182
1183 /* We must set reload_completed now since the cleanup_subreg_operands call
1184 below will re-recognize each insn and reload may have generated insns
1185 which are only valid during and after reload. */
1186 reload_completed = 1;
1187
1188 /* Make a pass over all the insns and delete all USEs which we inserted
1189 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1190 notes. Delete all CLOBBER insns, except those that refer to the return
1191 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1192 from misarranging variable-array code, and simplify (subreg (reg))
1193 operands. Strip and regenerate REG_INC notes that may have been moved
1194 around. */
1195
1196 for (insn = first; insn; insn = NEXT_INSN (insn))
1197 if (INSN_P (insn))
1198 {
1199 rtx *pnote;
1200
1201 if (CALL_P (insn))
1202 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1203 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1204
1205 if ((GET_CODE (PATTERN (insn)) == USE
1206 /* We mark with QImode USEs introduced by reload itself. */
1207 && (GET_MODE (insn) == QImode
1208 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1209 || (GET_CODE (PATTERN (insn)) == CLOBBER
1210 && (!MEM_P (XEXP (PATTERN (insn), 0))
1211 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1212 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1213 && XEXP (XEXP (PATTERN (insn), 0), 0)
1214 != stack_pointer_rtx))
1215 && (!REG_P (XEXP (PATTERN (insn), 0))
1216 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1217 {
1218 delete_insn (insn);
1219 continue;
1220 }
1221
1222 /* Some CLOBBERs may survive until here and still reference unassigned
1223 pseudos with const equivalent, which may in turn cause ICE in later
1224 passes if the reference remains in place. */
1225 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1226 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1227 VOIDmode, PATTERN (insn));
1228
1229 /* Discard obvious no-ops, even without -O. This optimization
1230 is fast and doesn't interfere with debugging. */
1231 if (NONJUMP_INSN_P (insn)
1232 && GET_CODE (PATTERN (insn)) == SET
1233 && REG_P (SET_SRC (PATTERN (insn)))
1234 && REG_P (SET_DEST (PATTERN (insn)))
1235 && (REGNO (SET_SRC (PATTERN (insn)))
1236 == REGNO (SET_DEST (PATTERN (insn)))))
1237 {
1238 delete_insn (insn);
1239 continue;
1240 }
1241
1242 pnote = &REG_NOTES (insn);
1243 while (*pnote != 0)
1244 {
1245 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1246 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1247 || REG_NOTE_KIND (*pnote) == REG_INC)
1248 *pnote = XEXP (*pnote, 1);
1249 else
1250 pnote = &XEXP (*pnote, 1);
1251 }
1252
1253 #ifdef AUTO_INC_DEC
1254 add_auto_inc_notes (insn, PATTERN (insn));
1255 #endif
1256
1257 /* Simplify (subreg (reg)) if it appears as an operand. */
1258 cleanup_subreg_operands (insn);
1259
1260 /* Clean up invalid ASMs so that they don't confuse later passes.
1261 See PR 21299. */
1262 if (asm_noperands (PATTERN (insn)) >= 0)
1263 {
1264 extract_insn (insn);
1265 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1266 {
1267 error_for_asm (insn,
1268 "%<asm%> operand has impossible constraints");
1269 delete_insn (insn);
1270 continue;
1271 }
1272 }
1273 }
1274
1275 /* If we are doing generic stack checking, give a warning if this
1276 function's frame size is larger than we expect. */
1277 if (flag_stack_check == GENERIC_STACK_CHECK)
1278 {
1279 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1280 static int verbose_warned = 0;
1281
1282 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1283 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1284 size += UNITS_PER_WORD;
1285
1286 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1287 {
1288 warning (0, "frame size too large for reliable stack checking");
1289 if (! verbose_warned)
1290 {
1291 warning (0, "try reducing the number of local variables");
1292 verbose_warned = 1;
1293 }
1294 }
1295 }
1296
1297 free (temp_pseudo_reg_arr);
1298
1299 /* Indicate that we no longer have known memory locations or constants. */
1300 free_reg_equiv ();
1301
1302 free (reg_max_ref_width);
1303 free (reg_old_renumber);
1304 free (pseudo_previous_regs);
1305 free (pseudo_forbidden_regs);
1306
1307 CLEAR_HARD_REG_SET (used_spill_regs);
1308 for (i = 0; i < n_spills; i++)
1309 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1310
1311 /* Free all the insn_chain structures at once. */
1312 obstack_free (&reload_obstack, reload_startobj);
1313 unused_insn_chains = 0;
1314
1315 inserted = fixup_abnormal_edges ();
1316
1317 /* We've possibly turned single trapping insn into multiple ones. */
1318 if (cfun->can_throw_non_call_exceptions)
1319 {
1320 sbitmap blocks;
1321 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1322 bitmap_ones (blocks);
1323 find_many_sub_basic_blocks (blocks);
1324 sbitmap_free (blocks);
1325 }
1326
1327 if (inserted)
1328 commit_edge_insertions ();
1329
1330 /* Replacing pseudos with their memory equivalents might have
1331 created shared rtx. Subsequent passes would get confused
1332 by this, so unshare everything here. */
1333 unshare_all_rtl_again (first);
1334
1335 #ifdef STACK_BOUNDARY
1336 /* init_emit has set the alignment of the hard frame pointer
1337 to STACK_BOUNDARY. It is very likely no longer valid if
1338 the hard frame pointer was used for register allocation. */
1339 if (!frame_pointer_needed)
1340 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1341 #endif
1342
1343 substitute_stack.release ();
1344
1345 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1346
1347 reload_completed = !failure;
1348
1349 return need_dce;
1350 }
1351
1352 /* Yet another special case. Unfortunately, reg-stack forces people to
1353 write incorrect clobbers in asm statements. These clobbers must not
1354 cause the register to appear in bad_spill_regs, otherwise we'll call
1355 fatal_insn later. We clear the corresponding regnos in the live
1356 register sets to avoid this.
1357 The whole thing is rather sick, I'm afraid. */
1358
1359 static void
1360 maybe_fix_stack_asms (void)
1361 {
1362 #ifdef STACK_REGS
1363 const char *constraints[MAX_RECOG_OPERANDS];
1364 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1365 struct insn_chain *chain;
1366
1367 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1368 {
1369 int i, noperands;
1370 HARD_REG_SET clobbered, allowed;
1371 rtx pat;
1372
1373 if (! INSN_P (chain->insn)
1374 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1375 continue;
1376 pat = PATTERN (chain->insn);
1377 if (GET_CODE (pat) != PARALLEL)
1378 continue;
1379
1380 CLEAR_HARD_REG_SET (clobbered);
1381 CLEAR_HARD_REG_SET (allowed);
1382
1383 /* First, make a mask of all stack regs that are clobbered. */
1384 for (i = 0; i < XVECLEN (pat, 0); i++)
1385 {
1386 rtx t = XVECEXP (pat, 0, i);
1387 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1388 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1389 }
1390
1391 /* Get the operand values and constraints out of the insn. */
1392 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1393 constraints, operand_mode, NULL);
1394
1395 /* For every operand, see what registers are allowed. */
1396 for (i = 0; i < noperands; i++)
1397 {
1398 const char *p = constraints[i];
1399 /* For every alternative, we compute the class of registers allowed
1400 for reloading in CLS, and merge its contents into the reg set
1401 ALLOWED. */
1402 int cls = (int) NO_REGS;
1403
1404 for (;;)
1405 {
1406 char c = *p;
1407
1408 if (c == '\0' || c == ',' || c == '#')
1409 {
1410 /* End of one alternative - mark the regs in the current
1411 class, and reset the class. */
1412 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1413 cls = NO_REGS;
1414 p++;
1415 if (c == '#')
1416 do {
1417 c = *p++;
1418 } while (c != '\0' && c != ',');
1419 if (c == '\0')
1420 break;
1421 continue;
1422 }
1423
1424 switch (c)
1425 {
1426 case 'g':
1427 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1428 break;
1429
1430 default:
1431 enum constraint_num cn = lookup_constraint (p);
1432 if (insn_extra_address_constraint (cn))
1433 cls = (int) reg_class_subunion[cls]
1434 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1435 ADDRESS, SCRATCH)];
1436 else
1437 cls = (int) reg_class_subunion[cls]
1438 [reg_class_for_constraint (cn)];
1439 break;
1440 }
1441 p += CONSTRAINT_LEN (c, p);
1442 }
1443 }
1444 /* Those of the registers which are clobbered, but allowed by the
1445 constraints, must be usable as reload registers. So clear them
1446 out of the life information. */
1447 AND_HARD_REG_SET (allowed, clobbered);
1448 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1449 if (TEST_HARD_REG_BIT (allowed, i))
1450 {
1451 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1452 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1453 }
1454 }
1455
1456 #endif
1457 }
1458 \f
1459 /* Copy the global variables n_reloads and rld into the corresponding elts
1460 of CHAIN. */
1461 static void
1462 copy_reloads (struct insn_chain *chain)
1463 {
1464 chain->n_reloads = n_reloads;
1465 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1466 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1467 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1468 }
1469
1470 /* Walk the chain of insns, and determine for each whether it needs reloads
1471 and/or eliminations. Build the corresponding insns_need_reload list, and
1472 set something_needs_elimination as appropriate. */
1473 static void
1474 calculate_needs_all_insns (int global)
1475 {
1476 struct insn_chain **pprev_reload = &insns_need_reload;
1477 struct insn_chain *chain, *next = 0;
1478
1479 something_needs_elimination = 0;
1480
1481 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1482 for (chain = reload_insn_chain; chain != 0; chain = next)
1483 {
1484 rtx_insn *insn = chain->insn;
1485
1486 next = chain->next;
1487
1488 /* Clear out the shortcuts. */
1489 chain->n_reloads = 0;
1490 chain->need_elim = 0;
1491 chain->need_reload = 0;
1492 chain->need_operand_change = 0;
1493
1494 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1495 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1496 what effects this has on the known offsets at labels. */
1497
1498 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1499 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1500 set_label_offsets (insn, insn, 0);
1501
1502 if (INSN_P (insn))
1503 {
1504 rtx old_body = PATTERN (insn);
1505 int old_code = INSN_CODE (insn);
1506 rtx old_notes = REG_NOTES (insn);
1507 int did_elimination = 0;
1508 int operands_changed = 0;
1509
1510 /* Skip insns that only set an equivalence. */
1511 if (will_delete_init_insn_p (insn))
1512 continue;
1513
1514 /* If needed, eliminate any eliminable registers. */
1515 if (num_eliminable || num_eliminable_invariants)
1516 did_elimination = eliminate_regs_in_insn (insn, 0);
1517
1518 /* Analyze the instruction. */
1519 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1520 global, spill_reg_order);
1521
1522 /* If a no-op set needs more than one reload, this is likely
1523 to be something that needs input address reloads. We
1524 can't get rid of this cleanly later, and it is of no use
1525 anyway, so discard it now.
1526 We only do this when expensive_optimizations is enabled,
1527 since this complements reload inheritance / output
1528 reload deletion, and it can make debugging harder. */
1529 if (flag_expensive_optimizations && n_reloads > 1)
1530 {
1531 rtx set = single_set (insn);
1532 if (set
1533 &&
1534 ((SET_SRC (set) == SET_DEST (set)
1535 && REG_P (SET_SRC (set))
1536 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1537 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1538 && reg_renumber[REGNO (SET_SRC (set))] < 0
1539 && reg_renumber[REGNO (SET_DEST (set))] < 0
1540 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1541 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1542 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1543 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1544 {
1545 if (ira_conflicts_p)
1546 /* Inform IRA about the insn deletion. */
1547 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1548 REGNO (SET_SRC (set)));
1549 delete_insn (insn);
1550 /* Delete it from the reload chain. */
1551 if (chain->prev)
1552 chain->prev->next = next;
1553 else
1554 reload_insn_chain = next;
1555 if (next)
1556 next->prev = chain->prev;
1557 chain->next = unused_insn_chains;
1558 unused_insn_chains = chain;
1559 continue;
1560 }
1561 }
1562 if (num_eliminable)
1563 update_eliminable_offsets ();
1564
1565 /* Remember for later shortcuts which insns had any reloads or
1566 register eliminations. */
1567 chain->need_elim = did_elimination;
1568 chain->need_reload = n_reloads > 0;
1569 chain->need_operand_change = operands_changed;
1570
1571 /* Discard any register replacements done. */
1572 if (did_elimination)
1573 {
1574 obstack_free (&reload_obstack, reload_insn_firstobj);
1575 PATTERN (insn) = old_body;
1576 INSN_CODE (insn) = old_code;
1577 REG_NOTES (insn) = old_notes;
1578 something_needs_elimination = 1;
1579 }
1580
1581 something_needs_operands_changed |= operands_changed;
1582
1583 if (n_reloads != 0)
1584 {
1585 copy_reloads (chain);
1586 *pprev_reload = chain;
1587 pprev_reload = &chain->next_need_reload;
1588 }
1589 }
1590 }
1591 *pprev_reload = 0;
1592 }
1593 \f
1594 /* This function is called from the register allocator to set up estimates
1595 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1596 an invariant. The structure is similar to calculate_needs_all_insns. */
1597
1598 void
1599 calculate_elim_costs_all_insns (void)
1600 {
1601 int *reg_equiv_init_cost;
1602 basic_block bb;
1603 int i;
1604
1605 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1606 init_elim_table ();
1607 init_eliminable_invariants (get_insns (), false);
1608
1609 set_initial_elim_offsets ();
1610 set_initial_label_offsets ();
1611
1612 FOR_EACH_BB_FN (bb, cfun)
1613 {
1614 rtx_insn *insn;
1615 elim_bb = bb;
1616
1617 FOR_BB_INSNS (bb, insn)
1618 {
1619 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1620 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1621 what effects this has on the known offsets at labels. */
1622
1623 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1624 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1625 set_label_offsets (insn, insn, 0);
1626
1627 if (INSN_P (insn))
1628 {
1629 rtx set = single_set (insn);
1630
1631 /* Skip insns that only set an equivalence. */
1632 if (set && REG_P (SET_DEST (set))
1633 && reg_renumber[REGNO (SET_DEST (set))] < 0
1634 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1635 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1636 {
1637 unsigned regno = REGNO (SET_DEST (set));
1638 rtx_insn_list *init = reg_equiv_init (regno);
1639 if (init)
1640 {
1641 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1642 false, true);
1643 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1644 int freq = REG_FREQ_FROM_BB (bb);
1645
1646 reg_equiv_init_cost[regno] = cost * freq;
1647 continue;
1648 }
1649 }
1650 /* If needed, eliminate any eliminable registers. */
1651 if (num_eliminable || num_eliminable_invariants)
1652 elimination_costs_in_insn (insn);
1653
1654 if (num_eliminable)
1655 update_eliminable_offsets ();
1656 }
1657 }
1658 }
1659 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660 {
1661 if (reg_equiv_invariant (i))
1662 {
1663 if (reg_equiv_init (i))
1664 {
1665 int cost = reg_equiv_init_cost[i];
1666 if (dump_file)
1667 fprintf (dump_file,
1668 "Reg %d has equivalence, initial gains %d\n", i, cost);
1669 if (cost != 0)
1670 ira_adjust_equiv_reg_cost (i, cost);
1671 }
1672 else
1673 {
1674 if (dump_file)
1675 fprintf (dump_file,
1676 "Reg %d had equivalence, but can't be eliminated\n",
1677 i);
1678 ira_adjust_equiv_reg_cost (i, 0);
1679 }
1680 }
1681 }
1682
1683 free (reg_equiv_init_cost);
1684 free (offsets_known_at);
1685 free (offsets_at);
1686 offsets_at = NULL;
1687 offsets_known_at = NULL;
1688 }
1689 \f
1690 /* Comparison function for qsort to decide which of two reloads
1691 should be handled first. *P1 and *P2 are the reload numbers. */
1692
1693 static int
1694 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 {
1696 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1697 int t;
1698
1699 /* Consider required reloads before optional ones. */
1700 t = rld[r1].optional - rld[r2].optional;
1701 if (t != 0)
1702 return t;
1703
1704 /* Count all solitary classes before non-solitary ones. */
1705 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1706 - (reg_class_size[(int) rld[r1].rclass] == 1));
1707 if (t != 0)
1708 return t;
1709
1710 /* Aside from solitaires, consider all multi-reg groups first. */
1711 t = rld[r2].nregs - rld[r1].nregs;
1712 if (t != 0)
1713 return t;
1714
1715 /* Consider reloads in order of increasing reg-class number. */
1716 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1717 if (t != 0)
1718 return t;
1719
1720 /* If reloads are equally urgent, sort by reload number,
1721 so that the results of qsort leave nothing to chance. */
1722 return r1 - r2;
1723 }
1724 \f
1725 /* The cost of spilling each hard reg. */
1726 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727
1728 /* When spilling multiple hard registers, we use SPILL_COST for the first
1729 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1730 only the first hard reg for a multi-reg pseudo. */
1731 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732
1733 /* Map of hard regno to pseudo regno currently occupying the hard
1734 reg. */
1735 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736
1737 /* Update the spill cost arrays, considering that pseudo REG is live. */
1738
1739 static void
1740 count_pseudo (int reg)
1741 {
1742 int freq = REG_FREQ (reg);
1743 int r = reg_renumber[reg];
1744 int nregs;
1745
1746 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1747 if (ira_conflicts_p && r < 0)
1748 return;
1749
1750 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1751 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1752 return;
1753
1754 SET_REGNO_REG_SET (&pseudos_counted, reg);
1755
1756 gcc_assert (r >= 0);
1757
1758 spill_add_cost[r] += freq;
1759 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1760 while (nregs-- > 0)
1761 {
1762 hard_regno_to_pseudo_regno[r + nregs] = reg;
1763 spill_cost[r + nregs] += freq;
1764 }
1765 }
1766
1767 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1768 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1769
1770 static void
1771 order_regs_for_reload (struct insn_chain *chain)
1772 {
1773 unsigned i;
1774 HARD_REG_SET used_by_pseudos;
1775 HARD_REG_SET used_by_pseudos2;
1776 reg_set_iterator rsi;
1777
1778 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779
1780 memset (spill_cost, 0, sizeof spill_cost);
1781 memset (spill_add_cost, 0, sizeof spill_add_cost);
1782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1783 hard_regno_to_pseudo_regno[i] = -1;
1784
1785 /* Count number of uses of each hard reg by pseudo regs allocated to it
1786 and then order them by decreasing use. First exclude hard registers
1787 that are live in or across this insn. */
1788
1789 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1790 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1791 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1792 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793
1794 /* Now find out which pseudos are allocated to it, and update
1795 hard_reg_n_uses. */
1796 CLEAR_REG_SET (&pseudos_counted);
1797
1798 EXECUTE_IF_SET_IN_REG_SET
1799 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800 {
1801 count_pseudo (i);
1802 }
1803 EXECUTE_IF_SET_IN_REG_SET
1804 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805 {
1806 count_pseudo (i);
1807 }
1808 CLEAR_REG_SET (&pseudos_counted);
1809 }
1810 \f
1811 /* Vector of reload-numbers showing the order in which the reloads should
1812 be processed. */
1813 static short reload_order[MAX_RELOADS];
1814
1815 /* This is used to keep track of the spill regs used in one insn. */
1816 static HARD_REG_SET used_spill_regs_local;
1817
1818 /* We decided to spill hard register SPILLED, which has a size of
1819 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1820 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1821 update SPILL_COST/SPILL_ADD_COST. */
1822
1823 static void
1824 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 {
1826 int freq = REG_FREQ (reg);
1827 int r = reg_renumber[reg];
1828 int nregs;
1829
1830 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1831 if (ira_conflicts_p && r < 0)
1832 return;
1833
1834 gcc_assert (r >= 0);
1835
1836 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837
1838 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1839 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1840 return;
1841
1842 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843
1844 spill_add_cost[r] -= freq;
1845 while (nregs-- > 0)
1846 {
1847 hard_regno_to_pseudo_regno[r + nregs] = -1;
1848 spill_cost[r + nregs] -= freq;
1849 }
1850 }
1851
1852 /* Find reload register to use for reload number ORDER. */
1853
1854 static int
1855 find_reg (struct insn_chain *chain, int order)
1856 {
1857 int rnum = reload_order[order];
1858 struct reload *rl = rld + rnum;
1859 int best_cost = INT_MAX;
1860 int best_reg = -1;
1861 unsigned int i, j, n;
1862 int k;
1863 HARD_REG_SET not_usable;
1864 HARD_REG_SET used_by_other_reload;
1865 reg_set_iterator rsi;
1866 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1867 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868
1869 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1870 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1871 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872
1873 CLEAR_HARD_REG_SET (used_by_other_reload);
1874 for (k = 0; k < order; k++)
1875 {
1876 int other = reload_order[k];
1877
1878 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1879 for (j = 0; j < rld[other].nregs; j++)
1880 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1881 }
1882
1883 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884 {
1885 #ifdef REG_ALLOC_ORDER
1886 unsigned int regno = reg_alloc_order[i];
1887 #else
1888 unsigned int regno = i;
1889 #endif
1890
1891 if (! TEST_HARD_REG_BIT (not_usable, regno)
1892 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1893 && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 {
1895 int this_cost = spill_cost[regno];
1896 int ok = 1;
1897 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898
1899 for (j = 1; j < this_nregs; j++)
1900 {
1901 this_cost += spill_add_cost[regno + j];
1902 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1903 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1904 ok = 0;
1905 }
1906 if (! ok)
1907 continue;
1908
1909 if (ira_conflicts_p)
1910 {
1911 /* Ask IRA to find a better pseudo-register for
1912 spilling. */
1913 for (n = j = 0; j < this_nregs; j++)
1914 {
1915 int r = hard_regno_to_pseudo_regno[regno + j];
1916
1917 if (r < 0)
1918 continue;
1919 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1920 regno_pseudo_regs[n++] = r;
1921 }
1922 regno_pseudo_regs[n++] = -1;
1923 if (best_reg < 0
1924 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1925 best_regno_pseudo_regs,
1926 rl->in, rl->out,
1927 chain->insn))
1928 {
1929 best_reg = regno;
1930 for (j = 0;; j++)
1931 {
1932 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1933 if (regno_pseudo_regs[j] < 0)
1934 break;
1935 }
1936 }
1937 continue;
1938 }
1939
1940 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1941 this_cost--;
1942 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1943 this_cost--;
1944 if (this_cost < best_cost
1945 /* Among registers with equal cost, prefer caller-saved ones, or
1946 use REG_ALLOC_ORDER if it is defined. */
1947 || (this_cost == best_cost
1948 #ifdef REG_ALLOC_ORDER
1949 && (inv_reg_alloc_order[regno]
1950 < inv_reg_alloc_order[best_reg])
1951 #else
1952 && call_used_regs[regno]
1953 && ! call_used_regs[best_reg]
1954 #endif
1955 ))
1956 {
1957 best_reg = regno;
1958 best_cost = this_cost;
1959 }
1960 }
1961 }
1962 if (best_reg == -1)
1963 return 0;
1964
1965 if (dump_file)
1966 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967
1968 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1969 rl->regno = best_reg;
1970
1971 EXECUTE_IF_SET_IN_REG_SET
1972 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973 {
1974 count_spilled_pseudo (best_reg, rl->nregs, j);
1975 }
1976
1977 EXECUTE_IF_SET_IN_REG_SET
1978 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979 {
1980 count_spilled_pseudo (best_reg, rl->nregs, j);
1981 }
1982
1983 for (i = 0; i < rl->nregs; i++)
1984 {
1985 gcc_assert (spill_cost[best_reg + i] == 0);
1986 gcc_assert (spill_add_cost[best_reg + i] == 0);
1987 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1988 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989 }
1990 return 1;
1991 }
1992
1993 /* Find more reload regs to satisfy the remaining need of an insn, which
1994 is given by CHAIN.
1995 Do it by ascending class number, since otherwise a reg
1996 might be spilled for a big class and might fail to count
1997 for a smaller class even though it belongs to that class. */
1998
1999 static void
2000 find_reload_regs (struct insn_chain *chain)
2001 {
2002 int i;
2003
2004 /* In order to be certain of getting the registers we need,
2005 we must sort the reloads into order of increasing register class.
2006 Then our grabbing of reload registers will parallel the process
2007 that provided the reload registers. */
2008 for (i = 0; i < chain->n_reloads; i++)
2009 {
2010 /* Show whether this reload already has a hard reg. */
2011 if (chain->rld[i].reg_rtx)
2012 {
2013 int regno = REGNO (chain->rld[i].reg_rtx);
2014 chain->rld[i].regno = regno;
2015 chain->rld[i].nregs
2016 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 }
2018 else
2019 chain->rld[i].regno = -1;
2020 reload_order[i] = i;
2021 }
2022
2023 n_reloads = chain->n_reloads;
2024 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025
2026 CLEAR_HARD_REG_SET (used_spill_regs_local);
2027
2028 if (dump_file)
2029 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030
2031 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032
2033 /* Compute the order of preference for hard registers to spill. */
2034
2035 order_regs_for_reload (chain);
2036
2037 for (i = 0; i < n_reloads; i++)
2038 {
2039 int r = reload_order[i];
2040
2041 /* Ignore reloads that got marked inoperative. */
2042 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2043 && ! rld[r].optional
2044 && rld[r].regno == -1)
2045 if (! find_reg (chain, i))
2046 {
2047 if (dump_file)
2048 fprintf (dump_file, "reload failure for reload %d\n", r);
2049 spill_failure (chain->insn, rld[r].rclass);
2050 failure = 1;
2051 return;
2052 }
2053 }
2054
2055 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2056 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057
2058 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2059 }
2060
2061 static void
2062 select_reload_regs (void)
2063 {
2064 struct insn_chain *chain;
2065
2066 /* Try to satisfy the needs for each insn. */
2067 for (chain = insns_need_reload; chain != 0;
2068 chain = chain->next_need_reload)
2069 find_reload_regs (chain);
2070 }
2071 \f
2072 /* Delete all insns that were inserted by emit_caller_save_insns during
2073 this iteration. */
2074 static void
2075 delete_caller_save_insns (void)
2076 {
2077 struct insn_chain *c = reload_insn_chain;
2078
2079 while (c != 0)
2080 {
2081 while (c != 0 && c->is_caller_save_insn)
2082 {
2083 struct insn_chain *next = c->next;
2084 rtx_insn *insn = c->insn;
2085
2086 if (c == reload_insn_chain)
2087 reload_insn_chain = next;
2088 delete_insn (insn);
2089
2090 if (next)
2091 next->prev = c->prev;
2092 if (c->prev)
2093 c->prev->next = next;
2094 c->next = unused_insn_chains;
2095 unused_insn_chains = c;
2096 c = next;
2097 }
2098 if (c != 0)
2099 c = c->next;
2100 }
2101 }
2102 \f
2103 /* Handle the failure to find a register to spill.
2104 INSN should be one of the insns which needed this particular spill reg. */
2105
2106 static void
2107 spill_failure (rtx_insn *insn, enum reg_class rclass)
2108 {
2109 if (asm_noperands (PATTERN (insn)) >= 0)
2110 error_for_asm (insn, "can%'t find a register in class %qs while "
2111 "reloading %<asm%>",
2112 reg_class_names[rclass]);
2113 else
2114 {
2115 error ("unable to find a register to spill in class %qs",
2116 reg_class_names[rclass]);
2117
2118 if (dump_file)
2119 {
2120 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2121 debug_reload_to_stream (dump_file);
2122 }
2123 fatal_insn ("this is the insn:", insn);
2124 }
2125 }
2126 \f
2127 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2128 data that is dead in INSN. */
2129
2130 static void
2131 delete_dead_insn (rtx_insn *insn)
2132 {
2133 rtx_insn *prev = prev_active_insn (insn);
2134 rtx prev_dest;
2135
2136 /* If the previous insn sets a register that dies in our insn make
2137 a note that we want to run DCE immediately after reload.
2138
2139 We used to delete the previous insn & recurse, but that's wrong for
2140 block local equivalences. Instead of trying to figure out the exact
2141 circumstances where we can delete the potentially dead insns, just
2142 let DCE do the job. */
2143 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2144 && GET_CODE (PATTERN (prev)) == SET
2145 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2146 && reg_mentioned_p (prev_dest, PATTERN (insn))
2147 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2148 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2149 need_dce = 1;
2150
2151 SET_INSN_DELETED (insn);
2152 }
2153
2154 /* Modify the home of pseudo-reg I.
2155 The new home is present in reg_renumber[I].
2156
2157 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2158 or it may be -1, meaning there is none or it is not relevant.
2159 This is used so that all pseudos spilled from a given hard reg
2160 can share one stack slot. */
2161
2162 static void
2163 alter_reg (int i, int from_reg, bool dont_share_p)
2164 {
2165 /* When outputting an inline function, this can happen
2166 for a reg that isn't actually used. */
2167 if (regno_reg_rtx[i] == 0)
2168 return;
2169
2170 /* If the reg got changed to a MEM at rtl-generation time,
2171 ignore it. */
2172 if (!REG_P (regno_reg_rtx[i]))
2173 return;
2174
2175 /* Modify the reg-rtx to contain the new hard reg
2176 number or else to contain its pseudo reg number. */
2177 SET_REGNO (regno_reg_rtx[i],
2178 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2179
2180 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2181 allocate a stack slot for it. */
2182
2183 if (reg_renumber[i] < 0
2184 && REG_N_REFS (i) > 0
2185 && reg_equiv_constant (i) == 0
2186 && (reg_equiv_invariant (i) == 0
2187 || reg_equiv_init (i) == 0)
2188 && reg_equiv_memory_loc (i) == 0)
2189 {
2190 rtx x = NULL_RTX;
2191 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2192 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2193 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2194 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2195 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2196 int adjust = 0;
2197
2198 something_was_spilled = true;
2199
2200 if (ira_conflicts_p)
2201 {
2202 /* Mark the spill for IRA. */
2203 SET_REGNO_REG_SET (&spilled_pseudos, i);
2204 if (!dont_share_p)
2205 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2206 }
2207
2208 if (x)
2209 ;
2210
2211 /* Each pseudo reg has an inherent size which comes from its own mode,
2212 and a total size which provides room for paradoxical subregs
2213 which refer to the pseudo reg in wider modes.
2214
2215 We can use a slot already allocated if it provides both
2216 enough inherent space and enough total space.
2217 Otherwise, we allocate a new slot, making sure that it has no less
2218 inherent space, and no less total space, then the previous slot. */
2219 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2220 {
2221 rtx stack_slot;
2222
2223 /* No known place to spill from => no slot to reuse. */
2224 x = assign_stack_local (mode, total_size,
2225 min_align > inherent_align
2226 || total_size > inherent_size ? -1 : 0);
2227
2228 stack_slot = x;
2229
2230 /* Cancel the big-endian correction done in assign_stack_local.
2231 Get the address of the beginning of the slot. This is so we
2232 can do a big-endian correction unconditionally below. */
2233 if (BYTES_BIG_ENDIAN)
2234 {
2235 adjust = inherent_size - total_size;
2236 if (adjust)
2237 stack_slot
2238 = adjust_address_nv (x, mode_for_size (total_size
2239 * BITS_PER_UNIT,
2240 MODE_INT, 1),
2241 adjust);
2242 }
2243
2244 if (! dont_share_p && ira_conflicts_p)
2245 /* Inform IRA about allocation a new stack slot. */
2246 ira_mark_new_stack_slot (stack_slot, i, total_size);
2247 }
2248
2249 /* Reuse a stack slot if possible. */
2250 else if (spill_stack_slot[from_reg] != 0
2251 && spill_stack_slot_width[from_reg] >= total_size
2252 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2253 >= inherent_size)
2254 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2255 x = spill_stack_slot[from_reg];
2256
2257 /* Allocate a bigger slot. */
2258 else
2259 {
2260 /* Compute maximum size needed, both for inherent size
2261 and for total size. */
2262 rtx stack_slot;
2263
2264 if (spill_stack_slot[from_reg])
2265 {
2266 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2267 > inherent_size)
2268 mode = GET_MODE (spill_stack_slot[from_reg]);
2269 if (spill_stack_slot_width[from_reg] > total_size)
2270 total_size = spill_stack_slot_width[from_reg];
2271 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2272 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2273 }
2274
2275 /* Make a slot with that size. */
2276 x = assign_stack_local (mode, total_size,
2277 min_align > inherent_align
2278 || total_size > inherent_size ? -1 : 0);
2279 stack_slot = x;
2280
2281 /* Cancel the big-endian correction done in assign_stack_local.
