]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
poly_int: alter_reg
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79 \f
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
84
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
87
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Widest mode in which each pseudo reg is referred to (via subreg). */
101 static machine_mode *reg_max_ref_mode;
102
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
105
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
122
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
130
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
151
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
160
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
166
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
170
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
177
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
184
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
190
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
194
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
198
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201
202 /* Width allocated so far for that stack slot. */
203 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
207
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
210
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
214
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
218
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
222
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
226
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
231
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
235
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
239
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
243
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
247
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
251
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
254 \f
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
259
260 struct elim_table
261 {
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 poly_int64_pod initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 poly_int64_pod offset; /* Current offset between the two regs. */
270 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
278 };
279
280 static struct elim_table *reg_eliminate = 0;
281
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
285 {
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
289
290 ELIMINABLE_REGS;
291
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
298
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
304
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
313
314 static int first_label_num;
315 static char *offsets_known_at;
316 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
317
318 vec<reg_equivs_t, va_gc> *reg_equivs;
319
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
323
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
329
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
332
333 /* Number of labels in the current function. */
334
335 static int num_labels;
336 \f
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
345
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 \f
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
411
412 void
413 init_reload (void)
414 {
415 int i;
416
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
420
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
428
429 while (memory_address_p (QImode, tem))
430 {
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
433 }
434
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
439
440 /* See if reg+reg is a valid (and offsettable) address. */
441
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 {
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
447
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
450
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
455 }
456
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
459 {
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
462 }
463
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
467 }
468
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
471
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
475 {
476 struct insn_chain *c;
477
478 if (unused_insn_chains == 0)
479 {
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
483 }
484 else
485 {
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
488 }
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
494 }
495
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
498
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
501 {
502 unsigned int regno;
503 reg_set_iterator rsi;
504
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
506 {
507 int r = reg_renumber[regno];
508
509 if (r < 0)
510 {
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
516 }
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
519 }
520 }
521
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
524
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
527 {
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
532
533 if (! x)
534 return;
535
536 code = GET_CODE (x);
537 if (code == REG)
538 {
539 unsigned int regno = REGNO (x);
540
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
543
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
546 {
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
550 }
551
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
561 {
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
565 }
566
567 return;
568 }
569 else if (code == MEM)
570 {
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
573 }
574
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
583 }
584
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
587
588 static bool
589 has_nonexceptional_receiver (void)
590 {
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
594
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
598
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
601
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
604
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
608
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
611 {
612 bb = *--tos;
613
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
616 {
617 basic_block src = e->src;
618
619 if (!(src->flags & BB_REACHABLE))
620 {
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
623 }
624 }
625 }
626 free (worklist);
627
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
633
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
636 }
637
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
640
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
644 {
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
649
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
654 }
655
656 \f
657 /* Global variables used by reload and its subroutines. */
658
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
661
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
668
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
671
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
674
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
683 {
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
685 {
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
687 {
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
690 {
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
692
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
700 ;
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
705 }
706 }
707 }
708 }
709
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
713 {
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
718
719 if (can_throw_internal (insn))
720 return false;
721
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
724
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
726 {
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
730 }
731 return false;
732 }
733
734 /* Main entry point for the reload pass.
735
736 FIRST is the first insn of the function being compiled.
737
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
743
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
747
748 bool
749 reload (rtx_insn *first, int global)
750 {
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
756
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
759
760 failure = 0;
761
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
763
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
767
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
770
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
773
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
777
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
781
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
788
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
795
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
800
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
805
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
810
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
816
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
818
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
821
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
825
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
829
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
834
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
837
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
847
848 maybe_fix_stack_asms ();
849
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
852
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
855
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 {
863 int from = ep->from;
864 int can_eliminate = 0;
865 do
866 {
867 can_eliminate |= ep->can_eliminate;
868 ep++;
869 }
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
873 }
874
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877
878 finish_spills (global);
879
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
884
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
888 {
889 int something_changed;
890 poly_int64 starting_frame_size;
891
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
894
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
897
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
902
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
905
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
912
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
918
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
921
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
924 {
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
927
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
942 {
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
952 }
953 }
954
955 if (caller_save_needed)
956 setup_save_areas ();
957
958 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
959 {
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 TARGET_STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
969 }
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled
972 || maybe_ne (starting_frame_size, get_frame_size ()))
973 {
974 if (update_eliminables_and_spill ())
975 finish_spills (0);
976 continue;
977 }
978
979 if (caller_save_needed)
980 {
981 save_call_clobbered_regs ();
982 /* That might have allocated new insn_chain structures. */
983 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
984 }
985
986 calculate_needs_all_insns (global);
987
988 if (! ira_conflicts_p)
989 /* Don't do it for IRA. We need this info because we don't
990 change live_throughout and dead_or_set for chains when IRA
991 is used. */
992 CLEAR_REG_SET (&spilled_pseudos);
993
994 something_changed = 0;
995
996 /* If we allocated any new memory locations, make another pass
997 since it might have changed elimination offsets. */
998 if (something_was_spilled
999 || maybe_ne (starting_frame_size, get_frame_size ()))
1000 something_changed = 1;
1001
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1008
1009 if (update_eliminables_and_spill ())
1010 {
1011 finish_spills (0);
1012 something_changed = 1;
1013 }
1014 else
1015 {
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1021 }
1022
1023 if (! something_changed)
1024 break;
1025
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1028
1029 obstack_free (&reload_obstack, reload_firstobj);
1030 }
1031
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1038
1039 remove_init_insns ();
1040
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1044
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1047 {
1048 poly_int64 old_frame_size = get_frame_size ();
1049
1050 reload_as_needed (global);
1051
1052 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1053
1054 gcc_assert (verify_initial_elim_offsets ());
1055 }
1056
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1062
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1066
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1070
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1074
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1079
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1084
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1086 {
1087 rtx addr = 0;
1088
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1091
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1094
1095 if (addr)
1096 {
1097 if (reg_renumber[i] < 0)
1098 {
1099 rtx reg = regno_reg_rtx[i];
1100
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1109 }
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1112 }
1113
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1118 {
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1122
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1131
1132 if (equiv == reg)
1133 continue;
1134
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1136 {
1137 insn = DF_REF_INSN (use);
1138
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1144
1145 if (DEBUG_BIND_INSN_P (insn))
1146 {
1147 if (!equiv)
1148 {
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1151 }
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1156 }
1157 }
1158 }
1159 }
1160
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1165
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1173
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1176 {
1177 rtx *pnote;
1178
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1182
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1195 {
1196 delete_insn (insn);
1197 continue;
1198 }
1199
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1206
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1215 {
1216 delete_insn (insn);
1217 continue;
1218 }
1219
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1222 {
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1229 }
1230
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1233
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1236
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1240 {
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1243 {
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1248 }
1249 }
1250 }
1251
1252 free (temp_pseudo_reg_arr);
1253
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1256
1257 free (reg_max_ref_mode);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1261
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1265
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1269
1270 inserted = fixup_abnormal_edges ();
1271
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1274 {
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1278 }
1279
1280 if (inserted)
1281 commit_edge_insertions ();
1282
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1287
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1295
1296 substitute_stack.release ();
1297
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1299
1300 reload_completed = !failure;
1301
1302 return need_dce;
1303 }
1304
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1311
1312 static void
1313 maybe_fix_stack_asms (void)
1314 {
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1319
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1321 {
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1325
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1332
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1335
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1338 {
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1342 }
1343
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1347
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1350 {
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1356
1357 for (;;)
1358 {
1359 char c = *p;
1360
1361 if (c == '\0' || c == ',' || c == '#')
1362 {
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1375 }
1376
1377 switch (c)
1378 {
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1382
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1393 }
1394 p += CONSTRAINT_LEN (c, p);
1395 }
1396 }
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1403 {
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1406 }
1407 }
1408
1409 #endif
1410 }
1411 \f
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1416 {
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1421 }
1422
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1428 {
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1431
1432 something_needs_elimination = 0;
1433
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1436 {
1437 rtx_insn *insn = chain->insn;
1438
1439 next = chain->next;
1440
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1446
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1450
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1454
1455 if (INSN_P (insn))
1456 {
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1462
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1466
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1470
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1474
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1483 {
1484 rtx set = single_set (insn);
1485 if (set
1486 &&
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1497 {
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1513 }
1514 }
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1517
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1523
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1526 {
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1532 }
1533
1534 something_needs_operands_changed |= operands_changed;
1535
1536 if (n_reloads != 0)
1537 {
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1541 }
1542 }
1543 }
1544 *pprev_reload = 0;
1545 }
1546 \f
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1550
1551 void
1552 calculate_elim_costs_all_insns (void)
1553 {
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1557
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1561
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1564
1565 FOR_EACH_BB_FN (bb, cfun)
1566 {
1567 rtx_insn *insn;
1568 elim_bb = bb;
1569
1570 FOR_BB_INSNS (bb, insn)
1571 {
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1575
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1579
1580 if (INSN_P (insn))
1581 {
1582 rtx set = single_set (insn);
1583
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1589 {
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1593 {
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1600
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1603 }
1604 }
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1608
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1611 }
1612 }
1613 }
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1615 {
1616 if (reg_equiv_invariant (i))
1617 {
1618 if (reg_equiv_init (i))
1619 {
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1626 }
1627 else
1628 {
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1632 i);
1633 ira_adjust_equiv_reg_cost (i, 0);
1634 }
1635 }
1636 }
1637
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1643 }
1644 \f
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1647
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1650 {
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1653
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1658
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1664
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1669
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1674
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1678 }
1679 \f
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1682
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1687
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1691
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1693
1694 static void
1695 count_pseudo (int reg)
1696 {
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1700
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1704
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1708
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1710
1711 gcc_assert (r >= 0);
1712
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1715 while (nregs-- > 0)
1716 {
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1719 }
1720 }
1721
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1724
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1727 {
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1732
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1734
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1739
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1743
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1748
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1752
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1755 {
1756 count_pseudo (i);
1757 }
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1760 {
1761 count_pseudo (i);
1762 }
1763 CLEAR_REG_SET (&pseudos_counted);
1764 }
1765 \f
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1769
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1772
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1777
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1780 {
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1784
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1788
1789 gcc_assert (r >= 0);
1790
1791 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1792
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1796
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1798
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1801 {
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1804 }
1805 }
1806
1807 /* Find reload register to use for reload number ORDER. */
1808
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1811 {
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1823
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1827
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1830 {
1831 int other = reload_order[k];
1832
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1836 }
1837
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1839 {
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1845
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && targetm.hard_regno_mode_ok (regno, rl->mode))
1849 {
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1853
1854 for (j = 1; j < this_nregs; j++)
1855 {
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1860 }
1861 if (! ok)
1862 continue;
1863
1864 if (ira_conflicts_p)
1865 {
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1869 {
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1871
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1876 }
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1883 {
1884 best_reg = regno;
1885 for (j = 0;; j++)
1886 {
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1890 }
1891 }
1892 continue;
1893 }
1894
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1910 ))
1911 {
1912 best_reg = regno;
1913 best_cost = this_cost;
1914 }
1915 }
1916 }
1917 if (best_reg == -1)
1918 return 0;
1919
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1922
1923 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1924 rl->regno = best_reg;
1925
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1928 {
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1930 }
1931
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1934 {
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1936 }
1937
1938 for (i = 0; i < rl->nregs; i++)
1939 {
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1944 }
1945 return 1;
1946 }
1947
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1953
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1956 {
1957 int i;
1958
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1964 {
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1967 {
1968 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1970 }
1971 else
1972 chain->rld[i].regno = -1;
1973 reload_order[i] = i;
1974 }
1975
1976 n_reloads = chain->n_reloads;
1977 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1978
1979 CLEAR_HARD_REG_SET (used_spill_regs_local);
1980
1981 if (dump_file)
1982 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1983
1984 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1985
1986 /* Compute the order of preference for hard registers to spill. */
1987
1988 order_regs_for_reload (chain);
1989
1990 for (i = 0; i < n_reloads; i++)
1991 {
1992 int r = reload_order[i];
1993
1994 /* Ignore reloads that got marked inoperative. */
1995 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1996 && ! rld[r].optional
1997 && rld[r].regno == -1)
1998 if (! find_reg (chain, i))
1999 {
2000 if (dump_file)
2001 fprintf (dump_file, "reload failure for reload %d\n", r);
2002 spill_failure (chain->insn, rld[r].rclass);
2003 failure = 1;
2004 return;
2005 }
2006 }
2007
2008 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2009 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2010
2011 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2012 }
2013
2014 static void
2015 select_reload_regs (void)
2016 {
2017 struct insn_chain *chain;
2018
2019 /* Try to satisfy the needs for each insn. */
2020 for (chain = insns_need_reload; chain != 0;
2021 chain = chain->next_need_reload)
2022 find_reload_regs (chain);
2023 }
2024 \f
2025 /* Delete all insns that were inserted by emit_caller_save_insns during
2026 this iteration. */
2027 static void
2028 delete_caller_save_insns (void)
2029 {
2030 struct insn_chain *c = reload_insn_chain;
2031
2032 while (c != 0)
2033 {
2034 while (c != 0 && c->is_caller_save_insn)
2035 {
2036 struct insn_chain *next = c->next;
2037 rtx_insn *insn = c->insn;
2038
2039 if (c == reload_insn_chain)
2040 reload_insn_chain = next;
2041 delete_insn (insn);
2042
2043 if (next)
2044 next->prev = c->prev;
2045 if (c->prev)
2046 c->prev->next = next;
2047 c->next = unused_insn_chains;
2048 unused_insn_chains = c;
2049 c = next;
2050 }
2051 if (c != 0)
2052 c = c->next;
2053 }
2054 }
2055 \f
2056 /* Handle the failure to find a register to spill.
2057 INSN should be one of the insns which needed this particular spill reg. */
2058
2059 static void
2060 spill_failure (rtx_insn *insn, enum reg_class rclass)
2061 {
2062 if (asm_noperands (PATTERN (insn)) >= 0)
2063 error_for_asm (insn, "can%'t find a register in class %qs while "
2064 "reloading %<asm%>",
2065 reg_class_names[rclass]);
2066 else
2067 {
2068 error ("unable to find a register to spill in class %qs",
2069 reg_class_names[rclass]);
2070
2071 if (dump_file)
2072 {
2073 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2074 debug_reload_to_stream (dump_file);
2075 }
2076 fatal_insn ("this is the insn:", insn);
2077 }
2078 }
2079 \f
2080 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2081 data that is dead in INSN. */
2082
2083 static void
2084 delete_dead_insn (rtx_insn *insn)
2085 {
2086 rtx_insn *prev = prev_active_insn (insn);
2087 rtx prev_dest;
2088
2089 /* If the previous insn sets a register that dies in our insn make
2090 a note that we want to run DCE immediately after reload.
2091
2092 We used to delete the previous insn & recurse, but that's wrong for
2093 block local equivalences. Instead of trying to figure out the exact
2094 circumstances where we can delete the potentially dead insns, just
2095 let DCE do the job. */
2096 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2097 && GET_CODE (PATTERN (prev)) == SET
2098 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2099 && reg_mentioned_p (prev_dest, PATTERN (insn))
2100 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2101 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2102 need_dce = 1;
2103
2104 SET_INSN_DELETED (insn);
2105 }
2106
2107 /* Modify the home of pseudo-reg I.
2108 The new home is present in reg_renumber[I].
2109
2110 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2111 or it may be -1, meaning there is none or it is not relevant.
2112 This is used so that all pseudos spilled from a given hard reg
2113 can share one stack slot. */
2114
2115 static void
2116 alter_reg (int i, int from_reg, bool dont_share_p)
2117 {
2118 /* When outputting an inline function, this can happen
2119 for a reg that isn't actually used. */
2120 if (regno_reg_rtx[i] == 0)
2121 return;
2122
2123 /* If the reg got changed to a MEM at rtl-generation time,
2124 ignore it. */
2125 if (!REG_P (regno_reg_rtx[i]))
2126 return;
2127
2128 /* Modify the reg-rtx to contain the new hard reg
2129 number or else to contain its pseudo reg number. */
2130 SET_REGNO (regno_reg_rtx[i],
2131 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2132
2133 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2134 allocate a stack slot for it. */
2135
2136 if (reg_renumber[i] < 0
2137 && REG_N_REFS (i) > 0
2138 && reg_equiv_constant (i) == 0
2139 && (reg_equiv_invariant (i) == 0
2140 || reg_equiv_init (i) == 0)
2141 && reg_equiv_memory_loc (i) == 0)
2142 {
2143 rtx x = NULL_RTX;
2144 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2145 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2146 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2147 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2148 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2149 unsigned int min_align = GET_MODE_BITSIZE (reg_max_ref_mode[i]);
2150 poly_int64 adjust = 0;
2151
2152 something_was_spilled = true;
2153
2154 if (ira_conflicts_p)
2155 {
2156 /* Mark the spill for IRA. */
2157 SET_REGNO_REG_SET (&spilled_pseudos, i);
2158 if (!dont_share_p)
2159 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2160 }
2161
2162 if (x)
2163 ;
2164
2165 /* Each pseudo reg has an inherent size which comes from its own mode,
2166 and a total size which provides room for paradoxical subregs
2167 which refer to the pseudo reg in wider modes.
2168
2169 We can use a slot already allocated if it provides both
2170 enough inherent space and enough total space.
2171 Otherwise, we allocate a new slot, making sure that it has no less
2172 inherent space, and no less total space, then the previous slot. */
2173 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2174 {
2175 rtx stack_slot;
2176
2177 /* The sizes are taken from a subreg operation, which guarantees
2178 that they're ordered. */
2179 gcc_checking_assert (ordered_p (total_size, inherent_size));
2180
2181 /* No known place to spill from => no slot to reuse. */
2182 x = assign_stack_local (mode, total_size,
2183 min_align > inherent_align
2184 || maybe_gt (total_size, inherent_size)
2185 ? -1 : 0);
2186
2187 stack_slot = x;
2188
2189 /* Cancel the big-endian correction done in assign_stack_local.
2190 Get the address of the beginning of the slot. This is so we
2191 can do a big-endian correction unconditionally below. */
2192 if (BYTES_BIG_ENDIAN)
2193 {
2194 adjust = inherent_size - total_size;
2195 if (maybe_ne (adjust, 0))
2196 {
2197 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2198 machine_mode mem_mode
2199 = int_mode_for_size (total_bits, 1).else_blk ();
2200 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2201 }
2202 }
2203
2204 if (! dont_share_p && ira_conflicts_p)
2205 /* Inform IRA about allocation a new stack slot. */
2206 ira_mark_new_stack_slot (stack_slot, i, total_size);
2207 }
2208
2209 /* Reuse a stack slot if possible. */
2210 else if (spill_stack_slot[from_reg] != 0
2211 && known_ge (spill_stack_slot_width[from_reg], total_size)
2212 && known_ge (GET_MODE_SIZE
2213 (GET_MODE (spill_stack_slot[from_reg])),
2214 inherent_size)
2215 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2216 x = spill_stack_slot[from_reg];
2217
2218 /* Allocate a bigger slot. */
2219 else
2220 {
2221 /* Compute maximum size needed, both for inherent size
2222 and for total size. */
2223 rtx stack_slot;
2224
2225 if (spill_stack_slot[from_reg])
2226 {
2227 if (partial_subreg_p (mode,
2228 GET_MODE (spill_stack_slot[from_reg])))
2229 mode = GET_MODE (spill_stack_slot[from_reg]);
2230 total_size = ordered_max (total_size,
2231 spill_stack_slot_width[from_reg]);
2232 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2233 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2234 }
2235
2236 /* The sizes are taken from a subreg operation, which guarantees
2237 that they're ordered. */
2238 gcc_checking_assert (ordered_p (total_size, inherent_size));
2239
2240 /* Make a slot with that size. */
2241 x = assign_stack_local (mode, total_size,
2242 min_align > inherent_align
2243 || maybe_gt (total_size, inherent_size)
2244 ? -1 : 0);
2245 stack_slot = x;
2246
2247 /* Cancel the big-endian correction done in assign_stack_local.
2248 Get the address of the beginning of the slot. This is so we
2249 can do a big-endian correction unconditionally below. */
2250 if (BYTES_BIG_ENDIAN)
2251 {
2252 adjust = GET_MODE_SIZE (mode) - total_size;
2253 if (maybe_ne (adjust, 0))
2254 {
2255 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2256 machine_mode mem_mode
2257 = int_mode_for_size (total_bits, 1).else_blk ();
2258 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2259 }
2260 }
2261
2262 spill_stack_slot[from_reg] = stack_slot;
2263 spill_stack_slot_width[from_reg] = total_size;
2264 }
2265
2266 /* On a big endian machine, the "address" of the slot
2267 is the address of the low part that fits its inherent mode. */
2268 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2269
2270 /* If we have any adjustment to make, or if the stack slot is the
2271 wrong mode, make a new stack slot. */
2272 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2273
2274 /* Set all of the memory attributes as appropriate for a spill. */
2275 set_mem_attrs_for_spill (x);
2276
2277 /* Save the stack slot for later. */
2278 reg_equiv_memory_loc (i) = x;
2279 }
2280 }
2281
2282 /* Mark the slots in regs_ever_live for the hard regs used by
2283 pseudo-reg number REGNO, accessed in MODE. */
2284
2285 static void
2286 mark_home_live_1 (int regno, machine_mode mode)
2287 {
2288 int i, lim;
2289
2290 i = reg_renumber[regno];
2291 if (i < 0)
2292 return;
2293 lim = end_hard_regno (mode, i);
2294 while (i < lim)
2295 df_set_regs_ever_live (i++, true);
2296 }
2297
2298 /* Mark the slots in regs_ever_live for the hard regs
2299 used by pseudo-reg number REGNO. */
2300
2301 void
2302 mark_home_live (int regno)
2303 {
2304 if (reg_renumber[regno] >= 0)
2305 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2306 }
2307 \f
2308 /* This function handles the tracking of elimination offsets around branches.
2309
2310 X is a piece of RTL being scanned.
2311
2312 INSN is the insn that it came from, if any.
2313
2314 INITIAL_P is nonzero if we are to set the offset to be the initial
2315 offset and zero if we are setting the offset of the label to be the
2316 current offset. */
2317
2318 static void
2319 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2320 {
2321 enum rtx_code code = GET_CODE (x);
2322 rtx tem;
2323 unsigned int i;
2324 struct elim_table *p;
2325
2326 switch (code)
2327 {
2328 case LABEL_REF:
2329 if (LABEL_REF_NONLOCAL_P (x))
2330 return;
2331
2332 x = label_ref_label (x);
2333
2334 /* fall through */
2335
2336 case CODE_LABEL:
2337 /* If we know nothing about this label, set the desired offsets. Note
2338 that this sets the offset at a label to be the offset before a label
2339 if we don't know anything about the label. This is not correct for
2340 the label after a BARRIER, but is the best guess we can make. If
2341 we guessed wrong, we will suppress an elimination that might have
2342 been possible had we been able to guess correctly. */
2343
2344 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2345 {
2346 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2347 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2348 = (initial_p ? reg_eliminate[i].initial_offset
2349 : reg_eliminate[i].offset);
2350 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2351 }
2352
2353 /* Otherwise, if this is the definition of a label and it is
2354 preceded by a BARRIER, set our offsets to the known offset of
2355 that label. */
2356
2357 else if (x == insn
2358 && (tem = prev_nonnote_insn (insn)) != 0
2359 && BARRIER_P (tem))
2360 set_offsets_for_label (insn);
2361 else
2362 /* If neither of the above cases is true, compare each offset
2363 with those previously recorded and suppress any eliminations
2364 where the offsets disagree. */
2365
2366 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2367 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2368 (initial_p ? reg_eliminate[i].initial_offset
2369 : reg_eliminate[i].offset)))
2370 reg_eliminate[i].can_eliminate = 0;
2371
2372 return;
2373
2374 case JUMP_TABLE_DATA:
2375 set_label_offsets (PATTERN (insn), insn, initial_p);
2376 return;
2377
2378 case JUMP_INSN:
2379 set_label_offsets (PATTERN (insn), insn, initial_p);
2380
2381 /* fall through */
2382
2383 case INSN:
2384 case CALL_INSN:
2385 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2386 to indirectly and hence must have all eliminations at their
2387 initial offsets. */
2388 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2389 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2390 set_label_offsets (XEXP (tem, 0), insn, 1);
2391 return;
2392
2393 case PARALLEL:
2394 case ADDR_VEC:
2395 case ADDR_DIFF_VEC:
2396 /* Each of the labels in the parallel or address vector must be
2397 at their initial offsets. We want the first field for PARALLEL
2398 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2399
2400 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2401 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2402 insn, initial_p);
2403 return;
2404
2405 case SET:
2406 /* We only care about setting PC. If the source is not RETURN,
2407 IF_THEN_ELSE, or a label, disable any eliminations not at
2408 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2409 isn't one of those possibilities. For branches to a label,
2410 call ourselves recursively.
2411
2412 Note that this can disable elimination unnecessarily when we have
2413 a non-local goto since it will look like a non-constant jump to
2414 someplace in the current function. This isn't a significant
2415 problem since such jumps will normally be when all elimination
2416 pairs are back to their initial offsets. */
2417
2418 if (SET_DEST (x) != pc_rtx)
2419 return;
2420
2421 switch (GET_CODE (SET_SRC (x)))
2422 {
2423 case PC:
2424 case RETURN:
2425 return;
2426
2427 case LABEL_REF:
2428 set_label_offsets (SET_SRC (x), insn, initial_p);
2429 return;
2430
2431 case IF_THEN_ELSE:
2432 tem = XEXP (SET_SRC (x), 1);
2433 if (GET_CODE (tem) == LABEL_REF)
2434 set_label_offsets (label_ref_label (tem), insn, initial_p);
2435 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2436 break;
2437
2438 tem = XEXP (SET_SRC (x), 2);
2439 if (GET_CODE (tem) == LABEL_REF)
2440 set_label_offsets (label_ref_label (tem), insn, initial_p);
2441 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2442 break;
2443 return;
2444
2445 default:
2446 break;
2447 }
2448
2449 /* If we reach here, all eliminations must be at their initial
2450 offset because we are doing a jump to a variable address. */
2451 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2452 if (maybe_ne (p->offset, p->initial_offset))
2453 p->can_eliminate = 0;
2454 break;
2455
2456 default:
2457 break;
2458 }
2459 }
2460 \f
2461 /* This function examines every reg that occurs in X and adjusts the
2462 costs for its elimination which are gathered by IRA. INSN is the
2463 insn in which X occurs. We do not recurse into MEM expressions. */
2464
2465 static void
2466 note_reg_elim_costly (const_rtx x, rtx insn)
2467 {
2468 subrtx_iterator::array_type array;
2469 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2470 {
2471 const_rtx x = *iter;
2472 if (MEM_P (x))
2473 iter.skip_subrtxes ();
2474 else if (REG_P (x)
2475 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2476 && reg_equiv_init (REGNO (x))
2477 && reg_equiv_invariant (REGNO (x)))
2478 {
2479 rtx t = reg_equiv_invariant (REGNO (x));
2480 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2481 int cost = set_src_cost (new_rtx, Pmode,
2482 optimize_bb_for_speed_p (elim_bb));
2483 int freq = REG_FREQ_FROM_BB (elim_bb);
2484
2485 if (cost != 0)
2486 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2487 }
2488 }
2489 }
2490
2491 /* Scan X and replace any eliminable registers (such as fp) with a
2492 replacement (such as sp), plus an offset.
2493
2494 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2495 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2496 MEM, we are allowed to replace a sum of a register and the constant zero
2497 with the register, which we cannot do outside a MEM. In addition, we need
2498 to record the fact that a register is referenced outside a MEM.
2499
2500 If INSN is an insn, it is the insn containing X. If we replace a REG
2501 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2502 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2503 the REG is being modified.
2504
2505 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2506 That's used when we eliminate in expressions stored in notes.
2507 This means, do not set ref_outside_mem even if the reference
2508 is outside of MEMs.
2509
2510 If FOR_COSTS is true, we are being called before reload in order to
2511 estimate the costs of keeping registers with an equivalence unallocated.
2512
2513 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2514 replacements done assuming all offsets are at their initial values. If
2515 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2516 encounter, return the actual location so that find_reloads will do
2517 the proper thing. */
2518
2519 static rtx
2520 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2521 bool may_use_invariant, bool for_costs)
2522 {
2523 enum rtx_code code = GET_CODE (x);
2524 struct elim_table *ep;
2525 int regno;
2526 rtx new_rtx;
2527 int i, j;
2528 const char *fmt;
2529 int copied = 0;
2530
2531 if (! current_function_decl)
2532 return x;
2533
2534 switch (code)
2535 {
2536 CASE_CONST_ANY:
2537 case CONST:
2538 case SYMBOL_REF:
2539 case CODE_LABEL:
2540 case PC:
2541 case CC0:
2542 case ASM_INPUT:
2543 case ADDR_VEC:
2544 case ADDR_DIFF_VEC:
2545 case RETURN:
2546 return x;
2547
2548 case REG:
2549 regno = REGNO (x);
2550
2551 /* First handle the case where we encounter a bare register that
2552 is eliminable. Replace it with a PLUS. */
2553 if (regno < FIRST_PSEUDO_REGISTER)
2554 {
2555 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2556 ep++)
2557 if (ep->from_rtx == x && ep->can_eliminate)
2558 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2559
2560 }
2561 else if (reg_renumber && reg_renumber[regno] < 0
2562 && reg_equivs
2563 && reg_equiv_invariant (regno))
2564 {
2565 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2566 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2567 mem_mode, insn, true, for_costs);
2568 /* There exists at least one use of REGNO that cannot be
2569 eliminated. Prevent the defining insn from being deleted. */
2570 reg_equiv_init (regno) = NULL;
2571 if (!for_costs)
2572 alter_reg (regno, -1, true);
2573 }
2574 return x;
2575
2576 /* You might think handling MINUS in a manner similar to PLUS is a
2577 good idea. It is not. It has been tried multiple times and every
2578 time the change has had to have been reverted.
2579
2580 Other parts of reload know a PLUS is special (gen_reload for example)
2581 and require special code to handle code a reloaded PLUS operand.
2582
2583 Also consider backends where the flags register is clobbered by a
2584 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2585 lea instruction comes to mind). If we try to reload a MINUS, we
2586 may kill the flags register that was holding a useful value.
2587
2588 So, please before trying to handle MINUS, consider reload as a
2589 whole instead of this little section as well as the backend issues. */
2590 case PLUS:
2591 /* If this is the sum of an eliminable register and a constant, rework
2592 the sum. */
2593 if (REG_P (XEXP (x, 0))
2594 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2595 && CONSTANT_P (XEXP (x, 1)))
2596 {
2597 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2598 ep++)
2599 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2600 {
2601 /* The only time we want to replace a PLUS with a REG (this
2602 occurs when the constant operand of the PLUS is the negative
2603 of the offset) is when we are inside a MEM. We won't want
2604 to do so at other times because that would change the
2605 structure of the insn in a way that reload can't handle.
2606 We special-case the commonest situation in
2607 eliminate_regs_in_insn, so just replace a PLUS with a
2608 PLUS here, unless inside a MEM. */
2609 if (mem_mode != 0
2610 && CONST_INT_P (XEXP (x, 1))
2611 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2612 return ep->to_rtx;
2613 else
2614 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2615 plus_constant (Pmode, XEXP (x, 1),
2616 ep->previous_offset));
2617 }
2618
2619 /* If the register is not eliminable, we are done since the other
2620 operand is a constant. */
2621 return x;
2622 }
2623
2624 /* If this is part of an address, we want to bring any constant to the
2625 outermost PLUS. We will do this by doing register replacement in
2626 our operands and seeing if a constant shows up in one of them.
2627
2628 Note that there is no risk of modifying the structure of the insn,
2629 since we only get called for its operands, thus we are either
2630 modifying the address inside a MEM, or something like an address
2631 operand of a load-address insn. */
2632
2633 {
2634 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2635 for_costs);
2636 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2637 for_costs);
2638
2639 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2640 {
2641 /* If one side is a PLUS and the other side is a pseudo that
2642 didn't get a hard register but has a reg_equiv_constant,
2643 we must replace the constant here since it may no longer
2644 be in the position of any operand. */
2645 if (GET_CODE (new0) == PLUS && REG_P (new1)
2646 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2647 && reg_renumber[REGNO (new1)] < 0
2648 && reg_equivs
2649 && reg_equiv_constant (REGNO (new1)) != 0)
2650 new1 = reg_equiv_constant (REGNO (new1));
2651 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2652 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2653 && reg_renumber[REGNO (new0)] < 0
2654 && reg_equiv_constant (REGNO (new0)) != 0)
2655 new0 = reg_equiv_constant (REGNO (new0));
2656
2657 new_rtx = form_sum (GET_MODE (x), new0, new1);
2658
2659 /* As above, if we are not inside a MEM we do not want to
2660 turn a PLUS into something else. We might try to do so here
2661 for an addition of 0 if we aren't optimizing. */
2662 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2663 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2664 else
2665 return new_rtx;
2666 }
2667 }
2668 return x;
2669
2670 case MULT:
2671 /* If this is the product of an eliminable register and a
2672 constant, apply the distribute law and move the constant out
2673 so that we have (plus (mult ..) ..). This is needed in order
2674 to keep load-address insns valid. This case is pathological.
2675 We ignore the possibility of overflow here. */
2676 if (REG_P (XEXP (x, 0))
2677 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2678 && CONST_INT_P (XEXP (x, 1)))
2679 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2680 ep++)
2681 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2682 {
2683 if (! mem_mode
2684 /* Refs inside notes or in DEBUG_INSNs don't count for
2685 this purpose. */
2686 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2687 || GET_CODE (insn) == INSN_LIST
2688 || DEBUG_INSN_P (insn))))
2689 ep->ref_outside_mem = 1;
2690
2691 return
2692 plus_constant (Pmode,
2693 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2694 ep->previous_offset * INTVAL (XEXP (x, 1)));
2695 }
2696
2697 /* fall through */
2698
2699 case CALL:
2700 case COMPARE:
2701 /* See comments before PLUS about handling MINUS. */
2702 case MINUS:
2703 case DIV: case UDIV:
2704 case MOD: case UMOD:
2705 case AND: case IOR: case XOR:
2706 case ROTATERT: case ROTATE:
2707 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2708 case NE: case EQ:
2709 case GE: case GT: case GEU: case GTU:
2710 case LE: case LT: case LEU: case LTU:
2711 {
2712 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2713 for_costs);
2714 rtx new1 = XEXP (x, 1)
2715 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2716 for_costs) : 0;
2717
2718 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2719 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2720 }
2721 return x;
2722
2723 case EXPR_LIST:
2724 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2725 if (XEXP (x, 0))
2726 {
2727 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2728 for_costs);
2729 if (new_rtx != XEXP (x, 0))
2730 {
2731 /* If this is a REG_DEAD note, it is not valid anymore.
2732 Using the eliminated version could result in creating a
2733 REG_DEAD note for the stack or frame pointer. */
2734 if (REG_NOTE_KIND (x) == REG_DEAD)
2735 return (XEXP (x, 1)
2736 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2737 for_costs)
2738 : NULL_RTX);
2739
2740 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2741 }
2742 }
2743
2744 /* fall through */
2745
2746 case INSN_LIST:
2747 case INT_LIST:
2748 /* Now do eliminations in the rest of the chain. If this was
2749 an EXPR_LIST, this might result in allocating more memory than is
2750 strictly needed, but it simplifies the code. */
2751 if (XEXP (x, 1))
2752 {
2753 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2754 for_costs);
2755 if (new_rtx != XEXP (x, 1))
2756 return
2757 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2758 }
2759 return x;
2760
2761 case PRE_INC:
2762 case POST_INC:
2763 case PRE_DEC:
2764 case POST_DEC:
2765 /* We do not support elimination of a register that is modified.
2766 elimination_effects has already make sure that this does not
2767 happen. */
2768 return x;
2769
2770 case PRE_MODIFY:
2771 case POST_MODIFY:
2772 /* We do not support elimination of a register that is modified.
2773 elimination_effects has already make sure that this does not
2774 happen. The only remaining case we need to consider here is
2775 that the increment value may be an eliminable register. */
2776 if (GET_CODE (XEXP (x, 1)) == PLUS
2777 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2778 {
2779 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2780 insn, true, for_costs);
2781
2782 if (new_rtx != XEXP (XEXP (x, 1), 1))
2783 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2784 gen_rtx_PLUS (GET_MODE (x),
2785 XEXP (x, 0), new_rtx));
2786 }
2787 return x;
2788
2789 case STRICT_LOW_PART:
2790 case NEG: case NOT:
2791 case SIGN_EXTEND: case ZERO_EXTEND:
2792 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2793 case FLOAT: case FIX:
2794 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2795 case ABS:
2796 case SQRT:
2797 case FFS:
2798 case CLZ:
2799 case CTZ:
2800 case POPCOUNT:
2801 case PARITY:
2802 case BSWAP:
2803 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2804 for_costs);
2805 if (new_rtx != XEXP (x, 0))
2806 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2807 return x;
2808
2809 case SUBREG:
2810 /* Similar to above processing, but preserve SUBREG_BYTE.
2811 Convert (subreg (mem)) to (mem) if not paradoxical.
2812 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2813 pseudo didn't get a hard reg, we must replace this with the
2814 eliminated version of the memory location because push_reload
2815 may do the replacement in certain circumstances. */
2816 if (REG_P (SUBREG_REG (x))
2817 && !paradoxical_subreg_p (x)
2818 && reg_equivs
2819 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2820 {
2821 new_rtx = SUBREG_REG (x);
2822 }
2823 else
2824 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2825
2826 if (new_rtx != SUBREG_REG (x))
2827 {
2828 int x_size = GET_MODE_SIZE (GET_MODE (x));
2829 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2830
2831 if (MEM_P (new_rtx)
2832 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2833 /* On RISC machines, combine can create rtl of the form
2834 (set (subreg:m1 (reg:m2 R) 0) ...)
2835 where m1 < m2, and expects something interesting to
2836 happen to the entire word. Moreover, it will use the
2837 (reg:m2 R) later, expecting all bits to be preserved.
2838 So if the number of words is the same, preserve the
2839 subreg so that push_reload can see it. */
2840 && !(WORD_REGISTER_OPERATIONS
2841 && (x_size - 1) / UNITS_PER_WORD
2842 == (new_size -1 ) / UNITS_PER_WORD))
2843 || x_size == new_size)
2844 )
2845 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2846 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2847 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2848 else
2849 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2850 }
2851
2852 return x;
2853
2854 case MEM:
2855 /* Our only special processing is to pass the mode of the MEM to our
2856 recursive call and copy the flags. While we are here, handle this
2857 case more efficiently. */
2858
2859 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2860 for_costs);
2861 if (for_costs
2862 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2863 && !memory_address_p (GET_MODE (x), new_rtx))
2864 note_reg_elim_costly (XEXP (x, 0), insn);
2865
2866 return replace_equiv_address_nv (x, new_rtx);
2867
2868 case USE:
2869 /* Handle insn_list USE that a call to a pure function may generate. */
2870 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2871 for_costs);
2872 if (new_rtx != XEXP (x, 0))
2873 return gen_rtx_USE (GET_MODE (x), new_rtx);
2874 return x;
2875
2876 case CLOBBER:
2877 case ASM_OPERANDS:
2878 gcc_assert (insn && DEBUG_INSN_P (insn));
2879 break;
2880
2881 case SET:
2882 gcc_unreachable ();
2883
2884 default:
2885 break;
2886 }
2887
2888 /* Process each of our operands recursively. If any have changed, make a
2889 copy of the rtx. */
2890 fmt = GET_RTX_FORMAT (code);
2891 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2892 {
2893 if (*fmt == 'e')
2894 {
2895 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2896 for_costs);
2897 if (new_rtx != XEXP (x, i) && ! copied)
2898 {
2899 x = shallow_copy_rtx (x);
2900 copied = 1;
2901 }
2902 XEXP (x, i) = new_rtx;
2903 }
2904 else if (*fmt == 'E')
2905 {
2906 int copied_vec = 0;
2907 for (j = 0; j < XVECLEN (x, i); j++)
2908 {
2909 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2910 for_costs);
2911 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2912 {
2913 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2914 XVEC (x, i)->elem);
2915 if (! copied)
2916 {
2917 x = shallow_copy_rtx (x);
2918 copied = 1;
2919 }
2920 XVEC (x, i) = new_v;
2921 copied_vec = 1;
2922 }
2923 XVECEXP (x, i, j) = new_rtx;
2924 }
2925 }
2926 }
2927
2928 return x;
2929 }
2930
2931 rtx
2932 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2933 {
2934 if (reg_eliminate == NULL)
2935 {
2936 gcc_assert (targetm.no_register_allocation);
2937 return x;
2938 }
2939 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2940 }
2941
2942 /* Scan rtx X for modifications of elimination target registers. Update
2943 the table of eliminables to reflect the changed state. MEM_MODE is
2944 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2945
2946 static void
2947 elimination_effects (rtx x, machine_mode mem_mode)
2948 {
2949 enum rtx_code code = GET_CODE (x);
2950 struct elim_table *ep;
2951 int regno;
2952 int i, j;
2953 const char *fmt;
2954
2955 switch (code)
2956 {
2957 CASE_CONST_ANY:
2958 case CONST:
2959 case SYMBOL_REF:
2960 case CODE_LABEL:
2961 case PC:
2962 case CC0:
2963 case ASM_INPUT:
2964 case ADDR_VEC:
2965 case ADDR_DIFF_VEC:
2966 case RETURN:
2967 return;
2968
2969 case REG:
2970 regno = REGNO (x);
2971
2972 /* First handle the case where we encounter a bare register that
2973 is eliminable. Replace it with a PLUS. */
2974 if (regno < FIRST_PSEUDO_REGISTER)
2975 {
2976 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2977 ep++)
2978 if (ep->from_rtx == x && ep->can_eliminate)
2979 {
2980 if (! mem_mode)
2981 ep->ref_outside_mem = 1;
2982 return;
2983 }
2984
2985 }
2986 else if (reg_renumber[regno] < 0
2987 && reg_equivs
2988 && reg_equiv_constant (regno)
2989 && ! function_invariant_p (reg_equiv_constant (regno)))
2990 elimination_effects (reg_equiv_constant (regno), mem_mode);
2991 return;
2992
2993 case PRE_INC:
2994 case POST_INC:
2995 case PRE_DEC:
2996 case POST_DEC:
2997 case POST_MODIFY:
2998 case PRE_MODIFY:
2999 /* If we modify the source of an elimination rule, disable it. */
3000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3001 if (ep->from_rtx == XEXP (x, 0))
3002 ep->can_eliminate = 0;
3003
3004 /* If we modify the target of an elimination rule by adding a constant,
3005 update its offset. If we modify the target in any other way, we'll
3006 have to disable the rule as well. */
3007 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3008 if (ep->to_rtx == XEXP (x, 0))
3009 {
3010 poly_int64 size = GET_MODE_SIZE (mem_mode);
3011
3012 /* If more bytes than MEM_MODE are pushed, account for them. */
3013 #ifdef PUSH_ROUNDING
3014 if (ep->to_rtx == stack_pointer_rtx)
3015 size = PUSH_ROUNDING (size);
3016 #endif
3017 if (code == PRE_DEC || code == POST_DEC)
3018 ep->offset += size;
3019 else if (code == PRE_INC || code == POST_INC)
3020 ep->offset -= size;
3021 else if (code == PRE_MODIFY || code == POST_MODIFY)
3022 {
3023 if (GET_CODE (XEXP (x, 1)) == PLUS
3024 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3025 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3026 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3027 else
3028 ep->can_eliminate = 0;
3029 }
3030 }
3031
3032 /* These two aren't unary operators. */
3033 if (code == POST_MODIFY || code == PRE_MODIFY)
3034 break;
3035
3036 /* Fall through to generic unary operation case. */
3037 gcc_fallthrough ();
3038 case STRICT_LOW_PART:
3039 case NEG: case NOT:
3040 case SIGN_EXTEND: case ZERO_EXTEND:
3041 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3042 case FLOAT: case FIX:
3043 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3044 case ABS:
3045 case SQRT:
3046 case FFS:
3047 case CLZ:
3048 case CTZ:
3049 case POPCOUNT:
3050 case PARITY:
3051 case BSWAP:
3052 elimination_effects (XEXP (x, 0), mem_mode);
3053 return;
3054
3055 case SUBREG:
3056 if (REG_P (SUBREG_REG (x))
3057 && !paradoxical_subreg_p (x)
3058 && reg_equivs
3059 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3060 return;
3061
3062 elimination_effects (SUBREG_REG (x), mem_mode);
3063 return;
3064
3065 case USE:
3066 /* If using a register that is the source of an eliminate we still
3067 think can be performed, note it cannot be performed since we don't
3068 know how this register is used. */
3069 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3070 if (ep->from_rtx == XEXP (x, 0))
3071 ep->can_eliminate = 0;
3072
3073 elimination_effects (XEXP (x, 0), mem_mode);
3074 return;
3075
3076 case CLOBBER:
3077 /* If clobbering a register that is the replacement register for an
3078 elimination we still think can be performed, note that it cannot
3079 be performed. Otherwise, we need not be concerned about it. */
3080 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3081 if (ep->to_rtx == XEXP (x, 0))
3082 ep->can_eliminate = 0;
3083
3084 elimination_effects (XEXP (x, 0), mem_mode);
3085 return;
3086
3087 case SET:
3088 /* Check for setting a register that we know about. */
3089 if (REG_P (SET_DEST (x)))
3090 {
3091 /* See if this is setting the replacement register for an
3092 elimination.
3093
3094 If DEST is the hard frame pointer, we do nothing because we
3095 assume that all assignments to the frame pointer are for
3096 non-local gotos and are being done at a time when they are valid
3097 and do not disturb anything else. Some machines want to
3098 eliminate a fake argument pointer (or even a fake frame pointer)
3099 with either the real frame or the stack pointer. Assignments to
3100 the hard frame pointer must not prevent this elimination. */
3101
3102 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3103 ep++)
3104 if (ep->to_rtx == SET_DEST (x)
3105 && SET_DEST (x) != hard_frame_pointer_rtx)
3106 {
3107 /* If it is being incremented, adjust the offset. Otherwise,
3108 this elimination can't be done. */
3109 rtx src = SET_SRC (x);
3110
3111 if (GET_CODE (src) == PLUS
3112 && XEXP (src, 0) == SET_DEST (x)
3113 && CONST_INT_P (XEXP (src, 1)))
3114 ep->offset -= INTVAL (XEXP (src, 1));
3115 else
3116 ep->can_eliminate = 0;
3117 }
3118 }
3119
3120 elimination_effects (SET_DEST (x), VOIDmode);
3121 elimination_effects (SET_SRC (x), VOIDmode);
3122 return;
3123
3124 case MEM:
3125 /* Our only special processing is to pass the mode of the MEM to our
3126 recursive call. */
3127 elimination_effects (XEXP (x, 0), GET_MODE (x));
3128 return;
3129
3130 default:
3131 break;
3132 }
3133
3134 fmt = GET_RTX_FORMAT (code);
3135 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3136 {
3137 if (*fmt == 'e')
3138 elimination_effects (XEXP (x, i), mem_mode);
3139 else if (*fmt == 'E')
3140 for (j = 0; j < XVECLEN (x, i); j++)
3141 elimination_effects (XVECEXP (x, i, j), mem_mode);
3142 }
3143 }
3144
3145 /* Descend through rtx X and verify that no references to eliminable registers
3146 remain. If any do remain, mark the involved register as not
3147 eliminable. */
3148
3149 static void
3150 check_eliminable_occurrences (rtx x)
3151 {
3152 const char *fmt;
3153 int i;
3154 enum rtx_code code;
3155
3156 if (x == 0)
3157 return;
3158
3159 code = GET_CODE (x);
3160
3161 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3162 {
3163 struct elim_table *ep;
3164
3165 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3166 if (ep->from_rtx == x)
3167 ep->can_eliminate = 0;
3168 return;
3169 }
3170
3171 fmt = GET_RTX_FORMAT (code);
3172 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3173 {
3174 if (*fmt == 'e')
3175 check_eliminable_occurrences (XEXP (x, i));
3176 else if (*fmt == 'E')
3177 {
3178 int j;
3179 for (j = 0; j < XVECLEN (x, i); j++)
3180 check_eliminable_occurrences (XVECEXP (x, i, j));
3181 }
3182 }
3183 }
3184 \f
3185 /* Scan INSN and eliminate all eliminable registers in it.
3186
3187 If REPLACE is nonzero, do the replacement destructively. Also
3188 delete the insn as dead it if it is setting an eliminable register.
3189
3190 If REPLACE is zero, do all our allocations in reload_obstack.
3191
3192 If no eliminations were done and this insn doesn't require any elimination
3193 processing (these are not identical conditions: it might be updating sp,
3194 but not referencing fp; this needs to be seen during reload_as_needed so
3195 that the offset between fp and sp can be taken into consideration), zero
3196 is returned. Otherwise, 1 is returned. */
3197
3198 static int
3199 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3200 {
3201 int icode = recog_memoized (insn);
3202 rtx old_body = PATTERN (insn);
3203 int insn_is_asm = asm_noperands (old_body) >= 0;
3204 rtx old_set = single_set (insn);
3205 rtx new_body;
3206 int val = 0;
3207 int i;
3208 rtx substed_operand[MAX_RECOG_OPERANDS];
3209 rtx orig_operand[MAX_RECOG_OPERANDS];
3210 struct elim_table *ep;
3211 rtx plus_src, plus_cst_src;
3212
3213 if (! insn_is_asm && icode < 0)
3214 {
3215 gcc_assert (DEBUG_INSN_P (insn)
3216 || GET_CODE (PATTERN (insn)) == USE
3217 || GET_CODE (PATTERN (insn)) == CLOBBER
3218 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3219 if (DEBUG_BIND_INSN_P (insn))
3220 INSN_VAR_LOCATION_LOC (insn)
3221 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3222 return 0;
3223 }
3224
3225 if (old_set != 0 && REG_P (SET_DEST (old_set))
3226 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3227 {
3228 /* Check for setting an eliminable register. */
3229 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3230 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3231 {
3232 /* If this is setting the frame pointer register to the
3233 hardware frame pointer register and this is an elimination
3234 that will be done (tested above), this insn is really
3235 adjusting the frame pointer downward to compensate for
3236 the adjustment done before a nonlocal goto. */
3237 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3238 && ep->from == FRAME_POINTER_REGNUM
3239 && ep->to == HARD_FRAME_POINTER_REGNUM)
3240 {
3241 rtx base = SET_SRC (old_set);
3242 rtx_insn *base_insn = insn;
3243 HOST_WIDE_INT offset = 0;
3244
3245 while (base != ep->to_rtx)
3246 {
3247 rtx_insn *prev_insn;
3248 rtx prev_set;
3249
3250 if (GET_CODE (base) == PLUS
3251 && CONST_INT_P (XEXP (base, 1)))
3252 {
3253 offset += INTVAL (XEXP (base, 1));
3254 base = XEXP (base, 0);
3255 }
3256 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3257 && (prev_set = single_set (prev_insn)) != 0
3258 && rtx_equal_p (SET_DEST (prev_set), base))
3259 {
3260 base = SET_SRC (prev_set);
3261 base_insn = prev_insn;
3262 }
3263 else
3264 break;
3265 }
3266
3267 if (base == ep->to_rtx)
3268 {
3269 rtx src = plus_constant (Pmode, ep->to_rtx,
3270 offset - ep->offset);
3271
3272 new_body = old_body;
3273 if (! replace)
3274 {
3275 new_body = copy_insn (old_body);
3276 if (REG_NOTES (insn))
3277 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3278 }
3279 PATTERN (insn) = new_body;
3280 old_set = single_set (insn);
3281
3282 /* First see if this insn remains valid when we
3283 make the change. If not, keep the INSN_CODE
3284 the same and let reload fit it up. */
3285 validate_change (insn, &SET_SRC (old_set), src, 1);
3286 validate_change (insn, &SET_DEST (old_set),
3287 ep->to_rtx, 1);
3288 if (! apply_change_group ())
3289 {
3290 SET_SRC (old_set) = src;
3291 SET_DEST (old_set) = ep->to_rtx;
3292 }
3293
3294 val = 1;
3295 goto done;
3296 }
3297 }
3298
3299 /* In this case this insn isn't serving a useful purpose. We
3300 will delete it in reload_as_needed once we know that this
3301 elimination is, in fact, being done.
3302
3303 If REPLACE isn't set, we can't delete this insn, but needn't
3304 process it since it won't be used unless something changes. */
3305 if (replace)
3306 {
3307 delete_dead_insn (insn);
3308 return 1;
3309 }
3310 val = 1;
3311 goto done;
3312 }
3313 }
3314
3315 /* We allow one special case which happens to work on all machines we
3316 currently support: a single set with the source or a REG_EQUAL
3317 note being a PLUS of an eliminable register and a constant. */
3318 plus_src = plus_cst_src = 0;
3319 if (old_set && REG_P (SET_DEST (old_set)))
3320 {
3321 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3322 plus_src = SET_SRC (old_set);
3323 /* First see if the source is of the form (plus (...) CST). */
3324 if (plus_src
3325 && CONST_INT_P (XEXP (plus_src, 1)))
3326 plus_cst_src = plus_src;
3327 else if (REG_P (SET_SRC (old_set))
3328 || plus_src)
3329 {
3330 /* Otherwise, see if we have a REG_EQUAL note of the form
3331 (plus (...) CST). */
3332 rtx links;
3333 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3334 {
3335 if ((REG_NOTE_KIND (links) == REG_EQUAL
3336 || REG_NOTE_KIND (links) == REG_EQUIV)
3337 && GET_CODE (XEXP (links, 0)) == PLUS
3338 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3339 {
3340 plus_cst_src = XEXP (links, 0);
3341 break;
3342 }
3343 }
3344 }
3345
3346 /* Check that the first operand of the PLUS is a hard reg or
3347 the lowpart subreg of one. */
3348 if (plus_cst_src)
3349 {
3350 rtx reg = XEXP (plus_cst_src, 0);
3351 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3352 reg = SUBREG_REG (reg);
3353
3354 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3355 plus_cst_src = 0;
3356 }
3357 }
3358 if (plus_cst_src)
3359 {
3360 rtx reg = XEXP (plus_cst_src, 0);
3361 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3362
3363 if (GET_CODE (reg) == SUBREG)
3364 reg = SUBREG_REG (reg);
3365
3366 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3367 if (ep->from_rtx == reg && ep->can_eliminate)
3368 {
3369 rtx to_rtx = ep->to_rtx;
3370 offset += ep->offset;
3371 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3372
3373 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3374 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3375 to_rtx);
3376 /* If we have a nonzero offset, and the source is already
3377 a simple REG, the following transformation would
3378 increase the cost of the insn by replacing a simple REG
3379 with (plus (reg sp) CST). So try only when we already
3380 had a PLUS before. */
3381 if (known_eq (offset, 0) || plus_src)
3382 {
3383 rtx new_src = plus_constant (GET_MODE (to_rtx),
3384 to_rtx, offset);
3385
3386 new_body = old_body;
3387 if (! replace)
3388 {
3389 new_body = copy_insn (old_body);
3390 if (REG_NOTES (insn))
3391 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3392 }
3393 PATTERN (insn) = new_body;
3394 old_set = single_set (insn);
3395
3396 /* First see if this insn remains valid when we make the
3397 change. If not, try to replace the whole pattern with
3398 a simple set (this may help if the original insn was a
3399 PARALLEL that was only recognized as single_set due to
3400 REG_UNUSED notes). If this isn't valid either, keep
3401 the INSN_CODE the same and let reload fix it up. */
3402 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3403 {
3404 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3405
3406 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3407 SET_SRC (old_set) = new_src;
3408 }
3409 }
3410 else
3411 break;
3412
3413 val = 1;
3414 /* This can't have an effect on elimination offsets, so skip right
3415 to the end. */
3416 goto done;
3417 }
3418 }
3419
3420 /* Determine the effects of this insn on elimination offsets. */
3421 elimination_effects (old_body, VOIDmode);
3422
3423 /* Eliminate all eliminable registers occurring in operands that
3424 can be handled by reload. */
3425 extract_insn (insn);
3426 for (i = 0; i < recog_data.n_operands; i++)
3427 {
3428 orig_operand[i] = recog_data.operand[i];
3429 substed_operand[i] = recog_data.operand[i];
3430
3431 /* For an asm statement, every operand is eliminable. */
3432 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3433 {
3434 bool is_set_src, in_plus;
3435
3436 /* Check for setting a register that we know about. */
3437 if (recog_data.operand_type[i] != OP_IN
3438 && REG_P (orig_operand[i]))
3439 {
3440 /* If we are assigning to a register that can be eliminated, it
3441 must be as part of a PARALLEL, since the code above handles
3442 single SETs. We must indicate that we can no longer
3443 eliminate this reg. */
3444 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3445 ep++)
3446 if (ep->from_rtx == orig_operand[i])
3447 ep->can_eliminate = 0;
3448 }
3449
3450 /* Companion to the above plus substitution, we can allow
3451 invariants as the source of a plain move. */
3452 is_set_src = false;
3453 if (old_set
3454 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3455 is_set_src = true;
3456 in_plus = false;
3457 if (plus_src
3458 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3459 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3460 in_plus = true;
3461
3462 substed_operand[i]
3463 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3464 replace ? insn : NULL_RTX,
3465 is_set_src || in_plus, false);
3466 if (substed_operand[i] != orig_operand[i])
3467 val = 1;
3468 /* Terminate the search in check_eliminable_occurrences at
3469 this point. */
3470 *recog_data.operand_loc[i] = 0;
3471
3472 /* If an output operand changed from a REG to a MEM and INSN is an
3473 insn, write a CLOBBER insn. */
3474 if (recog_data.operand_type[i] != OP_IN
3475 && REG_P (orig_operand[i])
3476 && MEM_P (substed_operand[i])
3477 && replace)
3478 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3479 }
3480 }
3481
3482 for (i = 0; i < recog_data.n_dups; i++)
3483 *recog_data.dup_loc[i]
3484 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3485
3486 /* If any eliminable remain, they aren't eliminable anymore. */
3487 check_eliminable_occurrences (old_body);
3488
3489 /* Substitute the operands; the new values are in the substed_operand
3490 array. */
3491 for (i = 0; i < recog_data.n_operands; i++)
3492 *recog_data.operand_loc[i] = substed_operand[i];
3493 for (i = 0; i < recog_data.n_dups; i++)
3494 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3495
3496 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3497 re-recognize the insn. We do this in case we had a simple addition
3498 but now can do this as a load-address. This saves an insn in this
3499 common case.
3500 If re-recognition fails, the old insn code number will still be used,
3501 and some register operands may have changed into PLUS expressions.
3502 These will be handled by find_reloads by loading them into a register
3503 again. */
3504
3505 if (val)
3506 {
3507 /* If we aren't replacing things permanently and we changed something,
3508 make another copy to ensure that all the RTL is new. Otherwise
3509 things can go wrong if find_reload swaps commutative operands
3510 and one is inside RTL that has been copied while the other is not. */
3511 new_body = old_body;
3512 if (! replace)
3513 {
3514 new_body = copy_insn (old_body);
3515 if (REG_NOTES (insn))
3516 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3517 }
3518 PATTERN (insn) = new_body;
3519
3520 /* If we had a move insn but now we don't, rerecognize it. This will
3521 cause spurious re-recognition if the old move had a PARALLEL since
3522 the new one still will, but we can't call single_set without
3523 having put NEW_BODY into the insn and the re-recognition won't
3524 hurt in this rare case. */
3525 /* ??? Why this huge if statement - why don't we just rerecognize the
3526 thing always? */
3527 if (! insn_is_asm
3528 && old_set != 0
3529 && ((REG_P (SET_SRC (old_set))
3530 && (GET_CODE (new_body) != SET
3531 || !REG_P (SET_SRC (new_body))))
3532 /* If this was a load from or store to memory, compare
3533 the MEM in recog_data.operand to the one in the insn.