2282 Get the address of the beginning of the slot. This is so we
2283 can do a big-endian correction unconditionally below. */
2284 if (BYTES_BIG_ENDIAN)
2285 {
2286 adjust = GET_MODE_SIZE (mode) - total_size;
2287 if (adjust)
2288 stack_slot
2289 = adjust_address_nv (x, mode_for_size (total_size
2290 * BITS_PER_UNIT,
2291 MODE_INT, 1),
2292 adjust);
2293 }
2294
2295 spill_stack_slot[from_reg] = stack_slot;
2296 spill_stack_slot_width[from_reg] = total_size;
2297 }
2298
2299 /* On a big endian machine, the "address" of the slot
2300 is the address of the low part that fits its inherent mode. */
2301 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2302 adjust += (total_size - inherent_size);
2303
2304 /* If we have any adjustment to make, or if the stack slot is the
2305 wrong mode, make a new stack slot. */
2306 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2307
2308 /* Set all of the memory attributes as appropriate for a spill. */
2309 set_mem_attrs_for_spill (x);
2310
2311 /* Save the stack slot for later. */
2312 reg_equiv_memory_loc (i) = x;
2313 }
2314 }
2315
2316 /* Mark the slots in regs_ever_live for the hard regs used by
2317 pseudo-reg number REGNO, accessed in MODE. */
2318
2319 static void
2320 mark_home_live_1 (int regno, machine_mode mode)
2321 {
2322 int i, lim;
2323
2324 i = reg_renumber[regno];
2325 if (i < 0)
2326 return;
2327 lim = end_hard_regno (mode, i);
2328 while (i < lim)
2329 df_set_regs_ever_live (i++, true);
2330 }
2331
2332 /* Mark the slots in regs_ever_live for the hard regs
2333 used by pseudo-reg number REGNO. */
2334
2335 void
2336 mark_home_live (int regno)
2337 {
2338 if (reg_renumber[regno] >= 0)
2339 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2340 }
2341 \f
2342 /* This function handles the tracking of elimination offsets around branches.
2343
2344 X is a piece of RTL being scanned.
2345
2346 INSN is the insn that it came from, if any.
2347
2348 INITIAL_P is nonzero if we are to set the offset to be the initial
2349 offset and zero if we are setting the offset of the label to be the
2350 current offset. */
2351
2352 static void
2353 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2354 {
2355 enum rtx_code code = GET_CODE (x);
2356 rtx tem;
2357 unsigned int i;
2358 struct elim_table *p;
2359
2360 switch (code)
2361 {
2362 case LABEL_REF:
2363 if (LABEL_REF_NONLOCAL_P (x))
2364 return;
2365
2366 x = LABEL_REF_LABEL (x);
2367
2368 /* ... fall through ... */
2369
2370 case CODE_LABEL:
2371 /* If we know nothing about this label, set the desired offsets. Note
2372 that this sets the offset at a label to be the offset before a label
2373 if we don't know anything about the label. This is not correct for
2374 the label after a BARRIER, but is the best guess we can make. If
2375 we guessed wrong, we will suppress an elimination that might have
2376 been possible had we been able to guess correctly. */
2377
2378 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2379 {
2380 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2381 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2382 = (initial_p ? reg_eliminate[i].initial_offset
2383 : reg_eliminate[i].offset);
2384 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2385 }
2386
2387 /* Otherwise, if this is the definition of a label and it is
2388 preceded by a BARRIER, set our offsets to the known offset of
2389 that label. */
2390
2391 else if (x == insn
2392 && (tem = prev_nonnote_insn (insn)) != 0
2393 && BARRIER_P (tem))
2394 set_offsets_for_label (insn);
2395 else
2396 /* If neither of the above cases is true, compare each offset
2397 with those previously recorded and suppress any eliminations
2398 where the offsets disagree. */
2399
2400 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2401 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2402 != (initial_p ? reg_eliminate[i].initial_offset
2403 : reg_eliminate[i].offset))
2404 reg_eliminate[i].can_eliminate = 0;
2405
2406 return;
2407
2408 case JUMP_TABLE_DATA:
2409 set_label_offsets (PATTERN (insn), insn, initial_p);
2410 return;
2411
2412 case JUMP_INSN:
2413 set_label_offsets (PATTERN (insn), insn, initial_p);
2414
2415 /* ... fall through ... */
2416
2417 case INSN:
2418 case CALL_INSN:
2419 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2420 to indirectly and hence must have all eliminations at their
2421 initial offsets. */
2422 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2423 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2424 set_label_offsets (XEXP (tem, 0), insn, 1);
2425 return;
2426
2427 case PARALLEL:
2428 case ADDR_VEC:
2429 case ADDR_DIFF_VEC:
2430 /* Each of the labels in the parallel or address vector must be
2431 at their initial offsets. We want the first field for PARALLEL
2432 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2433
2434 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2435 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2436 insn, initial_p);
2437 return;
2438
2439 case SET:
2440 /* We only care about setting PC. If the source is not RETURN,
2441 IF_THEN_ELSE, or a label, disable any eliminations not at
2442 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2443 isn't one of those possibilities. For branches to a label,
2444 call ourselves recursively.
2445
2446 Note that this can disable elimination unnecessarily when we have
2447 a non-local goto since it will look like a non-constant jump to
2448 someplace in the current function. This isn't a significant
2449 problem since such jumps will normally be when all elimination
2450 pairs are back to their initial offsets. */
2451
2452 if (SET_DEST (x) != pc_rtx)
2453 return;
2454
2455 switch (GET_CODE (SET_SRC (x)))
2456 {
2457 case PC:
2458 case RETURN:
2459 return;
2460
2461 case LABEL_REF:
2462 set_label_offsets (SET_SRC (x), insn, initial_p);
2463 return;
2464
2465 case IF_THEN_ELSE:
2466 tem = XEXP (SET_SRC (x), 1);
2467 if (GET_CODE (tem) == LABEL_REF)
2468 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2469 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2470 break;
2471
2472 tem = XEXP (SET_SRC (x), 2);
2473 if (GET_CODE (tem) == LABEL_REF)
2474 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2475 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2476 break;
2477 return;
2478
2479 default:
2480 break;
2481 }
2482
2483 /* If we reach here, all eliminations must be at their initial
2484 offset because we are doing a jump to a variable address. */
2485 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2486 if (p->offset != p->initial_offset)
2487 p->can_eliminate = 0;
2488 break;
2489
2490 default:
2491 break;
2492 }
2493 }
2494 \f
2495 /* This function examines every reg that occurs in X and adjusts the
2496 costs for its elimination which are gathered by IRA. INSN is the
2497 insn in which X occurs. We do not recurse into MEM expressions. */
2498
2499 static void
2500 note_reg_elim_costly (const_rtx x, rtx insn)
2501 {
2502 subrtx_iterator::array_type array;
2503 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2504 {
2505 const_rtx x = *iter;
2506 if (MEM_P (x))
2507 iter.skip_subrtxes ();
2508 else if (REG_P (x)
2509 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2510 && reg_equiv_init (REGNO (x))
2511 && reg_equiv_invariant (REGNO (x)))
2512 {
2513 rtx t = reg_equiv_invariant (REGNO (x));
2514 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2515 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2516 int freq = REG_FREQ_FROM_BB (elim_bb);
2517
2518 if (cost != 0)
2519 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2520 }
2521 }
2522 }
2523
2524 /* Scan X and replace any eliminable registers (such as fp) with a
2525 replacement (such as sp), plus an offset.
2526
2527 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2528 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2529 MEM, we are allowed to replace a sum of a register and the constant zero
2530 with the register, which we cannot do outside a MEM. In addition, we need
2531 to record the fact that a register is referenced outside a MEM.
2532
2533 If INSN is an insn, it is the insn containing X. If we replace a REG
2534 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2535 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2536 the REG is being modified.
2537
2538 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2539 That's used when we eliminate in expressions stored in notes.
2540 This means, do not set ref_outside_mem even if the reference
2541 is outside of MEMs.
2542
2543 If FOR_COSTS is true, we are being called before reload in order to
2544 estimate the costs of keeping registers with an equivalence unallocated.
2545
2546 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2547 replacements done assuming all offsets are at their initial values. If
2548 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2549 encounter, return the actual location so that find_reloads will do
2550 the proper thing. */
2551
2552 static rtx
2553 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2554 bool may_use_invariant, bool for_costs)
2555 {
2556 enum rtx_code code = GET_CODE (x);
2557 struct elim_table *ep;
2558 int regno;
2559 rtx new_rtx;
2560 int i, j;
2561 const char *fmt;
2562 int copied = 0;
2563
2564 if (! current_function_decl)
2565 return x;
2566
2567 switch (code)
2568 {
2569 CASE_CONST_ANY:
2570 case CONST:
2571 case SYMBOL_REF:
2572 case CODE_LABEL:
2573 case PC:
2574 case CC0:
2575 case ASM_INPUT:
2576 case ADDR_VEC:
2577 case ADDR_DIFF_VEC:
2578 case RETURN:
2579 return x;
2580
2581 case REG:
2582 regno = REGNO (x);
2583
2584 /* First handle the case where we encounter a bare register that
2585 is eliminable. Replace it with a PLUS. */
2586 if (regno < FIRST_PSEUDO_REGISTER)
2587 {
2588 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2589 ep++)
2590 if (ep->from_rtx == x && ep->can_eliminate)
2591 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2592
2593 }
2594 else if (reg_renumber && reg_renumber[regno] < 0
2595 && reg_equivs
2596 && reg_equiv_invariant (regno))
2597 {
2598 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2599 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2600 mem_mode, insn, true, for_costs);
2601 /* There exists at least one use of REGNO that cannot be
2602 eliminated. Prevent the defining insn from being deleted. */
2603 reg_equiv_init (regno) = NULL;
2604 if (!for_costs)
2605 alter_reg (regno, -1, true);
2606 }
2607 return x;
2608
2609 /* You might think handling MINUS in a manner similar to PLUS is a
2610 good idea. It is not. It has been tried multiple times and every
2611 time the change has had to have been reverted.
2612
2613 Other parts of reload know a PLUS is special (gen_reload for example)
2614 and require special code to handle code a reloaded PLUS operand.
2615
2616 Also consider backends where the flags register is clobbered by a
2617 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2618 lea instruction comes to mind). If we try to reload a MINUS, we
2619 may kill the flags register that was holding a useful value.
2620
2621 So, please before trying to handle MINUS, consider reload as a
2622 whole instead of this little section as well as the backend issues. */
2623 case PLUS:
2624 /* If this is the sum of an eliminable register and a constant, rework
2625 the sum. */
2626 if (REG_P (XEXP (x, 0))
2627 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2628 && CONSTANT_P (XEXP (x, 1)))
2629 {
2630 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2631 ep++)
2632 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2633 {
2634 /* The only time we want to replace a PLUS with a REG (this
2635 occurs when the constant operand of the PLUS is the negative
2636 of the offset) is when we are inside a MEM. We won't want
2637 to do so at other times because that would change the
2638 structure of the insn in a way that reload can't handle.
2639 We special-case the commonest situation in
2640 eliminate_regs_in_insn, so just replace a PLUS with a
2641 PLUS here, unless inside a MEM. */
2642 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2643 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2644 return ep->to_rtx;
2645 else
2646 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2647 plus_constant (Pmode, XEXP (x, 1),
2648 ep->previous_offset));
2649 }
2650
2651 /* If the register is not eliminable, we are done since the other
2652 operand is a constant. */
2653 return x;
2654 }
2655
2656 /* If this is part of an address, we want to bring any constant to the
2657 outermost PLUS. We will do this by doing register replacement in
2658 our operands and seeing if a constant shows up in one of them.
2659
2660 Note that there is no risk of modifying the structure of the insn,
2661 since we only get called for its operands, thus we are either
2662 modifying the address inside a MEM, or something like an address
2663 operand of a load-address insn. */
2664
2665 {
2666 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2667 for_costs);
2668 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2669 for_costs);
2670
2671 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2672 {
2673 /* If one side is a PLUS and the other side is a pseudo that
2674 didn't get a hard register but has a reg_equiv_constant,
2675 we must replace the constant here since it may no longer
2676 be in the position of any operand. */
2677 if (GET_CODE (new0) == PLUS && REG_P (new1)
2678 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2679 && reg_renumber[REGNO (new1)] < 0
2680 && reg_equivs
2681 && reg_equiv_constant (REGNO (new1)) != 0)
2682 new1 = reg_equiv_constant (REGNO (new1));
2683 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2684 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2685 && reg_renumber[REGNO (new0)] < 0
2686 && reg_equiv_constant (REGNO (new0)) != 0)
2687 new0 = reg_equiv_constant (REGNO (new0));
2688
2689 new_rtx = form_sum (GET_MODE (x), new0, new1);
2690
2691 /* As above, if we are not inside a MEM we do not want to
2692 turn a PLUS into something else. We might try to do so here
2693 for an addition of 0 if we aren't optimizing. */
2694 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2695 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2696 else
2697 return new_rtx;
2698 }
2699 }
2700 return x;
2701
2702 case MULT:
2703 /* If this is the product of an eliminable register and a
2704 constant, apply the distribute law and move the constant out
2705 so that we have (plus (mult ..) ..). This is needed in order
2706 to keep load-address insns valid. This case is pathological.
2707 We ignore the possibility of overflow here. */
2708 if (REG_P (XEXP (x, 0))
2709 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2710 && CONST_INT_P (XEXP (x, 1)))
2711 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2712 ep++)
2713 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2714 {
2715 if (! mem_mode
2716 /* Refs inside notes or in DEBUG_INSNs don't count for
2717 this purpose. */
2718 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2719 || GET_CODE (insn) == INSN_LIST
2720 || DEBUG_INSN_P (insn))))
2721 ep->ref_outside_mem = 1;
2722
2723 return
2724 plus_constant (Pmode,
2725 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2726 ep->previous_offset * INTVAL (XEXP (x, 1)));
2727 }
2728
2729 /* ... fall through ... */
2730
2731 case CALL:
2732 case COMPARE:
2733 /* See comments before PLUS about handling MINUS. */
2734 case MINUS:
2735 case DIV: case UDIV:
2736 case MOD: case UMOD:
2737 case AND: case IOR: case XOR:
2738 case ROTATERT: case ROTATE:
2739 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2740 case NE: case EQ:
2741 case GE: case GT: case GEU: case GTU:
2742 case LE: case LT: case LEU: case LTU:
2743 {
2744 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2745 for_costs);
2746 rtx new1 = XEXP (x, 1)
2747 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2748 for_costs) : 0;
2749
2750 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2751 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2752 }
2753 return x;
2754
2755 case EXPR_LIST:
2756 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2757 if (XEXP (x, 0))
2758 {
2759 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 0))
2762 {
2763 /* If this is a REG_DEAD note, it is not valid anymore.
2764 Using the eliminated version could result in creating a
2765 REG_DEAD note for the stack or frame pointer. */
2766 if (REG_NOTE_KIND (x) == REG_DEAD)
2767 return (XEXP (x, 1)
2768 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2769 for_costs)
2770 : NULL_RTX);
2771
2772 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2773 }
2774 }
2775
2776 /* ... fall through ... */
2777
2778 case INSN_LIST:
2779 case INT_LIST:
2780 /* Now do eliminations in the rest of the chain. If this was
2781 an EXPR_LIST, this might result in allocating more memory than is
2782 strictly needed, but it simplifies the code. */
2783 if (XEXP (x, 1))
2784 {
2785 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2786 for_costs);
2787 if (new_rtx != XEXP (x, 1))
2788 return
2789 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2790 }
2791 return x;
2792
2793 case PRE_INC:
2794 case POST_INC:
2795 case PRE_DEC:
2796 case POST_DEC:
2797 /* We do not support elimination of a register that is modified.
2798 elimination_effects has already make sure that this does not
2799 happen. */
2800 return x;
2801
2802 case PRE_MODIFY:
2803 case POST_MODIFY:
2804 /* We do not support elimination of a register that is modified.
2805 elimination_effects has already make sure that this does not
2806 happen. The only remaining case we need to consider here is
2807 that the increment value may be an eliminable register. */
2808 if (GET_CODE (XEXP (x, 1)) == PLUS
2809 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2810 {
2811 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2812 insn, true, for_costs);
2813
2814 if (new_rtx != XEXP (XEXP (x, 1), 1))
2815 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2816 gen_rtx_PLUS (GET_MODE (x),
2817 XEXP (x, 0), new_rtx));
2818 }
2819 return x;
2820
2821 case STRICT_LOW_PART:
2822 case NEG: case NOT:
2823 case SIGN_EXTEND: case ZERO_EXTEND:
2824 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2825 case FLOAT: case FIX:
2826 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2827 case ABS:
2828 case SQRT:
2829 case FFS:
2830 case CLZ:
2831 case CTZ:
2832 case POPCOUNT:
2833 case PARITY:
2834 case BSWAP:
2835 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2836 for_costs);
2837 if (new_rtx != XEXP (x, 0))
2838 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2839 return x;
2840
2841 case SUBREG:
2842 /* Similar to above processing, but preserve SUBREG_BYTE.
2843 Convert (subreg (mem)) to (mem) if not paradoxical.
2844 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2845 pseudo didn't get a hard reg, we must replace this with the
2846 eliminated version of the memory location because push_reload
2847 may do the replacement in certain circumstances. */
2848 if (REG_P (SUBREG_REG (x))
2849 && !paradoxical_subreg_p (x)
2850 && reg_equivs
2851 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2852 {
2853 new_rtx = SUBREG_REG (x);
2854 }
2855 else
2856 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2857
2858 if (new_rtx != SUBREG_REG (x))
2859 {
2860 int x_size = GET_MODE_SIZE (GET_MODE (x));
2861 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2862
2863 if (MEM_P (new_rtx)
2864 && ((x_size < new_size
2865 #ifdef WORD_REGISTER_OPERATIONS
2866 /* On these machines, combine can create rtl of the form
2867 (set (subreg:m1 (reg:m2 R) 0) ...)
2868 where m1 < m2, and expects something interesting to
2869 happen to the entire word. Moreover, it will use the
2870 (reg:m2 R) later, expecting all bits to be preserved.
2871 So if the number of words is the same, preserve the
2872 subreg so that push_reload can see it. */
2873 && ! ((x_size - 1) / UNITS_PER_WORD
2874 == (new_size -1 ) / UNITS_PER_WORD)
2875 #endif
2876 )
2877 || x_size == new_size)
2878 )
2879 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2880 else
2881 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2882 }
2883
2884 return x;
2885
2886 case MEM:
2887 /* Our only special processing is to pass the mode of the MEM to our
2888 recursive call and copy the flags. While we are here, handle this
2889 case more efficiently. */
2890
2891 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2892 for_costs);
2893 if (for_costs
2894 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2895 && !memory_address_p (GET_MODE (x), new_rtx))
2896 note_reg_elim_costly (XEXP (x, 0), insn);
2897
2898 return replace_equiv_address_nv (x, new_rtx);
2899
2900 case USE:
2901 /* Handle insn_list USE that a call to a pure function may generate. */
2902 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2903 for_costs);
2904 if (new_rtx != XEXP (x, 0))
2905 return gen_rtx_USE (GET_MODE (x), new_rtx);
2906 return x;
2907
2908 case CLOBBER:
2909 case ASM_OPERANDS:
2910 gcc_assert (insn && DEBUG_INSN_P (insn));
2911 break;
2912
2913 case SET:
2914 gcc_unreachable ();
2915
2916 default:
2917 break;
2918 }
2919
2920 /* Process each of our operands recursively. If any have changed, make a
2921 copy of the rtx. */
2922 fmt = GET_RTX_FORMAT (code);
2923 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2924 {
2925 if (*fmt == 'e')
2926 {
2927 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2928 for_costs);
2929 if (new_rtx != XEXP (x, i) && ! copied)
2930 {
2931 x = shallow_copy_rtx (x);
2932 copied = 1;
2933 }
2934 XEXP (x, i) = new_rtx;
2935 }
2936 else if (*fmt == 'E')
2937 {
2938 int copied_vec = 0;
2939 for (j = 0; j < XVECLEN (x, i); j++)
2940 {
2941 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2942 for_costs);
2943 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2944 {
2945 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2946 XVEC (x, i)->elem);
2947 if (! copied)
2948 {
2949 x = shallow_copy_rtx (x);
2950 copied = 1;
2951 }
2952 XVEC (x, i) = new_v;
2953 copied_vec = 1;
2954 }
2955 XVECEXP (x, i, j) = new_rtx;
2956 }
2957 }
2958 }
2959
2960 return x;
2961 }
2962
2963 rtx
2964 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2965 {
2966 if (reg_eliminate == NULL)
2967 {
2968 gcc_assert (targetm.no_register_allocation);
2969 return x;
2970 }
2971 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2972 }
2973
2974 /* Scan rtx X for modifications of elimination target registers. Update
2975 the table of eliminables to reflect the changed state. MEM_MODE is
2976 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2977
2978 static void
2979 elimination_effects (rtx x, machine_mode mem_mode)
2980 {
2981 enum rtx_code code = GET_CODE (x);
2982 struct elim_table *ep;
2983 int regno;
2984 int i, j;
2985 const char *fmt;
2986
2987 switch (code)
2988 {
2989 CASE_CONST_ANY:
2990 case CONST:
2991 case SYMBOL_REF:
2992 case CODE_LABEL:
2993 case PC:
2994 case CC0:
2995 case ASM_INPUT:
2996 case ADDR_VEC:
2997 case ADDR_DIFF_VEC:
2998 case RETURN:
2999 return;
3000
3001 case REG:
3002 regno = REGNO (x);
3003
3004 /* First handle the case where we encounter a bare register that
3005 is eliminable. Replace it with a PLUS. */
3006 if (regno < FIRST_PSEUDO_REGISTER)
3007 {
3008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3009 ep++)
3010 if (ep->from_rtx == x && ep->can_eliminate)
3011 {
3012 if (! mem_mode)
3013 ep->ref_outside_mem = 1;
3014 return;
3015 }
3016
3017 }
3018 else if (reg_renumber[regno] < 0
3019 && reg_equivs
3020 && reg_equiv_constant (regno)
3021 && ! function_invariant_p (reg_equiv_constant (regno)))
3022 elimination_effects (reg_equiv_constant (regno), mem_mode);
3023 return;
3024
3025 case PRE_INC:
3026 case POST_INC:
3027 case PRE_DEC:
3028 case POST_DEC:
3029 case POST_MODIFY:
3030 case PRE_MODIFY:
3031 /* If we modify the source of an elimination rule, disable it. */
3032 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3033 if (ep->from_rtx == XEXP (x, 0))
3034 ep->can_eliminate = 0;
3035
3036 /* If we modify the target of an elimination rule by adding a constant,
3037 update its offset. If we modify the target in any other way, we'll
3038 have to disable the rule as well. */
3039 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3040 if (ep->to_rtx == XEXP (x, 0))
3041 {
3042 int size = GET_MODE_SIZE (mem_mode);
3043
3044 /* If more bytes than MEM_MODE are pushed, account for them. */
3045 #ifdef PUSH_ROUNDING
3046 if (ep->to_rtx == stack_pointer_rtx)
3047 size = PUSH_ROUNDING (size);
3048 #endif
3049 if (code == PRE_DEC || code == POST_DEC)
3050 ep->offset += size;
3051 else if (code == PRE_INC || code == POST_INC)
3052 ep->offset -= size;
3053 else if (code == PRE_MODIFY || code == POST_MODIFY)
3054 {
3055 if (GET_CODE (XEXP (x, 1)) == PLUS
3056 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3057 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3058 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3059 else
3060 ep->can_eliminate = 0;
3061 }
3062 }
3063
3064 /* These two aren't unary operators. */
3065 if (code == POST_MODIFY || code == PRE_MODIFY)
3066 break;
3067
3068 /* Fall through to generic unary operation case. */
3069 case STRICT_LOW_PART:
3070 case NEG: case NOT:
3071 case SIGN_EXTEND: case ZERO_EXTEND:
3072 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3073 case FLOAT: case FIX:
3074 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3075 case ABS:
3076 case SQRT:
3077 case FFS:
3078 case CLZ:
3079 case CTZ:
3080 case POPCOUNT:
3081 case PARITY:
3082 case BSWAP:
3083 elimination_effects (XEXP (x, 0), mem_mode);
3084 return;
3085
3086 case SUBREG:
3087 if (REG_P (SUBREG_REG (x))
3088 && (GET_MODE_SIZE (GET_MODE (x))
3089 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3090 && reg_equivs
3091 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3092 return;
3093
3094 elimination_effects (SUBREG_REG (x), mem_mode);
3095 return;
3096
3097 case USE:
3098 /* If using a register that is the source of an eliminate we still
3099 think can be performed, note it cannot be performed since we don't
3100 know how this register is used. */
3101 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3102 if (ep->from_rtx == XEXP (x, 0))
3103 ep->can_eliminate = 0;
3104
3105 elimination_effects (XEXP (x, 0), mem_mode);
3106 return;
3107
3108 case CLOBBER:
3109 /* If clobbering a register that is the replacement register for an
3110 elimination we still think can be performed, note that it cannot
3111 be performed. Otherwise, we need not be concerned about it. */
3112 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3113 if (ep->to_rtx == XEXP (x, 0))
3114 ep->can_eliminate = 0;
3115
3116 elimination_effects (XEXP (x, 0), mem_mode);
3117 return;
3118
3119 case SET:
3120 /* Check for setting a register that we know about. */
3121 if (REG_P (SET_DEST (x)))
3122 {
3123 /* See if this is setting the replacement register for an
3124 elimination.
3125
3126 If DEST is the hard frame pointer, we do nothing because we
3127 assume that all assignments to the frame pointer are for
3128 non-local gotos and are being done at a time when they are valid
3129 and do not disturb anything else. Some machines want to
3130 eliminate a fake argument pointer (or even a fake frame pointer)
3131 with either the real frame or the stack pointer. Assignments to
3132 the hard frame pointer must not prevent this elimination. */
3133
3134 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3135 ep++)
3136 if (ep->to_rtx == SET_DEST (x)
3137 && SET_DEST (x) != hard_frame_pointer_rtx)
3138 {
3139 /* If it is being incremented, adjust the offset. Otherwise,
3140 this elimination can't be done. */
3141 rtx src = SET_SRC (x);
3142
3143 if (GET_CODE (src) == PLUS
3144 && XEXP (src, 0) == SET_DEST (x)
3145 && CONST_INT_P (XEXP (src, 1)))
3146 ep->offset -= INTVAL (XEXP (src, 1));
3147 else
3148 ep->can_eliminate = 0;
3149 }
3150 }
3151
3152 elimination_effects (SET_DEST (x), VOIDmode);
3153 elimination_effects (SET_SRC (x), VOIDmode);
3154 return;
3155
3156 case MEM:
3157 /* Our only special processing is to pass the mode of the MEM to our
3158 recursive call. */
3159 elimination_effects (XEXP (x, 0), GET_MODE (x));
3160 return;
3161
3162 default:
3163 break;
3164 }
3165
3166 fmt = GET_RTX_FORMAT (code);
3167 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3168 {
3169 if (*fmt == 'e')
3170 elimination_effects (XEXP (x, i), mem_mode);
3171 else if (*fmt == 'E')
3172 for (j = 0; j < XVECLEN (x, i); j++)
3173 elimination_effects (XVECEXP (x, i, j), mem_mode);
3174 }
3175 }
3176
3177 /* Descend through rtx X and verify that no references to eliminable registers
3178 remain. If any do remain, mark the involved register as not
3179 eliminable. */
3180
3181 static void
3182 check_eliminable_occurrences (rtx x)
3183 {
3184 const char *fmt;
3185 int i;
3186 enum rtx_code code;
3187
3188 if (x == 0)
3189 return;
3190
3191 code = GET_CODE (x);
3192
3193 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3194 {
3195 struct elim_table *ep;
3196
3197 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3198 if (ep->from_rtx == x)
3199 ep->can_eliminate = 0;
3200 return;
3201 }
3202
3203 fmt = GET_RTX_FORMAT (code);
3204 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3205 {
3206 if (*fmt == 'e')
3207 check_eliminable_occurrences (XEXP (x, i));
3208 else if (*fmt == 'E')
3209 {
3210 int j;
3211 for (j = 0; j < XVECLEN (x, i); j++)
3212 check_eliminable_occurrences (XVECEXP (x, i, j));
3213 }
3214 }
3215 }
3216 \f
3217 /* Scan INSN and eliminate all eliminable registers in it.
3218
3219 If REPLACE is nonzero, do the replacement destructively. Also
3220 delete the insn as dead it if it is setting an eliminable register.
3221
3222 If REPLACE is zero, do all our allocations in reload_obstack.
3223
3224 If no eliminations were done and this insn doesn't require any elimination
3225 processing (these are not identical conditions: it might be updating sp,
3226 but not referencing fp; this needs to be seen during reload_as_needed so
3227 that the offset between fp and sp can be taken into consideration), zero
3228 is returned. Otherwise, 1 is returned. */
3229
3230 static int
3231 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3232 {
3233 int icode = recog_memoized (insn);
3234 rtx old_body = PATTERN (insn);
3235 int insn_is_asm = asm_noperands (old_body) >= 0;
3236 rtx old_set = single_set (insn);
3237 rtx new_body;
3238 int val = 0;
3239 int i;
3240 rtx substed_operand[MAX_RECOG_OPERANDS];
3241 rtx orig_operand[MAX_RECOG_OPERANDS];
3242 struct elim_table *ep;
3243 rtx plus_src, plus_cst_src;
3244
3245 if (! insn_is_asm && icode < 0)
3246 {
3247 gcc_assert (DEBUG_INSN_P (insn)
3248 || GET_CODE (PATTERN (insn)) == USE
3249 || GET_CODE (PATTERN (insn)) == CLOBBER
3250 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3251 if (DEBUG_INSN_P (insn))
3252 INSN_VAR_LOCATION_LOC (insn)
3253 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3254 return 0;
3255 }
3256
3257 if (old_set != 0 && REG_P (SET_DEST (old_set))
3258 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3259 {
3260 /* Check for setting an eliminable register. */
3261 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3262 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3263 {
3264 /* If this is setting the frame pointer register to the
3265 hardware frame pointer register and this is an elimination
3266 that will be done (tested above), this insn is really
3267 adjusting the frame pointer downward to compensate for
3268 the adjustment done before a nonlocal goto. */
3269 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3270 && ep->from == FRAME_POINTER_REGNUM
3271 && ep->to == HARD_FRAME_POINTER_REGNUM)
3272 {
3273 rtx base = SET_SRC (old_set);
3274 rtx_insn *base_insn = insn;
3275 HOST_WIDE_INT offset = 0;
3276
3277 while (base != ep->to_rtx)
3278 {
3279 rtx_insn *prev_insn;
3280 rtx prev_set;
3281
3282 if (GET_CODE (base) == PLUS
3283 && CONST_INT_P (XEXP (base, 1)))
3284 {
3285 offset += INTVAL (XEXP (base, 1));
3286 base = XEXP (base, 0);
3287 }
3288 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3289 && (prev_set = single_set (prev_insn)) != 0
3290 && rtx_equal_p (SET_DEST (prev_set), base))
3291 {
3292 base = SET_SRC (prev_set);
3293 base_insn = prev_insn;
3294 }
3295 else
3296 break;
3297 }
3298
3299 if (base == ep->to_rtx)
3300 {
3301 rtx src = plus_constant (Pmode, ep->to_rtx,
3302 offset - ep->offset);
3303
3304 new_body = old_body;
3305 if (! replace)
3306 {
3307 new_body = copy_insn (old_body);
3308 if (REG_NOTES (insn))
3309 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3310 }
3311 PATTERN (insn) = new_body;
3312 old_set = single_set (insn);
3313
3314 /* First see if this insn remains valid when we
3315 make the change. If not, keep the INSN_CODE
3316 the same and let reload fit it up. */
3317 validate_change (insn, &SET_SRC (old_set), src, 1);
3318 validate_change (insn, &SET_DEST (old_set),
3319 ep->to_rtx, 1);
3320 if (! apply_change_group ())
3321 {
3322 SET_SRC (old_set) = src;
3323 SET_DEST (old_set) = ep->to_rtx;
3324 }
3325
3326 val = 1;
3327 goto done;
3328 }
3329 }
3330
3331 /* In this case this insn isn't serving a useful purpose. We
3332 will delete it in reload_as_needed once we know that this
3333 elimination is, in fact, being done.
3334
3335 If REPLACE isn't set, we can't delete this insn, but needn't
3336 process it since it won't be used unless something changes. */
3337 if (replace)
3338 {
3339 delete_dead_insn (insn);
3340 return 1;
3341 }
3342 val = 1;
3343 goto done;
3344 }
3345 }
3346
3347 /* We allow one special case which happens to work on all machines we
3348 currently support: a single set with the source or a REG_EQUAL
3349 note being a PLUS of an eliminable register and a constant. */
3350 plus_src = plus_cst_src = 0;
3351 if (old_set && REG_P (SET_DEST (old_set)))
3352 {
3353 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3354 plus_src = SET_SRC (old_set);
3355 /* First see if the source is of the form (plus (...) CST). */
3356 if (plus_src
3357 && CONST_INT_P (XEXP (plus_src, 1)))
3358 plus_cst_src = plus_src;
3359 else if (REG_P (SET_SRC (old_set))
3360 || plus_src)
3361 {
3362 /* Otherwise, see if we have a REG_EQUAL note of the form
3363 (plus (...) CST). */
3364 rtx links;
3365 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3366 {
3367 if ((REG_NOTE_KIND (links) == REG_EQUAL
3368 || REG_NOTE_KIND (links) == REG_EQUIV)
3369 && GET_CODE (XEXP (links, 0)) == PLUS
3370 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3371 {
3372 plus_cst_src = XEXP (links, 0);
3373 break;
3374 }
3375 }
3376 }
3377
3378 /* Check that the first operand of the PLUS is a hard reg or
3379 the lowpart subreg of one. */
3380 if (plus_cst_src)
3381 {
3382 rtx reg = XEXP (plus_cst_src, 0);
3383 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3384 reg = SUBREG_REG (reg);
3385
3386 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3387 plus_cst_src = 0;
3388 }
3389 }
3390 if (plus_cst_src)
3391 {
3392 rtx reg = XEXP (plus_cst_src, 0);
3393 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3394
3395 if (GET_CODE (reg) == SUBREG)
3396 reg = SUBREG_REG (reg);
3397
3398 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3399 if (ep->from_rtx == reg && ep->can_eliminate)
3400 {
3401 rtx to_rtx = ep->to_rtx;
3402 offset += ep->offset;
3403 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3404
3405 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3406 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3407 to_rtx);
3408 /* If we have a nonzero offset, and the source is already
3409 a simple REG, the following transformation would
3410 increase the cost of the insn by replacing a simple REG
3411 with (plus (reg sp) CST). So try only when we already
3412 had a PLUS before. */
3413 if (offset == 0 || plus_src)
3414 {
3415 rtx new_src = plus_constant (GET_MODE (to_rtx),
3416 to_rtx, offset);
3417
3418 new_body = old_body;
3419 if (! replace)
3420 {
3421 new_body = copy_insn (old_body);
3422 if (REG_NOTES (insn))
3423 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3424 }
3425 PATTERN (insn) = new_body;
3426 old_set = single_set (insn);
3427
3428 /* First see if this insn remains valid when we make the
3429 change. If not, try to replace the whole pattern with
3430 a simple set (this may help if the original insn was a
3431 PARALLEL that was only recognized as single_set due to
3432 REG_UNUSED notes). If this isn't valid either, keep
3433 the INSN_CODE the same and let reload fix it up. */
3434 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3435 {
3436 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3437
3438 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3439 SET_SRC (old_set) = new_src;
3440 }
3441 }
3442 else
3443 break;
3444
3445 val = 1;
3446 /* This can't have an effect on elimination offsets, so skip right
3447 to the end. */
3448 goto done;
3449 }
3450 }
3451
3452 /* Determine the effects of this insn on elimination offsets. */
3453 elimination_effects (old_body, VOIDmode);
3454
3455 /* Eliminate all eliminable registers occurring in operands that
3456 can be handled by reload. */
3457 extract_insn (insn);
3458 for (i = 0; i < recog_data.n_operands; i++)
3459 {
3460 orig_operand[i] = recog_data.operand[i];
3461 substed_operand[i] = recog_data.operand[i];
3462
3463 /* For an asm statement, every operand is eliminable. */
3464 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3465 {
3466 bool is_set_src, in_plus;
3467
3468 /* Check for setting a register that we know about. */
3469 if (recog_data.operand_type[i] != OP_IN
3470 && REG_P (orig_operand[i]))
3471 {
3472 /* If we are assigning to a register that can be eliminated, it
3473 must be as part of a PARALLEL, since the code above handles
3474 single SETs. We must indicate that we can no longer
3475 eliminate this reg. */
3476 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3477 ep++)
3478 if (ep->from_rtx == orig_operand[i])
3479 ep->can_eliminate = 0;
3480 }
3481
3482 /* Companion to the above plus substitution, we can allow
3483 invariants as the source of a plain move. */
3484 is_set_src = false;
3485 if (old_set
3486 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3487 is_set_src = true;
3488 in_plus = false;
3489 if (plus_src
3490 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3491 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3492 in_plus = true;
3493
3494 substed_operand[i]
3495 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3496 replace ? insn : NULL_RTX,
3497 is_set_src || in_plus, false);
3498 if (substed_operand[i] != orig_operand[i])
3499 val = 1;
3500 /* Terminate the search in check_eliminable_occurrences at
3501 this point. */
3502 *recog_data.operand_loc[i] = 0;
3503
3504 /* If an output operand changed from a REG to a MEM and INSN is an
3505 insn, write a CLOBBER insn. */
3506 if (recog_data.operand_type[i] != OP_IN
3507 && REG_P (orig_operand[i])
3508 && MEM_P (substed_operand[i])
3509 && replace)
3510 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3511 }
3512 }
3513
3514 for (i = 0; i < recog_data.n_dups; i++)
3515 *recog_data.dup_loc[i]
3516 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3517
3518 /* If any eliminable remain, they aren't eliminable anymore. */
3519 check_eliminable_occurrences (old_body);
3520
3521 /* Substitute the operands; the new values are in the substed_operand
3522 array. */
3523 for (i = 0; i < recog_data.n_operands; i++)
3524 *recog_data.operand_loc[i] = substed_operand[i];
3525 for (i = 0; i < recog_data.n_dups; i++)
3526 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3527
3528 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3529 re-recognize the insn. We do this in case we had a simple addition
3530 but now can do this as a load-address. This saves an insn in this
3531 common case.
3532 If re-recognition fails, the old insn code number will still be used,
3533 and some register operands may have changed into PLUS expressions.
3534 These will be handled by find_reloads by loading them into a register
3535 again. */
3536
3537 if (val)
3538 {
3539 /* If we aren't replacing things permanently and we changed something,
3540 make another copy to ensure that all the RTL is new. Otherwise
3541 things can go wrong if find_reload swaps commutative operands
3542 and one is inside RTL that has been copied while the other is not. */
3543 new_body = old_body;
3544 if (! replace)
3545 {
3546 new_body = copy_insn (old_body);
3547 if (REG_NOTES (insn))
3548 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3549 }
3550 PATTERN (insn) = new_body;
3551
3552 /* If we had a move insn but now we don't, rerecognize it. This will
3553 cause spurious re-recognition if the old move had a PARALLEL since
3554 the new one still will, but we can't call single_set without
3555 having put NEW_BODY into the insn and the re-recognition won't
3556 hurt in this rare case. */
3557 /* ??? Why this huge if statement - why don't we just rerecognize the
3558 thing always? */
3559 if (! insn_is_asm
3560 && old_set != 0
3561 && ((REG_P (SET_SRC (old_set))
3562 && (GET_CODE (new_body) != SET
3563 || !REG_P (SET_SRC (new_body))))
3564 /* If this was a load from or store to memory, compare
3565 the MEM in recog_data.operand to the one in the insn.
3566 If they are not equal, then rerecognize the insn. */
3567 || (old_set != 0
3568 && ((MEM_P (SET_SRC (old_set))
3569 && SET_SRC (old_set) != recog_data.operand[1])
3570 || (MEM_P (SET_DEST (old_set))
3571 && SET_DEST (old_set) != recog_data.operand[0])))
3572 /* If this was an add insn before, rerecognize. */
3573 || GET_CODE (SET_SRC (old_set)) == PLUS))
3574 {
3575 int new_icode = recog (PATTERN (insn), insn, 0);
3576 if (new_icode >= 0)
3577 INSN_CODE (insn) = new_icode;
3578 }
3579 }
3580
3581 /* Restore the old body. If there were any changes to it, we made a copy
3582 of it while the changes were still in place, so we'll correctly return
3583 a modified insn below. */
3584 if (! replace)
3585 {
3586 /* Restore the old body. */
3587 for (i = 0; i < recog_data.n_operands; i++)
3588 /* Restoring a top-level match_parallel would clobber the new_body
3589 we installed in the insn. */
3590 if (recog_data.operand_loc[i] != &PATTERN (insn))
3591 *recog_data.operand_loc[i] = orig_operand[i];
3592 for (i = 0; i < recog_data.n_dups; i++)
3593 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3594 }
3595
3596 /* Update all elimination pairs to reflect the status after the current
3597 insn. The changes we make were determined by the earlier call to
3598 elimination_effects.
3599
3600 We also detect cases where register elimination cannot be done,
3601 namely, if a register would be both changed and referenced outside a MEM
3602 in the resulting insn since such an insn is often undefined and, even if
3603 not, we cannot know what meaning will be given to it. Note that it is
3604 valid to have a register used in an address in an insn that changes it
3605 (presumably with a pre- or post-increment or decrement).
3606
3607 If anything changes, return nonzero. */
3608
3609 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3610 {
3611 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3612 ep->can_eliminate = 0;
3613
3614 ep->ref_outside_mem = 0;
3615
3616 if (ep->previous_offset != ep->offset)
3617 val = 1;
3618 }
3619
3620 done:
3621 /* If we changed something, perform elimination in REG_NOTES. This is
3622 needed even when REPLACE is zero because a REG_DEAD note might refer
3623 to a register that we eliminate and could cause a different number
3624 of spill registers to be needed in the final reload pass than in
3625 the pre-passes. */
3626 if (val && REG_NOTES (insn) != 0)
3627 REG_NOTES (insn)
3628 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3629 false);
3630
3631 return val;
3632 }
3633
3634 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3635 register allocator. INSN is the instruction we need to examine, we perform
3636 eliminations in its operands and record cases where eliminating a reg with
3637 an invariant equivalence would add extra cost. */
3638
3639 static void
3640 elimination_costs_in_insn (rtx_insn *insn)
3641 {
3642 int icode = recog_memoized (insn);
3643 rtx old_body = PATTERN (insn);
3644 int insn_is_asm = asm_noperands (old_body) >= 0;
3645 rtx old_set = single_set (insn);
3646 int i;
3647 rtx orig_operand[MAX_RECOG_OPERANDS];
3648 rtx orig_dup[MAX_RECOG_OPERANDS];
3649 struct elim_table *ep;
3650 rtx plus_src, plus_cst_src;
3651 bool sets_reg_p;
3652
3653 if (! insn_is_asm && icode < 0)
3654 {
3655 gcc_assert (DEBUG_INSN_P (insn)
3656 || GET_CODE (PATTERN (insn)) == USE
3657 || GET_CODE (PATTERN (insn)) == CLOBBER
3658 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3659 return;
3660 }
3661
3662 if (old_set != 0 && REG_P (SET_DEST (old_set))
3663 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3664 {
3665 /* Check for setting an eliminable register. */
3666 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3667 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3668 return;
3669 }
3670
3671 /* We allow one special case which happens to work on all machines we
3672 currently support: a single set with the source or a REG_EQUAL
3673 note being a PLUS of an eliminable register and a constant. */
3674 plus_src = plus_cst_src = 0;
3675 sets_reg_p = false;
3676 if (old_set && REG_P (SET_DEST (old_set)))
3677 {
3678 sets_reg_p = true;
3679 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3680 plus_src = SET_SRC (old_set);
3681 /* First see if the source is of the form (plus (...) CST). */
3682 if (plus_src
3683 && CONST_INT_P (XEXP (plus_src, 1)))
3684 plus_cst_src = plus_src;
3685 else if (REG_P (SET_SRC (old_set))
3686 || plus_src)
3687 {
3688 /* Otherwise, see if we have a REG_EQUAL note of the form
3689 (plus (...) CST). */
3690 rtx links;
3691 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3692 {
3693 if ((REG_NOTE_KIND (links) == REG_EQUAL
3694 || REG_NOTE_KIND (links) == REG_EQUIV)
3695 && GET_CODE (XEXP (links, 0)) == PLUS
3696 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3697 {
3698 plus_cst_src = XEXP (links, 0);
3699 break;
3700 }
3701 }
3702 }
3703 }
3704
3705 /* Determine the effects of this insn on elimination offsets. */
3706 elimination_effects (old_body, VOIDmode);
3707
3708 /* Eliminate all eliminable registers occurring in operands that
3709 can be handled by reload. */
3710 extract_insn (insn);
3711 for (i = 0; i < recog_data.n_dups; i++)
3712 orig_dup[i] = *recog_data.dup_loc[i];
3713
3714 for (i = 0; i < recog_data.n_operands; i++)
3715 {
3716 orig_operand[i] = recog_data.operand[i];
3717
3718 /* For an asm statement, every operand is eliminable. */
3719 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3720 {
3721 bool is_set_src, in_plus;
3722
3723 /* Check for setting a register that we know about. */
3724 if (recog_data.operand_type[i] != OP_IN
3725 && REG_P (orig_operand[i]))
3726 {
3727 /* If we are assigning to a register that can be eliminated, it
3728 must be as part of a PARALLEL, since the code above handles
3729 single SETs. We must indicate that we can no longer
3730 eliminate this reg. */
3731 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3732 ep++)
3733 if (ep->from_rtx == orig_operand[i])
3734 ep->can_eliminate = 0;
3735 }
3736
3737 /* Companion to the above plus substitution, we can allow
3738 invariants as the source of a plain move. */
3739 is_set_src = false;
3740 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3741 is_set_src = true;
3742 if (is_set_src && !sets_reg_p)
3743 note_reg_elim_costly (SET_SRC (old_set), insn);
3744 in_plus = false;
3745 if (plus_src && sets_reg_p
3746 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3747 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3748 in_plus = true;
3749
3750 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3751 NULL_RTX,
3752 is_set_src || in_plus, true);
3753 /* Terminate the search in check_eliminable_occurrences at
3754 this point. */
3755 *recog_data.operand_loc[i] = 0;
3756 }
3757 }
3758
3759 for (i = 0; i < recog_data.n_dups; i++)
3760 *recog_data.dup_loc[i]
3761 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3762
3763 /* If any eliminable remain, they aren't eliminable anymore. */
3764 check_eliminable_occurrences (old_body);
3765
3766 /* Restore the old body. */
3767 for (i = 0; i < recog_data.n_operands; i++)
3768 *recog_data.operand_loc[i] = orig_operand[i];
3769 for (i = 0; i < recog_data.n_dups; i++)
3770 *recog_data.dup_loc[i] = orig_dup[i];
3771
3772 /* Update all elimination pairs to reflect the status after the current
3773 insn. The changes we make were determined by the earlier call to
3774 elimination_effects. */
3775
3776 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3777 {
3778 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3779 ep->can_eliminate = 0;
3780
3781 ep->ref_outside_mem = 0;
3782 }
3783
3784 return;
3785 }
3786
3787 /* Loop through all elimination pairs.
3788 Recalculate the number not at initial offset.
3789
3790 Compute the maximum offset (minimum offset if the stack does not
3791 grow downward) for each elimination pair. */
3792
3793 static void
3794 update_eliminable_offsets (void)
3795 {
3796 struct elim_table *ep;
3797
3798 num_not_at_initial_offset = 0;
3799 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3800 {
3801 ep->previous_offset = ep->offset;
3802 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3803 num_not_at_initial_offset++;
3804 }
3805 }
3806
3807 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3808 replacement we currently believe is valid, mark it as not eliminable if X
3809 modifies DEST in any way other than by adding a constant integer to it.
3810
3811 If DEST is the frame pointer, we do nothing because we assume that
3812 all assignments to the hard frame pointer are nonlocal gotos and are being
3813 done at a time when they are valid and do not disturb anything else.
3814 Some machines want to eliminate a fake argument pointer with either the
3815 frame or stack pointer. Assignments to the hard frame pointer must not
3816 prevent this elimination.
3817
3818 Called via note_stores from reload before starting its passes to scan
3819 the insns of the function. */
3820
3821 static void
3822 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3823 {
3824 unsigned int i;
3825
3826 /* A SUBREG of a hard register here is just changing its mode. We should
3827 not see a SUBREG of an eliminable hard register, but check just in
3828 case. */
3829 if (GET_CODE (dest) == SUBREG)
3830 dest = SUBREG_REG (dest);
3831
3832 if (dest == hard_frame_pointer_rtx)
3833 return;
3834
3835 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3836 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3837 && (GET_CODE (x) != SET
3838 || GET_CODE (SET_SRC (x)) != PLUS
3839 || XEXP (SET_SRC (x), 0) != dest
3840 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3841 {
3842 reg_eliminate[i].can_eliminate_previous
3843 = reg_eliminate[i].can_eliminate = 0;
3844 num_eliminable--;
3845 }
3846 }
3847
3848 /* Verify that the initial elimination offsets did not change since the
3849 last call to set_initial_elim_offsets. This is used to catch cases
3850 where something illegal happened during reload_as_needed that could
3851 cause incorrect code to be generated if we did not check for it. */
3852
3853 static bool
3854 verify_initial_elim_offsets (void)
3855 {
3856 HOST_WIDE_INT t;
3857
3858 if (!num_eliminable)
3859 return true;
3860
3861 #ifdef ELIMINABLE_REGS
3862 {
3863 struct elim_table *ep;
3864
3865 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3866 {
3867 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3868 if (t != ep->initial_offset)
3869 return false;
3870 }
3871 }
3872 #else
3873 INITIAL_FRAME_POINTER_OFFSET (t);
3874 if (t != reg_eliminate[0].initial_offset)
3875 return false;
3876 #endif
3877
3878 return true;
3879 }
3880
3881 /* Reset all offsets on eliminable registers to their initial values. */
3882
3883 static void
3884 set_initial_elim_offsets (void)
3885 {
3886 struct elim_table *ep = reg_eliminate;
3887
3888 #ifdef ELIMINABLE_REGS
3889 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3890 {
3891 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3893 }
3894 #else
3895 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3896 ep->previous_offset = ep->offset = ep->initial_offset;
3897 #endif
3898
3899 num_not_at_initial_offset = 0;
3900 }
3901
3902 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3903
3904 static void
3905 set_initial_eh_label_offset (rtx label)
3906 {
3907 set_label_offsets (label, NULL, 1);
3908 }
3909
3910 /* Initialize the known label offsets.
3911 Set a known offset for each forced label to be at the initial offset
3912 of each elimination. We do this because we assume that all
3913 computed jumps occur from a location where each elimination is
3914 at its initial offset.
3915 For all other labels, show that we don't know the offsets. */
3916
3917 static void
3918 set_initial_label_offsets (void)
3919 {
3920 memset (offsets_known_at, 0, num_labels);
3921
3922 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3923 if (x->insn ())
3924 set_label_offsets (x->insn (), NULL, 1);
3925
3926 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3927 if (x->insn ())
3928 set_label_offsets (x->insn (), NULL, 1);
3929
3930 for_each_eh_label (set_initial_eh_label_offset);
3931 }
3932
3933 /* Set all elimination offsets to the known values for the code label given
3934 by INSN. */
3935
3936 static void
3937 set_offsets_for_label (rtx_insn *insn)
3938 {
3939 unsigned int i;
3940 int label_nr = CODE_LABEL_NUMBER (insn);
3941 struct elim_table *ep;
3942
3943 num_not_at_initial_offset = 0;
3944 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3945 {
3946 ep->offset = ep->previous_offset
3947 = offsets_at[label_nr - first_label_num][i];
3948 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3949 num_not_at_initial_offset++;
3950 }
3951 }
3952
3953 /* See if anything that happened changes which eliminations are valid.
3954 For example, on the SPARC, whether or not the frame pointer can
3955 be eliminated can depend on what registers have been used. We need
3956 not check some conditions again (such as flag_omit_frame_pointer)
3957 since they can't have changed. */
3958
3959 static void
3960 update_eliminables (HARD_REG_SET *pset)
3961 {
3962 int previous_frame_pointer_needed = frame_pointer_needed;
3963 struct elim_table *ep;
3964
3965 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3966 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3967 && targetm.frame_pointer_required ())
3968 #ifdef ELIMINABLE_REGS
3969 || ! targetm.can_eliminate (ep->from, ep->to)
3970 #endif
3971 )
3972 ep->can_eliminate = 0;
3973
3974 /* Look for the case where we have discovered that we can't replace
3975 register A with register B and that means that we will now be
3976 trying to replace register A with register C. This means we can
3977 no longer replace register C with register B and we need to disable
3978 such an elimination, if it exists. This occurs often with A == ap,
3979 B == sp, and C == fp. */
3980
3981 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3982 {
3983 struct elim_table *op;
3984 int new_to = -1;
3985
3986 if (! ep->can_eliminate && ep->can_eliminate_previous)
3987 {
3988 /* Find the current elimination for ep->from, if there is a
3989 new one. */
3990 for (op = reg_eliminate;
3991 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3992 if (op->from == ep->from && op->can_eliminate)
3993 {
3994 new_to = op->to;
3995 break;
3996 }
3997
3998 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3999 disable it. */
4000 for (op = reg_eliminate;
4001 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4002 if (op->from == new_to && op->to == ep->to)
4003 op->can_eliminate = 0;
4004 }
4005 }
4006
4007 /* See if any registers that we thought we could eliminate the previous
4008 time are no longer eliminable. If so, something has changed and we
4009 must spill the register. Also, recompute the number of eliminable
4010 registers and see if the frame pointer is needed; it is if there is
4011 no elimination of the frame pointer that we can perform. */
4012
4013 frame_pointer_needed = 1;
4014 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4015 {
4016 if (ep->can_eliminate
4017 && ep->from == FRAME_POINTER_REGNUM
4018 && ep->to != HARD_FRAME_POINTER_REGNUM
4019 && (! SUPPORTS_STACK_ALIGNMENT
4020 || ! crtl->stack_realign_needed))
4021 frame_pointer_needed = 0;
4022
4023 if (! ep->can_eliminate && ep->can_eliminate_previous)
4024 {
4025 ep->can_eliminate_previous = 0;
4026 SET_HARD_REG_BIT (*pset, ep->from);
4027 num_eliminable--;
4028 }
4029 }
4030
4031 /* If we didn't need a frame pointer last time, but we do now, spill
4032 the hard frame pointer. */
4033 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4034 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4035 }
4036
4037 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4038 Return true iff a register was spilled. */
4039
4040 static bool
4041 update_eliminables_and_spill (void)
4042 {
4043 int i;
4044 bool did_spill = false;
4045 HARD_REG_SET to_spill;
4046 CLEAR_HARD_REG_SET (to_spill);
4047 update_eliminables (&to_spill);
4048 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4049
4050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4051 if (TEST_HARD_REG_BIT (to_spill, i))
4052 {
4053 spill_hard_reg (i, 1);
4054 did_spill = true;
4055
4056 /* Regardless of the state of spills, if we previously had
4057 a register that we thought we could eliminate, but now can
4058 not eliminate, we must run another pass.
4059
4060 Consider pseudos which have an entry in reg_equiv_* which
4061 reference an eliminable register. We must make another pass
4062 to update reg_equiv_* so that we do not substitute in the
4063 old value from when we thought the elimination could be
4064 performed. */
4065 }
4066 return did_spill;
4067 }
4068
4069 /* Return true if X is used as the target register of an elimination. */
4070
4071 bool
4072 elimination_target_reg_p (rtx x)
4073 {
4074 struct elim_table *ep;
4075
4076 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4077 if (ep->to_rtx == x && ep->can_eliminate)
4078 return true;
4079
4080 return false;
4081 }
4082
4083 /* Initialize the table of registers to eliminate.
4084 Pre-condition: global flag frame_pointer_needed has been set before
4085 calling this function. */
4086
4087 static void
4088 init_elim_table (void)
4089 {
4090 struct elim_table *ep;
4091 #ifdef ELIMINABLE_REGS
4092 const struct elim_table_1 *ep1;
4093 #endif
4094
4095 if (!reg_eliminate)
4096 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4097
4098 num_eliminable = 0;
4099
4100 #ifdef ELIMINABLE_REGS
4101 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4102 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4103 {
4104 ep->from = ep1->from;
4105 ep->to = ep1->to;
4106 ep->can_eliminate = ep->can_eliminate_previous
4107 = (targetm.can_eliminate (ep->from, ep->to)
4108 && ! (ep->to == STACK_POINTER_REGNUM
4109 && frame_pointer_needed
4110 && (! SUPPORTS_STACK_ALIGNMENT
4111 || ! stack_realign_fp)));
4112 }
4113 #else
4114 reg_eliminate[0].from = reg_eliminate_1[0].from;
4115 reg_eliminate[0].to = reg_eliminate_1[0].to;
4116 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4117 = ! frame_pointer_needed;
4118 #endif
4119
4120 /* Count the number of eliminable registers and build the FROM and TO
4121 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4122 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4123 We depend on this. */
4124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4125 {
4126 num_eliminable += ep->can_eliminate;
4127 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4128 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4129 }
4130 }
4131
4132 /* Find all the pseudo registers that didn't get hard regs
4133 but do have known equivalent constants or memory slots.
4134 These include parameters (known equivalent to parameter slots)
4135 and cse'd or loop-moved constant memory addresses.
4136
4137 Record constant equivalents in reg_equiv_constant
4138 so they will be substituted by find_reloads.
4139 Record memory equivalents in reg_mem_equiv so they can
4140 be substituted eventually by altering the REG-rtx's. */
4141
4142 static void
4143 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4144 {
4145 int i;
4146 rtx_insn *insn;
4147
4148 grow_reg_equivs ();
4149 if (do_subregs)
4150 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4151 else
4152 reg_max_ref_width = NULL;
4153
4154 num_eliminable_invariants = 0;
4155
4156 first_label_num = get_first_label_num ();
4157 num_labels = max_label_num () - first_label_num;
4158
4159 /* Allocate the tables used to store offset information at labels. */
4160 offsets_known_at = XNEWVEC (char, num_labels);
4161 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4162
4163 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4164 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4165 find largest such for each pseudo. FIRST is the head of the insn
4166 list. */
4167
4168 for (insn = first; insn; insn = NEXT_INSN (insn))
4169 {
4170 rtx set = single_set (insn);
4171
4172 /* We may introduce USEs that we want to remove at the end, so
4173 we'll mark them with QImode. Make sure there are no
4174 previously-marked insns left by say regmove. */
4175 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4176 && GET_MODE (insn) != VOIDmode)
4177 PUT_MODE (insn, VOIDmode);
4178
4179 if (do_subregs && NONDEBUG_INSN_P (insn))
4180 scan_paradoxical_subregs (PATTERN (insn));
4181
4182 if (set != 0 && REG_P (SET_DEST (set)))
4183 {
4184 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4185 rtx x;
4186
4187 if (! note)
4188 continue;
4189
4190 i = REGNO (SET_DEST (set));
4191 x = XEXP (note, 0);
4192
4193 if (i <= LAST_VIRTUAL_REGISTER)
4194 continue;
4195
4196 /* If flag_pic and we have constant, verify it's legitimate. */
4197 if (!CONSTANT_P (x)
4198 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4199 {
4200 /* It can happen that a REG_EQUIV note contains a MEM
4201 that is not a legitimate memory operand. As later
4202 stages of reload assume that all addresses found
4203 in the reg_equiv_* arrays were originally legitimate,
4204 we ignore such REG_EQUIV notes. */
4205 if (memory_operand (x, VOIDmode))
4206 {
4207 /* Always unshare the equivalence, so we can
4208 substitute into this insn without touching the
4209 equivalence. */
4210 reg_equiv_memory_loc (i) = copy_rtx (x);
4211 }
4212 else if (function_invariant_p (x))
4213 {
4214 machine_mode mode;
4215
4216 mode = GET_MODE (SET_DEST (set));
4217 if (GET_CODE (x) == PLUS)
4218 {
4219 /* This is PLUS of frame pointer and a constant,
4220 and might be shared. Unshare it. */
4221 reg_equiv_invariant (i) = copy_rtx (x);
4222 num_eliminable_invariants++;
4223 }
4224 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4225 {
4226 reg_equiv_invariant (i) = x;
4227 num_eliminable_invariants++;
4228 }
4229 else if (targetm.legitimate_constant_p (mode, x))
4230 reg_equiv_constant (i) = x;
4231 else
4232 {
4233 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4234 if (! reg_equiv_memory_loc (i))
4235 reg_equiv_init (i) = NULL;
4236 }
4237 }
4238 else
4239 {
4240 reg_equiv_init (i) = NULL;
4241 continue;
4242 }
4243 }
4244 else
4245 reg_equiv_init (i) = NULL;
4246 }
4247 }
4248
4249 if (dump_file)
4250 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4251 if (reg_equiv_init (i))
4252 {
4253 fprintf (dump_file, "init_insns for %u: ", i);
4254 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4255 fprintf (dump_file, "\n");
4256 }
4257 }
4258
4259 /* Indicate that we no longer have known memory locations or constants.
4260 Free all data involved in tracking these. */
4261
4262 static void
4263 free_reg_equiv (void)
4264 {
4265 int i;
4266
4267 free (offsets_known_at);
4268 free (offsets_at);
4269 offsets_at = 0;
4270 offsets_known_at = 0;
4271
4272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4273 if (reg_equiv_alt_mem_list (i))
4274 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4275 vec_free (reg_equivs);
4276 }
4277 \f
4278 /* Kick all pseudos out of hard register REGNO.
4279
4280 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4281 because we found we can't eliminate some register. In the case, no pseudos
4282 are allowed to be in the register, even if they are only in a block that
4283 doesn't require spill registers, unlike the case when we are spilling this
4284 hard reg to produce another spill register.