3534 If they are not equal, then rerecognize the insn. */
3535 || (old_set != 0
3536 && ((MEM_P (SET_SRC (old_set))
3537 && SET_SRC (old_set) != recog_data.operand[1])
3538 || (MEM_P (SET_DEST (old_set))
3539 && SET_DEST (old_set) != recog_data.operand[0])))
3540 /* If this was an add insn before, rerecognize. */
3541 || GET_CODE (SET_SRC (old_set)) == PLUS))
3542 {
3543 int new_icode = recog (PATTERN (insn), insn, 0);
3544 if (new_icode >= 0)
3545 INSN_CODE (insn) = new_icode;
3546 }
3547 }
3548
3549 /* Restore the old body. If there were any changes to it, we made a copy
3550 of it while the changes were still in place, so we'll correctly return
3551 a modified insn below. */
3552 if (! replace)
3553 {
3554 /* Restore the old body. */
3555 for (i = 0; i < recog_data.n_operands; i++)
3556 /* Restoring a top-level match_parallel would clobber the new_body
3557 we installed in the insn. */
3558 if (recog_data.operand_loc[i] != &PATTERN (insn))
3559 *recog_data.operand_loc[i] = orig_operand[i];
3560 for (i = 0; i < recog_data.n_dups; i++)
3561 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3562 }
3563
3564 /* Update all elimination pairs to reflect the status after the current
3565 insn. The changes we make were determined by the earlier call to
3566 elimination_effects.
3567
3568 We also detect cases where register elimination cannot be done,
3569 namely, if a register would be both changed and referenced outside a MEM
3570 in the resulting insn since such an insn is often undefined and, even if
3571 not, we cannot know what meaning will be given to it. Note that it is
3572 valid to have a register used in an address in an insn that changes it
3573 (presumably with a pre- or post-increment or decrement).
3574
3575 If anything changes, return nonzero. */
3576
3577 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3578 {
3579 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3580 ep->can_eliminate = 0;
3581
3582 ep->ref_outside_mem = 0;
3583
3584 if (maybe_ne (ep->previous_offset, ep->offset))
3585 val = 1;
3586 }
3587
3588 done:
3589 /* If we changed something, perform elimination in REG_NOTES. This is
3590 needed even when REPLACE is zero because a REG_DEAD note might refer
3591 to a register that we eliminate and could cause a different number
3592 of spill registers to be needed in the final reload pass than in
3593 the pre-passes. */
3594 if (val && REG_NOTES (insn) != 0)
3595 REG_NOTES (insn)
3596 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3597 false);
3598
3599 return val;
3600 }
3601
3602 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3603 register allocator. INSN is the instruction we need to examine, we perform
3604 eliminations in its operands and record cases where eliminating a reg with
3605 an invariant equivalence would add extra cost. */
3606
3607 #pragma GCC diagnostic push
3608 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3609 static void
3610 elimination_costs_in_insn (rtx_insn *insn)
3611 {
3612 int icode = recog_memoized (insn);
3613 rtx old_body = PATTERN (insn);
3614 int insn_is_asm = asm_noperands (old_body) >= 0;
3615 rtx old_set = single_set (insn);
3616 int i;
3617 rtx orig_operand[MAX_RECOG_OPERANDS];
3618 rtx orig_dup[MAX_RECOG_OPERANDS];
3619 struct elim_table *ep;
3620 rtx plus_src, plus_cst_src;
3621 bool sets_reg_p;
3622
3623 if (! insn_is_asm && icode < 0)
3624 {
3625 gcc_assert (DEBUG_INSN_P (insn)
3626 || GET_CODE (PATTERN (insn)) == USE
3627 || GET_CODE (PATTERN (insn)) == CLOBBER
3628 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3629 return;
3630 }
3631
3632 if (old_set != 0 && REG_P (SET_DEST (old_set))
3633 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3634 {
3635 /* Check for setting an eliminable register. */
3636 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3637 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3638 return;
3639 }
3640
3641 /* We allow one special case which happens to work on all machines we
3642 currently support: a single set with the source or a REG_EQUAL
3643 note being a PLUS of an eliminable register and a constant. */
3644 plus_src = plus_cst_src = 0;
3645 sets_reg_p = false;
3646 if (old_set && REG_P (SET_DEST (old_set)))
3647 {
3648 sets_reg_p = true;
3649 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3650 plus_src = SET_SRC (old_set);
3651 /* First see if the source is of the form (plus (...) CST). */
3652 if (plus_src
3653 && CONST_INT_P (XEXP (plus_src, 1)))
3654 plus_cst_src = plus_src;
3655 else if (REG_P (SET_SRC (old_set))
3656 || plus_src)
3657 {
3658 /* Otherwise, see if we have a REG_EQUAL note of the form
3659 (plus (...) CST). */
3660 rtx links;
3661 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3662 {
3663 if ((REG_NOTE_KIND (links) == REG_EQUAL
3664 || REG_NOTE_KIND (links) == REG_EQUIV)
3665 && GET_CODE (XEXP (links, 0)) == PLUS
3666 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3667 {
3668 plus_cst_src = XEXP (links, 0);
3669 break;
3670 }
3671 }
3672 }
3673 }
3674
3675 /* Determine the effects of this insn on elimination offsets. */
3676 elimination_effects (old_body, VOIDmode);
3677
3678 /* Eliminate all eliminable registers occurring in operands that
3679 can be handled by reload. */
3680 extract_insn (insn);
3681 int n_dups = recog_data.n_dups;
3682 for (i = 0; i < n_dups; i++)
3683 orig_dup[i] = *recog_data.dup_loc[i];
3684
3685 int n_operands = recog_data.n_operands;
3686 for (i = 0; i < n_operands; i++)
3687 {
3688 orig_operand[i] = recog_data.operand[i];
3689
3690 /* For an asm statement, every operand is eliminable. */
3691 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3692 {
3693 bool is_set_src, in_plus;
3694
3695 /* Check for setting a register that we know about. */
3696 if (recog_data.operand_type[i] != OP_IN
3697 && REG_P (orig_operand[i]))
3698 {
3699 /* If we are assigning to a register that can be eliminated, it
3700 must be as part of a PARALLEL, since the code above handles
3701 single SETs. We must indicate that we can no longer
3702 eliminate this reg. */
3703 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3704 ep++)
3705 if (ep->from_rtx == orig_operand[i])
3706 ep->can_eliminate = 0;
3707 }
3708
3709 /* Companion to the above plus substitution, we can allow
3710 invariants as the source of a plain move. */
3711 is_set_src = false;
3712 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3713 is_set_src = true;
3714 if (is_set_src && !sets_reg_p)
3715 note_reg_elim_costly (SET_SRC (old_set), insn);
3716 in_plus = false;
3717 if (plus_src && sets_reg_p
3718 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3719 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3720 in_plus = true;
3721
3722 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3723 NULL_RTX,
3724 is_set_src || in_plus, true);
3725 /* Terminate the search in check_eliminable_occurrences at
3726 this point. */
3727 *recog_data.operand_loc[i] = 0;
3728 }
3729 }
3730
3731 for (i = 0; i < n_dups; i++)
3732 *recog_data.dup_loc[i]
3733 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3734
3735 /* If any eliminable remain, they aren't eliminable anymore. */
3736 check_eliminable_occurrences (old_body);
3737
3738 /* Restore the old body. */
3739 for (i = 0; i < n_operands; i++)
3740 *recog_data.operand_loc[i] = orig_operand[i];
3741 for (i = 0; i < n_dups; i++)
3742 *recog_data.dup_loc[i] = orig_dup[i];
3743
3744 /* Update all elimination pairs to reflect the status after the current
3745 insn. The changes we make were determined by the earlier call to
3746 elimination_effects. */
3747
3748 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3749 {
3750 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3751 ep->can_eliminate = 0;
3752
3753 ep->ref_outside_mem = 0;
3754 }
3755
3756 return;
3757 }
3758 #pragma GCC diagnostic pop
3759
3760 /* Loop through all elimination pairs.
3761 Recalculate the number not at initial offset.
3762
3763 Compute the maximum offset (minimum offset if the stack does not
3764 grow downward) for each elimination pair. */
3765
3766 static void
3767 update_eliminable_offsets (void)
3768 {
3769 struct elim_table *ep;
3770
3771 num_not_at_initial_offset = 0;
3772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3773 {
3774 ep->previous_offset = ep->offset;
3775 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3776 num_not_at_initial_offset++;
3777 }
3778 }
3779
3780 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3781 replacement we currently believe is valid, mark it as not eliminable if X
3782 modifies DEST in any way other than by adding a constant integer to it.
3783
3784 If DEST is the frame pointer, we do nothing because we assume that
3785 all assignments to the hard frame pointer are nonlocal gotos and are being
3786 done at a time when they are valid and do not disturb anything else.
3787 Some machines want to eliminate a fake argument pointer with either the
3788 frame or stack pointer. Assignments to the hard frame pointer must not
3789 prevent this elimination.
3790
3791 Called via note_stores from reload before starting its passes to scan
3792 the insns of the function. */
3793
3794 static void
3795 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3796 {
3797 unsigned int i;
3798
3799 /* A SUBREG of a hard register here is just changing its mode. We should
3800 not see a SUBREG of an eliminable hard register, but check just in
3801 case. */
3802 if (GET_CODE (dest) == SUBREG)
3803 dest = SUBREG_REG (dest);
3804
3805 if (dest == hard_frame_pointer_rtx)
3806 return;
3807
3808 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3809 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3810 && (GET_CODE (x) != SET
3811 || GET_CODE (SET_SRC (x)) != PLUS
3812 || XEXP (SET_SRC (x), 0) != dest
3813 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3814 {
3815 reg_eliminate[i].can_eliminate_previous
3816 = reg_eliminate[i].can_eliminate = 0;
3817 num_eliminable--;
3818 }
3819 }
3820
3821 /* Verify that the initial elimination offsets did not change since the
3822 last call to set_initial_elim_offsets. This is used to catch cases
3823 where something illegal happened during reload_as_needed that could
3824 cause incorrect code to be generated if we did not check for it. */
3825
3826 static bool
3827 verify_initial_elim_offsets (void)
3828 {
3829 poly_int64 t;
3830 struct elim_table *ep;
3831
3832 if (!num_eliminable)
3833 return true;
3834
3835 targetm.compute_frame_layout ();
3836 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3837 {
3838 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3839 if (maybe_ne (t, ep->initial_offset))
3840 return false;
3841 }
3842
3843 return true;
3844 }
3845
3846 /* Reset all offsets on eliminable registers to their initial values. */
3847
3848 static void
3849 set_initial_elim_offsets (void)
3850 {
3851 struct elim_table *ep = reg_eliminate;
3852
3853 targetm.compute_frame_layout ();
3854 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3855 {
3856 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3857 ep->previous_offset = ep->offset = ep->initial_offset;
3858 }
3859
3860 num_not_at_initial_offset = 0;
3861 }
3862
3863 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3864
3865 static void
3866 set_initial_eh_label_offset (rtx label)
3867 {
3868 set_label_offsets (label, NULL, 1);
3869 }
3870
3871 /* Initialize the known label offsets.
3872 Set a known offset for each forced label to be at the initial offset
3873 of each elimination. We do this because we assume that all
3874 computed jumps occur from a location where each elimination is
3875 at its initial offset.
3876 For all other labels, show that we don't know the offsets. */
3877
3878 static void
3879 set_initial_label_offsets (void)
3880 {
3881 memset (offsets_known_at, 0, num_labels);
3882
3883 unsigned int i;
3884 rtx_insn *insn;
3885 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3886 set_label_offsets (insn, NULL, 1);
3887
3888 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3889 if (x->insn ())
3890 set_label_offsets (x->insn (), NULL, 1);
3891
3892 for_each_eh_label (set_initial_eh_label_offset);
3893 }
3894
3895 /* Set all elimination offsets to the known values for the code label given
3896 by INSN. */
3897
3898 static void
3899 set_offsets_for_label (rtx_insn *insn)
3900 {
3901 unsigned int i;
3902 int label_nr = CODE_LABEL_NUMBER (insn);
3903 struct elim_table *ep;
3904
3905 num_not_at_initial_offset = 0;
3906 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3907 {
3908 ep->offset = ep->previous_offset
3909 = offsets_at[label_nr - first_label_num][i];
3910 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3911 num_not_at_initial_offset++;
3912 }
3913 }
3914
3915 /* See if anything that happened changes which eliminations are valid.
3916 For example, on the SPARC, whether or not the frame pointer can
3917 be eliminated can depend on what registers have been used. We need
3918 not check some conditions again (such as flag_omit_frame_pointer)
3919 since they can't have changed. */
3920
3921 static void
3922 update_eliminables (HARD_REG_SET *pset)
3923 {
3924 int previous_frame_pointer_needed = frame_pointer_needed;
3925 struct elim_table *ep;
3926
3927 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3928 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3929 && targetm.frame_pointer_required ())
3930 || ! targetm.can_eliminate (ep->from, ep->to)
3931 )
3932 ep->can_eliminate = 0;
3933
3934 /* Look for the case where we have discovered that we can't replace
3935 register A with register B and that means that we will now be
3936 trying to replace register A with register C. This means we can
3937 no longer replace register C with register B and we need to disable
3938 such an elimination, if it exists. This occurs often with A == ap,
3939 B == sp, and C == fp. */
3940
3941 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3942 {
3943 struct elim_table *op;
3944 int new_to = -1;
3945
3946 if (! ep->can_eliminate && ep->can_eliminate_previous)
3947 {
3948 /* Find the current elimination for ep->from, if there is a
3949 new one. */
3950 for (op = reg_eliminate;
3951 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3952 if (op->from == ep->from && op->can_eliminate)
3953 {
3954 new_to = op->to;
3955 break;
3956 }
3957
3958 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3959 disable it. */
3960 for (op = reg_eliminate;
3961 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3962 if (op->from == new_to && op->to == ep->to)
3963 op->can_eliminate = 0;
3964 }
3965 }
3966
3967 /* See if any registers that we thought we could eliminate the previous
3968 time are no longer eliminable. If so, something has changed and we
3969 must spill the register. Also, recompute the number of eliminable
3970 registers and see if the frame pointer is needed; it is if there is
3971 no elimination of the frame pointer that we can perform. */
3972
3973 frame_pointer_needed = 1;
3974 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3975 {
3976 if (ep->can_eliminate
3977 && ep->from == FRAME_POINTER_REGNUM
3978 && ep->to != HARD_FRAME_POINTER_REGNUM
3979 && (! SUPPORTS_STACK_ALIGNMENT
3980 || ! crtl->stack_realign_needed))
3981 frame_pointer_needed = 0;
3982
3983 if (! ep->can_eliminate && ep->can_eliminate_previous)
3984 {
3985 ep->can_eliminate_previous = 0;
3986 SET_HARD_REG_BIT (*pset, ep->from);
3987 num_eliminable--;
3988 }
3989 }
3990
3991 /* If we didn't need a frame pointer last time, but we do now, spill
3992 the hard frame pointer. */
3993 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3994 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3995 }
3996
3997 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3998 Return true iff a register was spilled. */
3999
4000 static bool
4001 update_eliminables_and_spill (void)
4002 {
4003 int i;
4004 bool did_spill = false;
4005 HARD_REG_SET to_spill;
4006 CLEAR_HARD_REG_SET (to_spill);
4007 update_eliminables (&to_spill);
4008 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4009
4010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4011 if (TEST_HARD_REG_BIT (to_spill, i))
4012 {
4013 spill_hard_reg (i, 1);
4014 did_spill = true;
4015
4016 /* Regardless of the state of spills, if we previously had
4017 a register that we thought we could eliminate, but now can
4018 not eliminate, we must run another pass.
4019
4020 Consider pseudos which have an entry in reg_equiv_* which
4021 reference an eliminable register. We must make another pass
4022 to update reg_equiv_* so that we do not substitute in the
4023 old value from when we thought the elimination could be
4024 performed. */
4025 }
4026 return did_spill;
4027 }
4028
4029 /* Return true if X is used as the target register of an elimination. */
4030
4031 bool
4032 elimination_target_reg_p (rtx x)
4033 {
4034 struct elim_table *ep;
4035
4036 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4037 if (ep->to_rtx == x && ep->can_eliminate)
4038 return true;
4039
4040 return false;
4041 }
4042
4043 /* Initialize the table of registers to eliminate.
4044 Pre-condition: global flag frame_pointer_needed has been set before
4045 calling this function. */
4046
4047 static void
4048 init_elim_table (void)
4049 {
4050 struct elim_table *ep;
4051 const struct elim_table_1 *ep1;
4052
4053 if (!reg_eliminate)
4054 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4055
4056 num_eliminable = 0;
4057
4058 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4059 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4060 {
4061 ep->from = ep1->from;
4062 ep->to = ep1->to;
4063 ep->can_eliminate = ep->can_eliminate_previous
4064 = (targetm.can_eliminate (ep->from, ep->to)
4065 && ! (ep->to == STACK_POINTER_REGNUM
4066 && frame_pointer_needed
4067 && (! SUPPORTS_STACK_ALIGNMENT
4068 || ! stack_realign_fp)));
4069 }
4070
4071 /* Count the number of eliminable registers and build the FROM and TO
4072 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4073 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4074 We depend on this. */
4075 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4076 {
4077 num_eliminable += ep->can_eliminate;
4078 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4079 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4080 }
4081 }
4082
4083 /* Find all the pseudo registers that didn't get hard regs
4084 but do have known equivalent constants or memory slots.
4085 These include parameters (known equivalent to parameter slots)
4086 and cse'd or loop-moved constant memory addresses.
4087
4088 Record constant equivalents in reg_equiv_constant
4089 so they will be substituted by find_reloads.
4090 Record memory equivalents in reg_mem_equiv so they can
4091 be substituted eventually by altering the REG-rtx's. */
4092
4093 static void
4094 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4095 {
4096 int i;
4097 rtx_insn *insn;
4098
4099 grow_reg_equivs ();
4100 if (do_subregs)
4101 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4102 else
4103 reg_max_ref_mode = NULL;
4104
4105 num_eliminable_invariants = 0;
4106
4107 first_label_num = get_first_label_num ();
4108 num_labels = max_label_num () - first_label_num;
4109
4110 /* Allocate the tables used to store offset information at labels. */
4111 offsets_known_at = XNEWVEC (char, num_labels);
4112 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4113 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4114
4115 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4116 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4117 find largest such for each pseudo. FIRST is the head of the insn
4118 list. */
4119
4120 for (insn = first; insn; insn = NEXT_INSN (insn))
4121 {
4122 rtx set = single_set (insn);
4123
4124 /* We may introduce USEs that we want to remove at the end, so
4125 we'll mark them with QImode. Make sure there are no
4126 previously-marked insns left by say regmove. */
4127 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4128 && GET_MODE (insn) != VOIDmode)
4129 PUT_MODE (insn, VOIDmode);
4130
4131 if (do_subregs && NONDEBUG_INSN_P (insn))
4132 scan_paradoxical_subregs (PATTERN (insn));
4133
4134 if (set != 0 && REG_P (SET_DEST (set)))
4135 {
4136 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4137 rtx x;
4138
4139 if (! note)
4140 continue;
4141
4142 i = REGNO (SET_DEST (set));
4143 x = XEXP (note, 0);
4144
4145 if (i <= LAST_VIRTUAL_REGISTER)
4146 continue;
4147
4148 /* If flag_pic and we have constant, verify it's legitimate. */
4149 if (!CONSTANT_P (x)
4150 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4151 {
4152 /* It can happen that a REG_EQUIV note contains a MEM
4153 that is not a legitimate memory operand. As later
4154 stages of reload assume that all addresses found
4155 in the reg_equiv_* arrays were originally legitimate,
4156 we ignore such REG_EQUIV notes. */
4157 if (memory_operand (x, VOIDmode))
4158 {
4159 /* Always unshare the equivalence, so we can
4160 substitute into this insn without touching the
4161 equivalence. */
4162 reg_equiv_memory_loc (i) = copy_rtx (x);
4163 }
4164 else if (function_invariant_p (x))
4165 {
4166 machine_mode mode;
4167
4168 mode = GET_MODE (SET_DEST (set));
4169 if (GET_CODE (x) == PLUS)
4170 {
4171 /* This is PLUS of frame pointer and a constant,
4172 and might be shared. Unshare it. */
4173 reg_equiv_invariant (i) = copy_rtx (x);
4174 num_eliminable_invariants++;
4175 }
4176 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4177 {
4178 reg_equiv_invariant (i) = x;
4179 num_eliminable_invariants++;
4180 }
4181 else if (targetm.legitimate_constant_p (mode, x))
4182 reg_equiv_constant (i) = x;
4183 else
4184 {
4185 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4186 if (! reg_equiv_memory_loc (i))
4187 reg_equiv_init (i) = NULL;
4188 }
4189 }
4190 else
4191 {
4192 reg_equiv_init (i) = NULL;
4193 continue;
4194 }
4195 }
4196 else
4197 reg_equiv_init (i) = NULL;
4198 }
4199 }
4200
4201 if (dump_file)
4202 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4203 if (reg_equiv_init (i))
4204 {
4205 fprintf (dump_file, "init_insns for %u: ", i);
4206 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4207 fprintf (dump_file, "\n");
4208 }
4209 }
4210
4211 /* Indicate that we no longer have known memory locations or constants.
4212 Free all data involved in tracking these. */
4213
4214 static void
4215 free_reg_equiv (void)
4216 {
4217 int i;
4218
4219 free (offsets_known_at);
4220 free (offsets_at);
4221 offsets_at = 0;
4222 offsets_known_at = 0;
4223
4224 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4225 if (reg_equiv_alt_mem_list (i))
4226 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4227 vec_free (reg_equivs);
4228 }
4229 \f
4230 /* Kick all pseudos out of hard register REGNO.
4231
4232 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4233 because we found we can't eliminate some register. In the case, no pseudos
4234 are allowed to be in the register, even if they are only in a block that
4235 doesn't require spill registers, unlike the case when we are spilling this
4236 hard reg to produce another spill register.
4237
4238 Return nonzero if any pseudos needed to be kicked out. */
4239
4240 static void
4241 spill_hard_reg (unsigned int regno, int cant_eliminate)
4242 {
4243 int i;
4244
4245 if (cant_eliminate)
4246 {
4247 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4248 df_set_regs_ever_live (regno, true);
4249 }
4250
4251 /* Spill every pseudo reg that was allocated to this reg
4252 or to something that overlaps this reg. */
4253
4254 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4255 if (reg_renumber[i] >= 0
4256 && (unsigned int) reg_renumber[i] <= regno
4257 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4258 SET_REGNO_REG_SET (&spilled_pseudos, i);
4259 }
4260
4261 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4262 insns that need reloads, this function is used to actually spill pseudo
4263 registers and try to reallocate them. It also sets up the spill_regs
4264 array for use by choose_reload_regs.
4265
4266 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4267 that we displace from hard registers. */
4268
4269 static int
4270 finish_spills (int global)
4271 {
4272 struct insn_chain *chain;
4273 int something_changed = 0;
4274 unsigned i;
4275 reg_set_iterator rsi;
4276
4277 /* Build the spill_regs array for the function. */
4278 /* If there are some registers still to eliminate and one of the spill regs
4279 wasn't ever used before, additional stack space may have to be
4280 allocated to store this register. Thus, we may have changed the offset
4281 between the stack and frame pointers, so mark that something has changed.
4282
4283 One might think that we need only set VAL to 1 if this is a call-used
4284 register. However, the set of registers that must be saved by the
4285 prologue is not identical to the call-used set. For example, the
4286 register used by the call insn for the return PC is a call-used register,
4287 but must be saved by the prologue. */
4288
4289 n_spills = 0;
4290 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4291 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4292 {
4293 spill_reg_order[i] = n_spills;
4294 spill_regs[n_spills++] = i;
4295 if (num_eliminable && ! df_regs_ever_live_p (i))
4296 something_changed = 1;
4297 df_set_regs_ever_live (i, true);
4298 }
4299 else
4300 spill_reg_order[i] = -1;
4301
4302 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4303 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4304 {
4305 /* Record the current hard register the pseudo is allocated to
4306 in pseudo_previous_regs so we avoid reallocating it to the
4307 same hard reg in a later pass. */
4308 gcc_assert (reg_renumber[i] >= 0);
4309
4310 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4311 /* Mark it as no longer having a hard register home. */
4312 reg_renumber[i] = -1;
4313 if (ira_conflicts_p)
4314 /* Inform IRA about the change. */
4315 ira_mark_allocation_change (i);
4316 /* We will need to scan everything again. */
4317 something_changed = 1;
4318 }
4319
4320 /* Retry global register allocation if possible. */
4321 if (global && ira_conflicts_p)
4322 {
4323 unsigned int n;
4324
4325 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4326 /* For every insn that needs reloads, set the registers used as spill
4327 regs in pseudo_forbidden_regs for every pseudo live across the
4328 insn. */
4329 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4330 {
4331 EXECUTE_IF_SET_IN_REG_SET
4332 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4333 {
4334 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4335 chain->used_spill_regs);
4336 }
4337 EXECUTE_IF_SET_IN_REG_SET
4338 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4339 {
4340 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4341 chain->used_spill_regs);
4342 }
4343 }
4344
4345 /* Retry allocating the pseudos spilled in IRA and the
4346 reload. For each reg, merge the various reg sets that
4347 indicate which hard regs can't be used, and call
4348 ira_reassign_pseudos. */
4349 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4350 if (reg_old_renumber[i] != reg_renumber[i])
4351 {
4352 if (reg_renumber[i] < 0)
4353 temp_pseudo_reg_arr[n++] = i;
4354 else
4355 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4356 }
4357 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4358 bad_spill_regs_global,
4359 pseudo_forbidden_regs, pseudo_previous_regs,
4360 &spilled_pseudos))
4361 something_changed = 1;
4362 }
4363 /* Fix up the register information in the insn chain.
4364 This involves deleting those of the spilled pseudos which did not get
4365 a new hard register home from the live_{before,after} sets. */
4366 for (chain = reload_insn_chain; chain; chain = chain->next)
4367 {
4368 HARD_REG_SET used_by_pseudos;
4369 HARD_REG_SET used_by_pseudos2;
4370
4371 if (! ira_conflicts_p)
4372 {
4373 /* Don't do it for IRA because IRA and the reload still can
4374 assign hard registers to the spilled pseudos on next
4375 reload iterations. */
4376 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4377 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4378 }
4379 /* Mark any unallocated hard regs as available for spills. That
4380 makes inheritance work somewhat better. */
4381 if (chain->need_reload)
4382 {
4383 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4384 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4385 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4386
4387 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4388 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4389 /* Value of chain->used_spill_regs from previous iteration
4390 may be not included in the value calculated here because
4391 of possible removing caller-saves insns (see function
4392 delete_caller_save_insns. */
4393 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4394 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4395 }
4396 }
4397
4398 CLEAR_REG_SET (&changed_allocation_pseudos);
4399 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4400 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4401 {
4402 int regno = reg_renumber[i];
4403 if (reg_old_renumber[i] == regno)
4404 continue;
4405
4406 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4407
4408 alter_reg (i, reg_old_renumber[i], false);
4409 reg_old_renumber[i] = regno;
4410 if (dump_file)
4411 {
4412 if (regno == -1)
4413 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4414 else
4415 fprintf (dump_file, " Register %d now in %d.\n\n",
4416 i, reg_renumber[i]);
4417 }
4418 }
4419
4420 return something_changed;
4421 }
4422 \f
4423 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4424
4425 static void
4426 scan_paradoxical_subregs (rtx x)
4427 {
4428 int i;
4429 const char *fmt;
4430 enum rtx_code code = GET_CODE (x);
4431
4432 switch (code)
4433 {
4434 case REG:
4435 case CONST:
4436 case SYMBOL_REF:
4437 case LABEL_REF:
4438 CASE_CONST_ANY:
4439 case CC0:
4440 case PC:
4441 case USE:
4442 case CLOBBER:
4443 return;
4444
4445 case SUBREG:
4446 if (REG_P (SUBREG_REG (x)))
4447 {
4448 unsigned int regno = REGNO (SUBREG_REG (x));
4449 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4450 {
4451 reg_max_ref_mode[regno] = GET_MODE (x);
4452 mark_home_live_1 (regno, GET_MODE (x));
4453 }
4454 }
4455 return;
4456
4457 default:
4458 break;
4459 }
4460
4461 fmt = GET_RTX_FORMAT (code);
4462 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4463 {
4464 if (fmt[i] == 'e')
4465 scan_paradoxical_subregs (XEXP (x, i));
4466 else if (fmt[i] == 'E')
4467 {
4468 int j;
4469 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4470 scan_paradoxical_subregs (XVECEXP (x, i, j));
4471 }
4472 }
4473 }
4474
4475 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4476 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4477 and apply the corresponding narrowing subreg to *OTHER_PTR.
4478 Return true if the operands were changed, false otherwise. */
4479
4480 static bool
4481 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4482 {
4483 rtx op, inner, other, tem;
4484
4485 op = *op_ptr;
4486 if (!paradoxical_subreg_p (op))
4487 return false;
4488 inner = SUBREG_REG (op);
4489
4490 other = *other_ptr;
4491 tem = gen_lowpart_common (GET_MODE (inner), other);
4492 if (!tem)
4493 return false;
4494
4495 /* If the lowpart operation turned a hard register into a subreg,
4496 rather than simplifying it to another hard register, then the
4497 mode change cannot be properly represented. For example, OTHER
4498 might be valid in its current mode, but not in the new one. */
4499 if (GET_CODE (tem) == SUBREG
4500 && REG_P (other)
4501 && HARD_REGISTER_P (other))
4502 return false;
4503
4504 *op_ptr = inner;
4505 *other_ptr = tem;
4506 return true;
4507 }
4508 \f
4509 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4510 examine all of the reload insns between PREV and NEXT exclusive, and
4511 annotate all that may trap. */
4512
4513 static void
4514 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4515 {
4516 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4517 if (note == NULL)
4518 return;
4519 if (!insn_could_throw_p (insn))
4520 remove_note (insn, note);
4521 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4522 }
4523
4524 /* Reload pseudo-registers into hard regs around each insn as needed.
4525 Additional register load insns are output before the insn that needs it
4526 and perhaps store insns after insns that modify the reloaded pseudo reg.
4527
4528 reg_last_reload_reg and reg_reloaded_contents keep track of
4529 which registers are already available in reload registers.
4530 We update these for the reloads that we perform,
4531 as the insns are scanned. */
4532
4533 static void
4534 reload_as_needed (int live_known)
4535 {
4536 struct insn_chain *chain;
4537 #if AUTO_INC_DEC
4538 int i;
4539 #endif
4540 rtx_note *marker;
4541
4542 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4543 memset (spill_reg_store, 0, sizeof spill_reg_store);
4544 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4545 INIT_REG_SET (&reg_has_output_reload);
4546 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4547 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4548
4549 set_initial_elim_offsets ();
4550
4551 /* Generate a marker insn that we will move around. */
4552 marker = emit_note (NOTE_INSN_DELETED);
4553 unlink_insn_chain (marker, marker);
4554
4555 for (chain = reload_insn_chain; chain; chain = chain->next)
4556 {
4557 rtx_insn *prev = 0;
4558 rtx_insn *insn = chain->insn;
4559 rtx_insn *old_next = NEXT_INSN (insn);
4560 #if AUTO_INC_DEC
4561 rtx_insn *old_prev = PREV_INSN (insn);
4562 #endif
4563
4564 if (will_delete_init_insn_p (insn))
4565 continue;
4566
4567 /* If we pass a label, copy the offsets from the label information
4568 into the current offsets of each elimination. */
4569 if (LABEL_P (insn))
4570 set_offsets_for_label (insn);
4571
4572 else if (INSN_P (insn))
4573 {
4574 regset_head regs_to_forget;
4575 INIT_REG_SET (&regs_to_forget);
4576 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4577
4578 /* If this is a USE and CLOBBER of a MEM, ensure that any
4579 references to eliminable registers have been removed. */
4580
4581 if ((GET_CODE (PATTERN (insn)) == USE
4582 || GET_CODE (PATTERN (insn)) == CLOBBER)
4583 && MEM_P (XEXP (PATTERN (insn), 0)))
4584 XEXP (XEXP (PATTERN (insn), 0), 0)
4585 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4586 GET_MODE (XEXP (PATTERN (insn), 0)),
4587 NULL_RTX);
4588
4589 /* If we need to do register elimination processing, do so.
4590 This might delete the insn, in which case we are done. */
4591 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4592 {
4593 eliminate_regs_in_insn (insn, 1);
4594 if (NOTE_P (insn))
4595 {
4596 update_eliminable_offsets ();
4597 CLEAR_REG_SET (&regs_to_forget);
4598 continue;
4599 }
4600 }
4601
4602 /* If need_elim is nonzero but need_reload is zero, one might think
4603 that we could simply set n_reloads to 0. However, find_reloads
4604 could have done some manipulation of the insn (such as swapping
4605 commutative operands), and these manipulations are lost during
4606 the first pass for every insn that needs register elimination.
4607 So the actions of find_reloads must be redone here. */
4608
4609 if (! chain->need_elim && ! chain->need_reload
4610 && ! chain->need_operand_change)
4611 n_reloads = 0;
4612 /* First find the pseudo regs that must be reloaded for this insn.
4613 This info is returned in the tables reload_... (see reload.h).
4614 Also modify the body of INSN by substituting RELOAD
4615 rtx's for those pseudo regs. */
4616 else
4617 {
4618 CLEAR_REG_SET (&reg_has_output_reload);
4619 CLEAR_HARD_REG_SET (reg_is_output_reload);
4620
4621 find_reloads (insn, 1, spill_indirect_levels, live_known,
4622 spill_reg_order);
4623 }
4624
4625 if (n_reloads > 0)
4626 {
4627 rtx_insn *next = NEXT_INSN (insn);
4628
4629 /* ??? PREV can get deleted by reload inheritance.
4630 Work around this by emitting a marker note. */
4631 prev = PREV_INSN (insn);
4632 reorder_insns_nobb (marker, marker, prev);
4633
4634 /* Now compute which reload regs to reload them into. Perhaps
4635 reusing reload regs from previous insns, or else output
4636 load insns to reload them. Maybe output store insns too.
4637 Record the choices of reload reg in reload_reg_rtx. */
4638 choose_reload_regs (chain);
4639
4640 /* Generate the insns to reload operands into or out of
4641 their reload regs. */
4642 emit_reload_insns (chain);
4643
4644 /* Substitute the chosen reload regs from reload_reg_rtx
4645 into the insn's body (or perhaps into the bodies of other
4646 load and store insn that we just made for reloading
4647 and that we moved the structure into). */
4648 subst_reloads (insn);
4649
4650 prev = PREV_INSN (marker);
4651 unlink_insn_chain (marker, marker);
4652
4653 /* Adjust the exception region notes for loads and stores. */
4654 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4655 fixup_eh_region_note (insn, prev, next);
4656
4657 /* Adjust the location of REG_ARGS_SIZE. */
4658 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4659 if (p)
4660 {
4661 remove_note (insn, p);
4662 fixup_args_size_notes (prev, PREV_INSN (next),
4663 get_args_size (p));
4664 }
4665
4666 /* If this was an ASM, make sure that all the reload insns
4667 we have generated are valid. If not, give an error
4668 and delete them. */
4669 if (asm_noperands (PATTERN (insn)) >= 0)
4670 for (rtx_insn *p = NEXT_INSN (prev);
4671 p != next;
4672 p = NEXT_INSN (p))
4673 if (p != insn && INSN_P (p)
4674 && GET_CODE (PATTERN (p)) != USE
4675 && (recog_memoized (p) < 0
4676 || (extract_insn (p),
4677 !(constrain_operands (1,
4678 get_enabled_alternatives (p))))))
4679 {
4680 error_for_asm (insn,
4681 "%<asm%> operand requires "
4682 "impossible reload");
4683 delete_insn (p);
4684 }
4685 }
4686
4687 if (num_eliminable && chain->need_elim)
4688 update_eliminable_offsets ();
4689
4690 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4691 is no longer validly lying around to save a future reload.
4692 Note that this does not detect pseudos that were reloaded
4693 for this insn in order to be stored in
4694 (obeying register constraints). That is correct; such reload
4695 registers ARE still valid. */
4696 forget_marked_reloads (&regs_to_forget);
4697 CLEAR_REG_SET (&regs_to_forget);
4698
4699 /* There may have been CLOBBER insns placed after INSN. So scan
4700 between INSN and NEXT and use them to forget old reloads. */
4701 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4702 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4703 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4704
4705 #if AUTO_INC_DEC
4706 /* Likewise for regs altered by auto-increment in this insn.
4707 REG_INC notes have been changed by reloading:
4708 find_reloads_address_1 records substitutions for them,
4709 which have been performed by subst_reloads above. */
4710 for (i = n_reloads - 1; i >= 0; i--)
4711 {
4712 rtx in_reg = rld[i].in_reg;
4713 if (in_reg)
4714 {
4715 enum rtx_code code = GET_CODE (in_reg);
4716 /* PRE_INC / PRE_DEC will have the reload register ending up
4717 with the same value as the stack slot, but that doesn't
4718 hold true for POST_INC / POST_DEC. Either we have to
4719 convert the memory access to a true POST_INC / POST_DEC,
4720 or we can't use the reload register for inheritance. */
4721 if ((code == POST_INC || code == POST_DEC)
4722 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4723 REGNO (rld[i].reg_rtx))
4724 /* Make sure it is the inc/dec pseudo, and not
4725 some other (e.g. output operand) pseudo. */
4726 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4727 == REGNO (XEXP (in_reg, 0))))
4728
4729 {
4730 rtx reload_reg = rld[i].reg_rtx;
4731 machine_mode mode = GET_MODE (reload_reg);
4732 int n = 0;
4733 rtx_insn *p;
4734
4735 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4736 {
4737 /* We really want to ignore REG_INC notes here, so
4738 use PATTERN (p) as argument to reg_set_p . */
4739 if (reg_set_p (reload_reg, PATTERN (p)))
4740 break;
4741 n = count_occurrences (PATTERN (p), reload_reg, 0);
4742 if (! n)
4743 continue;
4744 if (n == 1)
4745 {
4746 rtx replace_reg
4747 = gen_rtx_fmt_e (code, mode, reload_reg);
4748
4749 validate_replace_rtx_group (reload_reg,
4750 replace_reg, p);
4751 n = verify_changes (0);
4752
4753 /* We must also verify that the constraints
4754 are met after the replacement. Make sure
4755 extract_insn is only called for an insn
4756 where the replacements were found to be
4757 valid so far. */
4758 if (n)
4759 {
4760 extract_insn (p);
4761 n = constrain_operands (1,
4762 get_enabled_alternatives (p));
4763 }
4764
4765 /* If the constraints were not met, then
4766 undo the replacement, else confirm it. */
4767 if (!n)
4768 cancel_changes (0);
4769 else
4770 confirm_change_group ();
4771 }
4772 break;
4773 }
4774 if (n == 1)
4775 {
4776 add_reg_note (p, REG_INC, reload_reg);
4777 /* Mark this as having an output reload so that the
4778 REG_INC processing code below won't invalidate
4779 the reload for inheritance. */
4780 SET_HARD_REG_BIT (reg_is_output_reload,
4781 REGNO (reload_reg));
4782 SET_REGNO_REG_SET (&reg_has_output_reload,
4783 REGNO (XEXP (in_reg, 0)));
4784 }
4785 else
4786 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4787 NULL);
4788 }
4789 else if ((code == PRE_INC || code == PRE_DEC)
4790 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4791 REGNO (rld[i].reg_rtx))
4792 /* Make sure it is the inc/dec pseudo, and not
4793 some other (e.g. output operand) pseudo. */
4794 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4795 == REGNO (XEXP (in_reg, 0))))
4796 {
4797 SET_HARD_REG_BIT (reg_is_output_reload,
4798 REGNO (rld[i].reg_rtx));
4799 SET_REGNO_REG_SET (&reg_has_output_reload,
4800 REGNO (XEXP (in_reg, 0)));
4801 }
4802 else if (code == PRE_INC || code == PRE_DEC
4803 || code == POST_INC || code == POST_DEC)
4804 {
4805 int in_regno = REGNO (XEXP (in_reg, 0));
4806
4807 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4808 {
4809 int in_hard_regno;
4810 bool forget_p = true;
4811
4812 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4813 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4814 in_hard_regno))
4815 {
4816 for (rtx_insn *x = (old_prev ?
4817 NEXT_INSN (old_prev) : insn);
4818 x != old_next;
4819 x = NEXT_INSN (x))
4820 if (x == reg_reloaded_insn[in_hard_regno])
4821 {
4822 forget_p = false;
4823 break;
4824 }
4825 }
4826 /* If for some reasons, we didn't set up
4827 reg_last_reload_reg in this insn,
4828 invalidate inheritance from previous
4829 insns for the incremented/decremented
4830 register. Such registers will be not in
4831 reg_has_output_reload. Invalidate it
4832 also if the corresponding element in
4833 reg_reloaded_insn is also
4834 invalidated. */
4835 if (forget_p)
4836 forget_old_reloads_1 (XEXP (in_reg, 0),
4837 NULL_RTX, NULL);
4838 }
4839 }
4840 }
4841 }
4842 /* If a pseudo that got a hard register is auto-incremented,
4843 we must purge records of copying it into pseudos without
4844 hard registers. */
4845 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4846 if (REG_NOTE_KIND (x) == REG_INC)
4847 {
4848 /* See if this pseudo reg was reloaded in this insn.
4849 If so, its last-reload info is still valid
4850 because it is based on this insn's reload. */
4851 for (i = 0; i < n_reloads; i++)
4852 if (rld[i].out == XEXP (x, 0))
4853 break;
4854
4855 if (i == n_reloads)
4856 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4857 }
4858 #endif
4859 }
4860 /* A reload reg's contents are unknown after a label. */
4861 if (LABEL_P (insn))
4862 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4863
4864 /* Don't assume a reload reg is still good after a call insn
4865 if it is a call-used reg, or if it contains a value that will
4866 be partially clobbered by the call. */
4867 else if (CALL_P (insn))
4868 {
4869 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4870 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4871
4872 /* If this is a call to a setjmp-type function, we must not
4873 reuse any reload reg contents across the call; that will
4874 just be clobbered by other uses of the register in later
4875 code, before the longjmp. */
4876 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4877 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4878 }
4879 }
4880
4881 /* Clean up. */
4882 free (reg_last_reload_reg);
4883 CLEAR_REG_SET (&reg_has_output_reload);
4884 }
4885
4886 /* Discard all record of any value reloaded from X,
4887 or reloaded in X from someplace else;
4888 unless X is an output reload reg of the current insn.
4889
4890 X may be a hard reg (the reload reg)
4891 or it may be a pseudo reg that was reloaded from.
4892
4893 When DATA is non-NULL just mark the registers in regset
4894 to be forgotten later. */
4895
4896 static void
4897 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4898 void *data)
4899 {
4900 unsigned int regno;
4901 unsigned int nr;
4902 regset regs = (regset) data;
4903
4904 /* note_stores does give us subregs of hard regs,
4905 subreg_regno_offset requires a hard reg. */
4906 while (GET_CODE (x) == SUBREG)
4907 {
4908 /* We ignore the subreg offset when calculating the regno,
4909 because we are using the entire underlying hard register
4910 below. */
4911 x = SUBREG_REG (x);
4912 }
4913
4914 if (!REG_P (x))
4915 return;
4916
4917 regno = REGNO (x);
4918
4919 if (regno >= FIRST_PSEUDO_REGISTER)
4920 nr = 1;
4921 else
4922 {
4923 unsigned int i;
4924
4925 nr = REG_NREGS (x);
4926 /* Storing into a spilled-reg invalidates its contents.
4927 This can happen if a block-local pseudo is allocated to that reg
4928 and it wasn't spilled because this block's total need is 0.
4929 Then some insn might have an optional reload and use this reg. */
4930 if (!regs)
4931 for (i = 0; i < nr; i++)
4932 /* But don't do this if the reg actually serves as an output
4933 reload reg in the current instruction. */
4934 if (n_reloads == 0
4935 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4936 {
4937 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4938 spill_reg_store[regno + i] = 0;
4939 }
4940 }
4941
4942 if (regs)
4943 while (nr-- > 0)
4944 SET_REGNO_REG_SET (regs, regno + nr);
4945 else
4946 {
4947 /* Since value of X has changed,
4948 forget any value previously copied from it. */
4949
4950 while (nr-- > 0)
4951 /* But don't forget a copy if this is the output reload
4952 that establishes the copy's validity. */
4953 if (n_reloads == 0
4954 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4955 reg_last_reload_reg[regno + nr] = 0;
4956 }
4957 }
4958
4959 /* Forget the reloads marked in regset by previous function. */
4960 static void
4961 forget_marked_reloads (regset regs)
4962 {
4963 unsigned int reg;
4964 reg_set_iterator rsi;
4965 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4966 {
4967 if (reg < FIRST_PSEUDO_REGISTER
4968 /* But don't do this if the reg actually serves as an output
4969 reload reg in the current instruction. */
4970 && (n_reloads == 0
4971 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4972 {
4973 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4974 spill_reg_store[reg] = 0;
4975 }
4976 if (n_reloads == 0
4977 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4978 reg_last_reload_reg[reg] = 0;
4979 }
4980 }
4981 \f
4982 /* The following HARD_REG_SETs indicate when each hard register is
4983 used for a reload of various parts of the current insn. */
4984
4985 /* If reg is unavailable for all reloads. */
4986 static HARD_REG_SET reload_reg_unavailable;
4987 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4988 static HARD_REG_SET reload_reg_used;
4989 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4990 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4991 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4992 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4993 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4994 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4995 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4996 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4997 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4998 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4999 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5000 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5001 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5002 static HARD_REG_SET reload_reg_used_in_op_addr;
5003 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5004 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5005 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5006 static HARD_REG_SET reload_reg_used_in_insn;
5007 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5008 static HARD_REG_SET reload_reg_used_in_other_addr;
5009
5010 /* If reg is in use as a reload reg for any sort of reload. */
5011 static HARD_REG_SET reload_reg_used_at_all;
5012
5013 /* If reg is use as an inherited reload. We just mark the first register
5014 in the group. */
5015 static HARD_REG_SET reload_reg_used_for_inherit;
5016
5017 /* Records which hard regs are used in any way, either as explicit use or
5018 by being allocated to a pseudo during any point of the current insn. */
5019 static HARD_REG_SET reg_used_in_insn;
5020
5021 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5022 TYPE. MODE is used to indicate how many consecutive regs are
5023 actually used. */
5024
5025 static void
5026 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5027 machine_mode mode)
5028 {
5029 switch (type)
5030 {
5031 case RELOAD_OTHER:
5032 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5033 break;
5034
5035 case RELOAD_FOR_INPUT_ADDRESS:
5036 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5037 break;
5038
5039 case RELOAD_FOR_INPADDR_ADDRESS:
5040 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5041 break;
5042
5043 case RELOAD_FOR_OUTPUT_ADDRESS:
5044 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5045 break;
5046
5047 case RELOAD_FOR_OUTADDR_ADDRESS:
5048 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5049 break;
5050
5051 case RELOAD_FOR_OPERAND_ADDRESS:
5052 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5053 break;
5054
5055 case RELOAD_FOR_OPADDR_ADDR:
5056 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5057 break;
5058
5059 case RELOAD_FOR_OTHER_ADDRESS:
5060 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5061 break;
5062
5063 case RELOAD_FOR_INPUT:
5064 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5065 break;
5066
5067 case RELOAD_FOR_OUTPUT:
5068 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5069 break;
5070
5071 case RELOAD_FOR_INSN:
5072 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5073 break;
5074 }
5075
5076 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5077 }
5078
5079 /* Similarly, but show REGNO is no longer in use for a reload. */
5080
5081 static void
5082 clear_reload_reg_in_use (unsigned int regno, int opnum,
5083 enum reload_type type, machine_mode mode)
5084 {
5085 unsigned int nregs = hard_regno_nregs (regno, mode);
5086 unsigned int start_regno, end_regno, r;
5087 int i;
5088 /* A complication is that for some reload types, inheritance might
5089 allow multiple reloads of the same types to share a reload register.
5090 We set check_opnum if we have to check only reloads with the same
5091 operand number, and check_any if we have to check all reloads. */
5092 int check_opnum = 0;
5093 int check_any = 0;
5094 HARD_REG_SET *used_in_set;
5095
5096 switch (type)
5097 {
5098 case RELOAD_OTHER:
5099 used_in_set = &reload_reg_used;
5100 break;
5101
5102 case RELOAD_FOR_INPUT_ADDRESS:
5103 used_in_set = &reload_reg_used_in_input_addr[opnum];
5104 break;
5105
5106 case RELOAD_FOR_INPADDR_ADDRESS:
5107 check_opnum = 1;
5108 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5109 break;
5110
5111 case RELOAD_FOR_OUTPUT_ADDRESS:
5112 used_in_set = &reload_reg_used_in_output_addr[opnum];
5113 break;
5114
5115 case RELOAD_FOR_OUTADDR_ADDRESS:
5116 check_opnum = 1;
5117 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5118 break;
5119
5120 case RELOAD_FOR_OPERAND_ADDRESS:
5121 used_in_set = &reload_reg_used_in_op_addr;
5122 break;
5123
5124 case RELOAD_FOR_OPADDR_ADDR:
5125 check_any = 1;
5126 used_in_set = &reload_reg_used_in_op_addr_reload;
5127 break;
5128
5129 case RELOAD_FOR_OTHER_ADDRESS:
5130 used_in_set = &reload_reg_used_in_other_addr;
5131 check_any = 1;
5132 break;
5133
5134 case RELOAD_FOR_INPUT:
5135 used_in_set = &reload_reg_used_in_input[opnum];
5136 break;
5137
5138 case RELOAD_FOR_OUTPUT:
5139 used_in_set = &reload_reg_used_in_output[opnum];
5140 break;
5141
5142 case RELOAD_FOR_INSN:
5143 used_in_set = &reload_reg_used_in_insn;
5144 break;
5145 default:
5146 gcc_unreachable ();
5147 }
5148 /* We resolve conflicts with remaining reloads of the same type by
5149 excluding the intervals of reload registers by them from the
5150 interval of freed reload registers. Since we only keep track of
5151 one set of interval bounds, we might have to exclude somewhat
5152 more than what would be necessary if we used a HARD_REG_SET here.
5153 But this should only happen very infrequently, so there should
5154 be no reason to worry about it. */
5155
5156 start_regno = regno;
5157 end_regno = regno + nregs;
5158 if (check_opnum || check_any)
5159 {
5160 for (i = n_reloads - 1; i >= 0; i--)
5161 {
5162 if (rld[i].when_needed == type
5163 && (check_any || rld[i].opnum == opnum)
5164 && rld[i].reg_rtx)
5165 {
5166 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5167 unsigned int conflict_end
5168 = end_hard_regno (rld[i].mode, conflict_start);
5169
5170 /* If there is an overlap with the first to-be-freed register,
5171 adjust the interval start. */
5172 if (conflict_start <= start_regno && conflict_end > start_regno)
5173 start_regno = conflict_end;
5174 /* Otherwise, if there is a conflict with one of the other
5175 to-be-freed registers, adjust the interval end. */
5176 if (conflict_start > start_regno && conflict_start < end_regno)
5177 end_regno = conflict_start;
5178 }
5179 }
5180 }
5181
5182 for (r = start_regno; r < end_regno; r++)
5183 CLEAR_HARD_REG_BIT (*used_in_set, r);
5184 }
5185
5186 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5187 specified by OPNUM and TYPE. */
5188
5189 static int
5190 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5191 {
5192 int i;
5193
5194 /* In use for a RELOAD_OTHER means it's not available for anything. */
5195 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5196 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5197 return 0;
5198
5199 switch (type)
5200 {
5201 case RELOAD_OTHER:
5202 /* In use for anything means we can't use it for RELOAD_OTHER. */
5203 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5204 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5205 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5206 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5207 return 0;
5208
5209 for (i = 0; i < reload_n_operands; i++)
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5213 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5214 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5215 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5216 return 0;
5217
5218 return 1;
5219
5220 case RELOAD_FOR_INPUT:
5221 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5222 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5223 return 0;
5224
5225 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5226 return 0;
5227
5228 /* If it is used for some other input, can't use it. */
5229 for (i = 0; i < reload_n_operands; i++)
5230 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5231 return 0;
5232
5233 /* If it is used in a later operand's address, can't use it. */
5234 for (i = opnum + 1; i < reload_n_operands; i++)
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5236 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5237 return 0;
5238
5239 return 1;
5240
5241 case RELOAD_FOR_INPUT_ADDRESS:
5242 /* Can't use a register if it is used for an input address for this
5243 operand or used as an input in an earlier one. */
5244 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5245 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5246 return 0;
5247
5248 for (i = 0; i < opnum; i++)
5249 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5250 return 0;
5251
5252 return 1;
5253
5254 case RELOAD_FOR_INPADDR_ADDRESS:
5255 /* Can't use a register if it is used for an input address
5256 for this operand or used as an input in an earlier
5257 one. */
5258 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5259 return 0;
5260
5261 for (i = 0; i < opnum; i++)
5262 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5263 return 0;
5264
5265 return 1;
5266
5267 case RELOAD_FOR_OUTPUT_ADDRESS:
5268 /* Can't use a register if it is used for an output address for this
5269 operand or used as an output in this or a later operand. Note
5270 that multiple output operands are emitted in reverse order, so
5271 the conflicting ones are those with lower indices. */
5272 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5273 return 0;
5274
5275 for (i = 0; i <= opnum; i++)
5276 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5277 return 0;
5278
5279 return 1;
5280
5281 case RELOAD_FOR_OUTADDR_ADDRESS:
5282 /* Can't use a register if it is used for an output address
5283 for this operand or used as an output in this or a
5284 later operand. Note that multiple output operands are
5285 emitted in reverse order, so the conflicting ones are
5286 those with lower indices. */
5287 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5288 return 0;
5289
5290 for (i = 0; i <= opnum; i++)
5291 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5292 return 0;
5293
5294 return 1;
5295
5296 case RELOAD_FOR_OPERAND_ADDRESS:
5297 for (i = 0; i < reload_n_operands; i++)
5298 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5299 return 0;
5300
5301 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5302 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5303
5304 case RELOAD_FOR_OPADDR_ADDR:
5305 for (i = 0; i < reload_n_operands; i++)
5306 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5307 return 0;
5308
5309 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5310
5311 case RELOAD_FOR_OUTPUT:
5312 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5313 outputs, or an operand address for this or an earlier output.
5314 Note that multiple output operands are emitted in reverse order,
5315 so the conflicting ones are those with higher indices. */
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5317 return 0;
5318
5319 for (i = 0; i < reload_n_operands; i++)
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5321 return 0;
5322
5323 for (i = opnum; i < reload_n_operands; i++)
5324 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5325 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5326 return 0;
5327
5328 return 1;
5329
5330 case RELOAD_FOR_INSN:
5331 for (i = 0; i < reload_n_operands; i++)
5332 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5333 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5334 return 0;
5335
5336 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5337 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5338
5339 case RELOAD_FOR_OTHER_ADDRESS:
5340 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5341
5342 default:
5343 gcc_unreachable ();
5344 }
5345 }
5346
5347 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5348 the number RELOADNUM, is still available in REGNO at the end of the insn.
5349
5350 We can assume that the reload reg was already tested for availability
5351 at the time it is needed, and we should not check this again,
5352 in case the reg has already been marked in use. */
5353
5354 static int
5355 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5356 {
5357 int opnum = rld[reloadnum].opnum;
5358 enum reload_type type = rld[reloadnum].when_needed;
5359 int i;
5360
5361 /* See if there is a reload with the same type for this operand, using
5362 the same register. This case is not handled by the code below. */
5363 for (i = reloadnum + 1; i < n_reloads; i++)
5364 {
5365 rtx reg;
5366
5367 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5368 continue;
5369 reg = rld[i].reg_rtx;
5370 if (reg == NULL_RTX)
5371 continue;
5372 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5373 return 0;
5374 }
5375
5376 switch (type)
5377 {
5378 case RELOAD_OTHER:
5379 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5380 its value must reach the end. */
5381 return 1;
5382
5383 /* If this use is for part of the insn,
5384 its value reaches if no subsequent part uses the same register.
5385 Just like the above function, don't try to do this with lots
5386 of fallthroughs. */
5387
5388 case RELOAD_FOR_OTHER_ADDRESS:
5389 /* Here we check for everything else, since these don't conflict
5390 with anything else and everything comes later. */
5391
5392 for (i = 0; i < reload_n_operands; i++)
5393 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5394 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5395 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5396 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5398 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5399 return 0;
5400
5401 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5402 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5403 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5404 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5405
5406 case RELOAD_FOR_INPUT_ADDRESS:
5407 case RELOAD_FOR_INPADDR_ADDRESS:
5408 /* Similar, except that we check only for this and subsequent inputs
5409 and the address of only subsequent inputs and we do not need
5410 to check for RELOAD_OTHER objects since they are known not to
5411 conflict. */
5412
5413 for (i = opnum; i < reload_n_operands; i++)
5414 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5415 return 0;
5416
5417 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5418 could be killed if the register is also used by reload with type
5419 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5420 if (type == RELOAD_FOR_INPADDR_ADDRESS
5421 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5422 return 0;
5423
5424 for (i = opnum + 1; i < reload_n_operands; i++)
5425 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5426 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5427 return 0;
5428
5429 for (i = 0; i < reload_n_operands; i++)
5430 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5432 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5433 return 0;
5434
5435 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5436 return 0;
5437
5438 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5439 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5440 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5441
5442 case RELOAD_FOR_INPUT:
5443 /* Similar to input address, except we start at the next operand for
5444 both input and input address and we do not check for
5445 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5446 would conflict. */
5447
5448 for (i = opnum + 1; i < reload_n_operands; i++)
5449 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5452 return 0;
5453
5454 /* ... fall through ... */
5455
5456 case RELOAD_FOR_OPERAND_ADDRESS:
5457 /* Check outputs and their addresses. */
5458
5459 for (i = 0; i < reload_n_operands; i++)
5460 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5462 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5463 return 0;
5464
5465 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5466
5467 case RELOAD_FOR_OPADDR_ADDR:
5468 for (i = 0; i < reload_n_operands; i++)
5469 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5470 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5471 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5472 return 0;
5473
5474 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5475 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5476 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5477
5478 case RELOAD_FOR_INSN:
5479 /* These conflict with other outputs with RELOAD_OTHER. So
5480 we need only check for output addresses. */
5481
5482 opnum = reload_n_operands;
5483
5484 /* fall through */
5485
5486 case RELOAD_FOR_OUTPUT:
5487 case RELOAD_FOR_OUTPUT_ADDRESS:
5488 case RELOAD_FOR_OUTADDR_ADDRESS:
5489 /* We already know these can't conflict with a later output. So the
5490 only thing to check are later output addresses.