4285
4286 Return nonzero if any pseudos needed to be kicked out. */
4287
4288 static void
4289 spill_hard_reg (unsigned int regno, int cant_eliminate)
4290 {
4291 int i;
4292
4293 if (cant_eliminate)
4294 {
4295 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4296 df_set_regs_ever_live (regno, true);
4297 }
4298
4299 /* Spill every pseudo reg that was allocated to this reg
4300 or to something that overlaps this reg. */
4301
4302 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4303 if (reg_renumber[i] >= 0
4304 && (unsigned int) reg_renumber[i] <= regno
4305 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4306 SET_REGNO_REG_SET (&spilled_pseudos, i);
4307 }
4308
4309 /* After find_reload_regs has been run for all insn that need reloads,
4310 and/or spill_hard_regs was called, this function is used to actually
4311 spill pseudo registers and try to reallocate them. It also sets up the
4312 spill_regs array for use by choose_reload_regs. */
4313
4314 static int
4315 finish_spills (int global)
4316 {
4317 struct insn_chain *chain;
4318 int something_changed = 0;
4319 unsigned i;
4320 reg_set_iterator rsi;
4321
4322 /* Build the spill_regs array for the function. */
4323 /* If there are some registers still to eliminate and one of the spill regs
4324 wasn't ever used before, additional stack space may have to be
4325 allocated to store this register. Thus, we may have changed the offset
4326 between the stack and frame pointers, so mark that something has changed.
4327
4328 One might think that we need only set VAL to 1 if this is a call-used
4329 register. However, the set of registers that must be saved by the
4330 prologue is not identical to the call-used set. For example, the
4331 register used by the call insn for the return PC is a call-used register,
4332 but must be saved by the prologue. */
4333
4334 n_spills = 0;
4335 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4336 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4337 {
4338 spill_reg_order[i] = n_spills;
4339 spill_regs[n_spills++] = i;
4340 if (num_eliminable && ! df_regs_ever_live_p (i))
4341 something_changed = 1;
4342 df_set_regs_ever_live (i, true);
4343 }
4344 else
4345 spill_reg_order[i] = -1;
4346
4347 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4348 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4349 {
4350 /* Record the current hard register the pseudo is allocated to
4351 in pseudo_previous_regs so we avoid reallocating it to the
4352 same hard reg in a later pass. */
4353 gcc_assert (reg_renumber[i] >= 0);
4354
4355 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4356 /* Mark it as no longer having a hard register home. */
4357 reg_renumber[i] = -1;
4358 if (ira_conflicts_p)
4359 /* Inform IRA about the change. */
4360 ira_mark_allocation_change (i);
4361 /* We will need to scan everything again. */
4362 something_changed = 1;
4363 }
4364
4365 /* Retry global register allocation if possible. */
4366 if (global && ira_conflicts_p)
4367 {
4368 unsigned int n;
4369
4370 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4371 /* For every insn that needs reloads, set the registers used as spill
4372 regs in pseudo_forbidden_regs for every pseudo live across the
4373 insn. */
4374 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4375 {
4376 EXECUTE_IF_SET_IN_REG_SET
4377 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4378 {
4379 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4380 chain->used_spill_regs);
4381 }
4382 EXECUTE_IF_SET_IN_REG_SET
4383 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4384 {
4385 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4386 chain->used_spill_regs);
4387 }
4388 }
4389
4390 /* Retry allocating the pseudos spilled in IRA and the
4391 reload. For each reg, merge the various reg sets that
4392 indicate which hard regs can't be used, and call
4393 ira_reassign_pseudos. */
4394 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4395 if (reg_old_renumber[i] != reg_renumber[i])
4396 {
4397 if (reg_renumber[i] < 0)
4398 temp_pseudo_reg_arr[n++] = i;
4399 else
4400 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4401 }
4402 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4403 bad_spill_regs_global,
4404 pseudo_forbidden_regs, pseudo_previous_regs,
4405 &spilled_pseudos))
4406 something_changed = 1;
4407 }
4408 /* Fix up the register information in the insn chain.
4409 This involves deleting those of the spilled pseudos which did not get
4410 a new hard register home from the live_{before,after} sets. */
4411 for (chain = reload_insn_chain; chain; chain = chain->next)
4412 {
4413 HARD_REG_SET used_by_pseudos;
4414 HARD_REG_SET used_by_pseudos2;
4415
4416 if (! ira_conflicts_p)
4417 {
4418 /* Don't do it for IRA because IRA and the reload still can
4419 assign hard registers to the spilled pseudos on next
4420 reload iterations. */
4421 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4422 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4423 }
4424 /* Mark any unallocated hard regs as available for spills. That
4425 makes inheritance work somewhat better. */
4426 if (chain->need_reload)
4427 {
4428 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4429 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4430 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4431
4432 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4433 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4434 /* Value of chain->used_spill_regs from previous iteration
4435 may be not included in the value calculated here because
4436 of possible removing caller-saves insns (see function
4437 delete_caller_save_insns. */
4438 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4439 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4440 }
4441 }
4442
4443 CLEAR_REG_SET (&changed_allocation_pseudos);
4444 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4445 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4446 {
4447 int regno = reg_renumber[i];
4448 if (reg_old_renumber[i] == regno)
4449 continue;
4450
4451 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4452
4453 alter_reg (i, reg_old_renumber[i], false);
4454 reg_old_renumber[i] = regno;
4455 if (dump_file)
4456 {
4457 if (regno == -1)
4458 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4459 else
4460 fprintf (dump_file, " Register %d now in %d.\n\n",
4461 i, reg_renumber[i]);
4462 }
4463 }
4464
4465 return something_changed;
4466 }
4467 \f
4468 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4469
4470 static void
4471 scan_paradoxical_subregs (rtx x)
4472 {
4473 int i;
4474 const char *fmt;
4475 enum rtx_code code = GET_CODE (x);
4476
4477 switch (code)
4478 {
4479 case REG:
4480 case CONST:
4481 case SYMBOL_REF:
4482 case LABEL_REF:
4483 CASE_CONST_ANY:
4484 case CC0:
4485 case PC:
4486 case USE:
4487 case CLOBBER:
4488 return;
4489
4490 case SUBREG:
4491 if (REG_P (SUBREG_REG (x))
4492 && (GET_MODE_SIZE (GET_MODE (x))
4493 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4494 {
4495 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4496 = GET_MODE_SIZE (GET_MODE (x));
4497 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4498 }
4499 return;
4500
4501 default:
4502 break;
4503 }
4504
4505 fmt = GET_RTX_FORMAT (code);
4506 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4507 {
4508 if (fmt[i] == 'e')
4509 scan_paradoxical_subregs (XEXP (x, i));
4510 else if (fmt[i] == 'E')
4511 {
4512 int j;
4513 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4514 scan_paradoxical_subregs (XVECEXP (x, i, j));
4515 }
4516 }
4517 }
4518
4519 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4520 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4521 and apply the corresponding narrowing subreg to *OTHER_PTR.
4522 Return true if the operands were changed, false otherwise. */
4523
4524 static bool
4525 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4526 {
4527 rtx op, inner, other, tem;
4528
4529 op = *op_ptr;
4530 if (!paradoxical_subreg_p (op))
4531 return false;
4532 inner = SUBREG_REG (op);
4533
4534 other = *other_ptr;
4535 tem = gen_lowpart_common (GET_MODE (inner), other);
4536 if (!tem)
4537 return false;
4538
4539 /* If the lowpart operation turned a hard register into a subreg,
4540 rather than simplifying it to another hard register, then the
4541 mode change cannot be properly represented. For example, OTHER
4542 might be valid in its current mode, but not in the new one. */
4543 if (GET_CODE (tem) == SUBREG
4544 && REG_P (other)
4545 && HARD_REGISTER_P (other))
4546 return false;
4547
4548 *op_ptr = inner;
4549 *other_ptr = tem;
4550 return true;
4551 }
4552 \f
4553 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4554 examine all of the reload insns between PREV and NEXT exclusive, and
4555 annotate all that may trap. */
4556
4557 static void
4558 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4559 {
4560 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4561 if (note == NULL)
4562 return;
4563 if (!insn_could_throw_p (insn))
4564 remove_note (insn, note);
4565 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4566 }
4567
4568 /* Reload pseudo-registers into hard regs around each insn as needed.
4569 Additional register load insns are output before the insn that needs it
4570 and perhaps store insns after insns that modify the reloaded pseudo reg.
4571
4572 reg_last_reload_reg and reg_reloaded_contents keep track of
4573 which registers are already available in reload registers.
4574 We update these for the reloads that we perform,
4575 as the insns are scanned. */
4576
4577 static void
4578 reload_as_needed (int live_known)
4579 {
4580 struct insn_chain *chain;
4581 #if defined (AUTO_INC_DEC)
4582 int i;
4583 #endif
4584 rtx_note *marker;
4585
4586 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4587 memset (spill_reg_store, 0, sizeof spill_reg_store);
4588 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4589 INIT_REG_SET (&reg_has_output_reload);
4590 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4591 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4592
4593 set_initial_elim_offsets ();
4594
4595 /* Generate a marker insn that we will move around. */
4596 marker = emit_note (NOTE_INSN_DELETED);
4597 unlink_insn_chain (marker, marker);
4598
4599 for (chain = reload_insn_chain; chain; chain = chain->next)
4600 {
4601 rtx_insn *prev = 0;
4602 rtx_insn *insn = chain->insn;
4603 rtx_insn *old_next = NEXT_INSN (insn);
4604 #ifdef AUTO_INC_DEC
4605 rtx_insn *old_prev = PREV_INSN (insn);
4606 #endif
4607
4608 if (will_delete_init_insn_p (insn))
4609 continue;
4610
4611 /* If we pass a label, copy the offsets from the label information
4612 into the current offsets of each elimination. */
4613 if (LABEL_P (insn))
4614 set_offsets_for_label (insn);
4615
4616 else if (INSN_P (insn))
4617 {
4618 regset_head regs_to_forget;
4619 INIT_REG_SET (&regs_to_forget);
4620 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4621
4622 /* If this is a USE and CLOBBER of a MEM, ensure that any
4623 references to eliminable registers have been removed. */
4624
4625 if ((GET_CODE (PATTERN (insn)) == USE
4626 || GET_CODE (PATTERN (insn)) == CLOBBER)
4627 && MEM_P (XEXP (PATTERN (insn), 0)))
4628 XEXP (XEXP (PATTERN (insn), 0), 0)
4629 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4630 GET_MODE (XEXP (PATTERN (insn), 0)),
4631 NULL_RTX);
4632
4633 /* If we need to do register elimination processing, do so.
4634 This might delete the insn, in which case we are done. */
4635 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4636 {
4637 eliminate_regs_in_insn (insn, 1);
4638 if (NOTE_P (insn))
4639 {
4640 update_eliminable_offsets ();
4641 CLEAR_REG_SET (&regs_to_forget);
4642 continue;
4643 }
4644 }
4645
4646 /* If need_elim is nonzero but need_reload is zero, one might think
4647 that we could simply set n_reloads to 0. However, find_reloads
4648 could have done some manipulation of the insn (such as swapping
4649 commutative operands), and these manipulations are lost during
4650 the first pass for every insn that needs register elimination.
4651 So the actions of find_reloads must be redone here. */
4652
4653 if (! chain->need_elim && ! chain->need_reload
4654 && ! chain->need_operand_change)
4655 n_reloads = 0;
4656 /* First find the pseudo regs that must be reloaded for this insn.
4657 This info is returned in the tables reload_... (see reload.h).
4658 Also modify the body of INSN by substituting RELOAD
4659 rtx's for those pseudo regs. */
4660 else
4661 {
4662 CLEAR_REG_SET (&reg_has_output_reload);
4663 CLEAR_HARD_REG_SET (reg_is_output_reload);
4664
4665 find_reloads (insn, 1, spill_indirect_levels, live_known,
4666 spill_reg_order);
4667 }
4668
4669 if (n_reloads > 0)
4670 {
4671 rtx_insn *next = NEXT_INSN (insn);
4672
4673 /* ??? PREV can get deleted by reload inheritance.
4674 Work around this by emitting a marker note. */
4675 prev = PREV_INSN (insn);
4676 reorder_insns_nobb (marker, marker, prev);
4677
4678 /* Now compute which reload regs to reload them into. Perhaps
4679 reusing reload regs from previous insns, or else output
4680 load insns to reload them. Maybe output store insns too.
4681 Record the choices of reload reg in reload_reg_rtx. */
4682 choose_reload_regs (chain);
4683
4684 /* Generate the insns to reload operands into or out of
4685 their reload regs. */
4686 emit_reload_insns (chain);
4687
4688 /* Substitute the chosen reload regs from reload_reg_rtx
4689 into the insn's body (or perhaps into the bodies of other
4690 load and store insn that we just made for reloading
4691 and that we moved the structure into). */
4692 subst_reloads (insn);
4693
4694 prev = PREV_INSN (marker);
4695 unlink_insn_chain (marker, marker);
4696
4697 /* Adjust the exception region notes for loads and stores. */
4698 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4699 fixup_eh_region_note (insn, prev, next);
4700
4701 /* Adjust the location of REG_ARGS_SIZE. */
4702 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4703 if (p)
4704 {
4705 remove_note (insn, p);
4706 fixup_args_size_notes (prev, PREV_INSN (next),
4707 INTVAL (XEXP (p, 0)));
4708 }
4709
4710 /* If this was an ASM, make sure that all the reload insns
4711 we have generated are valid. If not, give an error
4712 and delete them. */
4713 if (asm_noperands (PATTERN (insn)) >= 0)
4714 for (rtx_insn *p = NEXT_INSN (prev);
4715 p != next;
4716 p = NEXT_INSN (p))
4717 if (p != insn && INSN_P (p)
4718 && GET_CODE (PATTERN (p)) != USE
4719 && (recog_memoized (p) < 0
4720 || (extract_insn (p),
4721 !(constrain_operands (1,
4722 get_enabled_alternatives (p))))))
4723 {
4724 error_for_asm (insn,
4725 "%<asm%> operand requires "
4726 "impossible reload");
4727 delete_insn (p);
4728 }
4729 }
4730
4731 if (num_eliminable && chain->need_elim)
4732 update_eliminable_offsets ();
4733
4734 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4735 is no longer validly lying around to save a future reload.
4736 Note that this does not detect pseudos that were reloaded
4737 for this insn in order to be stored in
4738 (obeying register constraints). That is correct; such reload
4739 registers ARE still valid. */
4740 forget_marked_reloads (&regs_to_forget);
4741 CLEAR_REG_SET (&regs_to_forget);
4742
4743 /* There may have been CLOBBER insns placed after INSN. So scan
4744 between INSN and NEXT and use them to forget old reloads. */
4745 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4746 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4747 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4748
4749 #ifdef AUTO_INC_DEC
4750 /* Likewise for regs altered by auto-increment in this insn.
4751 REG_INC notes have been changed by reloading:
4752 find_reloads_address_1 records substitutions for them,
4753 which have been performed by subst_reloads above. */
4754 for (i = n_reloads - 1; i >= 0; i--)
4755 {
4756 rtx in_reg = rld[i].in_reg;
4757 if (in_reg)
4758 {
4759 enum rtx_code code = GET_CODE (in_reg);
4760 /* PRE_INC / PRE_DEC will have the reload register ending up
4761 with the same value as the stack slot, but that doesn't
4762 hold true for POST_INC / POST_DEC. Either we have to
4763 convert the memory access to a true POST_INC / POST_DEC,
4764 or we can't use the reload register for inheritance. */
4765 if ((code == POST_INC || code == POST_DEC)
4766 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4767 REGNO (rld[i].reg_rtx))
4768 /* Make sure it is the inc/dec pseudo, and not
4769 some other (e.g. output operand) pseudo. */
4770 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4771 == REGNO (XEXP (in_reg, 0))))
4772
4773 {
4774 rtx reload_reg = rld[i].reg_rtx;
4775 machine_mode mode = GET_MODE (reload_reg);
4776 int n = 0;
4777 rtx_insn *p;
4778
4779 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4780 {
4781 /* We really want to ignore REG_INC notes here, so
4782 use PATTERN (p) as argument to reg_set_p . */
4783 if (reg_set_p (reload_reg, PATTERN (p)))
4784 break;
4785 n = count_occurrences (PATTERN (p), reload_reg, 0);
4786 if (! n)
4787 continue;
4788 if (n == 1)
4789 {
4790 rtx replace_reg
4791 = gen_rtx_fmt_e (code, mode, reload_reg);
4792
4793 validate_replace_rtx_group (reload_reg,
4794 replace_reg, p);
4795 n = verify_changes (0);
4796
4797 /* We must also verify that the constraints
4798 are met after the replacement. Make sure
4799 extract_insn is only called for an insn
4800 where the replacements were found to be
4801 valid so far. */
4802 if (n)
4803 {
4804 extract_insn (p);
4805 n = constrain_operands (1,
4806 get_enabled_alternatives (p));
4807 }
4808
4809 /* If the constraints were not met, then
4810 undo the replacement, else confirm it. */
4811 if (!n)
4812 cancel_changes (0);
4813 else
4814 confirm_change_group ();
4815 }
4816 break;
4817 }
4818 if (n == 1)
4819 {
4820 add_reg_note (p, REG_INC, reload_reg);
4821 /* Mark this as having an output reload so that the
4822 REG_INC processing code below won't invalidate
4823 the reload for inheritance. */
4824 SET_HARD_REG_BIT (reg_is_output_reload,
4825 REGNO (reload_reg));
4826 SET_REGNO_REG_SET (&reg_has_output_reload,
4827 REGNO (XEXP (in_reg, 0)));
4828 }
4829 else
4830 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4831 NULL);
4832 }
4833 else if ((code == PRE_INC || code == PRE_DEC)
4834 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4835 REGNO (rld[i].reg_rtx))
4836 /* Make sure it is the inc/dec pseudo, and not
4837 some other (e.g. output operand) pseudo. */
4838 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4839 == REGNO (XEXP (in_reg, 0))))
4840 {
4841 SET_HARD_REG_BIT (reg_is_output_reload,
4842 REGNO (rld[i].reg_rtx));
4843 SET_REGNO_REG_SET (&reg_has_output_reload,
4844 REGNO (XEXP (in_reg, 0)));
4845 }
4846 else if (code == PRE_INC || code == PRE_DEC
4847 || code == POST_INC || code == POST_DEC)
4848 {
4849 int in_regno = REGNO (XEXP (in_reg, 0));
4850
4851 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4852 {
4853 int in_hard_regno;
4854 bool forget_p = true;
4855
4856 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4857 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4858 in_hard_regno))
4859 {
4860 for (rtx_insn *x = (old_prev ?
4861 NEXT_INSN (old_prev) : insn);
4862 x != old_next;
4863 x = NEXT_INSN (x))
4864 if (x == reg_reloaded_insn[in_hard_regno])
4865 {
4866 forget_p = false;
4867 break;
4868 }
4869 }
4870 /* If for some reasons, we didn't set up
4871 reg_last_reload_reg in this insn,
4872 invalidate inheritance from previous
4873 insns for the incremented/decremented
4874 register. Such registers will be not in
4875 reg_has_output_reload. Invalidate it
4876 also if the corresponding element in
4877 reg_reloaded_insn is also
4878 invalidated. */
4879 if (forget_p)
4880 forget_old_reloads_1 (XEXP (in_reg, 0),
4881 NULL_RTX, NULL);
4882 }
4883 }
4884 }
4885 }
4886 /* If a pseudo that got a hard register is auto-incremented,
4887 we must purge records of copying it into pseudos without
4888 hard registers. */
4889 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4890 if (REG_NOTE_KIND (x) == REG_INC)
4891 {
4892 /* See if this pseudo reg was reloaded in this insn.
4893 If so, its last-reload info is still valid
4894 because it is based on this insn's reload. */
4895 for (i = 0; i < n_reloads; i++)
4896 if (rld[i].out == XEXP (x, 0))
4897 break;
4898
4899 if (i == n_reloads)
4900 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4901 }
4902 #endif
4903 }
4904 /* A reload reg's contents are unknown after a label. */
4905 if (LABEL_P (insn))
4906 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4907
4908 /* Don't assume a reload reg is still good after a call insn
4909 if it is a call-used reg, or if it contains a value that will
4910 be partially clobbered by the call. */
4911 else if (CALL_P (insn))
4912 {
4913 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4914 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4915
4916 /* If this is a call to a setjmp-type function, we must not
4917 reuse any reload reg contents across the call; that will
4918 just be clobbered by other uses of the register in later
4919 code, before the longjmp. */
4920 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4921 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4922 }
4923 }
4924
4925 /* Clean up. */
4926 free (reg_last_reload_reg);
4927 CLEAR_REG_SET (&reg_has_output_reload);
4928 }
4929
4930 /* Discard all record of any value reloaded from X,
4931 or reloaded in X from someplace else;
4932 unless X is an output reload reg of the current insn.
4933
4934 X may be a hard reg (the reload reg)
4935 or it may be a pseudo reg that was reloaded from.
4936
4937 When DATA is non-NULL just mark the registers in regset
4938 to be forgotten later. */
4939
4940 static void
4941 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4942 void *data)
4943 {
4944 unsigned int regno;
4945 unsigned int nr;
4946 regset regs = (regset) data;
4947
4948 /* note_stores does give us subregs of hard regs,
4949 subreg_regno_offset requires a hard reg. */
4950 while (GET_CODE (x) == SUBREG)
4951 {
4952 /* We ignore the subreg offset when calculating the regno,
4953 because we are using the entire underlying hard register
4954 below. */
4955 x = SUBREG_REG (x);
4956 }
4957
4958 if (!REG_P (x))
4959 return;
4960
4961 regno = REGNO (x);
4962
4963 if (regno >= FIRST_PSEUDO_REGISTER)
4964 nr = 1;
4965 else
4966 {
4967 unsigned int i;
4968
4969 nr = hard_regno_nregs[regno][GET_MODE (x)];
4970 /* Storing into a spilled-reg invalidates its contents.
4971 This can happen if a block-local pseudo is allocated to that reg
4972 and it wasn't spilled because this block's total need is 0.
4973 Then some insn might have an optional reload and use this reg. */
4974 if (!regs)
4975 for (i = 0; i < nr; i++)
4976 /* But don't do this if the reg actually serves as an output
4977 reload reg in the current instruction. */
4978 if (n_reloads == 0
4979 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4980 {
4981 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4982 spill_reg_store[regno + i] = 0;
4983 }
4984 }
4985
4986 if (regs)
4987 while (nr-- > 0)
4988 SET_REGNO_REG_SET (regs, regno + nr);
4989 else
4990 {
4991 /* Since value of X has changed,
4992 forget any value previously copied from it. */
4993
4994 while (nr-- > 0)
4995 /* But don't forget a copy if this is the output reload
4996 that establishes the copy's validity. */
4997 if (n_reloads == 0
4998 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4999 reg_last_reload_reg[regno + nr] = 0;
5000 }
5001 }
5002
5003 /* Forget the reloads marked in regset by previous function. */
5004 static void
5005 forget_marked_reloads (regset regs)
5006 {
5007 unsigned int reg;
5008 reg_set_iterator rsi;
5009 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5010 {
5011 if (reg < FIRST_PSEUDO_REGISTER
5012 /* But don't do this if the reg actually serves as an output
5013 reload reg in the current instruction. */
5014 && (n_reloads == 0
5015 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5016 {
5017 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5018 spill_reg_store[reg] = 0;
5019 }
5020 if (n_reloads == 0
5021 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5022 reg_last_reload_reg[reg] = 0;
5023 }
5024 }
5025 \f
5026 /* The following HARD_REG_SETs indicate when each hard register is
5027 used for a reload of various parts of the current insn. */
5028
5029 /* If reg is unavailable for all reloads. */
5030 static HARD_REG_SET reload_reg_unavailable;
5031 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5032 static HARD_REG_SET reload_reg_used;
5033 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5034 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5035 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5036 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5037 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5038 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5039 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5040 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5041 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5042 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5043 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5044 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5045 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5046 static HARD_REG_SET reload_reg_used_in_op_addr;
5047 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5048 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5049 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5050 static HARD_REG_SET reload_reg_used_in_insn;
5051 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5052 static HARD_REG_SET reload_reg_used_in_other_addr;
5053
5054 /* If reg is in use as a reload reg for any sort of reload. */
5055 static HARD_REG_SET reload_reg_used_at_all;
5056
5057 /* If reg is use as an inherited reload. We just mark the first register
5058 in the group. */
5059 static HARD_REG_SET reload_reg_used_for_inherit;
5060
5061 /* Records which hard regs are used in any way, either as explicit use or
5062 by being allocated to a pseudo during any point of the current insn. */
5063 static HARD_REG_SET reg_used_in_insn;
5064
5065 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5066 TYPE. MODE is used to indicate how many consecutive regs are
5067 actually used. */
5068
5069 static void
5070 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5071 machine_mode mode)
5072 {
5073 switch (type)
5074 {
5075 case RELOAD_OTHER:
5076 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5077 break;
5078
5079 case RELOAD_FOR_INPUT_ADDRESS:
5080 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5081 break;
5082
5083 case RELOAD_FOR_INPADDR_ADDRESS:
5084 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5085 break;
5086
5087 case RELOAD_FOR_OUTPUT_ADDRESS:
5088 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5089 break;
5090
5091 case RELOAD_FOR_OUTADDR_ADDRESS:
5092 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5093 break;
5094
5095 case RELOAD_FOR_OPERAND_ADDRESS:
5096 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5097 break;
5098
5099 case RELOAD_FOR_OPADDR_ADDR:
5100 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5101 break;
5102
5103 case RELOAD_FOR_OTHER_ADDRESS:
5104 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5105 break;
5106
5107 case RELOAD_FOR_INPUT:
5108 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5109 break;
5110
5111 case RELOAD_FOR_OUTPUT:
5112 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5113 break;
5114
5115 case RELOAD_FOR_INSN:
5116 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5117 break;
5118 }
5119
5120 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5121 }
5122
5123 /* Similarly, but show REGNO is no longer in use for a reload. */
5124
5125 static void
5126 clear_reload_reg_in_use (unsigned int regno, int opnum,
5127 enum reload_type type, machine_mode mode)
5128 {
5129 unsigned int nregs = hard_regno_nregs[regno][mode];
5130 unsigned int start_regno, end_regno, r;
5131 int i;
5132 /* A complication is that for some reload types, inheritance might
5133 allow multiple reloads of the same types to share a reload register.
5134 We set check_opnum if we have to check only reloads with the same
5135 operand number, and check_any if we have to check all reloads. */
5136 int check_opnum = 0;
5137 int check_any = 0;
5138 HARD_REG_SET *used_in_set;
5139
5140 switch (type)
5141 {
5142 case RELOAD_OTHER:
5143 used_in_set = &reload_reg_used;
5144 break;
5145
5146 case RELOAD_FOR_INPUT_ADDRESS:
5147 used_in_set = &reload_reg_used_in_input_addr[opnum];
5148 break;
5149
5150 case RELOAD_FOR_INPADDR_ADDRESS:
5151 check_opnum = 1;
5152 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5153 break;
5154
5155 case RELOAD_FOR_OUTPUT_ADDRESS:
5156 used_in_set = &reload_reg_used_in_output_addr[opnum];
5157 break;
5158
5159 case RELOAD_FOR_OUTADDR_ADDRESS:
5160 check_opnum = 1;
5161 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5162 break;
5163
5164 case RELOAD_FOR_OPERAND_ADDRESS:
5165 used_in_set = &reload_reg_used_in_op_addr;
5166 break;
5167
5168 case RELOAD_FOR_OPADDR_ADDR:
5169 check_any = 1;
5170 used_in_set = &reload_reg_used_in_op_addr_reload;
5171 break;
5172
5173 case RELOAD_FOR_OTHER_ADDRESS:
5174 used_in_set = &reload_reg_used_in_other_addr;
5175 check_any = 1;
5176 break;
5177
5178 case RELOAD_FOR_INPUT:
5179 used_in_set = &reload_reg_used_in_input[opnum];
5180 break;
5181
5182 case RELOAD_FOR_OUTPUT:
5183 used_in_set = &reload_reg_used_in_output[opnum];
5184 break;
5185
5186 case RELOAD_FOR_INSN:
5187 used_in_set = &reload_reg_used_in_insn;
5188 break;
5189 default:
5190 gcc_unreachable ();
5191 }
5192 /* We resolve conflicts with remaining reloads of the same type by
5193 excluding the intervals of reload registers by them from the
5194 interval of freed reload registers. Since we only keep track of
5195 one set of interval bounds, we might have to exclude somewhat
5196 more than what would be necessary if we used a HARD_REG_SET here.
5197 But this should only happen very infrequently, so there should
5198 be no reason to worry about it. */
5199
5200 start_regno = regno;
5201 end_regno = regno + nregs;
5202 if (check_opnum || check_any)
5203 {
5204 for (i = n_reloads - 1; i >= 0; i--)
5205 {
5206 if (rld[i].when_needed == type
5207 && (check_any || rld[i].opnum == opnum)
5208 && rld[i].reg_rtx)
5209 {
5210 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5211 unsigned int conflict_end
5212 = end_hard_regno (rld[i].mode, conflict_start);
5213
5214 /* If there is an overlap with the first to-be-freed register,
5215 adjust the interval start. */
5216 if (conflict_start <= start_regno && conflict_end > start_regno)
5217 start_regno = conflict_end;
5218 /* Otherwise, if there is a conflict with one of the other
5219 to-be-freed registers, adjust the interval end. */
5220 if (conflict_start > start_regno && conflict_start < end_regno)
5221 end_regno = conflict_start;
5222 }
5223 }
5224 }
5225
5226 for (r = start_regno; r < end_regno; r++)
5227 CLEAR_HARD_REG_BIT (*used_in_set, r);
5228 }
5229
5230 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5231 specified by OPNUM and TYPE. */
5232
5233 static int
5234 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5235 {
5236 int i;
5237
5238 /* In use for a RELOAD_OTHER means it's not available for anything. */
5239 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5240 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5241 return 0;
5242
5243 switch (type)
5244 {
5245 case RELOAD_OTHER:
5246 /* In use for anything means we can't use it for RELOAD_OTHER. */
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5248 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5249 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5250 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5251 return 0;
5252
5253 for (i = 0; i < reload_n_operands; i++)
5254 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5255 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5256 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5257 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5258 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5259 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5260 return 0;
5261
5262 return 1;
5263
5264 case RELOAD_FOR_INPUT:
5265 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5266 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5267 return 0;
5268
5269 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5270 return 0;
5271
5272 /* If it is used for some other input, can't use it. */
5273 for (i = 0; i < reload_n_operands; i++)
5274 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5275 return 0;
5276
5277 /* If it is used in a later operand's address, can't use it. */
5278 for (i = opnum + 1; i < reload_n_operands; i++)
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5280 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5281 return 0;
5282
5283 return 1;
5284
5285 case RELOAD_FOR_INPUT_ADDRESS:
5286 /* Can't use a register if it is used for an input address for this
5287 operand or used as an input in an earlier one. */
5288 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5289 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5290 return 0;
5291
5292 for (i = 0; i < opnum; i++)
5293 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5294 return 0;
5295
5296 return 1;
5297
5298 case RELOAD_FOR_INPADDR_ADDRESS:
5299 /* Can't use a register if it is used for an input address
5300 for this operand or used as an input in an earlier
5301 one. */
5302 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5303 return 0;
5304
5305 for (i = 0; i < opnum; i++)
5306 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5307 return 0;
5308
5309 return 1;
5310
5311 case RELOAD_FOR_OUTPUT_ADDRESS:
5312 /* Can't use a register if it is used for an output address for this
5313 operand or used as an output in this or a later operand. Note
5314 that multiple output operands are emitted in reverse order, so
5315 the conflicting ones are those with lower indices. */
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5317 return 0;
5318
5319 for (i = 0; i <= opnum; i++)
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5321 return 0;
5322
5323 return 1;
5324
5325 case RELOAD_FOR_OUTADDR_ADDRESS:
5326 /* Can't use a register if it is used for an output address
5327 for this operand or used as an output in this or a
5328 later operand. Note that multiple output operands are
5329 emitted in reverse order, so the conflicting ones are
5330 those with lower indices. */
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5332 return 0;
5333
5334 for (i = 0; i <= opnum; i++)
5335 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5336 return 0;
5337
5338 return 1;
5339
5340 case RELOAD_FOR_OPERAND_ADDRESS:
5341 for (i = 0; i < reload_n_operands; i++)
5342 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5343 return 0;
5344
5345 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5346 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5347
5348 case RELOAD_FOR_OPADDR_ADDR:
5349 for (i = 0; i < reload_n_operands; i++)
5350 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5351 return 0;
5352
5353 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5354
5355 case RELOAD_FOR_OUTPUT:
5356 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5357 outputs, or an operand address for this or an earlier output.
5358 Note that multiple output operands are emitted in reverse order,
5359 so the conflicting ones are those with higher indices. */
5360 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5361 return 0;
5362
5363 for (i = 0; i < reload_n_operands; i++)
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5365 return 0;
5366
5367 for (i = opnum; i < reload_n_operands; i++)
5368 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5369 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5370 return 0;
5371
5372 return 1;
5373
5374 case RELOAD_FOR_INSN:
5375 for (i = 0; i < reload_n_operands; i++)
5376 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5377 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5378 return 0;
5379
5380 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5381 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5382
5383 case RELOAD_FOR_OTHER_ADDRESS:
5384 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5385
5386 default:
5387 gcc_unreachable ();
5388 }
5389 }
5390
5391 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5392 the number RELOADNUM, is still available in REGNO at the end of the insn.
5393
5394 We can assume that the reload reg was already tested for availability
5395 at the time it is needed, and we should not check this again,
5396 in case the reg has already been marked in use. */
5397
5398 static int
5399 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5400 {
5401 int opnum = rld[reloadnum].opnum;
5402 enum reload_type type = rld[reloadnum].when_needed;
5403 int i;
5404
5405 /* See if there is a reload with the same type for this operand, using
5406 the same register. This case is not handled by the code below. */
5407 for (i = reloadnum + 1; i < n_reloads; i++)
5408 {
5409 rtx reg;
5410 int nregs;
5411
5412 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5413 continue;
5414 reg = rld[i].reg_rtx;
5415 if (reg == NULL_RTX)
5416 continue;
5417 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5418 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5419 return 0;
5420 }
5421
5422 switch (type)
5423 {
5424 case RELOAD_OTHER:
5425 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5426 its value must reach the end. */
5427 return 1;
5428
5429 /* If this use is for part of the insn,
5430 its value reaches if no subsequent part uses the same register.
5431 Just like the above function, don't try to do this with lots
5432 of fallthroughs. */
5433
5434 case RELOAD_FOR_OTHER_ADDRESS:
5435 /* Here we check for everything else, since these don't conflict
5436 with anything else and everything comes later. */
5437
5438 for (i = 0; i < reload_n_operands; i++)
5439 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5440 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5442 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5443 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5444 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5445 return 0;
5446
5447 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5448 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5449 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5450 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5451
5452 case RELOAD_FOR_INPUT_ADDRESS:
5453 case RELOAD_FOR_INPADDR_ADDRESS:
5454 /* Similar, except that we check only for this and subsequent inputs
5455 and the address of only subsequent inputs and we do not need
5456 to check for RELOAD_OTHER objects since they are known not to
5457 conflict. */
5458
5459 for (i = opnum; i < reload_n_operands; i++)
5460 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5461 return 0;
5462
5463 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5464 could be killed if the register is also used by reload with type
5465 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5466 if (type == RELOAD_FOR_INPADDR_ADDRESS
5467 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5468 return 0;
5469
5470 for (i = opnum + 1; i < reload_n_operands; i++)
5471 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5472 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5473 return 0;
5474
5475 for (i = 0; i < reload_n_operands; i++)
5476 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5477 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5478 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5479 return 0;
5480
5481 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5482 return 0;
5483
5484 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5485 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5486 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5487
5488 case RELOAD_FOR_INPUT:
5489 /* Similar to input address, except we start at the next operand for
5490 both input and input address and we do not check for
5491 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5492 would conflict. */
5493
5494 for (i = opnum + 1; i < reload_n_operands; i++)
5495 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5496 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5498 return 0;
5499
5500 /* ... fall through ... */
5501
5502 case RELOAD_FOR_OPERAND_ADDRESS:
5503 /* Check outputs and their addresses. */
5504
5505 for (i = 0; i < reload_n_operands; i++)
5506 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5507 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5508 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5509 return 0;
5510
5511 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5512
5513 case RELOAD_FOR_OPADDR_ADDR:
5514 for (i = 0; i < reload_n_operands; i++)
5515 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5516 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5517 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5518 return 0;
5519
5520 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5521 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5522 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5523
5524 case RELOAD_FOR_INSN:
5525 /* These conflict with other outputs with RELOAD_OTHER. So
5526 we need only check for output addresses. */
5527
5528 opnum = reload_n_operands;
5529
5530 /* ... fall through ... */
5531
5532 case RELOAD_FOR_OUTPUT:
5533 case RELOAD_FOR_OUTPUT_ADDRESS:
5534 case RELOAD_FOR_OUTADDR_ADDRESS:
5535 /* We already know these can't conflict with a later output. So the
5536 only thing to check are later output addresses.
5537 Note that multiple output operands are emitted in reverse order,
5538 so the conflicting ones are those with lower indices. */
5539 for (i = 0; i < opnum; i++)
5540 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5541 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5542 return 0;
5543
5544 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5545 could be killed if the register is also used by reload with type
5546 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5547 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5548 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5549 return 0;
5550
5551 return 1;
5552
5553 default:
5554 gcc_unreachable ();
5555 }
5556 }
5557
5558 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5559 every register in REG. */
5560
5561 static bool
5562 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5563 {
5564 unsigned int i;
5565
5566 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5567 if (!reload_reg_reaches_end_p (i, reloadnum))
5568 return false;
5569 return true;
5570 }
5571 \f
5572
5573 /* Returns whether R1 and R2 are uniquely chained: the value of one
5574 is used by the other, and that value is not used by any other
5575 reload for this insn. This is used to partially undo the decision
5576 made in find_reloads when in the case of multiple
5577 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5578 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5579 reloads. This code tries to avoid the conflict created by that
5580 change. It might be cleaner to explicitly keep track of which
5581 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5582 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5583 this after the fact. */
5584 static bool
5585 reloads_unique_chain_p (int r1, int r2)
5586 {
5587 int i;
5588
5589 /* We only check input reloads. */
5590 if (! rld[r1].in || ! rld[r2].in)
5591 return false;
5592
5593 /* Avoid anything with output reloads. */
5594 if (rld[r1].out || rld[r2].out)
5595 return false;
5596
5597 /* "chained" means one reload is a component of the other reload,
5598 not the same as the other reload. */
5599 if (rld[r1].opnum != rld[r2].opnum
5600 || rtx_equal_p (rld[r1].in, rld[r2].in)
5601 || rld[r1].optional || rld[r2].optional
5602 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5603 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5604 return false;
5605
5606 /* The following loop assumes that r1 is the reload that feeds r2. */
5607 if (r1 > r2)
5608 std::swap (r1, r2);
5609
5610 for (i = 0; i < n_reloads; i ++)
5611 /* Look for input reloads that aren't our two */
5612 if (i != r1 && i != r2 && rld[i].in)
5613 {
5614 /* If our reload is mentioned at all, it isn't a simple chain. */
5615 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5616 return false;
5617 }
5618 return true;
5619 }
5620
5621 /* The recursive function change all occurrences of WHAT in *WHERE
5622 to REPL. */
5623 static void
5624 substitute (rtx *where, const_rtx what, rtx repl)
5625 {
5626 const char *fmt;
5627 int i;
5628 enum rtx_code code;
5629
5630 if (*where == 0)
5631 return;
5632
5633 if (*where == what || rtx_equal_p (*where, what))
5634 {
5635 /* Record the location of the changed rtx. */
5636 substitute_stack.safe_push (where);
5637 *where = repl;
5638 return;
5639 }
5640
5641 code = GET_CODE (*where);
5642 fmt = GET_RTX_FORMAT (code);
5643 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5644 {
5645 if (fmt[i] == 'E')
5646 {
5647 int j;
5648
5649 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5650 substitute (&XVECEXP (*where, i, j), what, repl);
5651 }
5652 else if (fmt[i] == 'e')
5653 substitute (&XEXP (*where, i), what, repl);
5654 }
5655 }
5656
5657 /* The function returns TRUE if chain of reload R1 and R2 (in any
5658 order) can be evaluated without usage of intermediate register for
5659 the reload containing another reload. It is important to see
5660 gen_reload to understand what the function is trying to do. As an
5661 example, let us have reload chain
5662
5663 r2: const
5664 r1: <something> + const
5665
5666 and reload R2 got reload reg HR. The function returns true if
5667 there is a correct insn HR = HR + <something>. Otherwise,
5668 gen_reload will use intermediate register (and this is the reload
5669 reg for R1) to reload <something>.
5670
5671 We need this function to find a conflict for chain reloads. In our
5672 example, if HR = HR + <something> is incorrect insn, then we cannot
5673 use HR as a reload register for R2. If we do use it then we get a
5674 wrong code:
5675
5676 HR = const
5677 HR = <something>
5678 HR = HR + HR
5679
5680 */
5681 static bool
5682 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5683 {
5684 /* Assume other cases in gen_reload are not possible for
5685 chain reloads or do need an intermediate hard registers. */
5686 bool result = true;
5687 int regno, code;
5688 rtx out, in;
5689 rtx_insn *insn;
5690 rtx_insn *last = get_last_insn ();
5691
5692 /* Make r2 a component of r1. */
5693 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5694 std::swap (r1, r2);
5695
5696 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5697 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5698 gcc_assert (regno >= 0);
5699 out = gen_rtx_REG (rld[r1].mode, regno);
5700 in = rld[r1].in;
5701 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5702
5703 /* If IN is a paradoxical SUBREG, remove it and try to put the
5704 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5705 strip_paradoxical_subreg (&in, &out);
5706
5707 if (GET_CODE (in) == PLUS
5708 && (REG_P (XEXP (in, 0))
5709 || GET_CODE (XEXP (in, 0)) == SUBREG
5710 || MEM_P (XEXP (in, 0)))
5711 && (REG_P (XEXP (in, 1))
5712 || GET_CODE (XEXP (in, 1)) == SUBREG
5713 || CONSTANT_P (XEXP (in, 1))
5714 || MEM_P (XEXP (in, 1))))
5715 {
5716 insn = emit_insn (gen_rtx_SET (out, in));
5717 code = recog_memoized (insn);
5718 result = false;
5719
5720 if (code >= 0)
5721 {
5722 extract_insn (insn);
5723 /* We want constrain operands to treat this insn strictly in
5724 its validity determination, i.e., the way it would after
5725 reload has completed. */
5726 result = constrain_operands (1, get_enabled_alternatives (insn));
5727 }
5728
5729 delete_insns_since (last);
5730 }
5731
5732 /* Restore the original value at each changed address within R1. */
5733 while (!substitute_stack.is_empty ())
5734 {
5735 rtx *where = substitute_stack.pop ();
5736 *where = rld[r2].in;
5737 }
5738
5739 return result;
5740 }
5741
5742 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5743 Return 0 otherwise.
5744
5745 This function uses the same algorithm as reload_reg_free_p above. */
5746
5747 static int
5748 reloads_conflict (int r1, int r2)
5749 {
5750 enum reload_type r1_type = rld[r1].when_needed;
5751 enum reload_type r2_type = rld[r2].when_needed;
5752 int r1_opnum = rld[r1].opnum;
5753 int r2_opnum = rld[r2].opnum;
5754
5755 /* RELOAD_OTHER conflicts with everything. */
5756 if (r2_type == RELOAD_OTHER)
5757 return 1;
5758
5759 /* Otherwise, check conflicts differently for each type. */
5760
5761 switch (r1_type)
5762 {
5763 case RELOAD_FOR_INPUT:
5764 return (r2_type == RELOAD_FOR_INSN
5765 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5766 || r2_type == RELOAD_FOR_OPADDR_ADDR
5767 || r2_type == RELOAD_FOR_INPUT
5768 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5769 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5770 && r2_opnum > r1_opnum));
5771
5772 case RELOAD_FOR_INPUT_ADDRESS:
5773 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5774 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5775
5776 case RELOAD_FOR_INPADDR_ADDRESS:
5777 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5778 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5779
5780 case RELOAD_FOR_OUTPUT_ADDRESS:
5781 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5782 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5783
5784 case RELOAD_FOR_OUTADDR_ADDRESS:
5785 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5786 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5787
5788 case RELOAD_FOR_OPERAND_ADDRESS:
5789 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5790 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5791 && (!reloads_unique_chain_p (r1, r2)
5792 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5793
5794 case RELOAD_FOR_OPADDR_ADDR:
5795 return (r2_type == RELOAD_FOR_INPUT
5796 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5797
5798 case RELOAD_FOR_OUTPUT:
5799 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5800 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5801 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5802 && r2_opnum >= r1_opnum));
5803
5804 case RELOAD_FOR_INSN:
5805 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5806 || r2_type == RELOAD_FOR_INSN
5807 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5808
5809 case RELOAD_FOR_OTHER_ADDRESS:
5810 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5811
5812 case RELOAD_OTHER:
5813 return 1;
5814
5815 default:
5816 gcc_unreachable ();
5817 }
5818 }
5819 \f
5820 /* Indexed by reload number, 1 if incoming value
5821 inherited from previous insns. */
5822 static char reload_inherited[MAX_RELOADS];
5823
5824 /* For an inherited reload, this is the insn the reload was inherited from,
5825 if we know it. Otherwise, this is 0. */
5826 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5827
5828 /* If nonzero, this is a place to get the value of the reload,
5829 rather than using reload_in. */
5830 static rtx reload_override_in[MAX_RELOADS];
5831
5832 /* For each reload, the hard register number of the register used,
5833 or -1 if we did not need a register for this reload. */
5834 static int reload_spill_index[MAX_RELOADS];
5835
5836 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5837 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5838
5839 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5840 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5841
5842 /* Subroutine of free_for_value_p, used to check a single register.
5843 START_REGNO is the starting regno of the full reload register
5844 (possibly comprising multiple hard registers) that we are considering. */
5845
5846 static int
5847 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5848 enum reload_type type, rtx value, rtx out,
5849 int reloadnum, int ignore_address_reloads)
5850 {
5851 int time1;
5852 /* Set if we see an input reload that must not share its reload register
5853 with any new earlyclobber, but might otherwise share the reload
5854 register with an output or input-output reload. */
5855 int check_earlyclobber = 0;
5856 int i;
5857 int copy = 0;
5858
5859 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5860 return 0;
5861
5862 if (out == const0_rtx)
5863 {
5864 copy = 1;
5865 out = NULL_RTX;
5866 }
5867
5868 /* We use some pseudo 'time' value to check if the lifetimes of the
5869 new register use would overlap with the one of a previous reload
5870 that is not read-only or uses a different value.
5871 The 'time' used doesn't have to be linear in any shape or form, just
5872 monotonic.
5873 Some reload types use different 'buckets' for each operand.
5874 So there are MAX_RECOG_OPERANDS different time values for each
5875 such reload type.
5876 We compute TIME1 as the time when the register for the prospective
5877 new reload ceases to be live, and TIME2 for each existing
5878 reload as the time when that the reload register of that reload
5879 becomes live.
5880 Where there is little to be gained by exact lifetime calculations,
5881 we just make conservative assumptions, i.e. a longer lifetime;
5882 this is done in the 'default:' cases. */
5883 switch (type)
5884 {
5885 case RELOAD_FOR_OTHER_ADDRESS:
5886 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5887 time1 = copy ? 0 : 1;
5888 break;
5889 case RELOAD_OTHER:
5890 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5891 break;
5892 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5893 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5894 respectively, to the time values for these, we get distinct time
5895 values. To get distinct time values for each operand, we have to
5896 multiply opnum by at least three. We round that up to four because
5897 multiply by four is often cheaper. */
5898 case RELOAD_FOR_INPADDR_ADDRESS:
5899 time1 = opnum * 4 + 2;
5900 break;
5901 case RELOAD_FOR_INPUT_ADDRESS:
5902 time1 = opnum * 4 + 3;
5903 break;
5904 case RELOAD_FOR_INPUT:
5905 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5906 executes (inclusive). */
5907 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5908 break;
5909 case RELOAD_FOR_OPADDR_ADDR:
5910 /* opnum * 4 + 4
5911 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5912 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5913 break;
5914 case RELOAD_FOR_OPERAND_ADDRESS:
5915 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5916 is executed. */
5917 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5918 break;
5919 case RELOAD_FOR_OUTADDR_ADDRESS:
5920 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5921 break;
5922 case RELOAD_FOR_OUTPUT_ADDRESS:
5923 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5924 break;
5925 default:
5926 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5927 }
5928
5929 for (i = 0; i < n_reloads; i++)
5930 {
5931 rtx reg = rld[i].reg_rtx;
5932 if (reg && REG_P (reg)
5933 && ((unsigned) regno - true_regnum (reg)
5934 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5935 && i != reloadnum)
5936 {
5937 rtx other_input = rld[i].in;
5938
5939 /* If the other reload loads the same input value, that
5940 will not cause a conflict only if it's loading it into
5941 the same register. */
5942 if (true_regnum (reg) != start_regno)
5943 other_input = NULL_RTX;
5944 if (! other_input || ! rtx_equal_p (other_input, value)
5945 || rld[i].out || out)
5946 {
5947 int time2;
5948 switch (rld[i].when_needed)
5949 {
5950 case RELOAD_FOR_OTHER_ADDRESS:
5951 time2 = 0;
5952 break;
5953 case RELOAD_FOR_INPADDR_ADDRESS:
5954 /* find_reloads makes sure that a
5955 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5956 by at most one - the first -
5957 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5958 address reload is inherited, the address address reload
5959 goes away, so we can ignore this conflict. */
5960 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5961 && ignore_address_reloads
5962 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5963 Then the address address is still needed to store
5964 back the new address. */
5965 && ! rld[reloadnum].out)
5966 continue;
5967 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5968 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5969 reloads go away. */
5970 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5971 && ignore_address_reloads
5972 /* Unless we are reloading an auto_inc expression. */
5973 && ! rld[reloadnum].out)
5974 continue;
5975 time2 = rld[i].opnum * 4 + 2;
5976 break;
5977 case RELOAD_FOR_INPUT_ADDRESS:
5978 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5979 && ignore_address_reloads
5980 && ! rld[reloadnum].out)
5981 continue;
5982 time2 = rld[i].opnum * 4 + 3;
5983 break;
5984 case RELOAD_FOR_INPUT:
5985 time2 = rld[i].opnum * 4 + 4;
5986 check_earlyclobber = 1;
5987 break;
5988 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5989 == MAX_RECOG_OPERAND * 4 */
5990 case RELOAD_FOR_OPADDR_ADDR:
5991 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5992 && ignore_address_reloads
5993 && ! rld[reloadnum].out)
5994 continue;
5995 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5996 break;
5997 case RELOAD_FOR_OPERAND_ADDRESS:
5998 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5999 check_earlyclobber = 1;
6000 break;
6001 case RELOAD_FOR_INSN:
6002 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6003 break;
6004 case RELOAD_FOR_OUTPUT:
6005 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6006 instruction is executed. */
6007 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6008 break;
6009 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6010 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6011 value. */
6012 case RELOAD_FOR_OUTADDR_ADDRESS:
6013 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6014 && ignore_address_reloads
6015 && ! rld[reloadnum].out)
6016 continue;
6017 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6018 break;
6019 case RELOAD_FOR_OUTPUT_ADDRESS:
6020 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6021 break;
6022 case RELOAD_OTHER:
6023 /* If there is no conflict in the input part, handle this
6024 like an output reload. */
6025 if (! rld[i].in || rtx_equal_p (other_input, value))
6026 {
6027 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6028 /* Earlyclobbered outputs must conflict with inputs. */
6029 if (earlyclobber_operand_p (rld[i].out))
6030 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6031
6032 break;
6033 }
6034 time2 = 1;
6035 /* RELOAD_OTHER might be live beyond instruction execution,
6036 but this is not obvious when we set time2 = 1. So check
6037 here if there might be a problem with the new reload
6038 clobbering the register used by the RELOAD_OTHER. */
6039 if (out)
6040 return 0;
6041 break;
6042 default:
6043 return 0;
6044 }
6045 if ((time1 >= time2
6046 && (! rld[i].in || rld[i].out
6047 || ! rtx_equal_p (other_input, value)))
6048 || (out && rld[reloadnum].out_reg
6049 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6050 return 0;
6051 }
6052 }
6053 }
6054
6055 /* Earlyclobbered outputs must conflict with inputs. */
6056 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6057 return 0;
6058
6059 return 1;
6060 }
6061
6062 /* Return 1 if the value in reload reg REGNO, as used by a reload
6063 needed for the part of the insn specified by OPNUM and TYPE,
6064 may be used to load VALUE into it.
6065
6066 MODE is the mode in which the register is used, this is needed to
6067 determine how many hard regs to test.
6068
6069 Other read-only reloads with the same value do not conflict
6070 unless OUT is nonzero and these other reloads have to live while
6071 output reloads live.
6072 If OUT is CONST0_RTX, this is a special case: it means that the
6073 test should not be for using register REGNO as reload register, but
6074 for copying from register REGNO into the reload register.
6075
6076 RELOADNUM is the number of the reload we want to load this value for;
6077 a reload does not conflict with itself.
6078
6079 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6080 reloads that load an address for the very reload we are considering.
6081
6082 The caller has to make sure that there is no conflict with the return
6083 register. */
6084
6085 static int
6086 free_for_value_p (int regno, machine_mode mode, int opnum,
6087 enum reload_type type, rtx value, rtx out, int reloadnum,
6088 int ignore_address_reloads)
6089 {
6090 int nregs = hard_regno_nregs[regno][mode];
6091 while (nregs-- > 0)
6092 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6093 value, out, reloadnum,
6094 ignore_address_reloads))
6095 return 0;
6096 return 1;
6097 }
6098
6099 /* Return nonzero if the rtx X is invariant over the current function. */
6100 /* ??? Actually, the places where we use this expect exactly what is
6101 tested here, and not everything that is function invariant. In
6102 particular, the frame pointer and arg pointer are special cased;
6103 pic_offset_table_rtx is not, and we must not spill these things to
6104 memory. */
6105
6106 int
6107 function_invariant_p (const_rtx x)
6108 {
6109 if (CONSTANT_P (x))
6110 return 1;
6111 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6112 return 1;
6113 if (GET_CODE (x) == PLUS
6114 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6115 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6116 return 1;
6117 return 0;
6118 }
6119
6120 /* Determine whether the reload reg X overlaps any rtx'es used for
6121 overriding inheritance. Return nonzero if so. */
6122
6123 static int
6124 conflicts_with_override (rtx x)
6125 {
6126 int i;
6127 for (i = 0; i < n_reloads; i++)
6128 if (reload_override_in[i]
6129 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6130 return 1;
6131 return 0;
6132 }
6133 \f
6134 /* Give an error message saying we failed to find a reload for INSN,
6135 and clear out reload R. */
6136 static void
6137 failed_reload (rtx_insn *insn, int r)
6138 {
6139 if (asm_noperands (PATTERN (insn)) < 0)
6140 /* It's the compiler's fault. */
6141 fatal_insn ("could not find a spill register", insn);
6142
6143 /* It's the user's fault; the operand's mode and constraint
6144 don't match. Disable this reload so we don't crash in final. */
6145 error_for_asm (insn,
6146 "%<asm%> operand constraint incompatible with operand size");
6147 rld[r].in = 0;
6148 rld[r].out = 0;
6149 rld[r].reg_rtx = 0;
6150 rld[r].optional = 1;
6151 rld[r].secondary_p = 1;
6152 }
6153
6154 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6155 for reload R. If it's valid, get an rtx for it. Return nonzero if
6156 successful. */
6157 static int
6158 set_reload_reg (int i, int r)
6159 {
6160 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6161 parameter. */
6162 int regno ATTRIBUTE_UNUSED;
6163 rtx reg = spill_reg_rtx[i];
6164
6165 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6166 spill_reg_rtx[i] = reg
6167 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6168
6169 regno = true_regnum (reg);
6170
6171 /* Detect when the reload reg can't hold the reload mode.
6172 This used to be one `if', but Sequent compiler can't handle that. */
6173 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6174 {
6175 machine_mode test_mode = VOIDmode;
6176 if (rld[r].in)
6177 test_mode = GET_MODE (rld[r].in);
6178 /* If rld[r].in has VOIDmode, it means we will load it
6179 in whatever mode the reload reg has: to wit, rld[r].mode.
6180 We have already tested that for validity. */
6181 /* Aside from that, we need to test that the expressions
6182 to reload from or into have modes which are valid for this
6183 reload register. Otherwise the reload insns would be invalid. */
6184 if (! (rld[r].in != 0 && test_mode != VOIDmode
6185 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6186 if (! (rld[r].out != 0
6187 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6188 {
6189 /* The reg is OK. */
6190 last_spill_reg = i;
6191
6192 /* Mark as in use for this insn the reload regs we use
6193 for this. */
6194 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6195 rld[r].when_needed, rld[r].mode);
6196
6197 rld[r].reg_rtx = reg;
6198 reload_spill_index[r] = spill_regs[i];
6199 return 1;
6200 }
6201 }
6202 return 0;
6203 }
6204
6205 /* Find a spill register to use as a reload register for reload R.
6206 LAST_RELOAD is nonzero if this is the last reload for the insn being
6207 processed.
6208
6209 Set rld[R].reg_rtx to the register allocated.
6210
6211 We return 1 if successful, or 0 if we couldn't find a spill reg and
6212 we didn't change anything. */
6213
6214 static int
6215 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6216 int last_reload)
6217 {
6218 int i, pass, count;
6219
6220 /* If we put this reload ahead, thinking it is a group,
6221 then insist on finding a group. Otherwise we can grab a
6222 reg that some other reload needs.
6223 (That can happen when we have a 68000 DATA_OR_FP_REG
6224 which is a group of data regs or one fp reg.)
6225 We need not be so restrictive if there are no more reloads
6226 for this insn.
6227
6228 ??? Really it would be nicer to have smarter handling
6229 for that kind of reg class, where a problem like this is normal.
6230 Perhaps those classes should be avoided for reloading
6231 by use of more alternatives. */
6232
6233 int force_group = rld[r].nregs > 1 && ! last_reload;
6234
6235 /* If we want a single register and haven't yet found one,
6236 take any reg in the right class and not in use.
6237 If we want a consecutive group, here is where we look for it.
6238
6239 We use three passes so we can first look for reload regs to
6240 reuse, which are already in use for other reloads in this insn,
6241 and only then use additional registers which are not "bad", then
6242 finally any register.
6243
6244 I think that maximizing reuse is needed to make sure we don't
6245 run out of reload regs. Suppose we have three reloads, and
6246 reloads A and B can share regs. These need two regs.
6247 Suppose A and B are given different regs.
6248 That leaves none for C. */
6249 for (pass = 0; pass < 3; pass++)
6250 {
6251 /* I is the index in spill_regs.
6252 We advance it round-robin between insns to use all spill regs
6253 equally, so that inherited reloads have a chance
6254 of leapfrogging each other. */
6255
6256 i = last_spill_reg;
6257
6258 for (count = 0; count < n_spills; count++)
6259 {
6260 int rclass = (int) rld[r].rclass;
6261 int regnum;
6262
6263 i++;
6264 if (i >= n_spills)
6265 i -= n_spills;
6266 regnum = spill_regs[i];
6267
6268 if ((reload_reg_free_p (regnum, rld[r].opnum,
6269 rld[r].when_needed)
6270 || (rld[r].in
6271 /* We check reload_reg_used to make sure we
6272 don't clobber the return register. */
6273 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6274 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6275 rld[r].when_needed, rld[r].in,
6276 rld[r].out, r, 1)))
6277 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6278 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6279 /* Look first for regs to share, then for unshared. But
6280 don't share regs used for inherited reloads; they are
6281 the ones we want to preserve. */
6282 && (pass
6283 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6284 regnum)
6285 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6286 regnum))))
6287 {
6288 int nr = hard_regno_nregs[regnum][rld[r].mode];
6289
6290 /* During the second pass we want to avoid reload registers
6291 which are "bad" for this reload. */
6292 if (pass == 1
6293 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6294 continue;
6295
6296 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6297 (on 68000) got us two FP regs. If NR is 1,
6298 we would reject both of them. */
6299 if (force_group)
6300 nr = rld[r].nregs;
6301 /* If we need only one reg, we have already won. */
6302 if (nr == 1)
6303 {
6304 /* But reject a single reg if we demand a group. */
6305 if (force_group)
6306 continue;
6307 break;
6308 }
6309 /* Otherwise check that as many consecutive regs as we need
6310 are available here. */
6311 while (nr > 1)
6312 {
6313 int regno = regnum + nr - 1;
6314 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6315 && spill_reg_order[regno] >= 0
6316 && reload_reg_free_p (regno, rld[r].opnum,
6317 rld[r].when_needed)))
6318 break;
6319 nr--;
6320 }
6321 if (nr == 1)
6322 break;
6323 }
6324 }
6325
6326 /* If we found something on the current pass, omit later passes. */
6327 if (count < n_spills)
6328 break;
6329 }
6330
6331 /* We should have found a spill register by now. */
6332 if (count >= n_spills)
6333 return 0;
6334
6335 /* I is the index in SPILL_REG_RTX of the reload register we are to
6336 allocate. Get an rtx for it and find its register number. */
6337
6338 return set_reload_reg (i, r);
6339 }
6340 \f
6341 /* Initialize all the tables needed to allocate reload registers.
6342 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6343 is the array we use to restore the reg_rtx field for every reload. */
6344
6345 static void
6346 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6347 {
6348 int i;
6349
6350 for (i = 0; i < n_reloads; i++)
6351 rld[i].reg_rtx = save_reload_reg_rtx[i];
6352
6353 memset (reload_inherited, 0, MAX_RELOADS);
6354 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6355 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6356
6357 CLEAR_HARD_REG_SET (reload_reg_used);
6358 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6359 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6360 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6361 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6362 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6363
6364 CLEAR_HARD_REG_SET (reg_used_in_insn);
6365 {
6366 HARD_REG_SET tmp;
6367 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6368 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6369 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6370 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6371 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6372 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6373 }
6374
6375 for (i = 0; i < reload_n_operands; i++)
6376 {
6377 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6378 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6379 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6380 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6381 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6382 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6383 }
6384
6385 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6386
6387 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6388
6389 for (i = 0; i < n_reloads; i++)
6390 /* If we have already decided to use a certain register,
6391 don't use it in another way. */
6392 if (rld[i].reg_rtx)
6393 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6394 rld[i].when_needed, rld[i].mode);
6395 }
6396
6397 #ifdef SECONDARY_MEMORY_NEEDED
6398 /* If X is not a subreg, return it unmodified. If it is a subreg,
6399 look up whether we made a replacement for the SUBREG_REG. Return
6400 either the replacement or the SUBREG_REG. */
6401
6402 static rtx
6403 replaced_subreg (rtx x)
6404 {
6405 if (GET_CODE (x) == SUBREG)
6406 return find_replacement (&SUBREG_REG (x));
6407 return x;
6408 }
6409 #endif
6410
6411 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6412 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6413 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6414 otherwise it is NULL. */
6415
6416 static int
6417 compute_reload_subreg_offset (machine_mode outermode,
6418 rtx subreg,
6419 machine_mode innermode)
6420 {
6421 int outer_offset;
6422 machine_mode middlemode;
6423
6424 if (!subreg)
6425 return subreg_lowpart_offset (outermode, innermode);
6426
6427 outer_offset = SUBREG_BYTE (subreg);
6428 middlemode = GET_MODE (SUBREG_REG (subreg));
6429
6430 /* If SUBREG is paradoxical then return the normal lowpart offset
6431 for OUTERMODE and INNERMODE. Our caller has already checked
6432 that OUTERMODE fits in INNERMODE. */
6433 if (outer_offset == 0
6434 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6435 return subreg_lowpart_offset (outermode, innermode);
6436
6437 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6438 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6439 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6440 }
6441
6442 /* Assign hard reg targets for the pseudo-registers we must reload
6443 into hard regs for this insn.