5491 Note that multiple output operands are emitted in reverse order,
5492 so the conflicting ones are those with lower indices. */
5493 for (i = 0; i < opnum; i++)
5494 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5495 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5496 return 0;
5497
5498 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5499 could be killed if the register is also used by reload with type
5500 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5501 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5502 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5503 return 0;
5504
5505 return 1;
5506
5507 default:
5508 gcc_unreachable ();
5509 }
5510 }
5511
5512 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5513 every register in REG. */
5514
5515 static bool
5516 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5517 {
5518 unsigned int i;
5519
5520 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5521 if (!reload_reg_reaches_end_p (i, reloadnum))
5522 return false;
5523 return true;
5524 }
5525 \f
5526
5527 /* Returns whether R1 and R2 are uniquely chained: the value of one
5528 is used by the other, and that value is not used by any other
5529 reload for this insn. This is used to partially undo the decision
5530 made in find_reloads when in the case of multiple
5531 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5532 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5533 reloads. This code tries to avoid the conflict created by that
5534 change. It might be cleaner to explicitly keep track of which
5535 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5536 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5537 this after the fact. */
5538 static bool
5539 reloads_unique_chain_p (int r1, int r2)
5540 {
5541 int i;
5542
5543 /* We only check input reloads. */
5544 if (! rld[r1].in || ! rld[r2].in)
5545 return false;
5546
5547 /* Avoid anything with output reloads. */
5548 if (rld[r1].out || rld[r2].out)
5549 return false;
5550
5551 /* "chained" means one reload is a component of the other reload,
5552 not the same as the other reload. */
5553 if (rld[r1].opnum != rld[r2].opnum
5554 || rtx_equal_p (rld[r1].in, rld[r2].in)
5555 || rld[r1].optional || rld[r2].optional
5556 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5557 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5558 return false;
5559
5560 /* The following loop assumes that r1 is the reload that feeds r2. */
5561 if (r1 > r2)
5562 std::swap (r1, r2);
5563
5564 for (i = 0; i < n_reloads; i ++)
5565 /* Look for input reloads that aren't our two */
5566 if (i != r1 && i != r2 && rld[i].in)
5567 {
5568 /* If our reload is mentioned at all, it isn't a simple chain. */
5569 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5570 return false;
5571 }
5572 return true;
5573 }
5574
5575 /* The recursive function change all occurrences of WHAT in *WHERE
5576 to REPL. */
5577 static void
5578 substitute (rtx *where, const_rtx what, rtx repl)
5579 {
5580 const char *fmt;
5581 int i;
5582 enum rtx_code code;
5583
5584 if (*where == 0)
5585 return;
5586
5587 if (*where == what || rtx_equal_p (*where, what))
5588 {
5589 /* Record the location of the changed rtx. */
5590 substitute_stack.safe_push (where);
5591 *where = repl;
5592 return;
5593 }
5594
5595 code = GET_CODE (*where);
5596 fmt = GET_RTX_FORMAT (code);
5597 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5598 {
5599 if (fmt[i] == 'E')
5600 {
5601 int j;
5602
5603 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5604 substitute (&XVECEXP (*where, i, j), what, repl);
5605 }
5606 else if (fmt[i] == 'e')
5607 substitute (&XEXP (*where, i), what, repl);
5608 }
5609 }
5610
5611 /* The function returns TRUE if chain of reload R1 and R2 (in any
5612 order) can be evaluated without usage of intermediate register for
5613 the reload containing another reload. It is important to see
5614 gen_reload to understand what the function is trying to do. As an
5615 example, let us have reload chain
5616
5617 r2: const
5618 r1: <something> + const
5619
5620 and reload R2 got reload reg HR. The function returns true if
5621 there is a correct insn HR = HR + <something>. Otherwise,
5622 gen_reload will use intermediate register (and this is the reload
5623 reg for R1) to reload <something>.
5624
5625 We need this function to find a conflict for chain reloads. In our
5626 example, if HR = HR + <something> is incorrect insn, then we cannot
5627 use HR as a reload register for R2. If we do use it then we get a
5628 wrong code:
5629
5630 HR = const
5631 HR = <something>
5632 HR = HR + HR
5633
5634 */
5635 static bool
5636 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5637 {
5638 /* Assume other cases in gen_reload are not possible for
5639 chain reloads or do need an intermediate hard registers. */
5640 bool result = true;
5641 int regno, code;
5642 rtx out, in;
5643 rtx_insn *insn;
5644 rtx_insn *last = get_last_insn ();
5645
5646 /* Make r2 a component of r1. */
5647 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5648 std::swap (r1, r2);
5649
5650 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5651 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5652 gcc_assert (regno >= 0);
5653 out = gen_rtx_REG (rld[r1].mode, regno);
5654 in = rld[r1].in;
5655 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5656
5657 /* If IN is a paradoxical SUBREG, remove it and try to put the
5658 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5659 strip_paradoxical_subreg (&in, &out);
5660
5661 if (GET_CODE (in) == PLUS
5662 && (REG_P (XEXP (in, 0))
5663 || GET_CODE (XEXP (in, 0)) == SUBREG
5664 || MEM_P (XEXP (in, 0)))
5665 && (REG_P (XEXP (in, 1))
5666 || GET_CODE (XEXP (in, 1)) == SUBREG
5667 || CONSTANT_P (XEXP (in, 1))
5668 || MEM_P (XEXP (in, 1))))
5669 {
5670 insn = emit_insn (gen_rtx_SET (out, in));
5671 code = recog_memoized (insn);
5672 result = false;
5673
5674 if (code >= 0)
5675 {
5676 extract_insn (insn);
5677 /* We want constrain operands to treat this insn strictly in
5678 its validity determination, i.e., the way it would after
5679 reload has completed. */
5680 result = constrain_operands (1, get_enabled_alternatives (insn));
5681 }
5682
5683 delete_insns_since (last);
5684 }
5685
5686 /* Restore the original value at each changed address within R1. */
5687 while (!substitute_stack.is_empty ())
5688 {
5689 rtx *where = substitute_stack.pop ();
5690 *where = rld[r2].in;
5691 }
5692
5693 return result;
5694 }
5695
5696 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5697 Return 0 otherwise.
5698
5699 This function uses the same algorithm as reload_reg_free_p above. */
5700
5701 static int
5702 reloads_conflict (int r1, int r2)
5703 {
5704 enum reload_type r1_type = rld[r1].when_needed;
5705 enum reload_type r2_type = rld[r2].when_needed;
5706 int r1_opnum = rld[r1].opnum;
5707 int r2_opnum = rld[r2].opnum;
5708
5709 /* RELOAD_OTHER conflicts with everything. */
5710 if (r2_type == RELOAD_OTHER)
5711 return 1;
5712
5713 /* Otherwise, check conflicts differently for each type. */
5714
5715 switch (r1_type)
5716 {
5717 case RELOAD_FOR_INPUT:
5718 return (r2_type == RELOAD_FOR_INSN
5719 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5720 || r2_type == RELOAD_FOR_OPADDR_ADDR
5721 || r2_type == RELOAD_FOR_INPUT
5722 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5723 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5724 && r2_opnum > r1_opnum));
5725
5726 case RELOAD_FOR_INPUT_ADDRESS:
5727 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5728 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5729
5730 case RELOAD_FOR_INPADDR_ADDRESS:
5731 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5732 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5733
5734 case RELOAD_FOR_OUTPUT_ADDRESS:
5735 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5736 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5737
5738 case RELOAD_FOR_OUTADDR_ADDRESS:
5739 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5740 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5741
5742 case RELOAD_FOR_OPERAND_ADDRESS:
5743 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5744 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5745 && (!reloads_unique_chain_p (r1, r2)
5746 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5747
5748 case RELOAD_FOR_OPADDR_ADDR:
5749 return (r2_type == RELOAD_FOR_INPUT
5750 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5751
5752 case RELOAD_FOR_OUTPUT:
5753 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5754 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5755 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5756 && r2_opnum >= r1_opnum));
5757
5758 case RELOAD_FOR_INSN:
5759 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5760 || r2_type == RELOAD_FOR_INSN
5761 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5762
5763 case RELOAD_FOR_OTHER_ADDRESS:
5764 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5765
5766 case RELOAD_OTHER:
5767 return 1;
5768
5769 default:
5770 gcc_unreachable ();
5771 }
5772 }
5773 \f
5774 /* Indexed by reload number, 1 if incoming value
5775 inherited from previous insns. */
5776 static char reload_inherited[MAX_RELOADS];
5777
5778 /* For an inherited reload, this is the insn the reload was inherited from,
5779 if we know it. Otherwise, this is 0. */
5780 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5781
5782 /* If nonzero, this is a place to get the value of the reload,
5783 rather than using reload_in. */
5784 static rtx reload_override_in[MAX_RELOADS];
5785
5786 /* For each reload, the hard register number of the register used,
5787 or -1 if we did not need a register for this reload. */
5788 static int reload_spill_index[MAX_RELOADS];
5789
5790 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5791 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5792
5793 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5794 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5795
5796 /* Subroutine of free_for_value_p, used to check a single register.
5797 START_REGNO is the starting regno of the full reload register
5798 (possibly comprising multiple hard registers) that we are considering. */
5799
5800 static int
5801 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5802 enum reload_type type, rtx value, rtx out,
5803 int reloadnum, int ignore_address_reloads)
5804 {
5805 int time1;
5806 /* Set if we see an input reload that must not share its reload register
5807 with any new earlyclobber, but might otherwise share the reload
5808 register with an output or input-output reload. */
5809 int check_earlyclobber = 0;
5810 int i;
5811 int copy = 0;
5812
5813 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5814 return 0;
5815
5816 if (out == const0_rtx)
5817 {
5818 copy = 1;
5819 out = NULL_RTX;
5820 }
5821
5822 /* We use some pseudo 'time' value to check if the lifetimes of the
5823 new register use would overlap with the one of a previous reload
5824 that is not read-only or uses a different value.
5825 The 'time' used doesn't have to be linear in any shape or form, just
5826 monotonic.
5827 Some reload types use different 'buckets' for each operand.
5828 So there are MAX_RECOG_OPERANDS different time values for each
5829 such reload type.
5830 We compute TIME1 as the time when the register for the prospective
5831 new reload ceases to be live, and TIME2 for each existing
5832 reload as the time when that the reload register of that reload
5833 becomes live.
5834 Where there is little to be gained by exact lifetime calculations,
5835 we just make conservative assumptions, i.e. a longer lifetime;
5836 this is done in the 'default:' cases. */
5837 switch (type)
5838 {
5839 case RELOAD_FOR_OTHER_ADDRESS:
5840 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5841 time1 = copy ? 0 : 1;
5842 break;
5843 case RELOAD_OTHER:
5844 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5845 break;
5846 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5847 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5848 respectively, to the time values for these, we get distinct time
5849 values. To get distinct time values for each operand, we have to
5850 multiply opnum by at least three. We round that up to four because
5851 multiply by four is often cheaper. */
5852 case RELOAD_FOR_INPADDR_ADDRESS:
5853 time1 = opnum * 4 + 2;
5854 break;
5855 case RELOAD_FOR_INPUT_ADDRESS:
5856 time1 = opnum * 4 + 3;
5857 break;
5858 case RELOAD_FOR_INPUT:
5859 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5860 executes (inclusive). */
5861 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5862 break;
5863 case RELOAD_FOR_OPADDR_ADDR:
5864 /* opnum * 4 + 4
5865 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5866 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5867 break;
5868 case RELOAD_FOR_OPERAND_ADDRESS:
5869 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5870 is executed. */
5871 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5872 break;
5873 case RELOAD_FOR_OUTADDR_ADDRESS:
5874 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5875 break;
5876 case RELOAD_FOR_OUTPUT_ADDRESS:
5877 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5878 break;
5879 default:
5880 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5881 }
5882
5883 for (i = 0; i < n_reloads; i++)
5884 {
5885 rtx reg = rld[i].reg_rtx;
5886 if (reg && REG_P (reg)
5887 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5888 && i != reloadnum)
5889 {
5890 rtx other_input = rld[i].in;
5891
5892 /* If the other reload loads the same input value, that
5893 will not cause a conflict only if it's loading it into
5894 the same register. */
5895 if (true_regnum (reg) != start_regno)
5896 other_input = NULL_RTX;
5897 if (! other_input || ! rtx_equal_p (other_input, value)
5898 || rld[i].out || out)
5899 {
5900 int time2;
5901 switch (rld[i].when_needed)
5902 {
5903 case RELOAD_FOR_OTHER_ADDRESS:
5904 time2 = 0;
5905 break;
5906 case RELOAD_FOR_INPADDR_ADDRESS:
5907 /* find_reloads makes sure that a
5908 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5909 by at most one - the first -
5910 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5911 address reload is inherited, the address address reload
5912 goes away, so we can ignore this conflict. */
5913 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5914 && ignore_address_reloads
5915 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5916 Then the address address is still needed to store
5917 back the new address. */
5918 && ! rld[reloadnum].out)
5919 continue;
5920 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5921 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5922 reloads go away. */
5923 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5924 && ignore_address_reloads
5925 /* Unless we are reloading an auto_inc expression. */
5926 && ! rld[reloadnum].out)
5927 continue;
5928 time2 = rld[i].opnum * 4 + 2;
5929 break;
5930 case RELOAD_FOR_INPUT_ADDRESS:
5931 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5932 && ignore_address_reloads
5933 && ! rld[reloadnum].out)
5934 continue;
5935 time2 = rld[i].opnum * 4 + 3;
5936 break;
5937 case RELOAD_FOR_INPUT:
5938 time2 = rld[i].opnum * 4 + 4;
5939 check_earlyclobber = 1;
5940 break;
5941 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5942 == MAX_RECOG_OPERAND * 4 */
5943 case RELOAD_FOR_OPADDR_ADDR:
5944 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5945 && ignore_address_reloads
5946 && ! rld[reloadnum].out)
5947 continue;
5948 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5949 break;
5950 case RELOAD_FOR_OPERAND_ADDRESS:
5951 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5952 check_earlyclobber = 1;
5953 break;
5954 case RELOAD_FOR_INSN:
5955 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5956 break;
5957 case RELOAD_FOR_OUTPUT:
5958 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5959 instruction is executed. */
5960 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5961 break;
5962 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5963 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5964 value. */
5965 case RELOAD_FOR_OUTADDR_ADDRESS:
5966 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5967 && ignore_address_reloads
5968 && ! rld[reloadnum].out)
5969 continue;
5970 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5971 break;
5972 case RELOAD_FOR_OUTPUT_ADDRESS:
5973 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5974 break;
5975 case RELOAD_OTHER:
5976 /* If there is no conflict in the input part, handle this
5977 like an output reload. */
5978 if (! rld[i].in || rtx_equal_p (other_input, value))
5979 {
5980 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5981 /* Earlyclobbered outputs must conflict with inputs. */
5982 if (earlyclobber_operand_p (rld[i].out))
5983 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5984
5985 break;
5986 }
5987 time2 = 1;
5988 /* RELOAD_OTHER might be live beyond instruction execution,
5989 but this is not obvious when we set time2 = 1. So check
5990 here if there might be a problem with the new reload
5991 clobbering the register used by the RELOAD_OTHER. */
5992 if (out)
5993 return 0;
5994 break;
5995 default:
5996 return 0;
5997 }
5998 if ((time1 >= time2
5999 && (! rld[i].in || rld[i].out
6000 || ! rtx_equal_p (other_input, value)))
6001 || (out && rld[reloadnum].out_reg
6002 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6003 return 0;
6004 }
6005 }
6006 }
6007
6008 /* Earlyclobbered outputs must conflict with inputs. */
6009 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6010 return 0;
6011
6012 return 1;
6013 }
6014
6015 /* Return 1 if the value in reload reg REGNO, as used by a reload
6016 needed for the part of the insn specified by OPNUM and TYPE,
6017 may be used to load VALUE into it.
6018
6019 MODE is the mode in which the register is used, this is needed to
6020 determine how many hard regs to test.
6021
6022 Other read-only reloads with the same value do not conflict
6023 unless OUT is nonzero and these other reloads have to live while
6024 output reloads live.
6025 If OUT is CONST0_RTX, this is a special case: it means that the
6026 test should not be for using register REGNO as reload register, but
6027 for copying from register REGNO into the reload register.
6028
6029 RELOADNUM is the number of the reload we want to load this value for;
6030 a reload does not conflict with itself.
6031
6032 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6033 reloads that load an address for the very reload we are considering.
6034
6035 The caller has to make sure that there is no conflict with the return
6036 register. */
6037
6038 static int
6039 free_for_value_p (int regno, machine_mode mode, int opnum,
6040 enum reload_type type, rtx value, rtx out, int reloadnum,
6041 int ignore_address_reloads)
6042 {
6043 int nregs = hard_regno_nregs (regno, mode);
6044 while (nregs-- > 0)
6045 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6046 value, out, reloadnum,
6047 ignore_address_reloads))
6048 return 0;
6049 return 1;
6050 }
6051
6052 /* Return nonzero if the rtx X is invariant over the current function. */
6053 /* ??? Actually, the places where we use this expect exactly what is
6054 tested here, and not everything that is function invariant. In
6055 particular, the frame pointer and arg pointer are special cased;
6056 pic_offset_table_rtx is not, and we must not spill these things to
6057 memory. */
6058
6059 int
6060 function_invariant_p (const_rtx x)
6061 {
6062 if (CONSTANT_P (x))
6063 return 1;
6064 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6065 return 1;
6066 if (GET_CODE (x) == PLUS
6067 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6068 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6069 return 1;
6070 return 0;
6071 }
6072
6073 /* Determine whether the reload reg X overlaps any rtx'es used for
6074 overriding inheritance. Return nonzero if so. */
6075
6076 static int
6077 conflicts_with_override (rtx x)
6078 {
6079 int i;
6080 for (i = 0; i < n_reloads; i++)
6081 if (reload_override_in[i]
6082 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6083 return 1;
6084 return 0;
6085 }
6086 \f
6087 /* Give an error message saying we failed to find a reload for INSN,
6088 and clear out reload R. */
6089 static void
6090 failed_reload (rtx_insn *insn, int r)
6091 {
6092 if (asm_noperands (PATTERN (insn)) < 0)
6093 /* It's the compiler's fault. */
6094 fatal_insn ("could not find a spill register", insn);
6095
6096 /* It's the user's fault; the operand's mode and constraint
6097 don't match. Disable this reload so we don't crash in final. */
6098 error_for_asm (insn,
6099 "%<asm%> operand constraint incompatible with operand size");
6100 rld[r].in = 0;
6101 rld[r].out = 0;
6102 rld[r].reg_rtx = 0;
6103 rld[r].optional = 1;
6104 rld[r].secondary_p = 1;
6105 }
6106
6107 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6108 for reload R. If it's valid, get an rtx for it. Return nonzero if
6109 successful. */
6110 static int
6111 set_reload_reg (int i, int r)
6112 {
6113 int regno;
6114 rtx reg = spill_reg_rtx[i];
6115
6116 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6117 spill_reg_rtx[i] = reg
6118 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6119
6120 regno = true_regnum (reg);
6121
6122 /* Detect when the reload reg can't hold the reload mode.
6123 This used to be one `if', but Sequent compiler can't handle that. */
6124 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6125 {
6126 machine_mode test_mode = VOIDmode;
6127 if (rld[r].in)
6128 test_mode = GET_MODE (rld[r].in);
6129 /* If rld[r].in has VOIDmode, it means we will load it
6130 in whatever mode the reload reg has: to wit, rld[r].mode.
6131 We have already tested that for validity. */
6132 /* Aside from that, we need to test that the expressions
6133 to reload from or into have modes which are valid for this
6134 reload register. Otherwise the reload insns would be invalid. */
6135 if (! (rld[r].in != 0 && test_mode != VOIDmode
6136 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6137 if (! (rld[r].out != 0
6138 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6139 {
6140 /* The reg is OK. */
6141 last_spill_reg = i;
6142
6143 /* Mark as in use for this insn the reload regs we use
6144 for this. */
6145 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6146 rld[r].when_needed, rld[r].mode);
6147
6148 rld[r].reg_rtx = reg;
6149 reload_spill_index[r] = spill_regs[i];
6150 return 1;
6151 }
6152 }
6153 return 0;
6154 }
6155
6156 /* Find a spill register to use as a reload register for reload R.
6157 LAST_RELOAD is nonzero if this is the last reload for the insn being
6158 processed.
6159
6160 Set rld[R].reg_rtx to the register allocated.
6161
6162 We return 1 if successful, or 0 if we couldn't find a spill reg and
6163 we didn't change anything. */
6164
6165 static int
6166 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6167 int last_reload)
6168 {
6169 int i, pass, count;
6170
6171 /* If we put this reload ahead, thinking it is a group,
6172 then insist on finding a group. Otherwise we can grab a
6173 reg that some other reload needs.
6174 (That can happen when we have a 68000 DATA_OR_FP_REG
6175 which is a group of data regs or one fp reg.)
6176 We need not be so restrictive if there are no more reloads
6177 for this insn.
6178
6179 ??? Really it would be nicer to have smarter handling
6180 for that kind of reg class, where a problem like this is normal.
6181 Perhaps those classes should be avoided for reloading
6182 by use of more alternatives. */
6183
6184 int force_group = rld[r].nregs > 1 && ! last_reload;
6185
6186 /* If we want a single register and haven't yet found one,
6187 take any reg in the right class and not in use.
6188 If we want a consecutive group, here is where we look for it.
6189
6190 We use three passes so we can first look for reload regs to
6191 reuse, which are already in use for other reloads in this insn,
6192 and only then use additional registers which are not "bad", then
6193 finally any register.
6194
6195 I think that maximizing reuse is needed to make sure we don't
6196 run out of reload regs. Suppose we have three reloads, and
6197 reloads A and B can share regs. These need two regs.
6198 Suppose A and B are given different regs.
6199 That leaves none for C. */
6200 for (pass = 0; pass < 3; pass++)
6201 {
6202 /* I is the index in spill_regs.
6203 We advance it round-robin between insns to use all spill regs
6204 equally, so that inherited reloads have a chance
6205 of leapfrogging each other. */
6206
6207 i = last_spill_reg;
6208
6209 for (count = 0; count < n_spills; count++)
6210 {
6211 int rclass = (int) rld[r].rclass;
6212 int regnum;
6213
6214 i++;
6215 if (i >= n_spills)
6216 i -= n_spills;
6217 regnum = spill_regs[i];
6218
6219 if ((reload_reg_free_p (regnum, rld[r].opnum,
6220 rld[r].when_needed)
6221 || (rld[r].in
6222 /* We check reload_reg_used to make sure we
6223 don't clobber the return register. */
6224 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6225 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6226 rld[r].when_needed, rld[r].in,
6227 rld[r].out, r, 1)))
6228 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6229 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6230 /* Look first for regs to share, then for unshared. But
6231 don't share regs used for inherited reloads; they are
6232 the ones we want to preserve. */
6233 && (pass
6234 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6235 regnum)
6236 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6237 regnum))))
6238 {
6239 int nr = hard_regno_nregs (regnum, rld[r].mode);
6240
6241 /* During the second pass we want to avoid reload registers
6242 which are "bad" for this reload. */
6243 if (pass == 1
6244 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6245 continue;
6246
6247 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6248 (on 68000) got us two FP regs. If NR is 1,
6249 we would reject both of them. */
6250 if (force_group)
6251 nr = rld[r].nregs;
6252 /* If we need only one reg, we have already won. */
6253 if (nr == 1)
6254 {
6255 /* But reject a single reg if we demand a group. */
6256 if (force_group)
6257 continue;
6258 break;
6259 }
6260 /* Otherwise check that as many consecutive regs as we need
6261 are available here. */
6262 while (nr > 1)
6263 {
6264 int regno = regnum + nr - 1;
6265 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6266 && spill_reg_order[regno] >= 0
6267 && reload_reg_free_p (regno, rld[r].opnum,
6268 rld[r].when_needed)))
6269 break;
6270 nr--;
6271 }
6272 if (nr == 1)
6273 break;
6274 }
6275 }
6276
6277 /* If we found something on the current pass, omit later passes. */
6278 if (count < n_spills)
6279 break;
6280 }
6281
6282 /* We should have found a spill register by now. */
6283 if (count >= n_spills)
6284 return 0;
6285
6286 /* I is the index in SPILL_REG_RTX of the reload register we are to
6287 allocate. Get an rtx for it and find its register number. */
6288
6289 return set_reload_reg (i, r);
6290 }
6291 \f
6292 /* Initialize all the tables needed to allocate reload registers.
6293 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6294 is the array we use to restore the reg_rtx field for every reload. */
6295
6296 static void
6297 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6298 {
6299 int i;
6300
6301 for (i = 0; i < n_reloads; i++)
6302 rld[i].reg_rtx = save_reload_reg_rtx[i];
6303
6304 memset (reload_inherited, 0, MAX_RELOADS);
6305 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6306 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6307
6308 CLEAR_HARD_REG_SET (reload_reg_used);
6309 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6310 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6311 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6312 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6313 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6314
6315 CLEAR_HARD_REG_SET (reg_used_in_insn);
6316 {
6317 HARD_REG_SET tmp;
6318 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6319 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6320 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6321 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6322 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6323 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6324 }
6325
6326 for (i = 0; i < reload_n_operands; i++)
6327 {
6328 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6329 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6330 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6331 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6332 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6333 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6334 }
6335
6336 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6337
6338 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6339
6340 for (i = 0; i < n_reloads; i++)
6341 /* If we have already decided to use a certain register,
6342 don't use it in another way. */
6343 if (rld[i].reg_rtx)
6344 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6345 rld[i].when_needed, rld[i].mode);
6346 }
6347
6348 /* If X is not a subreg, return it unmodified. If it is a subreg,
6349 look up whether we made a replacement for the SUBREG_REG. Return
6350 either the replacement or the SUBREG_REG. */
6351
6352 static rtx
6353 replaced_subreg (rtx x)
6354 {
6355 if (GET_CODE (x) == SUBREG)
6356 return find_replacement (&SUBREG_REG (x));
6357 return x;
6358 }
6359
6360 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6361 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6362 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6363 otherwise it is NULL. */
6364
6365 static poly_int64
6366 compute_reload_subreg_offset (machine_mode outermode,
6367 rtx subreg,
6368 machine_mode innermode)
6369 {
6370 poly_int64 outer_offset;
6371 machine_mode middlemode;
6372
6373 if (!subreg)
6374 return subreg_lowpart_offset (outermode, innermode);
6375
6376 outer_offset = SUBREG_BYTE (subreg);
6377 middlemode = GET_MODE (SUBREG_REG (subreg));
6378
6379 /* If SUBREG is paradoxical then return the normal lowpart offset
6380 for OUTERMODE and INNERMODE. Our caller has already checked
6381 that OUTERMODE fits in INNERMODE. */
6382 if (paradoxical_subreg_p (outermode, middlemode))
6383 return subreg_lowpart_offset (outermode, innermode);
6384
6385 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6386 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6387 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6388 }
6389
6390 /* Assign hard reg targets for the pseudo-registers we must reload
6391 into hard regs for this insn.
6392 Also output the instructions to copy them in and out of the hard regs.
6393
6394 For machines with register classes, we are responsible for
6395 finding a reload reg in the proper class. */
6396
6397 static void
6398 choose_reload_regs (struct insn_chain *chain)
6399 {
6400 rtx_insn *insn = chain->insn;
6401 int i, j;
6402 unsigned int max_group_size = 1;
6403 enum reg_class group_class = NO_REGS;
6404 int pass, win, inheritance;
6405
6406 rtx save_reload_reg_rtx[MAX_RELOADS];
6407
6408 /* In order to be certain of getting the registers we need,
6409 we must sort the reloads into order of increasing register class.
6410 Then our grabbing of reload registers will parallel the process
6411 that provided the reload registers.
6412
6413 Also note whether any of the reloads wants a consecutive group of regs.
6414 If so, record the maximum size of the group desired and what
6415 register class contains all the groups needed by this insn. */
6416
6417 for (j = 0; j < n_reloads; j++)
6418 {
6419 reload_order[j] = j;
6420 if (rld[j].reg_rtx != NULL_RTX)
6421 {
6422 gcc_assert (REG_P (rld[j].reg_rtx)
6423 && HARD_REGISTER_P (rld[j].reg_rtx));
6424 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6425 }
6426 else
6427 reload_spill_index[j] = -1;
6428
6429 if (rld[j].nregs > 1)
6430 {
6431 max_group_size = MAX (rld[j].nregs, max_group_size);
6432 group_class
6433 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6434 }
6435
6436 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6437 }
6438
6439 if (n_reloads > 1)
6440 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6441
6442 /* If -O, try first with inheritance, then turning it off.
6443 If not -O, don't do inheritance.
6444 Using inheritance when not optimizing leads to paradoxes
6445 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6446 because one side of the comparison might be inherited. */
6447 win = 0;
6448 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6449 {
6450 choose_reload_regs_init (chain, save_reload_reg_rtx);
6451
6452 /* Process the reloads in order of preference just found.
6453 Beyond this point, subregs can be found in reload_reg_rtx.
6454
6455 This used to look for an existing reloaded home for all of the
6456 reloads, and only then perform any new reloads. But that could lose
6457 if the reloads were done out of reg-class order because a later
6458 reload with a looser constraint might have an old home in a register
6459 needed by an earlier reload with a tighter constraint.
6460
6461 To solve this, we make two passes over the reloads, in the order
6462 described above. In the first pass we try to inherit a reload
6463 from a previous insn. If there is a later reload that needs a
6464 class that is a proper subset of the class being processed, we must
6465 also allocate a spill register during the first pass.
6466
6467 Then make a second pass over the reloads to allocate any reloads
6468 that haven't been given registers yet. */
6469
6470 for (j = 0; j < n_reloads; j++)
6471 {
6472 int r = reload_order[j];
6473 rtx search_equiv = NULL_RTX;
6474
6475 /* Ignore reloads that got marked inoperative. */
6476 if (rld[r].out == 0 && rld[r].in == 0
6477 && ! rld[r].secondary_p)
6478 continue;
6479
6480 /* If find_reloads chose to use reload_in or reload_out as a reload
6481 register, we don't need to chose one. Otherwise, try even if it
6482 found one since we might save an insn if we find the value lying
6483 around.