6444 Also output the instructions to copy them in and out of the hard regs.
6445
6446 For machines with register classes, we are responsible for
6447 finding a reload reg in the proper class. */
6448
6449 static void
6450 choose_reload_regs (struct insn_chain *chain)
6451 {
6452 rtx_insn *insn = chain->insn;
6453 int i, j;
6454 unsigned int max_group_size = 1;
6455 enum reg_class group_class = NO_REGS;
6456 int pass, win, inheritance;
6457
6458 rtx save_reload_reg_rtx[MAX_RELOADS];
6459
6460 /* In order to be certain of getting the registers we need,
6461 we must sort the reloads into order of increasing register class.
6462 Then our grabbing of reload registers will parallel the process
6463 that provided the reload registers.
6464
6465 Also note whether any of the reloads wants a consecutive group of regs.
6466 If so, record the maximum size of the group desired and what
6467 register class contains all the groups needed by this insn. */
6468
6469 for (j = 0; j < n_reloads; j++)
6470 {
6471 reload_order[j] = j;
6472 if (rld[j].reg_rtx != NULL_RTX)
6473 {
6474 gcc_assert (REG_P (rld[j].reg_rtx)
6475 && HARD_REGISTER_P (rld[j].reg_rtx));
6476 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6477 }
6478 else
6479 reload_spill_index[j] = -1;
6480
6481 if (rld[j].nregs > 1)
6482 {
6483 max_group_size = MAX (rld[j].nregs, max_group_size);
6484 group_class
6485 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6486 }
6487
6488 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6489 }
6490
6491 if (n_reloads > 1)
6492 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6493
6494 /* If -O, try first with inheritance, then turning it off.
6495 If not -O, don't do inheritance.
6496 Using inheritance when not optimizing leads to paradoxes
6497 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6498 because one side of the comparison might be inherited. */
6499 win = 0;
6500 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6501 {
6502 choose_reload_regs_init (chain, save_reload_reg_rtx);
6503
6504 /* Process the reloads in order of preference just found.
6505 Beyond this point, subregs can be found in reload_reg_rtx.
6506
6507 This used to look for an existing reloaded home for all of the
6508 reloads, and only then perform any new reloads. But that could lose
6509 if the reloads were done out of reg-class order because a later
6510 reload with a looser constraint might have an old home in a register
6511 needed by an earlier reload with a tighter constraint.
6512
6513 To solve this, we make two passes over the reloads, in the order
6514 described above. In the first pass we try to inherit a reload
6515 from a previous insn. If there is a later reload that needs a
6516 class that is a proper subset of the class being processed, we must
6517 also allocate a spill register during the first pass.
6518
6519 Then make a second pass over the reloads to allocate any reloads
6520 that haven't been given registers yet. */
6521
6522 for (j = 0; j < n_reloads; j++)
6523 {
6524 int r = reload_order[j];
6525 rtx search_equiv = NULL_RTX;
6526
6527 /* Ignore reloads that got marked inoperative. */
6528 if (rld[r].out == 0 && rld[r].in == 0
6529 && ! rld[r].secondary_p)
6530 continue;
6531
6532 /* If find_reloads chose to use reload_in or reload_out as a reload
6533 register, we don't need to chose one. Otherwise, try even if it
6534 found one since we might save an insn if we find the value lying
6535 around.
6536 Try also when reload_in is a pseudo without a hard reg. */
6537 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6538 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6539 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6540 && !MEM_P (rld[r].in)
6541 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6542 continue;
6543
6544 #if 0 /* No longer needed for correct operation.
6545 It might give better code, or might not; worth an experiment? */
6546 /* If this is an optional reload, we can't inherit from earlier insns
6547 until we are sure that any non-optional reloads have been allocated.
6548 The following code takes advantage of the fact that optional reloads
6549 are at the end of reload_order. */
6550 if (rld[r].optional != 0)
6551 for (i = 0; i < j; i++)
6552 if ((rld[reload_order[i]].out != 0
6553 || rld[reload_order[i]].in != 0
6554 || rld[reload_order[i]].secondary_p)
6555 && ! rld[reload_order[i]].optional
6556 && rld[reload_order[i]].reg_rtx == 0)
6557 allocate_reload_reg (chain, reload_order[i], 0);
6558 #endif
6559
6560 /* First see if this pseudo is already available as reloaded
6561 for a previous insn. We cannot try to inherit for reloads
6562 that are smaller than the maximum number of registers needed
6563 for groups unless the register we would allocate cannot be used
6564 for the groups.
6565
6566 We could check here to see if this is a secondary reload for
6567 an object that is already in a register of the desired class.
6568 This would avoid the need for the secondary reload register.
6569 But this is complex because we can't easily determine what
6570 objects might want to be loaded via this reload. So let a
6571 register be allocated here. In `emit_reload_insns' we suppress
6572 one of the loads in the case described above. */
6573
6574 if (inheritance)
6575 {
6576 int byte = 0;
6577 int regno = -1;
6578 machine_mode mode = VOIDmode;
6579 rtx subreg = NULL_RTX;
6580
6581 if (rld[r].in == 0)
6582 ;
6583 else if (REG_P (rld[r].in))
6584 {
6585 regno = REGNO (rld[r].in);
6586 mode = GET_MODE (rld[r].in);
6587 }
6588 else if (REG_P (rld[r].in_reg))
6589 {
6590 regno = REGNO (rld[r].in_reg);
6591 mode = GET_MODE (rld[r].in_reg);
6592 }
6593 else if (GET_CODE (rld[r].in_reg) == SUBREG
6594 && REG_P (SUBREG_REG (rld[r].in_reg)))
6595 {
6596 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6597 if (regno < FIRST_PSEUDO_REGISTER)
6598 regno = subreg_regno (rld[r].in_reg);
6599 else
6600 {
6601 subreg = rld[r].in_reg;
6602 byte = SUBREG_BYTE (subreg);
6603 }
6604 mode = GET_MODE (rld[r].in_reg);
6605 }
6606 #ifdef AUTO_INC_DEC
6607 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6608 && REG_P (XEXP (rld[r].in_reg, 0)))
6609 {
6610 regno = REGNO (XEXP (rld[r].in_reg, 0));
6611 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6612 rld[r].out = rld[r].in;
6613 }
6614 #endif
6615 #if 0
6616 /* This won't work, since REGNO can be a pseudo reg number.
6617 Also, it takes much more hair to keep track of all the things
6618 that can invalidate an inherited reload of part of a pseudoreg. */
6619 else if (GET_CODE (rld[r].in) == SUBREG
6620 && REG_P (SUBREG_REG (rld[r].in)))
6621 regno = subreg_regno (rld[r].in);
6622 #endif
6623
6624 if (regno >= 0
6625 && reg_last_reload_reg[regno] != 0
6626 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6627 >= GET_MODE_SIZE (mode) + byte)
6628 #ifdef CANNOT_CHANGE_MODE_CLASS
6629 /* Verify that the register it's in can be used in
6630 mode MODE. */
6631 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6632 GET_MODE (reg_last_reload_reg[regno]),
6633 mode)
6634 #endif
6635 )
6636 {
6637 enum reg_class rclass = rld[r].rclass, last_class;
6638 rtx last_reg = reg_last_reload_reg[regno];
6639
6640 i = REGNO (last_reg);
6641 byte = compute_reload_subreg_offset (mode,
6642 subreg,
6643 GET_MODE (last_reg));
6644 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6645 last_class = REGNO_REG_CLASS (i);
6646
6647 if (reg_reloaded_contents[i] == regno
6648 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6649 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6650 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6651 /* Even if we can't use this register as a reload
6652 register, we might use it for reload_override_in,
6653 if copying it to the desired class is cheap
6654 enough. */
6655 || ((register_move_cost (mode, last_class, rclass)
6656 < memory_move_cost (mode, rclass, true))
6657 && (secondary_reload_class (1, rclass, mode,
6658 last_reg)
6659 == NO_REGS)
6660 #ifdef SECONDARY_MEMORY_NEEDED
6661 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6662 mode)
6663 #endif
6664 ))
6665
6666 && (rld[r].nregs == max_group_size
6667 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6668 i))
6669 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6670 rld[r].when_needed, rld[r].in,
6671 const0_rtx, r, 1))
6672 {
6673 /* If a group is needed, verify that all the subsequent
6674 registers still have their values intact. */
6675 int nr = hard_regno_nregs[i][rld[r].mode];
6676 int k;
6677
6678 for (k = 1; k < nr; k++)
6679 if (reg_reloaded_contents[i + k] != regno
6680 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6681 break;
6682
6683 if (k == nr)
6684 {
6685 int i1;
6686 int bad_for_class;
6687
6688 last_reg = (GET_MODE (last_reg) == mode
6689 ? last_reg : gen_rtx_REG (mode, i));
6690
6691 bad_for_class = 0;
6692 for (k = 0; k < nr; k++)
6693 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6694 i+k);
6695
6696 /* We found a register that contains the
6697 value we need. If this register is the
6698 same as an `earlyclobber' operand of the
6699 current insn, just mark it as a place to
6700 reload from since we can't use it as the
6701 reload register itself. */
6702
6703 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6704 if (reg_overlap_mentioned_for_reload_p
6705 (reg_last_reload_reg[regno],
6706 reload_earlyclobbers[i1]))
6707 break;
6708
6709 if (i1 != n_earlyclobbers
6710 || ! (free_for_value_p (i, rld[r].mode,
6711 rld[r].opnum,
6712 rld[r].when_needed, rld[r].in,
6713 rld[r].out, r, 1))
6714 /* Don't use it if we'd clobber a pseudo reg. */
6715 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6716 && rld[r].out
6717 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6718 /* Don't clobber the frame pointer. */
6719 || (i == HARD_FRAME_POINTER_REGNUM
6720 && frame_pointer_needed
6721 && rld[r].out)
6722 /* Don't really use the inherited spill reg
6723 if we need it wider than we've got it. */
6724 || (GET_MODE_SIZE (rld[r].mode)
6725 > GET_MODE_SIZE (mode))
6726 || bad_for_class
6727
6728 /* If find_reloads chose reload_out as reload
6729 register, stay with it - that leaves the
6730 inherited register for subsequent reloads. */
6731 || (rld[r].out && rld[r].reg_rtx
6732 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6733 {
6734 if (! rld[r].optional)
6735 {
6736 reload_override_in[r] = last_reg;
6737 reload_inheritance_insn[r]
6738 = reg_reloaded_insn[i];
6739 }
6740 }
6741 else
6742 {
6743 int k;
6744 /* We can use this as a reload reg. */
6745 /* Mark the register as in use for this part of
6746 the insn. */
6747 mark_reload_reg_in_use (i,
6748 rld[r].opnum,
6749 rld[r].when_needed,
6750 rld[r].mode);
6751 rld[r].reg_rtx = last_reg;
6752 reload_inherited[r] = 1;
6753 reload_inheritance_insn[r]
6754 = reg_reloaded_insn[i];
6755 reload_spill_index[r] = i;
6756 for (k = 0; k < nr; k++)
6757 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6758 i + k);
6759 }
6760 }
6761 }
6762 }
6763 }
6764
6765 /* Here's another way to see if the value is already lying around. */
6766 if (inheritance
6767 && rld[r].in != 0
6768 && ! reload_inherited[r]
6769 && rld[r].out == 0
6770 && (CONSTANT_P (rld[r].in)
6771 || GET_CODE (rld[r].in) == PLUS
6772 || REG_P (rld[r].in)
6773 || MEM_P (rld[r].in))
6774 && (rld[r].nregs == max_group_size
6775 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6776 search_equiv = rld[r].in;
6777
6778 if (search_equiv)
6779 {
6780 rtx equiv
6781 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6782 -1, NULL, 0, rld[r].mode);
6783 int regno = 0;
6784
6785 if (equiv != 0)
6786 {
6787 if (REG_P (equiv))
6788 regno = REGNO (equiv);
6789 else
6790 {
6791 /* This must be a SUBREG of a hard register.
6792 Make a new REG since this might be used in an
6793 address and not all machines support SUBREGs
6794 there. */
6795 gcc_assert (GET_CODE (equiv) == SUBREG);
6796 regno = subreg_regno (equiv);
6797 equiv = gen_rtx_REG (rld[r].mode, regno);
6798 /* If we choose EQUIV as the reload register, but the
6799 loop below decides to cancel the inheritance, we'll
6800 end up reloading EQUIV in rld[r].mode, not the mode
6801 it had originally. That isn't safe when EQUIV isn't
6802 available as a spill register since its value might
6803 still be live at this point. */
6804 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6805 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6806 equiv = 0;
6807 }
6808 }
6809
6810 /* If we found a spill reg, reject it unless it is free
6811 and of the desired class. */
6812 if (equiv != 0)
6813 {
6814 int regs_used = 0;
6815 int bad_for_class = 0;
6816 int max_regno = regno + rld[r].nregs;
6817
6818 for (i = regno; i < max_regno; i++)
6819 {
6820 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6821 i);
6822 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6823 i);
6824 }
6825
6826 if ((regs_used
6827 && ! free_for_value_p (regno, rld[r].mode,
6828 rld[r].opnum, rld[r].when_needed,
6829 rld[r].in, rld[r].out, r, 1))
6830 || bad_for_class)
6831 equiv = 0;
6832 }
6833
6834 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6835 equiv = 0;
6836
6837 /* We found a register that contains the value we need.
6838 If this register is the same as an `earlyclobber' operand
6839 of the current insn, just mark it as a place to reload from
6840 since we can't use it as the reload register itself. */
6841
6842 if (equiv != 0)
6843 for (i = 0; i < n_earlyclobbers; i++)
6844 if (reg_overlap_mentioned_for_reload_p (equiv,
6845 reload_earlyclobbers[i]))
6846 {
6847 if (! rld[r].optional)
6848 reload_override_in[r] = equiv;
6849 equiv = 0;
6850 break;
6851 }
6852
6853 /* If the equiv register we have found is explicitly clobbered
6854 in the current insn, it depends on the reload type if we
6855 can use it, use it for reload_override_in, or not at all.
6856 In particular, we then can't use EQUIV for a
6857 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6858
6859 if (equiv != 0)
6860 {
6861 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6862 switch (rld[r].when_needed)
6863 {
6864 case RELOAD_FOR_OTHER_ADDRESS:
6865 case RELOAD_FOR_INPADDR_ADDRESS:
6866 case RELOAD_FOR_INPUT_ADDRESS:
6867 case RELOAD_FOR_OPADDR_ADDR:
6868 break;
6869 case RELOAD_OTHER:
6870 case RELOAD_FOR_INPUT:
6871 case RELOAD_FOR_OPERAND_ADDRESS:
6872 if (! rld[r].optional)
6873 reload_override_in[r] = equiv;
6874 /* Fall through. */
6875 default:
6876 equiv = 0;
6877 break;
6878 }
6879 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6880 switch (rld[r].when_needed)
6881 {
6882 case RELOAD_FOR_OTHER_ADDRESS:
6883 case RELOAD_FOR_INPADDR_ADDRESS:
6884 case RELOAD_FOR_INPUT_ADDRESS:
6885 case RELOAD_FOR_OPADDR_ADDR:
6886 case RELOAD_FOR_OPERAND_ADDRESS:
6887 case RELOAD_FOR_INPUT:
6888 break;
6889 case RELOAD_OTHER:
6890 if (! rld[r].optional)
6891 reload_override_in[r] = equiv;
6892 /* Fall through. */
6893 default:
6894 equiv = 0;
6895 break;
6896 }
6897 }
6898
6899 /* If we found an equivalent reg, say no code need be generated
6900 to load it, and use it as our reload reg. */
6901 if (equiv != 0
6902 && (regno != HARD_FRAME_POINTER_REGNUM
6903 || !frame_pointer_needed))
6904 {
6905 int nr = hard_regno_nregs[regno][rld[r].mode];
6906 int k;
6907 rld[r].reg_rtx = equiv;
6908 reload_spill_index[r] = regno;
6909 reload_inherited[r] = 1;
6910
6911 /* If reg_reloaded_valid is not set for this register,
6912 there might be a stale spill_reg_store lying around.
6913 We must clear it, since otherwise emit_reload_insns
6914 might delete the store. */
6915 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6916 spill_reg_store[regno] = NULL;
6917 /* If any of the hard registers in EQUIV are spill
6918 registers, mark them as in use for this insn. */
6919 for (k = 0; k < nr; k++)
6920 {
6921 i = spill_reg_order[regno + k];
6922 if (i >= 0)
6923 {
6924 mark_reload_reg_in_use (regno, rld[r].opnum,
6925 rld[r].when_needed,
6926 rld[r].mode);
6927 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6928 regno + k);
6929 }
6930 }
6931 }
6932 }
6933
6934 /* If we found a register to use already, or if this is an optional
6935 reload, we are done. */
6936 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6937 continue;
6938
6939 #if 0
6940 /* No longer needed for correct operation. Might or might
6941 not give better code on the average. Want to experiment? */
6942
6943 /* See if there is a later reload that has a class different from our
6944 class that intersects our class or that requires less register
6945 than our reload. If so, we must allocate a register to this
6946 reload now, since that reload might inherit a previous reload
6947 and take the only available register in our class. Don't do this
6948 for optional reloads since they will force all previous reloads
6949 to be allocated. Also don't do this for reloads that have been
6950 turned off. */
6951
6952 for (i = j + 1; i < n_reloads; i++)
6953 {
6954 int s = reload_order[i];
6955
6956 if ((rld[s].in == 0 && rld[s].out == 0
6957 && ! rld[s].secondary_p)
6958 || rld[s].optional)
6959 continue;
6960
6961 if ((rld[s].rclass != rld[r].rclass
6962 && reg_classes_intersect_p (rld[r].rclass,
6963 rld[s].rclass))
6964 || rld[s].nregs < rld[r].nregs)
6965 break;
6966 }
6967
6968 if (i == n_reloads)
6969 continue;
6970
6971 allocate_reload_reg (chain, r, j == n_reloads - 1);
6972 #endif
6973 }
6974
6975 /* Now allocate reload registers for anything non-optional that
6976 didn't get one yet. */
6977 for (j = 0; j < n_reloads; j++)
6978 {
6979 int r = reload_order[j];
6980
6981 /* Ignore reloads that got marked inoperative. */
6982 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6983 continue;
6984
6985 /* Skip reloads that already have a register allocated or are
6986 optional. */
6987 if (rld[r].reg_rtx != 0 || rld[r].optional)
6988 continue;
6989
6990 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6991 break;
6992 }
6993
6994 /* If that loop got all the way, we have won. */
6995 if (j == n_reloads)
6996 {
6997 win = 1;
6998 break;
6999 }
7000
7001 /* Loop around and try without any inheritance. */
7002 }
7003
7004 if (! win)
7005 {
7006 /* First undo everything done by the failed attempt
7007 to allocate with inheritance. */
7008 choose_reload_regs_init (chain, save_reload_reg_rtx);
7009
7010 /* Some sanity tests to verify that the reloads found in the first
7011 pass are identical to the ones we have now. */
7012 gcc_assert (chain->n_reloads == n_reloads);
7013
7014 for (i = 0; i < n_reloads; i++)
7015 {
7016 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7017 continue;
7018 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7019 for (j = 0; j < n_spills; j++)
7020 if (spill_regs[j] == chain->rld[i].regno)
7021 if (! set_reload_reg (j, i))
7022 failed_reload (chain->insn, i);
7023 }
7024 }
7025
7026 /* If we thought we could inherit a reload, because it seemed that
7027 nothing else wanted the same reload register earlier in the insn,
7028 verify that assumption, now that all reloads have been assigned.
7029 Likewise for reloads where reload_override_in has been set. */
7030
7031 /* If doing expensive optimizations, do one preliminary pass that doesn't
7032 cancel any inheritance, but removes reloads that have been needed only
7033 for reloads that we know can be inherited. */
7034 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7035 {
7036 for (j = 0; j < n_reloads; j++)
7037 {
7038 int r = reload_order[j];
7039 rtx check_reg;
7040 #ifdef SECONDARY_MEMORY_NEEDED
7041 rtx tem;
7042 #endif
7043 if (reload_inherited[r] && rld[r].reg_rtx)
7044 check_reg = rld[r].reg_rtx;
7045 else if (reload_override_in[r]
7046 && (REG_P (reload_override_in[r])
7047 || GET_CODE (reload_override_in[r]) == SUBREG))
7048 check_reg = reload_override_in[r];
7049 else
7050 continue;
7051 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7052 rld[r].opnum, rld[r].when_needed, rld[r].in,
7053 (reload_inherited[r]
7054 ? rld[r].out : const0_rtx),
7055 r, 1))
7056 {
7057 if (pass)
7058 continue;
7059 reload_inherited[r] = 0;
7060 reload_override_in[r] = 0;
7061 }
7062 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7063 reload_override_in, then we do not need its related
7064 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7065 likewise for other reload types.
7066 We handle this by removing a reload when its only replacement
7067 is mentioned in reload_in of the reload we are going to inherit.
7068 A special case are auto_inc expressions; even if the input is
7069 inherited, we still need the address for the output. We can
7070 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7071 If we succeeded removing some reload and we are doing a preliminary
7072 pass just to remove such reloads, make another pass, since the
7073 removal of one reload might allow us to inherit another one. */
7074 else if (rld[r].in
7075 && rld[r].out != rld[r].in
7076 && remove_address_replacements (rld[r].in))
7077 {
7078 if (pass)
7079 pass = 2;
7080 }
7081 #ifdef SECONDARY_MEMORY_NEEDED
7082 /* If we needed a memory location for the reload, we also have to
7083 remove its related reloads. */
7084 else if (rld[r].in
7085 && rld[r].out != rld[r].in
7086 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7087 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7088 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7089 rld[r].rclass, rld[r].inmode)
7090 && remove_address_replacements
7091 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7092 rld[r].when_needed)))
7093 {
7094 if (pass)
7095 pass = 2;
7096 }
7097 #endif
7098 }
7099 }
7100
7101 /* Now that reload_override_in is known valid,
7102 actually override reload_in. */
7103 for (j = 0; j < n_reloads; j++)
7104 if (reload_override_in[j])
7105 rld[j].in = reload_override_in[j];
7106
7107 /* If this reload won't be done because it has been canceled or is
7108 optional and not inherited, clear reload_reg_rtx so other
7109 routines (such as subst_reloads) don't get confused. */
7110 for (j = 0; j < n_reloads; j++)
7111 if (rld[j].reg_rtx != 0
7112 && ((rld[j].optional && ! reload_inherited[j])
7113 || (rld[j].in == 0 && rld[j].out == 0
7114 && ! rld[j].secondary_p)))
7115 {
7116 int regno = true_regnum (rld[j].reg_rtx);
7117
7118 if (spill_reg_order[regno] >= 0)
7119 clear_reload_reg_in_use (regno, rld[j].opnum,
7120 rld[j].when_needed, rld[j].mode);
7121 rld[j].reg_rtx = 0;
7122 reload_spill_index[j] = -1;
7123 }
7124
7125 /* Record which pseudos and which spill regs have output reloads. */
7126 for (j = 0; j < n_reloads; j++)
7127 {
7128 int r = reload_order[j];
7129
7130 i = reload_spill_index[r];
7131
7132 /* I is nonneg if this reload uses a register.
7133 If rld[r].reg_rtx is 0, this is an optional reload
7134 that we opted to ignore. */
7135 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7136 && rld[r].reg_rtx != 0)
7137 {
7138 int nregno = REGNO (rld[r].out_reg);
7139 int nr = 1;
7140
7141 if (nregno < FIRST_PSEUDO_REGISTER)
7142 nr = hard_regno_nregs[nregno][rld[r].mode];
7143
7144 while (--nr >= 0)
7145 SET_REGNO_REG_SET (&reg_has_output_reload,
7146 nregno + nr);
7147
7148 if (i >= 0)
7149 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7150
7151 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7152 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7153 || rld[r].when_needed == RELOAD_FOR_INSN);
7154 }
7155 }
7156 }
7157
7158 /* Deallocate the reload register for reload R. This is called from
7159 remove_address_replacements. */
7160
7161 void
7162 deallocate_reload_reg (int r)
7163 {
7164 int regno;
7165
7166 if (! rld[r].reg_rtx)
7167 return;
7168 regno = true_regnum (rld[r].reg_rtx);
7169 rld[r].reg_rtx = 0;
7170 if (spill_reg_order[regno] >= 0)
7171 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7172 rld[r].mode);
7173 reload_spill_index[r] = -1;
7174 }
7175 \f
7176 /* These arrays are filled by emit_reload_insns and its subroutines. */
7177 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7178 static rtx_insn *other_input_address_reload_insns = 0;
7179 static rtx_insn *other_input_reload_insns = 0;
7180 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7181 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7182 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7183 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7184 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7185 static rtx_insn *operand_reload_insns = 0;
7186 static rtx_insn *other_operand_reload_insns = 0;
7187 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7188
7189 /* Values to be put in spill_reg_store are put here first. Instructions
7190 must only be placed here if the associated reload register reaches
7191 the end of the instruction's reload sequence. */
7192 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7193 static HARD_REG_SET reg_reloaded_died;
7194
7195 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7196 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7197 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7198 adjusted register, and return true. Otherwise, return false. */
7199 static bool
7200 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7201 enum reg_class new_class,
7202 machine_mode new_mode)
7203
7204 {
7205 rtx reg;
7206
7207 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7208 {
7209 unsigned regno = REGNO (reg);
7210
7211 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7212 continue;
7213 if (GET_MODE (reg) != new_mode)
7214 {
7215 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7216 continue;
7217 if (hard_regno_nregs[regno][new_mode]
7218 > hard_regno_nregs[regno][GET_MODE (reg)])
7219 continue;
7220 reg = reload_adjust_reg_for_mode (reg, new_mode);
7221 }
7222 *reload_reg = reg;
7223 return true;
7224 }
7225 return false;
7226 }
7227
7228 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7229 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7230 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7231 adjusted register, and return true. Otherwise, return false. */
7232 static bool
7233 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7234 enum insn_code icode)
7235
7236 {
7237 enum reg_class new_class = scratch_reload_class (icode);
7238 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7239
7240 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7241 new_class, new_mode);
7242 }
7243
7244 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7245 has the number J. OLD contains the value to be used as input. */
7246
7247 static void
7248 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7249 rtx old, int j)
7250 {
7251 rtx_insn *insn = chain->insn;
7252 rtx reloadreg;
7253 rtx oldequiv_reg = 0;
7254 rtx oldequiv = 0;
7255 int special = 0;
7256 machine_mode mode;
7257 rtx_insn **where;
7258
7259 /* delete_output_reload is only invoked properly if old contains
7260 the original pseudo register. Since this is replaced with a
7261 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7262 find the pseudo in RELOAD_IN_REG. This is also used to
7263 determine whether a secondary reload is needed. */
7264 if (reload_override_in[j]
7265 && (REG_P (rl->in_reg)
7266 || (GET_CODE (rl->in_reg) == SUBREG
7267 && REG_P (SUBREG_REG (rl->in_reg)))))
7268 {
7269 oldequiv = old;
7270 old = rl->in_reg;
7271 }
7272 if (oldequiv == 0)
7273 oldequiv = old;
7274 else if (REG_P (oldequiv))
7275 oldequiv_reg = oldequiv;
7276 else if (GET_CODE (oldequiv) == SUBREG)
7277 oldequiv_reg = SUBREG_REG (oldequiv);
7278
7279 reloadreg = reload_reg_rtx_for_input[j];
7280 mode = GET_MODE (reloadreg);
7281
7282 /* If we are reloading from a register that was recently stored in
7283 with an output-reload, see if we can prove there was
7284 actually no need to store the old value in it. */
7285
7286 if (optimize && REG_P (oldequiv)
7287 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7288 && spill_reg_store[REGNO (oldequiv)]
7289 && REG_P (old)
7290 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7291 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7292 rl->out_reg)))
7293 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7294
7295 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7296 OLDEQUIV. */
7297
7298 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7299 oldequiv = SUBREG_REG (oldequiv);
7300 if (GET_MODE (oldequiv) != VOIDmode
7301 && mode != GET_MODE (oldequiv))
7302 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7303
7304 /* Switch to the right place to emit the reload insns. */
7305 switch (rl->when_needed)
7306 {
7307 case RELOAD_OTHER:
7308 where = &other_input_reload_insns;
7309 break;
7310 case RELOAD_FOR_INPUT:
7311 where = &input_reload_insns[rl->opnum];
7312 break;
7313 case RELOAD_FOR_INPUT_ADDRESS:
7314 where = &input_address_reload_insns[rl->opnum];
7315 break;
7316 case RELOAD_FOR_INPADDR_ADDRESS:
7317 where = &inpaddr_address_reload_insns[rl->opnum];
7318 break;
7319 case RELOAD_FOR_OUTPUT_ADDRESS:
7320 where = &output_address_reload_insns[rl->opnum];
7321 break;
7322 case RELOAD_FOR_OUTADDR_ADDRESS:
7323 where = &outaddr_address_reload_insns[rl->opnum];
7324 break;
7325 case RELOAD_FOR_OPERAND_ADDRESS:
7326 where = &operand_reload_insns;
7327 break;
7328 case RELOAD_FOR_OPADDR_ADDR:
7329 where = &other_operand_reload_insns;
7330 break;
7331 case RELOAD_FOR_OTHER_ADDRESS:
7332 where = &other_input_address_reload_insns;
7333 break;
7334 default:
7335 gcc_unreachable ();
7336 }
7337
7338 push_to_sequence (*where);
7339
7340 /* Auto-increment addresses must be reloaded in a special way. */
7341 if (rl->out && ! rl->out_reg)
7342 {
7343 /* We are not going to bother supporting the case where a
7344 incremented register can't be copied directly from
7345 OLDEQUIV since this seems highly unlikely. */
7346 gcc_assert (rl->secondary_in_reload < 0);
7347
7348 if (reload_inherited[j])
7349 oldequiv = reloadreg;
7350
7351 old = XEXP (rl->in_reg, 0);
7352
7353 /* Prevent normal processing of this reload. */
7354 special = 1;
7355 /* Output a special code sequence for this case. */
7356 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7357 }
7358
7359 /* If we are reloading a pseudo-register that was set by the previous
7360 insn, see if we can get rid of that pseudo-register entirely
7361 by redirecting the previous insn into our reload register. */
7362
7363 else if (optimize && REG_P (old)
7364 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7365 && dead_or_set_p (insn, old)
7366 /* This is unsafe if some other reload
7367 uses the same reg first. */
7368 && ! conflicts_with_override (reloadreg)
7369 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7370 rl->when_needed, old, rl->out, j, 0))
7371 {
7372 rtx_insn *temp = PREV_INSN (insn);
7373 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7374 temp = PREV_INSN (temp);
7375 if (temp
7376 && NONJUMP_INSN_P (temp)
7377 && GET_CODE (PATTERN (temp)) == SET
7378 && SET_DEST (PATTERN (temp)) == old
7379 /* Make sure we can access insn_operand_constraint. */
7380 && asm_noperands (PATTERN (temp)) < 0
7381 /* This is unsafe if operand occurs more than once in current
7382 insn. Perhaps some occurrences aren't reloaded. */
7383 && count_occurrences (PATTERN (insn), old, 0) == 1)
7384 {
7385 rtx old = SET_DEST (PATTERN (temp));
7386 /* Store into the reload register instead of the pseudo. */
7387 SET_DEST (PATTERN (temp)) = reloadreg;
7388
7389 /* Verify that resulting insn is valid.