6484 Try also when reload_in is a pseudo without a hard reg. */
6485 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6486 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6487 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6488 && !MEM_P (rld[r].in)
6489 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6490 continue;
6491
6492 #if 0 /* No longer needed for correct operation.
6493 It might give better code, or might not; worth an experiment? */
6494 /* If this is an optional reload, we can't inherit from earlier insns
6495 until we are sure that any non-optional reloads have been allocated.
6496 The following code takes advantage of the fact that optional reloads
6497 are at the end of reload_order. */
6498 if (rld[r].optional != 0)
6499 for (i = 0; i < j; i++)
6500 if ((rld[reload_order[i]].out != 0
6501 || rld[reload_order[i]].in != 0
6502 || rld[reload_order[i]].secondary_p)
6503 && ! rld[reload_order[i]].optional
6504 && rld[reload_order[i]].reg_rtx == 0)
6505 allocate_reload_reg (chain, reload_order[i], 0);
6506 #endif
6507
6508 /* First see if this pseudo is already available as reloaded
6509 for a previous insn. We cannot try to inherit for reloads
6510 that are smaller than the maximum number of registers needed
6511 for groups unless the register we would allocate cannot be used
6512 for the groups.
6513
6514 We could check here to see if this is a secondary reload for
6515 an object that is already in a register of the desired class.
6516 This would avoid the need for the secondary reload register.
6517 But this is complex because we can't easily determine what
6518 objects might want to be loaded via this reload. So let a
6519 register be allocated here. In `emit_reload_insns' we suppress
6520 one of the loads in the case described above. */
6521
6522 if (inheritance)
6523 {
6524 poly_int64 byte = 0;
6525 int regno = -1;
6526 machine_mode mode = VOIDmode;
6527 rtx subreg = NULL_RTX;
6528
6529 if (rld[r].in == 0)
6530 ;
6531 else if (REG_P (rld[r].in))
6532 {
6533 regno = REGNO (rld[r].in);
6534 mode = GET_MODE (rld[r].in);
6535 }
6536 else if (REG_P (rld[r].in_reg))
6537 {
6538 regno = REGNO (rld[r].in_reg);
6539 mode = GET_MODE (rld[r].in_reg);
6540 }
6541 else if (GET_CODE (rld[r].in_reg) == SUBREG
6542 && REG_P (SUBREG_REG (rld[r].in_reg)))
6543 {
6544 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6545 if (regno < FIRST_PSEUDO_REGISTER)
6546 regno = subreg_regno (rld[r].in_reg);
6547 else
6548 {
6549 subreg = rld[r].in_reg;
6550 byte = SUBREG_BYTE (subreg);
6551 }
6552 mode = GET_MODE (rld[r].in_reg);
6553 }
6554 #if AUTO_INC_DEC
6555 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6556 && REG_P (XEXP (rld[r].in_reg, 0)))
6557 {
6558 regno = REGNO (XEXP (rld[r].in_reg, 0));
6559 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6560 rld[r].out = rld[r].in;
6561 }
6562 #endif
6563 #if 0
6564 /* This won't work, since REGNO can be a pseudo reg number.
6565 Also, it takes much more hair to keep track of all the things
6566 that can invalidate an inherited reload of part of a pseudoreg. */
6567 else if (GET_CODE (rld[r].in) == SUBREG
6568 && REG_P (SUBREG_REG (rld[r].in)))
6569 regno = subreg_regno (rld[r].in);
6570 #endif
6571
6572 if (regno >= 0
6573 && reg_last_reload_reg[regno] != 0
6574 && (known_ge
6575 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6576 GET_MODE_SIZE (mode) + byte))
6577 /* Verify that the register it's in can be used in
6578 mode MODE. */
6579 && (REG_CAN_CHANGE_MODE_P
6580 (REGNO (reg_last_reload_reg[regno]),
6581 GET_MODE (reg_last_reload_reg[regno]),
6582 mode)))
6583 {
6584 enum reg_class rclass = rld[r].rclass, last_class;
6585 rtx last_reg = reg_last_reload_reg[regno];
6586
6587 i = REGNO (last_reg);
6588 byte = compute_reload_subreg_offset (mode,
6589 subreg,
6590 GET_MODE (last_reg));
6591 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6592 last_class = REGNO_REG_CLASS (i);
6593
6594 if (reg_reloaded_contents[i] == regno
6595 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6596 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6597 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6598 /* Even if we can't use this register as a reload
6599 register, we might use it for reload_override_in,
6600 if copying it to the desired class is cheap
6601 enough. */
6602 || ((register_move_cost (mode, last_class, rclass)
6603 < memory_move_cost (mode, rclass, true))
6604 && (secondary_reload_class (1, rclass, mode,
6605 last_reg)
6606 == NO_REGS)
6607 && !(targetm.secondary_memory_needed
6608 (mode, last_class, rclass))))
6609 && (rld[r].nregs == max_group_size
6610 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6611 i))
6612 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6613 rld[r].when_needed, rld[r].in,
6614 const0_rtx, r, 1))
6615 {
6616 /* If a group is needed, verify that all the subsequent
6617 registers still have their values intact. */
6618 int nr = hard_regno_nregs (i, rld[r].mode);
6619 int k;
6620
6621 for (k = 1; k < nr; k++)
6622 if (reg_reloaded_contents[i + k] != regno
6623 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6624 break;
6625
6626 if (k == nr)
6627 {
6628 int i1;
6629 int bad_for_class;
6630
6631 last_reg = (GET_MODE (last_reg) == mode
6632 ? last_reg : gen_rtx_REG (mode, i));
6633
6634 bad_for_class = 0;
6635 for (k = 0; k < nr; k++)
6636 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6637 i+k);
6638
6639 /* We found a register that contains the
6640 value we need. If this register is the
6641 same as an `earlyclobber' operand of the
6642 current insn, just mark it as a place to
6643 reload from since we can't use it as the
6644 reload register itself. */
6645
6646 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6647 if (reg_overlap_mentioned_for_reload_p
6648 (reg_last_reload_reg[regno],
6649 reload_earlyclobbers[i1]))
6650 break;
6651
6652 if (i1 != n_earlyclobbers
6653 || ! (free_for_value_p (i, rld[r].mode,
6654 rld[r].opnum,
6655 rld[r].when_needed, rld[r].in,
6656 rld[r].out, r, 1))
6657 /* Don't use it if we'd clobber a pseudo reg. */
6658 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6659 && rld[r].out
6660 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6661 /* Don't clobber the frame pointer. */
6662 || (i == HARD_FRAME_POINTER_REGNUM
6663 && frame_pointer_needed
6664 && rld[r].out)
6665 /* Don't really use the inherited spill reg
6666 if we need it wider than we've got it. */
6667 || paradoxical_subreg_p (rld[r].mode, mode)
6668 || bad_for_class
6669
6670 /* If find_reloads chose reload_out as reload
6671 register, stay with it - that leaves the
6672 inherited register for subsequent reloads. */
6673 || (rld[r].out && rld[r].reg_rtx
6674 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6675 {
6676 if (! rld[r].optional)
6677 {
6678 reload_override_in[r] = last_reg;
6679 reload_inheritance_insn[r]
6680 = reg_reloaded_insn[i];
6681 }
6682 }
6683 else
6684 {
6685 int k;
6686 /* We can use this as a reload reg. */
6687 /* Mark the register as in use for this part of
6688 the insn. */
6689 mark_reload_reg_in_use (i,
6690 rld[r].opnum,
6691 rld[r].when_needed,
6692 rld[r].mode);
6693 rld[r].reg_rtx = last_reg;
6694 reload_inherited[r] = 1;
6695 reload_inheritance_insn[r]
6696 = reg_reloaded_insn[i];
6697 reload_spill_index[r] = i;
6698 for (k = 0; k < nr; k++)
6699 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6700 i + k);
6701 }
6702 }
6703 }
6704 }
6705 }
6706
6707 /* Here's another way to see if the value is already lying around. */
6708 if (inheritance
6709 && rld[r].in != 0
6710 && ! reload_inherited[r]
6711 && rld[r].out == 0
6712 && (CONSTANT_P (rld[r].in)
6713 || GET_CODE (rld[r].in) == PLUS
6714 || REG_P (rld[r].in)
6715 || MEM_P (rld[r].in))
6716 && (rld[r].nregs == max_group_size
6717 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6718 search_equiv = rld[r].in;
6719
6720 if (search_equiv)
6721 {
6722 rtx equiv
6723 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6724 -1, NULL, 0, rld[r].mode);
6725 int regno = 0;
6726
6727 if (equiv != 0)
6728 {
6729 if (REG_P (equiv))
6730 regno = REGNO (equiv);
6731 else
6732 {
6733 /* This must be a SUBREG of a hard register.
6734 Make a new REG since this might be used in an
6735 address and not all machines support SUBREGs
6736 there. */
6737 gcc_assert (GET_CODE (equiv) == SUBREG);
6738 regno = subreg_regno (equiv);
6739 equiv = gen_rtx_REG (rld[r].mode, regno);
6740 /* If we choose EQUIV as the reload register, but the
6741 loop below decides to cancel the inheritance, we'll
6742 end up reloading EQUIV in rld[r].mode, not the mode
6743 it had originally. That isn't safe when EQUIV isn't
6744 available as a spill register since its value might
6745 still be live at this point. */
6746 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6747 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6748 equiv = 0;
6749 }
6750 }
6751
6752 /* If we found a spill reg, reject it unless it is free
6753 and of the desired class. */
6754 if (equiv != 0)
6755 {
6756 int regs_used = 0;
6757 int bad_for_class = 0;
6758 int max_regno = regno + rld[r].nregs;
6759
6760 for (i = regno; i < max_regno; i++)
6761 {
6762 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6763 i);
6764 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6765 i);
6766 }
6767
6768 if ((regs_used
6769 && ! free_for_value_p (regno, rld[r].mode,
6770 rld[r].opnum, rld[r].when_needed,
6771 rld[r].in, rld[r].out, r, 1))
6772 || bad_for_class)
6773 equiv = 0;
6774 }
6775
6776 if (equiv != 0
6777 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6778 equiv = 0;
6779
6780 /* We found a register that contains the value we need.
6781 If this register is the same as an `earlyclobber' operand
6782 of the current insn, just mark it as a place to reload from
6783 since we can't use it as the reload register itself. */
6784
6785 if (equiv != 0)
6786 for (i = 0; i < n_earlyclobbers; i++)
6787 if (reg_overlap_mentioned_for_reload_p (equiv,
6788 reload_earlyclobbers[i]))
6789 {
6790 if (! rld[r].optional)
6791 reload_override_in[r] = equiv;
6792 equiv = 0;
6793 break;
6794 }
6795
6796 /* If the equiv register we have found is explicitly clobbered
6797 in the current insn, it depends on the reload type if we
6798 can use it, use it for reload_override_in, or not at all.
6799 In particular, we then can't use EQUIV for a
6800 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6801
6802 if (equiv != 0)
6803 {
6804 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6805 switch (rld[r].when_needed)
6806 {
6807 case RELOAD_FOR_OTHER_ADDRESS:
6808 case RELOAD_FOR_INPADDR_ADDRESS:
6809 case RELOAD_FOR_INPUT_ADDRESS:
6810 case RELOAD_FOR_OPADDR_ADDR:
6811 break;
6812 case RELOAD_OTHER:
6813 case RELOAD_FOR_INPUT:
6814 case RELOAD_FOR_OPERAND_ADDRESS:
6815 if (! rld[r].optional)
6816 reload_override_in[r] = equiv;
6817 /* Fall through. */
6818 default:
6819 equiv = 0;
6820 break;
6821 }
6822 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6823 switch (rld[r].when_needed)
6824 {
6825 case RELOAD_FOR_OTHER_ADDRESS:
6826 case RELOAD_FOR_INPADDR_ADDRESS:
6827 case RELOAD_FOR_INPUT_ADDRESS:
6828 case RELOAD_FOR_OPADDR_ADDR:
6829 case RELOAD_FOR_OPERAND_ADDRESS:
6830 case RELOAD_FOR_INPUT:
6831 break;
6832 case RELOAD_OTHER:
6833 if (! rld[r].optional)
6834 reload_override_in[r] = equiv;
6835 /* Fall through. */
6836 default:
6837 equiv = 0;
6838 break;
6839 }
6840 }
6841
6842 /* If we found an equivalent reg, say no code need be generated
6843 to load it, and use it as our reload reg. */
6844 if (equiv != 0
6845 && (regno != HARD_FRAME_POINTER_REGNUM
6846 || !frame_pointer_needed))
6847 {
6848 int nr = hard_regno_nregs (regno, rld[r].mode);
6849 int k;
6850 rld[r].reg_rtx = equiv;
6851 reload_spill_index[r] = regno;
6852 reload_inherited[r] = 1;
6853
6854 /* If reg_reloaded_valid is not set for this register,
6855 there might be a stale spill_reg_store lying around.
6856 We must clear it, since otherwise emit_reload_insns
6857 might delete the store. */
6858 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6859 spill_reg_store[regno] = NULL;
6860 /* If any of the hard registers in EQUIV are spill
6861 registers, mark them as in use for this insn. */
6862 for (k = 0; k < nr; k++)
6863 {
6864 i = spill_reg_order[regno + k];
6865 if (i >= 0)
6866 {
6867 mark_reload_reg_in_use (regno, rld[r].opnum,
6868 rld[r].when_needed,
6869 rld[r].mode);
6870 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6871 regno + k);
6872 }
6873 }
6874 }
6875 }
6876
6877 /* If we found a register to use already, or if this is an optional
6878 reload, we are done. */
6879 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6880 continue;
6881
6882 #if 0
6883 /* No longer needed for correct operation. Might or might
6884 not give better code on the average. Want to experiment? */
6885
6886 /* See if there is a later reload that has a class different from our
6887 class that intersects our class or that requires less register
6888 than our reload. If so, we must allocate a register to this
6889 reload now, since that reload might inherit a previous reload
6890 and take the only available register in our class. Don't do this
6891 for optional reloads since they will force all previous reloads
6892 to be allocated. Also don't do this for reloads that have been
6893 turned off. */
6894
6895 for (i = j + 1; i < n_reloads; i++)
6896 {
6897 int s = reload_order[i];
6898
6899 if ((rld[s].in == 0 && rld[s].out == 0
6900 && ! rld[s].secondary_p)
6901 || rld[s].optional)
6902 continue;
6903
6904 if ((rld[s].rclass != rld[r].rclass
6905 && reg_classes_intersect_p (rld[r].rclass,
6906 rld[s].rclass))
6907 || rld[s].nregs < rld[r].nregs)
6908 break;
6909 }
6910
6911 if (i == n_reloads)
6912 continue;
6913
6914 allocate_reload_reg (chain, r, j == n_reloads - 1);
6915 #endif
6916 }
6917
6918 /* Now allocate reload registers for anything non-optional that
6919 didn't get one yet. */
6920 for (j = 0; j < n_reloads; j++)
6921 {
6922 int r = reload_order[j];
6923
6924 /* Ignore reloads that got marked inoperative. */
6925 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6926 continue;
6927
6928 /* Skip reloads that already have a register allocated or are
6929 optional. */
6930 if (rld[r].reg_rtx != 0 || rld[r].optional)
6931 continue;
6932
6933 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6934 break;
6935 }
6936
6937 /* If that loop got all the way, we have won. */
6938 if (j == n_reloads)
6939 {
6940 win = 1;
6941 break;
6942 }
6943
6944 /* Loop around and try without any inheritance. */
6945 }
6946
6947 if (! win)
6948 {
6949 /* First undo everything done by the failed attempt
6950 to allocate with inheritance. */
6951 choose_reload_regs_init (chain, save_reload_reg_rtx);
6952
6953 /* Some sanity tests to verify that the reloads found in the first
6954 pass are identical to the ones we have now. */
6955 gcc_assert (chain->n_reloads == n_reloads);
6956
6957 for (i = 0; i < n_reloads; i++)
6958 {
6959 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6960 continue;
6961 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6962 for (j = 0; j < n_spills; j++)
6963 if (spill_regs[j] == chain->rld[i].regno)
6964 if (! set_reload_reg (j, i))
6965 failed_reload (chain->insn, i);
6966 }
6967 }
6968
6969 /* If we thought we could inherit a reload, because it seemed that
6970 nothing else wanted the same reload register earlier in the insn,
6971 verify that assumption, now that all reloads have been assigned.
6972 Likewise for reloads where reload_override_in has been set. */
6973
6974 /* If doing expensive optimizations, do one preliminary pass that doesn't
6975 cancel any inheritance, but removes reloads that have been needed only
6976 for reloads that we know can be inherited. */
6977 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6978 {
6979 for (j = 0; j < n_reloads; j++)
6980 {
6981 int r = reload_order[j];
6982 rtx check_reg;
6983 rtx tem;
6984 if (reload_inherited[r] && rld[r].reg_rtx)
6985 check_reg = rld[r].reg_rtx;
6986 else if (reload_override_in[r]
6987 && (REG_P (reload_override_in[r])
6988 || GET_CODE (reload_override_in[r]) == SUBREG))
6989 check_reg = reload_override_in[r];
6990 else
6991 continue;
6992 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6993 rld[r].opnum, rld[r].when_needed, rld[r].in,
6994 (reload_inherited[r]
6995 ? rld[r].out : const0_rtx),
6996 r, 1))
6997 {
6998 if (pass)
6999 continue;
7000 reload_inherited[r] = 0;
7001 reload_override_in[r] = 0;
7002 }
7003 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7004 reload_override_in, then we do not need its related
7005 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7006 likewise for other reload types.
7007 We handle this by removing a reload when its only replacement
7008 is mentioned in reload_in of the reload we are going to inherit.
7009 A special case are auto_inc expressions; even if the input is
7010 inherited, we still need the address for the output. We can
7011 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7012 If we succeeded removing some reload and we are doing a preliminary
7013 pass just to remove such reloads, make another pass, since the
7014 removal of one reload might allow us to inherit another one. */
7015 else if (rld[r].in
7016 && rld[r].out != rld[r].in
7017 && remove_address_replacements (rld[r].in))
7018 {
7019 if (pass)
7020 pass = 2;
7021 }
7022 /* If we needed a memory location for the reload, we also have to
7023 remove its related reloads. */
7024 else if (rld[r].in
7025 && rld[r].out != rld[r].in
7026 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7027 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7028 && (targetm.secondary_memory_needed
7029 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
7030 rld[r].rclass))
7031 && remove_address_replacements
7032 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7033 rld[r].when_needed)))
7034 {
7035 if (pass)
7036 pass = 2;
7037 }
7038 }
7039 }
7040
7041 /* Now that reload_override_in is known valid,
7042 actually override reload_in. */
7043 for (j = 0; j < n_reloads; j++)
7044 if (reload_override_in[j])
7045 rld[j].in = reload_override_in[j];
7046
7047 /* If this reload won't be done because it has been canceled or is
7048 optional and not inherited, clear reload_reg_rtx so other
7049 routines (such as subst_reloads) don't get confused. */
7050 for (j = 0; j < n_reloads; j++)
7051 if (rld[j].reg_rtx != 0
7052 && ((rld[j].optional && ! reload_inherited[j])
7053 || (rld[j].in == 0 && rld[j].out == 0
7054 && ! rld[j].secondary_p)))
7055 {
7056 int regno = true_regnum (rld[j].reg_rtx);
7057
7058 if (spill_reg_order[regno] >= 0)
7059 clear_reload_reg_in_use (regno, rld[j].opnum,
7060 rld[j].when_needed, rld[j].mode);
7061 rld[j].reg_rtx = 0;
7062 reload_spill_index[j] = -1;
7063 }
7064
7065 /* Record which pseudos and which spill regs have output reloads. */
7066 for (j = 0; j < n_reloads; j++)
7067 {
7068 int r = reload_order[j];
7069
7070 i = reload_spill_index[r];
7071
7072 /* I is nonneg if this reload uses a register.
7073 If rld[r].reg_rtx is 0, this is an optional reload
7074 that we opted to ignore. */
7075 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7076 && rld[r].reg_rtx != 0)
7077 {
7078 int nregno = REGNO (rld[r].out_reg);
7079 int nr = 1;
7080
7081 if (nregno < FIRST_PSEUDO_REGISTER)
7082 nr = hard_regno_nregs (nregno, rld[r].mode);
7083
7084 while (--nr >= 0)
7085 SET_REGNO_REG_SET (&reg_has_output_reload,
7086 nregno + nr);
7087
7088 if (i >= 0)
7089 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7090
7091 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7092 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7093 || rld[r].when_needed == RELOAD_FOR_INSN);
7094 }
7095 }
7096 }
7097
7098 /* Deallocate the reload register for reload R. This is called from
7099 remove_address_replacements. */
7100
7101 void
7102 deallocate_reload_reg (int r)
7103 {
7104 int regno;
7105
7106 if (! rld[r].reg_rtx)
7107 return;
7108 regno = true_regnum (rld[r].reg_rtx);
7109 rld[r].reg_rtx = 0;
7110 if (spill_reg_order[regno] >= 0)
7111 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7112 rld[r].mode);
7113 reload_spill_index[r] = -1;
7114 }
7115 \f
7116 /* These arrays are filled by emit_reload_insns and its subroutines. */
7117 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7118 static rtx_insn *other_input_address_reload_insns = 0;
7119 static rtx_insn *other_input_reload_insns = 0;
7120 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7121 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7122 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7123 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7124 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7125 static rtx_insn *operand_reload_insns = 0;
7126 static rtx_insn *other_operand_reload_insns = 0;
7127 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7128
7129 /* Values to be put in spill_reg_store are put here first. Instructions
7130 must only be placed here if the associated reload register reaches
7131 the end of the instruction's reload sequence. */
7132 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7133 static HARD_REG_SET reg_reloaded_died;
7134
7135 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7136 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7137 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7138 adjusted register, and return true. Otherwise, return false. */
7139 static bool
7140 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7141 enum reg_class new_class,
7142 machine_mode new_mode)
7143
7144 {
7145 rtx reg;
7146
7147 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7148 {
7149 unsigned regno = REGNO (reg);
7150
7151 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7152 continue;
7153 if (GET_MODE (reg) != new_mode)
7154 {
7155 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7156 continue;
7157 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7158 continue;
7159 reg = reload_adjust_reg_for_mode (reg, new_mode);
7160 }
7161 *reload_reg = reg;
7162 return true;
7163 }
7164 return false;
7165 }
7166
7167 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7168 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7169 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7170 adjusted register, and return true. Otherwise, return false. */
7171 static bool
7172 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7173 enum insn_code icode)
7174
7175 {
7176 enum reg_class new_class = scratch_reload_class (icode);
7177 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7178
7179 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7180 new_class, new_mode);
7181 }
7182
7183 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7184 has the number J. OLD contains the value to be used as input. */
7185
7186 static void
7187 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7188 rtx old, int j)
7189 {
7190 rtx_insn *insn = chain->insn;
7191 rtx reloadreg;
7192 rtx oldequiv_reg = 0;
7193 rtx oldequiv = 0;
7194 int special = 0;
7195 machine_mode mode;
7196 rtx_insn **where;
7197
7198 /* delete_output_reload is only invoked properly if old contains
7199 the original pseudo register. Since this is replaced with a
7200 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7201 find the pseudo in RELOAD_IN_REG. This is also used to
7202 determine whether a secondary reload is needed. */
7203 if (reload_override_in[j]
7204 && (REG_P (rl->in_reg)
7205 || (GET_CODE (rl->in_reg) == SUBREG
7206 && REG_P (SUBREG_REG (rl->in_reg)))))
7207 {
7208 oldequiv = old;
7209 old = rl->in_reg;
7210 }
7211 if (oldequiv == 0)
7212 oldequiv = old;
7213 else if (REG_P (oldequiv))
7214 oldequiv_reg = oldequiv;
7215 else if (GET_CODE (oldequiv) == SUBREG)
7216 oldequiv_reg = SUBREG_REG (oldequiv);
7217
7218 reloadreg = reload_reg_rtx_for_input[j];
7219 mode = GET_MODE (reloadreg);
7220
7221 /* If we are reloading from a register that was recently stored in
7222 with an output-reload, see if we can prove there was
7223 actually no need to store the old value in it. */
7224
7225 if (optimize && REG_P (oldequiv)
7226 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7227 && spill_reg_store[REGNO (oldequiv)]
7228 && REG_P (old)
7229 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7230 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7231 rl->out_reg)))
7232 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7233
7234 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7235 OLDEQUIV. */
7236
7237 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7238 oldequiv = SUBREG_REG (oldequiv);
7239 if (GET_MODE (oldequiv) != VOIDmode
7240 && mode != GET_MODE (oldequiv))
7241 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7242
7243 /* Switch to the right place to emit the reload insns. */
7244 switch (rl->when_needed)
7245 {
7246 case RELOAD_OTHER:
7247 where = &other_input_reload_insns;
7248 break;
7249 case RELOAD_FOR_INPUT:
7250 where = &input_reload_insns[rl->opnum];
7251 break;
7252 case RELOAD_FOR_INPUT_ADDRESS:
7253 where = &input_address_reload_insns[rl->opnum];
7254 break;
7255 case RELOAD_FOR_INPADDR_ADDRESS:
7256 where = &inpaddr_address_reload_insns[rl->opnum];
7257 break;
7258 case RELOAD_FOR_OUTPUT_ADDRESS:
7259 where = &output_address_reload_insns[rl->opnum];
7260 break;
7261 case RELOAD_FOR_OUTADDR_ADDRESS:
7262 where = &outaddr_address_reload_insns[rl->opnum];
7263 break;
7264 case RELOAD_FOR_OPERAND_ADDRESS:
7265 where = &operand_reload_insns;
7266 break;
7267 case RELOAD_FOR_OPADDR_ADDR:
7268 where = &other_operand_reload_insns;
7269 break;
7270 case RELOAD_FOR_OTHER_ADDRESS:
7271 where = &other_input_address_reload_insns;
7272 break;
7273 default:
7274 gcc_unreachable ();
7275 }
7276
7277 push_to_sequence (*where);
7278
7279 /* Auto-increment addresses must be reloaded in a special way. */
7280 if (rl->out && ! rl->out_reg)
7281 {
7282 /* We are not going to bother supporting the case where a
7283 incremented register can't be copied directly from
7284 OLDEQUIV since this seems highly unlikely. */
7285 gcc_assert (rl->secondary_in_reload < 0);
7286
7287 if (reload_inherited[j])
7288 oldequiv = reloadreg;
7289
7290 old = XEXP (rl->in_reg, 0);
7291
7292 /* Prevent normal processing of this reload. */
7293 special = 1;
7294 /* Output a special code sequence for this case. */
7295 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7296 }
7297
7298 /* If we are reloading a pseudo-register that was set by the previous
7299 insn, see if we can get rid of that pseudo-register entirely
7300 by redirecting the previous insn into our reload register. */
7301
7302 else if (optimize && REG_P (old)
7303 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7304 && dead_or_set_p (insn, old)
7305 /* This is unsafe if some other reload
7306 uses the same reg first. */
7307 && ! conflicts_with_override (reloadreg)
7308 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7309 rl->when_needed, old, rl->out, j, 0))
7310 {
7311 rtx_insn *temp = PREV_INSN (insn);
7312 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7313 temp = PREV_INSN (temp);
7314 if (temp
7315 && NONJUMP_INSN_P (temp)
7316 && GET_CODE (PATTERN (temp)) == SET
7317 && SET_DEST (PATTERN (temp)) == old
7318 /* Make sure we can access insn_operand_constraint. */
7319 && asm_noperands (PATTERN (temp)) < 0
7320 /* This is unsafe if operand occurs more than once in current
7321 insn. Perhaps some occurrences aren't reloaded. */
7322 && count_occurrences (PATTERN (insn), old, 0) == 1)
7323 {
7324 rtx old = SET_DEST (PATTERN (temp));
7325 /* Store into the reload register instead of the pseudo. */
7326 SET_DEST (PATTERN (temp)) = reloadreg;
7327
7328 /* Verify that resulting insn is valid.
7329
7330 Note that we have replaced the destination of TEMP with
7331 RELOADREG. If TEMP references RELOADREG within an
7332 autoincrement addressing mode, then the resulting insn
7333 is ill-formed and we must reject this optimization. */
7334 extract_insn (temp);
7335 if (constrain_operands (1, get_enabled_alternatives (temp))
7336 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7337 {
7338 /* If the previous insn is an output reload, the source is
7339 a reload register, and its spill_reg_store entry will
7340 contain the previous destination. This is now
7341 invalid. */
7342 if (REG_P (SET_SRC (PATTERN (temp)))
7343 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7344 {
7345 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7346 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7347 }
7348
7349 /* If these are the only uses of the pseudo reg,
7350 pretend for GDB it lives in the reload reg we used. */
7351 if (REG_N_DEATHS (REGNO (old)) == 1
7352 && REG_N_SETS (REGNO (old)) == 1)
7353 {
7354 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7355 if (ira_conflicts_p)
7356 /* Inform IRA about the change. */
7357 ira_mark_allocation_change (REGNO (old));
7358 alter_reg (REGNO (old), -1, false);
7359 }
7360 special = 1;
7361
7362 /* Adjust any debug insns between temp and insn. */
7363 while ((temp = NEXT_INSN (temp)) != insn)
7364 if (DEBUG_BIND_INSN_P (temp))
7365 INSN_VAR_LOCATION_LOC (temp)
7366 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7367 old, reloadreg);
7368 else
7369 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7370 }
7371 else
7372 {
7373 SET_DEST (PATTERN (temp)) = old;
7374 }
7375 }
7376 }
7377
7378 /* We can't do that, so output an insn to load RELOADREG. */
7379
7380 /* If we have a secondary reload, pick up the secondary register
7381 and icode, if any. If OLDEQUIV and OLD are different or
7382 if this is an in-out reload, recompute whether or not we
7383 still need a secondary register and what the icode should
7384 be. If we still need a secondary register and the class or
7385 icode is different, go back to reloading from OLD if using
7386 OLDEQUIV means that we got the wrong type of register. We
7387 cannot have different class or icode due to an in-out reload
7388 because we don't make such reloads when both the input and
7389 output need secondary reload registers. */
7390
7391 if (! special && rl->secondary_in_reload >= 0)
7392 {
7393 rtx second_reload_reg = 0;
7394 rtx third_reload_reg = 0;
7395 int secondary_reload = rl->secondary_in_reload;
7396 rtx real_oldequiv = oldequiv;
7397 rtx real_old = old;
7398 rtx tmp;
7399 enum insn_code icode;
7400 enum insn_code tertiary_icode = CODE_FOR_nothing;
7401
7402 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7403 and similarly for OLD.