7390
7391 Note that we have replaced the destination of TEMP with
7392 RELOADREG. If TEMP references RELOADREG within an
7393 autoincrement addressing mode, then the resulting insn
7394 is ill-formed and we must reject this optimization. */
7395 extract_insn (temp);
7396 if (constrain_operands (1, get_enabled_alternatives (temp))
7397 #ifdef AUTO_INC_DEC
7398 && ! find_reg_note (temp, REG_INC, reloadreg)
7399 #endif
7400 )
7401 {
7402 /* If the previous insn is an output reload, the source is
7403 a reload register, and its spill_reg_store entry will
7404 contain the previous destination. This is now
7405 invalid. */
7406 if (REG_P (SET_SRC (PATTERN (temp)))
7407 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7408 {
7409 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7410 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7411 }
7412
7413 /* If these are the only uses of the pseudo reg,
7414 pretend for GDB it lives in the reload reg we used. */
7415 if (REG_N_DEATHS (REGNO (old)) == 1
7416 && REG_N_SETS (REGNO (old)) == 1)
7417 {
7418 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7419 if (ira_conflicts_p)
7420 /* Inform IRA about the change. */
7421 ira_mark_allocation_change (REGNO (old));
7422 alter_reg (REGNO (old), -1, false);
7423 }
7424 special = 1;
7425
7426 /* Adjust any debug insns between temp and insn. */
7427 while ((temp = NEXT_INSN (temp)) != insn)
7428 if (DEBUG_INSN_P (temp))
7429 replace_rtx (PATTERN (temp), old, reloadreg);
7430 else
7431 gcc_assert (NOTE_P (temp));
7432 }
7433 else
7434 {
7435 SET_DEST (PATTERN (temp)) = old;
7436 }
7437 }
7438 }
7439
7440 /* We can't do that, so output an insn to load RELOADREG. */
7441
7442 /* If we have a secondary reload, pick up the secondary register
7443 and icode, if any. If OLDEQUIV and OLD are different or
7444 if this is an in-out reload, recompute whether or not we
7445 still need a secondary register and what the icode should
7446 be. If we still need a secondary register and the class or
7447 icode is different, go back to reloading from OLD if using
7448 OLDEQUIV means that we got the wrong type of register. We
7449 cannot have different class or icode due to an in-out reload
7450 because we don't make such reloads when both the input and
7451 output need secondary reload registers. */
7452
7453 if (! special && rl->secondary_in_reload >= 0)
7454 {
7455 rtx second_reload_reg = 0;
7456 rtx third_reload_reg = 0;
7457 int secondary_reload = rl->secondary_in_reload;
7458 rtx real_oldequiv = oldequiv;
7459 rtx real_old = old;
7460 rtx tmp;
7461 enum insn_code icode;
7462 enum insn_code tertiary_icode = CODE_FOR_nothing;
7463
7464 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7465 and similarly for OLD.
7466 See comments in get_secondary_reload in reload.c. */
7467 /* If it is a pseudo that cannot be replaced with its
7468 equivalent MEM, we must fall back to reload_in, which
7469 will have all the necessary substitutions registered.
7470 Likewise for a pseudo that can't be replaced with its
7471 equivalent constant.
7472
7473 Take extra care for subregs of such pseudos. Note that
7474 we cannot use reg_equiv_mem in this case because it is
7475 not in the right mode. */
7476
7477 tmp = oldequiv;
7478 if (GET_CODE (tmp) == SUBREG)
7479 tmp = SUBREG_REG (tmp);
7480 if (REG_P (tmp)
7481 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7482 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7483 || reg_equiv_constant (REGNO (tmp)) != 0))
7484 {
7485 if (! reg_equiv_mem (REGNO (tmp))
7486 || num_not_at_initial_offset
7487 || GET_CODE (oldequiv) == SUBREG)
7488 real_oldequiv = rl->in;
7489 else
7490 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7491 }
7492
7493 tmp = old;
7494 if (GET_CODE (tmp) == SUBREG)
7495 tmp = SUBREG_REG (tmp);
7496 if (REG_P (tmp)
7497 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7498 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7499 || reg_equiv_constant (REGNO (tmp)) != 0))
7500 {
7501 if (! reg_equiv_mem (REGNO (tmp))
7502 || num_not_at_initial_offset
7503 || GET_CODE (old) == SUBREG)
7504 real_old = rl->in;
7505 else
7506 real_old = reg_equiv_mem (REGNO (tmp));
7507 }
7508
7509 second_reload_reg = rld[secondary_reload].reg_rtx;
7510 if (rld[secondary_reload].secondary_in_reload >= 0)
7511 {
7512 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7513
7514 third_reload_reg = rld[tertiary_reload].reg_rtx;
7515 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7516 /* We'd have to add more code for quartary reloads. */
7517 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7518 }
7519 icode = rl->secondary_in_icode;
7520
7521 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7522 || (rl->in != 0 && rl->out != 0))
7523 {
7524 secondary_reload_info sri, sri2;
7525 enum reg_class new_class, new_t_class;
7526
7527 sri.icode = CODE_FOR_nothing;
7528 sri.prev_sri = NULL;
7529 new_class
7530 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7531 rl->rclass, mode,
7532 &sri);
7533
7534 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7535 second_reload_reg = 0;
7536 else if (new_class == NO_REGS)
7537 {
7538 if (reload_adjust_reg_for_icode (&second_reload_reg,
7539 third_reload_reg,
7540 (enum insn_code) sri.icode))
7541 {
7542 icode = (enum insn_code) sri.icode;
7543 third_reload_reg = 0;
7544 }
7545 else
7546 {
7547 oldequiv = old;
7548 real_oldequiv = real_old;
7549 }
7550 }
7551 else if (sri.icode != CODE_FOR_nothing)
7552 /* We currently lack a way to express this in reloads. */
7553 gcc_unreachable ();
7554 else
7555 {
7556 sri2.icode = CODE_FOR_nothing;
7557 sri2.prev_sri = &sri;
7558 new_t_class
7559 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7560 new_class, mode,
7561 &sri);
7562 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7563 {
7564 if (reload_adjust_reg_for_temp (&second_reload_reg,
7565 third_reload_reg,
7566 new_class, mode))
7567 {
7568 third_reload_reg = 0;
7569 tertiary_icode = (enum insn_code) sri2.icode;
7570 }
7571 else
7572 {
7573 oldequiv = old;
7574 real_oldequiv = real_old;
7575 }
7576 }
7577 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7578 {
7579 rtx intermediate = second_reload_reg;
7580
7581 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7582 new_class, mode)
7583 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7584 ((enum insn_code)
7585 sri2.icode)))
7586 {
7587 second_reload_reg = intermediate;
7588 tertiary_icode = (enum insn_code) sri2.icode;
7589 }
7590 else
7591 {
7592 oldequiv = old;
7593 real_oldequiv = real_old;
7594 }
7595 }
7596 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7597 {
7598 rtx intermediate = second_reload_reg;
7599
7600 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7601 new_class, mode)
7602 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7603 new_t_class, mode))
7604 {
7605 second_reload_reg = intermediate;
7606 tertiary_icode = (enum insn_code) sri2.icode;
7607 }
7608 else
7609 {
7610 oldequiv = old;
7611 real_oldequiv = real_old;
7612 }
7613 }
7614 else
7615 {
7616 /* This could be handled more intelligently too. */
7617 oldequiv = old;
7618 real_oldequiv = real_old;
7619 }
7620 }
7621 }
7622
7623 /* If we still need a secondary reload register, check
7624 to see if it is being used as a scratch or intermediate
7625 register and generate code appropriately. If we need
7626 a scratch register, use REAL_OLDEQUIV since the form of
7627 the insn may depend on the actual address if it is
7628 a MEM. */
7629
7630 if (second_reload_reg)
7631 {
7632 if (icode != CODE_FOR_nothing)
7633 {
7634 /* We'd have to add extra code to handle this case. */
7635 gcc_assert (!third_reload_reg);
7636
7637 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7638 second_reload_reg));
7639 special = 1;
7640 }
7641 else
7642 {
7643 /* See if we need a scratch register to load the
7644 intermediate register (a tertiary reload). */
7645 if (tertiary_icode != CODE_FOR_nothing)
7646 {
7647 emit_insn ((GEN_FCN (tertiary_icode)
7648 (second_reload_reg, real_oldequiv,
7649 third_reload_reg)));
7650 }
7651 else if (third_reload_reg)
7652 {
7653 gen_reload (third_reload_reg, real_oldequiv,
7654 rl->opnum,
7655 rl->when_needed);
7656 gen_reload (second_reload_reg, third_reload_reg,
7657 rl->opnum,
7658 rl->when_needed);
7659 }
7660 else
7661 gen_reload (second_reload_reg, real_oldequiv,
7662 rl->opnum,
7663 rl->when_needed);
7664
7665 oldequiv = second_reload_reg;
7666 }
7667 }
7668 }
7669
7670 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7671 {
7672 rtx real_oldequiv = oldequiv;
7673
7674 if ((REG_P (oldequiv)
7675 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7676 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7677 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7678 || (GET_CODE (oldequiv) == SUBREG
7679 && REG_P (SUBREG_REG (oldequiv))
7680 && (REGNO (SUBREG_REG (oldequiv))
7681 >= FIRST_PSEUDO_REGISTER)
7682 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7683 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7684 || (CONSTANT_P (oldequiv)
7685 && (targetm.preferred_reload_class (oldequiv,
7686 REGNO_REG_CLASS (REGNO (reloadreg)))
7687 == NO_REGS)))
7688 real_oldequiv = rl->in;
7689 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7690 rl->when_needed);
7691 }
7692
7693 if (cfun->can_throw_non_call_exceptions)
7694 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7695
7696 /* End this sequence. */
7697 *where = get_insns ();
7698 end_sequence ();
7699
7700 /* Update reload_override_in so that delete_address_reloads_1
7701 can see the actual register usage. */
7702 if (oldequiv_reg)
7703 reload_override_in[j] = oldequiv;
7704 }
7705
7706 /* Generate insns to for the output reload RL, which is for the insn described
7707 by CHAIN and has the number J. */
7708 static void
7709 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7710 int j)
7711 {
7712 rtx reloadreg;
7713 rtx_insn *insn = chain->insn;
7714 int special = 0;
7715 rtx old = rl->out;
7716 machine_mode mode;
7717 rtx_insn *p;
7718 rtx rl_reg_rtx;
7719
7720 if (rl->when_needed == RELOAD_OTHER)
7721 start_sequence ();
7722 else
7723 push_to_sequence (output_reload_insns[rl->opnum]);
7724
7725 rl_reg_rtx = reload_reg_rtx_for_output[j];
7726 mode = GET_MODE (rl_reg_rtx);
7727
7728 reloadreg = rl_reg_rtx;
7729
7730 /* If we need two reload regs, set RELOADREG to the intermediate
7731 one, since it will be stored into OLD. We might need a secondary
7732 register only for an input reload, so check again here. */
7733
7734 if (rl->secondary_out_reload >= 0)
7735 {
7736 rtx real_old = old;
7737 int secondary_reload = rl->secondary_out_reload;
7738 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7739
7740 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7741 && reg_equiv_mem (REGNO (old)) != 0)
7742 real_old = reg_equiv_mem (REGNO (old));
7743
7744 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7745 {
7746 rtx second_reloadreg = reloadreg;
7747 reloadreg = rld[secondary_reload].reg_rtx;
7748
7749 /* See if RELOADREG is to be used as a scratch register
7750 or as an intermediate register. */
7751 if (rl->secondary_out_icode != CODE_FOR_nothing)
7752 {
7753 /* We'd have to add extra code to handle this case. */
7754 gcc_assert (tertiary_reload < 0);
7755
7756 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7757 (real_old, second_reloadreg, reloadreg)));
7758 special = 1;
7759 }
7760 else
7761 {
7762 /* See if we need both a scratch and intermediate reload
7763 register. */
7764
7765 enum insn_code tertiary_icode
7766 = rld[secondary_reload].secondary_out_icode;
7767
7768 /* We'd have to add more code for quartary reloads. */
7769 gcc_assert (tertiary_reload < 0
7770 || rld[tertiary_reload].secondary_out_reload < 0);
7771
7772 if (GET_MODE (reloadreg) != mode)
7773 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7774
7775 if (tertiary_icode != CODE_FOR_nothing)
7776 {
7777 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7778
7779 /* Copy primary reload reg to secondary reload reg.
7780 (Note that these have been swapped above, then
7781 secondary reload reg to OLD using our insn.) */
7782
7783 /* If REAL_OLD is a paradoxical SUBREG, remove it
7784 and try to put the opposite SUBREG on
7785 RELOADREG. */
7786 strip_paradoxical_subreg (&real_old, &reloadreg);
7787
7788 gen_reload (reloadreg, second_reloadreg,
7789 rl->opnum, rl->when_needed);
7790 emit_insn ((GEN_FCN (tertiary_icode)
7791 (real_old, reloadreg, third_reloadreg)));
7792 special = 1;
7793 }
7794
7795 else
7796 {
7797 /* Copy between the reload regs here and then to
7798 OUT later. */
7799
7800 gen_reload (reloadreg, second_reloadreg,
7801 rl->opnum, rl->when_needed);
7802 if (tertiary_reload >= 0)
7803 {
7804 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7805
7806 gen_reload (third_reloadreg, reloadreg,
7807 rl->opnum, rl->when_needed);
7808 reloadreg = third_reloadreg;
7809 }
7810 }
7811 }
7812 }
7813 }
7814
7815 /* Output the last reload insn. */
7816 if (! special)
7817 {
7818 rtx set;
7819
7820 /* Don't output the last reload if OLD is not the dest of
7821 INSN and is in the src and is clobbered by INSN. */
7822 if (! flag_expensive_optimizations
7823 || !REG_P (old)
7824 || !(set = single_set (insn))
7825 || rtx_equal_p (old, SET_DEST (set))
7826 || !reg_mentioned_p (old, SET_SRC (set))
7827 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7828 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7829 gen_reload (old, reloadreg, rl->opnum,
7830 rl->when_needed);
7831 }
7832
7833 /* Look at all insns we emitted, just to be safe. */
7834 for (p = get_insns (); p; p = NEXT_INSN (p))
7835 if (INSN_P (p))
7836 {
7837 rtx pat = PATTERN (p);
7838
7839 /* If this output reload doesn't come from a spill reg,
7840 clear any memory of reloaded copies of the pseudo reg.
7841 If this output reload comes from a spill reg,
7842 reg_has_output_reload will make this do nothing. */
7843 note_stores (pat, forget_old_reloads_1, NULL);
7844
7845 if (reg_mentioned_p (rl_reg_rtx, pat))
7846 {
7847 rtx set = single_set (insn);
7848 if (reload_spill_index[j] < 0
7849 && set
7850 && SET_SRC (set) == rl_reg_rtx)
7851 {
7852 int src = REGNO (SET_SRC (set));
7853
7854 reload_spill_index[j] = src;
7855 SET_HARD_REG_BIT (reg_is_output_reload, src);
7856 if (find_regno_note (insn, REG_DEAD, src))
7857 SET_HARD_REG_BIT (reg_reloaded_died, src);
7858 }
7859 if (HARD_REGISTER_P (rl_reg_rtx))
7860 {
7861 int s = rl->secondary_out_reload;
7862 set = single_set (p);
7863 /* If this reload copies only to the secondary reload
7864 register, the secondary reload does the actual
7865 store. */
7866 if (s >= 0 && set == NULL_RTX)
7867 /* We can't tell what function the secondary reload
7868 has and where the actual store to the pseudo is
7869 made; leave new_spill_reg_store alone. */
7870 ;
7871 else if (s >= 0
7872 && SET_SRC (set) == rl_reg_rtx
7873 && SET_DEST (set) == rld[s].reg_rtx)
7874 {
7875 /* Usually the next instruction will be the
7876 secondary reload insn; if we can confirm
7877 that it is, setting new_spill_reg_store to
7878 that insn will allow an extra optimization. */
7879 rtx s_reg = rld[s].reg_rtx;
7880 rtx_insn *next = NEXT_INSN (p);
7881 rld[s].out = rl->out;
7882 rld[s].out_reg = rl->out_reg;
7883 set = single_set (next);
7884 if (set && SET_SRC (set) == s_reg
7885 && reload_reg_rtx_reaches_end_p (s_reg, s))
7886 {
7887 SET_HARD_REG_BIT (reg_is_output_reload,
7888 REGNO (s_reg));
7889 new_spill_reg_store[REGNO (s_reg)] = next;
7890 }
7891 }
7892 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7893 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7894 }
7895 }
7896 }
7897
7898 if (rl->when_needed == RELOAD_OTHER)
7899 {
7900 emit_insn (other_output_reload_insns[rl->opnum]);
7901 other_output_reload_insns[rl->opnum] = get_insns ();
7902 }
7903 else
7904 output_reload_insns[rl->opnum] = get_insns ();
7905
7906 if (cfun->can_throw_non_call_exceptions)
7907 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7908
7909 end_sequence ();
7910 }
7911
7912 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7913 and has the number J. */
7914 static void
7915 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7916 {
7917 rtx_insn *insn = chain->insn;
7918 rtx old = (rl->in && MEM_P (rl->in)
7919 ? rl->in_reg : rl->in);
7920 rtx reg_rtx = rl->reg_rtx;
7921
7922 if (old && reg_rtx)
7923 {
7924 machine_mode mode;
7925
7926 /* Determine the mode to reload in.
7927 This is very tricky because we have three to choose from.
7928 There is the mode the insn operand wants (rl->inmode).
7929 There is the mode of the reload register RELOADREG.
7930 There is the intrinsic mode of the operand, which we could find
7931 by stripping some SUBREGs.
7932 It turns out that RELOADREG's mode is irrelevant:
7933 we can change that arbitrarily.
7934
7935 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7936 then the reload reg may not support QImode moves, so use SImode.
7937 If foo is in memory due to spilling a pseudo reg, this is safe,
7938 because the QImode value is in the least significant part of a
7939 slot big enough for a SImode. If foo is some other sort of
7940 memory reference, then it is impossible to reload this case,
7941 so previous passes had better make sure this never happens.
7942
7943 Then consider a one-word union which has SImode and one of its
7944 members is a float, being fetched as (SUBREG:SF union:SI).
7945 We must fetch that as SFmode because we could be loading into
7946 a float-only register. In this case OLD's mode is correct.
7947
7948 Consider an immediate integer: it has VOIDmode. Here we need
7949 to get a mode from something else.
7950
7951 In some cases, there is a fourth mode, the operand's
7952 containing mode. If the insn specifies a containing mode for
7953 this operand, it overrides all others.
7954
7955 I am not sure whether the algorithm here is always right,
7956 but it does the right things in those cases. */
7957
7958 mode = GET_MODE (old);
7959 if (mode == VOIDmode)
7960 mode = rl->inmode;
7961
7962 /* We cannot use gen_lowpart_common since it can do the wrong thing
7963 when REG_RTX has a multi-word mode. Note that REG_RTX must
7964 always be a REG here. */
7965 if (GET_MODE (reg_rtx) != mode)
7966 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7967 }
7968 reload_reg_rtx_for_input[j] = reg_rtx;
7969
7970 if (old != 0
7971 /* AUTO_INC reloads need to be handled even if inherited. We got an
7972 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7973 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7974 && ! rtx_equal_p (reg_rtx, old)
7975 && reg_rtx != 0)
7976 emit_input_reload_insns (chain, rld + j, old, j);
7977
7978 /* When inheriting a wider reload, we have a MEM in rl->in,
7979 e.g. inheriting a SImode output reload for
7980 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7981 if (optimize && reload_inherited[j] && rl->in
7982 && MEM_P (rl->in)
7983 && MEM_P (rl->in_reg)
7984 && reload_spill_index[j] >= 0
7985 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7986 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7987
7988 /* If we are reloading a register that was recently stored in with an
7989 output-reload, see if we can prove there was
7990 actually no need to store the old value in it. */
7991
7992 if (optimize
7993 && (reload_inherited[j] || reload_override_in[j])
7994 && reg_rtx
7995 && REG_P (reg_rtx)
7996 && spill_reg_store[REGNO (reg_rtx)] != 0
7997 #if 0
7998 /* There doesn't seem to be any reason to restrict this to pseudos
7999 and doing so loses in the case where we are copying from a
8000 register of the wrong class. */
8001 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8002 #endif
8003 /* The insn might have already some references to stackslots
8004 replaced by MEMs, while reload_out_reg still names the
8005 original pseudo. */
8006 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8007 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8008 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8009 }
8010
8011 /* Do output reloading for reload RL, which is for the insn described by
8012 CHAIN and has the number J.
8013 ??? At some point we need to support handling output reloads of
8014 JUMP_INSNs or insns that set cc0. */
8015 static void
8016 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8017 {
8018 rtx note, old;
8019 rtx_insn *insn = chain->insn;
8020 /* If this is an output reload that stores something that is
8021 not loaded in this same reload, see if we can eliminate a previous
8022 store. */
8023 rtx pseudo = rl->out_reg;
8024 rtx reg_rtx = rl->reg_rtx;
8025
8026 if (rl->out && reg_rtx)
8027 {
8028 machine_mode mode;
8029
8030 /* Determine the mode to reload in.
8031 See comments above (for input reloading). */
8032 mode = GET_MODE (rl->out);
8033 if (mode == VOIDmode)
8034 {
8035 /* VOIDmode should never happen for an output. */
8036 if (asm_noperands (PATTERN (insn)) < 0)
8037 /* It's the compiler's fault. */
8038 fatal_insn ("VOIDmode on an output", insn);
8039 error_for_asm (insn, "output operand is constant in %<asm%>");
8040 /* Prevent crash--use something we know is valid. */
8041 mode = word_mode;
8042 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8043 }
8044 if (GET_MODE (reg_rtx) != mode)
8045 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8046 }
8047 reload_reg_rtx_for_output[j] = reg_rtx;
8048
8049 if (pseudo
8050 && optimize
8051 && REG_P (pseudo)
8052 && ! rtx_equal_p (rl->in_reg, pseudo)
8053 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8054 && reg_last_reload_reg[REGNO (pseudo)])
8055 {
8056 int pseudo_no = REGNO (pseudo);
8057 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8058
8059 /* We don't need to test full validity of last_regno for
8060 inherit here; we only want to know if the store actually
8061 matches the pseudo. */
8062 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8063 && reg_reloaded_contents[last_regno] == pseudo_no
8064 && spill_reg_store[last_regno]
8065 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8066 delete_output_reload (insn, j, last_regno, reg_rtx);
8067 }
8068
8069 old = rl->out_reg;
8070 if (old == 0
8071 || reg_rtx == 0
8072 || rtx_equal_p (old, reg_rtx))
8073 return;
8074
8075 /* An output operand that dies right away does need a reload,
8076 but need not be copied from it. Show the new location in the
8077 REG_UNUSED note. */
8078 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8079 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8080 {
8081 XEXP (note, 0) = reg_rtx;
8082 return;
8083 }
8084 /* Likewise for a SUBREG of an operand that dies. */
8085 else if (GET_CODE (old) == SUBREG
8086 && REG_P (SUBREG_REG (old))
8087 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8088 SUBREG_REG (old))))
8089 {
8090 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8091 return;
8092 }
8093 else if (GET_CODE (old) == SCRATCH)
8094 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8095 but we don't want to make an output reload. */
8096 return;
8097
8098 /* If is a JUMP_INSN, we can't support output reloads yet. */
8099 gcc_assert (NONJUMP_INSN_P (insn));
8100
8101 emit_output_reload_insns (chain, rld + j, j);
8102 }
8103
8104 /* A reload copies values of MODE from register SRC to register DEST.
8105 Return true if it can be treated for inheritance purposes like a
8106 group of reloads, each one reloading a single hard register. The
8107 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8108 occupy the same number of hard registers. */
8109
8110 static bool
8111 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8112 int src ATTRIBUTE_UNUSED,
8113 machine_mode mode ATTRIBUTE_UNUSED)
8114 {
8115 #ifdef CANNOT_CHANGE_MODE_CLASS
8116 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8117 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8118 #else
8119 return true;
8120 #endif
8121 }
8122
8123 /* Output insns to reload values in and out of the chosen reload regs. */
8124
8125 static void
8126 emit_reload_insns (struct insn_chain *chain)
8127 {
8128 rtx_insn *insn = chain->insn;
8129
8130 int j;
8131
8132 CLEAR_HARD_REG_SET (reg_reloaded_died);
8133
8134 for (j = 0; j < reload_n_operands; j++)
8135 input_reload_insns[j] = input_address_reload_insns[j]
8136 = inpaddr_address_reload_insns[j]
8137 = output_reload_insns[j] = output_address_reload_insns[j]
8138 = outaddr_address_reload_insns[j]
8139 = other_output_reload_insns[j] = 0;
8140 other_input_address_reload_insns = 0;
8141 other_input_reload_insns = 0;
8142 operand_reload_insns = 0;
8143 other_operand_reload_insns = 0;
8144
8145 /* Dump reloads into the dump file. */
8146 if (dump_file)
8147 {
8148 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8149 debug_reload_to_stream (dump_file);
8150 }
8151
8152 for (j = 0; j < n_reloads; j++)
8153 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8154 {
8155 unsigned int i;
8156
8157 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8158 new_spill_reg_store[i] = 0;
8159 }
8160
8161 /* Now output the instructions to copy the data into and out of the
8162 reload registers. Do these in the order that the reloads were reported,
8163 since reloads of base and index registers precede reloads of operands
8164 and the operands may need the base and index registers reloaded. */
8165
8166 for (j = 0; j < n_reloads; j++)
8167 {
8168 do_input_reload (chain, rld + j, j);
8169 do_output_reload (chain, rld + j, j);
8170 }
8171
8172 /* Now write all the insns we made for reloads in the order expected by
8173 the allocation functions. Prior to the insn being reloaded, we write
8174 the following reloads:
8175
8176 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8177
8178 RELOAD_OTHER reloads.
8179
8180 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8181 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8182 RELOAD_FOR_INPUT reload for the operand.
8183
8184 RELOAD_FOR_OPADDR_ADDRS reloads.
8185
8186 RELOAD_FOR_OPERAND_ADDRESS reloads.
8187
8188 After the insn being reloaded, we write the following:
8189
8190 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8191 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8192 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8193 reloads for the operand. The RELOAD_OTHER output reloads are
8194 output in descending order by reload number. */
8195
8196 emit_insn_before (other_input_address_reload_insns, insn);
8197 emit_insn_before (other_input_reload_insns, insn);
8198
8199 for (j = 0; j < reload_n_operands; j++)
8200 {
8201 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8202 emit_insn_before (input_address_reload_insns[j], insn);
8203 emit_insn_before (input_reload_insns[j], insn);
8204 }
8205
8206 emit_insn_before (other_operand_reload_insns, insn);
8207 emit_insn_before (operand_reload_insns, insn);
8208
8209 for (j = 0; j < reload_n_operands; j++)
8210 {
8211 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8212 x = emit_insn_after (output_address_reload_insns[j], x);
8213 x = emit_insn_after (output_reload_insns[j], x);
8214 emit_insn_after (other_output_reload_insns[j], x);
8215 }
8216
8217 /* For all the spill regs newly reloaded in this instruction,
8218 record what they were reloaded from, so subsequent instructions
8219 can inherit the reloads.
8220
8221 Update spill_reg_store for the reloads of this insn.
8222 Copy the elements that were updated in the loop above. */
8223
8224 for (j = 0; j < n_reloads; j++)
8225 {
8226 int r = reload_order[j];
8227 int i = reload_spill_index[r];
8228
8229 /* If this is a non-inherited input reload from a pseudo, we must
8230 clear any memory of a previous store to the same pseudo. Only do
8231 something if there will not be an output reload for the pseudo
8232 being reloaded. */
8233 if (rld[r].in_reg != 0
8234 && ! (reload_inherited[r] || reload_override_in[r]))
8235 {
8236 rtx reg = rld[r].in_reg;
8237
8238 if (GET_CODE (reg) == SUBREG)
8239 reg = SUBREG_REG (reg);
8240
8241 if (REG_P (reg)
8242 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8243 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8244 {
8245 int nregno = REGNO (reg);
8246
8247 if (reg_last_reload_reg[nregno])
8248 {
8249 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8250
8251 if (reg_reloaded_contents[last_regno] == nregno)
8252 spill_reg_store[last_regno] = 0;
8253 }
8254 }
8255 }
8256
8257 /* I is nonneg if this reload used a register.
8258 If rld[r].reg_rtx is 0, this is an optional reload
8259 that we opted to ignore. */
8260
8261 if (i >= 0 && rld[r].reg_rtx != 0)
8262 {
8263 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8264 int k;
8265
8266 /* For a multi register reload, we need to check if all or part
8267 of the value lives to the end. */
8268 for (k = 0; k < nr; k++)
8269 if (reload_reg_reaches_end_p (i + k, r))
8270 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8271
8272 /* Maybe the spill reg contains a copy of reload_out. */
8273 if (rld[r].out != 0
8274 && (REG_P (rld[r].out)
8275 || (rld[r].out_reg
8276 ? REG_P (rld[r].out_reg)
8277 /* The reload value is an auto-modification of
8278 some kind. For PRE_INC, POST_INC, PRE_DEC
8279 and POST_DEC, we record an equivalence
8280 between the reload register and the operand
8281 on the optimistic assumption that we can make
8282 the equivalence hold. reload_as_needed must
8283 then either make it hold or invalidate the
8284 equivalence.