7404 See comments in get_secondary_reload in reload.c. */
7405 /* If it is a pseudo that cannot be replaced with its
7406 equivalent MEM, we must fall back to reload_in, which
7407 will have all the necessary substitutions registered.
7408 Likewise for a pseudo that can't be replaced with its
7409 equivalent constant.
7410
7411 Take extra care for subregs of such pseudos. Note that
7412 we cannot use reg_equiv_mem in this case because it is
7413 not in the right mode. */
7414
7415 tmp = oldequiv;
7416 if (GET_CODE (tmp) == SUBREG)
7417 tmp = SUBREG_REG (tmp);
7418 if (REG_P (tmp)
7419 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7420 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7421 || reg_equiv_constant (REGNO (tmp)) != 0))
7422 {
7423 if (! reg_equiv_mem (REGNO (tmp))
7424 || num_not_at_initial_offset
7425 || GET_CODE (oldequiv) == SUBREG)
7426 real_oldequiv = rl->in;
7427 else
7428 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7429 }
7430
7431 tmp = old;
7432 if (GET_CODE (tmp) == SUBREG)
7433 tmp = SUBREG_REG (tmp);
7434 if (REG_P (tmp)
7435 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7436 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7437 || reg_equiv_constant (REGNO (tmp)) != 0))
7438 {
7439 if (! reg_equiv_mem (REGNO (tmp))
7440 || num_not_at_initial_offset
7441 || GET_CODE (old) == SUBREG)
7442 real_old = rl->in;
7443 else
7444 real_old = reg_equiv_mem (REGNO (tmp));
7445 }
7446
7447 second_reload_reg = rld[secondary_reload].reg_rtx;
7448 if (rld[secondary_reload].secondary_in_reload >= 0)
7449 {
7450 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7451
7452 third_reload_reg = rld[tertiary_reload].reg_rtx;
7453 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7454 /* We'd have to add more code for quartary reloads. */
7455 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7456 }
7457 icode = rl->secondary_in_icode;
7458
7459 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7460 || (rl->in != 0 && rl->out != 0))
7461 {
7462 secondary_reload_info sri, sri2;
7463 enum reg_class new_class, new_t_class;
7464
7465 sri.icode = CODE_FOR_nothing;
7466 sri.prev_sri = NULL;
7467 new_class
7468 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7469 rl->rclass, mode,
7470 &sri);
7471
7472 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7473 second_reload_reg = 0;
7474 else if (new_class == NO_REGS)
7475 {
7476 if (reload_adjust_reg_for_icode (&second_reload_reg,
7477 third_reload_reg,
7478 (enum insn_code) sri.icode))
7479 {
7480 icode = (enum insn_code) sri.icode;
7481 third_reload_reg = 0;
7482 }
7483 else
7484 {
7485 oldequiv = old;
7486 real_oldequiv = real_old;
7487 }
7488 }
7489 else if (sri.icode != CODE_FOR_nothing)
7490 /* We currently lack a way to express this in reloads. */
7491 gcc_unreachable ();
7492 else
7493 {
7494 sri2.icode = CODE_FOR_nothing;
7495 sri2.prev_sri = &sri;
7496 new_t_class
7497 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7498 new_class, mode,
7499 &sri);
7500 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7501 {
7502 if (reload_adjust_reg_for_temp (&second_reload_reg,
7503 third_reload_reg,
7504 new_class, mode))
7505 {
7506 third_reload_reg = 0;
7507 tertiary_icode = (enum insn_code) sri2.icode;
7508 }
7509 else
7510 {
7511 oldequiv = old;
7512 real_oldequiv = real_old;
7513 }
7514 }
7515 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7516 {
7517 rtx intermediate = second_reload_reg;
7518
7519 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7520 new_class, mode)
7521 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7522 ((enum insn_code)
7523 sri2.icode)))
7524 {
7525 second_reload_reg = intermediate;
7526 tertiary_icode = (enum insn_code) sri2.icode;
7527 }
7528 else
7529 {
7530 oldequiv = old;
7531 real_oldequiv = real_old;
7532 }
7533 }
7534 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7535 {
7536 rtx intermediate = second_reload_reg;
7537
7538 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7539 new_class, mode)
7540 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7541 new_t_class, mode))
7542 {
7543 second_reload_reg = intermediate;
7544 tertiary_icode = (enum insn_code) sri2.icode;
7545 }
7546 else
7547 {
7548 oldequiv = old;
7549 real_oldequiv = real_old;
7550 }
7551 }
7552 else
7553 {
7554 /* This could be handled more intelligently too. */
7555 oldequiv = old;
7556 real_oldequiv = real_old;
7557 }
7558 }
7559 }
7560
7561 /* If we still need a secondary reload register, check
7562 to see if it is being used as a scratch or intermediate
7563 register and generate code appropriately. If we need
7564 a scratch register, use REAL_OLDEQUIV since the form of
7565 the insn may depend on the actual address if it is
7566 a MEM. */
7567
7568 if (second_reload_reg)
7569 {
7570 if (icode != CODE_FOR_nothing)
7571 {
7572 /* We'd have to add extra code to handle this case. */
7573 gcc_assert (!third_reload_reg);
7574
7575 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7576 second_reload_reg));
7577 special = 1;
7578 }
7579 else
7580 {
7581 /* See if we need a scratch register to load the
7582 intermediate register (a tertiary reload). */
7583 if (tertiary_icode != CODE_FOR_nothing)
7584 {
7585 emit_insn ((GEN_FCN (tertiary_icode)
7586 (second_reload_reg, real_oldequiv,
7587 third_reload_reg)));
7588 }
7589 else if (third_reload_reg)
7590 {
7591 gen_reload (third_reload_reg, real_oldequiv,
7592 rl->opnum,
7593 rl->when_needed);
7594 gen_reload (second_reload_reg, third_reload_reg,
7595 rl->opnum,
7596 rl->when_needed);
7597 }
7598 else
7599 gen_reload (second_reload_reg, real_oldequiv,
7600 rl->opnum,
7601 rl->when_needed);
7602
7603 oldequiv = second_reload_reg;
7604 }
7605 }
7606 }
7607
7608 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7609 {
7610 rtx real_oldequiv = oldequiv;
7611
7612 if ((REG_P (oldequiv)
7613 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7614 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7615 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7616 || (GET_CODE (oldequiv) == SUBREG
7617 && REG_P (SUBREG_REG (oldequiv))
7618 && (REGNO (SUBREG_REG (oldequiv))
7619 >= FIRST_PSEUDO_REGISTER)
7620 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7621 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7622 || (CONSTANT_P (oldequiv)
7623 && (targetm.preferred_reload_class (oldequiv,
7624 REGNO_REG_CLASS (REGNO (reloadreg)))
7625 == NO_REGS)))
7626 real_oldequiv = rl->in;
7627 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7628 rl->when_needed);
7629 }
7630
7631 if (cfun->can_throw_non_call_exceptions)
7632 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7633
7634 /* End this sequence. */
7635 *where = get_insns ();
7636 end_sequence ();
7637
7638 /* Update reload_override_in so that delete_address_reloads_1
7639 can see the actual register usage. */
7640 if (oldequiv_reg)
7641 reload_override_in[j] = oldequiv;
7642 }
7643
7644 /* Generate insns to for the output reload RL, which is for the insn described
7645 by CHAIN and has the number J. */
7646 static void
7647 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7648 int j)
7649 {
7650 rtx reloadreg;
7651 rtx_insn *insn = chain->insn;
7652 int special = 0;
7653 rtx old = rl->out;
7654 machine_mode mode;
7655 rtx_insn *p;
7656 rtx rl_reg_rtx;
7657
7658 if (rl->when_needed == RELOAD_OTHER)
7659 start_sequence ();
7660 else
7661 push_to_sequence (output_reload_insns[rl->opnum]);
7662
7663 rl_reg_rtx = reload_reg_rtx_for_output[j];
7664 mode = GET_MODE (rl_reg_rtx);
7665
7666 reloadreg = rl_reg_rtx;
7667
7668 /* If we need two reload regs, set RELOADREG to the intermediate
7669 one, since it will be stored into OLD. We might need a secondary
7670 register only for an input reload, so check again here. */
7671
7672 if (rl->secondary_out_reload >= 0)
7673 {
7674 rtx real_old = old;
7675 int secondary_reload = rl->secondary_out_reload;
7676 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7677
7678 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7679 && reg_equiv_mem (REGNO (old)) != 0)
7680 real_old = reg_equiv_mem (REGNO (old));
7681
7682 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7683 {
7684 rtx second_reloadreg = reloadreg;
7685 reloadreg = rld[secondary_reload].reg_rtx;
7686
7687 /* See if RELOADREG is to be used as a scratch register
7688 or as an intermediate register. */
7689 if (rl->secondary_out_icode != CODE_FOR_nothing)
7690 {
7691 /* We'd have to add extra code to handle this case. */
7692 gcc_assert (tertiary_reload < 0);
7693
7694 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7695 (real_old, second_reloadreg, reloadreg)));
7696 special = 1;
7697 }
7698 else
7699 {
7700 /* See if we need both a scratch and intermediate reload
7701 register. */
7702
7703 enum insn_code tertiary_icode
7704 = rld[secondary_reload].secondary_out_icode;
7705
7706 /* We'd have to add more code for quartary reloads. */
7707 gcc_assert (tertiary_reload < 0
7708 || rld[tertiary_reload].secondary_out_reload < 0);
7709
7710 if (GET_MODE (reloadreg) != mode)
7711 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7712
7713 if (tertiary_icode != CODE_FOR_nothing)
7714 {
7715 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7716
7717 /* Copy primary reload reg to secondary reload reg.
7718 (Note that these have been swapped above, then
7719 secondary reload reg to OLD using our insn.) */
7720
7721 /* If REAL_OLD is a paradoxical SUBREG, remove it
7722 and try to put the opposite SUBREG on
7723 RELOADREG. */
7724 strip_paradoxical_subreg (&real_old, &reloadreg);
7725
7726 gen_reload (reloadreg, second_reloadreg,
7727 rl->opnum, rl->when_needed);
7728 emit_insn ((GEN_FCN (tertiary_icode)
7729 (real_old, reloadreg, third_reloadreg)));
7730 special = 1;
7731 }
7732
7733 else
7734 {
7735 /* Copy between the reload regs here and then to
7736 OUT later. */
7737
7738 gen_reload (reloadreg, second_reloadreg,
7739 rl->opnum, rl->when_needed);
7740 if (tertiary_reload >= 0)
7741 {
7742 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7743
7744 gen_reload (third_reloadreg, reloadreg,
7745 rl->opnum, rl->when_needed);
7746 reloadreg = third_reloadreg;
7747 }
7748 }
7749 }
7750 }
7751 }
7752
7753 /* Output the last reload insn. */
7754 if (! special)
7755 {
7756 rtx set;
7757
7758 /* Don't output the last reload if OLD is not the dest of
7759 INSN and is in the src and is clobbered by INSN. */
7760 if (! flag_expensive_optimizations
7761 || !REG_P (old)
7762 || !(set = single_set (insn))
7763 || rtx_equal_p (old, SET_DEST (set))
7764 || !reg_mentioned_p (old, SET_SRC (set))
7765 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7766 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7767 gen_reload (old, reloadreg, rl->opnum,
7768 rl->when_needed);
7769 }
7770
7771 /* Look at all insns we emitted, just to be safe. */
7772 for (p = get_insns (); p; p = NEXT_INSN (p))
7773 if (INSN_P (p))
7774 {
7775 rtx pat = PATTERN (p);
7776
7777 /* If this output reload doesn't come from a spill reg,
7778 clear any memory of reloaded copies of the pseudo reg.
7779 If this output reload comes from a spill reg,
7780 reg_has_output_reload will make this do nothing. */
7781 note_stores (pat, forget_old_reloads_1, NULL);
7782
7783 if (reg_mentioned_p (rl_reg_rtx, pat))
7784 {
7785 rtx set = single_set (insn);
7786 if (reload_spill_index[j] < 0
7787 && set
7788 && SET_SRC (set) == rl_reg_rtx)
7789 {
7790 int src = REGNO (SET_SRC (set));
7791
7792 reload_spill_index[j] = src;
7793 SET_HARD_REG_BIT (reg_is_output_reload, src);
7794 if (find_regno_note (insn, REG_DEAD, src))
7795 SET_HARD_REG_BIT (reg_reloaded_died, src);
7796 }
7797 if (HARD_REGISTER_P (rl_reg_rtx))
7798 {
7799 int s = rl->secondary_out_reload;
7800 set = single_set (p);
7801 /* If this reload copies only to the secondary reload
7802 register, the secondary reload does the actual
7803 store. */
7804 if (s >= 0 && set == NULL_RTX)
7805 /* We can't tell what function the secondary reload
7806 has and where the actual store to the pseudo is
7807 made; leave new_spill_reg_store alone. */
7808 ;
7809 else if (s >= 0
7810 && SET_SRC (set) == rl_reg_rtx
7811 && SET_DEST (set) == rld[s].reg_rtx)
7812 {
7813 /* Usually the next instruction will be the
7814 secondary reload insn; if we can confirm
7815 that it is, setting new_spill_reg_store to
7816 that insn will allow an extra optimization. */
7817 rtx s_reg = rld[s].reg_rtx;
7818 rtx_insn *next = NEXT_INSN (p);
7819 rld[s].out = rl->out;
7820 rld[s].out_reg = rl->out_reg;
7821 set = single_set (next);
7822 if (set && SET_SRC (set) == s_reg
7823 && reload_reg_rtx_reaches_end_p (s_reg, s))
7824 {
7825 SET_HARD_REG_BIT (reg_is_output_reload,
7826 REGNO (s_reg));
7827 new_spill_reg_store[REGNO (s_reg)] = next;
7828 }
7829 }
7830 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7831 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7832 }
7833 }
7834 }
7835
7836 if (rl->when_needed == RELOAD_OTHER)
7837 {
7838 emit_insn (other_output_reload_insns[rl->opnum]);
7839 other_output_reload_insns[rl->opnum] = get_insns ();
7840 }
7841 else
7842 output_reload_insns[rl->opnum] = get_insns ();
7843
7844 if (cfun->can_throw_non_call_exceptions)
7845 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7846
7847 end_sequence ();
7848 }
7849
7850 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7851 and has the number J. */
7852 static void
7853 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7854 {
7855 rtx_insn *insn = chain->insn;
7856 rtx old = (rl->in && MEM_P (rl->in)
7857 ? rl->in_reg : rl->in);
7858 rtx reg_rtx = rl->reg_rtx;
7859
7860 if (old && reg_rtx)
7861 {
7862 machine_mode mode;
7863
7864 /* Determine the mode to reload in.
7865 This is very tricky because we have three to choose from.
7866 There is the mode the insn operand wants (rl->inmode).
7867 There is the mode of the reload register RELOADREG.
7868 There is the intrinsic mode of the operand, which we could find
7869 by stripping some SUBREGs.
7870 It turns out that RELOADREG's mode is irrelevant:
7871 we can change that arbitrarily.
7872
7873 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7874 then the reload reg may not support QImode moves, so use SImode.
7875 If foo is in memory due to spilling a pseudo reg, this is safe,
7876 because the QImode value is in the least significant part of a
7877 slot big enough for a SImode. If foo is some other sort of
7878 memory reference, then it is impossible to reload this case,
7879 so previous passes had better make sure this never happens.
7880
7881 Then consider a one-word union which has SImode and one of its
7882 members is a float, being fetched as (SUBREG:SF union:SI).
7883 We must fetch that as SFmode because we could be loading into
7884 a float-only register. In this case OLD's mode is correct.
7885
7886 Consider an immediate integer: it has VOIDmode. Here we need
7887 to get a mode from something else.
7888
7889 In some cases, there is a fourth mode, the operand's
7890 containing mode. If the insn specifies a containing mode for
7891 this operand, it overrides all others.
7892
7893 I am not sure whether the algorithm here is always right,
7894 but it does the right things in those cases. */
7895
7896 mode = GET_MODE (old);
7897 if (mode == VOIDmode)
7898 mode = rl->inmode;
7899
7900 /* We cannot use gen_lowpart_common since it can do the wrong thing
7901 when REG_RTX has a multi-word mode. Note that REG_RTX must
7902 always be a REG here. */
7903 if (GET_MODE (reg_rtx) != mode)
7904 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7905 }
7906 reload_reg_rtx_for_input[j] = reg_rtx;
7907
7908 if (old != 0
7909 /* AUTO_INC reloads need to be handled even if inherited. We got an
7910 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7911 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7912 && ! rtx_equal_p (reg_rtx, old)
7913 && reg_rtx != 0)
7914 emit_input_reload_insns (chain, rld + j, old, j);
7915
7916 /* When inheriting a wider reload, we have a MEM in rl->in,
7917 e.g. inheriting a SImode output reload for
7918 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7919 if (optimize && reload_inherited[j] && rl->in
7920 && MEM_P (rl->in)
7921 && MEM_P (rl->in_reg)
7922 && reload_spill_index[j] >= 0
7923 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7924 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7925
7926 /* If we are reloading a register that was recently stored in with an
7927 output-reload, see if we can prove there was
7928 actually no need to store the old value in it. */
7929
7930 if (optimize
7931 && (reload_inherited[j] || reload_override_in[j])
7932 && reg_rtx
7933 && REG_P (reg_rtx)
7934 && spill_reg_store[REGNO (reg_rtx)] != 0
7935 #if 0
7936 /* There doesn't seem to be any reason to restrict this to pseudos
7937 and doing so loses in the case where we are copying from a
7938 register of the wrong class. */
7939 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7940 #endif
7941 /* The insn might have already some references to stackslots
7942 replaced by MEMs, while reload_out_reg still names the
7943 original pseudo. */
7944 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7945 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7946 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7947 }
7948
7949 /* Do output reloading for reload RL, which is for the insn described by
7950 CHAIN and has the number J.
7951 ??? At some point we need to support handling output reloads of
7952 JUMP_INSNs or insns that set cc0. */
7953 static void
7954 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7955 {
7956 rtx note, old;
7957 rtx_insn *insn = chain->insn;
7958 /* If this is an output reload that stores something that is
7959 not loaded in this same reload, see if we can eliminate a previous
7960 store. */
7961 rtx pseudo = rl->out_reg;
7962 rtx reg_rtx = rl->reg_rtx;
7963
7964 if (rl->out && reg_rtx)
7965 {
7966 machine_mode mode;
7967
7968 /* Determine the mode to reload in.
7969 See comments above (for input reloading). */
7970 mode = GET_MODE (rl->out);
7971 if (mode == VOIDmode)
7972 {
7973 /* VOIDmode should never happen for an output. */
7974 if (asm_noperands (PATTERN (insn)) < 0)
7975 /* It's the compiler's fault. */
7976 fatal_insn ("VOIDmode on an output", insn);
7977 error_for_asm (insn, "output operand is constant in %<asm%>");
7978 /* Prevent crash--use something we know is valid. */
7979 mode = word_mode;
7980 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7981 }
7982 if (GET_MODE (reg_rtx) != mode)
7983 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7984 }
7985 reload_reg_rtx_for_output[j] = reg_rtx;
7986
7987 if (pseudo
7988 && optimize
7989 && REG_P (pseudo)
7990 && ! rtx_equal_p (rl->in_reg, pseudo)
7991 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7992 && reg_last_reload_reg[REGNO (pseudo)])
7993 {
7994 int pseudo_no = REGNO (pseudo);
7995 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7996
7997 /* We don't need to test full validity of last_regno for
7998 inherit here; we only want to know if the store actually
7999 matches the pseudo. */
8000 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8001 && reg_reloaded_contents[last_regno] == pseudo_no
8002 && spill_reg_store[last_regno]
8003 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8004 delete_output_reload (insn, j, last_regno, reg_rtx);
8005 }
8006
8007 old = rl->out_reg;
8008 if (old == 0
8009 || reg_rtx == 0
8010 || rtx_equal_p (old, reg_rtx))
8011 return;
8012
8013 /* An output operand that dies right away does need a reload,
8014 but need not be copied from it. Show the new location in the
8015 REG_UNUSED note. */
8016 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8017 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8018 {
8019 XEXP (note, 0) = reg_rtx;
8020 return;
8021 }
8022 /* Likewise for a SUBREG of an operand that dies. */
8023 else if (GET_CODE (old) == SUBREG
8024 && REG_P (SUBREG_REG (old))
8025 && (note = find_reg_note (insn, REG_UNUSED,
8026 SUBREG_REG (old))) != 0)
8027 {
8028 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8029 return;
8030 }
8031 else if (GET_CODE (old) == SCRATCH)
8032 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8033 but we don't want to make an output reload. */
8034 return;
8035
8036 /* If is a JUMP_INSN, we can't support output reloads yet. */
8037 gcc_assert (NONJUMP_INSN_P (insn));
8038
8039 emit_output_reload_insns (chain, rld + j, j);
8040 }
8041
8042 /* A reload copies values of MODE from register SRC to register DEST.
8043 Return true if it can be treated for inheritance purposes like a
8044 group of reloads, each one reloading a single hard register. The
8045 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8046 occupy the same number of hard registers. */
8047
8048 static bool
8049 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8050 int src ATTRIBUTE_UNUSED,
8051 machine_mode mode ATTRIBUTE_UNUSED)
8052 {
8053 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8054 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8055 }
8056
8057 /* Output insns to reload values in and out of the chosen reload regs. */
8058
8059 static void
8060 emit_reload_insns (struct insn_chain *chain)
8061 {
8062 rtx_insn *insn = chain->insn;
8063
8064 int j;
8065
8066 CLEAR_HARD_REG_SET (reg_reloaded_died);
8067
8068 for (j = 0; j < reload_n_operands; j++)
8069 input_reload_insns[j] = input_address_reload_insns[j]
8070 = inpaddr_address_reload_insns[j]
8071 = output_reload_insns[j] = output_address_reload_insns[j]
8072 = outaddr_address_reload_insns[j]
8073 = other_output_reload_insns[j] = 0;
8074 other_input_address_reload_insns = 0;
8075 other_input_reload_insns = 0;
8076 operand_reload_insns = 0;
8077 other_operand_reload_insns = 0;
8078
8079 /* Dump reloads into the dump file. */
8080 if (dump_file)
8081 {
8082 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8083 debug_reload_to_stream (dump_file);
8084 }
8085
8086 for (j = 0; j < n_reloads; j++)
8087 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8088 {
8089 unsigned int i;
8090
8091 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8092 new_spill_reg_store[i] = 0;
8093 }
8094
8095 /* Now output the instructions to copy the data into and out of the
8096 reload registers. Do these in the order that the reloads were reported,
8097 since reloads of base and index registers precede reloads of operands
8098 and the operands may need the base and index registers reloaded. */
8099
8100 for (j = 0; j < n_reloads; j++)
8101 {
8102 do_input_reload (chain, rld + j, j);
8103 do_output_reload (chain, rld + j, j);
8104 }
8105
8106 /* Now write all the insns we made for reloads in the order expected by
8107 the allocation functions. Prior to the insn being reloaded, we write
8108 the following reloads:
8109
8110 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8111
8112 RELOAD_OTHER reloads.
8113
8114 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8115 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8116 RELOAD_FOR_INPUT reload for the operand.
8117
8118 RELOAD_FOR_OPADDR_ADDRS reloads.
8119
8120 RELOAD_FOR_OPERAND_ADDRESS reloads.
8121
8122 After the insn being reloaded, we write the following:
8123
8124 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8125 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8126 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8127 reloads for the operand. The RELOAD_OTHER output reloads are
8128 output in descending order by reload number. */
8129
8130 emit_insn_before (other_input_address_reload_insns, insn);
8131 emit_insn_before (other_input_reload_insns, insn);
8132
8133 for (j = 0; j < reload_n_operands; j++)
8134 {
8135 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8136 emit_insn_before (input_address_reload_insns[j], insn);
8137 emit_insn_before (input_reload_insns[j], insn);
8138 }
8139
8140 emit_insn_before (other_operand_reload_insns, insn);
8141 emit_insn_before (operand_reload_insns, insn);
8142
8143 for (j = 0; j < reload_n_operands; j++)
8144 {
8145 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8146 x = emit_insn_after (output_address_reload_insns[j], x);
8147 x = emit_insn_after (output_reload_insns[j], x);
8148 emit_insn_after (other_output_reload_insns[j], x);
8149 }
8150
8151 /* For all the spill regs newly reloaded in this instruction,
8152 record what they were reloaded from, so subsequent instructions
8153 can inherit the reloads.
8154
8155 Update spill_reg_store for the reloads of this insn.
8156 Copy the elements that were updated in the loop above. */
8157
8158 for (j = 0; j < n_reloads; j++)
8159 {
8160 int r = reload_order[j];
8161 int i = reload_spill_index[r];
8162
8163 /* If this is a non-inherited input reload from a pseudo, we must
8164 clear any memory of a previous store to the same pseudo. Only do
8165 something if there will not be an output reload for the pseudo
8166 being reloaded. */
8167 if (rld[r].in_reg != 0
8168 && ! (reload_inherited[r] || reload_override_in[r]))
8169 {
8170 rtx reg = rld[r].in_reg;
8171
8172 if (GET_CODE (reg) == SUBREG)
8173 reg = SUBREG_REG (reg);
8174
8175 if (REG_P (reg)
8176 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8177 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8178 {
8179 int nregno = REGNO (reg);
8180
8181 if (reg_last_reload_reg[nregno])
8182 {
8183 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8184
8185 if (reg_reloaded_contents[last_regno] == nregno)
8186 spill_reg_store[last_regno] = 0;
8187 }
8188 }
8189 }
8190
8191 /* I is nonneg if this reload used a register.
8192 If rld[r].reg_rtx is 0, this is an optional reload
8193 that we opted to ignore. */
8194
8195 if (i >= 0 && rld[r].reg_rtx != 0)
8196 {
8197 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8198 int k;
8199
8200 /* For a multi register reload, we need to check if all or part
8201 of the value lives to the end. */
8202 for (k = 0; k < nr; k++)
8203 if (reload_reg_reaches_end_p (i + k, r))
8204 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8205
8206 /* Maybe the spill reg contains a copy of reload_out. */
8207 if (rld[r].out != 0
8208 && (REG_P (rld[r].out)
8209 || (rld[r].out_reg
8210 ? REG_P (rld[r].out_reg)
8211 /* The reload value is an auto-modification of
8212 some kind. For PRE_INC, POST_INC, PRE_DEC
8213 and POST_DEC, we record an equivalence
8214 between the reload register and the operand
8215 on the optimistic assumption that we can make
8216 the equivalence hold. reload_as_needed must
8217 then either make it hold or invalidate the
8218 equivalence.
8219
8220 PRE_MODIFY and POST_MODIFY addresses are reloaded
8221 somewhat differently, and allowing them here leads
8222 to problems. */
8223 : (GET_CODE (rld[r].out) != POST_MODIFY
8224 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8225 {
8226 rtx reg;
8227
8228 reg = reload_reg_rtx_for_output[r];
8229 if (reload_reg_rtx_reaches_end_p (reg, r))
8230 {
8231 machine_mode mode = GET_MODE (reg);
8232 int regno = REGNO (reg);
8233 int nregs = REG_NREGS (reg);
8234 rtx out = (REG_P (rld[r].out)
8235 ? rld[r].out
8236 : rld[r].out_reg
8237 ? rld[r].out_reg
8238 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8239 int out_regno = REGNO (out);
8240 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8241 : hard_regno_nregs (out_regno, mode));
8242 bool piecemeal;
8243
8244 spill_reg_store[regno] = new_spill_reg_store[regno];
8245 spill_reg_stored_to[regno] = out;
8246 reg_last_reload_reg[out_regno] = reg;
8247
8248 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8249 && nregs == out_nregs
8250 && inherit_piecemeal_p (out_regno, regno, mode));
8251
8252 /* If OUT_REGNO is a hard register, it may occupy more than
8253 one register. If it does, say what is in the
8254 rest of the registers assuming that both registers
8255 agree on how many words the object takes. If not,
8256 invalidate the subsequent registers. */
8257
8258 if (HARD_REGISTER_NUM_P (out_regno))
8259 for (k = 1; k < out_nregs; k++)
8260 reg_last_reload_reg[out_regno + k]
8261 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8262
8263 /* Now do the inverse operation. */
8264 for (k = 0; k < nregs; k++)
8265 {
8266 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8267 reg_reloaded_contents[regno + k]
8268 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8269 ? out_regno
8270 : out_regno + k);
8271 reg_reloaded_insn[regno + k] = insn;
8272 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8273 if (targetm.hard_regno_call_part_clobbered (regno + k,
8274 mode))
8275 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8276 regno + k);
8277 else
8278 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8279 regno + k);
8280 }
8281 }
8282 }
8283 /* Maybe the spill reg contains a copy of reload_in. Only do
8284 something if there will not be an output reload for
8285 the register being reloaded. */
8286 else if (rld[r].out_reg == 0
8287 && rld[r].in != 0
8288 && ((REG_P (rld[r].in)
8289 && !HARD_REGISTER_P (rld[r].in)
8290 && !REGNO_REG_SET_P (&reg_has_output_reload,
8291 REGNO (rld[r].in)))
8292 || (REG_P (rld[r].in_reg)
8293 && !REGNO_REG_SET_P (&reg_has_output_reload,
8294 REGNO (rld[r].in_reg))))
8295 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8296 {
8297 rtx reg;
8298
8299 reg = reload_reg_rtx_for_input[r];
8300 if (reload_reg_rtx_reaches_end_p (reg, r))
8301 {
8302 machine_mode mode;
8303 int regno;
8304 int nregs;
8305 int in_regno;
8306 int in_nregs;
8307 rtx in;
8308 bool piecemeal;
8309
8310 mode = GET_MODE (reg);
8311 regno = REGNO (reg);
8312 nregs = REG_NREGS (reg);
8313 if (REG_P (rld[r].in)
8314 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8315 in = rld[r].in;
8316 else if (REG_P (rld[r].in_reg))
8317 in = rld[r].in_reg;
8318 else
8319 in = XEXP (rld[r].in_reg, 0);
8320 in_regno = REGNO (in);
8321
8322 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8323 : hard_regno_nregs (in_regno, mode));
8324
8325 reg_last_reload_reg[in_regno] = reg;
8326
8327 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8328 && nregs == in_nregs
8329 && inherit_piecemeal_p (regno, in_regno, mode));
8330
8331 if (HARD_REGISTER_NUM_P (in_regno))
8332 for (k = 1; k < in_nregs; k++)
8333 reg_last_reload_reg[in_regno + k]
8334 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8335
8336 /* Unless we inherited this reload, show we haven't
8337 recently done a store.