8285
8286 PRE_MODIFY and POST_MODIFY addresses are reloaded
8287 somewhat differently, and allowing them here leads
8288 to problems. */
8289 : (GET_CODE (rld[r].out) != POST_MODIFY
8290 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8291 {
8292 rtx reg;
8293
8294 reg = reload_reg_rtx_for_output[r];
8295 if (reload_reg_rtx_reaches_end_p (reg, r))
8296 {
8297 machine_mode mode = GET_MODE (reg);
8298 int regno = REGNO (reg);
8299 int nregs = hard_regno_nregs[regno][mode];
8300 rtx out = (REG_P (rld[r].out)
8301 ? rld[r].out
8302 : rld[r].out_reg
8303 ? rld[r].out_reg
8304 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8305 int out_regno = REGNO (out);
8306 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8307 : hard_regno_nregs[out_regno][mode]);
8308 bool piecemeal;
8309
8310 spill_reg_store[regno] = new_spill_reg_store[regno];
8311 spill_reg_stored_to[regno] = out;
8312 reg_last_reload_reg[out_regno] = reg;
8313
8314 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8315 && nregs == out_nregs
8316 && inherit_piecemeal_p (out_regno, regno, mode));
8317
8318 /* If OUT_REGNO is a hard register, it may occupy more than
8319 one register. If it does, say what is in the
8320 rest of the registers assuming that both registers
8321 agree on how many words the object takes. If not,
8322 invalidate the subsequent registers. */
8323
8324 if (HARD_REGISTER_NUM_P (out_regno))
8325 for (k = 1; k < out_nregs; k++)
8326 reg_last_reload_reg[out_regno + k]
8327 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8328
8329 /* Now do the inverse operation. */
8330 for (k = 0; k < nregs; k++)
8331 {
8332 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8333 reg_reloaded_contents[regno + k]
8334 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8335 ? out_regno
8336 : out_regno + k);
8337 reg_reloaded_insn[regno + k] = insn;
8338 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8339 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8340 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8341 regno + k);
8342 else
8343 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8344 regno + k);
8345 }
8346 }
8347 }
8348 /* Maybe the spill reg contains a copy of reload_in. Only do
8349 something if there will not be an output reload for
8350 the register being reloaded. */
8351 else if (rld[r].out_reg == 0
8352 && rld[r].in != 0
8353 && ((REG_P (rld[r].in)
8354 && !HARD_REGISTER_P (rld[r].in)
8355 && !REGNO_REG_SET_P (&reg_has_output_reload,
8356 REGNO (rld[r].in)))
8357 || (REG_P (rld[r].in_reg)
8358 && !REGNO_REG_SET_P (&reg_has_output_reload,
8359 REGNO (rld[r].in_reg))))
8360 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8361 {
8362 rtx reg;
8363
8364 reg = reload_reg_rtx_for_input[r];
8365 if (reload_reg_rtx_reaches_end_p (reg, r))
8366 {
8367 machine_mode mode;
8368 int regno;
8369 int nregs;
8370 int in_regno;
8371 int in_nregs;
8372 rtx in;
8373 bool piecemeal;
8374
8375 mode = GET_MODE (reg);
8376 regno = REGNO (reg);
8377 nregs = hard_regno_nregs[regno][mode];
8378 if (REG_P (rld[r].in)
8379 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8380 in = rld[r].in;
8381 else if (REG_P (rld[r].in_reg))
8382 in = rld[r].in_reg;
8383 else
8384 in = XEXP (rld[r].in_reg, 0);
8385 in_regno = REGNO (in);
8386
8387 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8388 : hard_regno_nregs[in_regno][mode]);
8389
8390 reg_last_reload_reg[in_regno] = reg;
8391
8392 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8393 && nregs == in_nregs
8394 && inherit_piecemeal_p (regno, in_regno, mode));
8395
8396 if (HARD_REGISTER_NUM_P (in_regno))
8397 for (k = 1; k < in_nregs; k++)
8398 reg_last_reload_reg[in_regno + k]
8399 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8400
8401 /* Unless we inherited this reload, show we haven't
8402 recently done a store.
8403 Previous stores of inherited auto_inc expressions
8404 also have to be discarded. */
8405 if (! reload_inherited[r]
8406 || (rld[r].out && ! rld[r].out_reg))
8407 spill_reg_store[regno] = 0;
8408
8409 for (k = 0; k < nregs; k++)
8410 {
8411 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8412 reg_reloaded_contents[regno + k]
8413 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8414 ? in_regno
8415 : in_regno + k);
8416 reg_reloaded_insn[regno + k] = insn;
8417 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8418 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8419 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8420 regno + k);
8421 else
8422 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8423 regno + k);
8424 }
8425 }
8426 }
8427 }
8428
8429 /* The following if-statement was #if 0'd in 1.34 (or before...).
8430 It's reenabled in 1.35 because supposedly nothing else
8431 deals with this problem. */
8432
8433 /* If a register gets output-reloaded from a non-spill register,
8434 that invalidates any previous reloaded copy of it.
8435 But forget_old_reloads_1 won't get to see it, because
8436 it thinks only about the original insn. So invalidate it here.
8437 Also do the same thing for RELOAD_OTHER constraints where the
8438 output is discarded. */
8439 if (i < 0
8440 && ((rld[r].out != 0
8441 && (REG_P (rld[r].out)
8442 || (MEM_P (rld[r].out)
8443 && REG_P (rld[r].out_reg))))
8444 || (rld[r].out == 0 && rld[r].out_reg
8445 && REG_P (rld[r].out_reg))))
8446 {
8447 rtx out = ((rld[r].out && REG_P (rld[r].out))
8448 ? rld[r].out : rld[r].out_reg);
8449 int out_regno = REGNO (out);
8450 machine_mode mode = GET_MODE (out);
8451
8452 /* REG_RTX is now set or clobbered by the main instruction.
8453 As the comment above explains, forget_old_reloads_1 only
8454 sees the original instruction, and there is no guarantee
8455 that the original instruction also clobbered REG_RTX.
8456 For example, if find_reloads sees that the input side of
8457 a matched operand pair dies in this instruction, it may
8458 use the input register as the reload register.
8459
8460 Calling forget_old_reloads_1 is a waste of effort if
8461 REG_RTX is also the output register.
8462
8463 If we know that REG_RTX holds the value of a pseudo
8464 register, the code after the call will record that fact. */
8465 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8466 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8467
8468 if (!HARD_REGISTER_NUM_P (out_regno))
8469 {
8470 rtx src_reg;
8471 rtx_insn *store_insn = NULL;
8472
8473 reg_last_reload_reg[out_regno] = 0;
8474
8475 /* If we can find a hard register that is stored, record
8476 the storing insn so that we may delete this insn with
8477 delete_output_reload. */
8478 src_reg = reload_reg_rtx_for_output[r];
8479
8480 if (src_reg)
8481 {
8482 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8483 store_insn = new_spill_reg_store[REGNO (src_reg)];
8484 else
8485 src_reg = NULL_RTX;
8486 }
8487 else
8488 {
8489 /* If this is an optional reload, try to find the
8490 source reg from an input reload. */
8491 rtx set = single_set (insn);
8492 if (set && SET_DEST (set) == rld[r].out)
8493 {
8494 int k;
8495
8496 src_reg = SET_SRC (set);
8497 store_insn = insn;
8498 for (k = 0; k < n_reloads; k++)
8499 {
8500 if (rld[k].in == src_reg)
8501 {
8502 src_reg = reload_reg_rtx_for_input[k];
8503 break;
8504 }
8505 }
8506 }
8507 }
8508 if (src_reg && REG_P (src_reg)
8509 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8510 {
8511 int src_regno, src_nregs, k;
8512 rtx note;
8513
8514 gcc_assert (GET_MODE (src_reg) == mode);
8515 src_regno = REGNO (src_reg);
8516 src_nregs = hard_regno_nregs[src_regno][mode];
8517 /* The place where to find a death note varies with
8518 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8519 necessarily checked exactly in the code that moves
8520 notes, so just check both locations. */
8521 note = find_regno_note (insn, REG_DEAD, src_regno);
8522 if (! note && store_insn)
8523 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8524 for (k = 0; k < src_nregs; k++)
8525 {
8526 spill_reg_store[src_regno + k] = store_insn;
8527 spill_reg_stored_to[src_regno + k] = out;
8528 reg_reloaded_contents[src_regno + k] = out_regno;
8529 reg_reloaded_insn[src_regno + k] = store_insn;
8530 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8531 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8532 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8533 mode))
8534 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8535 src_regno + k);
8536 else
8537 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8538 src_regno + k);
8539 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8540 if (note)
8541 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8542 else
8543 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8544 }
8545 reg_last_reload_reg[out_regno] = src_reg;
8546 /* We have to set reg_has_output_reload here, or else
8547 forget_old_reloads_1 will clear reg_last_reload_reg
8548 right away. */
8549 SET_REGNO_REG_SET (&reg_has_output_reload,
8550 out_regno);
8551 }
8552 }
8553 else
8554 {
8555 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8556
8557 for (k = 0; k < out_nregs; k++)
8558 reg_last_reload_reg[out_regno + k] = 0;
8559 }
8560 }
8561 }
8562 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8563 }
8564 \f
8565 /* Go through the motions to emit INSN and test if it is strictly valid.
8566 Return the emitted insn if valid, else return NULL. */
8567
8568 static rtx_insn *
8569 emit_insn_if_valid_for_reload (rtx pat)
8570 {
8571 rtx_insn *last = get_last_insn ();
8572 int code;
8573
8574 rtx_insn *insn = emit_insn (pat);
8575 code = recog_memoized (insn);
8576
8577 if (code >= 0)
8578 {
8579 extract_insn (insn);
8580 /* We want constrain operands to treat this insn strictly in its
8581 validity determination, i.e., the way it would after reload has
8582 completed. */
8583 if (constrain_operands (1, get_enabled_alternatives (insn)))
8584 return insn;
8585 }
8586
8587 delete_insns_since (last);
8588 return NULL;
8589 }
8590
8591 /* Emit code to perform a reload from IN (which may be a reload register) to
8592 OUT (which may also be a reload register). IN or OUT is from operand
8593 OPNUM with reload type TYPE.
8594
8595 Returns first insn emitted. */
8596
8597 static rtx_insn *
8598 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8599 {
8600 rtx_insn *last = get_last_insn ();
8601 rtx_insn *tem;
8602 #ifdef SECONDARY_MEMORY_NEEDED
8603 rtx tem1, tem2;
8604 #endif
8605
8606 /* If IN is a paradoxical SUBREG, remove it and try to put the
8607 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8608 if (!strip_paradoxical_subreg (&in, &out))
8609 strip_paradoxical_subreg (&out, &in);
8610
8611 /* How to do this reload can get quite tricky. Normally, we are being
8612 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8613 register that didn't get a hard register. In that case we can just
8614 call emit_move_insn.
8615
8616 We can also be asked to reload a PLUS that adds a register or a MEM to
8617 another register, constant or MEM. This can occur during frame pointer
8618 elimination and while reloading addresses. This case is handled by
8619 trying to emit a single insn to perform the add. If it is not valid,
8620 we use a two insn sequence.
8621
8622 Or we can be asked to reload an unary operand that was a fragment of
8623 an addressing mode, into a register. If it isn't recognized as-is,
8624 we try making the unop operand and the reload-register the same:
8625 (set reg:X (unop:X expr:Y))
8626 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8627
8628 Finally, we could be called to handle an 'o' constraint by putting
8629 an address into a register. In that case, we first try to do this
8630 with a named pattern of "reload_load_address". If no such pattern
8631 exists, we just emit a SET insn and hope for the best (it will normally
8632 be valid on machines that use 'o').
8633
8634 This entire process is made complex because reload will never
8635 process the insns we generate here and so we must ensure that
8636 they will fit their constraints and also by the fact that parts of
8637 IN might be being reloaded separately and replaced with spill registers.
8638 Because of this, we are, in some sense, just guessing the right approach
8639 here. The one listed above seems to work.
8640
8641 ??? At some point, this whole thing needs to be rethought. */
8642
8643 if (GET_CODE (in) == PLUS
8644 && (REG_P (XEXP (in, 0))
8645 || GET_CODE (XEXP (in, 0)) == SUBREG
8646 || MEM_P (XEXP (in, 0)))
8647 && (REG_P (XEXP (in, 1))
8648 || GET_CODE (XEXP (in, 1)) == SUBREG
8649 || CONSTANT_P (XEXP (in, 1))
8650 || MEM_P (XEXP (in, 1))))
8651 {
8652 /* We need to compute the sum of a register or a MEM and another
8653 register, constant, or MEM, and put it into the reload
8654 register. The best possible way of doing this is if the machine
8655 has a three-operand ADD insn that accepts the required operands.
8656
8657 The simplest approach is to try to generate such an insn and see if it
8658 is recognized and matches its constraints. If so, it can be used.
8659
8660 It might be better not to actually emit the insn unless it is valid,
8661 but we need to pass the insn as an operand to `recog' and
8662 `extract_insn' and it is simpler to emit and then delete the insn if
8663 not valid than to dummy things up. */
8664
8665 rtx op0, op1, tem;
8666 rtx_insn *insn;
8667 enum insn_code code;
8668
8669 op0 = find_replacement (&XEXP (in, 0));
8670 op1 = find_replacement (&XEXP (in, 1));
8671
8672 /* Since constraint checking is strict, commutativity won't be
8673 checked, so we need to do that here to avoid spurious failure
8674 if the add instruction is two-address and the second operand
8675 of the add is the same as the reload reg, which is frequently
8676 the case. If the insn would be A = B + A, rearrange it so
8677 it will be A = A + B as constrain_operands expects. */
8678
8679 if (REG_P (XEXP (in, 1))
8680 && REGNO (out) == REGNO (XEXP (in, 1)))
8681 tem = op0, op0 = op1, op1 = tem;
8682
8683 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8684 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8685
8686 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8687 if (insn)
8688 return insn;
8689
8690 /* If that failed, we must use a conservative two-insn sequence.
8691
8692 Use a move to copy one operand into the reload register. Prefer
8693 to reload a constant, MEM or pseudo since the move patterns can
8694 handle an arbitrary operand. If OP1 is not a constant, MEM or
8695 pseudo and OP1 is not a valid operand for an add instruction, then
8696 reload OP1.
8697
8698 After reloading one of the operands into the reload register, add
8699 the reload register to the output register.
8700
8701 If there is another way to do this for a specific machine, a
8702 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8703 we emit below. */
8704
8705 code = optab_handler (add_optab, GET_MODE (out));
8706
8707 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8708 || (REG_P (op1)
8709 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8710 || (code != CODE_FOR_nothing
8711 && !insn_operand_matches (code, 2, op1)))
8712 tem = op0, op0 = op1, op1 = tem;
8713
8714 gen_reload (out, op0, opnum, type);
8715
8716 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8717 This fixes a problem on the 32K where the stack pointer cannot
8718 be used as an operand of an add insn. */
8719
8720 if (rtx_equal_p (op0, op1))
8721 op1 = out;
8722
8723 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8724 if (insn)
8725 {
8726 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8727 set_dst_reg_note (insn, REG_EQUIV, in, out);
8728 return insn;
8729 }
8730
8731 /* If that failed, copy the address register to the reload register.
8732 Then add the constant to the reload register. */
8733
8734 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8735 gen_reload (out, op1, opnum, type);
8736 insn = emit_insn (gen_add2_insn (out, op0));
8737 set_dst_reg_note (insn, REG_EQUIV, in, out);
8738 }
8739
8740 #ifdef SECONDARY_MEMORY_NEEDED
8741 /* If we need a memory location to do the move, do it that way. */
8742 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8743 (REG_P (tem1) && REG_P (tem2)))
8744 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8745 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8746 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8747 REGNO_REG_CLASS (REGNO (tem2)),
8748 GET_MODE (out)))
8749 {
8750 /* Get the memory to use and rewrite both registers to its mode. */
8751 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8752
8753 if (GET_MODE (loc) != GET_MODE (out))
8754 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8755
8756 if (GET_MODE (loc) != GET_MODE (in))
8757 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8758
8759 gen_reload (loc, in, opnum, type);
8760 gen_reload (out, loc, opnum, type);
8761 }
8762 #endif
8763 else if (REG_P (out) && UNARY_P (in))
8764 {
8765 rtx insn;
8766 rtx op1;
8767 rtx out_moded;
8768 rtx_insn *set;
8769
8770 op1 = find_replacement (&XEXP (in, 0));
8771 if (op1 != XEXP (in, 0))
8772 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8773
8774 /* First, try a plain SET. */
8775 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8776 if (set)
8777 return set;
8778
8779 /* If that failed, move the inner operand to the reload
8780 register, and try the same unop with the inner expression
8781 replaced with the reload register. */
8782
8783 if (GET_MODE (op1) != GET_MODE (out))
8784 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8785 else
8786 out_moded = out;
8787
8788 gen_reload (out_moded, op1, opnum, type);
8789
8790 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8791 out_moded));
8792 insn = emit_insn_if_valid_for_reload (insn);
8793 if (insn)
8794 {
8795 set_unique_reg_note (insn, REG_EQUIV, in);
8796 return as_a <rtx_insn *> (insn);
8797 }
8798
8799 fatal_insn ("failure trying to reload:", set);
8800 }
8801 /* If IN is a simple operand, use gen_move_insn. */
8802 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8803 {
8804 tem = emit_insn (gen_move_insn (out, in));
8805 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8806 mark_jump_label (in, tem, 0);
8807 }
8808
8809 #ifdef HAVE_reload_load_address
8810 else if (HAVE_reload_load_address)
8811 emit_insn (gen_reload_load_address (out, in));
8812 #endif
8813
8814 /* Otherwise, just write (set OUT IN) and hope for the best. */
8815 else
8816 emit_insn (gen_rtx_SET (out, in));
8817
8818 /* Return the first insn emitted.
8819 We can not just return get_last_insn, because there may have
8820 been multiple instructions emitted. Also note that gen_move_insn may
8821 emit more than one insn itself, so we can not assume that there is one
8822 insn emitted per emit_insn_before call. */
8823
8824 return last ? NEXT_INSN (last) : get_insns ();
8825 }
8826 \f
8827 /* Delete a previously made output-reload whose result we now believe
8828 is not needed. First we double-check.
8829
8830 INSN is the insn now being processed.
8831 LAST_RELOAD_REG is the hard register number for which we want to delete
8832 the last output reload.
8833 J is the reload-number that originally used REG. The caller has made
8834 certain that reload J doesn't use REG any longer for input.
8835 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8836
8837 static void
8838 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8839 rtx new_reload_reg)
8840 {
8841 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8842 rtx reg = spill_reg_stored_to[last_reload_reg];
8843 int k;
8844 int n_occurrences;
8845 int n_inherited = 0;
8846 rtx substed;
8847 unsigned regno;
8848 int nregs;
8849
8850 /* It is possible that this reload has been only used to set another reload
8851 we eliminated earlier and thus deleted this instruction too. */
8852 if (output_reload_insn->deleted ())
8853 return;
8854
8855 /* Get the raw pseudo-register referred to. */
8856
8857 while (GET_CODE (reg) == SUBREG)
8858 reg = SUBREG_REG (reg);
8859 substed = reg_equiv_memory_loc (REGNO (reg));
8860
8861 /* This is unsafe if the operand occurs more often in the current
8862 insn than it is inherited. */
8863 for (k = n_reloads - 1; k >= 0; k--)
8864 {
8865 rtx reg2 = rld[k].in;
8866 if (! reg2)
8867 continue;
8868 if (MEM_P (reg2) || reload_override_in[k])
8869 reg2 = rld[k].in_reg;
8870 #ifdef AUTO_INC_DEC
8871 if (rld[k].out && ! rld[k].out_reg)
8872 reg2 = XEXP (rld[k].in_reg, 0);
8873 #endif
8874 while (GET_CODE (reg2) == SUBREG)
8875 reg2 = SUBREG_REG (reg2);
8876 if (rtx_equal_p (reg2, reg))
8877 {
8878 if (reload_inherited[k] || reload_override_in[k] || k == j)
8879 n_inherited++;
8880 else
8881 return;
8882 }
8883 }
8884 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8885 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8886 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8887 reg, 0);
8888 if (substed)
8889 n_occurrences += count_occurrences (PATTERN (insn),
8890 eliminate_regs (substed, VOIDmode,
8891 NULL_RTX), 0);
8892 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8893 {
8894 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8895 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8896 }
8897 if (n_occurrences > n_inherited)
8898 return;
8899
8900 regno = REGNO (reg);
8901 if (regno >= FIRST_PSEUDO_REGISTER)
8902 nregs = 1;
8903 else
8904 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8905
8906 /* If the pseudo-reg we are reloading is no longer referenced
8907 anywhere between the store into it and here,
8908 and we're within the same basic block, then the value can only
8909 pass through the reload reg and end up here.
8910 Otherwise, give up--return. */
8911 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8912 i1 != insn; i1 = NEXT_INSN (i1))
8913 {
8914 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8915 return;
8916 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8917 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8918 {
8919 /* If this is USE in front of INSN, we only have to check that
8920 there are no more references than accounted for by inheritance. */
8921 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8922 {
8923 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8924 i1 = NEXT_INSN (i1);
8925 }
8926 if (n_occurrences <= n_inherited && i1 == insn)
8927 break;
8928 return;
8929 }
8930 }
8931
8932 /* We will be deleting the insn. Remove the spill reg information. */
8933 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8934 {
8935 spill_reg_store[last_reload_reg + k] = 0;
8936 spill_reg_stored_to[last_reload_reg + k] = 0;
8937 }
8938
8939 /* The caller has already checked that REG dies or is set in INSN.
8940 It has also checked that we are optimizing, and thus some
8941 inaccuracies in the debugging information are acceptable.
8942 So we could just delete output_reload_insn. But in some cases
8943 we can improve the debugging information without sacrificing
8944 optimization - maybe even improving the code: See if the pseudo
8945 reg has been completely replaced with reload regs. If so, delete
8946 the store insn and forget we had a stack slot for the pseudo. */
8947 if (rld[j].out != rld[j].in
8948 && REG_N_DEATHS (REGNO (reg)) == 1
8949 && REG_N_SETS (REGNO (reg)) == 1
8950 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8951 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8952 {
8953 rtx_insn *i2;
8954
8955 /* We know that it was used only between here and the beginning of
8956 the current basic block. (We also know that the last use before
8957 INSN was the output reload we are thinking of deleting, but never
8958 mind that.) Search that range; see if any ref remains. */
8959 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8960 {
8961 rtx set = single_set (i2);
8962
8963 /* Uses which just store in the pseudo don't count,
8964 since if they are the only uses, they are dead. */
8965 if (set != 0 && SET_DEST (set) == reg)
8966 continue;
8967 if (LABEL_P (i2) || JUMP_P (i2))
8968 break;
8969 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8970 && reg_mentioned_p (reg, PATTERN (i2)))
8971 {
8972 /* Some other ref remains; just delete the output reload we
8973 know to be dead. */
8974 delete_address_reloads (output_reload_insn, insn);
8975 delete_insn (output_reload_insn);
8976 return;
8977 }
8978 }
8979
8980 /* Delete the now-dead stores into this pseudo. Note that this
8981 loop also takes care of deleting output_reload_insn. */
8982 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8983 {
8984 rtx set = single_set (i2);
8985
8986 if (set != 0 && SET_DEST (set) == reg)
8987 {
8988 delete_address_reloads (i2, insn);
8989 delete_insn (i2);
8990 }
8991 if (LABEL_P (i2) || JUMP_P (i2))
8992 break;
8993 }
8994
8995 /* For the debugging info, say the pseudo lives in this reload reg. */
8996 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8997 if (ira_conflicts_p)
8998 /* Inform IRA about the change. */
8999 ira_mark_allocation_change (REGNO (reg));
9000 alter_reg (REGNO (reg), -1, false);
9001 }
9002 else
9003 {
9004 delete_address_reloads (output_reload_insn, insn);
9005 delete_insn (output_reload_insn);
9006 }
9007 }
9008
9009 /* We are going to delete DEAD_INSN. Recursively delete loads of
9010 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9011 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9012 static void
9013 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9014 {
9015 rtx set = single_set (dead_insn);
9016 rtx set2, dst;
9017 rtx_insn *prev, *next;
9018 if (set)
9019 {
9020 rtx dst = SET_DEST (set);
9021 if (MEM_P (dst))
9022 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9023 }
9024 /* If we deleted the store from a reloaded post_{in,de}c expression,
9025 we can delete the matching adds. */
9026 prev = PREV_INSN (dead_insn);
9027 next = NEXT_INSN (dead_insn);
9028 if (! prev || ! next)
9029 return;
9030 set = single_set (next);
9031 set2 = single_set (prev);
9032 if (! set || ! set2
9033 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9034 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9035 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9036 return;
9037 dst = SET_DEST (set);
9038 if (! rtx_equal_p (dst, SET_DEST (set2))
9039 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9040 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9041 || (INTVAL (XEXP (SET_SRC (set), 1))
9042 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9043 return;
9044 delete_related_insns (prev);
9045 delete_related_insns (next);
9046 }
9047
9048 /* Subfunction of delete_address_reloads: process registers found in X. */
9049 static void
9050 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9051 {
9052 rtx_insn *prev, *i2;
9053 rtx set, dst;
9054 int i, j;
9055 enum rtx_code code = GET_CODE (x);
9056
9057 if (code != REG)
9058 {
9059 const char *fmt = GET_RTX_FORMAT (code);
9060 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9061 {
9062 if (fmt[i] == 'e')
9063 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9064 else if (fmt[i] == 'E')
9065 {
9066 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9067 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9068 current_insn);
9069 }
9070 }
9071 return;
9072 }
9073
9074 if (spill_reg_order[REGNO (x)] < 0)
9075 return;
9076
9077 /* Scan backwards for the insn that sets x. This might be a way back due
9078 to inheritance. */
9079 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9080 {
9081 code = GET_CODE (prev);
9082 if (code == CODE_LABEL || code == JUMP_INSN)
9083 return;
9084 if (!INSN_P (prev))
9085 continue;
9086 if (reg_set_p (x, PATTERN (prev)))
9087 break;
9088 if (reg_referenced_p (x, PATTERN (prev)))
9089 return;
9090 }
9091 if (! prev || INSN_UID (prev) < reload_first_uid)
9092 return;
9093 /* Check that PREV only sets the reload register. */
9094 set = single_set (prev);
9095 if (! set)
9096 return;
9097 dst = SET_DEST (set);
9098 if (!REG_P (dst)
9099 || ! rtx_equal_p (dst, x))
9100 return;
9101 if (! reg_set_p (dst, PATTERN (dead_insn)))
9102 {
9103 /* Check if DST was used in a later insn -
9104 it might have been inherited. */
9105 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9106 {
9107 if (LABEL_P (i2))
9108 break;
9109 if (! INSN_P (i2))
9110 continue;
9111 if (reg_referenced_p (dst, PATTERN (i2)))
9112 {
9113 /* If there is a reference to the register in the current insn,
9114 it might be loaded in a non-inherited reload. If no other
9115 reload uses it, that means the register is set before
9116 referenced. */
9117 if (i2 == current_insn)
9118 {
9119 for (j = n_reloads - 1; j >= 0; j--)
9120 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9121 || reload_override_in[j] == dst)
9122 return;
9123 for (j = n_reloads - 1; j >= 0; j--)
9124 if (rld[j].in && rld[j].reg_rtx == dst)
9125 break;
9126 if (j >= 0)
9127 break;
9128 }
9129 return;
9130 }
9131 if (JUMP_P (i2))
9132 break;
9133 /* If DST is still live at CURRENT_INSN, check if it is used for
9134 any reload. Note that even if CURRENT_INSN sets DST, we still
9135 have to check the reloads. */
9136 if (i2 == current_insn)
9137 {
9138 for (j = n_reloads - 1; j >= 0; j--)
9139 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9140 || reload_override_in[j] == dst)
9141 return;
9142 /* ??? We can't finish the loop here, because dst might be
9143 allocated to a pseudo in this block if no reload in this
9144 block needs any of the classes containing DST - see
9145 spill_hard_reg. There is no easy way to tell this, so we
9146 have to scan till the end of the basic block. */
9147 }
9148 if (reg_set_p (dst, PATTERN (i2)))
9149 break;
9150 }
9151 }
9152 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9153 reg_reloaded_contents[REGNO (dst)] = -1;
9154 delete_insn (prev);
9155 }
9156 \f
9157 /* Output reload-insns to reload VALUE into RELOADREG.
9158 VALUE is an autoincrement or autodecrement RTX whose operand
9159 is a register or memory location;
9160 so reloading involves incrementing that location.
9161 IN is either identical to VALUE, or some cheaper place to reload from.
9162
9163 INC_AMOUNT is the number to increment or decrement by (always positive).
9164 This cannot be deduced from VALUE. */
9165
9166 static void
9167 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9168 {
9169 /* REG or MEM to be copied and incremented. */
9170 rtx incloc = find_replacement (&XEXP (value, 0));
9171 /* Nonzero if increment after copying. */
9172 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9173 || GET_CODE (value) == POST_MODIFY);
9174 rtx_insn *last;
9175 rtx inc;
9176 rtx_insn *add_insn;
9177 int code;
9178 rtx real_in = in == value ? incloc : in;
9179
9180 /* No hard register is equivalent to this register after
9181 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9182 we could inc/dec that register as well (maybe even using it for
9183 the source), but I'm not sure it's worth worrying about. */
9184 if (REG_P (incloc))
9185 reg_last_reload_reg[REGNO (incloc)] = 0;
9186
9187 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9188 {
9189 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9190 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9191 }
9192 else
9193 {
9194 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9195 inc_amount = -inc_amount;
9196
9197 inc = GEN_INT (inc_amount);
9198 }
9199
9200 /* If this is post-increment, first copy the location to the reload reg. */
9201 if (post && real_in != reloadreg)
9202 emit_insn (gen_move_insn (reloadreg, real_in));
9203
9204 if (in == value)
9205 {
9206 /* See if we can directly increment INCLOC. Use a method similar to
9207 that in gen_reload. */
9208
9209 last = get_last_insn ();
9210 add_insn = emit_insn (gen_rtx_SET (incloc,
9211 gen_rtx_PLUS (GET_MODE (incloc),
9212 incloc, inc)));
9213
9214 code = recog_memoized (add_insn);
9215 if (code >= 0)
9216 {
9217 extract_insn (add_insn);
9218 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9219 {
9220 /* If this is a pre-increment and we have incremented the value
9221 where it lives, copy the incremented value to RELOADREG to
9222 be used as an address. */
9223
9224 if (! post)
9225 emit_insn (gen_move_insn (reloadreg, incloc));
9226 return;
9227 }
9228 }
9229 delete_insns_since (last);
9230 }
9231
9232 /* If couldn't do the increment directly, must increment in RELOADREG.
9233 The way we do this depends on whether this is pre- or post-increment.
9234 For pre-increment, copy INCLOC to the reload register, increment it
9235 there, then save back. */
9236
9237 if (! post)
9238 {
9239 if (in != reloadreg)
9240 emit_insn (gen_move_insn (reloadreg, real_in));
9241 emit_insn (gen_add2_insn (reloadreg, inc));
9242 emit_insn (gen_move_insn (incloc, reloadreg));
9243 }
9244 else
9245 {
9246 /* Postincrement.
9247 Because this might be a jump insn or a compare, and because RELOADREG
9248 may not be available after the insn in an input reload, we must do
9249 the incrementation before the insn being reloaded for.
9250
9251 We have already copied IN to RELOADREG. Increment the copy in
9252 RELOADREG, save that back, then decrement RELOADREG so it has
9253 the original value. */
9254
9255 emit_insn (gen_add2_insn (reloadreg, inc));
9256 emit_insn (gen_move_insn (incloc, reloadreg));
9257 if (CONST_INT_P (inc))
9258 emit_insn (gen_add2_insn (reloadreg,
9259 gen_int_mode (-INTVAL (inc),
9260 GET_MODE (reloadreg))));
9261 else
9262 emit_insn (gen_sub2_insn (reloadreg, inc));
9263 }
9264 }
9265 \f
9266 #ifdef AUTO_INC_DEC
9267 static void
9268 add_auto_inc_notes (rtx_insn *insn, rtx x)
9269 {
9270 enum rtx_code code = GET_CODE (x);
9271 const char *fmt;
9272 int i, j;
9273
9274 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9275 {
9276 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9277 return;
9278 }
9279
9280 /* Scan all the operand sub-expressions. */
9281 fmt = GET_RTX_FORMAT (code);
9282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9283 {
9284 if (fmt[i] == 'e')
9285 add_auto_inc_notes (insn, XEXP (x, i));
9286 else if (fmt[i] == 'E')
9287 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9288 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9289 }
9290 }
9291 #endif