8338 Previous stores of inherited auto_inc expressions
8339 also have to be discarded. */
8340 if (! reload_inherited[r]
8341 || (rld[r].out && ! rld[r].out_reg))
8342 spill_reg_store[regno] = 0;
8343
8344 for (k = 0; k < nregs; k++)
8345 {
8346 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8347 reg_reloaded_contents[regno + k]
8348 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8349 ? in_regno
8350 : in_regno + k);
8351 reg_reloaded_insn[regno + k] = insn;
8352 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8353 if (targetm.hard_regno_call_part_clobbered (regno + k,
8354 mode))
8355 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8356 regno + k);
8357 else
8358 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8359 regno + k);
8360 }
8361 }
8362 }
8363 }
8364
8365 /* The following if-statement was #if 0'd in 1.34 (or before...).
8366 It's reenabled in 1.35 because supposedly nothing else
8367 deals with this problem. */
8368
8369 /* If a register gets output-reloaded from a non-spill register,
8370 that invalidates any previous reloaded copy of it.
8371 But forget_old_reloads_1 won't get to see it, because
8372 it thinks only about the original insn. So invalidate it here.
8373 Also do the same thing for RELOAD_OTHER constraints where the
8374 output is discarded. */
8375 if (i < 0
8376 && ((rld[r].out != 0
8377 && (REG_P (rld[r].out)
8378 || (MEM_P (rld[r].out)
8379 && REG_P (rld[r].out_reg))))
8380 || (rld[r].out == 0 && rld[r].out_reg
8381 && REG_P (rld[r].out_reg))))
8382 {
8383 rtx out = ((rld[r].out && REG_P (rld[r].out))
8384 ? rld[r].out : rld[r].out_reg);
8385 int out_regno = REGNO (out);
8386 machine_mode mode = GET_MODE (out);
8387
8388 /* REG_RTX is now set or clobbered by the main instruction.
8389 As the comment above explains, forget_old_reloads_1 only
8390 sees the original instruction, and there is no guarantee
8391 that the original instruction also clobbered REG_RTX.
8392 For example, if find_reloads sees that the input side of
8393 a matched operand pair dies in this instruction, it may
8394 use the input register as the reload register.
8395
8396 Calling forget_old_reloads_1 is a waste of effort if
8397 REG_RTX is also the output register.
8398
8399 If we know that REG_RTX holds the value of a pseudo
8400 register, the code after the call will record that fact. */
8401 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8402 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8403
8404 if (!HARD_REGISTER_NUM_P (out_regno))
8405 {
8406 rtx src_reg;
8407 rtx_insn *store_insn = NULL;
8408
8409 reg_last_reload_reg[out_regno] = 0;
8410
8411 /* If we can find a hard register that is stored, record
8412 the storing insn so that we may delete this insn with
8413 delete_output_reload. */
8414 src_reg = reload_reg_rtx_for_output[r];
8415
8416 if (src_reg)
8417 {
8418 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8419 store_insn = new_spill_reg_store[REGNO (src_reg)];
8420 else
8421 src_reg = NULL_RTX;
8422 }
8423 else
8424 {
8425 /* If this is an optional reload, try to find the
8426 source reg from an input reload. */
8427 rtx set = single_set (insn);
8428 if (set && SET_DEST (set) == rld[r].out)
8429 {
8430 int k;
8431
8432 src_reg = SET_SRC (set);
8433 store_insn = insn;
8434 for (k = 0; k < n_reloads; k++)
8435 {
8436 if (rld[k].in == src_reg)
8437 {
8438 src_reg = reload_reg_rtx_for_input[k];
8439 break;
8440 }
8441 }
8442 }
8443 }
8444 if (src_reg && REG_P (src_reg)
8445 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8446 {
8447 int src_regno, src_nregs, k;
8448 rtx note;
8449
8450 gcc_assert (GET_MODE (src_reg) == mode);
8451 src_regno = REGNO (src_reg);
8452 src_nregs = hard_regno_nregs (src_regno, mode);
8453 /* The place where to find a death note varies with
8454 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8455 necessarily checked exactly in the code that moves
8456 notes, so just check both locations. */
8457 note = find_regno_note (insn, REG_DEAD, src_regno);
8458 if (! note && store_insn)
8459 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8460 for (k = 0; k < src_nregs; k++)
8461 {
8462 spill_reg_store[src_regno + k] = store_insn;
8463 spill_reg_stored_to[src_regno + k] = out;
8464 reg_reloaded_contents[src_regno + k] = out_regno;
8465 reg_reloaded_insn[src_regno + k] = store_insn;
8466 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8467 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8468 if (targetm.hard_regno_call_part_clobbered
8469 (src_regno + k, mode))
8470 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8471 src_regno + k);
8472 else
8473 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8474 src_regno + k);
8475 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8476 if (note)
8477 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8478 else
8479 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8480 }
8481 reg_last_reload_reg[out_regno] = src_reg;
8482 /* We have to set reg_has_output_reload here, or else
8483 forget_old_reloads_1 will clear reg_last_reload_reg
8484 right away. */
8485 SET_REGNO_REG_SET (&reg_has_output_reload,
8486 out_regno);
8487 }
8488 }
8489 else
8490 {
8491 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8492
8493 for (k = 0; k < out_nregs; k++)
8494 reg_last_reload_reg[out_regno + k] = 0;
8495 }
8496 }
8497 }
8498 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8499 }
8500 \f
8501 /* Go through the motions to emit INSN and test if it is strictly valid.
8502 Return the emitted insn if valid, else return NULL. */
8503
8504 static rtx_insn *
8505 emit_insn_if_valid_for_reload (rtx pat)
8506 {
8507 rtx_insn *last = get_last_insn ();
8508 int code;
8509
8510 rtx_insn *insn = emit_insn (pat);
8511 code = recog_memoized (insn);
8512
8513 if (code >= 0)
8514 {
8515 extract_insn (insn);
8516 /* We want constrain operands to treat this insn strictly in its
8517 validity determination, i.e., the way it would after reload has
8518 completed. */
8519 if (constrain_operands (1, get_enabled_alternatives (insn)))
8520 return insn;
8521 }
8522
8523 delete_insns_since (last);
8524 return NULL;
8525 }
8526
8527 /* Emit code to perform a reload from IN (which may be a reload register) to
8528 OUT (which may also be a reload register). IN or OUT is from operand
8529 OPNUM with reload type TYPE.
8530
8531 Returns first insn emitted. */
8532
8533 static rtx_insn *
8534 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8535 {
8536 rtx_insn *last = get_last_insn ();
8537 rtx_insn *tem;
8538 rtx tem1, tem2;
8539
8540 /* If IN is a paradoxical SUBREG, remove it and try to put the
8541 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8542 if (!strip_paradoxical_subreg (&in, &out))
8543 strip_paradoxical_subreg (&out, &in);
8544
8545 /* How to do this reload can get quite tricky. Normally, we are being
8546 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8547 register that didn't get a hard register. In that case we can just
8548 call emit_move_insn.
8549
8550 We can also be asked to reload a PLUS that adds a register or a MEM to
8551 another register, constant or MEM. This can occur during frame pointer
8552 elimination and while reloading addresses. This case is handled by
8553 trying to emit a single insn to perform the add. If it is not valid,
8554 we use a two insn sequence.
8555
8556 Or we can be asked to reload an unary operand that was a fragment of
8557 an addressing mode, into a register. If it isn't recognized as-is,
8558 we try making the unop operand and the reload-register the same:
8559 (set reg:X (unop:X expr:Y))
8560 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8561
8562 Finally, we could be called to handle an 'o' constraint by putting
8563 an address into a register. In that case, we first try to do this
8564 with a named pattern of "reload_load_address". If no such pattern
8565 exists, we just emit a SET insn and hope for the best (it will normally
8566 be valid on machines that use 'o').
8567
8568 This entire process is made complex because reload will never
8569 process the insns we generate here and so we must ensure that
8570 they will fit their constraints and also by the fact that parts of
8571 IN might be being reloaded separately and replaced with spill registers.
8572 Because of this, we are, in some sense, just guessing the right approach
8573 here. The one listed above seems to work.
8574
8575 ??? At some point, this whole thing needs to be rethought. */
8576
8577 if (GET_CODE (in) == PLUS
8578 && (REG_P (XEXP (in, 0))
8579 || GET_CODE (XEXP (in, 0)) == SUBREG
8580 || MEM_P (XEXP (in, 0)))
8581 && (REG_P (XEXP (in, 1))
8582 || GET_CODE (XEXP (in, 1)) == SUBREG
8583 || CONSTANT_P (XEXP (in, 1))
8584 || MEM_P (XEXP (in, 1))))
8585 {
8586 /* We need to compute the sum of a register or a MEM and another
8587 register, constant, or MEM, and put it into the reload
8588 register. The best possible way of doing this is if the machine
8589 has a three-operand ADD insn that accepts the required operands.
8590
8591 The simplest approach is to try to generate such an insn and see if it
8592 is recognized and matches its constraints. If so, it can be used.
8593
8594 It might be better not to actually emit the insn unless it is valid,
8595 but we need to pass the insn as an operand to `recog' and
8596 `extract_insn' and it is simpler to emit and then delete the insn if
8597 not valid than to dummy things up. */
8598
8599 rtx op0, op1, tem;
8600 rtx_insn *insn;
8601 enum insn_code code;
8602
8603 op0 = find_replacement (&XEXP (in, 0));
8604 op1 = find_replacement (&XEXP (in, 1));
8605
8606 /* Since constraint checking is strict, commutativity won't be
8607 checked, so we need to do that here to avoid spurious failure
8608 if the add instruction is two-address and the second operand
8609 of the add is the same as the reload reg, which is frequently
8610 the case. If the insn would be A = B + A, rearrange it so
8611 it will be A = A + B as constrain_operands expects. */
8612
8613 if (REG_P (XEXP (in, 1))
8614 && REGNO (out) == REGNO (XEXP (in, 1)))
8615 tem = op0, op0 = op1, op1 = tem;
8616
8617 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8618 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8619
8620 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8621 if (insn)
8622 return insn;
8623
8624 /* If that failed, we must use a conservative two-insn sequence.
8625
8626 Use a move to copy one operand into the reload register. Prefer
8627 to reload a constant, MEM or pseudo since the move patterns can
8628 handle an arbitrary operand. If OP1 is not a constant, MEM or
8629 pseudo and OP1 is not a valid operand for an add instruction, then
8630 reload OP1.
8631
8632 After reloading one of the operands into the reload register, add
8633 the reload register to the output register.
8634
8635 If there is another way to do this for a specific machine, a
8636 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8637 we emit below. */
8638
8639 code = optab_handler (add_optab, GET_MODE (out));
8640
8641 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8642 || (REG_P (op1)
8643 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8644 || (code != CODE_FOR_nothing
8645 && !insn_operand_matches (code, 2, op1)))
8646 tem = op0, op0 = op1, op1 = tem;
8647
8648 gen_reload (out, op0, opnum, type);
8649
8650 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8651 This fixes a problem on the 32K where the stack pointer cannot
8652 be used as an operand of an add insn. */
8653
8654 if (rtx_equal_p (op0, op1))
8655 op1 = out;
8656
8657 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8658 if (insn)
8659 {
8660 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8661 set_dst_reg_note (insn, REG_EQUIV, in, out);
8662 return insn;
8663 }
8664
8665 /* If that failed, copy the address register to the reload register.
8666 Then add the constant to the reload register. */
8667
8668 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8669 gen_reload (out, op1, opnum, type);
8670 insn = emit_insn (gen_add2_insn (out, op0));
8671 set_dst_reg_note (insn, REG_EQUIV, in, out);
8672 }
8673
8674 /* If we need a memory location to do the move, do it that way. */
8675 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8676 (REG_P (tem1) && REG_P (tem2)))
8677 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8678 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8679 && targetm.secondary_memory_needed (GET_MODE (out),
8680 REGNO_REG_CLASS (REGNO (tem1)),
8681 REGNO_REG_CLASS (REGNO (tem2))))
8682 {
8683 /* Get the memory to use and rewrite both registers to its mode. */
8684 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8685
8686 if (GET_MODE (loc) != GET_MODE (out))
8687 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8688
8689 if (GET_MODE (loc) != GET_MODE (in))
8690 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8691
8692 gen_reload (loc, in, opnum, type);
8693 gen_reload (out, loc, opnum, type);
8694 }
8695 else if (REG_P (out) && UNARY_P (in))
8696 {
8697 rtx op1;
8698 rtx out_moded;
8699 rtx_insn *set;
8700
8701 op1 = find_replacement (&XEXP (in, 0));
8702 if (op1 != XEXP (in, 0))
8703 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8704
8705 /* First, try a plain SET. */
8706 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8707 if (set)
8708 return set;
8709
8710 /* If that failed, move the inner operand to the reload
8711 register, and try the same unop with the inner expression
8712 replaced with the reload register. */
8713
8714 if (GET_MODE (op1) != GET_MODE (out))
8715 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8716 else
8717 out_moded = out;
8718
8719 gen_reload (out_moded, op1, opnum, type);
8720
8721 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8722 out_moded));
8723 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8724 if (insn)
8725 {
8726 set_unique_reg_note (insn, REG_EQUIV, in);
8727 return insn;
8728 }
8729
8730 fatal_insn ("failure trying to reload:", set);
8731 }
8732 /* If IN is a simple operand, use gen_move_insn. */
8733 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8734 {
8735 tem = emit_insn (gen_move_insn (out, in));
8736 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8737 mark_jump_label (in, tem, 0);
8738 }
8739
8740 else if (targetm.have_reload_load_address ())
8741 emit_insn (targetm.gen_reload_load_address (out, in));
8742
8743 /* Otherwise, just write (set OUT IN) and hope for the best. */
8744 else
8745 emit_insn (gen_rtx_SET (out, in));
8746
8747 /* Return the first insn emitted.
8748 We can not just return get_last_insn, because there may have
8749 been multiple instructions emitted. Also note that gen_move_insn may
8750 emit more than one insn itself, so we can not assume that there is one
8751 insn emitted per emit_insn_before call. */
8752
8753 return last ? NEXT_INSN (last) : get_insns ();
8754 }
8755 \f
8756 /* Delete a previously made output-reload whose result we now believe
8757 is not needed. First we double-check.
8758
8759 INSN is the insn now being processed.
8760 LAST_RELOAD_REG is the hard register number for which we want to delete
8761 the last output reload.
8762 J is the reload-number that originally used REG. The caller has made
8763 certain that reload J doesn't use REG any longer for input.
8764 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8765
8766 static void
8767 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8768 rtx new_reload_reg)
8769 {
8770 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8771 rtx reg = spill_reg_stored_to[last_reload_reg];
8772 int k;
8773 int n_occurrences;
8774 int n_inherited = 0;
8775 rtx substed;
8776 unsigned regno;
8777 int nregs;
8778
8779 /* It is possible that this reload has been only used to set another reload
8780 we eliminated earlier and thus deleted this instruction too. */
8781 if (output_reload_insn->deleted ())
8782 return;
8783
8784 /* Get the raw pseudo-register referred to. */
8785
8786 while (GET_CODE (reg) == SUBREG)
8787 reg = SUBREG_REG (reg);
8788 substed = reg_equiv_memory_loc (REGNO (reg));
8789
8790 /* This is unsafe if the operand occurs more often in the current
8791 insn than it is inherited. */
8792 for (k = n_reloads - 1; k >= 0; k--)
8793 {
8794 rtx reg2 = rld[k].in;
8795 if (! reg2)
8796 continue;
8797 if (MEM_P (reg2) || reload_override_in[k])
8798 reg2 = rld[k].in_reg;
8799
8800 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8801 reg2 = XEXP (rld[k].in_reg, 0);
8802
8803 while (GET_CODE (reg2) == SUBREG)
8804 reg2 = SUBREG_REG (reg2);
8805 if (rtx_equal_p (reg2, reg))
8806 {
8807 if (reload_inherited[k] || reload_override_in[k] || k == j)
8808 n_inherited++;
8809 else
8810 return;
8811 }
8812 }
8813 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8814 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8815 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8816 reg, 0);
8817 if (substed)
8818 n_occurrences += count_occurrences (PATTERN (insn),
8819 eliminate_regs (substed, VOIDmode,
8820 NULL_RTX), 0);
8821 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8822 {
8823 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8824 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8825 }
8826 if (n_occurrences > n_inherited)
8827 return;
8828
8829 regno = REGNO (reg);
8830 nregs = REG_NREGS (reg);
8831
8832 /* If the pseudo-reg we are reloading is no longer referenced
8833 anywhere between the store into it and here,
8834 and we're within the same basic block, then the value can only
8835 pass through the reload reg and end up here.
8836 Otherwise, give up--return. */
8837 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8838 i1 != insn; i1 = NEXT_INSN (i1))
8839 {
8840 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8841 return;
8842 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8843 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8844 {
8845 /* If this is USE in front of INSN, we only have to check that
8846 there are no more references than accounted for by inheritance. */
8847 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8848 {
8849 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8850 i1 = NEXT_INSN (i1);
8851 }
8852 if (n_occurrences <= n_inherited && i1 == insn)
8853 break;
8854 return;
8855 }
8856 }
8857
8858 /* We will be deleting the insn. Remove the spill reg information. */
8859 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8860 {
8861 spill_reg_store[last_reload_reg + k] = 0;
8862 spill_reg_stored_to[last_reload_reg + k] = 0;
8863 }
8864
8865 /* The caller has already checked that REG dies or is set in INSN.
8866 It has also checked that we are optimizing, and thus some
8867 inaccuracies in the debugging information are acceptable.
8868 So we could just delete output_reload_insn. But in some cases
8869 we can improve the debugging information without sacrificing
8870 optimization - maybe even improving the code: See if the pseudo
8871 reg has been completely replaced with reload regs. If so, delete
8872 the store insn and forget we had a stack slot for the pseudo. */
8873 if (rld[j].out != rld[j].in
8874 && REG_N_DEATHS (REGNO (reg)) == 1
8875 && REG_N_SETS (REGNO (reg)) == 1
8876 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8877 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8878 {
8879 rtx_insn *i2;
8880
8881 /* We know that it was used only between here and the beginning of
8882 the current basic block. (We also know that the last use before
8883 INSN was the output reload we are thinking of deleting, but never
8884 mind that.) Search that range; see if any ref remains. */
8885 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8886 {
8887 rtx set = single_set (i2);
8888
8889 /* Uses which just store in the pseudo don't count,
8890 since if they are the only uses, they are dead. */
8891 if (set != 0 && SET_DEST (set) == reg)
8892 continue;
8893 if (LABEL_P (i2) || JUMP_P (i2))
8894 break;
8895 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8896 && reg_mentioned_p (reg, PATTERN (i2)))
8897 {
8898 /* Some other ref remains; just delete the output reload we
8899 know to be dead. */
8900 delete_address_reloads (output_reload_insn, insn);
8901 delete_insn (output_reload_insn);
8902 return;
8903 }
8904 }
8905
8906 /* Delete the now-dead stores into this pseudo. Note that this
8907 loop also takes care of deleting output_reload_insn. */
8908 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8909 {
8910 rtx set = single_set (i2);
8911
8912 if (set != 0 && SET_DEST (set) == reg)
8913 {
8914 delete_address_reloads (i2, insn);
8915 delete_insn (i2);
8916 }
8917 if (LABEL_P (i2) || JUMP_P (i2))
8918 break;
8919 }
8920
8921 /* For the debugging info, say the pseudo lives in this reload reg. */
8922 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8923 if (ira_conflicts_p)
8924 /* Inform IRA about the change. */
8925 ira_mark_allocation_change (REGNO (reg));
8926 alter_reg (REGNO (reg), -1, false);
8927 }
8928 else
8929 {
8930 delete_address_reloads (output_reload_insn, insn);
8931 delete_insn (output_reload_insn);
8932 }
8933 }
8934
8935 /* We are going to delete DEAD_INSN. Recursively delete loads of
8936 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8937 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8938 static void
8939 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8940 {
8941 rtx set = single_set (dead_insn);
8942 rtx set2, dst;
8943 rtx_insn *prev, *next;
8944 if (set)
8945 {
8946 rtx dst = SET_DEST (set);
8947 if (MEM_P (dst))
8948 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8949 }
8950 /* If we deleted the store from a reloaded post_{in,de}c expression,
8951 we can delete the matching adds. */
8952 prev = PREV_INSN (dead_insn);
8953 next = NEXT_INSN (dead_insn);
8954 if (! prev || ! next)
8955 return;
8956 set = single_set (next);
8957 set2 = single_set (prev);
8958 if (! set || ! set2
8959 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8960 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8961 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8962 return;
8963 dst = SET_DEST (set);
8964 if (! rtx_equal_p (dst, SET_DEST (set2))
8965 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8966 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8967 || (INTVAL (XEXP (SET_SRC (set), 1))
8968 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8969 return;
8970 delete_related_insns (prev);
8971 delete_related_insns (next);
8972 }
8973
8974 /* Subfunction of delete_address_reloads: process registers found in X. */
8975 static void
8976 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8977 {
8978 rtx_insn *prev, *i2;
8979 rtx set, dst;
8980 int i, j;
8981 enum rtx_code code = GET_CODE (x);
8982
8983 if (code != REG)
8984 {
8985 const char *fmt = GET_RTX_FORMAT (code);
8986 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8987 {
8988 if (fmt[i] == 'e')
8989 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8990 else if (fmt[i] == 'E')
8991 {
8992 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8993 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8994 current_insn);
8995 }
8996 }
8997 return;
8998 }
8999
9000 if (spill_reg_order[REGNO (x)] < 0)
9001 return;
9002
9003 /* Scan backwards for the insn that sets x. This might be a way back due
9004 to inheritance. */
9005 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9006 {
9007 code = GET_CODE (prev);
9008 if (code == CODE_LABEL || code == JUMP_INSN)
9009 return;
9010 if (!INSN_P (prev))
9011 continue;
9012 if (reg_set_p (x, PATTERN (prev)))
9013 break;
9014 if (reg_referenced_p (x, PATTERN (prev)))
9015 return;
9016 }
9017 if (! prev || INSN_UID (prev) < reload_first_uid)
9018 return;
9019 /* Check that PREV only sets the reload register. */
9020 set = single_set (prev);
9021 if (! set)
9022 return;
9023 dst = SET_DEST (set);
9024 if (!REG_P (dst)
9025 || ! rtx_equal_p (dst, x))
9026 return;
9027 if (! reg_set_p (dst, PATTERN (dead_insn)))
9028 {
9029 /* Check if DST was used in a later insn -
9030 it might have been inherited. */
9031 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9032 {
9033 if (LABEL_P (i2))
9034 break;
9035 if (! INSN_P (i2))
9036 continue;
9037 if (reg_referenced_p (dst, PATTERN (i2)))
9038 {
9039 /* If there is a reference to the register in the current insn,
9040 it might be loaded in a non-inherited reload. If no other
9041 reload uses it, that means the register is set before
9042 referenced. */
9043 if (i2 == current_insn)
9044 {
9045 for (j = n_reloads - 1; j >= 0; j--)
9046 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9047 || reload_override_in[j] == dst)
9048 return;
9049 for (j = n_reloads - 1; j >= 0; j--)
9050 if (rld[j].in && rld[j].reg_rtx == dst)
9051 break;
9052 if (j >= 0)
9053 break;
9054 }
9055 return;
9056 }
9057 if (JUMP_P (i2))
9058 break;
9059 /* If DST is still live at CURRENT_INSN, check if it is used for
9060 any reload. Note that even if CURRENT_INSN sets DST, we still
9061 have to check the reloads. */
9062 if (i2 == current_insn)
9063 {
9064 for (j = n_reloads - 1; j >= 0; j--)
9065 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9066 || reload_override_in[j] == dst)
9067 return;
9068 /* ??? We can't finish the loop here, because dst might be
9069 allocated to a pseudo in this block if no reload in this
9070 block needs any of the classes containing DST - see
9071 spill_hard_reg. There is no easy way to tell this, so we
9072 have to scan till the end of the basic block. */
9073 }
9074 if (reg_set_p (dst, PATTERN (i2)))
9075 break;
9076 }
9077 }
9078 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9079 reg_reloaded_contents[REGNO (dst)] = -1;
9080 delete_insn (prev);
9081 }
9082 \f
9083 /* Output reload-insns to reload VALUE into RELOADREG.
9084 VALUE is an autoincrement or autodecrement RTX whose operand
9085 is a register or memory location;
9086 so reloading involves incrementing that location.
9087 IN is either identical to VALUE, or some cheaper place to reload from.
9088
9089 INC_AMOUNT is the number to increment or decrement by (always positive).
9090 This cannot be deduced from VALUE. */
9091
9092 static void
9093 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
9094 {
9095 /* REG or MEM to be copied and incremented. */
9096 rtx incloc = find_replacement (&XEXP (value, 0));
9097 /* Nonzero if increment after copying. */
9098 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9099 || GET_CODE (value) == POST_MODIFY);
9100 rtx_insn *last;
9101 rtx inc;
9102 rtx_insn *add_insn;
9103 int code;
9104 rtx real_in = in == value ? incloc : in;
9105
9106 /* No hard register is equivalent to this register after
9107 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9108 we could inc/dec that register as well (maybe even using it for
9109 the source), but I'm not sure it's worth worrying about. */
9110 if (REG_P (incloc))
9111 reg_last_reload_reg[REGNO (incloc)] = 0;
9112
9113 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9114 {
9115 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9116 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9117 }
9118 else
9119 {
9120 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9121 inc_amount = -inc_amount;
9122
9123 inc = gen_int_mode (inc_amount, Pmode);
9124 }
9125
9126 /* If this is post-increment, first copy the location to the reload reg. */
9127 if (post && real_in != reloadreg)
9128 emit_insn (gen_move_insn (reloadreg, real_in));
9129
9130 if (in == value)
9131 {
9132 /* See if we can directly increment INCLOC. Use a method similar to
9133 that in gen_reload. */
9134
9135 last = get_last_insn ();
9136 add_insn = emit_insn (gen_rtx_SET (incloc,
9137 gen_rtx_PLUS (GET_MODE (incloc),
9138 incloc, inc)));
9139
9140 code = recog_memoized (add_insn);
9141 if (code >= 0)
9142 {
9143 extract_insn (add_insn);
9144 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9145 {
9146 /* If this is a pre-increment and we have incremented the value
9147 where it lives, copy the incremented value to RELOADREG to
9148 be used as an address. */
9149
9150 if (! post)
9151 emit_insn (gen_move_insn (reloadreg, incloc));
9152 return;
9153 }
9154 }
9155 delete_insns_since (last);
9156 }
9157
9158 /* If couldn't do the increment directly, must increment in RELOADREG.
9159 The way we do this depends on whether this is pre- or post-increment.
9160 For pre-increment, copy INCLOC to the reload register, increment it
9161 there, then save back. */
9162
9163 if (! post)
9164 {
9165 if (in != reloadreg)
9166 emit_insn (gen_move_insn (reloadreg, real_in));
9167 emit_insn (gen_add2_insn (reloadreg, inc));
9168 emit_insn (gen_move_insn (incloc, reloadreg));
9169 }
9170 else
9171 {
9172 /* Postincrement.
9173 Because this might be a jump insn or a compare, and because RELOADREG
9174 may not be available after the insn in an input reload, we must do
9175 the incrementation before the insn being reloaded for.
9176
9177 We have already copied IN to RELOADREG. Increment the copy in
9178 RELOADREG, save that back, then decrement RELOADREG so it has
9179 the original value. */
9180
9181 emit_insn (gen_add2_insn (reloadreg, inc));
9182 emit_insn (gen_move_insn (incloc, reloadreg));
9183 if (CONST_INT_P (inc))
9184 emit_insn (gen_add2_insn (reloadreg,
9185 gen_int_mode (-INTVAL (inc),
9186 GET_MODE (reloadreg))));
9187 else
9188 emit_insn (gen_sub2_insn (reloadreg, inc));
9189 }
9190 }
9191 \f
9192 static void
9193 add_auto_inc_notes (rtx_insn *insn, rtx x)
9194 {
9195 enum rtx_code code = GET_CODE (x);
9196 const char *fmt;
9197 int i, j;
9198
9199 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9200 {
9201 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9202 return;
9203 }
9204
9205 /* Scan all the operand sub-expressions. */
9206 fmt = GET_RTX_FORMAT (code);
9207 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9208 {
9209 if (fmt[i] == 'e')
9210 add_auto_inc_notes (insn, XEXP (x, i));
9211 else if (fmt[i] == 'E')
9212 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9213 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9214 }
9215 }